Merge branch 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/evalenti/linux...
[linux/fpc-iii.git] / mm / swapfile.c
blob83874eced5bfa0ac4c889cb0d65ecf22cfa24af0
1 /*
2 * linux/mm/swapfile.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34 #include <linux/frontswap.h>
35 #include <linux/swapfile.h>
36 #include <linux/export.h>
38 #include <asm/pgtable.h>
39 #include <asm/tlbflush.h>
40 #include <linux/swapops.h>
41 #include <linux/swap_cgroup.h>
43 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
44 unsigned char);
45 static void free_swap_count_continuations(struct swap_info_struct *);
46 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
48 DEFINE_SPINLOCK(swap_lock);
49 static unsigned int nr_swapfiles;
50 atomic_long_t nr_swap_pages;
52 * Some modules use swappable objects and may try to swap them out under
53 * memory pressure (via the shrinker). Before doing so, they may wish to
54 * check to see if any swap space is available.
56 EXPORT_SYMBOL_GPL(nr_swap_pages);
57 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
58 long total_swap_pages;
59 static int least_priority;
61 static const char Bad_file[] = "Bad swap file entry ";
62 static const char Unused_file[] = "Unused swap file entry ";
63 static const char Bad_offset[] = "Bad swap offset entry ";
64 static const char Unused_offset[] = "Unused swap offset entry ";
67 * all active swap_info_structs
68 * protected with swap_lock, and ordered by priority.
70 PLIST_HEAD(swap_active_head);
73 * all available (active, not full) swap_info_structs
74 * protected with swap_avail_lock, ordered by priority.
75 * This is used by get_swap_page() instead of swap_active_head
76 * because swap_active_head includes all swap_info_structs,
77 * but get_swap_page() doesn't need to look at full ones.
78 * This uses its own lock instead of swap_lock because when a
79 * swap_info_struct changes between not-full/full, it needs to
80 * add/remove itself to/from this list, but the swap_info_struct->lock
81 * is held and the locking order requires swap_lock to be taken
82 * before any swap_info_struct->lock.
84 static PLIST_HEAD(swap_avail_head);
85 static DEFINE_SPINLOCK(swap_avail_lock);
87 struct swap_info_struct *swap_info[MAX_SWAPFILES];
89 static DEFINE_MUTEX(swapon_mutex);
91 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
92 /* Activity counter to indicate that a swapon or swapoff has occurred */
93 static atomic_t proc_poll_event = ATOMIC_INIT(0);
95 static inline unsigned char swap_count(unsigned char ent)
97 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
100 /* returns 1 if swap entry is freed */
101 static int
102 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
104 swp_entry_t entry = swp_entry(si->type, offset);
105 struct page *page;
106 int ret = 0;
108 page = find_get_page(swap_address_space(entry), entry.val);
109 if (!page)
110 return 0;
112 * This function is called from scan_swap_map() and it's called
113 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
114 * We have to use trylock for avoiding deadlock. This is a special
115 * case and you should use try_to_free_swap() with explicit lock_page()
116 * in usual operations.
118 if (trylock_page(page)) {
119 ret = try_to_free_swap(page);
120 unlock_page(page);
122 put_page(page);
123 return ret;
127 * swapon tell device that all the old swap contents can be discarded,
128 * to allow the swap device to optimize its wear-levelling.
130 static int discard_swap(struct swap_info_struct *si)
132 struct swap_extent *se;
133 sector_t start_block;
134 sector_t nr_blocks;
135 int err = 0;
137 /* Do not discard the swap header page! */
138 se = &si->first_swap_extent;
139 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
140 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
141 if (nr_blocks) {
142 err = blkdev_issue_discard(si->bdev, start_block,
143 nr_blocks, GFP_KERNEL, 0);
144 if (err)
145 return err;
146 cond_resched();
149 list_for_each_entry(se, &si->first_swap_extent.list, list) {
150 start_block = se->start_block << (PAGE_SHIFT - 9);
151 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
153 err = blkdev_issue_discard(si->bdev, start_block,
154 nr_blocks, GFP_KERNEL, 0);
155 if (err)
156 break;
158 cond_resched();
160 return err; /* That will often be -EOPNOTSUPP */
164 * swap allocation tell device that a cluster of swap can now be discarded,
165 * to allow the swap device to optimize its wear-levelling.
167 static void discard_swap_cluster(struct swap_info_struct *si,
168 pgoff_t start_page, pgoff_t nr_pages)
170 struct swap_extent *se = si->curr_swap_extent;
171 int found_extent = 0;
173 while (nr_pages) {
174 if (se->start_page <= start_page &&
175 start_page < se->start_page + se->nr_pages) {
176 pgoff_t offset = start_page - se->start_page;
177 sector_t start_block = se->start_block + offset;
178 sector_t nr_blocks = se->nr_pages - offset;
180 if (nr_blocks > nr_pages)
181 nr_blocks = nr_pages;
182 start_page += nr_blocks;
183 nr_pages -= nr_blocks;
185 if (!found_extent++)
186 si->curr_swap_extent = se;
188 start_block <<= PAGE_SHIFT - 9;
189 nr_blocks <<= PAGE_SHIFT - 9;
190 if (blkdev_issue_discard(si->bdev, start_block,
191 nr_blocks, GFP_NOIO, 0))
192 break;
195 se = list_next_entry(se, list);
199 #define SWAPFILE_CLUSTER 256
200 #define LATENCY_LIMIT 256
202 static inline void cluster_set_flag(struct swap_cluster_info *info,
203 unsigned int flag)
205 info->flags = flag;
208 static inline unsigned int cluster_count(struct swap_cluster_info *info)
210 return info->data;
213 static inline void cluster_set_count(struct swap_cluster_info *info,
214 unsigned int c)
216 info->data = c;
219 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
220 unsigned int c, unsigned int f)
222 info->flags = f;
223 info->data = c;
226 static inline unsigned int cluster_next(struct swap_cluster_info *info)
228 return info->data;
231 static inline void cluster_set_next(struct swap_cluster_info *info,
232 unsigned int n)
234 info->data = n;
237 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
238 unsigned int n, unsigned int f)
240 info->flags = f;
241 info->data = n;
244 static inline bool cluster_is_free(struct swap_cluster_info *info)
246 return info->flags & CLUSTER_FLAG_FREE;
249 static inline bool cluster_is_null(struct swap_cluster_info *info)
251 return info->flags & CLUSTER_FLAG_NEXT_NULL;
254 static inline void cluster_set_null(struct swap_cluster_info *info)
256 info->flags = CLUSTER_FLAG_NEXT_NULL;
257 info->data = 0;
260 /* Add a cluster to discard list and schedule it to do discard */
261 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
262 unsigned int idx)
265 * If scan_swap_map() can't find a free cluster, it will check
266 * si->swap_map directly. To make sure the discarding cluster isn't
267 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
268 * will be cleared after discard
270 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
271 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
273 if (cluster_is_null(&si->discard_cluster_head)) {
274 cluster_set_next_flag(&si->discard_cluster_head,
275 idx, 0);
276 cluster_set_next_flag(&si->discard_cluster_tail,
277 idx, 0);
278 } else {
279 unsigned int tail = cluster_next(&si->discard_cluster_tail);
280 cluster_set_next(&si->cluster_info[tail], idx);
281 cluster_set_next_flag(&si->discard_cluster_tail,
282 idx, 0);
285 schedule_work(&si->discard_work);
289 * Doing discard actually. After a cluster discard is finished, the cluster
290 * will be added to free cluster list. caller should hold si->lock.
292 static void swap_do_scheduled_discard(struct swap_info_struct *si)
294 struct swap_cluster_info *info;
295 unsigned int idx;
297 info = si->cluster_info;
299 while (!cluster_is_null(&si->discard_cluster_head)) {
300 idx = cluster_next(&si->discard_cluster_head);
302 cluster_set_next_flag(&si->discard_cluster_head,
303 cluster_next(&info[idx]), 0);
304 if (cluster_next(&si->discard_cluster_tail) == idx) {
305 cluster_set_null(&si->discard_cluster_head);
306 cluster_set_null(&si->discard_cluster_tail);
308 spin_unlock(&si->lock);
310 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
311 SWAPFILE_CLUSTER);
313 spin_lock(&si->lock);
314 cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE);
315 if (cluster_is_null(&si->free_cluster_head)) {
316 cluster_set_next_flag(&si->free_cluster_head,
317 idx, 0);
318 cluster_set_next_flag(&si->free_cluster_tail,
319 idx, 0);
320 } else {
321 unsigned int tail;
323 tail = cluster_next(&si->free_cluster_tail);
324 cluster_set_next(&info[tail], idx);
325 cluster_set_next_flag(&si->free_cluster_tail,
326 idx, 0);
328 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
329 0, SWAPFILE_CLUSTER);
333 static void swap_discard_work(struct work_struct *work)
335 struct swap_info_struct *si;
337 si = container_of(work, struct swap_info_struct, discard_work);
339 spin_lock(&si->lock);
340 swap_do_scheduled_discard(si);
341 spin_unlock(&si->lock);
345 * The cluster corresponding to page_nr will be used. The cluster will be
346 * removed from free cluster list and its usage counter will be increased.
348 static void inc_cluster_info_page(struct swap_info_struct *p,
349 struct swap_cluster_info *cluster_info, unsigned long page_nr)
351 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
353 if (!cluster_info)
354 return;
355 if (cluster_is_free(&cluster_info[idx])) {
356 VM_BUG_ON(cluster_next(&p->free_cluster_head) != idx);
357 cluster_set_next_flag(&p->free_cluster_head,
358 cluster_next(&cluster_info[idx]), 0);
359 if (cluster_next(&p->free_cluster_tail) == idx) {
360 cluster_set_null(&p->free_cluster_tail);
361 cluster_set_null(&p->free_cluster_head);
363 cluster_set_count_flag(&cluster_info[idx], 0, 0);
366 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
367 cluster_set_count(&cluster_info[idx],
368 cluster_count(&cluster_info[idx]) + 1);
372 * The cluster corresponding to page_nr decreases one usage. If the usage
373 * counter becomes 0, which means no page in the cluster is in using, we can
374 * optionally discard the cluster and add it to free cluster list.
376 static void dec_cluster_info_page(struct swap_info_struct *p,
377 struct swap_cluster_info *cluster_info, unsigned long page_nr)
379 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
381 if (!cluster_info)
382 return;
384 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
385 cluster_set_count(&cluster_info[idx],
386 cluster_count(&cluster_info[idx]) - 1);
388 if (cluster_count(&cluster_info[idx]) == 0) {
390 * If the swap is discardable, prepare discard the cluster
391 * instead of free it immediately. The cluster will be freed
392 * after discard.
