2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 #include "xfs_shared.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_mount.h"
24 #include "xfs_inode.h"
25 #include "xfs_trans.h"
26 #include "xfs_inode_item.h"
27 #include "xfs_alloc.h"
28 #include "xfs_error.h"
29 #include "xfs_iomap.h"
30 #include "xfs_trace.h"
32 #include "xfs_bmap_util.h"
33 #include "xfs_bmap_btree.h"
34 #include <linux/gfp.h>
35 #include <linux/mpage.h>
36 #include <linux/pagevec.h>
37 #include <linux/writeback.h>
45 struct buffer_head
*bh
, *head
;
47 *delalloc
= *unwritten
= 0;
49 bh
= head
= page_buffers(page
);
51 if (buffer_unwritten(bh
))
53 else if (buffer_delay(bh
))
55 } while ((bh
= bh
->b_this_page
) != head
);
58 STATIC
struct block_device
*
59 xfs_find_bdev_for_inode(
62 struct xfs_inode
*ip
= XFS_I(inode
);
63 struct xfs_mount
*mp
= ip
->i_mount
;
65 if (XFS_IS_REALTIME_INODE(ip
))
66 return mp
->m_rtdev_targp
->bt_bdev
;
68 return mp
->m_ddev_targp
->bt_bdev
;
72 * We're now finished for good with this ioend structure.
73 * Update the page state via the associated buffer_heads,
74 * release holds on the inode and bio, and finally free
75 * up memory. Do not use the ioend after this.
81 struct buffer_head
*bh
, *next
;
83 for (bh
= ioend
->io_buffer_head
; bh
; bh
= next
) {
85 bh
->b_end_io(bh
, !ioend
->io_error
);
88 mempool_free(ioend
, xfs_ioend_pool
);
92 * Fast and loose check if this write could update the on-disk inode size.
94 static inline bool xfs_ioend_is_append(struct xfs_ioend
*ioend
)
96 return ioend
->io_offset
+ ioend
->io_size
>
97 XFS_I(ioend
->io_inode
)->i_d
.di_size
;
101 xfs_setfilesize_trans_alloc(
102 struct xfs_ioend
*ioend
)
104 struct xfs_mount
*mp
= XFS_I(ioend
->io_inode
)->i_mount
;
105 struct xfs_trans
*tp
;
108 tp
= xfs_trans_alloc(mp
, XFS_TRANS_FSYNC_TS
);
110 error
= xfs_trans_reserve(tp
, &M_RES(mp
)->tr_fsyncts
, 0, 0);
112 xfs_trans_cancel(tp
);
116 ioend
->io_append_trans
= tp
;
119 * We may pass freeze protection with a transaction. So tell lockdep
122 rwsem_release(&ioend
->io_inode
->i_sb
->s_writers
.lock_map
[SB_FREEZE_FS
-1],
125 * We hand off the transaction to the completion thread now, so
126 * clear the flag here.
128 current_restore_flags_nested(&tp
->t_pflags
, PF_FSTRANS
);
133 * Update on-disk file size now that data has been written to disk.
137 struct xfs_inode
*ip
,
138 struct xfs_trans
*tp
,
144 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
145 isize
= xfs_new_eof(ip
, offset
+ size
);
147 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
148 xfs_trans_cancel(tp
);
152 trace_xfs_setfilesize(ip
, offset
, size
);
154 ip
->i_d
.di_size
= isize
;
155 xfs_trans_ijoin(tp
, ip
, XFS_ILOCK_EXCL
);
156 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
158 return xfs_trans_commit(tp
);
162 xfs_setfilesize_ioend(
163 struct xfs_ioend
*ioend
)
165 struct xfs_inode
*ip
= XFS_I(ioend
->io_inode
);
166 struct xfs_trans
*tp
= ioend
->io_append_trans
;
169 * The transaction may have been allocated in the I/O submission thread,
170 * thus we need to mark ourselves as being in a transaction manually.
171 * Similarly for freeze protection.
173 current_set_flags_nested(&tp
->t_pflags
, PF_FSTRANS
);
174 rwsem_acquire_read(&VFS_I(ip
)->i_sb
->s_writers
.lock_map
[SB_FREEZE_FS
-1],
177 return xfs_setfilesize(ip
, tp
, ioend
->io_offset
, ioend
->io_size
);
181 * Schedule IO completion handling on the final put of an ioend.
183 * If there is no work to do we might as well call it a day and free the
188 struct xfs_ioend
*ioend
)
190 if (atomic_dec_and_test(&ioend
->io_remaining
)) {
191 struct xfs_mount
*mp
= XFS_I(ioend
->io_inode
)->i_mount
;
193 if (ioend
->io_type
== XFS_IO_UNWRITTEN
)
194 queue_work(mp
->m_unwritten_workqueue
, &ioend
->io_work
);
195 else if (ioend
->io_append_trans
)
196 queue_work(mp
->m_data_workqueue
, &ioend
->io_work
);
198 xfs_destroy_ioend(ioend
);
203 * IO write completion.
207 struct work_struct
*work
)
209 xfs_ioend_t
*ioend
= container_of(work
, xfs_ioend_t
, io_work
);
210 struct xfs_inode
*ip
= XFS_I(ioend
->io_inode
);
213 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
)) {
214 ioend
->io_error
= -EIO
;
221 * For unwritten extents we need to issue transactions to convert a
222 * range to normal written extens after the data I/O has finished.
224 if (ioend
->io_type
== XFS_IO_UNWRITTEN
) {
225 error
= xfs_iomap_write_unwritten(ip
, ioend
->io_offset
,
227 } else if (ioend
->io_append_trans
) {
228 error
= xfs_setfilesize_ioend(ioend
);
230 ASSERT(!xfs_ioend_is_append(ioend
));
235 ioend
->io_error
= error
;
236 xfs_destroy_ioend(ioend
);
240 * Allocate and initialise an IO completion structure.
241 * We need to track unwritten extent write completion here initially.
242 * We'll need to extend this for updating the ondisk inode size later
252 ioend
= mempool_alloc(xfs_ioend_pool
, GFP_NOFS
);
255 * Set the count to 1 initially, which will prevent an I/O
256 * completion callback from happening before we have started
257 * all the I/O from calling the completion routine too early.
