x86, cpufeature: If we disable CLFLUSH, we should disable CLFLUSHOPT
[linux/fpc-iii.git] / net / sctp / associola.c
blob5ae60920067470463420f0b3aa879e7c0999f200
1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001 Intel Corp.
6 * Copyright (c) 2001 La Monte H.P. Yarroll
8 * This file is part of the SCTP kernel implementation
10 * This module provides the abstraction for an SCTP association.
12 * This SCTP implementation is free software;
13 * you can redistribute it and/or modify it under the terms of
14 * the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
16 * any later version.
18 * This SCTP implementation is distributed in the hope that it
19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20 * ************************
21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22 * See the GNU General Public License for more details.
24 * You should have received a copy of the GNU General Public License
25 * along with GNU CC; see the file COPYING. If not, see
26 * <http://www.gnu.org/licenses/>.
28 * Please send any bug reports or fixes you make to the
29 * email address(es):
30 * lksctp developers <linux-sctp@vger.kernel.org>
32 * Written or modified by:
33 * La Monte H.P. Yarroll <piggy@acm.org>
34 * Karl Knutson <karl@athena.chicago.il.us>
35 * Jon Grimm <jgrimm@us.ibm.com>
36 * Xingang Guo <xingang.guo@intel.com>
37 * Hui Huang <hui.huang@nokia.com>
38 * Sridhar Samudrala <sri@us.ibm.com>
39 * Daisy Chang <daisyc@us.ibm.com>
40 * Ryan Layer <rmlayer@us.ibm.com>
41 * Kevin Gao <kevin.gao@intel.com>
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46 #include <linux/types.h>
47 #include <linux/fcntl.h>
48 #include <linux/poll.h>
49 #include <linux/init.h>
51 #include <linux/slab.h>
52 #include <linux/in.h>
53 #include <net/ipv6.h>
54 #include <net/sctp/sctp.h>
55 #include <net/sctp/sm.h>
57 /* Forward declarations for internal functions. */
58 static void sctp_assoc_bh_rcv(struct work_struct *work);
59 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc);
60 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc);
62 /* 1st Level Abstractions. */
64 /* Initialize a new association from provided memory. */
65 static struct sctp_association *sctp_association_init(struct sctp_association *asoc,
66 const struct sctp_endpoint *ep,
67 const struct sock *sk,
68 sctp_scope_t scope,
69 gfp_t gfp)
71 struct net *net = sock_net(sk);
72 struct sctp_sock *sp;
73 int i;
74 sctp_paramhdr_t *p;
75 int err;
77 /* Retrieve the SCTP per socket area. */
78 sp = sctp_sk((struct sock *)sk);
80 /* Discarding const is appropriate here. */
81 asoc->ep = (struct sctp_endpoint *)ep;
82 asoc->base.sk = (struct sock *)sk;
84 sctp_endpoint_hold(asoc->ep);
85 sock_hold(asoc->base.sk);
87 /* Initialize the common base substructure. */
88 asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
90 /* Initialize the object handling fields. */
91 atomic_set(&asoc->base.refcnt, 1);
93 /* Initialize the bind addr area. */
94 sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
96 asoc->state = SCTP_STATE_CLOSED;
97 asoc->cookie_life = ms_to_ktime(sp->assocparams.sasoc_cookie_life);
98 asoc->user_frag = sp->user_frag;
100 /* Set the association max_retrans and RTO values from the
101 * socket values.
103 asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
104 asoc->pf_retrans = net->sctp.pf_retrans;
106 asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
107 asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
108 asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
110 /* Initialize the association's heartbeat interval based on the
111 * sock configured value.
113 asoc->hbinterval = msecs_to_jiffies(sp->hbinterval);
115 /* Initialize path max retrans value. */
116 asoc->pathmaxrxt = sp->pathmaxrxt;
118 /* Initialize default path MTU. */
119 asoc->pathmtu = sp->pathmtu;
121 /* Set association default SACK delay */
122 asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
123 asoc->sackfreq = sp->sackfreq;
125 /* Set the association default flags controlling
126 * Heartbeat, SACK delay, and Path MTU Discovery.
128 asoc->param_flags = sp->param_flags;
130 /* Initialize the maximum number of new data packets that can be sent
131 * in a burst.
133 asoc->max_burst = sp->max_burst;
135 /* initialize association timers */
136 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial;
137 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial;
138 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial;
140 /* sctpimpguide Section 2.12.2
141 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
142 * recommended value of 5 times 'RTO.Max'.
144 asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]
145 = 5 * asoc->rto_max;
147 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay;
148 asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = sp->autoclose * HZ;
150 /* Initializes the timers */
151 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i)
152 setup_timer(&asoc->timers[i], sctp_timer_events[i],
153 (unsigned long)asoc);
155 /* Pull default initialization values from the sock options.
156 * Note: This assumes that the values have already been
157 * validated in the sock.
159 asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
160 asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams;
161 asoc->max_init_attempts = sp->initmsg.sinit_max_attempts;
163 asoc->max_init_timeo =
164 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
166 /* Set the local window size for receive.
167 * This is also the rcvbuf space per association.
168 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
169 * 1500 bytes in one SCTP packet.
171 if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
172 asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
173 else
174 asoc->rwnd = sk->sk_rcvbuf/2;
176 asoc->a_rwnd = asoc->rwnd;
178 /* Use my own max window until I learn something better. */
179 asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
181 /* Initialize the receive memory counter */
182 atomic_set(&asoc->rmem_alloc, 0);
184 init_waitqueue_head(&asoc->wait);
186 asoc->c.my_vtag = sctp_generate_tag(ep);
187 asoc->c.my_port = ep->base.bind_addr.port;
189 asoc->c.initial_tsn = sctp_generate_tsn(ep);
191 asoc->next_tsn = asoc->c.initial_tsn;
193 asoc->ctsn_ack_point = asoc->next_tsn - 1;
194 asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
195 asoc->highest_sacked = asoc->ctsn_ack_point;
196 asoc->last_cwr_tsn = asoc->ctsn_ack_point;
198 /* ADDIP Section 4.1 Asconf Chunk Procedures
200 * When an endpoint has an ASCONF signaled change to be sent to the
201 * remote endpoint it should do the following:
202 * ...
