memcg swap: use mem_cgroup_uncharge_swap fix
[linux/fpc-iii.git] / drivers / oprofile / buffer_sync.c
blobf34b5b29fb955cb3129dd38f15296583ce64ff5e
1 /**
2 * @file buffer_sync.c
4 * @remark Copyright 2002-2009 OProfile authors
5 * @remark Read the file COPYING
7 * @author John Levon <levon@movementarian.org>
8 * @author Barry Kasindorf
9 * @author Robert Richter <robert.richter@amd.com>
11 * This is the core of the buffer management. Each
12 * CPU buffer is processed and entered into the
13 * global event buffer. Such processing is necessary
14 * in several circumstances, mentioned below.
16 * The processing does the job of converting the
17 * transitory EIP value into a persistent dentry/offset
18 * value that the profiler can record at its leisure.
20 * See fs/dcookies.c for a description of the dentry/offset
21 * objects.
24 #include <linux/mm.h>
25 #include <linux/workqueue.h>
26 #include <linux/notifier.h>
27 #include <linux/dcookies.h>
28 #include <linux/profile.h>
29 #include <linux/module.h>
30 #include <linux/fs.h>
31 #include <linux/oprofile.h>
32 #include <linux/sched.h>
33 #include <linux/gfp.h>
35 #include "oprofile_stats.h"
36 #include "event_buffer.h"
37 #include "cpu_buffer.h"
38 #include "buffer_sync.h"
40 static LIST_HEAD(dying_tasks);
41 static LIST_HEAD(dead_tasks);
42 static cpumask_var_t marked_cpus;
43 static DEFINE_SPINLOCK(task_mortuary);
44 static void process_task_mortuary(void);
46 /* Take ownership of the task struct and place it on the
47 * list for processing. Only after two full buffer syncs
48 * does the task eventually get freed, because by then
49 * we are sure we will not reference it again.
50 * Can be invoked from softirq via RCU callback due to
51 * call_rcu() of the task struct, hence the _irqsave.
53 static int
54 task_free_notify(struct notifier_block *self, unsigned long val, void *data)
56 unsigned long flags;
57 struct task_struct *task = data;
58 spin_lock_irqsave(&task_mortuary, flags);
59 list_add(&task->tasks, &dying_tasks);
60 spin_unlock_irqrestore(&task_mortuary, flags);
61 return NOTIFY_OK;
65 /* The task is on its way out. A sync of the buffer means we can catch
66 * any remaining samples for this task.
68 static int
69 task_exit_notify(struct notifier_block *self, unsigned long val, void *data)
71 /* To avoid latency problems, we only process the current CPU,
72 * hoping that most samples for the task are on this CPU
74 sync_buffer(raw_smp_processor_id());
75 return 0;
79 /* The task is about to try a do_munmap(). We peek at what it's going to
80 * do, and if it's an executable region, process the samples first, so
81 * we don't lose any. This does not have to be exact, it's a QoI issue
82 * only.
84 static int
85 munmap_notify(struct notifier_block *self, unsigned long val, void *data)
87 unsigned long addr = (unsigned long)data;
88 struct mm_struct *mm = current->mm;
89 struct vm_area_struct *mpnt;
91 down_read(&mm->mmap_sem);
93 mpnt = find_vma(mm, addr);
94 if (mpnt && mpnt->vm_file && (mpnt->vm_flags & VM_EXEC)) {
95 up_read(&mm->mmap_sem);
96 /* To avoid latency problems, we only process the current CPU,
97 * hoping that most samples for the task are on this CPU
99 sync_buffer(raw_smp_processor_id());
100 return 0;
103 up_read(&mm->mmap_sem);
104 return 0;
108 /* We need to be told about new modules so we don't attribute to a previously
109 * loaded module, or drop the samples on the floor.
