2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_inode.h"
26 #include "xfs_error.h"
27 #include "xfs_trans.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_quota.h"
31 #include "xfs_trace.h"
32 #include "xfs_icache.h"
33 #include "xfs_bmap_util.h"
34 #include "xfs_dquot_item.h"
35 #include "xfs_dquot.h"
37 #include <linux/kthread.h>
38 #include <linux/freezer.h>
40 STATIC
void __xfs_inode_clear_reclaim_tag(struct xfs_mount
*mp
,
41 struct xfs_perag
*pag
, struct xfs_inode
*ip
);
44 * Allocate and initialise an xfs_inode.
54 * if this didn't occur in transactions, we could use
55 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
56 * code up to do this anyway.
58 ip
= kmem_zone_alloc(xfs_inode_zone
, KM_SLEEP
);
61 if (inode_init_always(mp
->m_super
, VFS_I(ip
))) {
62 kmem_zone_free(xfs_inode_zone
, ip
);
66 XFS_STATS_INC(vn_active
);
67 ASSERT(atomic_read(&ip
->i_pincount
) == 0);
68 ASSERT(!spin_is_locked(&ip
->i_flags_lock
));
69 ASSERT(!xfs_isiflocked(ip
));
70 ASSERT(ip
->i_ino
== 0);
72 mrlock_init(&ip
->i_iolock
, MRLOCK_BARRIER
, "xfsio", ip
->i_ino
);
74 /* initialise the xfs inode */
77 memset(&ip
->i_imap
, 0, sizeof(struct xfs_imap
));
79 memset(&ip
->i_df
, 0, sizeof(xfs_ifork_t
));
81 ip
->i_delayed_blks
= 0;
82 memset(&ip
->i_d
, 0, sizeof(xfs_icdinode_t
));
88 xfs_inode_free_callback(
89 struct rcu_head
*head
)
91 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
92 struct xfs_inode
*ip
= XFS_I(inode
);
94 kmem_zone_free(xfs_inode_zone
, ip
);
101 switch (ip
->i_d
.di_mode
& S_IFMT
) {
105 xfs_idestroy_fork(ip
, XFS_DATA_FORK
);
110 xfs_idestroy_fork(ip
, XFS_ATTR_FORK
);
113 ASSERT(!(ip
->i_itemp
->ili_item
.li_flags
& XFS_LI_IN_AIL
));
114 xfs_inode_item_destroy(ip
);
119 * Because we use RCU freeing we need to ensure the inode always
120 * appears to be reclaimed with an invalid inode number when in the
121 * free state. The ip->i_flags_lock provides the barrier against lookup
124 spin_lock(&ip
->i_flags_lock
);
125 ip
->i_flags
= XFS_IRECLAIM
;
127 spin_unlock(&ip
->i_flags_lock
);
129 /* asserts to verify all state is correct here */
130 ASSERT(atomic_read(&ip
->i_pincount
) == 0);
131 ASSERT(!xfs_isiflocked(ip
));
132 XFS_STATS_DEC(vn_active
);
134 call_rcu(&VFS_I(ip
)->i_rcu
, xfs_inode_free_callback
);
138 * Check the validity of the inode we just found it the cache
142 struct xfs_perag
*pag
,
143 struct xfs_inode
*ip
,
146 int lock_flags
) __releases(RCU
)
148 struct inode
*inode
= VFS_I(ip
);
149 struct xfs_mount
*mp
= ip
->i_mount
;
153 * check for re-use of an inode within an RCU grace period due to the
154 * radix tree nodes not being updated yet. We monitor for this by
155 * setting the inode number to zero before freeing the inode structure.
156 * If the inode has been reallocated and set up, then the inode number
157 * will not match, so check for that, too.
159 spin_lock(&ip
->i_flags_lock
);
160 if (ip
->i_ino
!= ino
) {
161 trace_xfs_iget_skip(ip
);
162 XFS_STATS_INC(xs_ig_frecycle
);
169 * If we are racing with another cache hit that is currently
170 * instantiating this inode or currently recycling it out of
171 * reclaimabe state, wait for the initialisation to complete
174 * XXX(hch): eventually we should do something equivalent to
175 * wait_on_inode to wait for these flags to be cleared
176 * instead of polling for it.
178 if (ip
->i_flags
& (XFS_INEW
|XFS_IRECLAIM
)) {
179 trace_xfs_iget_skip(ip
);
180 XFS_STATS_INC(xs_ig_frecycle
);
186 * If lookup is racing with unlink return an error immediately.
188 if (ip
->i_d
.di_mode
== 0 && !(flags
& XFS_IGET_CREATE
)) {
194 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
195 * Need to carefully get it back into useable state.
197 if (ip
->i_flags
& XFS_IRECLAIMABLE
) {
198 trace_xfs_iget_reclaim(ip
);
201 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
202 * from stomping over us while we recycle the inode. We can't
203 * clear the radix tree reclaimable tag yet as it requires
204 * pag_ici_lock to be held exclusive.
