x86, cpufeature: If we disable CLFLUSH, we should disable CLFLUSHOPT
[linux/fpc-iii.git] / drivers / video / asiliantfb.c
blob7e8ddf00ccc2d502673022542e3dac453ab83805
1 /*
2 * drivers/video/asiliantfb.c
3 * frame buffer driver for Asiliant 69000 chip
4 * Copyright (C) 2001-2003 Saito.K & Jeanne
6 * from driver/video/chipsfb.c and,
8 * drivers/video/asiliantfb.c -- frame buffer device for
9 * Asiliant 69030 chip (formerly Intel, formerly Chips & Technologies)
10 * Author: apc@agelectronics.co.uk
11 * Copyright (C) 2000 AG Electronics
12 * Note: the data sheets don't seem to be available from Asiliant.
13 * They are available by searching developer.intel.com, but are not otherwise
14 * linked to.
16 * This driver should be portable with minimal effort to the 69000 display
17 * chip, and to the twin-display mode of the 69030.
18 * Contains code from Thomas Hhenleitner <th@visuelle-maschinen.de> (thanks)
20 * Derived from the CT65550 driver chipsfb.c:
21 * Copyright (C) 1998 Paul Mackerras
22 * ...which was derived from the Powermac "chips" driver:
23 * Copyright (C) 1997 Fabio Riccardi.
24 * And from the frame buffer device for Open Firmware-initialized devices:
25 * Copyright (C) 1997 Geert Uytterhoeven.
27 * This file is subject to the terms and conditions of the GNU General Public
28 * License. See the file COPYING in the main directory of this archive for
29 * more details.
32 #include <linux/module.h>
33 #include <linux/kernel.h>
34 #include <linux/errno.h>
35 #include <linux/string.h>
36 #include <linux/mm.h>
37 #include <linux/vmalloc.h>
38 #include <linux/delay.h>
39 #include <linux/interrupt.h>
40 #include <linux/fb.h>
41 #include <linux/init.h>
42 #include <linux/pci.h>
43 #include <asm/io.h>
45 /* Built in clock of the 69030 */
46 static const unsigned Fref = 14318180;
48 #define mmio_base (p->screen_base + 0x400000)
50 #define mm_write_ind(num, val, ap, dp) do { \
51 writeb((num), mmio_base + (ap)); writeb((val), mmio_base + (dp)); \
52 } while (0)
54 static void mm_write_xr(struct fb_info *p, u8 reg, u8 data)
56 mm_write_ind(reg, data, 0x7ac, 0x7ad);
58 #define write_xr(num, val) mm_write_xr(p, num, val)
60 static void mm_write_fr(struct fb_info *p, u8 reg, u8 data)
62 mm_write_ind(reg, data, 0x7a0, 0x7a1);
64 #define write_fr(num, val) mm_write_fr(p, num, val)
66 static void mm_write_cr(struct fb_info *p, u8 reg, u8 data)
68 mm_write_ind(reg, data, 0x7a8, 0x7a9);
70 #define write_cr(num, val) mm_write_cr(p, num, val)
72 static void mm_write_gr(struct fb_info *p, u8 reg, u8 data)
74 mm_write_ind(reg, data, 0x79c, 0x79d);
76 #define write_gr(num, val) mm_write_gr(p, num, val)
78 static void mm_write_sr(struct fb_info *p, u8 reg, u8 data)
80 mm_write_ind(reg, data, 0x788, 0x789);
82 #define write_sr(num, val) mm_write_sr(p, num, val)
84 static void mm_write_ar(struct fb_info *p, u8 reg, u8 data)
86 readb(mmio_base + 0x7b4);
87 mm_write_ind(reg, data, 0x780, 0x780);
89 #define write_ar(num, val) mm_write_ar(p, num, val)