259 atomic_set(&ioend
->io_remaining
, 1);
261 ioend
->io_list
= NULL
;
262 ioend
->io_type
= type
;
263 ioend
->io_inode
= inode
;
264 ioend
->io_buffer_head
= NULL
;
265 ioend
->io_buffer_tail
= NULL
;
266 ioend
->io_offset
= 0;
268 ioend
->io_append_trans
= NULL
;
270 INIT_WORK(&ioend
->io_work
, xfs_end_io
);
278 struct xfs_bmbt_irec
*imap
,
282 struct xfs_inode
*ip
= XFS_I(inode
);
283 struct xfs_mount
*mp
= ip
->i_mount
;
284 ssize_t count
= 1 << inode
->i_blkbits
;
285 xfs_fileoff_t offset_fsb
, end_fsb
;
287 int bmapi_flags
= XFS_BMAPI_ENTIRE
;
290 if (XFS_FORCED_SHUTDOWN(mp
))
293 if (type
== XFS_IO_UNWRITTEN
)
294 bmapi_flags
|= XFS_BMAPI_IGSTATE
;
296 if (!xfs_ilock_nowait(ip
, XFS_ILOCK_SHARED
)) {
299 xfs_ilock(ip
, XFS_ILOCK_SHARED
);
302 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
303 (ip
->i_df
.if_flags
& XFS_IFEXTENTS
));
304 ASSERT(offset
<= mp
->m_super
->s_maxbytes
);
306 if (offset
+ count
> mp
->m_super
->s_maxbytes
)
307 count
= mp
->m_super
->s_maxbytes
- offset
;
308 end_fsb
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)offset
+ count
);
309 offset_fsb
= XFS_B_TO_FSBT(mp
, offset
);
310 error
= xfs_bmapi_read(ip
, offset_fsb
, end_fsb
- offset_fsb
,
311 imap
, &nimaps
, bmapi_flags
);
312 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
317 if (type
== XFS_IO_DELALLOC
&&
318 (!nimaps
|| isnullstartblock(imap
->br_startblock
))) {
319 error
= xfs_iomap_write_allocate(ip
, offset
, imap
);
321 trace_xfs_map_blocks_alloc(ip
, offset
, count
, type
, imap
);
326 if (type
== XFS_IO_UNWRITTEN
) {
328 ASSERT(imap
->br_startblock
!= HOLESTARTBLOCK
);
329 ASSERT(imap
->br_startblock
!= DELAYSTARTBLOCK
);
333 trace_xfs_map_blocks_found(ip
, offset
, count
, type
, imap
);
340 struct xfs_bmbt_irec
*imap
,
343 offset
>>= inode
->i_blkbits
;
345 return offset
>= imap
->br_startoff
&&
346 offset
< imap
->br_startoff
+ imap
->br_blockcount
;
350 * BIO completion handler for buffered IO.
357 xfs_ioend_t
*ioend
= bio
->bi_private
;
359 ioend
->io_error
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
) ? 0 : error
;
361 /* Toss bio and pass work off to an xfsdatad thread */
362 bio
->bi_private
= NULL
;
363 bio
->bi_end_io
= NULL
;
366 xfs_finish_ioend(ioend
);
370 xfs_submit_ioend_bio(
371 struct writeback_control
*wbc
,
375 atomic_inc(&ioend
->io_remaining
);
376 bio
->bi_private
= ioend
;
377 bio
->bi_end_io
= xfs_end_bio
;
378 submit_bio(wbc
->sync_mode
== WB_SYNC_ALL
? WRITE_SYNC
: WRITE
, bio
);
383 struct buffer_head
*bh
)
385 int nvecs
= bio_get_nr_vecs(bh
->b_bdev
);
386 struct bio
*bio
= bio_alloc(GFP_NOIO
, nvecs
);
388 ASSERT(bio
->bi_private
== NULL
);
389 bio
->bi_iter
.bi_sector
= bh
->b_blocknr
* (bh
->b_size
>> 9);
390 bio
->bi_bdev
= bh
->b_bdev
;
395 xfs_start_buffer_writeback(
396 struct buffer_head
*bh
)
398 ASSERT(buffer_mapped(bh
));
399 ASSERT(buffer_locked(bh
));
400 ASSERT(!buffer_delay(bh
));
401 ASSERT(!buffer_unwritten(bh
));
403 mark_buffer_async_write(bh
);
404 set_buffer_uptodate(bh
);
405 clear_buffer_dirty(bh
);
409 xfs_start_page_writeback(
414 ASSERT(PageLocked(page
));
415 ASSERT(!PageWriteback(page
));
418 * if the page was not fully cleaned, we need to ensure that the higher
419 * layers come back to it correctly. That means we need to keep the page
420 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
421 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
422 * write this page in this writeback sweep will be made.
425 clear_page_dirty_for_io(page
);
426 set_page_writeback(page
);
428 set_page_writeback_keepwrite(page
);
432 /* If no buffers on the page are to be written, finish it here */
434 end_page_writeback(page
);
437 static inline int xfs_bio_add_buffer(struct bio
*bio
, struct buffer_head
*bh
)
439 return bio_add_page(bio
, bh
->b_page
, bh
->b_size
, bh_offset(bh
));
443 * Submit all of the bios for all of the ioends we have saved up, covering the
444 * initial writepage page and also any probed pages.
446 * Because we may have multiple ioends spanning a page, we need to start
447 * writeback on all the buffers before we submit them for I/O. If we mark the
448 * buffers as we got, then we can end up with a page that only has buffers
449 * marked async write and I/O complete on can occur before we mark the other
450 * buffers async write.
452 * The end result of this is that we trip a bug in end_page_writeback() because
453 * we call it twice for the one page as the code in end_buffer_async_write()
454 * assumes that all buffers on the page are started at the same time.
456 * The fix is two passes across the ioend list - one to start writeback on the
457 * buffer_heads, and then submit them for I/O on the second pass.
459 * If @fail is non-zero, it means that we have a situation where some part of
460 * the submission process has failed after we have marked paged for writeback
461 * and unlocked them. In this situation, we need to fail the ioend chain rather
462 * than submit it to IO. This typically only happens on a filesystem shutdown.
466 struct writeback_control
*wbc
,
470 xfs_ioend_t
*head
= ioend
;
472 struct buffer_head
*bh
;
474 sector_t lastblock
= 0;
476 /* Pass 1 - start writeback */
478 next
= ioend
->io_list
;
479 for (bh
= ioend
->io_buffer_head
; bh
; bh
= bh
->b_private
)
480 xfs_start_buffer_writeback(bh
);
481 } while ((ioend
= next
) != NULL
);
483 /* Pass 2 - submit I/O */
486 next
= ioend
->io_list
;
490 * If we are failing the IO now, just mark the ioend with an
491 * error and finish it. This will run IO completion immediately
492 * as there is only one reference to the ioend at this point in
496 ioend
->io_error
= fail
;
497 xfs_finish_ioend(ioend
);
501 for (bh
= ioend
->io_buffer_head
; bh
; bh
= bh
->b_private
) {
505 bio
= xfs_alloc_ioend_bio(bh
);
506 } else if (bh
->b_blocknr
!= lastblock
+ 1) {
507 xfs_submit_ioend_bio(wbc
, ioend
, bio
);
511 if (xfs_bio_add_buffer(bio
, bh
) != bh
->b_size
) {
512 xfs_submit_ioend_bio(wbc
, ioend
, bio
);
516 lastblock
= bh
->b_blocknr
;
519 xfs_submit_ioend_bio(wbc
, ioend
, bio
);
520 xfs_finish_ioend(ioend
);
521 } while ((ioend
= next
) != NULL
);
525 * Cancel submission of all buffer_heads so far in this endio.
526 * Toss the endio too. Only ever called for the initial page
527 * in a writepage request, so only ever one page.
534 struct buffer_head
*bh
, *next_bh
;
537 next
= ioend
->io_list
;
538 bh
= ioend
->io_buffer_head
;
540 next_bh
= bh
->b_private
;
541 clear_buffer_async_write(bh
);
543 * The unwritten flag is cleared when added to the
544 * ioend. We're not submitting for I/O so mark the
545 * buffer unwritten again for next time around.
547 if (ioend
->io_type
== XFS_IO_UNWRITTEN
)
548 set_buffer_unwritten(bh
);
550 } while ((bh
= next_bh
) != NULL
);
552 mempool_free(ioend
, xfs_ioend_pool
);
553 } while ((ioend
= next
) != NULL
);
557 * Test to see if we've been building up a completion structure for
558 * earlier buffers -- if so, we try to append to this ioend if we
559 * can, otherwise we finish off any current ioend and start another.