203 * A2) a serial number should be assigned to the chunk. The serial
204 * number SHOULD be a monotonically increasing number. The serial
205 * numbers SHOULD be initialized at the start of the
206 * association to the same value as the initial TSN.
208 asoc->addip_serial = asoc->c.initial_tsn;
210 INIT_LIST_HEAD(&asoc->addip_chunk_list);
211 INIT_LIST_HEAD(&asoc->asconf_ack_list);
213 /* Make an empty list of remote transport addresses. */
214 INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
216 /* RFC 2960 5.1 Normal Establishment of an Association
218 * After the reception of the first data chunk in an
219 * association the endpoint must immediately respond with a
220 * sack to acknowledge the data chunk. Subsequent
221 * acknowledgements should be done as described in Section
222 * 6.2.
224 * [We implement this by telling a new association that it
225 * already received one packet.]
227 asoc->peer.sack_needed = 1;
228 asoc->peer.sack_generation = 1;
230 /* Assume that the peer will tell us if he recognizes ASCONF
231 * as part of INIT exchange.
232 * The sctp_addip_noauth option is there for backward compatibility
233 * and will revert old behavior.
235 if (net->sctp.addip_noauth)
236 asoc->peer.asconf_capable = 1;
238 /* Create an input queue. */
239 sctp_inq_init(&asoc->base.inqueue);
240 sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv);
242 /* Create an output queue. */
243 sctp_outq_init(asoc, &asoc->outqueue);
245 if (!sctp_ulpq_init(&asoc->ulpq, asoc))
246 goto fail_init;
248 /* Assume that peer would support both address types unless we are
249 * told otherwise.
251 asoc->peer.ipv4_address = 1;
252 if (asoc->base.sk->sk_family == PF_INET6)
253 asoc->peer.ipv6_address = 1;
254 INIT_LIST_HEAD(&asoc->asocs);
256 asoc->default_stream = sp->default_stream;
257 asoc->default_ppid = sp->default_ppid;
258 asoc->default_flags = sp->default_flags;
259 asoc->default_context = sp->default_context;
260 asoc->default_timetolive = sp->default_timetolive;
261 asoc->default_rcv_context = sp->default_rcv_context;
263 /* AUTH related initializations */
264 INIT_LIST_HEAD(&asoc->endpoint_shared_keys);
265 err = sctp_auth_asoc_copy_shkeys(ep, asoc, gfp);
266 if (err)
267 goto fail_init;
269 asoc->active_key_id = ep->active_key_id;
271 /* Save the hmacs and chunks list into this association */
272 if (ep->auth_hmacs_list)
273 memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list,
274 ntohs(ep->auth_hmacs_list->param_hdr.length));
275 if (ep->auth_chunk_list)
276 memcpy(asoc->c.auth_chunks, ep->auth_chunk_list,
277 ntohs(ep->auth_chunk_list->param_hdr.length));
279 /* Get the AUTH random number for this association */
280 p = (sctp_paramhdr_t *)asoc->c.auth_random;
281 p->type = SCTP_PARAM_RANDOM;
282 p->length = htons(sizeof(sctp_paramhdr_t) + SCTP_AUTH_RANDOM_LENGTH);
283 get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH);
285 return asoc;
287 fail_init:
288 sock_put(asoc->base.sk);
289 sctp_endpoint_put(asoc->ep);
290 return NULL;
293 /* Allocate and initialize a new association */
294 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
295 const struct sock *sk,
296 sctp_scope_t scope,
297 gfp_t gfp)
299 struct sctp_association *asoc;
301 asoc = kzalloc(sizeof(*asoc), gfp);
302 if (!asoc)
303 goto fail;
305 if (!sctp_association_init(asoc, ep, sk, scope, gfp))
306 goto fail_init;
308 SCTP_DBG_OBJCNT_INC(assoc);
310 pr_debug("Created asoc %p\n", asoc);
312 return asoc;
314 fail_init:
315 kfree(asoc);
316 fail:
317 return NULL;
320 /* Free this association if possible. There may still be users, so
321 * the actual deallocation may be delayed.
323 void sctp_association_free(struct sctp_association *asoc)
325 struct sock *sk = asoc->base.sk;
326 struct sctp_transport *transport;
327 struct list_head *pos, *temp;
328 int i;
330 /* Only real associations count against the endpoint, so
331 * don't bother for if this is a temporary association.
333 if (!asoc->temp) {
334 list_del(&asoc->asocs);
336 /* Decrement the backlog value for a TCP-style listening
337 * socket.
339 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
340 sk->sk_ack_backlog--;
343 /* Mark as dead, so other users can know this structure is
344 * going away.
346 asoc->base.dead = true;
348 /* Dispose of any data lying around in the outqueue. */
349 sctp_outq_free(&asoc->outqueue);
351 /* Dispose of any pending messages for the upper layer. */
352 sctp_ulpq_free(&asoc->ulpq);
354 /* Dispose of any pending chunks on the inqueue. */
355 sctp_inq_free(&asoc->base.inqueue);
357 sctp_tsnmap_free(&asoc->peer.tsn_map);
359 /* Free ssnmap storage. */
360 sctp_ssnmap_free(asoc->ssnmap);
362 /* Clean up the bound address list. */
363 sctp_bind_addr_free(&asoc->base.bind_addr);
365 /* Do we need to go through all of our timers and
366 * delete them? To be safe we will try to delete all, but we
367 * should be able to go through and make a guess based
368 * on our state.