394 if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
395 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
396 swap_cluster_schedule_discard(p, idx);
397 return;
400 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
401 if (cluster_is_null(&p->free_cluster_head)) {
402 cluster_set_next_flag(&p->free_cluster_head, idx, 0);
403 cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
404 } else {
405 unsigned int tail = cluster_next(&p->free_cluster_tail);
406 cluster_set_next(&cluster_info[tail], idx);
407 cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
413 * It's possible scan_swap_map() uses a free cluster in the middle of free
414 * cluster list. Avoiding such abuse to avoid list corruption.
416 static bool
417 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
418 unsigned long offset)
420 struct percpu_cluster *percpu_cluster;
421 bool conflict;
423 offset /= SWAPFILE_CLUSTER;
424 conflict = !cluster_is_null(&si->free_cluster_head) &&
425 offset != cluster_next(&si->free_cluster_head) &&
426 cluster_is_free(&si->cluster_info[offset]);
428 if (!conflict)
429 return false;
431 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
432 cluster_set_null(&percpu_cluster->index);
433 return true;
437 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
438 * might involve allocating a new cluster for current CPU too.
440 static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
441 unsigned long *offset, unsigned long *scan_base)
443 struct percpu_cluster *cluster;
444 bool found_free;
445 unsigned long tmp;
447 new_cluster:
448 cluster = this_cpu_ptr(si->percpu_cluster);
449 if (cluster_is_null(&cluster->index)) {
450 if (!cluster_is_null(&si->free_cluster_head)) {
451 cluster->index = si->free_cluster_head;
452 cluster->next = cluster_next(&cluster->index) *
453 SWAPFILE_CLUSTER;
454 } else if (!cluster_is_null(&si->discard_cluster_head)) {
456 * we don't have free cluster but have some clusters in
457 * discarding, do discard now and reclaim them
459 swap_do_scheduled_discard(si);
460 *scan_base = *offset = si->cluster_next;
461 goto new_cluster;
462 } else
463 return;
466 found_free = false;
469 * Other CPUs can use our cluster if they can't find a free cluster,
470 * check if there is still free entry in the cluster
472 tmp = cluster->next;
473 while (tmp < si->max && tmp < (cluster_next(&cluster->index) + 1) *
474 SWAPFILE_CLUSTER) {
475 if (!si->swap_map[tmp]) {
476 found_free = true;
477 break;
479 tmp++;
481 if (!found_free) {
482 cluster_set_null(&cluster->index);
483 goto new_cluster;
485 cluster->next = tmp + 1;
486 *offset = tmp;
487 *scan_base = tmp;
490 static unsigned long scan_swap_map(struct swap_info_struct *si,
491 unsigned char usage)
493 unsigned long offset;
494 unsigned long scan_base;
495 unsigned long last_in_cluster = 0;
496 int latency_ration = LATENCY_LIMIT;
499 * We try to cluster swap pages by allocating them sequentially
500 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
501 * way, however, we resort to first-free allocation, starting
502 * a new cluster. This prevents us from scattering swap pages
503 * all over the entire swap partition, so that we reduce
504 * overall disk seek times between swap pages. -- sct
505 * But we do now try to find an empty cluster. -Andrea
506 * And we let swap pages go all over an SSD partition. Hugh
509 si->flags += SWP_SCANNING;
510 scan_base = offset = si->cluster_next;
512 /* SSD algorithm */
513 if (si->cluster_info) {
514 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
515 goto checks;
518 if (unlikely(!si->cluster_nr--)) {
519 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
520 si->cluster_nr = SWAPFILE_CLUSTER - 1;
521 goto checks;
524 spin_unlock(&si->lock);
527 * If seek is expensive, start searching for new cluster from
528 * start of partition, to minimize the span of allocated swap.
529 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
530 * case, just handled by scan_swap_map_try_ssd_cluster() above.
532 scan_base = offset = si->lowest_bit;
533 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
535 /* Locate the first empty (unaligned) cluster */
536 for (; last_in_cluster <= si->highest_bit; offset++) {
537 if (si->swap_map[offset])
538 last_in_cluster = offset + SWAPFILE_CLUSTER;
539 else if (offset == last_in_cluster) {
540 spin_lock(&si->lock);
541 offset -= SWAPFILE_CLUSTER - 1;
542 si->cluster_next = offset;
543 si->cluster_nr = SWAPFILE_CLUSTER - 1;
544 goto checks;
546 if (unlikely(--latency_ration < 0)) {
547 cond_resched();
548 latency_ration = LATENCY_LIMIT;
552 offset = scan_base;
553 spin_lock(&si->lock);
554 si->cluster_nr = SWAPFILE_CLUSTER - 1;
557 checks:
558 if (si->cluster_info) {
559 while (scan_swap_map_ssd_cluster_conflict(si, offset))
560 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
562 if (!(si->flags & SWP_WRITEOK))
563 goto no_page;
564 if (!si->highest_bit)
565 goto no_page;
566 if (offset > si->highest_bit)
567 scan_base = offset = si->lowest_bit;
569 /* reuse swap entry of cache-only swap if not busy. */
570 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
571 int swap_was_freed;
572 spin_unlock(&si->lock);
573 swap_was_freed = __try_to_reclaim_swap(si, offset);
574 spin_lock(&si->lock);
575 /* entry was freed successfully, try to use this again */
576 if (swap_was_freed)
577 goto checks;
578 goto scan; /* check next one */
581 if (si->swap_map[offset])
582 goto scan;
584 if (offset == si->lowest_bit)
585 si->lowest_bit++;
586 if (offset == si->highest_bit)
587 si->highest_bit--;
588 si->inuse_pages++;
589 if (si->inuse_pages == si->pages) {
590 si->lowest_bit = si->max;
591 si->highest_bit = 0;
592 spin_lock(&swap_avail_lock);
593 plist_del(&si->avail_list, &swap_avail_head);
594 spin_unlock(&swap_avail_lock);
596 si->swap_map[offset] = usage;
597 inc_cluster_info_page(si, si->cluster_info, offset);
598 si->cluster_next = offset + 1;
599 si->flags -= SWP_SCANNING;
601 return offset;
603 scan:
604 spin_unlock(&si->lock);
605 while (++offset <= si->highest_bit) {
606 if (!si->swap_map[offset]) {
607 spin_lock(&si->lock);
608 goto checks;
610 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
611 spin_lock(&si->lock);
612 goto checks;
614 if (unlikely(--latency_ration < 0)) {
615 cond_resched();
616 latency_ration = LATENCY_LIMIT;
619 offset = si->lowest_bit;
620 while (offset < scan_base) {
621 if (!si->swap_map[offset]) {
622 spin_lock(&si->lock);
623 goto checks;
625 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
626 spin_lock(&si->lock);
627 goto checks;
629 if (unlikely(--latency_ration < 0)) {
630 cond_resched();
631 latency_ration = LATENCY_LIMIT;
633 offset++;
635 spin_lock(&si->lock);
637 no_page:
638 si->flags -= SWP_SCANNING;
639 return 0;
642 swp_entry_t get_swap_page(void)
644 struct swap_info_struct *si, *next;
645 pgoff_t offset;
647 if (atomic_long_read(&nr_swap_pages) <= 0)
648 goto noswap;
649 atomic_long_dec(&nr_swap_pages);
651 spin_lock(&swap_avail_lock);
653 start_over:
654 plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
655 /* requeue si to after same-priority siblings */
656 plist_requeue(&si->avail_list, &swap_avail_head);
657 spin_unlock(&swap_avail_lock);
658 spin_lock(&si->lock);
659 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
660 spin_lock(&swap_avail_lock);
661 if (plist_node_empty(&si->avail_list)) {
662 spin_unlock(&si->lock);
663 goto nextsi;
665 WARN(!si->highest_bit,
666 "swap_info %d in list but !highest_bit\n",
667 si->type);
668 WARN(!(si->flags & SWP_WRITEOK),
669 "swap_info %d in list but !SWP_WRITEOK\n",
670 si->type);
671 plist_del(&si->avail_list, &swap_avail_head);
672 spin_unlock(&si->lock);
673 goto nextsi;
676 /* This is called for allocating swap entry for cache */
677 offset = scan_swap_map(si, SWAP_HAS_CACHE);
678 spin_unlock(&si->lock);
679 if (offset)
680 return swp_entry(si->type, offset);
681 pr_debug("scan_swap_map of si %d failed to find offset\n",
682 si->type);
683 spin_lock(&swap_avail_lock);
684 nextsi:
686 * if we got here, it's likely that si was almost full before,
687 * and since scan_swap_map() can drop the si->lock, multiple
688 * callers probably all tried to get a page from the same si
689 * and it filled up before we could get one; or, the si filled
690 * up between us dropping swap_avail_lock and taking si->lock.
691 * Since we dropped the swap_avail_lock, the swap_avail_head
692 * list may have been modified; so if next is still in the
693 * swap_avail_head list then try it, otherwise start over.
695 if (plist_node_empty(&next->avail_list))
696 goto start_over;
699 spin_unlock(&swap_avail_lock);
701 atomic_long_inc(&nr_swap_pages);
702 noswap:
703 return (swp_entry_t) {0};
706 /* The only caller of this function is now suspend routine */
707 swp_entry_t get_swap_page_of_type(int type)
709 struct swap_info_struct *si;
710 pgoff_t offset;
712 si = swap_info[type];
713 spin_lock(&si->lock);
714 if (si && (si->flags & SWP_WRITEOK)) {
715 atomic_long_dec(&nr_swap_pages);
716 /* This is called for allocating swap entry, not cache */
717 offset = scan_swap_map(si, 1);
718 if (offset) {
719 spin_unlock(&si->lock);
720 return swp_entry(type, offset);
722 atomic_long_inc(&nr_swap_pages);
724 spin_unlock(&si->lock);
725 return (swp_entry_t) {0};
728 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
730 struct swap_info_struct *p;
731 unsigned long offset, type;
733 if (!entry.val)
734 goto out;
735 type = swp_type(entry);
736 if (type >= nr_swapfiles)
737 goto bad_nofile;
738 p = swap_info[type];
739 if (!(p->flags & SWP_USED))
740 goto bad_device;
741 offset = swp_offset(entry);
742 if (offset >= p->max)
743 goto bad_offset;
744 if (!p->swap_map[offset])
745 goto bad_free;
746 spin_lock(&p->lock);
747 return p;
749 bad_free:
750 pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val);
751 goto out;
752 bad_offset:
753 pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val);
754 goto out;
755 bad_device:
756 pr_err("swap_free: %s%08lx\n", Unused_file, entry.val);
757 goto out;
758 bad_nofile:
759 pr_err("swap_free: %s%08lx\n", Bad_file, entry.val);
760 out:
761 return NULL;
764 static unsigned char swap_entry_free(struct swap_info_struct *p,
765 swp_entry_t entry, unsigned char usage)
767 unsigned long offset = swp_offset(entry);
768 unsigned char count;
769 unsigned char has_cache;
771 count = p->swap_map[offset];
772 has_cache = count & SWAP_HAS_CACHE;
773 count &= ~SWAP_HAS_CACHE;
775 if (usage == SWAP_HAS_CACHE) {
776 VM_BUG_ON(!has_cache);
777 has_cache = 0;
778 } else if (count == SWAP_MAP_SHMEM) {
780 * Or we could insist on shmem.c using a special
781 * swap_shmem_free() and free_shmem_swap_and_cache()...