560 * Return true if we've finished the given ioend.
565 struct buffer_head
*bh
,
568 xfs_ioend_t
**result
,
571 xfs_ioend_t
*ioend
= *result
;
573 if (!ioend
|| need_ioend
|| type
!= ioend
->io_type
) {
574 xfs_ioend_t
*previous
= *result
;
576 ioend
= xfs_alloc_ioend(inode
, type
);
577 ioend
->io_offset
= offset
;
578 ioend
->io_buffer_head
= bh
;
579 ioend
->io_buffer_tail
= bh
;
581 previous
->io_list
= ioend
;
584 ioend
->io_buffer_tail
->b_private
= bh
;
585 ioend
->io_buffer_tail
= bh
;
588 bh
->b_private
= NULL
;
589 ioend
->io_size
+= bh
->b_size
;
595 struct buffer_head
*bh
,
596 struct xfs_bmbt_irec
*imap
,
600 struct xfs_mount
*m
= XFS_I(inode
)->i_mount
;
601 xfs_off_t iomap_offset
= XFS_FSB_TO_B(m
, imap
->br_startoff
);
602 xfs_daddr_t iomap_bn
= xfs_fsb_to_db(XFS_I(inode
), imap
->br_startblock
);
604 ASSERT(imap
->br_startblock
!= HOLESTARTBLOCK
);
605 ASSERT(imap
->br_startblock
!= DELAYSTARTBLOCK
);
607 bn
= (iomap_bn
>> (inode
->i_blkbits
- BBSHIFT
)) +
608 ((offset
- iomap_offset
) >> inode
->i_blkbits
);
610 ASSERT(bn
|| XFS_IS_REALTIME_INODE(XFS_I(inode
)));
613 set_buffer_mapped(bh
);
619 struct buffer_head
*bh
,
620 struct xfs_bmbt_irec
*imap
,
623 ASSERT(imap
->br_startblock
!= HOLESTARTBLOCK
);
624 ASSERT(imap
->br_startblock
!= DELAYSTARTBLOCK
);
626 xfs_map_buffer(inode
, bh
, imap
, offset
);
627 set_buffer_mapped(bh
);
628 clear_buffer_delay(bh
);
629 clear_buffer_unwritten(bh
);
633 * Test if a given page contains at least one buffer of a given @type.
634 * If @check_all_buffers is true, then we walk all the buffers in the page to
635 * try to find one of the type passed in. If it is not set, then the caller only
636 * needs to check the first buffer on the page for a match.
642 bool check_all_buffers
)
644 struct buffer_head
*bh
;
645 struct buffer_head
*head
;
647 if (PageWriteback(page
))
651 if (!page_has_buffers(page
))
654 bh
= head
= page_buffers(page
);
656 if (buffer_unwritten(bh
)) {
657 if (type
== XFS_IO_UNWRITTEN
)
659 } else if (buffer_delay(bh
)) {
660 if (type
== XFS_IO_DELALLOC
)
662 } else if (buffer_dirty(bh
) && buffer_mapped(bh
)) {
663 if (type
== XFS_IO_OVERWRITE
)
667 /* If we are only checking the first buffer, we are done now. */
668 if (!check_all_buffers
)
670 } while ((bh
= bh
->b_this_page
) != head
);
676 * Allocate & map buffers for page given the extent map. Write it out.
677 * except for the original page of a writepage, this is called on
678 * delalloc/unwritten pages only, for the original page it is possible
679 * that the page has no mapping at all.
686 struct xfs_bmbt_irec
*imap
,
687 xfs_ioend_t
**ioendp
,
688 struct writeback_control
*wbc
)
690 struct buffer_head
*bh
, *head
;
691 xfs_off_t end_offset
;
692 unsigned long p_offset
;
695 int count
= 0, done
= 0, uptodate
= 1;
696 xfs_off_t offset
= page_offset(page
);
698 if (page
->index
!= tindex
)
700 if (!trylock_page(page
))
702 if (PageWriteback(page
))
703 goto fail_unlock_page
;
704 if (page
->mapping
!= inode
->i_mapping
)
705 goto fail_unlock_page
;
706 if (!xfs_check_page_type(page
, (*ioendp
)->io_type
, false))
707 goto fail_unlock_page
;
710 * page_dirty is initially a count of buffers on the page before
711 * EOF and is decremented as we move each into a cleanable state.
715 * End offset is the highest offset that this page should represent.
716 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
717 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
718 * hence give us the correct page_dirty count. On any other page,
719 * it will be zero and in that case we need page_dirty to be the
720 * count of buffers on the page.
722 end_offset
= min_t(unsigned long long,
723 (xfs_off_t
)(page
->index
+ 1) << PAGE_CACHE_SHIFT
,
727 * If the current map does not span the entire page we are about to try
728 * to write, then give up. The only way we can write a page that spans
729 * multiple mappings in a single writeback iteration is via the
730 * xfs_vm_writepage() function. Data integrity writeback requires the
731 * entire page to be written in a single attempt, otherwise the part of
732 * the page we don't write here doesn't get written as part of the data
735 * For normal writeback, we also don't attempt to write partial pages
736 * here as it simply means that write_cache_pages() will see it under
737 * writeback and ignore the page until some point in the future, at
738 * which time this will be the only page in the file that needs
739 * writeback. Hence for more optimal IO patterns, we should always
740 * avoid partial page writeback due to multiple mappings on a page here.
742 if (!xfs_imap_valid(inode
, imap
, end_offset
))
743 goto fail_unlock_page
;
745 len
= 1 << inode
->i_blkbits
;
746 p_offset
= min_t(unsigned long, end_offset
& (PAGE_CACHE_SIZE
- 1),
748 p_offset
= p_offset
? roundup(p_offset
, len
) : PAGE_CACHE_SIZE
;
749 page_dirty
= p_offset
/ len
;
752 * The moment we find a buffer that doesn't match our current type
753 * specification or can't be written, abort the loop and start
754 * writeback. As per the above xfs_imap_valid() check, only
755 * xfs_vm_writepage() can handle partial page writeback fully - we are
756 * limited here to the buffers that are contiguous with the current
757 * ioend, and hence a buffer we can't write breaks that contiguity and
758 * we have to defer the rest of the IO to xfs_vm_writepage().
760 bh
= head
= page_buffers(page
);
762 if (offset
>= end_offset
)
764 if (!buffer_uptodate(bh
))
766 if (!(PageUptodate(page
) || buffer_uptodate(bh
))) {
771 if (buffer_unwritten(bh
) || buffer_delay(bh
) ||
773 if (buffer_unwritten(bh
))
774 type
= XFS_IO_UNWRITTEN
;
775 else if (buffer_delay(bh
))
776 type
= XFS_IO_DELALLOC
;
778 type
= XFS_IO_OVERWRITE
;
781 * imap should always be valid because of the above
782 * partial page end_offset check on the imap.