111 static int
112 module_load_notify(struct notifier_block *self, unsigned long val, void *data)
114 #ifdef CONFIG_MODULES
115 if (val != MODULE_STATE_COMING)
116 return 0;
118 /* FIXME: should we process all CPU buffers ? */
119 mutex_lock(&buffer_mutex);
120 add_event_entry(ESCAPE_CODE);
121 add_event_entry(MODULE_LOADED_CODE);
122 mutex_unlock(&buffer_mutex);
123 #endif
124 return 0;
128 static struct notifier_block task_free_nb = {
129 .notifier_call = task_free_notify,
132 static struct notifier_block task_exit_nb = {
133 .notifier_call = task_exit_notify,
136 static struct notifier_block munmap_nb = {
137 .notifier_call = munmap_notify,
140 static struct notifier_block module_load_nb = {
141 .notifier_call = module_load_notify,
144 static void free_all_tasks(void)
146 /* make sure we don't leak task structs */
147 process_task_mortuary();
148 process_task_mortuary();
151 int sync_start(void)
153 int err;
155 if (!zalloc_cpumask_var(&marked_cpus, GFP_KERNEL))
156 return -ENOMEM;
158 err = task_handoff_register(&task_free_nb);
159 if (err)
160 goto out1;
161 err = profile_event_register(PROFILE_TASK_EXIT, &task_exit_nb);
162 if (err)
163 goto out2;
164 err = profile_event_register(PROFILE_MUNMAP, &munmap_nb);
165 if (err)
166 goto out3;
167 err = register_module_notifier(&module_load_nb);
168 if (err)
169 goto out4;
171 start_cpu_work();
173 out:
174 return err;
175 out4:
176 profile_event_unregister(PROFILE_MUNMAP, &munmap_nb);
177 out3:
178 profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb);
179 out2:
180 task_handoff_unregister(&task_free_nb);
181 free_all_tasks();
182 out1:
183 free_cpumask_var(marked_cpus);
184 goto out;
188 void sync_stop(void)
190 end_cpu_work();
191 unregister_module_notifier(&module_load_nb);
192 profile_event_unregister(PROFILE_MUNMAP, &munmap_nb);
193 profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb);
194 task_handoff_unregister(&task_free_nb);
195 barrier(); /* do all of the above first */
197 flush_cpu_work();
199 free_all_tasks();
200 free_cpumask_var(marked_cpus);
204 /* Optimisation. We can manage without taking the dcookie sem
205 * because we cannot reach this code without at least one
206 * dcookie user still being registered (namely, the reader
207 * of the event buffer). */
208 static inline unsigned long fast_get_dcookie(struct path *path)
210 unsigned long cookie;
212 if (path->dentry->d_flags & DCACHE_COOKIE)
213 return (unsigned long)path->dentry;
214 get_dcookie(path, &cookie);
215 return cookie;
219 /* Look up the dcookie for the task's first VM_EXECUTABLE mapping,
220 * which corresponds loosely to "application name". This is
221 * not strictly necessary but allows oprofile to associate
222 * shared-library samples with particular applications
224 static unsigned long get_exec_dcookie(struct mm_struct *mm)
226 unsigned long cookie = NO_COOKIE;
227 struct vm_area_struct *vma;
229 if (!mm)
230 goto out;
232 for (vma = mm->mmap; vma; vma = vma->vm_next) {
233 if (!vma->vm_file)
234 continue;
235 if (!(vma->vm_flags & VM_EXECUTABLE))
236 continue;
237 cookie = fast_get_dcookie(&vma->vm_file->f_path);
238 break;
241 out:
242 return cookie;
246 /* Convert the EIP value of a sample into a persistent dentry/offset
247 * pair that can then be added to the global event buffer. We make
248 * sure to do this lookup before a mm->mmap modification happens so
249 * we don't lose track.