783 count = 0;
784 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
785 if (count == COUNT_CONTINUED) {
786 if (swap_count_continued(p, offset, count))
787 count = SWAP_MAP_MAX | COUNT_CONTINUED;
788 else
789 count = SWAP_MAP_MAX;
790 } else
791 count--;
794 usage = count | has_cache;
795 p->swap_map[offset] = usage;
797 /* free if no reference */
798 if (!usage) {
799 mem_cgroup_uncharge_swap(entry);
800 dec_cluster_info_page(p, p->cluster_info, offset);
801 if (offset < p->lowest_bit)
802 p->lowest_bit = offset;
803 if (offset > p->highest_bit) {
804 bool was_full = !p->highest_bit;
805 p->highest_bit = offset;
806 if (was_full && (p->flags & SWP_WRITEOK)) {
807 spin_lock(&swap_avail_lock);
808 WARN_ON(!plist_node_empty(&p->avail_list));
809 if (plist_node_empty(&p->avail_list))
810 plist_add(&p->avail_list,
811 &swap_avail_head);
812 spin_unlock(&swap_avail_lock);
815 atomic_long_inc(&nr_swap_pages);
816 p->inuse_pages--;
817 frontswap_invalidate_page(p->type, offset);
818 if (p->flags & SWP_BLKDEV) {
819 struct gendisk *disk = p->bdev->bd_disk;
820 if (disk->fops->swap_slot_free_notify)
821 disk->fops->swap_slot_free_notify(p->bdev,
822 offset);
826 return usage;
830 * Caller has made sure that the swap device corresponding to entry
831 * is still around or has not been recycled.
833 void swap_free(swp_entry_t entry)
835 struct swap_info_struct *p;
837 p = swap_info_get(entry);
838 if (p) {
839 swap_entry_free(p, entry, 1);
840 spin_unlock(&p->lock);
845 * Called after dropping swapcache to decrease refcnt to swap entries.
847 void swapcache_free(swp_entry_t entry)
849 struct swap_info_struct *p;
851 p = swap_info_get(entry);
852 if (p) {
853 swap_entry_free(p, entry, SWAP_HAS_CACHE);
854 spin_unlock(&p->lock);
859 * How many references to page are currently swapped out?
860 * This does not give an exact answer when swap count is continued,
861 * but does include the high COUNT_CONTINUED flag to allow for that.
863 int page_swapcount(struct page *page)
865 int count = 0;
866 struct swap_info_struct *p;
867 swp_entry_t entry;
869 entry.val = page_private(page);
870 p = swap_info_get(entry);
871 if (p) {
872 count = swap_count(p->swap_map[swp_offset(entry)]);
873 spin_unlock(&p->lock);
875 return count;
879 * How many references to @entry are currently swapped out?
880 * This considers COUNT_CONTINUED so it returns exact answer.
882 int swp_swapcount(swp_entry_t entry)
884 int count, tmp_count, n;
885 struct swap_info_struct *p;
886 struct page *page;
887 pgoff_t offset;
888 unsigned char *map;
890 p = swap_info_get(entry);
891 if (!p)
892 return 0;
894 count = swap_count(p->swap_map[swp_offset(entry)]);
895 if (!(count & COUNT_CONTINUED))
896 goto out;
898 count &= ~COUNT_CONTINUED;
899 n = SWAP_MAP_MAX + 1;
901 offset = swp_offset(entry);
902 page = vmalloc_to_page(p->swap_map + offset);
903 offset &= ~PAGE_MASK;
904 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
906 do {
907 page = list_next_entry(page, lru);
908 map = kmap_atomic(page);
909 tmp_count = map[offset];
910 kunmap_atomic(map);
912 count += (tmp_count & ~COUNT_CONTINUED) * n;
913 n *= (SWAP_CONT_MAX + 1);
914 } while (tmp_count & COUNT_CONTINUED);
915 out:
916 spin_unlock(&p->lock);
917 return count;
921 * We can write to an anon page without COW if there are no other references
922 * to it. And as a side-effect, free up its swap: because the old content
923 * on disk will never be read, and seeking back there to write new content
924 * later would only waste time away from clustering.
926 int reuse_swap_page(struct page *page)
928 int count;
930 VM_BUG_ON_PAGE(!PageLocked(page), page);
931 if (unlikely(PageKsm(page)))
932 return 0;
933 /* The page is part of THP and cannot be reused */
934 if (PageTransCompound(page))
935 return 0;
936 count = page_mapcount(page);
937 if (count <= 1 && PageSwapCache(page)) {
938 count += page_swapcount(page);
939 if (count == 1 && !PageWriteback(page)) {
940 delete_from_swap_cache(page);
941 SetPageDirty(page);
944 return count <= 1;
948 * If swap is getting full, or if there are no more mappings of this page,
949 * then try_to_free_swap is called to free its swap space.
951 int try_to_free_swap(struct page *page)
953 VM_BUG_ON_PAGE(!PageLocked(page), page);
955 if (!PageSwapCache(page))
956 return 0;
957 if (PageWriteback(page))
958 return 0;
959 if (page_swapcount(page))
960 return 0;
963 * Once hibernation has begun to create its image of memory,
964 * there's a danger that one of the calls to try_to_free_swap()
965 * - most probably a call from __try_to_reclaim_swap() while
966 * hibernation is allocating its own swap pages for the image,
967 * but conceivably even a call from memory reclaim - will free
968 * the swap from a page which has already been recorded in the
969 * image as a clean swapcache page, and then reuse its swap for
970 * another page of the image. On waking from hibernation, the
971 * original page might be freed under memory pressure, then
972 * later read back in from swap, now with the wrong data.
974 * Hibernation suspends storage while it is writing the image
975 * to disk so check that here.
977 if (pm_suspended_storage())
978 return 0;
980 delete_from_swap_cache(page);
981 SetPageDirty(page);
982 return 1;
986 * Free the swap entry like above, but also try to
987 * free the page cache entry if it is the last user.
989 int free_swap_and_cache(swp_entry_t entry)
991 struct swap_info_struct *p;
992 struct page *page = NULL;
994 if (non_swap_entry(entry))
995 return 1;
997 p = swap_info_get(entry);
998 if (p) {
999 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
1000 page = find_get_page(swap_address_space(entry),
1001 entry.val);
1002 if (page && !trylock_page(page)) {
1003 put_page(page);
1004 page = NULL;
1007 spin_unlock(&p->lock);
1009 if (page) {
1011 * Not mapped elsewhere, or swap space full? Free it!
1012 * Also recheck PageSwapCache now page is locked (above).
1014 if (PageSwapCache(page) && !PageWriteback(page) &&
1015 (!page_mapped(page) || mem_cgroup_swap_full(page))) {
1016 delete_from_swap_cache(page);
1017 SetPageDirty(page);
1019 unlock_page(page);
1020 put_page(page);
1022 return p != NULL;
1025 #ifdef CONFIG_HIBERNATION
1027 * Find the swap type that corresponds to given device (if any).
1029 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1030 * from 0, in which the swap header is expected to be located.
1032 * This is needed for the suspend to disk (aka swsusp).
1034 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1036 struct block_device *bdev = NULL;
1037 int type;
1039 if (device)
1040 bdev = bdget(device);
1042 spin_lock(&swap_lock);
1043 for (type = 0; type < nr_swapfiles; type++) {
1044 struct swap_info_struct *sis = swap_info[type];
1046 if (!(sis->flags & SWP_WRITEOK))
1047 continue;
1049 if (!bdev) {
1050 if (bdev_p)
1051 *bdev_p = bdgrab(sis->bdev);
1053 spin_unlock(&swap_lock);
1054 return type;
1056 if (bdev == sis->bdev) {
1057 struct swap_extent *se = &sis->first_swap_extent;
1059 if (se->start_block == offset) {
1060 if (bdev_p)
1061 *bdev_p = bdgrab(sis->bdev);
1063 spin_unlock(&swap_lock);
1064 bdput(bdev);
1065 return type;
1069 spin_unlock(&swap_lock);
1070 if (bdev)
1071 bdput(bdev);
1073 return -ENODEV;
1077 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1078 * corresponding to given index in swap_info (swap type).
1080 sector_t swapdev_block(int type, pgoff_t offset)
1082 struct block_device *bdev;
1084 if ((unsigned int)type >= nr_swapfiles)
1085 return 0;
1086 if (!(swap_info[type]->flags & SWP_WRITEOK))
1087 return 0;
1088 return map_swap_entry(swp_entry(type, offset), &bdev);
1092 * Return either the total number of swap pages of given type, or the number
1093 * of free pages of that type (depending on @free)
1095 * This is needed for software suspend
1097 unsigned int count_swap_pages(int type, int free)
1099 unsigned int n = 0;
1101 spin_lock(&swap_lock);
1102 if ((unsigned int)type < nr_swapfiles) {
1103 struct swap_info_struct *sis = swap_info[type];
1105 spin_lock(&sis->lock);
1106 if (sis->flags & SWP_WRITEOK) {
1107 n = sis->pages;
1108 if (free)
1109 n -= sis->inuse_pages;
1111 spin_unlock(&sis->lock);
1113 spin_unlock(&swap_lock);
1114 return n;
1116 #endif /* CONFIG_HIBERNATION */
1118 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1120 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1124 * No need to decide whether this PTE shares the swap entry with others,
1125 * just let do_wp_page work it out if a write is requested later - to
1126 * force COW, vm_page_prot omits write permission from any private vma.