784 ASSERT(xfs_imap_valid(inode
, imap
, offset
));
787 if (type
!= XFS_IO_OVERWRITE
)
788 xfs_map_at_offset(inode
, bh
, imap
, offset
);
789 xfs_add_to_ioend(inode
, bh
, offset
, type
,
798 } while (offset
+= len
, (bh
= bh
->b_this_page
) != head
);
800 if (uptodate
&& bh
== head
)
801 SetPageUptodate(page
);
804 if (--wbc
->nr_to_write
<= 0 &&
805 wbc
->sync_mode
== WB_SYNC_NONE
)
808 xfs_start_page_writeback(page
, !page_dirty
, count
);
818 * Convert & write out a cluster of pages in the same extent as defined
819 * by mp and following the start page.
825 struct xfs_bmbt_irec
*imap
,
826 xfs_ioend_t
**ioendp
,
827 struct writeback_control
*wbc
,
833 pagevec_init(&pvec
, 0);
834 while (!done
&& tindex
<= tlast
) {
835 unsigned len
= min_t(pgoff_t
, PAGEVEC_SIZE
, tlast
- tindex
+ 1);
837 if (!pagevec_lookup(&pvec
, inode
->i_mapping
, tindex
, len
))
840 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
841 done
= xfs_convert_page(inode
, pvec
.pages
[i
], tindex
++,
847 pagevec_release(&pvec
);
853 xfs_vm_invalidatepage(
858 trace_xfs_invalidatepage(page
->mapping
->host
, page
, offset
,
860 block_invalidatepage(page
, offset
, length
);
864 * If the page has delalloc buffers on it, we need to punch them out before we
865 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
866 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
867 * is done on that same region - the delalloc extent is returned when none is
868 * supposed to be there.
870 * We prevent this by truncating away the delalloc regions on the page before
871 * invalidating it. Because they are delalloc, we can do this without needing a
872 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
873 * truncation without a transaction as there is no space left for block
874 * reservation (typically why we see a ENOSPC in writeback).
876 * This is not a performance critical path, so for now just do the punching a
877 * buffer head at a time.
880 xfs_aops_discard_page(
883 struct inode
*inode
= page
->mapping
->host
;
884 struct xfs_inode
*ip
= XFS_I(inode
);
885 struct buffer_head
*bh
, *head
;
886 loff_t offset
= page_offset(page
);
888 if (!xfs_check_page_type(page
, XFS_IO_DELALLOC
, true))
891 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
))
894 xfs_alert(ip
->i_mount
,
895 "page discard on page %p, inode 0x%llx, offset %llu.",
896 page
, ip
->i_ino
, offset
);
898 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
899 bh
= head
= page_buffers(page
);
902 xfs_fileoff_t start_fsb
;
904 if (!buffer_delay(bh
))
907 start_fsb
= XFS_B_TO_FSBT(ip
->i_mount
, offset
);
908 error
= xfs_bmap_punch_delalloc_range(ip
, start_fsb
, 1);
910 /* something screwed, just bail */
911 if (!XFS_FORCED_SHUTDOWN(ip
->i_mount
)) {
912 xfs_alert(ip
->i_mount
,
913 "page discard unable to remove delalloc mapping.");
918 offset
+= 1 << inode
->i_blkbits
;
920 } while ((bh
= bh
->b_this_page
) != head
);
922 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
924 xfs_vm_invalidatepage(page
, 0, PAGE_CACHE_SIZE
);
929 * Write out a dirty page.
931 * For delalloc space on the page we need to allocate space and flush it.
932 * For unwritten space on the page we need to start the conversion to
933 * regular allocated space.
934 * For any other dirty buffer heads on the page we should flush them.
939 struct writeback_control
*wbc
)
941 struct inode
*inode
= page
->mapping
->host
;
942 struct buffer_head
*bh
, *head
;
943 struct xfs_bmbt_irec imap
;
944 xfs_ioend_t
*ioend
= NULL
, *iohead
= NULL
;
947 __uint64_t end_offset
;
948 pgoff_t end_index
, last_index
;
950 int err
, imap_valid
= 0, uptodate
= 1;
954 trace_xfs_writepage(inode
, page
, 0, 0);
956 ASSERT(page_has_buffers(page
));
959 * Refuse to write the page out if we are called from reclaim context.
961 * This avoids stack overflows when called from deeply used stacks in
962 * random callers for direct reclaim or memcg reclaim. We explicitly
963 * allow reclaim from kswapd as the stack usage there is relatively low.
965 * This should never happen except in the case of a VM regression so
968 if (WARN_ON_ONCE((current
->flags
& (PF_MEMALLOC
|PF_KSWAPD
)) ==
973 * Given that we do not allow direct reclaim to call us, we should
974 * never be called while in a filesystem transaction.
976 if (WARN_ON_ONCE(current
->flags
& PF_FSTRANS
))
979 /* Is this page beyond the end of the file? */
980 offset
= i_size_read(inode
);
981 end_index
= offset
>> PAGE_CACHE_SHIFT
;
982 last_index
= (offset
- 1) >> PAGE_CACHE_SHIFT
;
985 * The page index is less than the end_index, adjust the end_offset
986 * to the highest offset that this page should represent.
987 * -----------------------------------------------------
988 * | file mapping | <EOF> |
989 * -----------------------------------------------------
990 * | Page ... | Page N-2 | Page N-1 | Page N | |
991 * ^--------------------------------^----------|--------
992 * | desired writeback range | see else |
993 * ---------------------------------^------------------|
995 if (page
->index
< end_index
)
996 end_offset
= (xfs_off_t
)(page
->index
+ 1) << PAGE_CACHE_SHIFT
;
999 * Check whether the page to write out is beyond or straddles
1001 * -------------------------------------------------------
1002 * | file mapping | <EOF> |
1003 * -------------------------------------------------------
1004 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
1005 * ^--------------------------------^-----------|---------
1007 * ---------------------------------^-----------|--------|
1009 unsigned offset_into_page
= offset
& (PAGE_CACHE_SIZE
- 1);
1012 * Skip the page if it is fully outside i_size, e.g. due to a
1013 * truncate operation that is in progress. We must redirty the
1014 * page so that reclaim stops reclaiming it. Otherwise
1015 * xfs_vm_releasepage() is called on it and gets confused.
1017 * Note that the end_index is unsigned long, it would overflow
1018 * if the given offset is greater than 16TB on 32-bit system
1019 * and if we do check the page is fully outside i_size or not
1020 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1021 * will be evaluated to 0. Hence this page will be redirtied
1022 * and be written out repeatedly which would result in an
1023 * infinite loop, the user program that perform this operation
1024 * will hang. Instead, we can verify this situation by checking
1025 * if the page to write is totally beyond the i_size or if it's
1026 * offset is just equal to the EOF.
1028 if (page
->index
> end_index
||
1029 (page
->index
== end_index
&& offset_into_page
== 0))
1033 * The page straddles i_size. It must be zeroed out on each
1034 * and every writepage invocation because it may be mmapped.
1035 * "A file is mapped in multiples of the page size. For a file
1036 * that is not a multiple of the page size, the remaining
1037 * memory is zeroed when mapped, and writes to that region are
1038 * not written out to the file."
1040 zero_user_segment(page
, offset_into_page
, PAGE_CACHE_SIZE
);
1042 /* Adjust the end_offset to the end of file */
1043 end_offset
= offset
;
1046 len
= 1 << inode
->i_blkbits
;
1048 bh
= head
= page_buffers(page
);
1049 offset
= page_offset(page
);
1050 type
= XFS_IO_OVERWRITE
;
1052 if (wbc
->sync_mode
== WB_SYNC_NONE
)
1058 if (offset
>= end_offset
)
1060 if (!buffer_uptodate(bh
))
1064 * set_page_dirty dirties all buffers in a page, independent
1065 * of their state. The dirty state however is entirely
1066 * meaningless for holes (!mapped && uptodate), so skip
1067 * buffers covering holes here.