91 static int asiliantfb_pci_init(struct pci_dev *dp, const struct pci_device_id *);
92 static int asiliantfb_check_var(struct fb_var_screeninfo *var,
93 struct fb_info *info);
94 static int asiliantfb_set_par(struct fb_info *info);
95 static int asiliantfb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
96 u_int transp, struct fb_info *info);
98 static struct fb_ops asiliantfb_ops = {
99 .owner = THIS_MODULE,
100 .fb_check_var = asiliantfb_check_var,
101 .fb_set_par = asiliantfb_set_par,
102 .fb_setcolreg = asiliantfb_setcolreg,
103 .fb_fillrect = cfb_fillrect,
104 .fb_copyarea = cfb_copyarea,
105 .fb_imageblit = cfb_imageblit,
108 /* Calculate the ratios for the dot clocks without using a single long long
109 * value */
110 static void asiliant_calc_dclk2(u32 *ppixclock, u8 *dclk2_m, u8 *dclk2_n, u8 *dclk2_div)
112 unsigned pixclock = *ppixclock;
113 unsigned Ftarget = 1000000 * (1000000 / pixclock);
114 unsigned n;
115 unsigned best_error = 0xffffffff;
116 unsigned best_m = 0xffffffff,
117 best_n = 0xffffffff;
118 unsigned ratio;
119 unsigned remainder;
120 unsigned char divisor = 0;
122 /* Calculate the frequency required. This is hard enough. */
123 ratio = 1000000 / pixclock;
124 remainder = 1000000 % pixclock;
125 Ftarget = 1000000 * ratio + (1000000 * remainder) / pixclock;
127 while (Ftarget < 100000000) {
128 divisor += 0x10;
129 Ftarget <<= 1;
132 ratio = Ftarget / Fref;
133 remainder = Ftarget % Fref;
135 /* This expresses the constraint that 150kHz <= Fref/n <= 5Mhz,
136 * together with 3 <= n <= 257. */
137 for (n = 3; n <= 257; n++) {
138 unsigned m = n * ratio + (n * remainder) / Fref;
140 /* 3 <= m <= 257 */
141 if (m >= 3 && m <= 257) {
142 unsigned new_error = Ftarget * n >= Fref * m ?
143 ((Ftarget * n) - (Fref * m)) : ((Fref * m) - (Ftarget * n));
144 if (new_error < best_error) {
145 best_n = n;
146 best_m = m;
147 best_error = new_error;
150 /* But if VLD = 4, then 4m <= 1028 */
151 else if (m <= 1028) {
152 /* remember there are still only 8-bits of precision in m, so
153 * avoid over-optimistic error calculations */
154 unsigned new_error = Ftarget * n >= Fref * (m & ~3) ?
155 ((Ftarget * n) - (Fref * (m & ~3))) : ((Fref * (m & ~3)) - (Ftarget * n));
156 if (new_error < best_error) {
157 best_n = n;
158 best_m = m;
159 best_error = new_error;
163 if (best_m > 257)
164 best_m >>= 2; /* divide m by 4, and leave VCO loop divide at 4 */
165 else
166 divisor |= 4; /* or set VCO loop divide to 1 */
167 *dclk2_m = best_m - 2;
168 *dclk2_n = best_n - 2;
169 *dclk2_div = divisor;
170 *ppixclock = pixclock;
171 return;
174 static void asiliant_set_timing(struct fb_info *p)
176 unsigned hd = p->var.xres / 8;
177 unsigned hs = (p->var.xres + p->var.right_margin) / 8;
178 unsigned he = (p->var.xres + p->var.right_margin + p->var.hsync_len) / 8;
179 unsigned ht = (p->var.left_margin + p->var.xres + p->var.right_margin + p->var.hsync_len) / 8;
180 unsigned vd = p->var.yres;