251 static unsigned long
252 lookup_dcookie(struct mm_struct *mm, unsigned long addr, off_t *offset)
254 unsigned long cookie = NO_COOKIE;
255 struct vm_area_struct *vma;
257 for (vma = find_vma(mm, addr); vma; vma = vma->vm_next) {
259 if (addr < vma->vm_start || addr >= vma->vm_end)
260 continue;
262 if (vma->vm_file) {
263 cookie = fast_get_dcookie(&vma->vm_file->f_path);
264 *offset = (vma->vm_pgoff << PAGE_SHIFT) + addr -
265 vma->vm_start;
266 } else {
267 /* must be an anonymous map */
268 *offset = addr;
271 break;
274 if (!vma)
275 cookie = INVALID_COOKIE;
277 return cookie;
280 static unsigned long last_cookie = INVALID_COOKIE;
282 static void add_cpu_switch(int i)
284 add_event_entry(ESCAPE_CODE);
285 add_event_entry(CPU_SWITCH_CODE);
286 add_event_entry(i);
287 last_cookie = INVALID_COOKIE;
290 static void add_kernel_ctx_switch(unsigned int in_kernel)
292 add_event_entry(ESCAPE_CODE);
293 if (in_kernel)
294 add_event_entry(KERNEL_ENTER_SWITCH_CODE);
295 else
296 add_event_entry(KERNEL_EXIT_SWITCH_CODE);
299 static void
300 add_user_ctx_switch(struct task_struct const *task, unsigned long cookie)
302 add_event_entry(ESCAPE_CODE);
303 add_event_entry(CTX_SWITCH_CODE);
304 add_event_entry(task->pid);
305 add_event_entry(cookie);
306 /* Another code for daemon back-compat */
307 add_event_entry(ESCAPE_CODE);
308 add_event_entry(CTX_TGID_CODE);
309 add_event_entry(task->tgid);
313 static void add_cookie_switch(unsigned long cookie)
315 add_event_entry(ESCAPE_CODE);
316 add_event_entry(COOKIE_SWITCH_CODE);
317 add_event_entry(cookie);
321 static void add_trace_begin(void)
323 add_event_entry(ESCAPE_CODE);
324 add_event_entry(TRACE_BEGIN_CODE);
327 static void add_data(struct op_entry *entry, struct mm_struct *mm)
329 unsigned long code, pc, val;
330 unsigned long cookie;
331 off_t offset;
333 if (!op_cpu_buffer_get_data(entry, &code))
334 return;
335 if (!op_cpu_buffer_get_data(entry, &pc))
336 return;
337 if (!op_cpu_buffer_get_size(entry))
338 return;
340 if (mm) {
341 cookie = lookup_dcookie(mm, pc, &offset);
343 if (cookie == NO_COOKIE)
344 offset = pc;
345 if (cookie == INVALID_COOKIE) {
346 atomic_inc(&oprofile_stats.sample_lost_no_mapping);
347 offset = pc;
349 if (cookie != last_cookie) {
350 add_cookie_switch(cookie);
351 last_cookie = cookie;
353 } else
354 offset = pc;
356 add_event_entry(ESCAPE_CODE);
357 add_event_entry(code);
358 add_event_entry(offset); /* Offset from Dcookie */
360 while (op_cpu_buffer_get_data(entry, &val))
361 add_event_entry(val);
364 static inline void add_sample_entry(unsigned long offset, unsigned long event)
366 add_event_entry(offset);
367 add_event_entry(event);
372 * Add a sample to the global event buffer. If possible the
373 * sample is converted into a persistent dentry/offset pair
374 * for later lookup from userspace. Return 0 on failure.
376 static int
377 add_sample(struct mm_struct *mm, struct op_sample *s, int in_kernel)
379 unsigned long cookie;
380 off_t offset;
382 if (in_kernel) {
383 add_sample_entry(s->eip, s->event);
384 return 1;
387 /* add userspace sample */
389 if (!mm) {
390 atomic_inc(&oprofile_stats.sample_lost_no_mm);
391 return 0;
394 cookie = lookup_dcookie(mm, s->eip, &offset);
396 if (cookie == INVALID_COOKIE) {
397 atomic_inc(&oprofile_stats.sample_lost_no_mapping);
398 return 0;
401 if (cookie != last_cookie) {
402 add_cookie_switch(cookie);
403 last_cookie = cookie;
406 add_sample_entry(offset, s->event);
408 return 1;
412 static void release_mm(struct mm_struct *mm)
414 if (!mm)
415 return;
416 up_read(&mm->mmap_sem);
417 mmput(mm);
421 static struct mm_struct *take_tasks_mm(struct task_struct *task)
423 struct mm_struct *mm = get_task_mm(task);
424 if (mm)
425 down_read(&mm->mmap_sem);
426 return mm;
430 static inline int is_code(unsigned long val)
432 return val == ESCAPE_CODE;
436 /* Move tasks along towards death. Any tasks on dead_tasks
437 * will definitely have no remaining references in any
438 * CPU buffers at this point, because we use two lists,
439 * and to have reached the list, it must have gone through
440 * one full sync already.