206 ip
->i_flags
|= XFS_IRECLAIM
;
208 spin_unlock(&ip
->i_flags_lock
);
211 error
= inode_init_always(mp
->m_super
, inode
);
214 * Re-initializing the inode failed, and we are in deep
215 * trouble. Try to re-add it to the reclaim list.
218 spin_lock(&ip
->i_flags_lock
);
220 ip
->i_flags
&= ~(XFS_INEW
| XFS_IRECLAIM
);
221 ASSERT(ip
->i_flags
& XFS_IRECLAIMABLE
);
222 trace_xfs_iget_reclaim_fail(ip
);
226 spin_lock(&pag
->pag_ici_lock
);
227 spin_lock(&ip
->i_flags_lock
);
230 * Clear the per-lifetime state in the inode as we are now
231 * effectively a new inode and need to return to the initial
232 * state before reuse occurs.
234 ip
->i_flags
&= ~XFS_IRECLAIM_RESET_FLAGS
;
235 ip
->i_flags
|= XFS_INEW
;
236 __xfs_inode_clear_reclaim_tag(mp
, pag
, ip
);
237 inode
->i_state
= I_NEW
;
239 ASSERT(!rwsem_is_locked(&ip
->i_iolock
.mr_lock
));
240 mrlock_init(&ip
->i_iolock
, MRLOCK_BARRIER
, "xfsio", ip
->i_ino
);
242 spin_unlock(&ip
->i_flags_lock
);
243 spin_unlock(&pag
->pag_ici_lock
);
245 /* If the VFS inode is being torn down, pause and try again. */
247 trace_xfs_iget_skip(ip
);
252 /* We've got a live one. */
253 spin_unlock(&ip
->i_flags_lock
);
255 trace_xfs_iget_hit(ip
);
259 xfs_ilock(ip
, lock_flags
);
261 xfs_iflags_clear(ip
, XFS_ISTALE
| XFS_IDONTCACHE
);
262 XFS_STATS_INC(xs_ig_found
);
267 spin_unlock(&ip
->i_flags_lock
);
275 struct xfs_mount
*mp
,
276 struct xfs_perag
*pag
,
279 struct xfs_inode
**ipp
,
283 struct xfs_inode
*ip
;
285 xfs_agino_t agino
= XFS_INO_TO_AGINO(mp
, ino
);
288 ip
= xfs_inode_alloc(mp
, ino
);
292 error
= xfs_iread(mp
, tp
, ip
, flags
);
296 trace_xfs_iget_miss(ip
);
298 if ((ip
->i_d
.di_mode
== 0) && !(flags
& XFS_IGET_CREATE
)) {
304 * Preload the radix tree so we can insert safely under the
305 * write spinlock. Note that we cannot sleep inside the preload
306 * region. Since we can be called from transaction context, don't
307 * recurse into the file system.
309 if (radix_tree_preload(GFP_NOFS
)) {
315 * Because the inode hasn't been added to the radix-tree yet it can't
316 * be found by another thread, so we can do the non-sleeping lock here.
319 if (!xfs_ilock_nowait(ip
, lock_flags
))
324 * These values must be set before inserting the inode into the radix
325 * tree as the moment it is inserted a concurrent lookup (allowed by the
326 * RCU locking mechanism) can find it and that lookup must see that this
327 * is an inode currently under construction (i.e. that XFS_INEW is set).
328 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
329 * memory barrier that ensures this detection works correctly at lookup
333 if (flags
& XFS_IGET_DONTCACHE
)
334 iflags
|= XFS_IDONTCACHE
;
338 xfs_iflags_set(ip
, iflags
);
340 /* insert the new inode */
341 spin_lock(&pag
->pag_ici_lock
);
342 error
= radix_tree_insert(&pag
->pag_ici_root
, agino
, ip
);
343 if (unlikely(error
)) {
344 WARN_ON(error
!= -EEXIST
);
345 XFS_STATS_INC(xs_ig_dup
);
347 goto out_preload_end
;
349 spin_unlock(&pag
->pag_ici_lock
);
350 radix_tree_preload_end();
356 spin_unlock(&pag
->pag_ici_lock
);
357 radix_tree_preload_end();
359 xfs_iunlock(ip
, lock_flags
);
361 __destroy_inode(VFS_I(ip
));
367 * Look up an inode by number in the given file system.
368 * The inode is looked up in the cache held in each AG.
369 * If the inode is found in the cache, initialise the vfs inode
372 * If it is not in core, read it in from the file system's device,
373 * add it to the cache and initialise the vfs inode.
375 * The inode is locked according to the value of the lock_flags parameter.
376 * This flag parameter indicates how and if the inode's IO lock and inode lock
379 * mp -- the mount point structure for the current file system. It points
380 * to the inode hash table.
381 * tp -- a pointer to the current transaction if there is one. This is
382 * simply passed through to the xfs_iread() call.
383 * ino -- the number of the inode desired. This is the unique identifier
384 * within the file system for the inode being requested.
385 * lock_flags -- flags indicating how to lock the inode. See the comment
386 * for xfs_ilock() for a list of valid values.