370 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
371 if (del_timer(&asoc->timers[i]))
372 sctp_association_put(asoc);
375 /* Free peer's cached cookie. */
376 kfree(asoc->peer.cookie);
377 kfree(asoc->peer.peer_random);
378 kfree(asoc->peer.peer_chunks);
379 kfree(asoc->peer.peer_hmacs);
381 /* Release the transport structures. */
382 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
383 transport = list_entry(pos, struct sctp_transport, transports);
384 list_del_rcu(pos);
385 sctp_transport_free(transport);
388 asoc->peer.transport_count = 0;
390 sctp_asconf_queue_teardown(asoc);
392 /* Free pending address space being deleted */
393 if (asoc->asconf_addr_del_pending != NULL)
394 kfree(asoc->asconf_addr_del_pending);
396 /* AUTH - Free the endpoint shared keys */
397 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
399 /* AUTH - Free the association shared key */
400 sctp_auth_key_put(asoc->asoc_shared_key);
402 sctp_association_put(asoc);
405 /* Cleanup and free up an association. */
406 static void sctp_association_destroy(struct sctp_association *asoc)
408 if (unlikely(!asoc->base.dead)) {
409 WARN(1, "Attempt to destroy undead association %p!\n", asoc);
410 return;
413 sctp_endpoint_put(asoc->ep);
414 sock_put(asoc->base.sk);
416 if (asoc->assoc_id != 0) {
417 spin_lock_bh(&sctp_assocs_id_lock);
418 idr_remove(&sctp_assocs_id, asoc->assoc_id);
419 spin_unlock_bh(&sctp_assocs_id_lock);
422 WARN_ON(atomic_read(&asoc->rmem_alloc));
424 kfree(asoc);
425 SCTP_DBG_OBJCNT_DEC(assoc);
428 /* Change the primary destination address for the peer. */
429 void sctp_assoc_set_primary(struct sctp_association *asoc,
430 struct sctp_transport *transport)
432 int changeover = 0;
434 /* it's a changeover only if we already have a primary path
435 * that we are changing
437 if (asoc->peer.primary_path != NULL &&
438 asoc->peer.primary_path != transport)
439 changeover = 1 ;
441 asoc->peer.primary_path = transport;
443 /* Set a default msg_name for events. */
444 memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
445 sizeof(union sctp_addr));
447 /* If the primary path is changing, assume that the
448 * user wants to use this new path.
450 if ((transport->state == SCTP_ACTIVE) ||
451 (transport->state == SCTP_UNKNOWN))
452 asoc->peer.active_path = transport;
455 * SFR-CACC algorithm:
456 * Upon the receipt of a request to change the primary
457 * destination address, on the data structure for the new
458 * primary destination, the sender MUST do the following:
460 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
461 * to this destination address earlier. The sender MUST set
462 * CYCLING_CHANGEOVER to indicate that this switch is a
463 * double switch to the same destination address.
465 * Really, only bother is we have data queued or outstanding on
466 * the association.
468 if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen)
469 return;
471 if (transport->cacc.changeover_active)
472 transport->cacc.cycling_changeover = changeover;
474 /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
475 * a changeover has occurred.
477 transport->cacc.changeover_active = changeover;
479 /* 3) The sender MUST store the next TSN to be sent in
480 * next_tsn_at_change.
482 transport->cacc.next_tsn_at_change = asoc->next_tsn;
485 /* Remove a transport from an association. */
486 void sctp_assoc_rm_peer(struct sctp_association *asoc,
487 struct sctp_transport *peer)
489 struct list_head *pos;
490 struct sctp_transport *transport;
492 pr_debug("%s: association:%p addr:%pISpc\n",
493 __func__, asoc, &peer->ipaddr.sa);
495 /* If we are to remove the current retran_path, update it
496 * to the next peer before removing this peer from the list.
498 if (asoc->peer.retran_path == peer)
499 sctp_assoc_update_retran_path(asoc);
501 /* Remove this peer from the list. */
502 list_del_rcu(&peer->transports);
504 /* Get the first transport of asoc. */
505 pos = asoc->peer.transport_addr_list.next;
506 transport = list_entry(pos, struct sctp_transport, transports);
508 /* Update any entries that match the peer to be deleted. */
509 if (asoc->peer.primary_path == peer)
510 sctp_assoc_set_primary(asoc, transport);
511 if (asoc->peer.active_path == peer)
512 asoc->peer.active_path = transport;
513 if (asoc->peer.retran_path == peer)
514 asoc->peer.retran_path = transport;
515 if (asoc->peer.last_data_from == peer)
516 asoc->peer.last_data_from = transport;
518 /* If we remove the transport an INIT was last sent to, set it to
519 * NULL. Combined with the update of the retran path above, this
520 * will cause the next INIT to be sent to the next available
521 * transport, maintaining the cycle.
523 if (asoc->init_last_sent_to == peer)
524 asoc->init_last_sent_to = NULL;
526 /* If we remove the transport an SHUTDOWN was last sent to, set it
527 * to NULL. Combined with the update of the retran path above, this
528 * will cause the next SHUTDOWN to be sent to the next available
529 * transport, maintaining the cycle.
531 if (asoc->shutdown_last_sent_to == peer)
532 asoc->shutdown_last_sent_to = NULL;
534 /* If we remove the transport an ASCONF was last sent to, set it to
535 * NULL.
537 if (asoc->addip_last_asconf &&
538 asoc->addip_last_asconf->transport == peer)
539 asoc->addip_last_asconf->transport = NULL;
541 /* If we have something on the transmitted list, we have to
542 * save it off. The best place is the active path.
544 if (!list_empty(&peer->transmitted)) {
545 struct sctp_transport *active = asoc->peer.active_path;
546 struct sctp_chunk *ch;
548 /* Reset the transport of each chunk on this list */
549 list_for_each_entry(ch, &peer->transmitted,
550 transmitted_list) {
551 ch->transport = NULL;
552 ch->rtt_in_progress = 0;
555 list_splice_tail_init(&peer->transmitted,
556 &active->transmitted);
558 /* Start a T3 timer here in case it wasn't running so
559 * that these migrated packets have a chance to get
560 * retransmitted.
562 if (!timer_pending(&active->T3_rtx_timer))
563 if (!mod_timer(&active->T3_rtx_timer,
564 jiffies + active->rto))
565 sctp_transport_hold(active);
568 asoc->peer.transport_count--;
570 sctp_transport_free(peer);
573 /* Add a transport address to an association. */
574 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
575 const union sctp_addr *addr,
576 const gfp_t gfp,
577 const int peer_state)
579 struct net *net = sock_net(asoc->base.sk);
580 struct sctp_transport *peer;
581 struct sctp_sock *sp;
582 unsigned short port;
584 sp = sctp_sk(asoc->base.sk);
586 /* AF_INET and AF_INET6 share common port field. */
587 port = ntohs(addr->v4.sin_port);
589 pr_debug("%s: association:%p addr:%pISpc state:%d\n", __func__,
590 asoc, &addr->sa, peer_state);
592 /* Set the port if it has not been set yet. */
593 if (0 == asoc->peer.port)
594 asoc->peer.port = port;
596 /* Check to see if this is a duplicate. */
597 peer = sctp_assoc_lookup_paddr(asoc, addr);
598 if (peer) {
599 /* An UNKNOWN state is only set on transports added by
600 * user in sctp_connectx() call. Such transports should be
601 * considered CONFIRMED per RFC 4960, Section 5.4.
