2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
26 #include "xfs_mount.h"
27 #include "xfs_inode.h"
28 #include "xfs_btree.h"
29 #include "xfs_ialloc.h"
30 #include "xfs_ialloc_btree.h"
31 #include "xfs_alloc.h"
32 #include "xfs_rtalloc.h"
33 #include "xfs_error.h"
35 #include "xfs_cksum.h"
36 #include "xfs_trans.h"
37 #include "xfs_buf_item.h"
38 #include "xfs_icreate_item.h"
39 #include "xfs_icache.h"
40 #include "xfs_trace.h"
44 * Allocation group level functions.
47 xfs_ialloc_cluster_alignment(
50 if (xfs_sb_version_hasalign(&mp
->m_sb
) &&
51 mp
->m_sb
.sb_inoalignmt
>=
52 XFS_B_TO_FSBT(mp
, mp
->m_inode_cluster_size
))
53 return mp
->m_sb
.sb_inoalignmt
;
58 * Lookup a record by ino in the btree given by cur.
62 struct xfs_btree_cur
*cur
, /* btree cursor */
63 xfs_agino_t ino
, /* starting inode of chunk */
64 xfs_lookup_t dir
, /* <=, >=, == */
65 int *stat
) /* success/failure */
67 cur
->bc_rec
.i
.ir_startino
= ino
;
68 cur
->bc_rec
.i
.ir_holemask
= 0;
69 cur
->bc_rec
.i
.ir_count
= 0;
70 cur
->bc_rec
.i
.ir_freecount
= 0;
71 cur
->bc_rec
.i
.ir_free
= 0;
72 return xfs_btree_lookup(cur
, dir
, stat
);
76 * Update the record referred to by cur to the value given.
77 * This either works (return 0) or gets an EFSCORRUPTED error.
79 STATIC
int /* error */
81 struct xfs_btree_cur
*cur
, /* btree cursor */
82 xfs_inobt_rec_incore_t
*irec
) /* btree record */
84 union xfs_btree_rec rec
;
86 rec
.inobt
.ir_startino
= cpu_to_be32(irec
->ir_startino
);
87 if (xfs_sb_version_hassparseinodes(&cur
->bc_mp
->m_sb
)) {
88 rec
.inobt
.ir_u
.sp
.ir_holemask
= cpu_to_be16(irec
->ir_holemask
);
89 rec
.inobt
.ir_u
.sp
.ir_count
= irec
->ir_count
;
90 rec
.inobt
.ir_u
.sp
.ir_freecount
= irec
->ir_freecount
;
92 /* ir_holemask/ir_count not supported on-disk */
93 rec
.inobt
.ir_u
.f
.ir_freecount
= cpu_to_be32(irec
->ir_freecount
);
95 rec
.inobt
.ir_free
= cpu_to_be64(irec
->ir_free
);
96 return xfs_btree_update(cur
, &rec
);
100 * Get the data from the pointed-to record.
104 struct xfs_btree_cur
*cur
, /* btree cursor */
105 xfs_inobt_rec_incore_t
*irec
, /* btree record */
106 int *stat
) /* output: success/failure */
108 union xfs_btree_rec
*rec
;
111 error
= xfs_btree_get_rec(cur
, &rec
, stat
);
112 if (error
|| *stat
== 0)
115 irec
->ir_startino
= be32_to_cpu(rec
->inobt
.ir_startino
);
116 if (xfs_sb_version_hassparseinodes(&cur
->bc_mp
->m_sb
)) {
117 irec
->ir_holemask
= be16_to_cpu(rec
->inobt
.ir_u
.sp
.ir_holemask
);
118 irec
->ir_count
= rec
->inobt
.ir_u
.sp
.ir_count
;
119 irec
->ir_freecount
= rec
->inobt
.ir_u
.sp
.ir_freecount
;
122 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
123 * values for full inode chunks.
125 irec
->ir_holemask
= XFS_INOBT_HOLEMASK_FULL
;
126 irec
->ir_count
= XFS_INODES_PER_CHUNK
;
128 be32_to_cpu(rec
->inobt
.ir_u
.f
.ir_freecount
);
130 irec
->ir_free
= be64_to_cpu(rec
->inobt
.ir_free
);
136 * Insert a single inobt record. Cursor must already point to desired location.
139 xfs_inobt_insert_rec(
140 struct xfs_btree_cur
*cur
,
147 cur
->bc_rec
.i
.ir_holemask
= holemask
;
148 cur
->bc_rec
.i
.ir_count
= count
;
149 cur
->bc_rec
.i
.ir_freecount
= freecount
;
150 cur
->bc_rec
.i
.ir_free
= free
;
151 return xfs_btree_insert(cur
, stat
);
155 * Insert records describing a newly allocated inode chunk into the inobt.
159 struct xfs_mount
*mp
,
160 struct xfs_trans
*tp
,
161 struct xfs_buf
*agbp
,
166 struct xfs_btree_cur
*cur
;
167 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(agbp
);
168 xfs_agnumber_t agno
= be32_to_cpu(agi
->agi_seqno
);
173 cur
= xfs_inobt_init_cursor(mp
, tp
, agbp
, agno
, btnum
);
175 for (thisino
= newino
;
176 thisino
< newino
+ newlen
;
177 thisino
+= XFS_INODES_PER_CHUNK
) {
178 error
= xfs_inobt_lookup(cur
, thisino
, XFS_LOOKUP_EQ
, &i
);
180 xfs_btree_del_cursor(cur
, XFS_BTREE_ERROR
);
185 error
= xfs_inobt_insert_rec(cur
, XFS_INOBT_HOLEMASK_FULL
,
186 XFS_INODES_PER_CHUNK
,
187 XFS_INODES_PER_CHUNK
,
188 XFS_INOBT_ALL_FREE
, &i
);
190 xfs_btree_del_cursor(cur
, XFS_BTREE_ERROR
);
196 xfs_btree_del_cursor(cur
, XFS_BTREE_NOERROR
);
202 * Verify that the number of free inodes in the AGI is correct.
206 xfs_check_agi_freecount(
207 struct xfs_btree_cur
*cur
,
210 if (cur
->bc_nlevels
== 1) {
211 xfs_inobt_rec_incore_t rec
;
216 error
= xfs_inobt_lookup(cur
, 0, XFS_LOOKUP_GE
, &i
);
221 error
= xfs_inobt_get_rec(cur
, &rec
, &i
);
226 freecount
+= rec
.ir_freecount
;
227 error
= xfs_btree_increment(cur
, 0, &i
);
233 if (!XFS_FORCED_SHUTDOWN(cur
->bc_mp
))
234 ASSERT(freecount
== be32_to_cpu(agi
->agi_freecount
));
239 #define xfs_check_agi_freecount(cur, agi) 0
243 * Initialise a new set of inodes. When called without a transaction context
244 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
245 * than logging them (which in a transaction context puts them into the AIL
246 * for writeback rather than the xfsbufd queue).
249 xfs_ialloc_inode_init(
250 struct xfs_mount
*mp
,
251 struct xfs_trans
*tp
,
252 struct list_head
*buffer_list
,
256 xfs_agblock_t length
,
259 struct xfs_buf
*fbuf
;
260 struct xfs_dinode
*free
;
261 int nbufs
, blks_per_cluster
, inodes_per_cluster
;
268 * Loop over the new block(s), filling in the inodes. For small block
269 * sizes, manipulate the inodes in buffers which are multiples of the
272 blks_per_cluster
= xfs_icluster_size_fsb(mp
);
273 inodes_per_cluster
= blks_per_cluster
<< mp
->m_sb
.sb_inopblog
;
274 nbufs
= length
/ blks_per_cluster
;
277 * Figure out what version number to use in the inodes we create. If
278 * the superblock version has caught up to the one that supports the new
279 * inode format, then use the new inode version. Otherwise use the old
280 * version so that old kernels will continue to be able to use the file
283 * For v3 inodes, we also need to write the inode number into the inode,
284 * so calculate the first inode number of the chunk here as
285 * XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not
286 * across multiple filesystem blocks (such as a cluster) and so cannot
287 * be used in the cluster buffer loop below.
289 * Further, because we are writing the inode directly into the buffer
290 * and calculating a CRC on the entire inode, we have ot log the entire
291 * inode so that the entire range the CRC covers is present in the log.
292 * That means for v3 inode we log the entire buffer rather than just the
295 if (xfs_sb_version_hascrc(&mp
->m_sb
)) {
297 ino
= XFS_AGINO_TO_INO(mp
, agno
,
298 XFS_OFFBNO_TO_AGINO(mp
, agbno
, 0));
301 * log the initialisation that is about to take place as an
302 * logical operation. This means the transaction does not
303 * need to log the physical changes to the inode buffers as log
304 * recovery will know what initialisation is actually needed.
305 * Hence we only need to log the buffers as "ordered" buffers so
306 * they track in the AIL as if they were physically logged.
309 xfs_icreate_log(tp
, agno
, agbno
, icount
,
310 mp
->m_sb
.sb_inodesize
, length
, gen
);
314 for (j
= 0; j
< nbufs
; j
++) {
318 d
= XFS_AGB_TO_DADDR(mp
, agno
, agbno
+ (j
* blks_per_cluster
));
319 fbuf
= xfs_trans_get_buf(tp
, mp
->m_ddev_targp
, d
,
320 mp
->m_bsize
* blks_per_cluster
,
325 /* Initialize the inode buffers and log them appropriately. */
326 fbuf
->b_ops
= &xfs_inode_buf_ops
;
327 xfs_buf_zero(fbuf
, 0, BBTOB(fbuf
->b_length
));
328 for (i
= 0; i
< inodes_per_cluster
; i
++) {
329 int ioffset
= i
<< mp
->m_sb
.sb_inodelog
;
330 uint isize
= xfs_dinode_size(version
);
332 free
= xfs_make_iptr(mp
, fbuf
, i
);
333 free
->di_magic
= cpu_to_be16(XFS_DINODE_MAGIC
);
334 free
->di_version
= version
;
335 free
->di_gen
= cpu_to_be32(gen
);
336 free
->di_next_unlinked
= cpu_to_be32(NULLAGINO
);
339 free
->di_ino
= cpu_to_be64(ino
);
341 uuid_copy(&free
->di_uuid
, &mp
->m_sb
.sb_uuid
);
342 xfs_dinode_calc_crc(mp
, free
);
344 /* just log the inode core */
345 xfs_trans_log_buf(tp
, fbuf
, ioffset
,
346 ioffset
+ isize
- 1);
352 * Mark the buffer as an inode allocation buffer so it
353 * sticks in AIL at the point of this allocation
354 * transaction. This ensures the they are on disk before
355 * the tail of the log can be moved past this
356 * transaction (i.e. by preventing relogging from moving
357 * it forward in the log).
