2 * Freescale SSI ALSA SoC Digital Audio Interface (DAI) driver
4 * Author: Timur Tabi <timur@freescale.com>
6 * Copyright 2007-2010 Freescale Semiconductor, Inc.
8 * This file is licensed under the terms of the GNU General Public License
9 * version 2. This program is licensed "as is" without any warranty of any
10 * kind, whether express or implied.
13 * Some notes why imx-pcm-fiq is used instead of DMA on some boards:
15 * The i.MX SSI core has some nasty limitations in AC97 mode. While most
16 * sane processor vendors have a FIFO per AC97 slot, the i.MX has only
17 * one FIFO which combines all valid receive slots. We cannot even select
18 * which slots we want to receive. The WM9712 with which this driver
19 * was developed with always sends GPIO status data in slot 12 which
20 * we receive in our (PCM-) data stream. The only chance we have is to
21 * manually skip this data in the FIQ handler. With sampling rates different
22 * from 48000Hz not every frame has valid receive data, so the ratio
23 * between pcm data and GPIO status data changes. Our FIQ handler is not
24 * able to handle this, hence this driver only works with 48000Hz sampling
26 * Reading and writing AC97 registers is another challenge. The core
27 * provides us status bits when the read register is updated with *another*
28 * value. When we read the same register two times (and the register still
29 * contains the same value) these status bits are not set. We work
30 * around this by not polling these bits but only wait a fixed delay.
33 #include <linux/init.h>
35 #include <linux/module.h>
36 #include <linux/interrupt.h>
37 #include <linux/clk.h>
38 #include <linux/debugfs.h>
39 #include <linux/device.h>
40 #include <linux/delay.h>
41 #include <linux/slab.h>
42 #include <linux/spinlock.h>
43 #include <linux/of_address.h>
44 #include <linux/of_irq.h>
45 #include <linux/of_platform.h>
47 #include <sound/core.h>
48 #include <sound/pcm.h>
49 #include <sound/pcm_params.h>
50 #include <sound/initval.h>
51 #include <sound/soc.h>
52 #include <sound/dmaengine_pcm.h>
58 #define read_ssi(addr) in_be32(addr)
59 #define write_ssi(val, addr) out_be32(addr, val)
60 #define write_ssi_mask(addr, clear, set) clrsetbits_be32(addr, clear, set)
62 #define read_ssi(addr) readl(addr)
63 #define write_ssi(val, addr) writel(val, addr)
65 * FIXME: Proper locking should be added at write_ssi_mask caller level
66 * to ensure this register read/modify/write sequence is race free.
68 static inline void write_ssi_mask(u32 __iomem
*addr
, u32 clear
, u32 set
)
70 u32 val
= readl(addr
);
71 val
= (val
& ~clear
) | set
;
77 * FSLSSI_I2S_RATES: sample rates supported by the I2S
79 * This driver currently only supports the SSI running in I2S slave mode,
80 * which means the codec determines the sample rate. Therefore, we tell
81 * ALSA that we support all rates and let the codec driver decide what rates
82 * are really supported.
84 #define FSLSSI_I2S_RATES SNDRV_PCM_RATE_CONTINUOUS
87 * FSLSSI_I2S_FORMATS: audio formats supported by the SSI
89 * This driver currently only supports the SSI running in I2S slave mode.
91 * The SSI has a limitation in that the samples must be in the same byte
92 * order as the host CPU. This is because when multiple bytes are written
93 * to the STX register, the bytes and bits must be written in the same
94 * order. The STX is a shift register, so all the bits need to be aligned
95 * (bit-endianness must match byte-endianness). Processors typically write
96 * the bits within a byte in the same order that the bytes of a word are
97 * written in. So if the host CPU is big-endian, then only big-endian
98 * samples will be written to STX properly.
101 #define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_BE | \
102 SNDRV_PCM_FMTBIT_S18_3BE | SNDRV_PCM_FMTBIT_S20_3BE | \
103 SNDRV_PCM_FMTBIT_S24_3BE | SNDRV_PCM_FMTBIT_S24_BE)
105 #define FSLSSI_I2S_FORMATS (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_S16_LE | \
106 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S20_3LE | \
107 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_LE)
110 #define FSLSSI_SIER_DBG_RX_FLAGS (CCSR_SSI_SIER_RFF0_EN | \
111 CCSR_SSI_SIER_RLS_EN | CCSR_SSI_SIER_RFS_EN | \
112 CCSR_SSI_SIER_ROE0_EN | CCSR_SSI_SIER_RFRC_EN)
113 #define FSLSSI_SIER_DBG_TX_FLAGS (CCSR_SSI_SIER_TFE0_EN | \
114 CCSR_SSI_SIER_TLS_EN | CCSR_SSI_SIER_TFS_EN | \
115 CCSR_SSI_SIER_TUE0_EN | CCSR_SSI_SIER_TFRC_EN)
116 #define FSLSSI_SISR_MASK (FSLSSI_SIER_DBG_RX_FLAGS | FSLSSI_SIER_DBG_TX_FLAGS)
126 struct fsl_ssi_reg_val
{
133 struct fsl_ssi_rxtx_reg_val
{
134 struct fsl_ssi_reg_val rx
;
135 struct fsl_ssi_reg_val tx
;
139 * fsl_ssi_private: per-SSI private data
141 * @ssi: pointer to the SSI's registers
142 * @ssi_phys: physical address of the SSI registers
143 * @irq: IRQ of this SSI
144 * @playback: the number of playback streams opened
145 * @capture: the number of capture streams opened
146 * @cpu_dai: the CPU DAI for this device
147 * @dev_attr: the sysfs device attribute structure
148 * @stats: SSI statistics
149 * @name: name for this device
151 struct fsl_ssi_private
{
152 struct ccsr_ssi __iomem
*ssi
;
155 unsigned int fifo_depth
;
156 struct snd_soc_dai_driver cpu_dai_drv
;
157 struct platform_device
*pdev
;
159 enum fsl_ssi_type hw_type
;
169 spinlock_t baudclk_lock
;
172 struct snd_dmaengine_dai_dma_data dma_params_tx
;
173 struct snd_dmaengine_dai_dma_data dma_params_rx
;
174 struct imx_dma_data filter_data_tx
;
175 struct imx_dma_data filter_data_rx
;
176 struct imx_pcm_fiq_params fiq_params
;
177 /* Register values for rx/tx configuration */
178 struct fsl_ssi_rxtx_reg_val rxtx_reg_val
;
203 struct dentry
*dbg_dir
;
204 struct dentry
*dbg_stats
;
209 static const struct of_device_id fsl_ssi_ids
[] = {
210 { .compatible
= "fsl,mpc8610-ssi", .data
= (void *) FSL_SSI_MCP8610
},
211 { .compatible
= "fsl,imx51-ssi", .data
= (void *) FSL_SSI_MX51
},
212 { .compatible
= "fsl,imx35-ssi", .data
= (void *) FSL_SSI_MX35
},
213 { .compatible
= "fsl,imx21-ssi", .data
= (void *) FSL_SSI_MX21
},
216 MODULE_DEVICE_TABLE(of
, fsl_ssi_ids
);
219 * fsl_ssi_isr: SSI interrupt handler
221 * Although it's possible to use the interrupt handler to send and receive
222 * data to/from the SSI, we use the DMA instead. Programming is more
223 * complicated, but the performance is much better.
225 * This interrupt handler is used only to gather statistics.