603 if (peer->state == SCTP_UNKNOWN) {
604 peer->state = SCTP_ACTIVE;
606 return peer;
609 peer = sctp_transport_new(net, addr, gfp);
610 if (!peer)
611 return NULL;
613 sctp_transport_set_owner(peer, asoc);
615 /* Initialize the peer's heartbeat interval based on the
616 * association configured value.
618 peer->hbinterval = asoc->hbinterval;
620 /* Set the path max_retrans. */
621 peer->pathmaxrxt = asoc->pathmaxrxt;
623 /* And the partial failure retrans threshold */
624 peer->pf_retrans = asoc->pf_retrans;
626 /* Initialize the peer's SACK delay timeout based on the
627 * association configured value.
629 peer->sackdelay = asoc->sackdelay;
630 peer->sackfreq = asoc->sackfreq;
632 /* Enable/disable heartbeat, SACK delay, and path MTU discovery
633 * based on association setting.
635 peer->param_flags = asoc->param_flags;
637 sctp_transport_route(peer, NULL, sp);
639 /* Initialize the pmtu of the transport. */
640 if (peer->param_flags & SPP_PMTUD_DISABLE) {
641 if (asoc->pathmtu)
642 peer->pathmtu = asoc->pathmtu;
643 else
644 peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT;
647 /* If this is the first transport addr on this association,
648 * initialize the association PMTU to the peer's PMTU.
649 * If not and the current association PMTU is higher than the new
650 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
652 if (asoc->pathmtu)
653 asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu);
654 else
655 asoc->pathmtu = peer->pathmtu;
657 pr_debug("%s: association:%p PMTU set to %d\n", __func__, asoc,
658 asoc->pathmtu);
660 peer->pmtu_pending = 0;
662 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
664 /* The asoc->peer.port might not be meaningful yet, but
665 * initialize the packet structure anyway.
667 sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
668 asoc->peer.port);
670 /* 7.2.1 Slow-Start
672 * o The initial cwnd before DATA transmission or after a sufficiently
673 * long idle period MUST be set to
674 * min(4*MTU, max(2*MTU, 4380 bytes))
676 * o The initial value of ssthresh MAY be arbitrarily high
677 * (for example, implementations MAY use the size of the
678 * receiver advertised window).
680 peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
682 /* At this point, we may not have the receiver's advertised window,
683 * so initialize ssthresh to the default value and it will be set
684 * later when we process the INIT.
686 peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
688 peer->partial_bytes_acked = 0;
689 peer->flight_size = 0;
690 peer->burst_limited = 0;
692 /* Set the transport's RTO.initial value */
693 peer->rto = asoc->rto_initial;
694 sctp_max_rto(asoc, peer);
696 /* Set the peer's active state. */
697 peer->state = peer_state;
699 /* Attach the remote transport to our asoc. */
700 list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list);
701 asoc->peer.transport_count++;
703 /* If we do not yet have a primary path, set one. */
704 if (!asoc->peer.primary_path) {
705 sctp_assoc_set_primary(asoc, peer);
706 asoc->peer.retran_path = peer;
709 if (asoc->peer.active_path == asoc->peer.retran_path &&
710 peer->state != SCTP_UNCONFIRMED) {
711 asoc->peer.retran_path = peer;
714 return peer;
717 /* Delete a transport address from an association. */
718 void sctp_assoc_del_peer(struct sctp_association *asoc,
719 const union sctp_addr *addr)
721 struct list_head *pos;
722 struct list_head *temp;
723 struct sctp_transport *transport;
725 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
726 transport = list_entry(pos, struct sctp_transport, transports);
727 if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
728 /* Do book keeping for removing the peer and free it. */
729 sctp_assoc_rm_peer(asoc, transport);
730 break;
735 /* Lookup a transport by address. */
736 struct sctp_transport *sctp_assoc_lookup_paddr(
737 const struct sctp_association *asoc,
738 const union sctp_addr *address)
740 struct sctp_transport *t;
742 /* Cycle through all transports searching for a peer address. */
744 list_for_each_entry(t, &asoc->peer.transport_addr_list,
745 transports) {
746 if (sctp_cmp_addr_exact(address, &t->ipaddr))
747 return t;
750 return NULL;
753 /* Remove all transports except a give one */
754 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc,
755 struct sctp_transport *primary)
757 struct sctp_transport *temp;
758 struct sctp_transport *t;
760 list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list,
761 transports) {
762 /* if the current transport is not the primary one, delete it */
763 if (t != primary)
764 sctp_assoc_rm_peer(asoc, t);
768 /* Engage in transport control operations.
769 * Mark the transport up or down and send a notification to the user.
770 * Select and update the new active and retran paths.
772 void sctp_assoc_control_transport(struct sctp_association *asoc,
773 struct sctp_transport *transport,
774 sctp_transport_cmd_t command,
775 sctp_sn_error_t error)
777 struct sctp_transport *t = NULL;
778 struct sctp_transport *first;
779 struct sctp_transport *second;
780 struct sctp_ulpevent *event;
781 struct sockaddr_storage addr;
782 int spc_state = 0;
783 bool ulp_notify = true;
785 /* Record the transition on the transport. */
786 switch (command) {
787 case SCTP_TRANSPORT_UP:
788 /* If we are moving from UNCONFIRMED state due
789 * to heartbeat success, report the SCTP_ADDR_CONFIRMED
790 * state to the user, otherwise report SCTP_ADDR_AVAILABLE.