359 xfs_trans_inode_alloc_buf(tp
, fbuf
);
362 * Mark the buffer as ordered so that they are
363 * not physically logged in the transaction but
364 * still tracked in the AIL as part of the
365 * transaction and pin the log appropriately.
367 xfs_trans_ordered_buf(tp
, fbuf
);
368 xfs_trans_log_buf(tp
, fbuf
, 0,
369 BBTOB(fbuf
->b_length
) - 1);
372 fbuf
->b_flags
|= XBF_DONE
;
373 xfs_buf_delwri_queue(fbuf
, buffer_list
);
381 * Align startino and allocmask for a recently allocated sparse chunk such that
382 * they are fit for insertion (or merge) into the on-disk inode btrees.
386 * When enabled, sparse inode support increases the inode alignment from cluster
387 * size to inode chunk size. This means that the minimum range between two
388 * non-adjacent inode records in the inobt is large enough for a full inode
389 * record. This allows for cluster sized, cluster aligned block allocation
390 * without need to worry about whether the resulting inode record overlaps with
391 * another record in the tree. Without this basic rule, we would have to deal
392 * with the consequences of overlap by potentially undoing recent allocations in
393 * the inode allocation codepath.
395 * Because of this alignment rule (which is enforced on mount), there are two
396 * inobt possibilities for newly allocated sparse chunks. One is that the
397 * aligned inode record for the chunk covers a range of inodes not already
398 * covered in the inobt (i.e., it is safe to insert a new sparse record). The
399 * other is that a record already exists at the aligned startino that considers
400 * the newly allocated range as sparse. In the latter case, record content is
401 * merged in hope that sparse inode chunks fill to full chunks over time.
404 xfs_align_sparse_ino(
405 struct xfs_mount
*mp
,
406 xfs_agino_t
*startino
,
413 agbno
= XFS_AGINO_TO_AGBNO(mp
, *startino
);
414 mod
= agbno
% mp
->m_sb
.sb_inoalignmt
;
418 /* calculate the inode offset and align startino */
419 offset
= mod
<< mp
->m_sb
.sb_inopblog
;
423 * Since startino has been aligned down, left shift allocmask such that
424 * it continues to represent the same physical inodes relative to the
427 *allocmask
<<= offset
/ XFS_INODES_PER_HOLEMASK_BIT
;
431 * Determine whether the source inode record can merge into the target. Both
432 * records must be sparse, the inode ranges must match and there must be no
433 * allocation overlap between the records.
436 __xfs_inobt_can_merge(
437 struct xfs_inobt_rec_incore
*trec
, /* tgt record */
438 struct xfs_inobt_rec_incore
*srec
) /* src record */
443 /* records must cover the same inode range */
444 if (trec
->ir_startino
!= srec
->ir_startino
)
447 /* both records must be sparse */
448 if (!xfs_inobt_issparse(trec
->ir_holemask
) ||
449 !xfs_inobt_issparse(srec
->ir_holemask
))
452 /* both records must track some inodes */
453 if (!trec
->ir_count
|| !srec
->ir_count
)
456 /* can't exceed capacity of a full record */
457 if (trec
->ir_count
+ srec
->ir_count
> XFS_INODES_PER_CHUNK
)
460 /* verify there is no allocation overlap */
461 talloc
= xfs_inobt_irec_to_allocmask(trec
);
462 salloc
= xfs_inobt_irec_to_allocmask(srec
);
470 * Merge the source inode record into the target. The caller must call
471 * __xfs_inobt_can_merge() to ensure the merge is valid.
474 __xfs_inobt_rec_merge(
475 struct xfs_inobt_rec_incore
*trec
, /* target */
476 struct xfs_inobt_rec_incore
*srec
) /* src */
478 ASSERT(trec
->ir_startino
== srec
->ir_startino
);
480 /* combine the counts */
481 trec
->ir_count
+= srec
->ir_count
;
482 trec
->ir_freecount
+= srec
->ir_freecount
;
485 * Merge the holemask and free mask. For both fields, 0 bits refer to
486 * allocated inodes. We combine the allocated ranges with bitwise AND.
488 trec
->ir_holemask
&= srec
->ir_holemask
;
489 trec
->ir_free
&= srec
->ir_free
;
493 * Insert a new sparse inode chunk into the associated inode btree. The inode
494 * record for the sparse chunk is pre-aligned to a startino that should match
495 * any pre-existing sparse inode record in the tree. This allows sparse chunks
498 * This function supports two modes of handling preexisting records depending on
499 * the merge flag. If merge is true, the provided record is merged with the
500 * existing record and updated in place. The merged record is returned in nrec.
501 * If merge is false, an existing record is replaced with the provided record.
502 * If no preexisting record exists, the provided record is always inserted.
504 * It is considered corruption if a merge is requested and not possible. Given
505 * the sparse inode alignment constraints, this should never happen.
508 xfs_inobt_insert_sprec(
509 struct xfs_mount
*mp
,
510 struct xfs_trans
*tp
,
511 struct xfs_buf
*agbp
,
513 struct xfs_inobt_rec_incore
*nrec
, /* in/out: new/merged rec. */
514 bool merge
) /* merge or replace */
516 struct xfs_btree_cur
*cur
;
517 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(agbp
);
518 xfs_agnumber_t agno
= be32_to_cpu(agi
->agi_seqno
);
521 struct xfs_inobt_rec_incore rec
;
523 cur
= xfs_inobt_init_cursor(mp
, tp
, agbp
, agno
, btnum
);
525 /* the new record is pre-aligned so we know where to look */
526 error
= xfs_inobt_lookup(cur
, nrec
->ir_startino
, XFS_LOOKUP_EQ
, &i
);
529 /* if nothing there, insert a new record and return */
531 error
= xfs_inobt_insert_rec(cur
, nrec
->ir_holemask
,
532 nrec
->ir_count
, nrec
->ir_freecount
,
536 XFS_WANT_CORRUPTED_GOTO(mp
, i
== 1, error
);
542 * A record exists at this startino. Merge or replace the record
543 * depending on what we've been asked to do.
546 error
= xfs_inobt_get_rec(cur
, &rec
, &i
);
549 XFS_WANT_CORRUPTED_GOTO(mp
, i
== 1, error
);
550 XFS_WANT_CORRUPTED_GOTO(mp
,
551 rec
.ir_startino
== nrec
->ir_startino
,
555 * This should never fail. If we have coexisting records that
556 * cannot merge, something is seriously wrong.
558 XFS_WANT_CORRUPTED_GOTO(mp
, __xfs_inobt_can_merge(nrec
, &rec
),
561 trace_xfs_irec_merge_pre(mp
, agno
, rec
.ir_startino
,
562 rec
.ir_holemask
, nrec
->ir_startino
,
565 /* merge to nrec to output the updated record */
566 __xfs_inobt_rec_merge(nrec
, &rec
);
568 trace_xfs_irec_merge_post(mp
, agno
, nrec
->ir_startino
,
571 error
= xfs_inobt_rec_check_count(mp
, nrec
);
576 error
= xfs_inobt_update(cur
, nrec
);
581 xfs_btree_del_cursor(cur
, XFS_BTREE_NOERROR
);
584 xfs_btree_del_cursor(cur
, XFS_BTREE_ERROR
);
589 * Allocate new inodes in the allocation group specified by agbp.
590 * Return 0 for success, else error code.
592 STATIC
int /* error code or 0 */
594 xfs_trans_t
*tp
, /* transaction pointer */
595 xfs_buf_t
*agbp
, /* alloc group buffer */
598 xfs_agi_t
*agi
; /* allocation group header */
599 xfs_alloc_arg_t args
; /* allocation argument structure */
602 xfs_agino_t newino
; /* new first inode's number */
603 xfs_agino_t newlen
; /* new number of inodes */
604 int isaligned
= 0; /* inode allocation at stripe unit */
606 uint16_t allocmask
= (uint16_t) -1; /* init. to full chunk */
607 struct xfs_inobt_rec_incore rec
;
608 struct xfs_perag
*pag
;
611 memset(&args
, 0, sizeof(args
));
613 args
.mp
= tp
->t_mountp
;
614 args
.fsbno
= NULLFSBLOCK
;
617 /* randomly do sparse inode allocations */
618 if (xfs_sb_version_hassparseinodes(&tp
->t_mountp
->m_sb
) &&
619 args
.mp
->m_ialloc_min_blks
< args
.mp
->m_ialloc_blks
)
620 do_sparse
= prandom_u32() & 1;
624 * Locking will ensure that we don't have two callers in here
627 newlen
= args
.mp
->m_ialloc_inos
;
628 if (args
.mp
->m_maxicount
&&
629 percpu_counter_read_positive(&args
.mp
->m_icount
) + newlen
>
630 args
.mp
->m_maxicount
)
632 args
.minlen
= args
.maxlen
= args
.mp
->m_ialloc_blks
;
634 * First try to allocate inodes contiguous with the last-allocated
635 * chunk of inodes. If the filesystem is striped, this will fill
636 * an entire stripe unit with inodes.
638 agi
= XFS_BUF_TO_AGI(agbp
);
639 newino
= be32_to_cpu(agi
->agi_newino
);
640 agno
= be32_to_cpu(agi
->agi_seqno
);
641 args
.agbno
= XFS_AGINO_TO_AGBNO(args
.mp
, newino
) +
642 args
.mp
->m_ialloc_blks
;
645 if (likely(newino
!= NULLAGINO
&&
646 (args
.agbno
< be32_to_cpu(agi
->agi_length
)))) {
647 args
.fsbno
= XFS_AGB_TO_FSB(args
.mp
, agno
, args
.agbno
);
648 args
.type
= XFS_ALLOCTYPE_THIS_BNO
;
652 * We need to take into account alignment here to ensure that
653 * we don't modify the free list if we fail to have an exact
654 * block. If we don't have an exact match, and every oher
655 * attempt allocation attempt fails, we'll end up cancelling
656 * a dirty transaction and shutting down.
658 * For an exact allocation, alignment must be 1,
659 * however we need to take cluster alignment into account when
660 * fixing up the freelist. Use the minalignslop field to
661 * indicate that extra blocks might be required for alignment,
662 * but not to use them in the actual exact allocation.
665 args
.minalignslop
= xfs_ialloc_cluster_alignment(args
.mp
) - 1;
667 /* Allow space for the inode btree to split. */
668 args
.minleft
= args
.mp
->m_in_maxlevels
- 1;
669 if ((error
= xfs_alloc_vextent(&args
)))
673 * This request might have dirtied the transaction if the AG can
674 * satisfy the request, but the exact block was not available.