403 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
404 * doesn't get freed while it's being referenced during a
405 * radix tree traversal here. It assumes this function
406 * aqcuires only the ILOCK (and therefore it has no need to
407 * involve the IOLOCK in this synchronization).
409 ASSERT((lock_flags
& (XFS_IOLOCK_EXCL
| XFS_IOLOCK_SHARED
)) == 0);
411 /* reject inode numbers outside existing AGs */
412 if (!ino
|| XFS_INO_TO_AGNO(mp
, ino
) >= mp
->m_sb
.sb_agcount
)
415 /* get the perag structure and ensure that it's inode capable */
416 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ino
));
417 agino
= XFS_INO_TO_AGINO(mp
, ino
);
422 ip
= radix_tree_lookup(&pag
->pag_ici_root
, agino
);
425 error
= xfs_iget_cache_hit(pag
, ip
, ino
, flags
, lock_flags
);
427 goto out_error_or_again
;
430 XFS_STATS_INC(xs_ig_missed
);
432 error
= xfs_iget_cache_miss(mp
, pag
, tp
, ino
, &ip
,
435 goto out_error_or_again
;
442 * If we have a real type for an on-disk inode, we can setup the inode
443 * now. If it's a new inode being created, xfs_ialloc will handle it.
445 if (xfs_iflags_test(ip
, XFS_INEW
) && ip
->i_d
.di_mode
!= 0)
446 xfs_setup_existing_inode(ip
);
450 if (error
== -EAGAIN
) {
459 * The inode lookup is done in batches to keep the amount of lock traffic and
460 * radix tree lookups to a minimum. The batch size is a trade off between
461 * lookup reduction and stack usage. This is in the reclaim path, so we can't
464 #define XFS_LOOKUP_BATCH 32
467 xfs_inode_ag_walk_grab(
468 struct xfs_inode
*ip
)
470 struct inode
*inode
= VFS_I(ip
);
472 ASSERT(rcu_read_lock_held());
475 * check for stale RCU freed inode
477 * If the inode has been reallocated, it doesn't matter if it's not in
478 * the AG we are walking - we are walking for writeback, so if it
479 * passes all the "valid inode" checks and is dirty, then we'll write
480 * it back anyway. If it has been reallocated and still being
481 * initialised, the XFS_INEW check below will catch it.
483 spin_lock(&ip
->i_flags_lock
);
485 goto out_unlock_noent
;
487 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
488 if (__xfs_iflags_test(ip
, XFS_INEW
| XFS_IRECLAIMABLE
| XFS_IRECLAIM
))
489 goto out_unlock_noent
;
490 spin_unlock(&ip
->i_flags_lock
);
492 /* nothing to sync during shutdown */
493 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
))
494 return -EFSCORRUPTED
;
496 /* If we can't grab the inode, it must on it's way to reclaim. */
504 spin_unlock(&ip
->i_flags_lock
);
510 struct xfs_mount
*mp
,
511 struct xfs_perag
*pag
,
512 int (*execute
)(struct xfs_inode
*ip
, int flags
,
518 uint32_t first_index
;
530 struct xfs_inode
*batch
[XFS_LOOKUP_BATCH
];
537 nr_found
= radix_tree_gang_lookup(&pag
->pag_ici_root
,
538 (void **)batch
, first_index
,
541 nr_found
= radix_tree_gang_lookup_tag(
543 (void **) batch
, first_index
,
544 XFS_LOOKUP_BATCH
, tag
);
552 * Grab the inodes before we drop the lock. if we found
553 * nothing, nr == 0 and the loop will be skipped.
555 for (i
= 0; i
< nr_found
; i
++) {
556 struct xfs_inode
*ip
= batch
[i
];
558 if (done
|| xfs_inode_ag_walk_grab(ip
))
562 * Update the index for the next lookup. Catch
563 * overflows into the next AG range which can occur if
564 * we have inodes in the last block of the AG and we
565 * are currently pointing to the last inode.
567 * Because we may see inodes that are from the wrong AG
568 * due to RCU freeing and reallocation, only update the
569 * index if it lies in this AG. It was a race that lead
570 * us to see this inode, so another lookup from the
571 * same index will not find it again.