181 unsigned vs = p->var.yres + p->var.lower_margin;
182 unsigned ve = p->var.yres + p->var.lower_margin + p->var.vsync_len;
183 unsigned vt = p->var.upper_margin + p->var.yres + p->var.lower_margin + p->var.vsync_len;
184 unsigned wd = (p->var.xres_virtual * ((p->var.bits_per_pixel+7)/8)) / 8;
186 if ((p->var.xres == 640) && (p->var.yres == 480) && (p->var.pixclock == 39722)) {
187 write_fr(0x01, 0x02); /* LCD */
188 } else {
189 write_fr(0x01, 0x01); /* CRT */
192 write_cr(0x11, (ve - 1) & 0x0f);
193 write_cr(0x00, (ht - 5) & 0xff);
194 write_cr(0x01, hd - 1);
195 write_cr(0x02, hd);
196 write_cr(0x03, ((ht - 1) & 0x1f) | 0x80);
197 write_cr(0x04, hs);
198 write_cr(0x05, (((ht - 1) & 0x20) <<2) | (he & 0x1f));
199 write_cr(0x3c, (ht - 1) & 0xc0);
200 write_cr(0x06, (vt - 2) & 0xff);
201 write_cr(0x30, (vt - 2) >> 8);
202 write_cr(0x07, 0x00);
203 write_cr(0x08, 0x00);
204 write_cr(0x09, 0x00);
205 write_cr(0x10, (vs - 1) & 0xff);
206 write_cr(0x32, ((vs - 1) >> 8) & 0xf);
207 write_cr(0x11, ((ve - 1) & 0x0f) | 0x80);
208 write_cr(0x12, (vd - 1) & 0xff);
209 write_cr(0x31, ((vd - 1) & 0xf00) >> 8);
210 write_cr(0x13, wd & 0xff);
211 write_cr(0x41, (wd & 0xf00) >> 8);
212 write_cr(0x15, (vs - 1) & 0xff);
213 write_cr(0x33, ((vs - 1) >> 8) & 0xf);
214 write_cr(0x38, ((ht - 5) & 0x100) >> 8);
215 write_cr(0x16, (vt - 1) & 0xff);
216 write_cr(0x18, 0x00);
218 if (p->var.xres == 640) {
219 writeb(0xc7, mmio_base + 0x784); /* set misc output reg */
220 } else {
221 writeb(0x07, mmio_base + 0x784); /* set misc output reg */
225 static int asiliantfb_check_var(struct fb_var_screeninfo *var,
226 struct fb_info *p)
228 unsigned long Ftarget, ratio, remainder;
230 ratio = 1000000 / var->pixclock;
231 remainder = 1000000 % var->pixclock;
232 Ftarget = 1000000 * ratio + (1000000 * remainder) / var->pixclock;
234 /* First check the constraint that the maximum post-VCO divisor is 32,
235 * and the maximum Fvco is 220MHz */
236 if (Ftarget > 220000000 || Ftarget < 3125000) {
237 printk(KERN_ERR "asiliantfb dotclock must be between 3.125 and 220MHz\n");
238 return -ENXIO;
240 var->xres_virtual = var->xres;
241 var->yres_virtual = var->yres;
243 if (var->bits_per_pixel == 24) {
244 var->red.offset = 16;
245 var->green.offset = 8;
246 var->blue.offset = 0;
247 var->red.length = var->blue.length = var->green.length = 8;
248 } else if (var->bits_per_pixel == 16) {
249 switch (var->red.offset) {
250 case 11:
251 var->green.length = 6;
252 break;
253 case 10:
254 var->green.length = 5;
255 break;
256 default:
257 return -EINVAL;
259 var->green.offset = 5;
260 var->blue.offset = 0;
261 var->red.length = var->blue.length = 5;
262 } else if (var->bits_per_pixel == 8) {
263 var->red.offset = var->green.offset = var->blue.offset = 0;
264 var->red.length = var->green.length = var->blue.length = 8;
266 return 0;
269 static int asiliantfb_set_par(struct fb_info *p)
271 u8 dclk2_m; /* Holds m-2 value for register */
272 u8 dclk2_n; /* Holds n-2 value for register */