675 * If the allocation did fail, subsequent requests will relax
676 * the exact agbno requirement and increase the alignment
677 * instead. It is critical that the total size of the request
678 * (len + alignment + slop) does not increase from this point
679 * on, so reset minalignslop to ensure it is not included in
680 * subsequent requests.
682 args
.minalignslop
= 0;
685 if (unlikely(args
.fsbno
== NULLFSBLOCK
)) {
687 * Set the alignment for the allocation.
688 * If stripe alignment is turned on then align at stripe unit
690 * If the cluster size is smaller than a filesystem block
691 * then we're doing I/O for inodes in filesystem block size
692 * pieces, so don't need alignment anyway.
695 if (args
.mp
->m_sinoalign
) {
696 ASSERT(!(args
.mp
->m_flags
& XFS_MOUNT_NOALIGN
));
697 args
.alignment
= args
.mp
->m_dalign
;
700 args
.alignment
= xfs_ialloc_cluster_alignment(args
.mp
);
702 * Need to figure out where to allocate the inode blocks.
703 * Ideally they should be spaced out through the a.g.
704 * For now, just allocate blocks up front.
706 args
.agbno
= be32_to_cpu(agi
->agi_root
);
707 args
.fsbno
= XFS_AGB_TO_FSB(args
.mp
, agno
, args
.agbno
);
709 * Allocate a fixed-size extent of inodes.
711 args
.type
= XFS_ALLOCTYPE_NEAR_BNO
;
714 * Allow space for the inode btree to split.
716 args
.minleft
= args
.mp
->m_in_maxlevels
- 1;
717 if ((error
= xfs_alloc_vextent(&args
)))
722 * If stripe alignment is turned on, then try again with cluster
725 if (isaligned
&& args
.fsbno
== NULLFSBLOCK
) {
726 args
.type
= XFS_ALLOCTYPE_NEAR_BNO
;
727 args
.agbno
= be32_to_cpu(agi
->agi_root
);
728 args
.fsbno
= XFS_AGB_TO_FSB(args
.mp
, agno
, args
.agbno
);
729 args
.alignment
= xfs_ialloc_cluster_alignment(args
.mp
);
730 if ((error
= xfs_alloc_vextent(&args
)))
735 * Finally, try a sparse allocation if the filesystem supports it and
736 * the sparse allocation length is smaller than a full chunk.
738 if (xfs_sb_version_hassparseinodes(&args
.mp
->m_sb
) &&
739 args
.mp
->m_ialloc_min_blks
< args
.mp
->m_ialloc_blks
&&
740 args
.fsbno
== NULLFSBLOCK
) {
742 args
.type
= XFS_ALLOCTYPE_NEAR_BNO
;
743 args
.agbno
= be32_to_cpu(agi
->agi_root
);
744 args
.fsbno
= XFS_AGB_TO_FSB(args
.mp
, agno
, args
.agbno
);
745 args
.alignment
= args
.mp
->m_sb
.sb_spino_align
;
748 args
.minlen
= args
.mp
->m_ialloc_min_blks
;
749 args
.maxlen
= args
.minlen
;
752 * The inode record will be aligned to full chunk size. We must
753 * prevent sparse allocation from AG boundaries that result in
754 * invalid inode records, such as records that start at agbno 0
755 * or extend beyond the AG.
757 * Set min agbno to the first aligned, non-zero agbno and max to
758 * the last aligned agbno that is at least one full chunk from
761 args
.min_agbno
= args
.mp
->m_sb
.sb_inoalignmt
;
762 args
.max_agbno
= round_down(args
.mp
->m_sb
.sb_agblocks
,
763 args
.mp
->m_sb
.sb_inoalignmt
) -
764 args
.mp
->m_ialloc_blks
;
766 error
= xfs_alloc_vextent(&args
);
770 newlen
= args
.len
<< args
.mp
->m_sb
.sb_inopblog
;
771 ASSERT(newlen
<= XFS_INODES_PER_CHUNK
);
772 allocmask
= (1 << (newlen
/ XFS_INODES_PER_HOLEMASK_BIT
)) - 1;
775 if (args
.fsbno
== NULLFSBLOCK
) {
779 ASSERT(args
.len
== args
.minlen
);
782 * Stamp and write the inode buffers.
784 * Seed the new inode cluster with a random generation number. This
785 * prevents short-term reuse of generation numbers if a chunk is
786 * freed and then immediately reallocated. We use random numbers
787 * rather than a linear progression to prevent the next generation
788 * number from being easily guessable.
790 error
= xfs_ialloc_inode_init(args
.mp
, tp
, NULL
, newlen
, agno
,
791 args
.agbno
, args
.len
, prandom_u32());
796 * Convert the results.
798 newino
= XFS_OFFBNO_TO_AGINO(args
.mp
, args
.agbno
, 0);
800 if (xfs_inobt_issparse(~allocmask
)) {
802 * We've allocated a sparse chunk. Align the startino and mask.
804 xfs_align_sparse_ino(args
.mp
, &newino
, &allocmask
);
806 rec
.ir_startino
= newino
;
807 rec
.ir_holemask
= ~allocmask
;
808 rec
.ir_count
= newlen
;
809 rec
.ir_freecount
= newlen
;
810 rec
.ir_free
= XFS_INOBT_ALL_FREE
;
813 * Insert the sparse record into the inobt and allow for a merge
814 * if necessary. If a merge does occur, rec is updated to the
817 error
= xfs_inobt_insert_sprec(args
.mp
, tp
, agbp
, XFS_BTNUM_INO
,
819 if (error
== -EFSCORRUPTED
) {
821 "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
822 XFS_AGINO_TO_INO(args
.mp
, agno
,
824 rec
.ir_holemask
, rec
.ir_count
);
825 xfs_force_shutdown(args
.mp
, SHUTDOWN_CORRUPT_INCORE
);
831 * We can't merge the part we've just allocated as for the inobt
832 * due to finobt semantics. The original record may or may not
833 * exist independent of whether physical inodes exist in this
836 * We must update the finobt record based on the inobt record.
837 * rec contains the fully merged and up to date inobt record
838 * from the previous call. Set merge false to replace any
839 * existing record with this one.
841 if (xfs_sb_version_hasfinobt(&args
.mp
->m_sb
)) {
842 error
= xfs_inobt_insert_sprec(args
.mp
, tp
, agbp
,
843 XFS_BTNUM_FINO
, &rec
,
849 /* full chunk - insert new records to both btrees */
850 error
= xfs_inobt_insert(args
.mp
, tp
, agbp
, newino
, newlen
,
855 if (xfs_sb_version_hasfinobt(&args
.mp
->m_sb
)) {
856 error
= xfs_inobt_insert(args
.mp
, tp
, agbp
, newino
,
857 newlen
, XFS_BTNUM_FINO
);
864 * Update AGI counts and newino.
866 be32_add_cpu(&agi
->agi_count
, newlen
);
867 be32_add_cpu(&agi
->agi_freecount
, newlen
);
868 pag
= xfs_perag_get(args
.mp
, agno
);
869 pag
->pagi_freecount
+= newlen
;
871 agi
->agi_newino
= cpu_to_be32(newino
);
874 * Log allocation group header fields
876 xfs_ialloc_log_agi(tp
, agbp
,
877 XFS_AGI_COUNT
| XFS_AGI_FREECOUNT
| XFS_AGI_NEWINO
);
879 * Modify/log superblock values for inode count and inode free count.
881 xfs_trans_mod_sb(tp
, XFS_TRANS_SB_ICOUNT
, (long)newlen
);
882 xfs_trans_mod_sb(tp
, XFS_TRANS_SB_IFREE
, (long)newlen
);
887 STATIC xfs_agnumber_t
893 spin_lock(&mp
->m_agirotor_lock
);
894 agno
= mp
->m_agirotor
;
895 if (++mp
->m_agirotor
>= mp
->m_maxagi
)
897 spin_unlock(&mp
->m_agirotor_lock
);
903 * Select an allocation group to look for a free inode in, based on the parent
904 * inode and the mode. Return the allocation group buffer.
906 STATIC xfs_agnumber_t
907 xfs_ialloc_ag_select(
908 xfs_trans_t
*tp
, /* transaction pointer */
909 xfs_ino_t parent
, /* parent directory inode number */
910 umode_t mode
, /* bits set to indicate file type */
911 int okalloc
) /* ok to allocate more space */
913 xfs_agnumber_t agcount
; /* number of ag's in the filesystem */
914 xfs_agnumber_t agno
; /* current ag number */
915 int flags
; /* alloc buffer locking flags */
916 xfs_extlen_t ineed
; /* blocks needed for inode allocation */
917 xfs_extlen_t longest
= 0; /* longest extent available */
918 xfs_mount_t
*mp
; /* mount point structure */
919 int needspace
; /* file mode implies space allocated */
920 xfs_perag_t
*pag
; /* per allocation group data */
921 xfs_agnumber_t pagno
; /* parent (starting) ag number */
925 * Files of these types need at least one block if length > 0
926 * (and they won't fit in the inode, but that's hard to figure out).
928 needspace
= S_ISDIR(mode
) || S_ISREG(mode
) || S_ISLNK(mode
);
930 agcount
= mp
->m_maxagi
;
932 pagno
= xfs_ialloc_next_ag(mp
);
934 pagno
= XFS_INO_TO_AGNO(mp
, parent
);
935 if (pagno
>= agcount
)
939 ASSERT(pagno
< agcount
);
942 * Loop through allocation groups, looking for one with a little
943 * free space in it. Note we don't look for free inodes, exactly.
944 * Instead, we include whether there is a need to allocate inodes
945 * to mean that blocks must be allocated for them,
946 * if none are currently free.
949 flags
= XFS_ALLOC_FLAG_TRYLOCK
;
951 pag
= xfs_perag_get(mp
, agno
);
952 if (!pag
->pagi_inodeok
) {
953 xfs_ialloc_next_ag(mp
);
957 if (!pag
->pagi_init
) {
958 error
= xfs_ialloc_pagi_init(mp
, tp
, agno
);
963 if (pag
->pagi_freecount
) {
971 if (!pag
->pagf_init
) {
972 error
= xfs_alloc_pagf_init(mp
, tp
, agno
, flags
);
978 * Check that there is enough free space for the file plus a
979 * chunk of inodes if we need to allocate some. If this is the
980 * first pass across the AGs, take into account the potential
981 * space needed for alignment of inode chunks when checking the
982 * longest contiguous free space in the AG - this prevents us
983 * from getting ENOSPC because we have free space larger than
984 * m_ialloc_blks but alignment constraints prevent us from using
987 * If we can't find an AG with space for full alignment slack to
988 * be taken into account, we must be near ENOSPC in all AGs.