792 if (SCTP_UNCONFIRMED == transport->state &&
793 SCTP_HEARTBEAT_SUCCESS == error)
794 spc_state = SCTP_ADDR_CONFIRMED;
795 else
796 spc_state = SCTP_ADDR_AVAILABLE;
797 /* Don't inform ULP about transition from PF to
798 * active state and set cwnd to 1 MTU, see SCTP
799 * Quick failover draft section 5.1, point 5
801 if (transport->state == SCTP_PF) {
802 ulp_notify = false;
803 transport->cwnd = asoc->pathmtu;
805 transport->state = SCTP_ACTIVE;
806 break;
808 case SCTP_TRANSPORT_DOWN:
809 /* If the transport was never confirmed, do not transition it
810 * to inactive state. Also, release the cached route since
811 * there may be a better route next time.
813 if (transport->state != SCTP_UNCONFIRMED)
814 transport->state = SCTP_INACTIVE;
815 else {
816 dst_release(transport->dst);
817 transport->dst = NULL;
820 spc_state = SCTP_ADDR_UNREACHABLE;
821 break;
823 case SCTP_TRANSPORT_PF:
824 transport->state = SCTP_PF;
825 ulp_notify = false;
826 break;
828 default:
829 return;
832 /* Generate and send a SCTP_PEER_ADDR_CHANGE notification to the
833 * user.
835 if (ulp_notify) {
836 memset(&addr, 0, sizeof(struct sockaddr_storage));
837 memcpy(&addr, &transport->ipaddr,
838 transport->af_specific->sockaddr_len);
839 event = sctp_ulpevent_make_peer_addr_change(asoc, &addr,
840 0, spc_state, error, GFP_ATOMIC);
841 if (event)
842 sctp_ulpq_tail_event(&asoc->ulpq, event);
845 /* Select new active and retran paths. */
847 /* Look for the two most recently used active transports.
849 * This code produces the wrong ordering whenever jiffies
850 * rolls over, but we still get usable transports, so we don't
851 * worry about it.
853 first = NULL; second = NULL;
855 list_for_each_entry(t, &asoc->peer.transport_addr_list,
856 transports) {
858 if ((t->state == SCTP_INACTIVE) ||
859 (t->state == SCTP_UNCONFIRMED) ||
860 (t->state == SCTP_PF))
861 continue;
862 if (!first || t->last_time_heard > first->last_time_heard) {
863 second = first;
864 first = t;
865 } else if (!second ||
866 t->last_time_heard > second->last_time_heard)
867 second = t;
870 /* RFC 2960 6.4 Multi-Homed SCTP Endpoints
872 * By default, an endpoint should always transmit to the
873 * primary path, unless the SCTP user explicitly specifies the
874 * destination transport address (and possibly source
875 * transport address) to use.
877 * [If the primary is active but not most recent, bump the most
878 * recently used transport.]
880 if (((asoc->peer.primary_path->state == SCTP_ACTIVE) ||
881 (asoc->peer.primary_path->state == SCTP_UNKNOWN)) &&
882 first != asoc->peer.primary_path) {
883 second = first;
884 first = asoc->peer.primary_path;
887 if (!second)
888 second = first;
889 /* If we failed to find a usable transport, just camp on the
890 * primary, even if it is inactive.
892 if (!first) {
893 first = asoc->peer.primary_path;
894 second = asoc->peer.primary_path;
897 /* Set the active and retran transports. */
898 asoc->peer.active_path = first;
899 asoc->peer.retran_path = second;
902 /* Hold a reference to an association. */
903 void sctp_association_hold(struct sctp_association *asoc)
905 atomic_inc(&asoc->base.refcnt);
908 /* Release a reference to an association and cleanup
909 * if there are no more references.
911 void sctp_association_put(struct sctp_association *asoc)
913 if (atomic_dec_and_test(&asoc->base.refcnt))
914 sctp_association_destroy(asoc);
917 /* Allocate the next TSN, Transmission Sequence Number, for the given
918 * association.
920 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
922 /* From Section 1.6 Serial Number Arithmetic:
923 * Transmission Sequence Numbers wrap around when they reach
924 * 2**32 - 1. That is, the next TSN a DATA chunk MUST use
925 * after transmitting TSN = 2*32 - 1 is TSN = 0.
927 __u32 retval = asoc->next_tsn;
928 asoc->next_tsn++;
929 asoc->unack_data++;
931 return retval;
934 /* Compare two addresses to see if they match. Wildcard addresses
935 * only match themselves.
937 int sctp_cmp_addr_exact(const union sctp_addr *ss1,
938 const union sctp_addr *ss2)
940 struct sctp_af *af;
942 af = sctp_get_af_specific(ss1->sa.sa_family);
943 if (unlikely(!af))
944 return 0;
946 return af->cmp_addr(ss1, ss2);
949 /* Return an ecne chunk to get prepended to a packet.
950 * Note: We are sly and return a shared, prealloced chunk. FIXME:
951 * No we don't, but we could/should.
953 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
955 if (!asoc->need_ecne)
956 return NULL;
958 /* Send ECNE if needed.
959 * Not being able to allocate a chunk here is not deadly.
961 return sctp_make_ecne(asoc, asoc->last_ecne_tsn);
965 * Find which transport this TSN was sent on.
967 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
968 __u32 tsn)
970 struct sctp_transport *active;
971 struct sctp_transport *match;
972 struct sctp_transport *transport;
973 struct sctp_chunk *chunk;
974 __be32 key = htonl(tsn);
976 match = NULL;
979 * FIXME: In general, find a more efficient data structure for
980 * searching.
984 * The general strategy is to search each transport's transmitted
985 * list. Return which transport this TSN lives on.
987 * Let's be hopeful and check the active_path first.
988 * Another optimization would be to know if there is only one
989 * outbound path and not have to look for the TSN at all.