273 u8 dclk2_div; /* Holds divisor bitmask */
275 /* Set pixclock */
276 asiliant_calc_dclk2(&p->var.pixclock, &dclk2_m, &dclk2_n, &dclk2_div);
278 /* Set color depth */
279 if (p->var.bits_per_pixel == 24) {
280 write_xr(0x81, 0x16); /* 24 bit packed color mode */
281 write_xr(0x82, 0x00); /* Disable palettes */
282 write_xr(0x20, 0x20); /* 24 bit blitter mode */
283 } else if (p->var.bits_per_pixel == 16) {
284 if (p->var.red.offset == 11)
285 write_xr(0x81, 0x15); /* 16 bit color mode */
286 else
287 write_xr(0x81, 0x14); /* 15 bit color mode */
288 write_xr(0x82, 0x00); /* Disable palettes */
289 write_xr(0x20, 0x10); /* 16 bit blitter mode */
290 } else if (p->var.bits_per_pixel == 8) {
291 write_xr(0x0a, 0x02); /* Linear */
292 write_xr(0x81, 0x12); /* 8 bit color mode */
293 write_xr(0x82, 0x00); /* Graphics gamma enable */
294 write_xr(0x20, 0x00); /* 8 bit blitter mode */
296 p->fix.line_length = p->var.xres * (p->var.bits_per_pixel >> 3);
297 p->fix.visual = (p->var.bits_per_pixel == 8) ? FB_VISUAL_PSEUDOCOLOR : FB_VISUAL_TRUECOLOR;
298 write_xr(0xc4, dclk2_m);
299 write_xr(0xc5, dclk2_n);
300 write_xr(0xc7, dclk2_div);
301 /* Set up the CR registers */
302 asiliant_set_timing(p);
303 return 0;
306 static int asiliantfb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
307 u_int transp, struct fb_info *p)
309 if (regno > 255)
310 return 1;
311 red >>= 8;
312 green >>= 8;
313 blue >>= 8;
315 /* Set hardware palete */
316 writeb(regno, mmio_base + 0x790);
317 udelay(1);
318 writeb(red, mmio_base + 0x791);
319 writeb(green, mmio_base + 0x791);
320 writeb(blue, mmio_base + 0x791);
322 if (regno < 16) {
323 switch(p->var.red.offset) {
324 case 10: /* RGB 555 */
325 ((u32 *)(p->pseudo_palette))[regno] =
326 ((red & 0xf8) << 7) |
327 ((green & 0xf8) << 2) |
328 ((blue & 0xf8) >> 3);
329 break;
330 case 11: /* RGB 565 */
331 ((u32 *)(p->pseudo_palette))[regno] =
332 ((red & 0xf8) << 8) |
333 ((green & 0xfc) << 3) |
334 ((blue & 0xf8) >> 3);
335 break;
336 case 16: /* RGB 888 */
337 ((u32 *)(p->pseudo_palette))[regno] =
338 (red << 16) |
339 (green << 8) |
340 (blue);
341 break;
345 return 0;
348 struct chips_init_reg {
349 unsigned char addr;
350 unsigned char data;
353 static struct chips_init_reg chips_init_sr[] =
355 {0x00, 0x03}, /* Reset register */
356 {0x01, 0x01}, /* Clocking mode */
357 {0x02, 0x0f}, /* Plane mask */
358 {0x04, 0x0e} /* Memory mode */
361 static struct chips_init_reg chips_init_gr[] =
363 {0x03, 0x00}, /* Data rotate */
364 {0x05, 0x00}, /* Graphics mode */
365 {0x06, 0x01}, /* Miscellaneous */
366 {0x08, 0x00} /* Bit mask */
369 static struct chips_init_reg chips_init_ar[] =
371 {0x10, 0x01}, /* Mode control */
372 {0x11, 0x00}, /* Overscan */
373 {0x12, 0x0f}, /* Memory plane enable */
374 {0x13, 0x00} /* Horizontal pixel panning */
377 static struct chips_init_reg chips_init_cr[] =
379 {0x0c, 0x00}, /* Start address high */
380 {0x0d, 0x00}, /* Start address low */