573 if (XFS_INO_TO_AGNO(mp
, ip
->i_ino
) != pag
->pag_agno
)
575 first_index
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
+ 1);
576 if (first_index
< XFS_INO_TO_AGINO(mp
, ip
->i_ino
))
580 /* unlock now we've grabbed the inodes. */
583 for (i
= 0; i
< nr_found
; i
++) {
586 error
= execute(batch
[i
], flags
, args
);
588 if (error
== -EAGAIN
) {
592 if (error
&& last_error
!= -EFSCORRUPTED
)
596 /* bail out if the filesystem is corrupted. */
597 if (error
== -EFSCORRUPTED
)
602 } while (nr_found
&& !done
);
612 * Background scanning to trim post-EOF preallocated space. This is queued
613 * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
617 struct xfs_mount
*mp
)
620 if (radix_tree_tagged(&mp
->m_perag_tree
, XFS_ICI_EOFBLOCKS_TAG
))
621 queue_delayed_work(mp
->m_eofblocks_workqueue
,
622 &mp
->m_eofblocks_work
,
623 msecs_to_jiffies(xfs_eofb_secs
* 1000));
628 xfs_eofblocks_worker(
629 struct work_struct
*work
)
631 struct xfs_mount
*mp
= container_of(to_delayed_work(work
),
632 struct xfs_mount
, m_eofblocks_work
);
633 xfs_icache_free_eofblocks(mp
, NULL
);
634 xfs_queue_eofblocks(mp
);
638 xfs_inode_ag_iterator(
639 struct xfs_mount
*mp
,
640 int (*execute
)(struct xfs_inode
*ip
, int flags
,
645 struct xfs_perag
*pag
;
651 while ((pag
= xfs_perag_get(mp
, ag
))) {
652 ag
= pag
->pag_agno
+ 1;
653 error
= xfs_inode_ag_walk(mp
, pag
, execute
, flags
, args
, -1);
657 if (error
== -EFSCORRUPTED
)
665 xfs_inode_ag_iterator_tag(
666 struct xfs_mount
*mp
,
667 int (*execute
)(struct xfs_inode
*ip
, int flags
,
673 struct xfs_perag
*pag
;
679 while ((pag
= xfs_perag_get_tag(mp
, ag
, tag
))) {
680 ag
= pag
->pag_agno
+ 1;
681 error
= xfs_inode_ag_walk(mp
, pag
, execute
, flags
, args
, tag
);
685 if (error
== -EFSCORRUPTED
)
693 * Queue a new inode reclaim pass if there are reclaimable inodes and there
694 * isn't a reclaim pass already in progress. By default it runs every 5s based
695 * on the xfs periodic sync default of 30s. Perhaps this should have it's own
696 * tunable, but that can be done if this method proves to be ineffective or too
700 xfs_reclaim_work_queue(
701 struct xfs_mount
*mp
)
705 if (radix_tree_tagged(&mp
->m_perag_tree
, XFS_ICI_RECLAIM_TAG
)) {
706 queue_delayed_work(mp
->m_reclaim_workqueue
, &mp
->m_reclaim_work
,
707 msecs_to_jiffies(xfs_syncd_centisecs
/ 6 * 10));
713 * This is a fast pass over the inode cache to try to get reclaim moving on as
714 * many inodes as possible in a short period of time. It kicks itself every few
715 * seconds, as well as being kicked by the inode cache shrinker when memory
716 * goes low. It scans as quickly as possible avoiding locked inodes or those
717 * already being flushed, and once done schedules a future pass.
721 struct work_struct
*work
)
723 struct xfs_mount
*mp
= container_of(to_delayed_work(work
),
724 struct xfs_mount
, m_reclaim_work
);
726 xfs_reclaim_inodes(mp
, SYNC_TRYLOCK
);
727 xfs_reclaim_work_queue(mp
);
731 __xfs_inode_set_reclaim_tag(
732 struct xfs_perag
*pag
,
733 struct xfs_inode
*ip
)
735 radix_tree_tag_set(&pag
->pag_ici_root
,
736 XFS_INO_TO_AGINO(ip
->i_mount
, ip
->i_ino
),
737 XFS_ICI_RECLAIM_TAG
);
739 if (!pag
->pag_ici_reclaimable
) {
740 /* propagate the reclaim tag up into the perag radix tree */
741 spin_lock(&ip
->i_mount
->m_perag_lock
);
742 radix_tree_tag_set(&ip
->i_mount
->m_perag_tree
,
743 XFS_INO_TO_AGNO(ip
->i_mount
, ip
->i_ino
),
744 XFS_ICI_RECLAIM_TAG
);
745 spin_unlock(&ip
->i_mount
->m_perag_lock
);
747 /* schedule periodic background inode reclaim */
748 xfs_reclaim_work_queue(ip
->i_mount
);
750 trace_xfs_perag_set_reclaim(ip
->i_mount
, pag
->pag_agno
,
753 pag
->pag_ici_reclaimable
++;
757 * We set the inode flag atomically with the radix tree tag.
758 * Once we get tag lookups on the radix tree, this inode flag
762 xfs_inode_set_reclaim_tag(
765 struct xfs_mount
*mp
= ip
->i_mount
;
766 struct xfs_perag
*pag
;
768 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
));
769 spin_lock(&pag
->pag_ici_lock
);
770 spin_lock(&ip
->i_flags_lock
);
771 __xfs_inode_set_reclaim_tag(pag
, ip
);
772 __xfs_iflags_set(ip
, XFS_IRECLAIMABLE
);
773 spin_unlock(&ip
->i_flags_lock
);
774 spin_unlock(&pag
->pag_ici_lock
);
779 __xfs_inode_clear_reclaim(
783 pag
->pag_ici_reclaimable
--;
784 if (!pag
->pag_ici_reclaimable
) {
785 /* clear the reclaim tag from the perag radix tree */
786 spin_lock(&ip
->i_mount
->m_perag_lock
);
787 radix_tree_tag_clear(&ip
->i_mount
->m_perag_tree
,
788 XFS_INO_TO_AGNO(ip
->i_mount
, ip
->i_ino
),
789 XFS_ICI_RECLAIM_TAG
);
790 spin_unlock(&ip
->i_mount
->m_perag_lock
);
791 trace_xfs_perag_clear_reclaim(ip
->i_mount
, pag
->pag_agno
,
797 __xfs_inode_clear_reclaim_tag(
802 radix_tree_tag_clear(&pag
->pag_ici_root
,
803 XFS_INO_TO_AGINO(mp
, ip
->i_ino
), XFS_ICI_RECLAIM_TAG
);
804 __xfs_inode_clear_reclaim(pag
, ip
);
808 * Grab the inode for reclaim exclusively.