227 * @irq: IRQ of the SSI device
228 * @dev_id: pointer to the ssi_private structure for this SSI device
230 static irqreturn_t
fsl_ssi_isr(int irq
, void *dev_id
)
232 struct fsl_ssi_private
*ssi_private
= dev_id
;
233 struct ccsr_ssi __iomem
*ssi
= ssi_private
->ssi
;
234 irqreturn_t ret
= IRQ_NONE
;
237 __be32 sisr_write_mask
= 0;
239 switch (ssi_private
->hw_type
) {
244 case FSL_SSI_MCP8610
:
246 sisr_write_mask
= CCSR_SSI_SISR_RFRC
| CCSR_SSI_SISR_TFRC
|
247 CCSR_SSI_SISR_ROE0
| CCSR_SSI_SISR_ROE1
|
248 CCSR_SSI_SISR_TUE0
| CCSR_SSI_SISR_TUE1
;
252 sisr_write_mask
= CCSR_SSI_SISR_ROE0
| CCSR_SSI_SISR_ROE1
|
253 CCSR_SSI_SISR_TUE0
| CCSR_SSI_SISR_TUE1
;
257 /* We got an interrupt, so read the status register to see what we
258 were interrupted for. We mask it with the Interrupt Enable register
259 so that we only check for events that we're interested in.
261 sisr
= read_ssi(&ssi
->sisr
) & FSLSSI_SISR_MASK
;
263 if (sisr
& CCSR_SSI_SISR_RFRC
) {
264 ssi_private
->stats
.rfrc
++;
268 if (sisr
& CCSR_SSI_SISR_TFRC
) {
269 ssi_private
->stats
.tfrc
++;
273 if (sisr
& CCSR_SSI_SISR_CMDAU
) {
274 ssi_private
->stats
.cmdau
++;
278 if (sisr
& CCSR_SSI_SISR_CMDDU
) {
279 ssi_private
->stats
.cmddu
++;
283 if (sisr
& CCSR_SSI_SISR_RXT
) {
284 ssi_private
->stats
.rxt
++;
288 if (sisr
& CCSR_SSI_SISR_RDR1
) {
289 ssi_private
->stats
.rdr1
++;
293 if (sisr
& CCSR_SSI_SISR_RDR0
) {
294 ssi_private
->stats
.rdr0
++;
298 if (sisr
& CCSR_SSI_SISR_TDE1
) {
299 ssi_private
->stats
.tde1
++;
303 if (sisr
& CCSR_SSI_SISR_TDE0
) {
304 ssi_private
->stats
.tde0
++;
308 if (sisr
& CCSR_SSI_SISR_ROE1
) {
309 ssi_private
->stats
.roe1
++;
313 if (sisr
& CCSR_SSI_SISR_ROE0
) {
314 ssi_private
->stats
.roe0
++;
318 if (sisr
& CCSR_SSI_SISR_TUE1
) {
319 ssi_private
->stats
.tue1
++;
323 if (sisr
& CCSR_SSI_SISR_TUE0
) {
324 ssi_private
->stats
.tue0
++;
328 if (sisr
& CCSR_SSI_SISR_TFS
) {
329 ssi_private
->stats
.tfs
++;
333 if (sisr
& CCSR_SSI_SISR_RFS
) {
334 ssi_private
->stats
.rfs
++;
338 if (sisr
& CCSR_SSI_SISR_TLS
) {
339 ssi_private
->stats
.tls
++;
343 if (sisr
& CCSR_SSI_SISR_RLS
) {
344 ssi_private
->stats
.rls
++;
348 if (sisr
& CCSR_SSI_SISR_RFF1
) {
349 ssi_private
->stats
.rff1
++;
353 if (sisr
& CCSR_SSI_SISR_RFF0
) {
354 ssi_private
->stats
.rff0
++;
358 if (sisr
& CCSR_SSI_SISR_TFE1
) {
359 ssi_private
->stats
.tfe1
++;
363 if (sisr
& CCSR_SSI_SISR_TFE0
) {
364 ssi_private
->stats
.tfe0
++;
368 sisr2
= sisr
& sisr_write_mask
;
369 /* Clear the bits that we set */
371 write_ssi(sisr2
, &ssi
->sisr
);
376 #if IS_ENABLED(CONFIG_DEBUG_FS)
377 /* Show the statistics of a flag only if its interrupt is enabled. The
378 * compiler will optimze this code to a no-op if the interrupt is not
381 #define SIER_SHOW(flag, name) \
383 if (FSLSSI_SISR_MASK & CCSR_SSI_SIER_##flag) \
384 seq_printf(s, #name "=%u\n", ssi_private->stats.name); \
389 * fsl_sysfs_ssi_show: display SSI statistics
391 * Display the statistics for the current SSI device. To avoid confusion,
392 * we only show those counts that are enabled.
394 static int fsl_ssi_stats_show(struct seq_file
*s
, void *unused
)
396 struct fsl_ssi_private
*ssi_private
= s
->private;
398 SIER_SHOW(RFRC_EN
, rfrc
);
399 SIER_SHOW(TFRC_EN
, tfrc
);
400 SIER_SHOW(CMDAU_EN
, cmdau
);
401 SIER_SHOW(CMDDU_EN
, cmddu
);
402 SIER_SHOW(RXT_EN
, rxt
);
403 SIER_SHOW(RDR1_EN
, rdr1
);
404 SIER_SHOW(RDR0_EN
, rdr0
);
405 SIER_SHOW(TDE1_EN
, tde1
);
406 SIER_SHOW(TDE0_EN
, tde0
);
407 SIER_SHOW(ROE1_EN
, roe1
);
408 SIER_SHOW(ROE0_EN
, roe0
);
409 SIER_SHOW(TUE1_EN
, tue1
);
410 SIER_SHOW(TUE0_EN
, tue0
);
411 SIER_SHOW(TFS_EN
, tfs
);
412 SIER_SHOW(RFS_EN
, rfs
);
413 SIER_SHOW(TLS_EN
, tls
);
414 SIER_SHOW(RLS_EN
, rls
);
415 SIER_SHOW(RFF1_EN
, rff1
);
416 SIER_SHOW(RFF0_EN
, rff0
);
417 SIER_SHOW(TFE1_EN
, tfe1
);
418 SIER_SHOW(TFE0_EN
, tfe0
);
423 static int fsl_ssi_stats_open(struct inode
*inode
, struct file
*file
)
425 return single_open(file
, fsl_ssi_stats_show
, inode
->i_private
);
428 static const struct file_operations fsl_ssi_stats_ops
= {
429 .open
= fsl_ssi_stats_open
,
432 .release
= single_release
,
435 static int fsl_ssi_debugfs_create(struct fsl_ssi_private
*ssi_private
,
438 ssi_private
->dbg_dir
= debugfs_create_dir(dev_name(dev
), NULL
);
439 if (!ssi_private
->dbg_dir
)
442 ssi_private
->dbg_stats
= debugfs_create_file("stats", S_IRUGO
,
443 ssi_private
->dbg_dir
, ssi_private
, &fsl_ssi_stats_ops
);
444 if (!ssi_private
->dbg_stats
) {
445 debugfs_remove(ssi_private
->dbg_dir
);
452 static void fsl_ssi_debugfs_remove(struct fsl_ssi_private
*ssi_private
)
454 debugfs_remove(ssi_private
->dbg_stats
);
455 debugfs_remove(ssi_private
->dbg_dir
);
460 static int fsl_ssi_debugfs_create(struct fsl_ssi_private
*ssi_private
,
466 static void fsl_ssi_debugfs_remove(struct fsl_ssi_private
*ssi_private
)
470 #endif /* IS_ENABLED(CONFIG_DEBUG_FS) */
473 * Enable/Disable all rx/tx config flags at once.