993 active = asoc->peer.active_path;
995 list_for_each_entry(chunk, &active->transmitted,
996 transmitted_list) {
998 if (key == chunk->subh.data_hdr->tsn) {
999 match = active;
1000 goto out;
1004 /* If not found, go search all the other transports. */
1005 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
1006 transports) {
1008 if (transport == active)
1009 continue;
1010 list_for_each_entry(chunk, &transport->transmitted,
1011 transmitted_list) {
1012 if (key == chunk->subh.data_hdr->tsn) {
1013 match = transport;
1014 goto out;
1018 out:
1019 return match;
1022 /* Is this the association we are looking for? */
1023 struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc,
1024 struct net *net,
1025 const union sctp_addr *laddr,
1026 const union sctp_addr *paddr)
1028 struct sctp_transport *transport;
1030 if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) &&
1031 (htons(asoc->peer.port) == paddr->v4.sin_port) &&
1032 net_eq(sock_net(asoc->base.sk), net)) {
1033 transport = sctp_assoc_lookup_paddr(asoc, paddr);
1034 if (!transport)
1035 goto out;
1037 if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1038 sctp_sk(asoc->base.sk)))
1039 goto out;
1041 transport = NULL;
1043 out:
1044 return transport;
1047 /* Do delayed input processing. This is scheduled by sctp_rcv(). */
1048 static void sctp_assoc_bh_rcv(struct work_struct *work)
1050 struct sctp_association *asoc =
1051 container_of(work, struct sctp_association,
1052 base.inqueue.immediate);
1053 struct net *net = sock_net(asoc->base.sk);
1054 struct sctp_endpoint *ep;
1055 struct sctp_chunk *chunk;
1056 struct sctp_inq *inqueue;
1057 int state;
1058 sctp_subtype_t subtype;
1059 int error = 0;
1061 /* The association should be held so we should be safe. */
1062 ep = asoc->ep;
1064 inqueue = &asoc->base.inqueue;
1065 sctp_association_hold(asoc);
1066 while (NULL != (chunk = sctp_inq_pop(inqueue))) {
1067 state = asoc->state;
1068 subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
1070 /* SCTP-AUTH, Section 6.3:
1071 * The receiver has a list of chunk types which it expects
1072 * to be received only after an AUTH-chunk. This list has
1073 * been sent to the peer during the association setup. It
1074 * MUST silently discard these chunks if they are not placed
1075 * after an AUTH chunk in the packet.
1077 if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth)
1078 continue;
1080 /* Remember where the last DATA chunk came from so we
1081 * know where to send the SACK.
1083 if (sctp_chunk_is_data(chunk))
1084 asoc->peer.last_data_from = chunk->transport;
1085 else {
1086 SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS);
1087 asoc->stats.ictrlchunks++;
1088 if (chunk->chunk_hdr->type == SCTP_CID_SACK)
1089 asoc->stats.isacks++;
1092 if (chunk->transport)
1093 chunk->transport->last_time_heard = jiffies;
1095 /* Run through the state machine. */
1096 error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype,
1097 state, ep, asoc, chunk, GFP_ATOMIC);
1099 /* Check to see if the association is freed in response to
1100 * the incoming chunk. If so, get out of the while loop.
1102 if (asoc->base.dead)
1103 break;
1105 /* If there is an error on chunk, discard this packet. */
1106 if (error && chunk)
1107 chunk->pdiscard = 1;
1109 sctp_association_put(asoc);
1112 /* This routine moves an association from its old sk to a new sk. */
1113 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1115 struct sctp_sock *newsp = sctp_sk(newsk);
1116 struct sock *oldsk = assoc->base.sk;
1118 /* Delete the association from the old endpoint's list of
1119 * associations.
1121 list_del_init(&assoc->asocs);
1123 /* Decrement the backlog value for a TCP-style socket. */
1124 if (sctp_style(oldsk, TCP))
1125 oldsk->sk_ack_backlog--;
1127 /* Release references to the old endpoint and the sock. */
1128 sctp_endpoint_put(assoc->ep);
1129 sock_put(assoc->base.sk);
1131 /* Get a reference to the new endpoint. */
1132 assoc->ep = newsp->ep;
1133 sctp_endpoint_hold(assoc->ep);
1135 /* Get a reference to the new sock. */
1136 assoc->base.sk = newsk;
1137 sock_hold(assoc->base.sk);
1139 /* Add the association to the new endpoint's list of associations. */
1140 sctp_endpoint_add_asoc(newsp->ep, assoc);
1143 /* Update an association (possibly from unexpected COOKIE-ECHO processing). */
1144 void sctp_assoc_update(struct sctp_association *asoc,
1145 struct sctp_association *new)
1147 struct sctp_transport *trans;
1148 struct list_head *pos, *temp;
1150 /* Copy in new parameters of peer. */
1151 asoc->c = new->c;
1152 asoc->peer.rwnd = new->peer.rwnd;
1153 asoc->peer.sack_needed = new->peer.sack_needed;
1154 asoc->peer.i = new->peer.i;
1155 sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL,
1156 asoc->peer.i.initial_tsn, GFP_ATOMIC);
1158 /* Remove any peer addresses not present in the new association. */
1159 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1160 trans = list_entry(pos, struct sctp_transport, transports);
1161 if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) {
1162 sctp_assoc_rm_peer(asoc, trans);
1163 continue;
1166 if (asoc->state >= SCTP_STATE_ESTABLISHED)
1167 sctp_transport_reset(trans);
1170 /* If the case is A (association restart), use
1171 * initial_tsn as next_tsn. If the case is B, use
1172 * current next_tsn in case data sent to peer
1173 * has been discarded and needs retransmission.
1175 if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1176 asoc->next_tsn = new->next_tsn;
1177 asoc->ctsn_ack_point = new->ctsn_ack_point;
1178 asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1180 /* Reinitialize SSN for both local streams
1181 * and peer's streams.
1183 sctp_ssnmap_clear(asoc->ssnmap);
1185 /* Flush the ULP reassembly and ordered queue.
1186 * Any data there will now be stale and will
1187 * cause problems.
1189 sctp_ulpq_flush(&asoc->ulpq);
1191 /* reset the overall association error count so
1192 * that the restarted association doesn't get torn
1193 * down on the next retransmission timer.
1195 asoc->overall_error_count = 0;
1197 } else {
1198 /* Add any peer addresses from the new association. */
1199 list_for_each_entry(trans, &new->peer.transport_addr_list,
1200 transports) {
1201 if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr))
1202 sctp_assoc_add_peer(asoc, &trans->ipaddr,
1203 GFP_ATOMIC, trans->state);
1206 asoc->ctsn_ack_point = asoc->next_tsn - 1;
1207 asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1208 if (!asoc->ssnmap) {
1209 /* Move the ssnmap. */
1210 asoc->ssnmap = new->ssnmap;
1211 new->ssnmap = NULL;
1214 if (!asoc->assoc_id) {
1215 /* get a new association id since we don't have one
1216 * yet.