809 * Return 0 if we grabbed it, non-zero otherwise.
812 xfs_reclaim_inode_grab(
813 struct xfs_inode
*ip
,
816 ASSERT(rcu_read_lock_held());
818 /* quick check for stale RCU freed inode */
823 * If we are asked for non-blocking operation, do unlocked checks to
824 * see if the inode already is being flushed or in reclaim to avoid
827 if ((flags
& SYNC_TRYLOCK
) &&
828 __xfs_iflags_test(ip
, XFS_IFLOCK
| XFS_IRECLAIM
))
832 * The radix tree lock here protects a thread in xfs_iget from racing
833 * with us starting reclaim on the inode. Once we have the
834 * XFS_IRECLAIM flag set it will not touch us.
836 * Due to RCU lookup, we may find inodes that have been freed and only
837 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that
838 * aren't candidates for reclaim at all, so we must check the
839 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
841 spin_lock(&ip
->i_flags_lock
);
842 if (!__xfs_iflags_test(ip
, XFS_IRECLAIMABLE
) ||
843 __xfs_iflags_test(ip
, XFS_IRECLAIM
)) {
844 /* not a reclaim candidate. */
845 spin_unlock(&ip
->i_flags_lock
);
848 __xfs_iflags_set(ip
, XFS_IRECLAIM
);
849 spin_unlock(&ip
->i_flags_lock
);
854 * Inodes in different states need to be treated differently. The following
855 * table lists the inode states and the reclaim actions necessary:
857 * inode state iflush ret required action
858 * --------------- ---------- ---------------
860 * shutdown EIO unpin and reclaim
861 * clean, unpinned 0 reclaim
862 * stale, unpinned 0 reclaim
863 * clean, pinned(*) 0 requeue
864 * stale, pinned EAGAIN requeue
865 * dirty, async - requeue
866 * dirty, sync 0 reclaim
868 * (*) dgc: I don't think the clean, pinned state is possible but it gets
869 * handled anyway given the order of checks implemented.
871 * Also, because we get the flush lock first, we know that any inode that has
872 * been flushed delwri has had the flush completed by the time we check that
873 * the inode is clean.
875 * Note that because the inode is flushed delayed write by AIL pushing, the
876 * flush lock may already be held here and waiting on it can result in very
877 * long latencies. Hence for sync reclaims, where we wait on the flush lock,
878 * the caller should push the AIL first before trying to reclaim inodes to
879 * minimise the amount of time spent waiting. For background relaim, we only
880 * bother to reclaim clean inodes anyway.
882 * Hence the order of actions after gaining the locks should be:
884 * shutdown => unpin and reclaim
885 * pinned, async => requeue
886 * pinned, sync => unpin
889 * dirty, async => requeue
890 * dirty, sync => flush, wait and reclaim
894 struct xfs_inode
*ip
,
895 struct xfs_perag
*pag
,
898 struct xfs_buf
*bp
= NULL
;
903 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
904 if (!xfs_iflock_nowait(ip
)) {
905 if (!(sync_mode
& SYNC_WAIT
))
910 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
)) {
912 xfs_iflush_abort(ip
, false);
915 if (xfs_ipincount(ip
)) {
916 if (!(sync_mode
& SYNC_WAIT
))
920 if (xfs_iflags_test(ip
, XFS_ISTALE
))
922 if (xfs_inode_clean(ip
))
926 * Never flush out dirty data during non-blocking reclaim, as it would
927 * just contend with AIL pushing trying to do the same job.
929 if (!(sync_mode
& SYNC_WAIT
))
933 * Now we have an inode that needs flushing.
935 * Note that xfs_iflush will never block on the inode buffer lock, as
936 * xfs_ifree_cluster() can lock the inode buffer before it locks the
937 * ip->i_lock, and we are doing the exact opposite here. As a result,
938 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
939 * result in an ABBA deadlock with xfs_ifree_cluster().
941 * As xfs_ifree_cluser() must gather all inodes that are active in the
942 * cache to mark them stale, if we hit this case we don't actually want
943 * to do IO here - we want the inode marked stale so we can simply
944 * reclaim it. Hence if we get an EAGAIN error here, just unlock the
945 * inode, back off and try again. Hopefully the next pass through will
946 * see the stale flag set on the inode.