475 static void fsl_ssi_rxtx_config(struct fsl_ssi_private
*ssi_private
,
478 struct ccsr_ssi __iomem
*ssi
= ssi_private
->ssi
;
479 struct fsl_ssi_rxtx_reg_val
*vals
= &ssi_private
->rxtx_reg_val
;
482 write_ssi_mask(&ssi
->sier
, 0, vals
->rx
.sier
| vals
->tx
.sier
);
483 write_ssi_mask(&ssi
->srcr
, 0, vals
->rx
.srcr
| vals
->tx
.srcr
);
484 write_ssi_mask(&ssi
->stcr
, 0, vals
->rx
.stcr
| vals
->tx
.stcr
);
486 write_ssi_mask(&ssi
->srcr
, vals
->rx
.srcr
| vals
->tx
.srcr
, 0);
487 write_ssi_mask(&ssi
->stcr
, vals
->rx
.stcr
| vals
->tx
.stcr
, 0);
488 write_ssi_mask(&ssi
->sier
, vals
->rx
.sier
| vals
->tx
.sier
, 0);
493 * Enable/Disable a ssi configuration. You have to pass either
494 * ssi_private->rxtx_reg_val.rx or tx as vals parameter.
496 static void fsl_ssi_config(struct fsl_ssi_private
*ssi_private
, bool enable
,
497 struct fsl_ssi_reg_val
*vals
)
499 struct ccsr_ssi __iomem
*ssi
= ssi_private
->ssi
;
500 struct fsl_ssi_reg_val
*avals
;
501 u32 scr_val
= read_ssi(&ssi
->scr
);
502 int nr_active_streams
= !!(scr_val
& CCSR_SSI_SCR_TE
) +
503 !!(scr_val
& CCSR_SSI_SCR_RE
);
505 /* Find the other direction values rx or tx which we do not want to
507 if (&ssi_private
->rxtx_reg_val
.rx
== vals
)
508 avals
= &ssi_private
->rxtx_reg_val
.tx
;
510 avals
= &ssi_private
->rxtx_reg_val
.rx
;
512 /* If vals should be disabled, start with disabling the unit */
514 u32 scr
= vals
->scr
& (vals
->scr
^ avals
->scr
);
515 write_ssi_mask(&ssi
->scr
, scr
, 0);
519 * We are running on a SoC which does not support online SSI
520 * reconfiguration, so we have to enable all necessary flags at once
521 * even if we do not use them later (capture and playback configuration)
523 if (ssi_private
->offline_config
) {
524 if ((enable
&& !nr_active_streams
) ||
525 (!enable
&& nr_active_streams
== 1))
526 fsl_ssi_rxtx_config(ssi_private
, enable
);
532 * Configure single direction units while the SSI unit is running
533 * (online configuration)
536 write_ssi_mask(&ssi
->sier
, 0, vals
->sier
);
537 write_ssi_mask(&ssi
->srcr
, 0, vals
->srcr
);
538 write_ssi_mask(&ssi
->stcr
, 0, vals
->stcr
);
545 * Disabling the necessary flags for one of rx/tx while the
546 * other stream is active is a little bit more difficult. We
547 * have to disable only those flags that differ between both
548 * streams (rx XOR tx) and that are set in the stream that is
549 * disabled now. Otherwise we could alter flags of the other
553 /* These assignments are simply vals without bits set in avals*/
554 sier
= vals
->sier
& (vals
->sier
^ avals
->sier
);
555 srcr
= vals
->srcr
& (vals
->srcr
^ avals
->srcr
);
556 stcr
= vals
->stcr
& (vals
->stcr
^ avals
->stcr
);
558 write_ssi_mask(&ssi
->srcr
, srcr
, 0);
559 write_ssi_mask(&ssi
->stcr
, stcr
, 0);
560 write_ssi_mask(&ssi
->sier
, sier
, 0);
564 /* Enabling of subunits is done after configuration */
566 write_ssi_mask(&ssi
->scr
, 0, vals
->scr
);
570 static void fsl_ssi_rx_config(struct fsl_ssi_private
*ssi_private
, bool enable
)
572 fsl_ssi_config(ssi_private
, enable
, &ssi_private
->rxtx_reg_val
.rx
);
575 static void fsl_ssi_tx_config(struct fsl_ssi_private
*ssi_private
, bool enable
)
577 fsl_ssi_config(ssi_private
, enable
, &ssi_private
->rxtx_reg_val
.tx
);
581 * Setup rx/tx register values used to enable/disable the streams. These will
582 * be used later in fsl_ssi_config to setup the streams without the need to
583 * check for all different SSI modes.
585 static void fsl_ssi_setup_reg_vals(struct fsl_ssi_private
*ssi_private
)
587 struct fsl_ssi_rxtx_reg_val
*reg
= &ssi_private
->rxtx_reg_val
;
589 reg
->rx
.sier
= CCSR_SSI_SIER_RFF0_EN
;
590 reg
->rx
.srcr
= CCSR_SSI_SRCR_RFEN0
;
592 reg
->tx
.sier
= CCSR_SSI_SIER_TFE0_EN
;
593 reg
->tx
.stcr
= CCSR_SSI_STCR_TFEN0
;
596 if (!ssi_private
->imx_ac97
) {
597 reg
->rx
.scr
= CCSR_SSI_SCR_SSIEN
| CCSR_SSI_SCR_RE
;
598 reg
->rx
.sier
|= CCSR_SSI_SIER_RFF0_EN
;
599 reg
->tx
.scr
= CCSR_SSI_SCR_SSIEN
| CCSR_SSI_SCR_TE
;
600 reg
->tx
.sier
|= CCSR_SSI_SIER_TFE0_EN
;
603 if (ssi_private
->use_dma
) {
604 reg
->rx
.sier
|= CCSR_SSI_SIER_RDMAE
;
605 reg
->tx
.sier
|= CCSR_SSI_SIER_TDMAE
;
607 reg
->rx
.sier
|= CCSR_SSI_SIER_RIE
;
608 reg
->tx
.sier
|= CCSR_SSI_SIER_TIE
;
611 reg
->rx
.sier
|= FSLSSI_SIER_DBG_RX_FLAGS
;
612 reg
->tx
.sier
|= FSLSSI_SIER_DBG_TX_FLAGS
;
615 static void fsl_ssi_setup_ac97(struct fsl_ssi_private
*ssi_private
)
617 struct ccsr_ssi __iomem
*ssi
= ssi_private
->ssi
;
620 * Setup the clock control register
622 write_ssi(CCSR_SSI_SxCCR_WL(17) | CCSR_SSI_SxCCR_DC(13),
624 write_ssi(CCSR_SSI_SxCCR_WL(17) | CCSR_SSI_SxCCR_DC(13),
628 * Enable AC97 mode and startup the SSI
630 write_ssi(CCSR_SSI_SACNT_AC97EN
| CCSR_SSI_SACNT_FV
,
632 write_ssi(0xff, &ssi
->saccdis
);
633 write_ssi(0x300, &ssi
->saccen
);
636 * Enable SSI, Transmit and Receive. AC97 has to communicate with the
637 * codec before a stream is started.