381 {0x40, 0x00}, /* Extended Start Address */
382 {0x41, 0x00}, /* Extended Start Address */
383 {0x14, 0x00}, /* Underline location */
384 {0x17, 0xe3}, /* CRT mode control */
385 {0x70, 0x00} /* Interlace control */
389 static struct chips_init_reg chips_init_fr[] =
391 {0x01, 0x02},
392 {0x03, 0x08},
393 {0x08, 0xcc},
394 {0x0a, 0x08},
395 {0x18, 0x00},
396 {0x1e, 0x80},
397 {0x40, 0x83},
398 {0x41, 0x00},
399 {0x48, 0x13},
400 {0x4d, 0x60},
401 {0x4e, 0x0f},
403 {0x0b, 0x01},
405 {0x21, 0x51},
406 {0x22, 0x1d},
407 {0x23, 0x5f},
408 {0x20, 0x4f},
409 {0x34, 0x00},
410 {0x24, 0x51},
411 {0x25, 0x00},
412 {0x27, 0x0b},
413 {0x26, 0x00},
414 {0x37, 0x80},
415 {0x33, 0x0b},
416 {0x35, 0x11},
417 {0x36, 0x02},
418 {0x31, 0xea},
419 {0x32, 0x0c},
420 {0x30, 0xdf},
421 {0x10, 0x0c},
422 {0x11, 0xe0},
423 {0x12, 0x50},
424 {0x13, 0x00},
425 {0x16, 0x03},
426 {0x17, 0xbd},
427 {0x1a, 0x00},
431 static struct chips_init_reg chips_init_xr[] =
433 {0xce, 0x00}, /* set default memory clock */
434 {0xcc, 200 }, /* MCLK ratio M */
435 {0xcd, 18 }, /* MCLK ratio N */
436 {0xce, 0x90}, /* MCLK divisor = 2 */
438 {0xc4, 209 },
439 {0xc5, 118 },
440 {0xc7, 32 },
441 {0xcf, 0x06},
442 {0x09, 0x01}, /* IO Control - CRT controller extensions */
443 {0x0a, 0x02}, /* Frame buffer mapping */
444 {0x0b, 0x01}, /* PCI burst write */
445 {0x40, 0x03}, /* Memory access control */
446 {0x80, 0x82}, /* Pixel pipeline configuration 0 */
447 {0x81, 0x12}, /* Pixel pipeline configuration 1 */
448 {0x82, 0x08}, /* Pixel pipeline configuration 2 */
450 {0xd0, 0x0f},
451 {0xd1, 0x01},
454 static void chips_hw_init(struct fb_info *p)
456 int i;
458 for (i = 0; i < ARRAY_SIZE(chips_init_xr); ++i)
459 write_xr(chips_init_xr[i].addr, chips_init_xr[i].data);
460 write_xr(0x81, 0x12);
461 write_xr(0x82, 0x08);
462 write_xr(0x20, 0x00);
463 for (i = 0; i < ARRAY_SIZE(chips_init_sr); ++i)
464 write_sr(chips_init_sr[i].addr, chips_init_sr[i].data);
465 for (i = 0; i < ARRAY_SIZE(chips_init_gr); ++i)
466 write_gr(chips_init_gr[i].addr, chips_init_gr[i].data);
467 for (i = 0; i < ARRAY_SIZE(chips_init_ar); ++i)
468 write_ar(chips_init_ar[i].addr, chips_init_ar[i].data);
469 /* Enable video output in attribute index register */
470 writeb(0x20, mmio_base + 0x780);
471 for (i = 0; i < ARRAY_SIZE(chips_init_cr); ++i)
472 write_cr(chips_init_cr[i].addr, chips_init_cr[i].data);
473 for (i = 0; i < ARRAY_SIZE(chips_init_fr); ++i)
474 write_fr(chips_init_fr[i].addr, chips_init_fr[i].data);
477 static struct fb_fix_screeninfo asiliantfb_fix = {
478 .id = "Asiliant 69000",
479 .type = FB_TYPE_PACKED_PIXELS,
480 .visual = FB_VISUAL_PSEUDOCOLOR,
481 .accel = FB_ACCEL_NONE,
482 .line_length = 640,
483 .smem_len = 0x200000, /* 2MB */
486 static struct fb_var_screeninfo asiliantfb_var = {
487 .xres = 640,
488 .yres = 480,
489 .xres_virtual = 640,
490 .yres_virtual = 480,
491 .bits_per_pixel = 8,
492 .red = { .length = 8 },
493 .green = { .length = 8 },
494 .blue = { .length = 8 },