1128 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1129 unsigned long addr, swp_entry_t entry, struct page *page)
1131 struct page *swapcache;
1132 struct mem_cgroup *memcg;
1133 spinlock_t *ptl;
1134 pte_t *pte;
1135 int ret = 1;
1137 swapcache = page;
1138 page = ksm_might_need_to_copy(page, vma, addr);
1139 if (unlikely(!page))
1140 return -ENOMEM;
1142 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1143 &memcg, false)) {
1144 ret = -ENOMEM;
1145 goto out_nolock;
1148 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1149 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1150 mem_cgroup_cancel_charge(page, memcg, false);
1151 ret = 0;
1152 goto out;
1155 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1156 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1157 get_page(page);
1158 set_pte_at(vma->vm_mm, addr, pte,
1159 pte_mkold(mk_pte(page, vma->vm_page_prot)));
1160 if (page == swapcache) {
1161 page_add_anon_rmap(page, vma, addr, false);
1162 mem_cgroup_commit_charge(page, memcg, true, false);
1163 } else { /* ksm created a completely new copy */
1164 page_add_new_anon_rmap(page, vma, addr, false);
1165 mem_cgroup_commit_charge(page, memcg, false, false);
1166 lru_cache_add_active_or_unevictable(page, vma);
1168 swap_free(entry);
1170 * Move the page to the active list so it is not
1171 * immediately swapped out again after swapon.
1173 activate_page(page);
1174 out:
1175 pte_unmap_unlock(pte, ptl);
1176 out_nolock:
1177 if (page != swapcache) {
1178 unlock_page(page);
1179 put_page(page);
1181 return ret;
1184 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1185 unsigned long addr, unsigned long end,
1186 swp_entry_t entry, struct page *page)
1188 pte_t swp_pte = swp_entry_to_pte(entry);
1189 pte_t *pte;
1190 int ret = 0;
1193 * We don't actually need pte lock while scanning for swp_pte: since
1194 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1195 * page table while we're scanning; though it could get zapped, and on
1196 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1197 * of unmatched parts which look like swp_pte, so unuse_pte must
1198 * recheck under pte lock. Scanning without pte lock lets it be
1199 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1201 pte = pte_offset_map(pmd, addr);
1202 do {
1204 * swapoff spends a _lot_ of time in this loop!
1205 * Test inline before going to call unuse_pte.
1207 if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
1208 pte_unmap(pte);
1209 ret = unuse_pte(vma, pmd, addr, entry, page);
1210 if (ret)
1211 goto out;
1212 pte = pte_offset_map(pmd, addr);
1214 } while (pte++, addr += PAGE_SIZE, addr != end);
1215 pte_unmap(pte - 1);
1216 out:
1217 return ret;
1220 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1221 unsigned long addr, unsigned long end,
1222 swp_entry_t entry, struct page *page)
1224 pmd_t *pmd;
1225 unsigned long next;
1226 int ret;
1228 pmd = pmd_offset(pud, addr);
1229 do {
1230 next = pmd_addr_end(addr, end);
1231 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1232 continue;
1233 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1234 if (ret)
1235 return ret;
1236 } while (pmd++, addr = next, addr != end);
1237 return 0;
1240 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1241 unsigned long addr, unsigned long end,
1242 swp_entry_t entry, struct page *page)
1244 pud_t *pud;
1245 unsigned long next;
1246 int ret;
1248 pud = pud_offset(pgd, addr);
1249 do {
1250 next = pud_addr_end(addr, end);
1251 if (pud_none_or_clear_bad(pud))
1252 continue;
1253 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1254 if (ret)
1255 return ret;
1256 } while (pud++, addr = next, addr != end);
1257 return 0;
1260 static int unuse_vma(struct vm_area_struct *vma,
1261 swp_entry_t entry, struct page *page)
1263 pgd_t *pgd;
1264 unsigned long addr, end, next;
1265 int ret;
1267 if (page_anon_vma(page)) {
1268 addr = page_address_in_vma(page, vma);
1269 if (addr == -EFAULT)
1270 return 0;
1271 else
1272 end = addr + PAGE_SIZE;
1273 } else {
1274 addr = vma->vm_start;
1275 end = vma->vm_end;
1278 pgd = pgd_offset(vma->vm_mm, addr);
1279 do {
1280 next = pgd_addr_end(addr, end);
1281 if (pgd_none_or_clear_bad(pgd))
1282 continue;
1283 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1284 if (ret)
1285 return ret;
1286 } while (pgd++, addr = next, addr != end);
1287 return 0;
1290 static int unuse_mm(struct mm_struct *mm,
1291 swp_entry_t entry, struct page *page)
1293 struct vm_area_struct *vma;
1294 int ret = 0;
1296 if (!down_read_trylock(&mm->mmap_sem)) {
1298 * Activate page so shrink_inactive_list is unlikely to unmap
1299 * its ptes while lock is dropped, so swapoff can make progress.
1301 activate_page(page);
1302 unlock_page(page);
1303 down_read(&mm->mmap_sem);
1304 lock_page(page);
1306 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1307 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1308 break;
1310 up_read(&mm->mmap_sem);
1311 return (ret < 0)? ret: 0;
1315 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1316 * from current position to next entry still in use.
1317 * Recycle to start on reaching the end, returning 0 when empty.
1319 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1320 unsigned int prev, bool frontswap)
1322 unsigned int max = si->max;
1323 unsigned int i = prev;
1324 unsigned char count;
1327 * No need for swap_lock here: we're just looking
1328 * for whether an entry is in use, not modifying it; false
1329 * hits are okay, and sys_swapoff() has already prevented new
1330 * allocations from this area (while holding swap_lock).
1332 for (;;) {
1333 if (++i >= max) {
1334 if (!prev) {
1335 i = 0;
1336 break;
1339 * No entries in use at top of swap_map,
1340 * loop back to start and recheck there.
1342 max = prev + 1;
1343 prev = 0;
1344 i = 1;
1346 if (frontswap) {
1347 if (frontswap_test(si, i))
1348 break;
1349 else
1350 continue;
1352 count = READ_ONCE(si->swap_map[i]);
1353 if (count && swap_count(count) != SWAP_MAP_BAD)
1354 break;
1356 return i;
1360 * We completely avoid races by reading each swap page in advance,
1361 * and then search for the process using it. All the necessary
1362 * page table adjustments can then be made atomically.
1364 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1365 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1367 int try_to_unuse(unsigned int type, bool frontswap,
1368 unsigned long pages_to_unuse)
1370 struct swap_info_struct *si = swap_info[type];
1371 struct mm_struct *start_mm;
1372 volatile unsigned char *swap_map; /* swap_map is accessed without
1373 * locking. Mark it as volatile
1374 * to prevent compiler doing
1375 * something odd.
1377 unsigned char swcount;
1378 struct page *page;
1379 swp_entry_t entry;
1380 unsigned int i = 0;
1381 int retval = 0;
1384 * When searching mms for an entry, a good strategy is to
1385 * start at the first mm we freed the previous entry from
1386 * (though actually we don't notice whether we or coincidence
1387 * freed the entry). Initialize this start_mm with a hold.
1389 * A simpler strategy would be to start at the last mm we
1390 * freed the previous entry from; but that would take less
1391 * advantage of mmlist ordering, which clusters forked mms
1392 * together, child after parent. If we race with dup_mmap(), we
1393 * prefer to resolve parent before child, lest we miss entries
1394 * duplicated after we scanned child: using last mm would invert
1395 * that.
1397 start_mm = &init_mm;
1398 atomic_inc(&init_mm.mm_users);
1401 * Keep on scanning until all entries have gone. Usually,
1402 * one pass through swap_map is enough, but not necessarily:
1403 * there are races when an instance of an entry might be missed.
1405 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1406 if (signal_pending(current)) {
1407 retval = -EINTR;
1408 break;
1412 * Get a page for the entry, using the existing swap
1413 * cache page if there is one. Otherwise, get a clean
1414 * page and read the swap into it.
1416 swap_map = &si->swap_map[i];
1417 entry = swp_entry(type, i);
1418 page = read_swap_cache_async(entry,
1419 GFP_HIGHUSER_MOVABLE, NULL, 0);
1420 if (!page) {
1422 * Either swap_duplicate() failed because entry
1423 * has been freed independently, and will not be
1424 * reused since sys_swapoff() already disabled
1425 * allocation from here, or alloc_page() failed.
1427 swcount = *swap_map;
1429 * We don't hold lock here, so the swap entry could be
1430 * SWAP_MAP_BAD (when the cluster is discarding).
1431 * Instead of fail out, We can just skip the swap
1432 * entry because swapoff will wait for discarding
1433 * finish anyway.
1435 if (!swcount || swcount == SWAP_MAP_BAD)
1436 continue;
1437 retval = -ENOMEM;
1438 break;
1442 * Don't hold on to start_mm if it looks like exiting.
1444 if (atomic_read(&start_mm->mm_users) == 1) {
1445 mmput(start_mm);
1446 start_mm = &init_mm;
1447 atomic_inc(&init_mm.mm_users);
1451 * Wait for and lock page. When do_swap_page races with
1452 * try_to_unuse, do_swap_page can handle the fault much
1453 * faster than try_to_unuse can locate the entry. This
1454 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1455 * defer to do_swap_page in such a case - in some tests,
1456 * do_swap_page and try_to_unuse repeatedly compete.
1458 wait_on_page_locked(page);
1459 wait_on_page_writeback(page);
1460 lock_page(page);
1461 wait_on_page_writeback(page);
1464 * Remove all references to entry.