989 * Hence we don't include alignment for the second pass and so
990 * if we fail allocation due to alignment issues then it is most
991 * likely a real ENOSPC condition.
993 ineed
= mp
->m_ialloc_min_blks
;
994 if (flags
&& ineed
> 1)
995 ineed
+= xfs_ialloc_cluster_alignment(mp
);
996 longest
= pag
->pagf_longest
;
998 longest
= pag
->pagf_flcount
> 0;
1000 if (pag
->pagf_freeblks
>= needspace
+ ineed
&&
1008 * No point in iterating over the rest, if we're shutting
1011 if (XFS_FORCED_SHUTDOWN(mp
))
1012 return NULLAGNUMBER
;
1014 if (agno
>= agcount
)
1016 if (agno
== pagno
) {
1018 return NULLAGNUMBER
;
1025 * Try to retrieve the next record to the left/right from the current one.
1028 xfs_ialloc_next_rec(
1029 struct xfs_btree_cur
*cur
,
1030 xfs_inobt_rec_incore_t
*rec
,
1038 error
= xfs_btree_decrement(cur
, 0, &i
);
1040 error
= xfs_btree_increment(cur
, 0, &i
);
1046 error
= xfs_inobt_get_rec(cur
, rec
, &i
);
1049 XFS_WANT_CORRUPTED_RETURN(cur
->bc_mp
, i
== 1);
1057 struct xfs_btree_cur
*cur
,
1059 xfs_inobt_rec_incore_t
*rec
,
1065 error
= xfs_inobt_lookup(cur
, agino
, XFS_LOOKUP_EQ
, &i
);
1070 error
= xfs_inobt_get_rec(cur
, rec
, &i
);
1073 XFS_WANT_CORRUPTED_RETURN(cur
->bc_mp
, i
== 1);
1080 * Return the offset of the first free inode in the record. If the inode chunk
1081 * is sparsely allocated, we convert the record holemask to inode granularity
1082 * and mask off the unallocated regions from the inode free mask.
1085 xfs_inobt_first_free_inode(
1086 struct xfs_inobt_rec_incore
*rec
)
1088 xfs_inofree_t realfree
;
1090 /* if there are no holes, return the first available offset */
1091 if (!xfs_inobt_issparse(rec
->ir_holemask
))
1092 return xfs_lowbit64(rec
->ir_free
);
1094 realfree
= xfs_inobt_irec_to_allocmask(rec
);
1095 realfree
&= rec
->ir_free
;
1097 return xfs_lowbit64(realfree
);
1101 * Allocate an inode using the inobt-only algorithm.
1104 xfs_dialloc_ag_inobt(
1105 struct xfs_trans
*tp
,
1106 struct xfs_buf
*agbp
,
1110 struct xfs_mount
*mp
= tp
->t_mountp
;
1111 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(agbp
);
1112 xfs_agnumber_t agno
= be32_to_cpu(agi
->agi_seqno
);
1113 xfs_agnumber_t pagno
= XFS_INO_TO_AGNO(mp
, parent
);
1114 xfs_agino_t pagino
= XFS_INO_TO_AGINO(mp
, parent
);
1115 struct xfs_perag
*pag
;
1116 struct xfs_btree_cur
*cur
, *tcur
;
1117 struct xfs_inobt_rec_incore rec
, trec
;
1123 pag
= xfs_perag_get(mp
, agno
);
1125 ASSERT(pag
->pagi_init
);
1126 ASSERT(pag
->pagi_inodeok
);
1127 ASSERT(pag
->pagi_freecount
> 0);
1130 cur
= xfs_inobt_init_cursor(mp
, tp
, agbp
, agno
, XFS_BTNUM_INO
);
1132 * If pagino is 0 (this is the root inode allocation) use newino.
1133 * This must work because we've just allocated some.
1136 pagino
= be32_to_cpu(agi
->agi_newino
);
1138 error
= xfs_check_agi_freecount(cur
, agi
);
1143 * If in the same AG as the parent, try to get near the parent.
1145 if (pagno
== agno
) {
1146 int doneleft
; /* done, to the left */
1147 int doneright
; /* done, to the right */
1148 int searchdistance
= 10;
1150 error
= xfs_inobt_lookup(cur
, pagino
, XFS_LOOKUP_LE
, &i
);
1153 XFS_WANT_CORRUPTED_GOTO(mp
, i
== 1, error0
);
1155 error
= xfs_inobt_get_rec(cur
, &rec
, &j
);
1158 XFS_WANT_CORRUPTED_GOTO(mp
, j
== 1, error0
);
1160 if (rec
.ir_freecount
> 0) {
1162 * Found a free inode in the same chunk
1163 * as the parent, done.
1170 * In the same AG as parent, but parent's chunk is full.
1173 /* duplicate the cursor, search left & right simultaneously */
1174 error
= xfs_btree_dup_cursor(cur
, &tcur
);
1179 * Skip to last blocks looked up if same parent inode.
1181 if (pagino
!= NULLAGINO
&&
1182 pag
->pagl_pagino
== pagino
&&
1183 pag
->pagl_leftrec
!= NULLAGINO
&&
1184 pag
->pagl_rightrec
!= NULLAGINO
) {
1185 error
= xfs_ialloc_get_rec(tcur
, pag
->pagl_leftrec
,
1190 error
= xfs_ialloc_get_rec(cur
, pag
->pagl_rightrec
,
1195 /* search left with tcur, back up 1 record */
1196 error
= xfs_ialloc_next_rec(tcur
, &trec
, &doneleft
, 1);
1200 /* search right with cur, go forward 1 record. */
1201 error
= xfs_ialloc_next_rec(cur
, &rec
, &doneright
, 0);
1207 * Loop until we find an inode chunk with a free inode.
1209 while (!doneleft
|| !doneright
) {
1210 int useleft
; /* using left inode chunk this time */
1212 if (!--searchdistance
) {
1214 * Not in range - save last search
1215 * location and allocate a new inode
1217 xfs_btree_del_cursor(tcur
, XFS_BTREE_NOERROR
);
1218 pag
->pagl_leftrec
= trec
.ir_startino
;
1219 pag
->pagl_rightrec
= rec
.ir_startino
;
1220 pag
->pagl_pagino
= pagino
;
1224 /* figure out the closer block if both are valid. */
1225 if (!doneleft
&& !doneright
) {
1227 (trec
.ir_startino
+ XFS_INODES_PER_CHUNK
- 1) <
1228 rec
.ir_startino
- pagino
;
1230 useleft
= !doneleft
;
1233 /* free inodes to the left? */
1234 if (useleft
&& trec
.ir_freecount
) {
1236 xfs_btree_del_cursor(cur
, XFS_BTREE_NOERROR
);
1239 pag
->pagl_leftrec
= trec
.ir_startino
;
1240 pag
->pagl_rightrec
= rec
.ir_startino
;
1241 pag
->pagl_pagino
= pagino
;
1245 /* free inodes to the right? */
1246 if (!useleft
&& rec
.ir_freecount
) {
1247 xfs_btree_del_cursor(tcur
, XFS_BTREE_NOERROR
);
1249 pag
->pagl_leftrec
= trec
.ir_startino
;
1250 pag
->pagl_rightrec
= rec
.ir_startino
;
1251 pag
->pagl_pagino
= pagino
;
1255 /* get next record to check */
1257 error
= xfs_ialloc_next_rec(tcur
, &trec
,
1260 error
= xfs_ialloc_next_rec(cur
, &rec
,
1268 * We've reached the end of the btree. because
1269 * we are only searching a small chunk of the
1270 * btree each search, there is obviously free
1271 * inodes closer to the parent inode than we
1272 * are now. restart the search again.
1274 pag
->pagl_pagino
= NULLAGINO
;
1275 pag
->pagl_leftrec
= NULLAGINO
;
1276 pag
->pagl_rightrec
= NULLAGINO
;
1277 xfs_btree_del_cursor(tcur
, XFS_BTREE_NOERROR
);
1278 xfs_btree_del_cursor(cur
, XFS_BTREE_NOERROR
);
1283 * In a different AG from the parent.
1284 * See if the most recently allocated block has any free.
1287 if (agi
->agi_newino
!= cpu_to_be32(NULLAGINO
)) {
1288 error
= xfs_inobt_lookup(cur
, be32_to_cpu(agi
->agi_newino
),
1294 error
= xfs_inobt_get_rec(cur
, &rec
, &j
);
1298 if (j
== 1 && rec
.ir_freecount
> 0) {
1300 * The last chunk allocated in the group
1301 * still has a free inode.
1309 * None left in the last group, search the whole AG
1311 error
= xfs_inobt_lookup(cur
, 0, XFS_LOOKUP_GE
, &i
);
1314 XFS_WANT_CORRUPTED_GOTO(mp
, i
== 1, error0
);
1317 error
= xfs_inobt_get_rec(cur
, &rec
, &i
);
1320 XFS_WANT_CORRUPTED_GOTO(mp
, i
== 1, error0
);
1321 if (rec
.ir_freecount
> 0)
1323 error
= xfs_btree_increment(cur
, 0, &i
);
1326 XFS_WANT_CORRUPTED_GOTO(mp
, i
== 1, error0
);
1330 offset
= xfs_inobt_first_free_inode(&rec
);
1331 ASSERT(offset
>= 0);
1332 ASSERT(offset
< XFS_INODES_PER_CHUNK
);
1333 ASSERT((XFS_AGINO_TO_OFFSET(mp
, rec
.ir_startino
) %
1334 XFS_INODES_PER_CHUNK
) == 0);
1335 ino
= XFS_AGINO_TO_INO(mp
, agno
, rec
.ir_startino
+ offset
);
1336 rec
.ir_free
&= ~XFS_INOBT_MASK(offset
);
1338 error
= xfs_inobt_update(cur
, &rec
);
1341 be32_add_cpu(&agi
->agi_freecount
, -1);
1342 xfs_ialloc_log_agi(tp
, agbp
, XFS_AGI_FREECOUNT
);
1343 pag
->pagi_freecount
--;
1345 error
= xfs_check_agi_freecount(cur
, agi
);
1349 xfs_btree_del_cursor(cur
, XFS_BTREE_NOERROR
);
1350 xfs_trans_mod_sb(tp
, XFS_TRANS_SB_IFREE
, -1);
1355 xfs_btree_del_cursor(tcur
, XFS_BTREE_ERROR
);
1357 xfs_btree_del_cursor(cur
, XFS_BTREE_ERROR
);
1363 * Use the free inode btree to allocate an inode based on distance from the
1364 * parent. Note that the provided cursor may be deleted and replaced.