948 error
= xfs_iflush(ip
, &bp
);
949 if (error
== -EAGAIN
) {
950 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
951 /* backoff longer than in xfs_ifree_cluster */
957 error
= xfs_bwrite(bp
);
964 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
966 XFS_STATS_INC(xs_ig_reclaims
);
968 * Remove the inode from the per-AG radix tree.
970 * Because radix_tree_delete won't complain even if the item was never
971 * added to the tree assert that it's been there before to catch
972 * problems with the inode life time early on.
974 spin_lock(&pag
->pag_ici_lock
);
975 if (!radix_tree_delete(&pag
->pag_ici_root
,
976 XFS_INO_TO_AGINO(ip
->i_mount
, ip
->i_ino
)))
978 __xfs_inode_clear_reclaim(pag
, ip
);
979 spin_unlock(&pag
->pag_ici_lock
);
982 * Here we do an (almost) spurious inode lock in order to coordinate
983 * with inode cache radix tree lookups. This is because the lookup
984 * can reference the inodes in the cache without taking references.
986 * We make that OK here by ensuring that we wait until the inode is
987 * unlocked after the lookup before we go ahead and free it.
989 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
991 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
999 xfs_iflags_clear(ip
, XFS_IRECLAIM
);
1000 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1002 * We could return -EAGAIN here to make reclaim rescan the inode tree in
1003 * a short while. However, this just burns CPU time scanning the tree
1004 * waiting for IO to complete and the reclaim work never goes back to
1005 * the idle state. Instead, return 0 to let the next scheduled
1006 * background reclaim attempt to reclaim the inode again.
1012 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
1013 * corrupted, we still want to try to reclaim all the inodes. If we don't,
1014 * then a shut down during filesystem unmount reclaim walk leak all the
1015 * unreclaimed inodes.
1018 xfs_reclaim_inodes_ag(
1019 struct xfs_mount
*mp
,
1023 struct xfs_perag
*pag
;
1027 int trylock
= flags
& SYNC_TRYLOCK
;
1033 while ((pag
= xfs_perag_get_tag(mp
, ag
, XFS_ICI_RECLAIM_TAG
))) {
1034 unsigned long first_index
= 0;
1038 ag
= pag
->pag_agno
+ 1;
1041 if (!mutex_trylock(&pag
->pag_ici_reclaim_lock
)) {
1046 first_index
= pag
->pag_ici_reclaim_cursor
;
1048 mutex_lock(&pag
->pag_ici_reclaim_lock
);
1051 struct xfs_inode
*batch
[XFS_LOOKUP_BATCH
];
1055 nr_found
= radix_tree_gang_lookup_tag(
1057 (void **)batch
, first_index
,
1059 XFS_ICI_RECLAIM_TAG
);
1067 * Grab the inodes before we drop the lock. if we found
1068 * nothing, nr == 0 and the loop will be skipped.
1070 for (i
= 0; i
< nr_found
; i
++) {
1071 struct xfs_inode
*ip
= batch
[i
];
1073 if (done
|| xfs_reclaim_inode_grab(ip
, flags
))
1077 * Update the index for the next lookup. Catch
1078 * overflows into the next AG range which can
1079 * occur if we have inodes in the last block of
1080 * the AG and we are currently pointing to the
1083 * Because we may see inodes that are from the
1084 * wrong AG due to RCU freeing and
1085 * reallocation, only update the index if it
1086 * lies in this AG. It was a race that lead us
1087 * to see this inode, so another lookup from
1088 * the same index will not find it again.
1090 if (XFS_INO_TO_AGNO(mp
, ip
->i_ino
) !=
1093 first_index
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
+ 1);
1094 if (first_index
< XFS_INO_TO_AGINO(mp
, ip
->i_ino
))
1098 /* unlock now we've grabbed the inodes. */
1101 for (i
= 0; i
< nr_found
; i
++) {
1104 error
= xfs_reclaim_inode(batch
[i
], pag
, flags
);
1105 if (error
&& last_error
!= -EFSCORRUPTED
)
1109 *nr_to_scan
-= XFS_LOOKUP_BATCH
;
1113 } while (nr_found
&& !done
&& *nr_to_scan
> 0);
1115 if (trylock
&& !done
)
1116 pag
->pag_ici_reclaim_cursor
= first_index
;
1118 pag
->pag_ici_reclaim_cursor
= 0;
1119 mutex_unlock(&pag
->pag_ici_reclaim_lock
);
1124 * if we skipped any AG, and we still have scan count remaining, do
1125 * another pass this time using blocking reclaim semantics (i.e
1126 * waiting on the reclaim locks and ignoring the reclaim cursors). This
1127 * ensure that when we get more reclaimers than AGs we block rather
1128 * than spin trying to execute reclaim.
1130 if (skipped
&& (flags
& SYNC_WAIT
) && *nr_to_scan
> 0) {
1142 int nr_to_scan
= INT_MAX
;
1144 return xfs_reclaim_inodes_ag(mp
, mode
, &nr_to_scan
);
1148 * Scan a certain number of inodes for reclaim.