639 write_ssi_mask(&ssi
->scr
, 0, CCSR_SSI_SCR_SSIEN
|
640 CCSR_SSI_SCR_TE
| CCSR_SSI_SCR_RE
);
642 write_ssi(CCSR_SSI_SOR_WAIT(3), &ssi
->sor
);
645 static int fsl_ssi_setup(struct fsl_ssi_private
*ssi_private
)
647 struct ccsr_ssi __iomem
*ssi
= ssi_private
->ssi
;
649 int synchronous
= ssi_private
->cpu_dai_drv
.symmetric_rates
;
651 fsl_ssi_setup_reg_vals(ssi_private
);
653 if (ssi_private
->imx_ac97
)
654 ssi_private
->i2s_mode
= CCSR_SSI_SCR_I2S_MODE_NORMAL
| CCSR_SSI_SCR_NET
;
656 ssi_private
->i2s_mode
= CCSR_SSI_SCR_I2S_MODE_SLAVE
;
659 * Section 16.5 of the MPC8610 reference manual says that the SSI needs
660 * to be disabled before updating the registers we set here.
662 write_ssi_mask(&ssi
->scr
, CCSR_SSI_SCR_SSIEN
, 0);
665 * Program the SSI into I2S Slave Non-Network Synchronous mode. Also
666 * enable the transmit and receive FIFO.
668 * FIXME: Little-endian samples require a different shift dir
670 write_ssi_mask(&ssi
->scr
,
671 CCSR_SSI_SCR_I2S_MODE_MASK
| CCSR_SSI_SCR_SYN
,
672 CCSR_SSI_SCR_TFR_CLK_DIS
|
673 ssi_private
->i2s_mode
|
674 (synchronous
? CCSR_SSI_SCR_SYN
: 0));
676 write_ssi(CCSR_SSI_STCR_TXBIT0
| CCSR_SSI_STCR_TFSI
|
677 CCSR_SSI_STCR_TEFS
| CCSR_SSI_STCR_TSCKP
, &ssi
->stcr
);
679 write_ssi(CCSR_SSI_SRCR_RXBIT0
| CCSR_SSI_SRCR_RFSI
|
680 CCSR_SSI_SRCR_REFS
| CCSR_SSI_SRCR_RSCKP
, &ssi
->srcr
);
683 * The DC and PM bits are only used if the SSI is the clock master.
687 * Set the watermark for transmit FIFI 0 and receive FIFO 0. We don't
688 * use FIFO 1. We program the transmit water to signal a DMA transfer
689 * if there are only two (or fewer) elements left in the FIFO. Two
690 * elements equals one frame (left channel, right channel). This value,
691 * however, depends on the depth of the transmit buffer.
693 * We set the watermark on the same level as the DMA burstsize. For
694 * fiq it is probably better to use the biggest possible watermark
697 if (ssi_private
->use_dma
)
698 wm
= ssi_private
->fifo_depth
- 2;
700 wm
= ssi_private
->fifo_depth
;
702 write_ssi(CCSR_SSI_SFCSR_TFWM0(wm
) | CCSR_SSI_SFCSR_RFWM0(wm
) |
703 CCSR_SSI_SFCSR_TFWM1(wm
) | CCSR_SSI_SFCSR_RFWM1(wm
),
707 * For ac97 interrupts are enabled with the startup of the substream
708 * because it is also running without an active substream. Normally SSI
709 * is only enabled when there is a substream.
711 if (ssi_private
->imx_ac97
)
712 fsl_ssi_setup_ac97(ssi_private
);
715 * Set a default slot number so that there is no need for those common
716 * cases like I2S mode to call the extra set_tdm_slot() any more.
718 if (!ssi_private
->imx_ac97
) {
719 write_ssi_mask(&ssi
->stccr
, CCSR_SSI_SxCCR_DC_MASK
,
720 CCSR_SSI_SxCCR_DC(2));
721 write_ssi_mask(&ssi
->srccr
, CCSR_SSI_SxCCR_DC_MASK
,
722 CCSR_SSI_SxCCR_DC(2));
725 if (ssi_private
->use_dual_fifo
) {
726 write_ssi_mask(&ssi
->srcr
, 0, CCSR_SSI_SRCR_RFEN1
);
727 write_ssi_mask(&ssi
->stcr
, 0, CCSR_SSI_STCR_TFEN1
);
728 write_ssi_mask(&ssi
->scr
, 0, CCSR_SSI_SCR_TCH_EN
);
736 * fsl_ssi_startup: create a new substream
738 * This is the first function called when a stream is opened.
740 * If this is the first stream open, then grab the IRQ and program most of
743 static int fsl_ssi_startup(struct snd_pcm_substream
*substream
,
744 struct snd_soc_dai
*dai
)
746 struct snd_soc_pcm_runtime
*rtd
= substream
->private_data
;
747 struct fsl_ssi_private
*ssi_private
=
748 snd_soc_dai_get_drvdata(rtd
->cpu_dai
);
751 /* First, we only do fsl_ssi_setup() when SSI is going to be active.
752 * Second, fsl_ssi_setup was already called by ac97_init earlier if
753 * the driver is in ac97 mode.
755 if (!dai
->active
&& !ssi_private
->imx_ac97
) {
756 fsl_ssi_setup(ssi_private
);
757 spin_lock_irqsave(&ssi_private
->baudclk_lock
, flags
);
758 ssi_private
->baudclk_locked
= false;
759 spin_unlock_irqrestore(&ssi_private
->baudclk_lock
, flags
);
762 /* When using dual fifo mode, it is safer to ensure an even period
763 * size. If appearing to an odd number while DMA always starts its
764 * task from fifo0, fifo1 would be neglected at the end of each
765 * period. But SSI would still access fifo1 with an invalid data.
767 if (ssi_private
->use_dual_fifo
)
768 snd_pcm_hw_constraint_step(substream
->runtime
, 0,
769 SNDRV_PCM_HW_PARAM_PERIOD_SIZE
, 2);
775 * fsl_ssi_hw_params - program the sample size
777 * Most of the SSI registers have been programmed in the startup function,
778 * but the word length must be programmed here. Unfortunately, programming
779 * the SxCCR.WL bits requires the SSI to be temporarily disabled. This can
780 * cause a problem with supporting simultaneous playback and capture. If
781 * the SSI is already playing a stream, then that stream may be temporarily
782 * stopped when you start capture.
784 * Note: The SxCCR.DC and SxCCR.PM bits are only used if the SSI is the
787 static int fsl_ssi_hw_params(struct snd_pcm_substream
*substream
,
788 struct snd_pcm_hw_params
*hw_params
, struct snd_soc_dai
*cpu_dai
)
790 struct fsl_ssi_private
*ssi_private
= snd_soc_dai_get_drvdata(cpu_dai
);
791 struct ccsr_ssi __iomem
*ssi
= ssi_private
->ssi
;
792 unsigned int channels
= params_channels(hw_params
);
793 unsigned int sample_size
=
794 snd_pcm_format_width(params_format(hw_params
));
795 u32 wl
= CCSR_SSI_SxCCR_WL(sample_size
);
796 int enabled
= read_ssi(&ssi
->scr
) & CCSR_SSI_SCR_SSIEN
;
799 * If we're in synchronous mode, and the SSI is already enabled,
800 * then STCCR is already set properly.
802 if (enabled
&& ssi_private
->cpu_dai_drv
.symmetric_rates
)
806 * FIXME: The documentation says that SxCCR[WL] should not be
807 * modified while the SSI is enabled. The only time this can
808 * happen is if we're trying to do simultaneous playback and
809 * capture in asynchronous mode. Unfortunately, I have been enable
810 * to get that to work at all on the P1022DS. Therefore, we don't
811 * bother to disable/enable the SSI when setting SxCCR[WL], because
812 * the SSI will stop anyway. Maybe one day, this will get fixed.