1069 if (!buffer_mapped(bh
) && buffer_uptodate(bh
)) {
1074 if (buffer_unwritten(bh
)) {
1075 if (type
!= XFS_IO_UNWRITTEN
) {
1076 type
= XFS_IO_UNWRITTEN
;
1079 } else if (buffer_delay(bh
)) {
1080 if (type
!= XFS_IO_DELALLOC
) {
1081 type
= XFS_IO_DELALLOC
;
1084 } else if (buffer_uptodate(bh
)) {
1085 if (type
!= XFS_IO_OVERWRITE
) {
1086 type
= XFS_IO_OVERWRITE
;
1090 if (PageUptodate(page
))
1091 ASSERT(buffer_mapped(bh
));
1093 * This buffer is not uptodate and will not be
1094 * written to disk. Ensure that we will put any
1095 * subsequent writeable buffers into a new
1103 imap_valid
= xfs_imap_valid(inode
, &imap
, offset
);
1106 * If we didn't have a valid mapping then we need to
1107 * put the new mapping into a separate ioend structure.
1108 * This ensures non-contiguous extents always have
1109 * separate ioends, which is particularly important
1110 * for unwritten extent conversion at I/O completion
1114 err
= xfs_map_blocks(inode
, offset
, &imap
, type
,
1118 imap_valid
= xfs_imap_valid(inode
, &imap
, offset
);
1122 if (type
!= XFS_IO_OVERWRITE
)
1123 xfs_map_at_offset(inode
, bh
, &imap
, offset
);
1124 xfs_add_to_ioend(inode
, bh
, offset
, type
, &ioend
,
1132 } while (offset
+= len
, ((bh
= bh
->b_this_page
) != head
));
1134 if (uptodate
&& bh
== head
)
1135 SetPageUptodate(page
);
1137 xfs_start_page_writeback(page
, 1, count
);
1139 /* if there is no IO to be submitted for this page, we are done */
1146 * Any errors from this point onwards need tobe reported through the IO
1147 * completion path as we have marked the initial page as under writeback
1151 xfs_off_t end_index
;
1153 end_index
= imap
.br_startoff
+ imap
.br_blockcount
;
1156 end_index
<<= inode
->i_blkbits
;
1159 end_index
= (end_index
- 1) >> PAGE_CACHE_SHIFT
;
1161 /* check against file size */
1162 if (end_index
> last_index
)
1163 end_index
= last_index
;
1165 xfs_cluster_write(inode
, page
->index
+ 1, &imap
, &ioend
,
1171 * Reserve log space if we might write beyond the on-disk inode size.
1174 if (ioend
->io_type
!= XFS_IO_UNWRITTEN
&& xfs_ioend_is_append(ioend
))
1175 err
= xfs_setfilesize_trans_alloc(ioend
);
1177 xfs_submit_ioend(wbc
, iohead
, err
);
1183 xfs_cancel_ioend(iohead
);
1188 xfs_aops_discard_page(page
);
1189 ClearPageUptodate(page
);
1194 redirty_page_for_writepage(wbc
, page
);
1201 struct address_space
*mapping
,
1202 struct writeback_control
*wbc
)
1204 xfs_iflags_clear(XFS_I(mapping
->host
), XFS_ITRUNCATED
);
1205 return generic_writepages(mapping
, wbc
);
1209 * Called to move a page into cleanable state - and from there
1210 * to be released. The page should already be clean. We always
1211 * have buffer heads in this call.
1213 * Returns 1 if the page is ok to release, 0 otherwise.
1220 int delalloc
, unwritten
;
1222 trace_xfs_releasepage(page
->mapping
->host
, page
, 0, 0);
1224 xfs_count_page_state(page
, &delalloc
, &unwritten
);
1226 if (WARN_ON_ONCE(delalloc
))
1228 if (WARN_ON_ONCE(unwritten
))
1231 return try_to_free_buffers(page
);
1235 * When we map a DIO buffer, we may need to attach an ioend that describes the
1236 * type of write IO we are doing. This passes to the completion function the
1237 * operations it needs to perform. If the mapping is for an overwrite wholly
1238 * within the EOF then we don't need an ioend and so we don't allocate one.
1239 * This avoids the unnecessary overhead of allocating and freeing ioends for
1240 * workloads that don't require transactions on IO completion.
1242 * If we get multiple mappings in a single IO, we might be mapping different
1243 * types. But because the direct IO can only have a single private pointer, we
1244 * need to ensure that:
1246 * a) i) the ioend spans the entire region of unwritten mappings; or
1247 * ii) the ioend spans all the mappings that cross or are beyond EOF; and
1248 * b) if it contains unwritten extents, it is *permanently* marked as such
1250 * We could do this by chaining ioends like buffered IO does, but we only
1251 * actually get one IO completion callback from the direct IO, and that spans
1252 * the entire IO regardless of how many mappings and IOs are needed to complete
1253 * the DIO. There is only going to be one reference to the ioend and its life
1254 * cycle is constrained by the DIO completion code. hence we don't need
1255 * reference counting here.
1259 struct inode
*inode
,
1260 struct buffer_head
*bh_result
,
1261 struct xfs_bmbt_irec
*imap
,
1264 struct xfs_ioend
*ioend
;
1265 xfs_off_t size
= bh_result
->b_size
;
1268 if (ISUNWRITTEN(imap
))
1269 type
= XFS_IO_UNWRITTEN
;
1271 type
= XFS_IO_OVERWRITE
;
1273 trace_xfs_gbmap_direct(XFS_I(inode
), offset
, size
, type
, imap
);
1275 if (bh_result
->b_private
) {
1276 ioend
= bh_result
->b_private
;
1277 ASSERT(ioend
->io_size
> 0);
1278 ASSERT(offset
>= ioend
->io_offset
);
1279 if (offset
+ size
> ioend
->io_offset
+ ioend
->io_size
)
1280 ioend
->io_size
= offset
- ioend
->io_offset
+ size
;
1282 if (type
== XFS_IO_UNWRITTEN
&& type
!= ioend
->io_type
)
1283 ioend
->io_type
= XFS_IO_UNWRITTEN
;
1285 trace_xfs_gbmap_direct_update(XFS_I(inode
), ioend
->io_offset
,
1286 ioend
->io_size
, ioend
->io_type
,
1288 } else if (type
== XFS_IO_UNWRITTEN
||
1289 offset
+ size
> i_size_read(inode
)) {
1290 ioend
= xfs_alloc_ioend(inode
, type
);
1291 ioend
->io_offset
= offset
;
1292 ioend
->io_size
= size
;
1294 bh_result
->b_private
= ioend
;
1295 set_buffer_defer_completion(bh_result
);
1297 trace_xfs_gbmap_direct_new(XFS_I(inode
), offset
, size
, type
,
1300 trace_xfs_gbmap_direct_none(XFS_I(inode
), offset
, size
, type
,
1306 * If this is O_DIRECT or the mpage code calling tell them how large the mapping
1307 * is, so that we can avoid repeated get_blocks calls.