1466 swcount = *swap_map;
1467 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1468 retval = shmem_unuse(entry, page);
1469 /* page has already been unlocked and released */
1470 if (retval < 0)
1471 break;
1472 continue;
1474 if (swap_count(swcount) && start_mm != &init_mm)
1475 retval = unuse_mm(start_mm, entry, page);
1477 if (swap_count(*swap_map)) {
1478 int set_start_mm = (*swap_map >= swcount);
1479 struct list_head *p = &start_mm->mmlist;
1480 struct mm_struct *new_start_mm = start_mm;
1481 struct mm_struct *prev_mm = start_mm;
1482 struct mm_struct *mm;
1484 atomic_inc(&new_start_mm->mm_users);
1485 atomic_inc(&prev_mm->mm_users);
1486 spin_lock(&mmlist_lock);
1487 while (swap_count(*swap_map) && !retval &&
1488 (p = p->next) != &start_mm->mmlist) {
1489 mm = list_entry(p, struct mm_struct, mmlist);
1490 if (!atomic_inc_not_zero(&mm->mm_users))
1491 continue;
1492 spin_unlock(&mmlist_lock);
1493 mmput(prev_mm);
1494 prev_mm = mm;
1496 cond_resched();
1498 swcount = *swap_map;
1499 if (!swap_count(swcount)) /* any usage ? */
1501 else if (mm == &init_mm)
1502 set_start_mm = 1;
1503 else
1504 retval = unuse_mm(mm, entry, page);
1506 if (set_start_mm && *swap_map < swcount) {
1507 mmput(new_start_mm);
1508 atomic_inc(&mm->mm_users);
1509 new_start_mm = mm;
1510 set_start_mm = 0;
1512 spin_lock(&mmlist_lock);
1514 spin_unlock(&mmlist_lock);
1515 mmput(prev_mm);
1516 mmput(start_mm);
1517 start_mm = new_start_mm;
1519 if (retval) {
1520 unlock_page(page);
1521 put_page(page);
1522 break;
1526 * If a reference remains (rare), we would like to leave
1527 * the page in the swap cache; but try_to_unmap could
1528 * then re-duplicate the entry once we drop page lock,
1529 * so we might loop indefinitely; also, that page could
1530 * not be swapped out to other storage meanwhile. So:
1531 * delete from cache even if there's another reference,
1532 * after ensuring that the data has been saved to disk -
1533 * since if the reference remains (rarer), it will be
1534 * read from disk into another page. Splitting into two
1535 * pages would be incorrect if swap supported "shared
1536 * private" pages, but they are handled by tmpfs files.
1538 * Given how unuse_vma() targets one particular offset
1539 * in an anon_vma, once the anon_vma has been determined,
1540 * this splitting happens to be just what is needed to
1541 * handle where KSM pages have been swapped out: re-reading
1542 * is unnecessarily slow, but we can fix that later on.
1544 if (swap_count(*swap_map) &&
1545 PageDirty(page) && PageSwapCache(page)) {
1546 struct writeback_control wbc = {
1547 .sync_mode = WB_SYNC_NONE,
1550 swap_writepage(page, &wbc);
1551 lock_page(page);
1552 wait_on_page_writeback(page);
1556 * It is conceivable that a racing task removed this page from
1557 * swap cache just before we acquired the page lock at the top,
1558 * or while we dropped it in unuse_mm(). The page might even
1559 * be back in swap cache on another swap area: that we must not
1560 * delete, since it may not have been written out to swap yet.
1562 if (PageSwapCache(page) &&
1563 likely(page_private(page) == entry.val))
1564 delete_from_swap_cache(page);
1567 * So we could skip searching mms once swap count went
1568 * to 1, we did not mark any present ptes as dirty: must
1569 * mark page dirty so shrink_page_list will preserve it.
1571 SetPageDirty(page);
1572 unlock_page(page);
1573 put_page(page);
1576 * Make sure that we aren't completely killing
1577 * interactive performance.
1579 cond_resched();
1580 if (frontswap && pages_to_unuse > 0) {
1581 if (!--pages_to_unuse)
1582 break;
1586 mmput(start_mm);
1587 return retval;
1591 * After a successful try_to_unuse, if no swap is now in use, we know
1592 * we can empty the mmlist. swap_lock must be held on entry and exit.
1593 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1594 * added to the mmlist just after page_duplicate - before would be racy.
1596 static void drain_mmlist(void)
1598 struct list_head *p, *next;
1599 unsigned int type;
1601 for (type = 0; type < nr_swapfiles; type++)
1602 if (swap_info[type]->inuse_pages)
1603 return;
1604 spin_lock(&mmlist_lock);
1605 list_for_each_safe(p, next, &init_mm.mmlist)
1606 list_del_init(p);
1607 spin_unlock(&mmlist_lock);
1611 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1612 * corresponds to page offset for the specified swap entry.
1613 * Note that the type of this function is sector_t, but it returns page offset
1614 * into the bdev, not sector offset.
1616 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1618 struct swap_info_struct *sis;
1619 struct swap_extent *start_se;
1620 struct swap_extent *se;
1621 pgoff_t offset;
1623 sis = swap_info[swp_type(entry)];
1624 *bdev = sis->bdev;
1626 offset = swp_offset(entry);
1627 start_se = sis->curr_swap_extent;
1628 se = start_se;
1630 for ( ; ; ) {
1631 if (se->start_page <= offset &&
1632 offset < (se->start_page + se->nr_pages)) {
1633 return se->start_block + (offset - se->start_page);
1635 se = list_next_entry(se, list);
1636 sis->curr_swap_extent = se;
1637 BUG_ON(se == start_se); /* It *must* be present */
1642 * Returns the page offset into bdev for the specified page's swap entry.
1644 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1646 swp_entry_t entry;
1647 entry.val = page_private(page);
1648 return map_swap_entry(entry, bdev);
1652 * Free all of a swapdev's extent information
1654 static void destroy_swap_extents(struct swap_info_struct *sis)
1656 while (!list_empty(&sis->first_swap_extent.list)) {
1657 struct swap_extent *se;
1659 se = list_first_entry(&sis->first_swap_extent.list,
1660 struct swap_extent, list);
1661 list_del(&se->list);
1662 kfree(se);
1665 if (sis->flags & SWP_FILE) {
1666 struct file *swap_file = sis->swap_file;
1667 struct address_space *mapping = swap_file->f_mapping;
1669 sis->flags &= ~SWP_FILE;
1670 mapping->a_ops->swap_deactivate(swap_file);
1675 * Add a block range (and the corresponding page range) into this swapdev's
1676 * extent list. The extent list is kept sorted in page order.
1678 * This function rather assumes that it is called in ascending page order.
1681 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1682 unsigned long nr_pages, sector_t start_block)
1684 struct swap_extent *se;
1685 struct swap_extent *new_se;
1686 struct list_head *lh;
1688 if (start_page == 0) {
1689 se = &sis->first_swap_extent;
1690 sis->curr_swap_extent = se;
1691 se->start_page = 0;
1692 se->nr_pages = nr_pages;
1693 se->start_block = start_block;
1694 return 1;
1695 } else {
1696 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1697 se = list_entry(lh, struct swap_extent, list);
1698 BUG_ON(se->start_page + se->nr_pages != start_page);
1699 if (se->start_block + se->nr_pages == start_block) {
1700 /* Merge it */
1701 se->nr_pages += nr_pages;
1702 return 0;
1707 * No merge. Insert a new extent, preserving ordering.
1709 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1710 if (new_se == NULL)
1711 return -ENOMEM;
1712 new_se->start_page = start_page;
1713 new_se->nr_pages = nr_pages;
1714 new_se->start_block = start_block;
1716 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1717 return 1;
1721 * A `swap extent' is a simple thing which maps a contiguous range of pages
1722 * onto a contiguous range of disk blocks. An ordered list of swap extents
1723 * is built at swapon time and is then used at swap_writepage/swap_readpage
1724 * time for locating where on disk a page belongs.
1726 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1727 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1728 * swap files identically.
1730 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1731 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1732 * swapfiles are handled *identically* after swapon time.
1734 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1735 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1736 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1737 * requirements, they are simply tossed out - we will never use those blocks
1738 * for swapping.
1740 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1741 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1742 * which will scribble on the fs.
1744 * The amount of disk space which a single swap extent represents varies.
1745 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1746 * extents in the list. To avoid much list walking, we cache the previous
1747 * search location in `curr_swap_extent', and start new searches from there.
1748 * This is extremely effective. The average number of iterations in
1749 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1751 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1753 struct file *swap_file = sis->swap_file;
1754 struct address_space *mapping = swap_file->f_mapping;
1755 struct inode *inode = mapping->host;
1756 int ret;
1758 if (S_ISBLK(inode->i_mode)) {
1759 ret = add_swap_extent(sis, 0, sis->max, 0);
1760 *span = sis->pages;
1761 return ret;
1764 if (mapping->a_ops->swap_activate) {
1765 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
1766 if (!ret) {
1767 sis->flags |= SWP_FILE;
1768 ret = add_swap_extent(sis, 0, sis->max, 0);
1769 *span = sis->pages;
1771 return ret;
1774 return generic_swapfile_activate(sis, swap_file, span);
1777 static void _enable_swap_info(struct swap_info_struct *p, int prio,
1778 unsigned char *swap_map,
1779 struct swap_cluster_info *cluster_info)
1781 if (prio >= 0)
1782 p->prio = prio;
1783 else
1784 p->prio = --least_priority;
1786 * the plist prio is negated because plist ordering is
1787 * low-to-high, while swap ordering is high-to-low
1789 p->list.prio = -p->prio;
1790 p->avail_list.prio = -p->prio;
1791 p->swap_map = swap_map;
1792 p->cluster_info = cluster_info;
1793 p->flags |= SWP_WRITEOK;
1794 atomic_long_add(p->pages, &nr_swap_pages);
1795 total_swap_pages += p->pages;
1797 assert_spin_locked(&swap_lock);
1799 * both lists are plists, and thus priority ordered.
1800 * swap_active_head needs to be priority ordered for swapoff(),
1801 * which on removal of any swap_info_struct with an auto-assigned
1802 * (i.e. negative) priority increments the auto-assigned priority
1803 * of any lower-priority swap_info_structs.
1804 * swap_avail_head needs to be priority ordered for get_swap_page(),
1805 * which allocates swap pages from the highest available priority
1806 * swap_info_struct.