815 /* In synchronous mode, the SSI uses STCCR for capture */
816 if ((substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
) ||
817 ssi_private
->cpu_dai_drv
.symmetric_rates
)
818 write_ssi_mask(&ssi
->stccr
, CCSR_SSI_SxCCR_WL_MASK
, wl
);
820 write_ssi_mask(&ssi
->srccr
, CCSR_SSI_SxCCR_WL_MASK
, wl
);
822 if (!ssi_private
->imx_ac97
)
823 write_ssi_mask(&ssi
->scr
,
824 CCSR_SSI_SCR_NET
| CCSR_SSI_SCR_I2S_MODE_MASK
,
825 channels
== 1 ? 0 : ssi_private
->i2s_mode
);
831 * fsl_ssi_set_dai_fmt - configure Digital Audio Interface Format.
833 static int fsl_ssi_set_dai_fmt(struct snd_soc_dai
*cpu_dai
, unsigned int fmt
)
835 struct fsl_ssi_private
*ssi_private
= snd_soc_dai_get_drvdata(cpu_dai
);
836 struct ccsr_ssi __iomem
*ssi
= ssi_private
->ssi
;
837 u32 strcr
= 0, stcr
, srcr
, scr
, mask
;
839 scr
= read_ssi(&ssi
->scr
) & ~(CCSR_SSI_SCR_SYN
| CCSR_SSI_SCR_I2S_MODE_MASK
);
840 scr
|= CCSR_SSI_SCR_NET
;
842 mask
= CCSR_SSI_STCR_TXBIT0
| CCSR_SSI_STCR_TFDIR
| CCSR_SSI_STCR_TXDIR
|
843 CCSR_SSI_STCR_TSCKP
| CCSR_SSI_STCR_TFSI
| CCSR_SSI_STCR_TFSL
|
845 stcr
= read_ssi(&ssi
->stcr
) & ~mask
;
846 srcr
= read_ssi(&ssi
->srcr
) & ~mask
;
848 switch (fmt
& SND_SOC_DAIFMT_FORMAT_MASK
) {
849 case SND_SOC_DAIFMT_I2S
:
850 switch (fmt
& SND_SOC_DAIFMT_MASTER_MASK
) {
851 case SND_SOC_DAIFMT_CBS_CFS
:
852 ssi_private
->i2s_mode
= CCSR_SSI_SCR_I2S_MODE_MASTER
;
854 case SND_SOC_DAIFMT_CBM_CFM
:
855 ssi_private
->i2s_mode
= CCSR_SSI_SCR_I2S_MODE_SLAVE
;
860 scr
|= ssi_private
->i2s_mode
;
862 /* Data on rising edge of bclk, frame low, 1clk before data */
863 strcr
|= CCSR_SSI_STCR_TFSI
| CCSR_SSI_STCR_TSCKP
|
864 CCSR_SSI_STCR_TXBIT0
| CCSR_SSI_STCR_TEFS
;
866 case SND_SOC_DAIFMT_LEFT_J
:
867 /* Data on rising edge of bclk, frame high */
868 strcr
|= CCSR_SSI_STCR_TXBIT0
| CCSR_SSI_STCR_TSCKP
;
870 case SND_SOC_DAIFMT_DSP_A
:
871 /* Data on rising edge of bclk, frame high, 1clk before data */
872 strcr
|= CCSR_SSI_STCR_TFSL
| CCSR_SSI_STCR_TSCKP
|
873 CCSR_SSI_STCR_TXBIT0
| CCSR_SSI_STCR_TEFS
;
875 case SND_SOC_DAIFMT_DSP_B
:
876 /* Data on rising edge of bclk, frame high */
877 strcr
|= CCSR_SSI_STCR_TFSL
| CCSR_SSI_STCR_TSCKP
|
878 CCSR_SSI_STCR_TXBIT0
;
884 /* DAI clock inversion */
885 switch (fmt
& SND_SOC_DAIFMT_INV_MASK
) {
886 case SND_SOC_DAIFMT_NB_NF
:
887 /* Nothing to do for both normal cases */
889 case SND_SOC_DAIFMT_IB_NF
:
890 /* Invert bit clock */
891 strcr
^= CCSR_SSI_STCR_TSCKP
;
893 case SND_SOC_DAIFMT_NB_IF
:
894 /* Invert frame clock */
895 strcr
^= CCSR_SSI_STCR_TFSI
;
897 case SND_SOC_DAIFMT_IB_IF
:
898 /* Invert both clocks */
899 strcr
^= CCSR_SSI_STCR_TSCKP
;
900 strcr
^= CCSR_SSI_STCR_TFSI
;
906 /* DAI clock master masks */
907 switch (fmt
& SND_SOC_DAIFMT_MASTER_MASK
) {
908 case SND_SOC_DAIFMT_CBS_CFS
:
909 strcr
|= CCSR_SSI_STCR_TFDIR
| CCSR_SSI_STCR_TXDIR
;
910 scr
|= CCSR_SSI_SCR_SYS_CLK_EN
;
912 case SND_SOC_DAIFMT_CBM_CFM
:
913 scr
&= ~CCSR_SSI_SCR_SYS_CLK_EN
;
922 if (ssi_private
->cpu_dai_drv
.symmetric_rates
) {
923 /* Need to clear RXDIR when using SYNC mode */
924 srcr
&= ~CCSR_SSI_SRCR_RXDIR
;
925 scr
|= CCSR_SSI_SCR_SYN
;
928 write_ssi(stcr
, &ssi
->stcr
);
929 write_ssi(srcr
, &ssi
->srcr
);
930 write_ssi(scr
, &ssi
->scr
);
936 * fsl_ssi_set_dai_sysclk - configure Digital Audio Interface bit clock
938 * Note: This function can be only called when using SSI as DAI master
940 * Quick instruction for parameters:
941 * freq: Output BCLK frequency = samplerate * 32 (fixed) * channels
942 * dir: SND_SOC_CLOCK_OUT -> TxBCLK, SND_SOC_CLOCK_IN -> RxBCLK.