1367 xfs_dialloc_ag_finobt_near(
1369 struct xfs_btree_cur
**ocur
,
1370 struct xfs_inobt_rec_incore
*rec
)
1372 struct xfs_btree_cur
*lcur
= *ocur
; /* left search cursor */
1373 struct xfs_btree_cur
*rcur
; /* right search cursor */
1374 struct xfs_inobt_rec_incore rrec
;
1378 error
= xfs_inobt_lookup(lcur
, pagino
, XFS_LOOKUP_LE
, &i
);
1383 error
= xfs_inobt_get_rec(lcur
, rec
, &i
);
1386 XFS_WANT_CORRUPTED_RETURN(lcur
->bc_mp
, i
== 1);
1389 * See if we've landed in the parent inode record. The finobt
1390 * only tracks chunks with at least one free inode, so record
1391 * existence is enough.
1393 if (pagino
>= rec
->ir_startino
&&
1394 pagino
< (rec
->ir_startino
+ XFS_INODES_PER_CHUNK
))
1398 error
= xfs_btree_dup_cursor(lcur
, &rcur
);
1402 error
= xfs_inobt_lookup(rcur
, pagino
, XFS_LOOKUP_GE
, &j
);
1406 error
= xfs_inobt_get_rec(rcur
, &rrec
, &j
);
1409 XFS_WANT_CORRUPTED_GOTO(lcur
->bc_mp
, j
== 1, error_rcur
);
1412 XFS_WANT_CORRUPTED_GOTO(lcur
->bc_mp
, i
== 1 || j
== 1, error_rcur
);
1413 if (i
== 1 && j
== 1) {
1415 * Both the left and right records are valid. Choose the closer
1416 * inode chunk to the target.
1418 if ((pagino
- rec
->ir_startino
+ XFS_INODES_PER_CHUNK
- 1) >
1419 (rrec
.ir_startino
- pagino
)) {
1421 xfs_btree_del_cursor(lcur
, XFS_BTREE_NOERROR
);
1424 xfs_btree_del_cursor(rcur
, XFS_BTREE_NOERROR
);
1426 } else if (j
== 1) {
1427 /* only the right record is valid */
1429 xfs_btree_del_cursor(lcur
, XFS_BTREE_NOERROR
);
1431 } else if (i
== 1) {
1432 /* only the left record is valid */
1433 xfs_btree_del_cursor(rcur
, XFS_BTREE_NOERROR
);
1439 xfs_btree_del_cursor(rcur
, XFS_BTREE_ERROR
);
1444 * Use the free inode btree to find a free inode based on a newino hint. If
1445 * the hint is NULL, find the first free inode in the AG.
1448 xfs_dialloc_ag_finobt_newino(
1449 struct xfs_agi
*agi
,
1450 struct xfs_btree_cur
*cur
,
1451 struct xfs_inobt_rec_incore
*rec
)
1456 if (agi
->agi_newino
!= cpu_to_be32(NULLAGINO
)) {
1457 error
= xfs_inobt_lookup(cur
, be32_to_cpu(agi
->agi_newino
),
1462 error
= xfs_inobt_get_rec(cur
, rec
, &i
);
1465 XFS_WANT_CORRUPTED_RETURN(cur
->bc_mp
, i
== 1);
1471 * Find the first inode available in the AG.
1473 error
= xfs_inobt_lookup(cur
, 0, XFS_LOOKUP_GE
, &i
);
1476 XFS_WANT_CORRUPTED_RETURN(cur
->bc_mp
, i
== 1);
1478 error
= xfs_inobt_get_rec(cur
, rec
, &i
);
1481 XFS_WANT_CORRUPTED_RETURN(cur
->bc_mp
, i
== 1);
1487 * Update the inobt based on a modification made to the finobt. Also ensure that
1488 * the records from both trees are equivalent post-modification.
1491 xfs_dialloc_ag_update_inobt(
1492 struct xfs_btree_cur
*cur
, /* inobt cursor */
1493 struct xfs_inobt_rec_incore
*frec
, /* finobt record */
1494 int offset
) /* inode offset */
1496 struct xfs_inobt_rec_incore rec
;
1500 error
= xfs_inobt_lookup(cur
, frec
->ir_startino
, XFS_LOOKUP_EQ
, &i
);
1503 XFS_WANT_CORRUPTED_RETURN(cur
->bc_mp
, i
== 1);
1505 error
= xfs_inobt_get_rec(cur
, &rec
, &i
);
1508 XFS_WANT_CORRUPTED_RETURN(cur
->bc_mp
, i
== 1);
1509 ASSERT((XFS_AGINO_TO_OFFSET(cur
->bc_mp
, rec
.ir_startino
) %
1510 XFS_INODES_PER_CHUNK
) == 0);
1512 rec
.ir_free
&= ~XFS_INOBT_MASK(offset
);
1515 XFS_WANT_CORRUPTED_RETURN(cur
->bc_mp
, (rec
.ir_free
== frec
->ir_free
) &&
1516 (rec
.ir_freecount
== frec
->ir_freecount
));
1518 return xfs_inobt_update(cur
, &rec
);
1522 * Allocate an inode using the free inode btree, if available. Otherwise, fall
1523 * back to the inobt search algorithm.
1525 * The caller selected an AG for us, and made sure that free inodes are
1530 struct xfs_trans
*tp
,
1531 struct xfs_buf
*agbp
,
1535 struct xfs_mount
*mp
= tp
->t_mountp
;
1536 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(agbp
);
1537 xfs_agnumber_t agno
= be32_to_cpu(agi
->agi_seqno
);
1538 xfs_agnumber_t pagno
= XFS_INO_TO_AGNO(mp
, parent
);
1539 xfs_agino_t pagino
= XFS_INO_TO_AGINO(mp
, parent
);
1540 struct xfs_perag
*pag
;
1541 struct xfs_btree_cur
*cur
; /* finobt cursor */
1542 struct xfs_btree_cur
*icur
; /* inobt cursor */
1543 struct xfs_inobt_rec_incore rec
;
1549 if (!xfs_sb_version_hasfinobt(&mp
->m_sb
))
1550 return xfs_dialloc_ag_inobt(tp
, agbp
, parent
, inop
);
1552 pag
= xfs_perag_get(mp
, agno
);
1555 * If pagino is 0 (this is the root inode allocation) use newino.
1556 * This must work because we've just allocated some.
1559 pagino
= be32_to_cpu(agi
->agi_newino
);
1561 cur
= xfs_inobt_init_cursor(mp
, tp
, agbp
, agno
, XFS_BTNUM_FINO
);
1563 error
= xfs_check_agi_freecount(cur
, agi
);
1568 * The search algorithm depends on whether we're in the same AG as the
1569 * parent. If so, find the closest available inode to the parent. If
1570 * not, consider the agi hint or find the first free inode in the AG.
1573 error
= xfs_dialloc_ag_finobt_near(pagino
, &cur
, &rec
);
1575 error
= xfs_dialloc_ag_finobt_newino(agi
, cur
, &rec
);
1579 offset
= xfs_inobt_first_free_inode(&rec
);
1580 ASSERT(offset
>= 0);
1581 ASSERT(offset
< XFS_INODES_PER_CHUNK
);
1582 ASSERT((XFS_AGINO_TO_OFFSET(mp
, rec
.ir_startino
) %
1583 XFS_INODES_PER_CHUNK
) == 0);
1584 ino
= XFS_AGINO_TO_INO(mp
, agno
, rec
.ir_startino
+ offset
);
1587 * Modify or remove the finobt record.
1589 rec
.ir_free
&= ~XFS_INOBT_MASK(offset
);
1591 if (rec
.ir_freecount
)
1592 error
= xfs_inobt_update(cur
, &rec
);
1594 error
= xfs_btree_delete(cur
, &i
);
1599 * The finobt has now been updated appropriately. We haven't updated the
1600 * agi and superblock yet, so we can create an inobt cursor and validate
1601 * the original freecount. If all is well, make the equivalent update to
1602 * the inobt using the finobt record and offset information.
1604 icur
= xfs_inobt_init_cursor(mp
, tp
, agbp
, agno
, XFS_BTNUM_INO
);
1606 error
= xfs_check_agi_freecount(icur
, agi
);
1610 error
= xfs_dialloc_ag_update_inobt(icur
, &rec
, offset
);
1615 * Both trees have now been updated. We must update the perag and
1616 * superblock before we can check the freecount for each btree.
1618 be32_add_cpu(&agi
->agi_freecount
, -1);
1619 xfs_ialloc_log_agi(tp
, agbp
, XFS_AGI_FREECOUNT
);
1620 pag
->pagi_freecount
--;
1622 xfs_trans_mod_sb(tp
, XFS_TRANS_SB_IFREE
, -1);
1624 error
= xfs_check_agi_freecount(icur
, agi
);
1627 error
= xfs_check_agi_freecount(cur
, agi
);
1631 xfs_btree_del_cursor(icur
, XFS_BTREE_NOERROR
);
1632 xfs_btree_del_cursor(cur
, XFS_BTREE_NOERROR
);
1638 xfs_btree_del_cursor(icur
, XFS_BTREE_ERROR
);
1640 xfs_btree_del_cursor(cur
, XFS_BTREE_ERROR
);
1646 * Allocate an inode on disk.
1648 * Mode is used to tell whether the new inode will need space, and whether it
1651 * This function is designed to be called twice if it has to do an allocation
1652 * to make more free inodes. On the first call, *IO_agbp should be set to NULL.
1653 * If an inode is available without having to performn an allocation, an inode
1654 * number is returned. In this case, *IO_agbp is set to NULL. If an allocation
1655 * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp.
1656 * The caller should then commit the current transaction, allocate a
1657 * new transaction, and call xfs_dialloc() again, passing in the previous value
1658 * of *IO_agbp. IO_agbp should be held across the transactions. Since the AGI
1659 * buffer is locked across the two calls, the second call is guaranteed to have
1660 * a free inode available.
1662 * Once we successfully pick an inode its number is returned and the on-disk
1663 * data structures are updated. The inode itself is not read in, since doing so
1664 * would break ordering constraints with xfs_reclaim.
1668 struct xfs_trans
*tp
,
1672 struct xfs_buf
**IO_agbp
,
1675 struct xfs_mount
*mp
= tp
->t_mountp
;
1676 struct xfs_buf
*agbp
;
1677 xfs_agnumber_t agno
;
1681 xfs_agnumber_t start_agno
;
1682 struct xfs_perag
*pag
;
1686 * If the caller passes in a pointer to the AGI buffer,
1687 * continue where we left off before. In this case, we
1688 * know that the allocation group has free inodes.
1695 * We do not have an agbp, so select an initial allocation
1696 * group for inode allocation.