1808 plist_add(&p->list, &swap_active_head);
1809 spin_lock(&swap_avail_lock);
1810 plist_add(&p->avail_list, &swap_avail_head);
1811 spin_unlock(&swap_avail_lock);
1814 static void enable_swap_info(struct swap_info_struct *p, int prio,
1815 unsigned char *swap_map,
1816 struct swap_cluster_info *cluster_info,
1817 unsigned long *frontswap_map)
1819 frontswap_init(p->type, frontswap_map);
1820 spin_lock(&swap_lock);
1821 spin_lock(&p->lock);
1822 _enable_swap_info(p, prio, swap_map, cluster_info);
1823 spin_unlock(&p->lock);
1824 spin_unlock(&swap_lock);
1827 static void reinsert_swap_info(struct swap_info_struct *p)
1829 spin_lock(&swap_lock);
1830 spin_lock(&p->lock);
1831 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
1832 spin_unlock(&p->lock);
1833 spin_unlock(&swap_lock);
1836 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1838 struct swap_info_struct *p = NULL;
1839 unsigned char *swap_map;
1840 struct swap_cluster_info *cluster_info;
1841 unsigned long *frontswap_map;
1842 struct file *swap_file, *victim;
1843 struct address_space *mapping;
1844 struct inode *inode;
1845 struct filename *pathname;
1846 int err, found = 0;
1847 unsigned int old_block_size;
1849 if (!capable(CAP_SYS_ADMIN))
1850 return -EPERM;
1852 BUG_ON(!current->mm);
1854 pathname = getname(specialfile);
1855 if (IS_ERR(pathname))
1856 return PTR_ERR(pathname);
1858 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1859 err = PTR_ERR(victim);
1860 if (IS_ERR(victim))
1861 goto out;
1863 mapping = victim->f_mapping;
1864 spin_lock(&swap_lock);
1865 plist_for_each_entry(p, &swap_active_head, list) {
1866 if (p->flags & SWP_WRITEOK) {
1867 if (p->swap_file->f_mapping == mapping) {
1868 found = 1;
1869 break;
1873 if (!found) {
1874 err = -EINVAL;
1875 spin_unlock(&swap_lock);
1876 goto out_dput;
1878 if (!security_vm_enough_memory_mm(current->mm, p->pages))
1879 vm_unacct_memory(p->pages);
1880 else {
1881 err = -ENOMEM;
1882 spin_unlock(&swap_lock);
1883 goto out_dput;
1885 spin_lock(&swap_avail_lock);
1886 plist_del(&p->avail_list, &swap_avail_head);
1887 spin_unlock(&swap_avail_lock);
1888 spin_lock(&p->lock);
1889 if (p->prio < 0) {
1890 struct swap_info_struct *si = p;
1892 plist_for_each_entry_continue(si, &swap_active_head, list) {
1893 si->prio++;
1894 si->list.prio--;
1895 si->avail_list.prio--;
1897 least_priority++;
1899 plist_del(&p->list, &swap_active_head);
1900 atomic_long_sub(p->pages, &nr_swap_pages);
1901 total_swap_pages -= p->pages;
1902 p->flags &= ~SWP_WRITEOK;
1903 spin_unlock(&p->lock);
1904 spin_unlock(&swap_lock);
1906 set_current_oom_origin();
1907 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
1908 clear_current_oom_origin();
1910 if (err) {
1911 /* re-insert swap space back into swap_list */
1912 reinsert_swap_info(p);
1913 goto out_dput;
1916 flush_work(&p->discard_work);
1918 destroy_swap_extents(p);
1919 if (p->flags & SWP_CONTINUED)
1920 free_swap_count_continuations(p);
1922 mutex_lock(&swapon_mutex);
1923 spin_lock(&swap_lock);
1924 spin_lock(&p->lock);
1925 drain_mmlist();
1927 /* wait for anyone still in scan_swap_map */
1928 p->highest_bit = 0; /* cuts scans short */
1929 while (p->flags >= SWP_SCANNING) {
1930 spin_unlock(&p->lock);
1931 spin_unlock(&swap_lock);
1932 schedule_timeout_uninterruptible(1);
1933 spin_lock(&swap_lock);
1934 spin_lock(&p->lock);
1937 swap_file = p->swap_file;
1938 old_block_size = p->old_block_size;
1939 p->swap_file = NULL;
1940 p->max = 0;
1941 swap_map = p->swap_map;
1942 p->swap_map = NULL;
1943 cluster_info = p->cluster_info;
1944 p->cluster_info = NULL;
1945 frontswap_map = frontswap_map_get(p);
1946 spin_unlock(&p->lock);
1947 spin_unlock(&swap_lock);
1948 frontswap_invalidate_area(p->type);
1949 frontswap_map_set(p, NULL);
1950 mutex_unlock(&swapon_mutex);
1951 free_percpu(p->percpu_cluster);
1952 p->percpu_cluster = NULL;
1953 vfree(swap_map);
1954 vfree(cluster_info);
1955 vfree(frontswap_map);
1956 /* Destroy swap account information */
1957 swap_cgroup_swapoff(p->type);
1959 inode = mapping->host;
1960 if (S_ISBLK(inode->i_mode)) {
1961 struct block_device *bdev = I_BDEV(inode);
1962 set_blocksize(bdev, old_block_size);
1963 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1964 } else {
1965 inode_lock(inode);
1966 inode->i_flags &= ~S_SWAPFILE;
1967 inode_unlock(inode);
1969 filp_close(swap_file, NULL);
1972 * Clear the SWP_USED flag after all resources are freed so that swapon
1973 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
1974 * not hold p->lock after we cleared its SWP_WRITEOK.
1976 spin_lock(&swap_lock);
1977 p->flags = 0;
1978 spin_unlock(&swap_lock);
1980 err = 0;
1981 atomic_inc(&proc_poll_event);
1982 wake_up_interruptible(&proc_poll_wait);
1984 out_dput:
1985 filp_close(victim, NULL);
1986 out:
1987 putname(pathname);
1988 return err;
1991 #ifdef CONFIG_PROC_FS
1992 static unsigned swaps_poll(struct file *file, poll_table *wait)
1994 struct seq_file *seq = file->private_data;
1996 poll_wait(file, &proc_poll_wait, wait);
1998 if (seq->poll_event != atomic_read(&proc_poll_event)) {
1999 seq->poll_event = atomic_read(&proc_poll_event);
2000 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
2003 return POLLIN | POLLRDNORM;
2006 /* iterator */
2007 static void *swap_start(struct seq_file *swap, loff_t *pos)
2009 struct swap_info_struct *si;
2010 int type;
2011 loff_t l = *pos;
2013 mutex_lock(&swapon_mutex);
2015 if (!l)
2016 return SEQ_START_TOKEN;
2018 for (type = 0; type < nr_swapfiles; type++) {
2019 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2020 si = swap_info[type];
2021 if (!(si->flags & SWP_USED) || !si->swap_map)
2022 continue;
2023 if (!--l)
2024 return si;
2027 return NULL;
2030 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2032 struct swap_info_struct *si = v;
2033 int type;
2035 if (v == SEQ_START_TOKEN)
2036 type = 0;
2037 else
2038 type = si->type + 1;
2040 for (; type < nr_swapfiles; type++) {
2041 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2042 si = swap_info[type];
2043 if (!(si->flags & SWP_USED) || !si->swap_map)
2044 continue;
2045 ++*pos;
2046 return si;
2049 return NULL;
2052 static void swap_stop(struct seq_file *swap, void *v)
2054 mutex_unlock(&swapon_mutex);
2057 static int swap_show(struct seq_file *swap, void *v)
2059 struct swap_info_struct *si = v;
2060 struct file *file;
2061 int len;
2063 if (si == SEQ_START_TOKEN) {
2064 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2065 return 0;
2068 file = si->swap_file;
2069 len = seq_file_path(swap, file, " \t\n\\");
2070 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2071 len < 40 ? 40 - len : 1, " ",
2072 S_ISBLK(file_inode(file)->i_mode) ?
2073 "partition" : "file\t",
2074 si->pages << (PAGE_SHIFT - 10),
2075 si->inuse_pages << (PAGE_SHIFT - 10),
2076 si->prio);
2077 return 0;
2080 static const struct seq_operations swaps_op = {
2081 .start = swap_start,
2082 .next = swap_next,
2083 .stop = swap_stop,
2084 .show = swap_show
2087 static int swaps_open(struct inode *inode, struct file *file)
2089 struct seq_file *seq;
2090 int ret;
2092 ret = seq_open(file, &swaps_op);
2093 if (ret)
2094 return ret;
2096 seq = file->private_data;
2097 seq->poll_event = atomic_read(&proc_poll_event);
2098 return 0;
2101 static const struct file_operations proc_swaps_operations = {
2102 .open = swaps_open,
2103 .read = seq_read,
2104 .llseek = seq_lseek,
2105 .release = seq_release,
2106 .poll = swaps_poll,
2109 static int __init procswaps_init(void)
2111 proc_create("swaps", 0, NULL, &proc_swaps_operations);
2112 return 0;
2114 __initcall(procswaps_init);
2115 #endif /* CONFIG_PROC_FS */
2117 #ifdef MAX_SWAPFILES_CHECK
2118 static int __init max_swapfiles_check(void)
2120 MAX_SWAPFILES_CHECK();
2121 return 0;
2123 late_initcall(max_swapfiles_check);
2124 #endif
2126 static struct swap_info_struct *alloc_swap_info(void)
2128 struct swap_info_struct *p;
2129 unsigned int type;
2131 p = kzalloc(sizeof(*p), GFP_KERNEL);
2132 if (!p)
2133 return ERR_PTR(-ENOMEM);
2135 spin_lock(&swap_lock);
2136 for (type = 0; type < nr_swapfiles; type++) {
2137 if (!(swap_info[type]->flags & SWP_USED))
2138 break;
2140 if (type >= MAX_SWAPFILES) {
2141 spin_unlock(&swap_lock);
2142 kfree(p);
2143 return ERR_PTR(-EPERM);
2145 if (type >= nr_swapfiles) {
2146 p->type = type;
2147 swap_info[type] = p;
2149 * Write swap_info[type] before nr_swapfiles, in case a
2150 * racing procfs swap_start() or swap_next() is reading them.
2151 * (We never shrink nr_swapfiles, we never free this entry.)
2153 smp_wmb();
2154 nr_swapfiles++;
2155 } else {
2156 kfree(p);
2157 p = swap_info[type];
2159 * Do not memset this entry: a racing procfs swap_next()
2160 * would be relying on p->type to remain valid.