944 static int fsl_ssi_set_dai_sysclk(struct snd_soc_dai
*cpu_dai
,
945 int clk_id
, unsigned int freq
, int dir
)
947 struct fsl_ssi_private
*ssi_private
= snd_soc_dai_get_drvdata(cpu_dai
);
948 struct ccsr_ssi __iomem
*ssi
= ssi_private
->ssi
;
949 int synchronous
= ssi_private
->cpu_dai_drv
.symmetric_rates
, ret
;
950 u32 pm
= 999, div2
, psr
, stccr
, mask
, afreq
, factor
, i
;
951 unsigned long flags
, clkrate
, baudrate
, tmprate
;
952 u64 sub
, savesub
= 100000;
954 /* Don't apply it to any non-baudclk circumstance */
955 if (IS_ERR(ssi_private
->baudclk
))
958 /* It should be already enough to divide clock by setting pm alone */
962 factor
= (div2
+ 1) * (7 * psr
+ 1) * 2;
964 for (i
= 0; i
< 255; i
++) {
965 /* The bclk rate must be smaller than 1/5 sysclk rate */
966 if (factor
* (i
+ 1) < 5)
969 tmprate
= freq
* factor
* (i
+ 2);
970 clkrate
= clk_round_rate(ssi_private
->baudclk
, tmprate
);
972 do_div(clkrate
, factor
);
973 afreq
= (u32
)clkrate
/ (i
+ 1);
977 else if (freq
/ afreq
== 1)
979 else if (afreq
/ freq
== 1)
984 /* Calculate the fraction */
999 /* No proper pm found if it is still remaining the initial value */
1001 dev_err(cpu_dai
->dev
, "failed to handle the required sysclk\n");
1005 stccr
= CCSR_SSI_SxCCR_PM(pm
+ 1) | (div2
? CCSR_SSI_SxCCR_DIV2
: 0) |
1006 (psr
? CCSR_SSI_SxCCR_PSR
: 0);
1007 mask
= CCSR_SSI_SxCCR_PM_MASK
| CCSR_SSI_SxCCR_DIV2
| CCSR_SSI_SxCCR_PSR
;
1009 if (dir
== SND_SOC_CLOCK_OUT
|| synchronous
)
1010 write_ssi_mask(&ssi
->stccr
, mask
, stccr
);
1012 write_ssi_mask(&ssi
->srccr
, mask
, stccr
);
1014 spin_lock_irqsave(&ssi_private
->baudclk_lock
, flags
);
1015 if (!ssi_private
->baudclk_locked
) {
1016 ret
= clk_set_rate(ssi_private
->baudclk
, baudrate
);
1018 spin_unlock_irqrestore(&ssi_private
->baudclk_lock
, flags
);
1019 dev_err(cpu_dai
->dev
, "failed to set baudclk rate\n");
1022 ssi_private
->baudclk_locked
= true;
1024 spin_unlock_irqrestore(&ssi_private
->baudclk_lock
, flags
);
1030 * fsl_ssi_set_dai_tdm_slot - set TDM slot number
1032 * Note: This function can be only called when using SSI as DAI master
1034 static int fsl_ssi_set_dai_tdm_slot(struct snd_soc_dai
*cpu_dai
, u32 tx_mask
,
1035 u32 rx_mask
, int slots
, int slot_width
)
1037 struct fsl_ssi_private
*ssi_private
= snd_soc_dai_get_drvdata(cpu_dai
);
1038 struct ccsr_ssi __iomem
*ssi
= ssi_private
->ssi
;
1041 /* The slot number should be >= 2 if using Network mode or I2S mode */
1042 val
= read_ssi(&ssi
->scr
) & (CCSR_SSI_SCR_I2S_MODE_MASK
| CCSR_SSI_SCR_NET
);
1043 if (val
&& slots
< 2) {
1044 dev_err(cpu_dai
->dev
, "slot number should be >= 2 in I2S or NET\n");
1048 write_ssi_mask(&ssi
->stccr
, CCSR_SSI_SxCCR_DC_MASK
,
1049 CCSR_SSI_SxCCR_DC(slots
));
1050 write_ssi_mask(&ssi
->srccr
, CCSR_SSI_SxCCR_DC_MASK
,
1051 CCSR_SSI_SxCCR_DC(slots
));
1053 /* The register SxMSKs needs SSI to provide essential clock due to
1054 * hardware design. So we here temporarily enable SSI to set them.
1056 val
= read_ssi(&ssi
->scr
) & CCSR_SSI_SCR_SSIEN
;
1057 write_ssi_mask(&ssi
->scr
, 0, CCSR_SSI_SCR_SSIEN
);
1059 write_ssi(tx_mask
, &ssi
->stmsk
);
1060 write_ssi(rx_mask
, &ssi
->srmsk
);
1062 write_ssi_mask(&ssi
->scr
, CCSR_SSI_SCR_SSIEN
, val
);
1068 * fsl_ssi_trigger: start and stop the DMA transfer.
1070 * This function is called by ALSA to start, stop, pause, and resume the DMA
1073 * The DMA channel is in external master start and pause mode, which
1074 * means the SSI completely controls the flow of data.
1076 static int fsl_ssi_trigger(struct snd_pcm_substream
*substream
, int cmd
,
1077 struct snd_soc_dai
*dai
)
1079 struct snd_soc_pcm_runtime
*rtd
= substream
->private_data
;
1080 struct fsl_ssi_private
*ssi_private
= snd_soc_dai_get_drvdata(rtd
->cpu_dai
);
1081 struct ccsr_ssi __iomem
*ssi
= ssi_private
->ssi
;
1082 unsigned long flags
;
1085 case SNDRV_PCM_TRIGGER_START
:
1086 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE
:
1087 if (substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
)
1088 fsl_ssi_tx_config(ssi_private
, true);
1090 fsl_ssi_rx_config(ssi_private
, true);
1093 case SNDRV_PCM_TRIGGER_STOP
:
1094 case SNDRV_PCM_TRIGGER_PAUSE_PUSH
:
1095 if (substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
)
1096 fsl_ssi_tx_config(ssi_private
, false);
1098 fsl_ssi_rx_config(ssi_private
, false);
1100 if (!ssi_private
->imx_ac97
&& (read_ssi(&ssi
->scr
) &
1101 (CCSR_SSI_SCR_TE
| CCSR_SSI_SCR_RE
)) == 0) {
1102 spin_lock_irqsave(&ssi_private
->baudclk_lock
, flags
);
1103 ssi_private
->baudclk_locked
= false;
1104 spin_unlock_irqrestore(&ssi_private
->baudclk_lock
, flags
);
1112 if (ssi_private
->imx_ac97
) {
1113 if (substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
)
1114 write_ssi(CCSR_SSI_SOR_TX_CLR
, &ssi
->sor
);
1116 write_ssi(CCSR_SSI_SOR_RX_CLR
, &ssi
->sor
);
1122 static int fsl_ssi_dai_probe(struct snd_soc_dai
*dai
)
1124 struct fsl_ssi_private
*ssi_private
= snd_soc_dai_get_drvdata(dai
);
1126 if (ssi_private
->ssi_on_imx
&& ssi_private
->use_dma
) {
1127 dai
->playback_dma_data
= &ssi_private
->dma_params_tx
;
1128 dai
->capture_dma_data
= &ssi_private
->dma_params_rx
;
1134 static const struct snd_soc_dai_ops fsl_ssi_dai_ops
= {
1135 .startup
= fsl_ssi_startup
,
1136 .hw_params
= fsl_ssi_hw_params
,
1137 .set_fmt
= fsl_ssi_set_dai_fmt
,
1138 .set_sysclk
= fsl_ssi_set_dai_sysclk
,
1139 .set_tdm_slot
= fsl_ssi_set_dai_tdm_slot
,
1140 .trigger
= fsl_ssi_trigger
,
1143 /* Template for the CPU dai driver structure */
1144 static struct snd_soc_dai_driver fsl_ssi_dai_template
= {
1145 .probe
= fsl_ssi_dai_probe
,
1149 .rates
= FSLSSI_I2S_RATES
,
1150 .formats
= FSLSSI_I2S_FORMATS
,
1155 .rates
= FSLSSI_I2S_RATES
,
1156 .formats
= FSLSSI_I2S_FORMATS
,
1158 .ops
= &fsl_ssi_dai_ops
,
1161 static const struct snd_soc_component_driver fsl_ssi_component
= {
1165 static struct snd_soc_dai_driver fsl_ssi_ac97_dai
= {
1168 .stream_name
= "AC97 Playback",
1171 .rates
= SNDRV_PCM_RATE_8000_48000
,
1172 .formats
= SNDRV_PCM_FMTBIT_S16_LE
,
1175 .stream_name
= "AC97 Capture",
1178 .rates
= SNDRV_PCM_RATE_48000
,
1179 .formats
= SNDRV_PCM_FMTBIT_S16_LE
,
1181 .ops
= &fsl_ssi_dai_ops
,
1185 static struct fsl_ssi_private
*fsl_ac97_data
;
1187 static void fsl_ssi_ac97_init(void)
1189 fsl_ssi_setup(fsl_ac97_data
);
1192 static void fsl_ssi_ac97_write(struct snd_ac97
*ac97
, unsigned short reg
,
1195 struct ccsr_ssi
*ssi
= fsl_ac97_data
->ssi
;
1204 write_ssi(lreg
, &ssi
->sacadd
);
1207 write_ssi(lval
, &ssi
->sacdat
);
1209 write_ssi_mask(&ssi
->sacnt
, CCSR_SSI_SACNT_RDWR_MASK
,
1214 static unsigned short fsl_ssi_ac97_read(struct snd_ac97
*ac97
,
1217 struct ccsr_ssi
*ssi
= fsl_ac97_data
->ssi
;
1219 unsigned short val
= -1;
1222 lreg
= (reg
& 0x7f) << 12;
1223 write_ssi(lreg
, &ssi
->sacadd
);
1224 write_ssi_mask(&ssi
->sacnt
, CCSR_SSI_SACNT_RDWR_MASK
,
1229 val
= (read_ssi(&ssi
->sacdat
) >> 4) & 0xffff;
1234 static struct snd_ac97_bus_ops fsl_ssi_ac97_ops
= {
1235 .read
= fsl_ssi_ac97_read
,
1236 .write
= fsl_ssi_ac97_write
,
1240 * Make every character in a string lower-case
1242 static void make_lowercase(char *s
)
1248 if ((c
>= 'A') && (c
<= 'Z'))
1249 *p
= c
+ ('a' - 'A');
1254 static int fsl_ssi_probe(struct platform_device
*pdev
)
1256 struct fsl_ssi_private
*ssi_private
;
1258 struct device_attribute
*dev_attr
= NULL
;
1259 struct device_node
*np
= pdev
->dev
.of_node
;
1260 const struct of_device_id
*of_id
;
1261 enum fsl_ssi_type hw_type
;
1262 const char *p
, *sprop
;
1263 const uint32_t *iprop
;
1264 struct resource res
;
1269 /* SSIs that are not connected on the board should have a
1270 * status = "disabled"
1271 * property in their device tree nodes.