442 static void process_task_mortuary(void)
444 unsigned long flags;
445 LIST_HEAD(local_dead_tasks);
446 struct task_struct *task;
447 struct task_struct *ttask;
449 spin_lock_irqsave(&task_mortuary, flags);
451 list_splice_init(&dead_tasks, &local_dead_tasks);
452 list_splice_init(&dying_tasks, &dead_tasks);
454 spin_unlock_irqrestore(&task_mortuary, flags);
456 list_for_each_entry_safe(task, ttask, &local_dead_tasks, tasks) {
457 list_del(&task->tasks);
458 free_task(task);
463 static void mark_done(int cpu)
465 int i;
467 cpumask_set_cpu(cpu, marked_cpus);
469 for_each_online_cpu(i) {
470 if (!cpumask_test_cpu(i, marked_cpus))
471 return;
474 /* All CPUs have been processed at least once,
475 * we can process the mortuary once
477 process_task_mortuary();
479 cpumask_clear(marked_cpus);
483 /* FIXME: this is not sufficient if we implement syscall barrier backtrace
484 * traversal, the code switch to sb_sample_start at first kernel enter/exit
485 * switch so we need a fifth state and some special handling in sync_buffer()
487 typedef enum {
488 sb_bt_ignore = -2,
489 sb_buffer_start,
490 sb_bt_start,
491 sb_sample_start,
492 } sync_buffer_state;
494 /* Sync one of the CPU's buffers into the global event buffer.
495 * Here we need to go through each batch of samples punctuated
496 * by context switch notes, taking the task's mmap_sem and doing
497 * lookup in task->mm->mmap to convert EIP into dcookie/offset
498 * value.
500 void sync_buffer(int cpu)
502 struct mm_struct *mm = NULL;
503 struct mm_struct *oldmm;
504 unsigned long val;
505 struct task_struct *new;
506 unsigned long cookie = 0;
507 int in_kernel = 1;
508 sync_buffer_state state = sb_buffer_start;
509 unsigned int i;
510 unsigned long available;
511 unsigned long flags;
512 struct op_entry entry;
513 struct op_sample *sample;
515 mutex_lock(&buffer_mutex);
517 add_cpu_switch(cpu);
519 op_cpu_buffer_reset(cpu);
520 available = op_cpu_buffer_entries(cpu);
522 for (i = 0; i < available; ++i) {
523 sample = op_cpu_buffer_read_entry(&entry, cpu);
524 if (!sample)
525 break;
527 if (is_code(sample->eip)) {
528 flags = sample->event;
529 if (flags & TRACE_BEGIN) {
530 state = sb_bt_start;
531 add_trace_begin();
533 if (flags & KERNEL_CTX_SWITCH) {
534 /* kernel/userspace switch */
535 in_kernel = flags & IS_KERNEL;
536 if (state == sb_buffer_start)
537 state = sb_sample_start;
538 add_kernel_ctx_switch(flags & IS_KERNEL);
540 if (flags & USER_CTX_SWITCH
541 && op_cpu_buffer_get_data(&entry, &val)) {
542 /* userspace context switch */
543 new = (struct task_struct *)val;
544 oldmm = mm;
545 release_mm(oldmm);
546 mm = take_tasks_mm(new);
547 if (mm != oldmm)
548 cookie = get_exec_dcookie(mm);
549 add_user_ctx_switch(new, cookie);
551 if (op_cpu_buffer_get_size(&entry))
552 add_data(&entry, mm);
553 continue;
556 if (state < sb_bt_start)
557 /* ignore sample */
558 continue;
560 if (add_sample(mm, sample, in_kernel))
561 continue;
563 /* ignore backtraces if failed to add a sample */
564 if (state == sb_bt_start) {
565 state = sb_bt_ignore;
566 atomic_inc(&oprofile_stats.bt_lost_no_mapping);
569 release_mm(mm);
571 mark_done(cpu);
573 mutex_unlock(&buffer_mutex);
576 /* The function can be used to add a buffer worth of data directly to
577 * the kernel buffer. The buffer is assumed to be a circular buffer.
578 * Take the entries from index start and end at index end, wrapping
579 * at max_entries.
581 void oprofile_put_buff(unsigned long *buf, unsigned int start,
582 unsigned int stop, unsigned int max)
584 int i;
586 i = start;
588 mutex_lock(&buffer_mutex);
589 while (i != stop) {
590 add_event_entry(buf[i++]);
592 if (i >= max)
593 i = 0;
596 mutex_unlock(&buffer_mutex);