1309 * If the mapping spans EOF, then we have to break the mapping up as the mapping
1310 * for blocks beyond EOF must be marked new so that sub block regions can be
1311 * correctly zeroed. We can't do this for mappings within EOF unless the mapping
1312 * was just allocated or is unwritten, otherwise the callers would overwrite
1313 * existing data with zeros. Hence we have to split the mapping into a range up
1314 * to and including EOF, and a second mapping for beyond EOF.
1318 struct inode
*inode
,
1320 struct buffer_head
*bh_result
,
1321 struct xfs_bmbt_irec
*imap
,
1325 xfs_off_t mapping_size
;
1327 mapping_size
= imap
->br_startoff
+ imap
->br_blockcount
- iblock
;
1328 mapping_size
<<= inode
->i_blkbits
;
1330 ASSERT(mapping_size
> 0);
1331 if (mapping_size
> size
)
1332 mapping_size
= size
;
1333 if (offset
< i_size_read(inode
) &&
1334 offset
+ mapping_size
>= i_size_read(inode
)) {
1335 /* limit mapping to block that spans EOF */
1336 mapping_size
= roundup_64(i_size_read(inode
) - offset
,
1337 1 << inode
->i_blkbits
);
1339 if (mapping_size
> LONG_MAX
)
1340 mapping_size
= LONG_MAX
;
1342 bh_result
->b_size
= mapping_size
;
1347 struct inode
*inode
,
1349 struct buffer_head
*bh_result
,
1353 struct xfs_inode
*ip
= XFS_I(inode
);
1354 struct xfs_mount
*mp
= ip
->i_mount
;
1355 xfs_fileoff_t offset_fsb
, end_fsb
;
1358 struct xfs_bmbt_irec imap
;
1364 if (XFS_FORCED_SHUTDOWN(mp
))
1367 offset
= (xfs_off_t
)iblock
<< inode
->i_blkbits
;
1368 ASSERT(bh_result
->b_size
>= (1 << inode
->i_blkbits
));
1369 size
= bh_result
->b_size
;
1371 if (!create
&& direct
&& offset
>= i_size_read(inode
))
1375 * Direct I/O is usually done on preallocated files, so try getting
1376 * a block mapping without an exclusive lock first. For buffered
1377 * writes we already have the exclusive iolock anyway, so avoiding
1378 * a lock roundtrip here by taking the ilock exclusive from the
1379 * beginning is a useful micro optimization.
1381 if (create
&& !direct
) {
1382 lockmode
= XFS_ILOCK_EXCL
;
1383 xfs_ilock(ip
, lockmode
);
1385 lockmode
= xfs_ilock_data_map_shared(ip
);
1388 ASSERT(offset
<= mp
->m_super
->s_maxbytes
);
1389 if (offset
+ size
> mp
->m_super
->s_maxbytes
)
1390 size
= mp
->m_super
->s_maxbytes
- offset
;
1391 end_fsb
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)offset
+ size
);
1392 offset_fsb
= XFS_B_TO_FSBT(mp
, offset
);
1394 error
= xfs_bmapi_read(ip
, offset_fsb
, end_fsb
- offset_fsb
,
1395 &imap
, &nimaps
, XFS_BMAPI_ENTIRE
);
1401 (imap
.br_startblock
== HOLESTARTBLOCK
||
1402 imap
.br_startblock
== DELAYSTARTBLOCK
))) {
1403 if (direct
|| xfs_get_extsz_hint(ip
)) {
1405 * Drop the ilock in preparation for starting the block
1406 * allocation transaction. It will be retaken
1407 * exclusively inside xfs_iomap_write_direct for the
1408 * actual allocation.
1410 xfs_iunlock(ip
, lockmode
);
1411 error
= xfs_iomap_write_direct(ip
, offset
, size
,
1419 * Delalloc reservations do not require a transaction,
1420 * we can go on without dropping the lock here. If we
1421 * are allocating a new delalloc block, make sure that
1422 * we set the new flag so that we mark the buffer new so
1423 * that we know that it is newly allocated if the write
1426 if (nimaps
&& imap
.br_startblock
== HOLESTARTBLOCK
)
1428 error
= xfs_iomap_write_delay(ip
, offset
, size
, &imap
);
1432 xfs_iunlock(ip
, lockmode
);
1434 trace_xfs_get_blocks_alloc(ip
, offset
, size
,
1435 ISUNWRITTEN(&imap
) ? XFS_IO_UNWRITTEN
1436 : XFS_IO_DELALLOC
, &imap
);
1437 } else if (nimaps
) {
1438 trace_xfs_get_blocks_found(ip
, offset
, size
,
1439 ISUNWRITTEN(&imap
) ? XFS_IO_UNWRITTEN
1440 : XFS_IO_OVERWRITE
, &imap
);
1441 xfs_iunlock(ip
, lockmode
);
1443 trace_xfs_get_blocks_notfound(ip
, offset
, size
);
1447 /* trim mapping down to size requested */
1448 if (direct
|| size
> (1 << inode
->i_blkbits
))
1449 xfs_map_trim_size(inode
, iblock
, bh_result
,
1450 &imap
, offset
, size
);
1453 * For unwritten extents do not report a disk address in the buffered
1454 * read case (treat as if we're reading into a hole).
1456 if (imap
.br_startblock
!= HOLESTARTBLOCK
&&
1457 imap
.br_startblock
!= DELAYSTARTBLOCK
&&
1458 (create
|| !ISUNWRITTEN(&imap
))) {
1459 xfs_map_buffer(inode
, bh_result
, &imap
, offset
);
1460 if (ISUNWRITTEN(&imap
))
1461 set_buffer_unwritten(bh_result
);
1462 /* direct IO needs special help */
1463 if (create
&& direct
)
1464 xfs_map_direct(inode
, bh_result
, &imap
, offset
);
1468 * If this is a realtime file, data may be on a different device.
1469 * to that pointed to from the buffer_head b_bdev currently.
1471 bh_result
->b_bdev
= xfs_find_bdev_for_inode(inode
);
1474 * If we previously allocated a block out beyond eof and we are now
1475 * coming back to use it then we will need to flag it as new even if it
1476 * has a disk address.
1478 * With sub-block writes into unwritten extents we also need to mark
1479 * the buffer as new so that the unwritten parts of the buffer gets
1483 ((!buffer_mapped(bh_result
) && !buffer_uptodate(bh_result
)) ||
1484 (offset
>= i_size_read(inode
)) ||
1485 (new || ISUNWRITTEN(&imap
))))
1486 set_buffer_new(bh_result
);
1488 if (imap
.br_startblock
== DELAYSTARTBLOCK
) {
1491 set_buffer_uptodate(bh_result
);
1492 set_buffer_mapped(bh_result
);
1493 set_buffer_delay(bh_result
);
1500 xfs_iunlock(ip
, lockmode
);
1506 struct inode
*inode
,
1508 struct buffer_head
*bh_result
,
1511 return __xfs_get_blocks(inode
, iblock
, bh_result
, create
, false);
1515 xfs_get_blocks_direct(
1516 struct inode
*inode
,
1518 struct buffer_head
*bh_result
,
1521 return __xfs_get_blocks(inode
, iblock
, bh_result
, create
, true);
1525 __xfs_end_io_direct_write(
1526 struct inode
*inode
,
1527 struct xfs_ioend
*ioend
,
1531 struct xfs_mount
*mp
= XFS_I(inode
)->i_mount
;
1533 if (XFS_FORCED_SHUTDOWN(mp
) || ioend
->io_error
)
1537 * dio completion end_io functions are only called on writes if more
1538 * than 0 bytes was written.