1698 start_agno
= xfs_ialloc_ag_select(tp
, parent
, mode
, okalloc
);
1699 if (start_agno
== NULLAGNUMBER
) {
1705 * If we have already hit the ceiling of inode blocks then clear
1706 * okalloc so we scan all available agi structures for a free
1709 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1710 * which will sacrifice the preciseness but improve the performance.
1712 if (mp
->m_maxicount
&&
1713 percpu_counter_read_positive(&mp
->m_icount
) + mp
->m_ialloc_inos
1714 > mp
->m_maxicount
) {
1720 * Loop until we find an allocation group that either has free inodes
1721 * or in which we can allocate some inodes. Iterate through the
1722 * allocation groups upward, wrapping at the end.
1726 pag
= xfs_perag_get(mp
, agno
);
1727 if (!pag
->pagi_inodeok
) {
1728 xfs_ialloc_next_ag(mp
);
1732 if (!pag
->pagi_init
) {
1733 error
= xfs_ialloc_pagi_init(mp
, tp
, agno
);
1739 * Do a first racy fast path check if this AG is usable.
1741 if (!pag
->pagi_freecount
&& !okalloc
)
1745 * Then read in the AGI buffer and recheck with the AGI buffer
1748 error
= xfs_ialloc_read_agi(mp
, tp
, agno
, &agbp
);
1752 if (pag
->pagi_freecount
) {
1758 goto nextag_relse_buffer
;
1761 error
= xfs_ialloc_ag_alloc(tp
, agbp
, &ialloced
);
1763 xfs_trans_brelse(tp
, agbp
);
1765 if (error
!= -ENOSPC
)
1775 * We successfully allocated some inodes, return
1776 * the current context to the caller so that it
1777 * can commit the current transaction and call
1778 * us again where we left off.
1780 ASSERT(pag
->pagi_freecount
> 0);
1788 nextag_relse_buffer
:
1789 xfs_trans_brelse(tp
, agbp
);
1792 if (++agno
== mp
->m_sb
.sb_agcount
)
1794 if (agno
== start_agno
) {
1796 return noroom
? -ENOSPC
: 0;
1802 return xfs_dialloc_ag(tp
, agbp
, parent
, inop
);
1809 * Free the blocks of an inode chunk. We must consider that the inode chunk
1810 * might be sparse and only free the regions that are allocated as part of the
1814 xfs_difree_inode_chunk(
1815 struct xfs_mount
*mp
,
1816 xfs_agnumber_t agno
,
1817 struct xfs_inobt_rec_incore
*rec
,
1818 struct xfs_bmap_free
*flist
)
1820 xfs_agblock_t sagbno
= XFS_AGINO_TO_AGBNO(mp
, rec
->ir_startino
);
1821 int startidx
, endidx
;
1823 xfs_agblock_t agbno
;
1825 DECLARE_BITMAP(holemask
, XFS_INOBT_HOLEMASK_BITS
);
1827 if (!xfs_inobt_issparse(rec
->ir_holemask
)) {
1828 /* not sparse, calculate extent info directly */
1829 xfs_bmap_add_free(XFS_AGB_TO_FSB(mp
, agno
,
1830 XFS_AGINO_TO_AGBNO(mp
, rec
->ir_startino
)),
1831 mp
->m_ialloc_blks
, flist
, mp
);
1835 /* holemask is only 16-bits (fits in an unsigned long) */
1836 ASSERT(sizeof(rec
->ir_holemask
) <= sizeof(holemask
[0]));
1837 holemask
[0] = rec
->ir_holemask
;
1840 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1841 * holemask and convert the start/end index of each range to an extent.
1842 * We start with the start and end index both pointing at the first 0 in
1845 startidx
= endidx
= find_first_zero_bit(holemask
,
1846 XFS_INOBT_HOLEMASK_BITS
);
1847 nextbit
= startidx
+ 1;
1848 while (startidx
< XFS_INOBT_HOLEMASK_BITS
) {
1849 nextbit
= find_next_zero_bit(holemask
, XFS_INOBT_HOLEMASK_BITS
,
1852 * If the next zero bit is contiguous, update the end index of
1853 * the current range and continue.
1855 if (nextbit
!= XFS_INOBT_HOLEMASK_BITS
&&
1856 nextbit
== endidx
+ 1) {
1862 * nextbit is not contiguous with the current end index. Convert
1863 * the current start/end to an extent and add it to the free
1866 agbno
= sagbno
+ (startidx
* XFS_INODES_PER_HOLEMASK_BIT
) /
1867 mp
->m_sb
.sb_inopblock
;
1868 contigblk
= ((endidx
- startidx
+ 1) *
1869 XFS_INODES_PER_HOLEMASK_BIT
) /
1870 mp
->m_sb
.sb_inopblock
;
1872 ASSERT(agbno
% mp
->m_sb
.sb_spino_align
== 0);
1873 ASSERT(contigblk
% mp
->m_sb
.sb_spino_align
== 0);
1874 xfs_bmap_add_free(XFS_AGB_TO_FSB(mp
, agno
, agbno
), contigblk
,
1877 /* reset range to current bit and carry on... */
1878 startidx
= endidx
= nextbit
;
1887 struct xfs_mount
*mp
,
1888 struct xfs_trans
*tp
,
1889 struct xfs_buf
*agbp
,
1891 struct xfs_bmap_free
*flist
,
1892 struct xfs_icluster
*xic
,
1893 struct xfs_inobt_rec_incore
*orec
)
1895 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(agbp
);
1896 xfs_agnumber_t agno
= be32_to_cpu(agi
->agi_seqno
);
1897 struct xfs_perag
*pag
;
1898 struct xfs_btree_cur
*cur
;
1899 struct xfs_inobt_rec_incore rec
;
1905 ASSERT(agi
->agi_magicnum
== cpu_to_be32(XFS_AGI_MAGIC
));
1906 ASSERT(XFS_AGINO_TO_AGBNO(mp
, agino
) < be32_to_cpu(agi
->agi_length
));
1909 * Initialize the cursor.
1911 cur
= xfs_inobt_init_cursor(mp
, tp
, agbp
, agno
, XFS_BTNUM_INO
);
1913 error
= xfs_check_agi_freecount(cur
, agi
);
1918 * Look for the entry describing this inode.
1920 if ((error
= xfs_inobt_lookup(cur
, agino
, XFS_LOOKUP_LE
, &i
))) {
1921 xfs_warn(mp
, "%s: xfs_inobt_lookup() returned error %d.",
1925 XFS_WANT_CORRUPTED_GOTO(mp
, i
== 1, error0
);
1926 error
= xfs_inobt_get_rec(cur
, &rec
, &i
);
1928 xfs_warn(mp
, "%s: xfs_inobt_get_rec() returned error %d.",
1932 XFS_WANT_CORRUPTED_GOTO(mp
, i
== 1, error0
);
1934 * Get the offset in the inode chunk.
1936 off
= agino
- rec
.ir_startino
;
1937 ASSERT(off
>= 0 && off
< XFS_INODES_PER_CHUNK
);
1938 ASSERT(!(rec
.ir_free
& XFS_INOBT_MASK(off
)));
1940 * Mark the inode free & increment the count.
1942 rec
.ir_free
|= XFS_INOBT_MASK(off
);
1946 * When an inode chunk is free, it becomes eligible for removal. Don't
1947 * remove the chunk if the block size is large enough for multiple inode
1948 * chunks (that might not be free).
1950 if (!(mp
->m_flags
& XFS_MOUNT_IKEEP
) &&
1951 rec
.ir_free
== XFS_INOBT_ALL_FREE
&&
1952 mp
->m_sb
.sb_inopblock
<= XFS_INODES_PER_CHUNK
) {
1954 xic
->first_ino
= XFS_AGINO_TO_INO(mp
, agno
, rec
.ir_startino
);
1955 xic
->alloc
= xfs_inobt_irec_to_allocmask(&rec
);
1958 * Remove the inode cluster from the AGI B+Tree, adjust the
1959 * AGI and Superblock inode counts, and mark the disk space
1960 * to be freed when the transaction is committed.
1962 ilen
= rec
.ir_freecount
;
1963 be32_add_cpu(&agi
->agi_count
, -ilen
);
1964 be32_add_cpu(&agi
->agi_freecount
, -(ilen
- 1));
1965 xfs_ialloc_log_agi(tp
, agbp
, XFS_AGI_COUNT
| XFS_AGI_FREECOUNT
);
1966 pag
= xfs_perag_get(mp
, agno
);
1967 pag
->pagi_freecount
-= ilen
- 1;
1969 xfs_trans_mod_sb(tp
, XFS_TRANS_SB_ICOUNT
, -ilen
);
1970 xfs_trans_mod_sb(tp
, XFS_TRANS_SB_IFREE
, -(ilen
- 1));
1972 if ((error
= xfs_btree_delete(cur
, &i
))) {
1973 xfs_warn(mp
, "%s: xfs_btree_delete returned error %d.",
1978 xfs_difree_inode_chunk(mp
, agno
, &rec
, flist
);
1982 error
= xfs_inobt_update(cur
, &rec
);
1984 xfs_warn(mp
, "%s: xfs_inobt_update returned error %d.",
1990 * Change the inode free counts and log the ag/sb changes.
1992 be32_add_cpu(&agi
->agi_freecount
, 1);
1993 xfs_ialloc_log_agi(tp
, agbp
, XFS_AGI_FREECOUNT
);
1994 pag
= xfs_perag_get(mp
, agno
);
1995 pag
->pagi_freecount
++;
1997 xfs_trans_mod_sb(tp
, XFS_TRANS_SB_IFREE
, 1);
2000 error
= xfs_check_agi_freecount(cur
, agi
);
2005 xfs_btree_del_cursor(cur
, XFS_BTREE_NOERROR
);
2009 xfs_btree_del_cursor(cur
, XFS_BTREE_ERROR
);
2014 * Free an inode in the free inode btree.
2018 struct xfs_mount
*mp
,
2019 struct xfs_trans
*tp
,
2020 struct xfs_buf
*agbp
,
2022 struct xfs_inobt_rec_incore
*ibtrec
) /* inobt record */
2024 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(agbp
);
2025 xfs_agnumber_t agno
= be32_to_cpu(agi
->agi_seqno
);
2026 struct xfs_btree_cur
*cur
;
2027 struct xfs_inobt_rec_incore rec
;
2028 int offset
= agino
- ibtrec
->ir_startino
;
2032 cur
= xfs_inobt_init_cursor(mp
, tp
, agbp
, agno
, XFS_BTNUM_FINO
);
2034 error
= xfs_inobt_lookup(cur
, ibtrec
->ir_startino
, XFS_LOOKUP_EQ
, &i
);
2039 * If the record does not exist in the finobt, we must have just
2040 * freed an inode in a previously fully allocated chunk. If not,
2041 * something is out of sync.