1273 if (!of_device_is_available(np
))
1276 of_id
= of_match_device(fsl_ssi_ids
, &pdev
->dev
);
1279 hw_type
= (enum fsl_ssi_type
) of_id
->data
;
1281 sprop
= of_get_property(np
, "fsl,mode", NULL
);
1283 dev_err(&pdev
->dev
, "fsl,mode property is necessary\n");
1286 if (!strcmp(sprop
, "ac97-slave"))
1289 /* The DAI name is the last part of the full name of the node. */
1290 p
= strrchr(np
->full_name
, '/') + 1;
1291 ssi_private
= devm_kzalloc(&pdev
->dev
, sizeof(*ssi_private
) + strlen(p
),
1294 dev_err(&pdev
->dev
, "could not allocate DAI object\n");
1298 strcpy(ssi_private
->name
, p
);
1300 ssi_private
->use_dma
= !of_property_read_bool(np
,
1301 "fsl,fiq-stream-filter");
1302 ssi_private
->hw_type
= hw_type
;
1305 memcpy(&ssi_private
->cpu_dai_drv
, &fsl_ssi_ac97_dai
,
1306 sizeof(fsl_ssi_ac97_dai
));
1308 fsl_ac97_data
= ssi_private
;
1309 ssi_private
->imx_ac97
= true;
1311 snd_soc_set_ac97_ops_of_reset(&fsl_ssi_ac97_ops
, pdev
);
1313 /* Initialize this copy of the CPU DAI driver structure */
1314 memcpy(&ssi_private
->cpu_dai_drv
, &fsl_ssi_dai_template
,
1315 sizeof(fsl_ssi_dai_template
));
1317 ssi_private
->cpu_dai_drv
.name
= ssi_private
->name
;
1319 /* Get the addresses and IRQ */
1320 ret
= of_address_to_resource(np
, 0, &res
);
1322 dev_err(&pdev
->dev
, "could not determine device resources\n");
1325 ssi_private
->ssi
= of_iomap(np
, 0);
1326 if (!ssi_private
->ssi
) {
1327 dev_err(&pdev
->dev
, "could not map device resources\n");
1330 ssi_private
->ssi_phys
= res
.start
;
1332 ssi_private
->irq
= irq_of_parse_and_map(np
, 0);
1333 if (!ssi_private
->irq
) {
1334 dev_err(&pdev
->dev
, "no irq for node %s\n", np
->full_name
);
1338 /* Are the RX and the TX clocks locked? */
1339 if (!of_find_property(np
, "fsl,ssi-asynchronous", NULL
)) {
1340 ssi_private
->cpu_dai_drv
.symmetric_rates
= 1;
1341 ssi_private
->cpu_dai_drv
.symmetric_channels
= 1;
1342 ssi_private
->cpu_dai_drv
.symmetric_samplebits
= 1;
1345 /* Determine the FIFO depth. */
1346 iprop
= of_get_property(np
, "fsl,fifo-depth", NULL
);
1348 ssi_private
->fifo_depth
= be32_to_cpup(iprop
);
1350 /* Older 8610 DTs didn't have the fifo-depth property */
1351 ssi_private
->fifo_depth
= 8;
1353 ssi_private
->baudclk_locked
= false;
1354 spin_lock_init(&ssi_private
->baudclk_lock
);
1357 * imx51 and later SoCs have a slightly different IP that allows the
1358 * SSI configuration while the SSI unit is running.
1360 * More important, it is necessary on those SoCs to configure the
1361 * sperate TX/RX DMA bits just before starting the stream
1362 * (fsl_ssi_trigger). The SDMA unit has to be configured before fsl_ssi
1363 * sends any DMA requests to the SDMA unit, otherwise it is not defined
1364 * how the SDMA unit handles the DMA request.
1366 * SDMA units are present on devices starting at imx35 but the imx35
1367 * reference manual states that the DMA bits should not be changed
1368 * while the SSI unit is running (SSIEN). So we support the necessary
1369 * online configuration of fsl-ssi starting at imx51.
1372 case FSL_SSI_MCP8610
:
1375 ssi_private
->offline_config
= true;
1378 ssi_private
->offline_config
= false;
1382 if (hw_type
== FSL_SSI_MX21
|| hw_type
== FSL_SSI_MX51
||
1383 hw_type
== FSL_SSI_MX35
) {
1384 u32 dma_events
[2], dmas
[4];
1385 ssi_private
->ssi_on_imx
= true;
1387 ssi_private
->clk
= devm_clk_get(&pdev
->dev
, NULL
);
1388 if (IS_ERR(ssi_private
->clk
)) {
1389 ret
= PTR_ERR(ssi_private
->clk
);
1390 dev_err(&pdev
->dev
, "could not get clock: %d\n", ret
);
1393 ret
= clk_prepare_enable(ssi_private
->clk
);
1395 dev_err(&pdev
->dev
, "clk_prepare_enable failed: %d\n",
1400 /* For those SLAVE implementations, we ingore non-baudclk cases
1401 * and, instead, abandon MASTER mode that needs baud clock.
1403 ssi_private
->baudclk
= devm_clk_get(&pdev
->dev
, "baud");
1404 if (IS_ERR(ssi_private
->baudclk
))
1405 dev_dbg(&pdev
->dev
, "could not get baud clock: %ld\n",
1406 PTR_ERR(ssi_private
->baudclk
));
1408 clk_prepare_enable(ssi_private
->baudclk
);
1411 * We have burstsize be "fifo_depth - 2" to match the SSI
1412 * watermark setting in fsl_ssi_startup().