1543 * The ioend only maps whole blocks, while the IO may be sector aligned.
1544 * Hence the ioend offset/size may not match the IO offset/size exactly.
1545 * Because we don't map overwrites within EOF into the ioend, the offset
1546 * may not match, but only if the endio spans EOF. Either way, write
1547 * the IO sizes into the ioend so that completion processing does the
1550 ASSERT(offset
+ size
<= ioend
->io_offset
+ ioend
->io_size
);
1551 ioend
->io_size
= size
;
1552 ioend
->io_offset
= offset
;
1555 * The ioend tells us whether we are doing unwritten extent conversion
1556 * or an append transaction that updates the on-disk file size. These
1557 * cases are the only cases where we should *potentially* be needing
1558 * to update the VFS inode size.
1560 * We need to update the in-core inode size here so that we don't end up
1561 * with the on-disk inode size being outside the in-core inode size. We
1562 * have no other method of updating EOF for AIO, so always do it here
1565 * We need to lock the test/set EOF update as we can be racing with
1566 * other IO completions here to update the EOF. Failing to serialise
1567 * here can result in EOF moving backwards and Bad Things Happen when
1570 spin_lock(&XFS_I(inode
)->i_flags_lock
);
1571 if (offset
+ size
> i_size_read(inode
))
1572 i_size_write(inode
, offset
+ size
);
1573 spin_unlock(&XFS_I(inode
)->i_flags_lock
);
1576 * If we are doing an append IO that needs to update the EOF on disk,
1577 * do the transaction reserve now so we can use common end io
1578 * processing. Stashing the error (if there is one) in the ioend will
1579 * result in the ioend processing passing on the error if it is
1580 * possible as we can't return it from here.
1582 if (ioend
->io_type
== XFS_IO_OVERWRITE
)
1583 ioend
->io_error
= xfs_setfilesize_trans_alloc(ioend
);
1586 xfs_end_io(&ioend
->io_work
);
1591 * Complete a direct I/O write request.
1593 * The ioend structure is passed from __xfs_get_blocks() to tell us what to do.
1594 * If no ioend exists (i.e. @private == NULL) then the write IO is an overwrite
1595 * wholly within the EOF and so there is nothing for us to do. Note that in this
1596 * case the completion can be called in interrupt context, whereas if we have an
1597 * ioend we will always be called in task context (i.e. from a workqueue).
1600 xfs_end_io_direct_write(
1606 struct inode
*inode
= file_inode(iocb
->ki_filp
);
1607 struct xfs_ioend
*ioend
= private;
1609 trace_xfs_gbmap_direct_endio(XFS_I(inode
), offset
, size
,
1610 ioend
? ioend
->io_type
: 0, NULL
);
1613 ASSERT(offset
+ size
<= i_size_read(inode
));
1617 __xfs_end_io_direct_write(inode
, ioend
, offset
, size
);
1621 * For DAX we need a mapping buffer callback for unwritten extent conversion
1622 * when page faults allocate blocks and then zero them. Note that in this
1623 * case the mapping indicated by the ioend may extend beyond EOF. We most
1624 * definitely do not want to extend EOF here, so we trim back the ioend size to
1627 #ifdef CONFIG_FS_DAX
1629 xfs_end_io_dax_write(
1630 struct buffer_head
*bh
,
1633 struct xfs_ioend
*ioend
= bh
->b_private
;
1634 struct inode
*inode
= ioend
->io_inode
;
1635 ssize_t size
= ioend
->io_size
;
1637 ASSERT(IS_DAX(ioend
->io_inode
));
1639 /* if there was an error zeroing, then don't convert it */
1641 ioend
->io_error
= -EIO
;
1644 * Trim update to EOF, so we don't extend EOF during unwritten extent
1645 * conversion of partial EOF blocks.
1647 spin_lock(&XFS_I(inode
)->i_flags_lock
);
1648 if (ioend
->io_offset
+ size
> i_size_read(inode
))
1649 size
= i_size_read(inode
) - ioend
->io_offset
;
1650 spin_unlock(&XFS_I(inode
)->i_flags_lock
);
1652 __xfs_end_io_direct_write(inode
, ioend
, ioend
->io_offset
, size
);
1656 void xfs_end_io_dax_write(struct buffer_head
*bh
, int uptodate
) { }
1659 static inline ssize_t
1661 struct inode
*inode
,
1663 struct iov_iter
*iter
,
1665 void (*endio
)(struct kiocb
*iocb
,
1671 struct block_device
*bdev
;
1674 return dax_do_io(iocb
, inode
, iter
, offset
,
1675 xfs_get_blocks_direct
, endio
, 0);
1677 bdev
= xfs_find_bdev_for_inode(inode
);
1678 return __blockdev_direct_IO(iocb
, inode
, bdev
, iter
, offset
,
1679 xfs_get_blocks_direct
, endio
, NULL
, flags
);
1685 struct iov_iter
*iter
,
1688 struct inode
*inode
= iocb
->ki_filp
->f_mapping
->host
;
1690 if (iov_iter_rw(iter
) == WRITE
)
1691 return xfs_vm_do_dio(inode
, iocb
, iter
, offset
,
1692 xfs_end_io_direct_write
, DIO_ASYNC_EXTEND
);
1693 return xfs_vm_do_dio(inode
, iocb
, iter
, offset
, NULL
, 0);
1697 * Punch out the delalloc blocks we have already allocated.
1699 * Don't bother with xfs_setattr given that nothing can have made it to disk yet
1700 * as the page is still locked at this point.
1703 xfs_vm_kill_delalloc_range(
1704 struct inode
*inode
,
1708 struct xfs_inode
*ip
= XFS_I(inode
);
1709 xfs_fileoff_t start_fsb
;
1710 xfs_fileoff_t end_fsb
;
1713 start_fsb
= XFS_B_TO_FSB(ip
->i_mount
, start
);
1714 end_fsb
= XFS_B_TO_FSB(ip
->i_mount
, end
);
1715 if (end_fsb
<= start_fsb
)
1718 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
1719 error
= xfs_bmap_punch_delalloc_range(ip
, start_fsb
,
1720 end_fsb
- start_fsb
);
1722 /* something screwed, just bail */
1723 if (!XFS_FORCED_SHUTDOWN(ip
->i_mount
)) {
1724 xfs_alert(ip
->i_mount
,
1725 "xfs_vm_write_failed: unable to clean up ino %lld",
1729 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1733 xfs_vm_write_failed(
1734 struct inode
*inode
,
1739 loff_t block_offset
;
1742 loff_t from
= pos
& (PAGE_CACHE_SIZE
- 1);
1743 loff_t to
= from
+ len
;
1744 struct buffer_head
*bh
, *head
;
1747 * The request pos offset might be 32 or 64 bit, this is all fine
1748 * on 64-bit platform. However, for 64-bit pos request on 32-bit
1749 * platform, the high 32-bit will be masked off if we evaluate the
1750 * block_offset via (pos & PAGE_MASK) because the PAGE_MASK is
1751 * 0xfffff000 as an unsigned long, hence the result is incorrect
1752 * which could cause the following ASSERT failed in most cases.