1218 sctp_assoc_set_id(asoc, GFP_ATOMIC);
1222 /* SCTP-AUTH: Save the peer parameters from the new associations
1223 * and also move the association shared keys over
1225 kfree(asoc->peer.peer_random);
1226 asoc->peer.peer_random = new->peer.peer_random;
1227 new->peer.peer_random = NULL;
1229 kfree(asoc->peer.peer_chunks);
1230 asoc->peer.peer_chunks = new->peer.peer_chunks;
1231 new->peer.peer_chunks = NULL;
1233 kfree(asoc->peer.peer_hmacs);
1234 asoc->peer.peer_hmacs = new->peer.peer_hmacs;
1235 new->peer.peer_hmacs = NULL;
1237 sctp_auth_key_put(asoc->asoc_shared_key);
1238 sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC);
1241 /* Update the retran path for sending a retransmitted packet.
1242 * Round-robin through the active transports, else round-robin
1243 * through the inactive transports as this is the next best thing
1244 * we can try.
1246 void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1248 struct sctp_transport *t, *next;
1249 struct list_head *head = &asoc->peer.transport_addr_list;
1250 struct list_head *pos;
1252 if (asoc->peer.transport_count == 1)
1253 return;
1255 /* Find the next transport in a round-robin fashion. */
1256 t = asoc->peer.retran_path;
1257 pos = &t->transports;
1258 next = NULL;
1260 while (1) {
1261 /* Skip the head. */
1262 if (pos->next == head)
1263 pos = head->next;
1264 else
1265 pos = pos->next;
1267 t = list_entry(pos, struct sctp_transport, transports);
1269 /* We have exhausted the list, but didn't find any
1270 * other active transports. If so, use the next
1271 * transport.
1273 if (t == asoc->peer.retran_path) {
1274 t = next;
1275 break;
1278 /* Try to find an active transport. */
1280 if ((t->state == SCTP_ACTIVE) ||
1281 (t->state == SCTP_UNKNOWN)) {
1282 break;
1283 } else {
1284 /* Keep track of the next transport in case
1285 * we don't find any active transport.
1287 if (t->state != SCTP_UNCONFIRMED && !next)
1288 next = t;
1292 if (t)
1293 asoc->peer.retran_path = t;
1294 else
1295 t = asoc->peer.retran_path;
1297 pr_debug("%s: association:%p addr:%pISpc\n", __func__, asoc,
1298 &t->ipaddr.sa);
1301 /* Choose the transport for sending retransmit packet. */
1302 struct sctp_transport *sctp_assoc_choose_alter_transport(
1303 struct sctp_association *asoc, struct sctp_transport *last_sent_to)
1305 /* If this is the first time packet is sent, use the active path,
1306 * else use the retran path. If the last packet was sent over the
1307 * retran path, update the retran path and use it.
1309 if (!last_sent_to)
1310 return asoc->peer.active_path;
1311 else {
1312 if (last_sent_to == asoc->peer.retran_path)
1313 sctp_assoc_update_retran_path(asoc);
1314 return asoc->peer.retran_path;
1318 /* Update the association's pmtu and frag_point by going through all the
1319 * transports. This routine is called when a transport's PMTU has changed.
1321 void sctp_assoc_sync_pmtu(struct sock *sk, struct sctp_association *asoc)
1323 struct sctp_transport *t;
1324 __u32 pmtu = 0;
1326 if (!asoc)
1327 return;
1329 /* Get the lowest pmtu of all the transports. */
1330 list_for_each_entry(t, &asoc->peer.transport_addr_list,
1331 transports) {
1332 if (t->pmtu_pending && t->dst) {
1333 sctp_transport_update_pmtu(sk, t, dst_mtu(t->dst));
1334 t->pmtu_pending = 0;
1336 if (!pmtu || (t->pathmtu < pmtu))
1337 pmtu = t->pathmtu;
1340 if (pmtu) {
1341 asoc->pathmtu = pmtu;
1342 asoc->frag_point = sctp_frag_point(asoc, pmtu);
1345 pr_debug("%s: asoc:%p, pmtu:%d, frag_point:%d\n", __func__, asoc,
1346 asoc->pathmtu, asoc->frag_point);
1349 /* Should we send a SACK to update our peer? */
1350 static inline bool sctp_peer_needs_update(struct sctp_association *asoc)
1352 struct net *net = sock_net(asoc->base.sk);
1353 switch (asoc->state) {
1354 case SCTP_STATE_ESTABLISHED:
1355 case SCTP_STATE_SHUTDOWN_PENDING:
1356 case SCTP_STATE_SHUTDOWN_RECEIVED:
1357 case SCTP_STATE_SHUTDOWN_SENT:
1358 if ((asoc->rwnd > asoc->a_rwnd) &&
1359 ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32,
1360 (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift),
1361 asoc->pathmtu)))
1362 return true;
1363 break;
1364 default:
1365 break;
1367 return false;
1370 /* Increase asoc's rwnd by len and send any window update SACK if needed. */
1371 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len)
1373 struct sctp_chunk *sack;
1374 struct timer_list *timer;
1376 if (asoc->rwnd_over) {
1377 if (asoc->rwnd_over >= len) {
1378 asoc->rwnd_over -= len;
1379 } else {
1380 asoc->rwnd += (len - asoc->rwnd_over);
1381 asoc->rwnd_over = 0;
1383 } else {
1384 asoc->rwnd += len;
1387 /* If we had window pressure, start recovering it
1388 * once our rwnd had reached the accumulated pressure
1389 * threshold. The idea is to recover slowly, but up
1390 * to the initial advertised window.
1392 if (asoc->rwnd_press && asoc->rwnd >= asoc->rwnd_press) {
1393 int change = min(asoc->pathmtu, asoc->rwnd_press);
1394 asoc->rwnd += change;
1395 asoc->rwnd_press -= change;
1398 pr_debug("%s: asoc:%p rwnd increased by %d to (%u, %u) - %u\n",
1399 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1400 asoc->a_rwnd);
1402 /* Send a window update SACK if the rwnd has increased by at least the
1403 * minimum of the association's PMTU and half of the receive buffer.
1404 * The algorithm used is similar to the one described in
1405 * Section 4.2.3.3 of RFC 1122.