2163 INIT_LIST_HEAD(&p->first_swap_extent.list);
2164 plist_node_init(&p->list, 0);
2165 plist_node_init(&p->avail_list, 0);
2166 p->flags = SWP_USED;
2167 spin_unlock(&swap_lock);
2168 spin_lock_init(&p->lock);
2170 return p;
2173 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2175 int error;
2177 if (S_ISBLK(inode->i_mode)) {
2178 p->bdev = bdgrab(I_BDEV(inode));
2179 error = blkdev_get(p->bdev,
2180 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2181 if (error < 0) {
2182 p->bdev = NULL;
2183 return error;
2185 p->old_block_size = block_size(p->bdev);
2186 error = set_blocksize(p->bdev, PAGE_SIZE);
2187 if (error < 0)
2188 return error;
2189 p->flags |= SWP_BLKDEV;
2190 } else if (S_ISREG(inode->i_mode)) {
2191 p->bdev = inode->i_sb->s_bdev;
2192 inode_lock(inode);
2193 if (IS_SWAPFILE(inode))
2194 return -EBUSY;
2195 } else
2196 return -EINVAL;
2198 return 0;
2201 static unsigned long read_swap_header(struct swap_info_struct *p,
2202 union swap_header *swap_header,
2203 struct inode *inode)
2205 int i;
2206 unsigned long maxpages;
2207 unsigned long swapfilepages;
2208 unsigned long last_page;
2210 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2211 pr_err("Unable to find swap-space signature\n");
2212 return 0;
2215 /* swap partition endianess hack... */
2216 if (swab32(swap_header->info.version) == 1) {
2217 swab32s(&swap_header->info.version);
2218 swab32s(&swap_header->info.last_page);
2219 swab32s(&swap_header->info.nr_badpages);
2220 for (i = 0; i < swap_header->info.nr_badpages; i++)
2221 swab32s(&swap_header->info.badpages[i]);
2223 /* Check the swap header's sub-version */
2224 if (swap_header->info.version != 1) {
2225 pr_warn("Unable to handle swap header version %d\n",
2226 swap_header->info.version);
2227 return 0;
2230 p->lowest_bit = 1;
2231 p->cluster_next = 1;
2232 p->cluster_nr = 0;
2235 * Find out how many pages are allowed for a single swap
2236 * device. There are two limiting factors: 1) the number
2237 * of bits for the swap offset in the swp_entry_t type, and
2238 * 2) the number of bits in the swap pte as defined by the
2239 * different architectures. In order to find the
2240 * largest possible bit mask, a swap entry with swap type 0
2241 * and swap offset ~0UL is created, encoded to a swap pte,
2242 * decoded to a swp_entry_t again, and finally the swap
2243 * offset is extracted. This will mask all the bits from
2244 * the initial ~0UL mask that can't be encoded in either
2245 * the swp_entry_t or the architecture definition of a
2246 * swap pte.
2248 maxpages = swp_offset(pte_to_swp_entry(
2249 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2250 last_page = swap_header->info.last_page;
2251 if (last_page > maxpages) {
2252 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2253 maxpages << (PAGE_SHIFT - 10),
2254 last_page << (PAGE_SHIFT - 10));
2256 if (maxpages > last_page) {
2257 maxpages = last_page + 1;
2258 /* p->max is an unsigned int: don't overflow it */
2259 if ((unsigned int)maxpages == 0)
2260 maxpages = UINT_MAX;
2262 p->highest_bit = maxpages - 1;
2264 if (!maxpages)
2265 return 0;
2266 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2267 if (swapfilepages && maxpages > swapfilepages) {
2268 pr_warn("Swap area shorter than signature indicates\n");
2269 return 0;
2271 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2272 return 0;
2273 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2274 return 0;
2276 return maxpages;
2279 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2280 union swap_header *swap_header,
2281 unsigned char *swap_map,
2282 struct swap_cluster_info *cluster_info,
2283 unsigned long maxpages,
2284 sector_t *span)
2286 int i;
2287 unsigned int nr_good_pages;
2288 int nr_extents;
2289 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2290 unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER;
2292 nr_good_pages = maxpages - 1; /* omit header page */
2294 cluster_set_null(&p->free_cluster_head);
2295 cluster_set_null(&p->free_cluster_tail);
2296 cluster_set_null(&p->discard_cluster_head);
2297 cluster_set_null(&p->discard_cluster_tail);
2299 for (i = 0; i < swap_header->info.nr_badpages; i++) {
2300 unsigned int page_nr = swap_header->info.badpages[i];
2301 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2302 return -EINVAL;
2303 if (page_nr < maxpages) {
2304 swap_map[page_nr] = SWAP_MAP_BAD;
2305 nr_good_pages--;
2307 * Haven't marked the cluster free yet, no list
2308 * operation involved
2310 inc_cluster_info_page(p, cluster_info, page_nr);
2314 /* Haven't marked the cluster free yet, no list operation involved */
2315 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2316 inc_cluster_info_page(p, cluster_info, i);
2318 if (nr_good_pages) {
2319 swap_map[0] = SWAP_MAP_BAD;
2321 * Not mark the cluster free yet, no list
2322 * operation involved
2324 inc_cluster_info_page(p, cluster_info, 0);
2325 p->max = maxpages;
2326 p->pages = nr_good_pages;
2327 nr_extents = setup_swap_extents(p, span);
2328 if (nr_extents < 0)
2329 return nr_extents;
2330 nr_good_pages = p->pages;
2332 if (!nr_good_pages) {
2333 pr_warn("Empty swap-file\n");
2334 return -EINVAL;
2337 if (!cluster_info)
2338 return nr_extents;
2340 for (i = 0; i < nr_clusters; i++) {
2341 if (!cluster_count(&cluster_info[idx])) {
2342 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2343 if (cluster_is_null(&p->free_cluster_head)) {
2344 cluster_set_next_flag(&p->free_cluster_head,
2345 idx, 0);
2346 cluster_set_next_flag(&p->free_cluster_tail,
2347 idx, 0);
2348 } else {
2349 unsigned int tail;
2351 tail = cluster_next(&p->free_cluster_tail);
2352 cluster_set_next(&cluster_info[tail], idx);
2353 cluster_set_next_flag(&p->free_cluster_tail,
2354 idx, 0);
2357 idx++;
2358 if (idx == nr_clusters)
2359 idx = 0;
2361 return nr_extents;
2365 * Helper to sys_swapon determining if a given swap
2366 * backing device queue supports DISCARD operations.
2368 static bool swap_discardable(struct swap_info_struct *si)
2370 struct request_queue *q = bdev_get_queue(si->bdev);
2372 if (!q || !blk_queue_discard(q))
2373 return false;
2375 return true;
2378 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2380 struct swap_info_struct *p;
2381 struct filename *name;
2382 struct file *swap_file = NULL;
2383 struct address_space *mapping;
2384 int prio;
2385 int error;
2386 union swap_header *swap_header;
2387 int nr_extents;
2388 sector_t span;
2389 unsigned long maxpages;
2390 unsigned char *swap_map = NULL;
2391 struct swap_cluster_info *cluster_info = NULL;
2392 unsigned long *frontswap_map = NULL;
2393 struct page *page = NULL;
2394 struct inode *inode = NULL;
2396 if (swap_flags & ~SWAP_FLAGS_VALID)
2397 return -EINVAL;
2399 if (!capable(CAP_SYS_ADMIN))
2400 return -EPERM;
2402 p = alloc_swap_info();
2403 if (IS_ERR(p))
2404 return PTR_ERR(p);
2406 INIT_WORK(&p->discard_work, swap_discard_work);
2408 name = getname(specialfile);
2409 if (IS_ERR(name)) {
2410 error = PTR_ERR(name);
2411 name = NULL;
2412 goto bad_swap;
2414 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2415 if (IS_ERR(swap_file)) {
2416 error = PTR_ERR(swap_file);
2417 swap_file = NULL;
2418 goto bad_swap;
2421 p->swap_file = swap_file;
2422 mapping = swap_file->f_mapping;
2423 inode = mapping->host;
2425 /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
2426 error = claim_swapfile(p, inode);
2427 if (unlikely(error))
2428 goto bad_swap;
2431 * Read the swap header.
2433 if (!mapping->a_ops->readpage) {
2434 error = -EINVAL;
2435 goto bad_swap;
2437 page = read_mapping_page(mapping, 0, swap_file);
2438 if (IS_ERR(page)) {
2439 error = PTR_ERR(page);
2440 goto bad_swap;
2442 swap_header = kmap(page);
2444 maxpages = read_swap_header(p, swap_header, inode);
2445 if (unlikely(!maxpages)) {
2446 error = -EINVAL;
2447 goto bad_swap;
2450 /* OK, set up the swap map and apply the bad block list */
2451 swap_map = vzalloc(maxpages);
2452 if (!swap_map) {
2453 error = -ENOMEM;
2454 goto bad_swap;
2456 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2457 int cpu;
2459 p->flags |= SWP_SOLIDSTATE;
2461 * select a random position to start with to help wear leveling
2462 * SSD
2464 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2466 cluster_info = vzalloc(DIV_ROUND_UP(maxpages,
2467 SWAPFILE_CLUSTER) * sizeof(*cluster_info));
2468 if (!cluster_info) {
2469 error = -ENOMEM;
2470 goto bad_swap;
2472 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2473 if (!p->percpu_cluster) {
2474 error = -ENOMEM;
2475 goto bad_swap;
2477 for_each_possible_cpu(cpu) {
2478 struct percpu_cluster *cluster;
2479 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
2480 cluster_set_null(&cluster->index);
2484 error = swap_cgroup_swapon(p->type, maxpages);
2485 if (error)
2486 goto bad_swap;
2488 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2489 cluster_info, maxpages, &span);
2490 if (unlikely(nr_extents < 0)) {
2491 error = nr_extents;
2492 goto bad_swap;
2494 /* frontswap enabled? set up bit-per-page map for frontswap */
2495 if (frontswap_enabled)
2496 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
2498 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2500 * When discard is enabled for swap with no particular
2501 * policy flagged, we set all swap discard flags here in
2502 * order to sustain backward compatibility with older
2503 * swapon(8) releases.
2505 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2506 SWP_PAGE_DISCARD);
2509 * By flagging sys_swapon, a sysadmin can tell us to
2510 * either do single-time area discards only, or to just
2511 * perform discards for released swap page-clusters.
2512 * Now it's time to adjust the p->flags accordingly.
2514 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2515 p->flags &= ~SWP_PAGE_DISCARD;
2516 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2517 p->flags &= ~SWP_AREA_DISCARD;
2519 /* issue a swapon-time discard if it's still required */
2520 if (p->flags & SWP_AREA_DISCARD) {
2521 int err = discard_swap(p);
2522 if (unlikely(err))
2523 pr_err("swapon: discard_swap(%p): %d\n",
2524 p, err);
2528 mutex_lock(&swapon_mutex);
2529 prio = -1;
2530 if (swap_flags & SWAP_FLAG_PREFER)
2531 prio =
2532 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2533 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
2535 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2536 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
2537 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2538 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2539 (p->flags & SWP_DISCARDABLE) ? "D" : "",
2540 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
2541 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
2542 (frontswap_map) ? "FS" : "");
2544 mutex_unlock(&swapon_mutex);
2545 atomic_inc(&proc_poll_event);
2546 wake_up_interruptible(&proc_poll_wait);
2548 if (S_ISREG(inode->i_mode))
2549 inode->i_flags |= S_SWAPFILE;
2550 error = 0;
2551 goto out;
2552 bad_swap:
2553 free_percpu(p->percpu_cluster);
2554 p->percpu_cluster = NULL;
2555 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2556 set_blocksize(p->bdev, p->old_block_size);
2557 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2559 destroy_swap_extents(p);
2560 swap_cgroup_swapoff(p->type);
2561 spin_lock(&swap_lock);
2562 p->swap_file = NULL;
2563 p->flags = 0;
2564 spin_unlock(&swap_lock);
2565 vfree(swap_map);
2566 vfree(cluster_info);
2567 if (swap_file) {
2568 if (inode && S_ISREG(inode->i_mode)) {
2569 inode_unlock(inode);
2570 inode = NULL;
2572 filp_close(swap_file, NULL);
2574 out:
2575 if (page && !IS_ERR(page)) {
2576 kunmap(page);
2577 put_page(page);
2579 if (name)
2580 putname(name);
2581 if (inode && S_ISREG(inode->i_mode))
2582 inode_unlock(inode);
2583 return error;
2586 void si_swapinfo(struct sysinfo *val)
2588 unsigned int type;
2589 unsigned long nr_to_be_unused = 0;
2591 spin_lock(&swap_lock);
2592 for (type = 0; type < nr_swapfiles; type++) {
2593 struct swap_info_struct *si = swap_info[type];
2595 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2596 nr_to_be_unused += si->inuse_pages;
2598 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
2599 val->totalswap = total_swap_pages + nr_to_be_unused;
2600 spin_unlock(&swap_lock);
2604 * Verify that a swap entry is valid and increment its swap map count.