1753 * In order to avoid this, we can evaluate the block_offset of the
1754 * start of the page by using shifts rather than masks the mismatch
1757 block_offset
= (pos
>> PAGE_CACHE_SHIFT
) << PAGE_CACHE_SHIFT
;
1759 ASSERT(block_offset
+ from
== pos
);
1761 head
= page_buffers(page
);
1763 for (bh
= head
; bh
!= head
|| !block_start
;
1764 bh
= bh
->b_this_page
, block_start
= block_end
,
1765 block_offset
+= bh
->b_size
) {
1766 block_end
= block_start
+ bh
->b_size
;
1768 /* skip buffers before the write */
1769 if (block_end
<= from
)
1772 /* if the buffer is after the write, we're done */
1773 if (block_start
>= to
)
1776 if (!buffer_delay(bh
))
1779 if (!buffer_new(bh
) && block_offset
< i_size_read(inode
))
1782 xfs_vm_kill_delalloc_range(inode
, block_offset
,
1783 block_offset
+ bh
->b_size
);
1786 * This buffer does not contain data anymore. make sure anyone
1787 * who finds it knows that for certain.
1789 clear_buffer_delay(bh
);
1790 clear_buffer_uptodate(bh
);
1791 clear_buffer_mapped(bh
);
1792 clear_buffer_new(bh
);
1793 clear_buffer_dirty(bh
);
1799 * This used to call block_write_begin(), but it unlocks and releases the page
1800 * on error, and we need that page to be able to punch stale delalloc blocks out
1801 * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
1802 * the appropriate point.
1807 struct address_space
*mapping
,
1811 struct page
**pagep
,
1814 pgoff_t index
= pos
>> PAGE_CACHE_SHIFT
;
1818 ASSERT(len
<= PAGE_CACHE_SIZE
);
1820 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
1824 status
= __block_write_begin(page
, pos
, len
, xfs_get_blocks
);
1825 if (unlikely(status
)) {
1826 struct inode
*inode
= mapping
->host
;
1827 size_t isize
= i_size_read(inode
);
1829 xfs_vm_write_failed(inode
, page
, pos
, len
);
1833 * If the write is beyond EOF, we only want to kill blocks
1834 * allocated in this write, not blocks that were previously
1835 * written successfully.
1837 if (pos
+ len
> isize
) {
1838 ssize_t start
= max_t(ssize_t
, pos
, isize
);
1840 truncate_pagecache_range(inode
, start
, pos
+ len
);
1843 page_cache_release(page
);
1852 * On failure, we only need to kill delalloc blocks beyond EOF in the range of
1853 * this specific write because they will never be written. Previous writes
1854 * beyond EOF where block allocation succeeded do not need to be trashed, so
1855 * only new blocks from this write should be trashed. For blocks within
1856 * EOF, generic_write_end() zeros them so they are safe to leave alone and be
1857 * written with all the other valid data.
1862 struct address_space
*mapping
,
1871 ASSERT(len
<= PAGE_CACHE_SIZE
);
1873 ret
= generic_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
1874 if (unlikely(ret
< len
)) {
1875 struct inode
*inode
= mapping
->host
;
1876 size_t isize
= i_size_read(inode
);
1877 loff_t to
= pos
+ len
;
1880 /* only kill blocks in this write beyond EOF */
1883 xfs_vm_kill_delalloc_range(inode
, isize
, to
);
1884 truncate_pagecache_range(inode
, isize
, to
);
1892 struct address_space
*mapping
,
1895 struct inode
*inode
= (struct inode
*)mapping
->host
;
1896 struct xfs_inode
*ip
= XFS_I(inode
);
1898 trace_xfs_vm_bmap(XFS_I(inode
));
1899 xfs_ilock(ip
, XFS_IOLOCK_SHARED
);
1900 filemap_write_and_wait(mapping
);
1901 xfs_iunlock(ip
, XFS_IOLOCK_SHARED
);
1902 return generic_block_bmap(mapping
, block
, xfs_get_blocks
);
1907 struct file
*unused
,
1910 return mpage_readpage(page
, xfs_get_blocks
);
1915 struct file
*unused
,
1916 struct address_space
*mapping
,
1917 struct list_head
*pages
,
1920 return mpage_readpages(mapping
, pages
, nr_pages
, xfs_get_blocks
);
1924 * This is basically a copy of __set_page_dirty_buffers() with one
1925 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1926 * dirty, we'll never be able to clean them because we don't write buffers
1927 * beyond EOF, and that means we can't invalidate pages that span EOF
1928 * that have been marked dirty. Further, the dirty state can leak into
1929 * the file interior if the file is extended, resulting in all sorts of
1930 * bad things happening as the state does not match the underlying data.
1932 * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1933 * this only exist because of bufferheads and how the generic code manages them.
1936 xfs_vm_set_page_dirty(
1939 struct address_space
*mapping
= page
->mapping
;
1940 struct inode
*inode
= mapping
->host
;
1944 struct mem_cgroup
*memcg
;
1946 if (unlikely(!mapping
))
1947 return !TestSetPageDirty(page
);
1949 end_offset
= i_size_read(inode
);
1950 offset
= page_offset(page
);
1952 spin_lock(&mapping
->private_lock
);
1953 if (page_has_buffers(page
)) {
1954 struct buffer_head
*head
= page_buffers(page
);
1955 struct buffer_head
*bh
= head
;
1958 if (offset
< end_offset
)
1959 set_buffer_dirty(bh
);
1960 bh
= bh
->b_this_page
;
1961 offset
+= 1 << inode
->i_blkbits
;
1962 } while (bh
!= head
);
1965 * Use mem_group_begin_page_stat() to keep PageDirty synchronized with
1966 * per-memcg dirty page counters.
1968 memcg
= mem_cgroup_begin_page_stat(page
);
1969 newly_dirty
= !TestSetPageDirty(page
);
1970 spin_unlock(&mapping
->private_lock
);
1973 /* sigh - __set_page_dirty() is static, so copy it here, too */
1974 unsigned long flags
;
1976 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
1977 if (page
->mapping
) { /* Race with truncate? */
1978 WARN_ON_ONCE(!PageUptodate(page
));
1979 account_page_dirtied(page
, mapping
, memcg
);
1980 radix_tree_tag_set(&mapping
->page_tree
,
1981 page_index(page
), PAGECACHE_TAG_DIRTY
);
1983 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
1985 mem_cgroup_end_page_stat(memcg
);
1987 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
1991 const struct address_space_operations xfs_address_space_operations
= {
1992 .readpage
= xfs_vm_readpage
,
1993 .readpages
= xfs_vm_readpages
,
1994 .writepage
= xfs_vm_writepage
,
1995 .writepages
= xfs_vm_writepages
,
1996 .set_page_dirty
= xfs_vm_set_page_dirty
,
1997 .releasepage
= xfs_vm_releasepage
,
1998 .invalidatepage
= xfs_vm_invalidatepage
,
1999 .write_begin
= xfs_vm_write_begin
,
2000 .write_end
= xfs_vm_write_end
,
2001 .bmap
= xfs_vm_bmap
,
2002 .direct_IO
= xfs_vm_direct_IO
,
2003 .migratepage
= buffer_migrate_page
,
2004 .is_partially_uptodate
= block_is_partially_uptodate
,
2005 .error_remove_page
= generic_error_remove_page
,