2043 XFS_WANT_CORRUPTED_GOTO(mp
, ibtrec
->ir_freecount
== 1, error
);
2045 error
= xfs_inobt_insert_rec(cur
, ibtrec
->ir_holemask
,
2047 ibtrec
->ir_freecount
,
2048 ibtrec
->ir_free
, &i
);
2057 * Read and update the existing record. We could just copy the ibtrec
2058 * across here, but that would defeat the purpose of having redundant
2059 * metadata. By making the modifications independently, we can catch
2060 * corruptions that we wouldn't see if we just copied from one record
2063 error
= xfs_inobt_get_rec(cur
, &rec
, &i
);
2066 XFS_WANT_CORRUPTED_GOTO(mp
, i
== 1, error
);
2068 rec
.ir_free
|= XFS_INOBT_MASK(offset
);
2071 XFS_WANT_CORRUPTED_GOTO(mp
, (rec
.ir_free
== ibtrec
->ir_free
) &&
2072 (rec
.ir_freecount
== ibtrec
->ir_freecount
),
2076 * The content of inobt records should always match between the inobt
2077 * and finobt. The lifecycle of records in the finobt is different from
2078 * the inobt in that the finobt only tracks records with at least one
2079 * free inode. Hence, if all of the inodes are free and we aren't
2080 * keeping inode chunks permanently on disk, remove the record.
2081 * Otherwise, update the record with the new information.
2083 * Note that we currently can't free chunks when the block size is large
2084 * enough for multiple chunks. Leave the finobt record to remain in sync
2087 if (rec
.ir_free
== XFS_INOBT_ALL_FREE
&&
2088 mp
->m_sb
.sb_inopblock
<= XFS_INODES_PER_CHUNK
&&
2089 !(mp
->m_flags
& XFS_MOUNT_IKEEP
)) {
2090 error
= xfs_btree_delete(cur
, &i
);
2095 error
= xfs_inobt_update(cur
, &rec
);
2101 error
= xfs_check_agi_freecount(cur
, agi
);
2105 xfs_btree_del_cursor(cur
, XFS_BTREE_NOERROR
);
2109 xfs_btree_del_cursor(cur
, XFS_BTREE_ERROR
);
2114 * Free disk inode. Carefully avoids touching the incore inode, all
2115 * manipulations incore are the caller's responsibility.
2116 * The on-disk inode is not changed by this operation, only the
2117 * btree (free inode mask) is changed.
2121 struct xfs_trans
*tp
, /* transaction pointer */
2122 xfs_ino_t inode
, /* inode to be freed */
2123 struct xfs_bmap_free
*flist
, /* extents to free */
2124 struct xfs_icluster
*xic
) /* cluster info if deleted */
2127 xfs_agblock_t agbno
; /* block number containing inode */
2128 struct xfs_buf
*agbp
; /* buffer for allocation group header */
2129 xfs_agino_t agino
; /* allocation group inode number */
2130 xfs_agnumber_t agno
; /* allocation group number */
2131 int error
; /* error return value */
2132 struct xfs_mount
*mp
; /* mount structure for filesystem */
2133 struct xfs_inobt_rec_incore rec
;/* btree record */
2138 * Break up inode number into its components.
2140 agno
= XFS_INO_TO_AGNO(mp
, inode
);
2141 if (agno
>= mp
->m_sb
.sb_agcount
) {
2142 xfs_warn(mp
, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).",
2143 __func__
, agno
, mp
->m_sb
.sb_agcount
);
2147 agino
= XFS_INO_TO_AGINO(mp
, inode
);
2148 if (inode
!= XFS_AGINO_TO_INO(mp
, agno
, agino
)) {
2149 xfs_warn(mp
, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2150 __func__
, (unsigned long long)inode
,
2151 (unsigned long long)XFS_AGINO_TO_INO(mp
, agno
, agino
));
2155 agbno
= XFS_AGINO_TO_AGBNO(mp
, agino
);
2156 if (agbno
>= mp
->m_sb
.sb_agblocks
) {
2157 xfs_warn(mp
, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2158 __func__
, agbno
, mp
->m_sb
.sb_agblocks
);
2163 * Get the allocation group header.
2165 error
= xfs_ialloc_read_agi(mp
, tp
, agno
, &agbp
);
2167 xfs_warn(mp
, "%s: xfs_ialloc_read_agi() returned error %d.",
2173 * Fix up the inode allocation btree.
2175 error
= xfs_difree_inobt(mp
, tp
, agbp
, agino
, flist
, xic
, &rec
);
2180 * Fix up the free inode btree.
2182 if (xfs_sb_version_hasfinobt(&mp
->m_sb
)) {
2183 error
= xfs_difree_finobt(mp
, tp
, agbp
, agino
, &rec
);
2196 struct xfs_mount
*mp
,
2197 struct xfs_trans
*tp
,
2198 xfs_agnumber_t agno
,
2200 xfs_agblock_t agbno
,
2201 xfs_agblock_t
*chunk_agbno
,
2202 xfs_agblock_t
*offset_agbno
,
2205 struct xfs_inobt_rec_incore rec
;
2206 struct xfs_btree_cur
*cur
;
2207 struct xfs_buf
*agbp
;
2211 error
= xfs_ialloc_read_agi(mp
, tp
, agno
, &agbp
);
2214 "%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2215 __func__
, error
, agno
);
2220 * Lookup the inode record for the given agino. If the record cannot be
2221 * found, then it's an invalid inode number and we should abort. Once
2222 * we have a record, we need to ensure it contains the inode number
2223 * we are looking up.
2225 cur
= xfs_inobt_init_cursor(mp
, tp
, agbp
, agno
, XFS_BTNUM_INO
);
2226 error
= xfs_inobt_lookup(cur
, agino
, XFS_LOOKUP_LE
, &i
);
2229 error
= xfs_inobt_get_rec(cur
, &rec
, &i
);
2230 if (!error
&& i
== 0)
2234 xfs_trans_brelse(tp
, agbp
);
2235 xfs_btree_del_cursor(cur
, XFS_BTREE_NOERROR
);
2239 /* check that the returned record contains the required inode */
2240 if (rec
.ir_startino
> agino
||
2241 rec
.ir_startino
+ mp
->m_ialloc_inos
<= agino
)
2244 /* for untrusted inodes check it is allocated first */
2245 if ((flags
& XFS_IGET_UNTRUSTED
) &&
2246 (rec
.ir_free
& XFS_INOBT_MASK(agino
- rec
.ir_startino
)))
2249 *chunk_agbno
= XFS_AGINO_TO_AGBNO(mp
, rec
.ir_startino
);
2250 *offset_agbno
= agbno
- *chunk_agbno
;
2255 * Return the location of the inode in imap, for mapping it into a buffer.
2259 xfs_mount_t
*mp
, /* file system mount structure */
2260 xfs_trans_t
*tp
, /* transaction pointer */
2261 xfs_ino_t ino
, /* inode to locate */
2262 struct xfs_imap
*imap
, /* location map structure */
2263 uint flags
) /* flags for inode btree lookup */
2265 xfs_agblock_t agbno
; /* block number of inode in the alloc group */
2266 xfs_agino_t agino
; /* inode number within alloc group */
2267 xfs_agnumber_t agno
; /* allocation group number */
2268 int blks_per_cluster
; /* num blocks per inode cluster */
2269 xfs_agblock_t chunk_agbno
; /* first block in inode chunk */
2270 xfs_agblock_t cluster_agbno
; /* first block in inode cluster */
2271 int error
; /* error code */
2272 int offset
; /* index of inode in its buffer */
2273 xfs_agblock_t offset_agbno
; /* blks from chunk start to inode */
2275 ASSERT(ino
!= NULLFSINO
);
2278 * Split up the inode number into its parts.
2280 agno
= XFS_INO_TO_AGNO(mp
, ino
);
2281 agino
= XFS_INO_TO_AGINO(mp
, ino
);
2282 agbno
= XFS_AGINO_TO_AGBNO(mp
, agino
);
2283 if (agno
>= mp
->m_sb
.sb_agcount
|| agbno
>= mp
->m_sb
.sb_agblocks
||
2284 ino
!= XFS_AGINO_TO_INO(mp
, agno
, agino
)) {
2287 * Don't output diagnostic information for untrusted inodes
2288 * as they can be invalid without implying corruption.
2290 if (flags
& XFS_IGET_UNTRUSTED
)
2292 if (agno
>= mp
->m_sb
.sb_agcount
) {
2294 "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
2295 __func__
, agno
, mp
->m_sb
.sb_agcount
);
2297 if (agbno
>= mp
->m_sb
.sb_agblocks
) {
2299 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2300 __func__
, (unsigned long long)agbno
,
2301 (unsigned long)mp
->m_sb
.sb_agblocks
);
2303 if (ino
!= XFS_AGINO_TO_INO(mp
, agno
, agino
)) {
2305 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2307 XFS_AGINO_TO_INO(mp
, agno
, agino
));
2314 blks_per_cluster
= xfs_icluster_size_fsb(mp
);
2317 * For bulkstat and handle lookups, we have an untrusted inode number
2318 * that we have to verify is valid. We cannot do this just by reading
2319 * the inode buffer as it may have been unlinked and removed leaving
2320 * inodes in stale state on disk. Hence we have to do a btree lookup
2321 * in all cases where an untrusted inode number is passed.
2323 if (flags
& XFS_IGET_UNTRUSTED
) {
2324 error
= xfs_imap_lookup(mp
, tp
, agno
, agino
, agbno
,
2325 &chunk_agbno
, &offset_agbno
, flags
);
2332 * If the inode cluster size is the same as the blocksize or
2333 * smaller we get to the buffer by simple arithmetics.
2335 if (blks_per_cluster
== 1) {
2336 offset
= XFS_INO_TO_OFFSET(mp
, ino
);
2337 ASSERT(offset
< mp
->m_sb
.sb_inopblock
);
2339 imap
->im_blkno
= XFS_AGB_TO_DADDR(mp
, agno
, agbno
);
2340 imap
->im_len
= XFS_FSB_TO_BB(mp
, 1);
2341 imap
->im_boffset
= (ushort
)(offset
<< mp
->m_sb
.sb_inodelog
);
2346 * If the inode chunks are aligned then use simple maths to
2347 * find the location. Otherwise we have to do a btree
2348 * lookup to find the location.