1150 * When called we make sure that there is a background (fast) inode reclaim in
1151 * progress, while we will throttle the speed of reclaim via doing synchronous
1152 * reclaim of inodes. That means if we come across dirty inodes, we wait for
1153 * them to be cleaned, which we hope will not be very long due to the
1154 * background walker having already kicked the IO off on those dirty inodes.
1157 xfs_reclaim_inodes_nr(
1158 struct xfs_mount
*mp
,
1161 /* kick background reclaimer and push the AIL */
1162 xfs_reclaim_work_queue(mp
);
1163 xfs_ail_push_all(mp
->m_ail
);
1165 return xfs_reclaim_inodes_ag(mp
, SYNC_TRYLOCK
| SYNC_WAIT
, &nr_to_scan
);
1169 * Return the number of reclaimable inodes in the filesystem for
1170 * the shrinker to determine how much to reclaim.
1173 xfs_reclaim_inodes_count(
1174 struct xfs_mount
*mp
)
1176 struct xfs_perag
*pag
;
1177 xfs_agnumber_t ag
= 0;
1178 int reclaimable
= 0;
1180 while ((pag
= xfs_perag_get_tag(mp
, ag
, XFS_ICI_RECLAIM_TAG
))) {
1181 ag
= pag
->pag_agno
+ 1;
1182 reclaimable
+= pag
->pag_ici_reclaimable
;
1190 struct xfs_inode
*ip
,
1191 struct xfs_eofblocks
*eofb
)
1193 if ((eofb
->eof_flags
& XFS_EOF_FLAGS_UID
) &&
1194 !uid_eq(VFS_I(ip
)->i_uid
, eofb
->eof_uid
))
1197 if ((eofb
->eof_flags
& XFS_EOF_FLAGS_GID
) &&
1198 !gid_eq(VFS_I(ip
)->i_gid
, eofb
->eof_gid
))
1201 if ((eofb
->eof_flags
& XFS_EOF_FLAGS_PRID
) &&
1202 xfs_get_projid(ip
) != eofb
->eof_prid
)
1209 * A union-based inode filtering algorithm. Process the inode if any of the
1210 * criteria match. This is for global/internal scans only.
1213 xfs_inode_match_id_union(
1214 struct xfs_inode
*ip
,
1215 struct xfs_eofblocks
*eofb
)
1217 if ((eofb
->eof_flags
& XFS_EOF_FLAGS_UID
) &&
1218 uid_eq(VFS_I(ip
)->i_uid
, eofb
->eof_uid
))
1221 if ((eofb
->eof_flags
& XFS_EOF_FLAGS_GID
) &&
1222 gid_eq(VFS_I(ip
)->i_gid
, eofb
->eof_gid
))
1225 if ((eofb
->eof_flags
& XFS_EOF_FLAGS_PRID
) &&
1226 xfs_get_projid(ip
) == eofb
->eof_prid
)
1233 xfs_inode_free_eofblocks(
1234 struct xfs_inode
*ip
,
1239 struct xfs_eofblocks
*eofb
= args
;
1240 bool need_iolock
= true;
1243 ASSERT(!eofb
|| (eofb
&& eofb
->eof_scan_owner
!= 0));
1245 if (!xfs_can_free_eofblocks(ip
, false)) {
1246 /* inode could be preallocated or append-only */
1247 trace_xfs_inode_free_eofblocks_invalid(ip
);
1248 xfs_inode_clear_eofblocks_tag(ip
);
1253 * If the mapping is dirty the operation can block and wait for some
1254 * time. Unless we are waiting, skip it.
1256 if (!(flags
& SYNC_WAIT
) &&
1257 mapping_tagged(VFS_I(ip
)->i_mapping
, PAGECACHE_TAG_DIRTY
))
1261 if (eofb
->eof_flags
& XFS_EOF_FLAGS_UNION
)
1262 match
= xfs_inode_match_id_union(ip
, eofb
);
1264 match
= xfs_inode_match_id(ip
, eofb
);
1268 /* skip the inode if the file size is too small */
1269 if (eofb
->eof_flags
& XFS_EOF_FLAGS_MINFILESIZE
&&
1270 XFS_ISIZE(ip
) < eofb
->eof_min_file_size
)
1274 * A scan owner implies we already hold the iolock. Skip it in
1275 * xfs_free_eofblocks() to avoid deadlock. This also eliminates
1276 * the possibility of EAGAIN being returned.
1278 if (eofb
->eof_scan_owner
== ip
->i_ino
)
1279 need_iolock
= false;
1282 ret
= xfs_free_eofblocks(ip
->i_mount
, ip
, need_iolock
);
1284 /* don't revisit the inode if we're not waiting */
1285 if (ret
== -EAGAIN
&& !(flags
& SYNC_WAIT
))
1292 xfs_icache_free_eofblocks(
1293 struct xfs_mount
*mp
,
1294 struct xfs_eofblocks
*eofb
)
1296 int flags
= SYNC_TRYLOCK
;
1298 if (eofb
&& (eofb
->eof_flags
& XFS_EOF_FLAGS_SYNC
))
1301 return xfs_inode_ag_iterator_tag(mp
, xfs_inode_free_eofblocks
, flags
,
1302 eofb
, XFS_ICI_EOFBLOCKS_TAG
);
1306 * Run eofblocks scans on the quotas applicable to the inode. For inodes with
1307 * multiple quotas, we don't know exactly which quota caused an allocation
1308 * failure. We make a best effort by including each quota under low free space
1309 * conditions (less than 1% free space) in the scan.