1414 ssi_private
->dma_params_tx
.maxburst
=
1415 ssi_private
->fifo_depth
- 2;
1416 ssi_private
->dma_params_rx
.maxburst
=
1417 ssi_private
->fifo_depth
- 2;
1418 ssi_private
->dma_params_tx
.addr
=
1419 ssi_private
->ssi_phys
+ offsetof(struct ccsr_ssi
, stx0
);
1420 ssi_private
->dma_params_rx
.addr
=
1421 ssi_private
->ssi_phys
+ offsetof(struct ccsr_ssi
, srx0
);
1422 ssi_private
->dma_params_tx
.filter_data
=
1423 &ssi_private
->filter_data_tx
;
1424 ssi_private
->dma_params_rx
.filter_data
=
1425 &ssi_private
->filter_data_rx
;
1426 if (!of_property_read_bool(pdev
->dev
.of_node
, "dmas") &&
1427 ssi_private
->use_dma
) {
1429 * FIXME: This is a temporary solution until all
1430 * necessary dma drivers support the generic dma
1433 ret
= of_property_read_u32_array(pdev
->dev
.of_node
,
1434 "fsl,ssi-dma-events", dma_events
, 2);
1435 if (ret
&& ssi_private
->use_dma
) {
1436 dev_err(&pdev
->dev
, "could not get dma events but fsl-ssi is configured to use DMA\n");
1440 /* Should this be merge with the above? */
1441 if (!of_property_read_u32_array(pdev
->dev
.of_node
, "dmas", dmas
, 4)
1442 && dmas
[2] == IMX_DMATYPE_SSI_DUAL
) {
1443 ssi_private
->use_dual_fifo
= true;
1444 /* When using dual fifo mode, we need to keep watermark
1445 * as even numbers due to dma script limitation.
1447 ssi_private
->dma_params_tx
.maxburst
&= ~0x1;
1448 ssi_private
->dma_params_rx
.maxburst
&= ~0x1;
1451 shared
= of_device_is_compatible(of_get_parent(np
),
1454 imx_pcm_dma_params_init_data(&ssi_private
->filter_data_tx
,
1455 dma_events
[0], shared
? IMX_DMATYPE_SSI_SP
: IMX_DMATYPE_SSI
);
1456 imx_pcm_dma_params_init_data(&ssi_private
->filter_data_rx
,
1457 dma_events
[1], shared
? IMX_DMATYPE_SSI_SP
: IMX_DMATYPE_SSI
);
1461 * Enable interrupts only for MCP8610 and MX51. The other MXs have
1462 * different writeable interrupt status registers.
1464 if (ssi_private
->use_dma
) {
1465 /* The 'name' should not have any slashes in it. */
1466 ret
= devm_request_irq(&pdev
->dev
, ssi_private
->irq
,
1467 fsl_ssi_isr
, 0, ssi_private
->name
,
1469 ssi_private
->irq_stats
= true;
1471 dev_err(&pdev
->dev
, "could not claim irq %u\n",
1477 /* Register with ASoC */
1478 dev_set_drvdata(&pdev
->dev
, ssi_private
);
1480 ret
= snd_soc_register_component(&pdev
->dev
, &fsl_ssi_component
,
1481 &ssi_private
->cpu_dai_drv
, 1);
1483 dev_err(&pdev
->dev
, "failed to register DAI: %d\n", ret
);
1487 ret
= fsl_ssi_debugfs_create(ssi_private
, &pdev
->dev
);
1491 if (ssi_private
->ssi_on_imx
) {
1492 if (!ssi_private
->use_dma
) {
1495 * Some boards use an incompatible codec. To get it
1496 * working, we are using imx-fiq-pcm-audio, that
1497 * can handle those codecs. DMA is not possible in this
1501 ssi_private
->fiq_params
.irq
= ssi_private
->irq
;
1502 ssi_private
->fiq_params
.base
= ssi_private
->ssi
;
1503 ssi_private
->fiq_params
.dma_params_rx
=
1504 &ssi_private
->dma_params_rx
;
1505 ssi_private
->fiq_params
.dma_params_tx
=
1506 &ssi_private
->dma_params_tx
;
1508 ret
= imx_pcm_fiq_init(pdev
, &ssi_private
->fiq_params
);
1512 ret
= imx_pcm_dma_init(pdev
);
1519 * If codec-handle property is missing from SSI node, we assume
1520 * that the machine driver uses new binding which does not require
1521 * SSI driver to trigger machine driver's probe.
1523 if (!of_get_property(np
, "codec-handle", NULL
)) {
1524 ssi_private
->new_binding
= true;
1528 /* Trigger the machine driver's probe function. The platform driver
1529 * name of the machine driver is taken from /compatible property of the
1530 * device tree. We also pass the address of the CPU DAI driver
1533 sprop
= of_get_property(of_find_node_by_path("/"), "compatible", NULL
);
1534 /* Sometimes the compatible name has a "fsl," prefix, so we strip it. */
1535 p
= strrchr(sprop
, ',');
1538 snprintf(name
, sizeof(name
), "snd-soc-%s", sprop
);
1539 make_lowercase(name
);
1542 platform_device_register_data(&pdev
->dev
, name
, 0, NULL
, 0);
1543 if (IS_ERR(ssi_private
->pdev
)) {
1544 ret
= PTR_ERR(ssi_private
->pdev
);
1545 dev_err(&pdev
->dev
, "failed to register platform: %d\n", ret
);
1550 if (ssi_private
->imx_ac97
)
1551 fsl_ssi_ac97_init();
1556 if (ssi_private
->ssi_on_imx
&& !ssi_private
->use_dma
)
1557 imx_pcm_fiq_exit(pdev
);
1560 fsl_ssi_debugfs_remove(ssi_private
);
1563 snd_soc_unregister_component(&pdev
->dev
);
1566 device_remove_file(&pdev
->dev
, dev_attr
);
1569 if (ssi_private
->ssi_on_imx
) {
1570 if (!IS_ERR(ssi_private
->baudclk
))
1571 clk_disable_unprepare(ssi_private
->baudclk
);
1572 clk_disable_unprepare(ssi_private
->clk
);
1576 if (ssi_private
->irq_stats
)
1577 irq_dispose_mapping(ssi_private
->irq
);
1582 static int fsl_ssi_remove(struct platform_device
*pdev
)
1584 struct fsl_ssi_private
*ssi_private
= dev_get_drvdata(&pdev
->dev
);
1586 fsl_ssi_debugfs_remove(ssi_private
);
1588 if (!ssi_private
->new_binding
)
1589 platform_device_unregister(ssi_private
->pdev
);
1590 snd_soc_unregister_component(&pdev
->dev
);
1591 if (ssi_private
->ssi_on_imx
) {
1592 if (!IS_ERR(ssi_private
->baudclk
))
1593 clk_disable_unprepare(ssi_private
->baudclk
);
1594 clk_disable_unprepare(ssi_private
->clk
);
1596 if (ssi_private
->irq_stats
)
1597 irq_dispose_mapping(ssi_private
->irq
);
1602 static struct platform_driver fsl_ssi_driver
= {
1604 .name
= "fsl-ssi-dai",
1605 .owner
= THIS_MODULE
,
1606 .of_match_table
= fsl_ssi_ids
,
1608 .probe
= fsl_ssi_probe
,
1609 .remove
= fsl_ssi_remove
,
1612 module_platform_driver(fsl_ssi_driver
);
1614 MODULE_ALIAS("platform:fsl-ssi-dai");
1615 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
1616 MODULE_DESCRIPTION("Freescale Synchronous Serial Interface (SSI) ASoC Driver");
1617 MODULE_LICENSE("GPL v2");