2350 if (mp
->m_inoalign_mask
) {
2351 offset_agbno
= agbno
& mp
->m_inoalign_mask
;
2352 chunk_agbno
= agbno
- offset_agbno
;
2354 error
= xfs_imap_lookup(mp
, tp
, agno
, agino
, agbno
,
2355 &chunk_agbno
, &offset_agbno
, flags
);
2361 ASSERT(agbno
>= chunk_agbno
);
2362 cluster_agbno
= chunk_agbno
+
2363 ((offset_agbno
/ blks_per_cluster
) * blks_per_cluster
);
2364 offset
= ((agbno
- cluster_agbno
) * mp
->m_sb
.sb_inopblock
) +
2365 XFS_INO_TO_OFFSET(mp
, ino
);
2367 imap
->im_blkno
= XFS_AGB_TO_DADDR(mp
, agno
, cluster_agbno
);
2368 imap
->im_len
= XFS_FSB_TO_BB(mp
, blks_per_cluster
);
2369 imap
->im_boffset
= (ushort
)(offset
<< mp
->m_sb
.sb_inodelog
);
2372 * If the inode number maps to a block outside the bounds
2373 * of the file system then return NULL rather than calling
2374 * read_buf and panicing when we get an error from the
2377 if ((imap
->im_blkno
+ imap
->im_len
) >
2378 XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
)) {
2380 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2381 __func__
, (unsigned long long) imap
->im_blkno
,
2382 (unsigned long long) imap
->im_len
,
2383 XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
));
2390 * Compute and fill in value of m_in_maxlevels.
2393 xfs_ialloc_compute_maxlevels(
2394 xfs_mount_t
*mp
) /* file system mount structure */
2402 maxleafents
= (1LL << XFS_INO_AGINO_BITS(mp
)) >>
2403 XFS_INODES_PER_CHUNK_LOG
;
2404 minleafrecs
= mp
->m_alloc_mnr
[0];
2405 minnoderecs
= mp
->m_alloc_mnr
[1];
2406 maxblocks
= (maxleafents
+ minleafrecs
- 1) / minleafrecs
;
2407 for (level
= 1; maxblocks
> 1; level
++)
2408 maxblocks
= (maxblocks
+ minnoderecs
- 1) / minnoderecs
;
2409 mp
->m_in_maxlevels
= level
;
2413 * Log specified fields for the ag hdr (inode section). The growth of the agi
2414 * structure over time requires that we interpret the buffer as two logical
2415 * regions delineated by the end of the unlinked list. This is due to the size
2416 * of the hash table and its location in the middle of the agi.
2418 * For example, a request to log a field before agi_unlinked and a field after
2419 * agi_unlinked could cause us to log the entire hash table and use an excessive
2420 * amount of log space. To avoid this behavior, log the region up through
2421 * agi_unlinked in one call and the region after agi_unlinked through the end of
2422 * the structure in another.
2426 xfs_trans_t
*tp
, /* transaction pointer */
2427 xfs_buf_t
*bp
, /* allocation group header buffer */
2428 int fields
) /* bitmask of fields to log */
2430 int first
; /* first byte number */
2431 int last
; /* last byte number */
2432 static const short offsets
[] = { /* field starting offsets */
2433 /* keep in sync with bit definitions */
2434 offsetof(xfs_agi_t
, agi_magicnum
),
2435 offsetof(xfs_agi_t
, agi_versionnum
),
2436 offsetof(xfs_agi_t
, agi_seqno
),
2437 offsetof(xfs_agi_t
, agi_length
),
2438 offsetof(xfs_agi_t
, agi_count
),
2439 offsetof(xfs_agi_t
, agi_root
),
2440 offsetof(xfs_agi_t
, agi_level
),
2441 offsetof(xfs_agi_t
, agi_freecount
),
2442 offsetof(xfs_agi_t
, agi_newino
),
2443 offsetof(xfs_agi_t
, agi_dirino
),
2444 offsetof(xfs_agi_t
, agi_unlinked
),
2445 offsetof(xfs_agi_t
, agi_free_root
),
2446 offsetof(xfs_agi_t
, agi_free_level
),
2450 xfs_agi_t
*agi
; /* allocation group header */
2452 agi
= XFS_BUF_TO_AGI(bp
);
2453 ASSERT(agi
->agi_magicnum
== cpu_to_be32(XFS_AGI_MAGIC
));
2456 xfs_trans_buf_set_type(tp
, bp
, XFS_BLFT_AGI_BUF
);
2459 * Compute byte offsets for the first and last fields in the first
2460 * region and log the agi buffer. This only logs up through
2463 if (fields
& XFS_AGI_ALL_BITS_R1
) {
2464 xfs_btree_offsets(fields
, offsets
, XFS_AGI_NUM_BITS_R1
,
2466 xfs_trans_log_buf(tp
, bp
, first
, last
);
2470 * Mask off the bits in the first region and calculate the first and
2471 * last field offsets for any bits in the second region.
2473 fields
&= ~XFS_AGI_ALL_BITS_R1
;
2475 xfs_btree_offsets(fields
, offsets
, XFS_AGI_NUM_BITS_R2
,
2477 xfs_trans_log_buf(tp
, bp
, first
, last
);
2483 xfs_check_agi_unlinked(
2484 struct xfs_agi
*agi
)
2488 for (i
= 0; i
< XFS_AGI_UNLINKED_BUCKETS
; i
++)
2489 ASSERT(agi
->agi_unlinked
[i
]);
2492 #define xfs_check_agi_unlinked(agi)
2499 struct xfs_mount
*mp
= bp
->b_target
->bt_mount
;
2500 struct xfs_agi
*agi
= XFS_BUF_TO_AGI(bp
);
2502 if (xfs_sb_version_hascrc(&mp
->m_sb
) &&
2503 !uuid_equal(&agi
->agi_uuid
, &mp
->m_sb
.sb_uuid
))
2506 * Validate the magic number of the agi block.
2508 if (agi
->agi_magicnum
!= cpu_to_be32(XFS_AGI_MAGIC
))
2510 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi
->agi_versionnum
)))
2513 if (be32_to_cpu(agi
->agi_level
) > XFS_BTREE_MAXLEVELS
)
2516 * during growfs operations, the perag is not fully initialised,
2517 * so we can't use it for any useful checking. growfs ensures we can't
2518 * use it by using uncached buffers that don't have the perag attached
2519 * so we can detect and avoid this problem.
2521 if (bp
->b_pag
&& be32_to_cpu(agi
->agi_seqno
) != bp
->b_pag
->pag_agno
)
2524 xfs_check_agi_unlinked(agi
);
2529 xfs_agi_read_verify(
2532 struct xfs_mount
*mp
= bp
->b_target
->bt_mount
;
2534 if (xfs_sb_version_hascrc(&mp
->m_sb
) &&
2535 !xfs_buf_verify_cksum(bp
, XFS_AGI_CRC_OFF
))
2536 xfs_buf_ioerror(bp
, -EFSBADCRC
);
2537 else if (XFS_TEST_ERROR(!xfs_agi_verify(bp
), mp
,
2538 XFS_ERRTAG_IALLOC_READ_AGI
,
2539 XFS_RANDOM_IALLOC_READ_AGI
))
2540 xfs_buf_ioerror(bp
, -EFSCORRUPTED
);
2543 xfs_verifier_error(bp
);
2547 xfs_agi_write_verify(
2550 struct xfs_mount
*mp
= bp
->b_target
->bt_mount
;
2551 struct xfs_buf_log_item
*bip
= bp
->b_fspriv
;
2553 if (!xfs_agi_verify(bp
)) {
2554 xfs_buf_ioerror(bp
, -EFSCORRUPTED
);
2555 xfs_verifier_error(bp
);
2559 if (!xfs_sb_version_hascrc(&mp
->m_sb
))
2563 XFS_BUF_TO_AGI(bp
)->agi_lsn
= cpu_to_be64(bip
->bli_item
.li_lsn
);
2564 xfs_buf_update_cksum(bp
, XFS_AGI_CRC_OFF
);
2567 const struct xfs_buf_ops xfs_agi_buf_ops
= {
2568 .verify_read
= xfs_agi_read_verify
,
2569 .verify_write
= xfs_agi_write_verify
,
2573 * Read in the allocation group header (inode allocation section)
2577 struct xfs_mount
*mp
, /* file system mount structure */
2578 struct xfs_trans
*tp
, /* transaction pointer */
2579 xfs_agnumber_t agno
, /* allocation group number */
2580 struct xfs_buf
**bpp
) /* allocation group hdr buf */
2584 trace_xfs_read_agi(mp
, agno
);
2586 ASSERT(agno
!= NULLAGNUMBER
);
2587 error
= xfs_trans_read_buf(mp
, tp
, mp
->m_ddev_targp
,
2588 XFS_AG_DADDR(mp
, agno
, XFS_AGI_DADDR(mp
)),
2589 XFS_FSS_TO_BB(mp
, 1), 0, bpp
, &xfs_agi_buf_ops
);
2593 xfs_buf_set_ref(*bpp
, XFS_AGI_REF
);
2598 xfs_ialloc_read_agi(
2599 struct xfs_mount
*mp
, /* file system mount structure */
2600 struct xfs_trans
*tp
, /* transaction pointer */
2601 xfs_agnumber_t agno
, /* allocation group number */
2602 struct xfs_buf
**bpp
) /* allocation group hdr buf */
2604 struct xfs_agi
*agi
; /* allocation group header */
2605 struct xfs_perag
*pag
; /* per allocation group data */
2608 trace_xfs_ialloc_read_agi(mp
, agno
);
2610 error
= xfs_read_agi(mp
, tp
, agno
, bpp
);
2614 agi
= XFS_BUF_TO_AGI(*bpp
);
2615 pag
= xfs_perag_get(mp
, agno
);
2616 if (!pag
->pagi_init
) {
2617 pag
->pagi_freecount
= be32_to_cpu(agi
->agi_freecount
);
2618 pag
->pagi_count
= be32_to_cpu(agi
->agi_count
);
2623 * It's possible for these to be out of sync if
2624 * we are in the middle of a forced shutdown.
2626 ASSERT(pag
->pagi_freecount
== be32_to_cpu(agi
->agi_freecount
) ||
2627 XFS_FORCED_SHUTDOWN(mp
));
2633 * Read in the agi to initialise the per-ag data in the mount structure
2636 xfs_ialloc_pagi_init(
2637 xfs_mount_t
*mp
, /* file system mount structure */
2638 xfs_trans_t
*tp
, /* transaction pointer */
2639 xfs_agnumber_t agno
) /* allocation group number */
2641 xfs_buf_t
*bp
= NULL
;
2644 error
= xfs_ialloc_read_agi(mp
, tp
, agno
, &bp
);
2648 xfs_trans_brelse(tp
, bp
);