1312 xfs_inode_free_quota_eofblocks(
1313 struct xfs_inode
*ip
)
1316 struct xfs_eofblocks eofb
= {0};
1317 struct xfs_dquot
*dq
;
1319 ASSERT(xfs_isilocked(ip
, XFS_IOLOCK_EXCL
));
1322 * Set the scan owner to avoid a potential livelock. Otherwise, the scan
1323 * can repeatedly trylock on the inode we're currently processing. We
1324 * run a sync scan to increase effectiveness and use the union filter to
1325 * cover all applicable quotas in a single scan.
1327 eofb
.eof_scan_owner
= ip
->i_ino
;
1328 eofb
.eof_flags
= XFS_EOF_FLAGS_UNION
|XFS_EOF_FLAGS_SYNC
;
1330 if (XFS_IS_UQUOTA_ENFORCED(ip
->i_mount
)) {
1331 dq
= xfs_inode_dquot(ip
, XFS_DQ_USER
);
1332 if (dq
&& xfs_dquot_lowsp(dq
)) {
1333 eofb
.eof_uid
= VFS_I(ip
)->i_uid
;
1334 eofb
.eof_flags
|= XFS_EOF_FLAGS_UID
;
1339 if (XFS_IS_GQUOTA_ENFORCED(ip
->i_mount
)) {
1340 dq
= xfs_inode_dquot(ip
, XFS_DQ_GROUP
);
1341 if (dq
&& xfs_dquot_lowsp(dq
)) {
1342 eofb
.eof_gid
= VFS_I(ip
)->i_gid
;
1343 eofb
.eof_flags
|= XFS_EOF_FLAGS_GID
;
1349 xfs_icache_free_eofblocks(ip
->i_mount
, &eofb
);
1355 xfs_inode_set_eofblocks_tag(
1358 struct xfs_mount
*mp
= ip
->i_mount
;
1359 struct xfs_perag
*pag
;
1362 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
));
1363 spin_lock(&pag
->pag_ici_lock
);
1364 trace_xfs_inode_set_eofblocks_tag(ip
);
1366 tagged
= radix_tree_tagged(&pag
->pag_ici_root
,
1367 XFS_ICI_EOFBLOCKS_TAG
);
1368 radix_tree_tag_set(&pag
->pag_ici_root
,
1369 XFS_INO_TO_AGINO(ip
->i_mount
, ip
->i_ino
),
1370 XFS_ICI_EOFBLOCKS_TAG
);
1372 /* propagate the eofblocks tag up into the perag radix tree */
1373 spin_lock(&ip
->i_mount
->m_perag_lock
);
1374 radix_tree_tag_set(&ip
->i_mount
->m_perag_tree
,
1375 XFS_INO_TO_AGNO(ip
->i_mount
, ip
->i_ino
),
1376 XFS_ICI_EOFBLOCKS_TAG
);
1377 spin_unlock(&ip
->i_mount
->m_perag_lock
);
1379 /* kick off background trimming */
1380 xfs_queue_eofblocks(ip
->i_mount
);
1382 trace_xfs_perag_set_eofblocks(ip
->i_mount
, pag
->pag_agno
,
1386 spin_unlock(&pag
->pag_ici_lock
);
1391 xfs_inode_clear_eofblocks_tag(
1394 struct xfs_mount
*mp
= ip
->i_mount
;
1395 struct xfs_perag
*pag
;
1397 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
));
1398 spin_lock(&pag
->pag_ici_lock
);
1399 trace_xfs_inode_clear_eofblocks_tag(ip
);
1401 radix_tree_tag_clear(&pag
->pag_ici_root
,
1402 XFS_INO_TO_AGINO(ip
->i_mount
, ip
->i_ino
),
1403 XFS_ICI_EOFBLOCKS_TAG
);
1404 if (!radix_tree_tagged(&pag
->pag_ici_root
, XFS_ICI_EOFBLOCKS_TAG
)) {
1405 /* clear the eofblocks tag from the perag radix tree */
1406 spin_lock(&ip
->i_mount
->m_perag_lock
);
1407 radix_tree_tag_clear(&ip
->i_mount
->m_perag_tree
,
1408 XFS_INO_TO_AGNO(ip
->i_mount
, ip
->i_ino
),
1409 XFS_ICI_EOFBLOCKS_TAG
);
1410 spin_unlock(&ip
->i_mount
->m_perag_lock
);
1411 trace_xfs_perag_clear_eofblocks(ip
->i_mount
, pag
->pag_agno
,
1415 spin_unlock(&pag
->pag_ici_lock
);