1407 if (sctp_peer_needs_update(asoc)) {
1408 asoc->a_rwnd = asoc->rwnd;
1410 pr_debug("%s: sending window update SACK- asoc:%p rwnd:%u "
1411 "a_rwnd:%u\n", __func__, asoc, asoc->rwnd,
1412 asoc->a_rwnd);
1414 sack = sctp_make_sack(asoc);
1415 if (!sack)
1416 return;
1418 asoc->peer.sack_needed = 0;
1420 sctp_outq_tail(&asoc->outqueue, sack);
1422 /* Stop the SACK timer. */
1423 timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1424 if (del_timer(timer))
1425 sctp_association_put(asoc);
1429 /* Decrease asoc's rwnd by len. */
1430 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len)
1432 int rx_count;
1433 int over = 0;
1435 if (unlikely(!asoc->rwnd || asoc->rwnd_over))
1436 pr_debug("%s: association:%p has asoc->rwnd:%u, "
1437 "asoc->rwnd_over:%u!\n", __func__, asoc,
1438 asoc->rwnd, asoc->rwnd_over);
1440 if (asoc->ep->rcvbuf_policy)
1441 rx_count = atomic_read(&asoc->rmem_alloc);
1442 else
1443 rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc);
1445 /* If we've reached or overflowed our receive buffer, announce
1446 * a 0 rwnd if rwnd would still be positive. Store the
1447 * the potential pressure overflow so that the window can be restored
1448 * back to original value.
1450 if (rx_count >= asoc->base.sk->sk_rcvbuf)
1451 over = 1;
1453 if (asoc->rwnd >= len) {
1454 asoc->rwnd -= len;
1455 if (over) {
1456 asoc->rwnd_press += asoc->rwnd;
1457 asoc->rwnd = 0;
1459 } else {
1460 asoc->rwnd_over = len - asoc->rwnd;
1461 asoc->rwnd = 0;
1464 pr_debug("%s: asoc:%p rwnd decreased by %d to (%u, %u, %u)\n",
1465 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1466 asoc->rwnd_press);
1469 /* Build the bind address list for the association based on info from the
1470 * local endpoint and the remote peer.
1472 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc,
1473 sctp_scope_t scope, gfp_t gfp)
1475 int flags;
1477 /* Use scoping rules to determine the subset of addresses from
1478 * the endpoint.
1480 flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1481 if (asoc->peer.ipv4_address)
1482 flags |= SCTP_ADDR4_PEERSUPP;
1483 if (asoc->peer.ipv6_address)
1484 flags |= SCTP_ADDR6_PEERSUPP;
1486 return sctp_bind_addr_copy(sock_net(asoc->base.sk),
1487 &asoc->base.bind_addr,
1488 &asoc->ep->base.bind_addr,
1489 scope, gfp, flags);
1492 /* Build the association's bind address list from the cookie. */
1493 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1494 struct sctp_cookie *cookie,
1495 gfp_t gfp)
1497 int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1498 int var_size3 = cookie->raw_addr_list_len;
1499 __u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1501 return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1502 asoc->ep->base.bind_addr.port, gfp);
1505 /* Lookup laddr in the bind address list of an association. */
1506 int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1507 const union sctp_addr *laddr)
1509 int found = 0;
1511 if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1512 sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1513 sctp_sk(asoc->base.sk)))
1514 found = 1;
1516 return found;
1519 /* Set an association id for a given association */
1520 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp)
1522 bool preload = gfp & __GFP_WAIT;
1523 int ret;
1525 /* If the id is already assigned, keep it. */
1526 if (asoc->assoc_id)
1527 return 0;
1529 if (preload)
1530 idr_preload(gfp);
1531 spin_lock_bh(&sctp_assocs_id_lock);
1532 /* 0 is not a valid assoc_id, must be >= 1 */
1533 ret = idr_alloc_cyclic(&sctp_assocs_id, asoc, 1, 0, GFP_NOWAIT);
1534 spin_unlock_bh(&sctp_assocs_id_lock);
1535 if (preload)
1536 idr_preload_end();
1537 if (ret < 0)
1538 return ret;
1540 asoc->assoc_id = (sctp_assoc_t)ret;
1541 return 0;
1544 /* Free the ASCONF queue */
1545 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc)
1547 struct sctp_chunk *asconf;
1548 struct sctp_chunk *tmp;
1550 list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) {
1551 list_del_init(&asconf->list);
1552 sctp_chunk_free(asconf);
1556 /* Free asconf_ack cache */
1557 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc)
1559 struct sctp_chunk *ack;
1560 struct sctp_chunk *tmp;
1562 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1563 transmitted_list) {
1564 list_del_init(&ack->transmitted_list);
1565 sctp_chunk_free(ack);
1569 /* Clean up the ASCONF_ACK queue */
1570 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc)
1572 struct sctp_chunk *ack;
1573 struct sctp_chunk *tmp;
1575 /* We can remove all the entries from the queue up to
1576 * the "Peer-Sequence-Number".
1578 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1579 transmitted_list) {
1580 if (ack->subh.addip_hdr->serial ==
1581 htonl(asoc->peer.addip_serial))
1582 break;
1584 list_del_init(&ack->transmitted_list);
1585 sctp_chunk_free(ack);
1589 /* Find the ASCONF_ACK whose serial number matches ASCONF */
1590 struct sctp_chunk *sctp_assoc_lookup_asconf_ack(
1591 const struct sctp_association *asoc,
1592 __be32 serial)
1594 struct sctp_chunk *ack;
1596 /* Walk through the list of cached ASCONF-ACKs and find the
1597 * ack chunk whose serial number matches that of the request.
1599 list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) {
1600 if (ack->subh.addip_hdr->serial == serial) {
1601 sctp_chunk_hold(ack);
1602 return ack;
1606 return NULL;
1609 void sctp_asconf_queue_teardown(struct sctp_association *asoc)
1611 /* Free any cached ASCONF_ACK chunk. */
1612 sctp_assoc_free_asconf_acks(asoc);
1614 /* Free the ASCONF queue. */
1615 sctp_assoc_free_asconf_queue(asoc);
1617 /* Free any cached ASCONF chunk. */
1618 if (asoc->addip_last_asconf)
1619 sctp_chunk_free(asoc->addip_last_asconf);