495 .height = -1,
496 .width = -1,
497 .vmode = FB_VMODE_NONINTERLACED,
498 .pixclock = 39722,
499 .left_margin = 48,
500 .right_margin = 16,
501 .upper_margin = 33,
502 .lower_margin = 10,
503 .hsync_len = 96,
504 .vsync_len = 2,
507 static int init_asiliant(struct fb_info *p, unsigned long addr)
509 int err;
511 p->fix = asiliantfb_fix;
512 p->fix.smem_start = addr;
513 p->var = asiliantfb_var;
514 p->fbops = &asiliantfb_ops;
515 p->flags = FBINFO_DEFAULT;
517 err = fb_alloc_cmap(&p->cmap, 256, 0);
518 if (err) {
519 printk(KERN_ERR "C&T 69000 fb failed to alloc cmap memory\n");
520 return err;
523 err = register_framebuffer(p);
524 if (err < 0) {
525 printk(KERN_ERR "C&T 69000 framebuffer failed to register\n");
526 fb_dealloc_cmap(&p->cmap);
527 return err;
530 fb_info(p, "Asiliant 69000 frame buffer (%dK RAM detected)\n",
531 p->fix.smem_len / 1024);
533 writeb(0xff, mmio_base + 0x78c);
534 chips_hw_init(p);
535 return 0;
538 static int asiliantfb_pci_init(struct pci_dev *dp,
539 const struct pci_device_id *ent)
541 unsigned long addr, size;
542 struct fb_info *p;
543 int err;
545 if ((dp->resource[0].flags & IORESOURCE_MEM) == 0)
546 return -ENODEV;
547 addr = pci_resource_start(dp, 0);
548 size = pci_resource_len(dp, 0);
549 if (addr == 0)
550 return -ENODEV;
551 if (!request_mem_region(addr, size, "asiliantfb"))
552 return -EBUSY;
554 p = framebuffer_alloc(sizeof(u32) * 16, &dp->dev);
555 if (!p) {
556 release_mem_region(addr, size);
557 return -ENOMEM;
559 p->pseudo_palette = p->par;
560 p->par = NULL;
562 p->screen_base = ioremap(addr, 0x800000);
563 if (p->screen_base == NULL) {
564 release_mem_region(addr, size);
565 framebuffer_release(p);
566 return -ENOMEM;
569 pci_write_config_dword(dp, 4, 0x02800083);
570 writeb(3, p->screen_base + 0x400784);
572 err = init_asiliant(p, addr);
573 if (err) {
574 iounmap(p->screen_base);
575 release_mem_region(addr, size);
576 framebuffer_release(p);
577 return err;
580 pci_set_drvdata(dp, p);
581 return 0;
584 static void asiliantfb_remove(struct pci_dev *dp)
586 struct fb_info *p = pci_get_drvdata(dp);
588 unregister_framebuffer(p);
589 fb_dealloc_cmap(&p->cmap);
590 iounmap(p->screen_base);
591 release_mem_region(pci_resource_start(dp, 0), pci_resource_len(dp, 0));
592 framebuffer_release(p);
595 static struct pci_device_id asiliantfb_pci_tbl[] = {
596 { PCI_VENDOR_ID_CT, PCI_DEVICE_ID_CT_69000, PCI_ANY_ID, PCI_ANY_ID },
597 { 0 }
600 MODULE_DEVICE_TABLE(pci, asiliantfb_pci_tbl);
602 static struct pci_driver asiliantfb_driver = {
603 .name = "asiliantfb",
604 .id_table = asiliantfb_pci_tbl,
605 .probe = asiliantfb_pci_init,
606 .remove = asiliantfb_remove,
609 static int __init asiliantfb_init(void)
611 if (fb_get_options("asiliantfb", NULL))
612 return -ENODEV;
614 return pci_register_driver(&asiliantfb_driver);
617 module_init(asiliantfb_init);
619 static void __exit asiliantfb_exit(void)
621 pci_unregister_driver(&asiliantfb_driver);
624 MODULE_LICENSE("GPL");