2606 * Returns error code in following case.
2607 * - success -> 0
2608 * - swp_entry is invalid -> EINVAL
2609 * - swp_entry is migration entry -> EINVAL
2610 * - swap-cache reference is requested but there is already one. -> EEXIST
2611 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2612 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2614 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2616 struct swap_info_struct *p;
2617 unsigned long offset, type;
2618 unsigned char count;
2619 unsigned char has_cache;
2620 int err = -EINVAL;
2622 if (non_swap_entry(entry))
2623 goto out;
2625 type = swp_type(entry);
2626 if (type >= nr_swapfiles)
2627 goto bad_file;
2628 p = swap_info[type];
2629 offset = swp_offset(entry);
2631 spin_lock(&p->lock);
2632 if (unlikely(offset >= p->max))
2633 goto unlock_out;
2635 count = p->swap_map[offset];
2638 * swapin_readahead() doesn't check if a swap entry is valid, so the
2639 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2641 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2642 err = -ENOENT;
2643 goto unlock_out;
2646 has_cache = count & SWAP_HAS_CACHE;
2647 count &= ~SWAP_HAS_CACHE;
2648 err = 0;
2650 if (usage == SWAP_HAS_CACHE) {
2652 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2653 if (!has_cache && count)
2654 has_cache = SWAP_HAS_CACHE;
2655 else if (has_cache) /* someone else added cache */
2656 err = -EEXIST;
2657 else /* no users remaining */
2658 err = -ENOENT;
2660 } else if (count || has_cache) {
2662 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2663 count += usage;
2664 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2665 err = -EINVAL;
2666 else if (swap_count_continued(p, offset, count))
2667 count = COUNT_CONTINUED;
2668 else
2669 err = -ENOMEM;
2670 } else
2671 err = -ENOENT; /* unused swap entry */
2673 p->swap_map[offset] = count | has_cache;
2675 unlock_out:
2676 spin_unlock(&p->lock);
2677 out:
2678 return err;
2680 bad_file:
2681 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
2682 goto out;
2686 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2687 * (in which case its reference count is never incremented).
2689 void swap_shmem_alloc(swp_entry_t entry)
2691 __swap_duplicate(entry, SWAP_MAP_SHMEM);
2695 * Increase reference count of swap entry by 1.
2696 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2697 * but could not be atomically allocated. Returns 0, just as if it succeeded,
2698 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2699 * might occur if a page table entry has got corrupted.
2701 int swap_duplicate(swp_entry_t entry)
2703 int err = 0;
2705 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2706 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2707 return err;
2711 * @entry: swap entry for which we allocate swap cache.
2713 * Called when allocating swap cache for existing swap entry,
2714 * This can return error codes. Returns 0 at success.
2715 * -EBUSY means there is a swap cache.
2716 * Note: return code is different from swap_duplicate().
2718 int swapcache_prepare(swp_entry_t entry)
2720 return __swap_duplicate(entry, SWAP_HAS_CACHE);
2723 struct swap_info_struct *page_swap_info(struct page *page)
2725 swp_entry_t swap = { .val = page_private(page) };
2726 BUG_ON(!PageSwapCache(page));
2727 return swap_info[swp_type(swap)];
2731 * out-of-line __page_file_ methods to avoid include hell.
2733 struct address_space *__page_file_mapping(struct page *page)
2735 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2736 return page_swap_info(page)->swap_file->f_mapping;
2738 EXPORT_SYMBOL_GPL(__page_file_mapping);
2740 pgoff_t __page_file_index(struct page *page)
2742 swp_entry_t swap = { .val = page_private(page) };
2743 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2744 return swp_offset(swap);
2746 EXPORT_SYMBOL_GPL(__page_file_index);
2749 * add_swap_count_continuation - called when a swap count is duplicated
2750 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2751 * page of the original vmalloc'ed swap_map, to hold the continuation count
2752 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2753 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2755 * These continuation pages are seldom referenced: the common paths all work
2756 * on the original swap_map, only referring to a continuation page when the
2757 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2759 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2760 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2761 * can be called after dropping locks.
2763 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2765 struct swap_info_struct *si;
2766 struct page *head;
2767 struct page *page;
2768 struct page *list_page;
2769 pgoff_t offset;
2770 unsigned char count;
2773 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2774 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2776 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2778 si = swap_info_get(entry);
2779 if (!si) {
2781 * An acceptable race has occurred since the failing
2782 * __swap_duplicate(): the swap entry has been freed,
2783 * perhaps even the whole swap_map cleared for swapoff.
2785 goto outer;
2788 offset = swp_offset(entry);
2789 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2791 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2793 * The higher the swap count, the more likely it is that tasks
2794 * will race to add swap count continuation: we need to avoid
2795 * over-provisioning.
2797 goto out;
2800 if (!page) {
2801 spin_unlock(&si->lock);
2802 return -ENOMEM;
2806 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2807 * no architecture is using highmem pages for kernel page tables: so it
2808 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
2810 head = vmalloc_to_page(si->swap_map + offset);
2811 offset &= ~PAGE_MASK;
2814 * Page allocation does not initialize the page's lru field,
2815 * but it does always reset its private field.
2817 if (!page_private(head)) {
2818 BUG_ON(count & COUNT_CONTINUED);
2819 INIT_LIST_HEAD(&head->lru);
2820 set_page_private(head, SWP_CONTINUED);
2821 si->flags |= SWP_CONTINUED;
2824 list_for_each_entry(list_page, &head->lru, lru) {
2825 unsigned char *map;
2828 * If the previous map said no continuation, but we've found
2829 * a continuation page, free our allocation and use this one.
2831 if (!(count & COUNT_CONTINUED))
2832 goto out;
2834 map = kmap_atomic(list_page) + offset;
2835 count = *map;
2836 kunmap_atomic(map);
2839 * If this continuation count now has some space in it,
2840 * free our allocation and use this one.
2842 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2843 goto out;
2846 list_add_tail(&page->lru, &head->lru);
2847 page = NULL; /* now it's attached, don't free it */
2848 out:
2849 spin_unlock(&si->lock);
2850 outer:
2851 if (page)
2852 __free_page(page);
2853 return 0;
2857 * swap_count_continued - when the original swap_map count is incremented
2858 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2859 * into, carry if so, or else fail until a new continuation page is allocated;
2860 * when the original swap_map count is decremented from 0 with continuation,
2861 * borrow from the continuation and report whether it still holds more.
2862 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2864 static bool swap_count_continued(struct swap_info_struct *si,
2865 pgoff_t offset, unsigned char count)
2867 struct page *head;
2868 struct page *page;
2869 unsigned char *map;
2871 head = vmalloc_to_page(si->swap_map + offset);
2872 if (page_private(head) != SWP_CONTINUED) {
2873 BUG_ON(count & COUNT_CONTINUED);
2874 return false; /* need to add count continuation */
2877 offset &= ~PAGE_MASK;
2878 page = list_entry(head->lru.next, struct page, lru);
2879 map = kmap_atomic(page) + offset;
2881 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
2882 goto init_map; /* jump over SWAP_CONT_MAX checks */
2884 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2886 * Think of how you add 1 to 999
2888 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2889 kunmap_atomic(map);
2890 page = list_entry(page->lru.next, struct page, lru);
2891 BUG_ON(page == head);
2892 map = kmap_atomic(page) + offset;
2894 if (*map == SWAP_CONT_MAX) {
2895 kunmap_atomic(map);
2896 page = list_entry(page->lru.next, struct page, lru);
2897 if (page == head)
2898 return false; /* add count continuation */
2899 map = kmap_atomic(page) + offset;
2900 init_map: *map = 0; /* we didn't zero the page */
2902 *map += 1;
2903 kunmap_atomic(map);
2904 page = list_entry(page->lru.prev, struct page, lru);
2905 while (page != head) {
2906 map = kmap_atomic(page) + offset;
2907 *map = COUNT_CONTINUED;
2908 kunmap_atomic(map);
2909 page = list_entry(page->lru.prev, struct page, lru);
2911 return true; /* incremented */
2913 } else { /* decrementing */
2915 * Think of how you subtract 1 from 1000
2917 BUG_ON(count != COUNT_CONTINUED);
2918 while (*map == COUNT_CONTINUED) {
2919 kunmap_atomic(map);
2920 page = list_entry(page->lru.next, struct page, lru);
2921 BUG_ON(page == head);
2922 map = kmap_atomic(page) + offset;
2924 BUG_ON(*map == 0);
2925 *map -= 1;
2926 if (*map == 0)
2927 count = 0;
2928 kunmap_atomic(map);
2929 page = list_entry(page->lru.prev, struct page, lru);
2930 while (page != head) {
2931 map = kmap_atomic(page) + offset;
2932 *map = SWAP_CONT_MAX | count;
2933 count = COUNT_CONTINUED;
2934 kunmap_atomic(map);
2935 page = list_entry(page->lru.prev, struct page, lru);
2937 return count == COUNT_CONTINUED;
2942 * free_swap_count_continuations - swapoff free all the continuation pages
2943 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2945 static void free_swap_count_continuations(struct swap_info_struct *si)
2947 pgoff_t offset;
2949 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2950 struct page *head;
2951 head = vmalloc_to_page(si->swap_map + offset);
2952 if (page_private(head)) {
2953 struct page *page, *next;
2955 list_for_each_entry_safe(page, next, &head->lru, lru) {
2956 list_del(&page->lru);
2957 __free_page(page);