perf tools: Streamline bpf examples and headers installation
[linux/fpc-iii.git] / arch / arm / kernel / perf_event_v6.c
blobbe42c4f66a40f8ef3c547fd11077fd72b90e5330
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * ARMv6 Performance counter handling code.
5 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7 * ARMv6 has 2 configurable performance counters and a single cycle counter.
8 * They all share a single reset bit but can be written to zero so we can use
9 * that for a reset.
11 * The counters can't be individually enabled or disabled so when we remove
12 * one event and replace it with another we could get spurious counts from the
13 * wrong event. However, we can take advantage of the fact that the
14 * performance counters can export events to the event bus, and the event bus
15 * itself can be monitored. This requires that we *don't* export the events to
16 * the event bus. The procedure for disabling a configurable counter is:
17 * - change the counter to count the ETMEXTOUT[0] signal (0x20). This
18 * effectively stops the counter from counting.
19 * - disable the counter's interrupt generation (each counter has it's
20 * own interrupt enable bit).
21 * Once stopped, the counter value can be written as 0 to reset.
23 * To enable a counter:
24 * - enable the counter's interrupt generation.
25 * - set the new event type.
27 * Note: the dedicated cycle counter only counts cycles and can't be
28 * enabled/disabled independently of the others. When we want to disable the
29 * cycle counter, we have to just disable the interrupt reporting and start
30 * ignoring that counter. When re-enabling, we have to reset the value and
31 * enable the interrupt.
34 #if defined(CONFIG_CPU_V6) || defined(CONFIG_CPU_V6K)
36 #include <asm/cputype.h>
37 #include <asm/irq_regs.h>
39 #include <linux/of.h>
40 #include <linux/perf/arm_pmu.h>
41 #include <linux/platform_device.h>
43 enum armv6_perf_types {
44 ARMV6_PERFCTR_ICACHE_MISS = 0x0,
45 ARMV6_PERFCTR_IBUF_STALL = 0x1,
46 ARMV6_PERFCTR_DDEP_STALL = 0x2,
47 ARMV6_PERFCTR_ITLB_MISS = 0x3,
48 ARMV6_PERFCTR_DTLB_MISS = 0x4,
49 ARMV6_PERFCTR_BR_EXEC = 0x5,
50 ARMV6_PERFCTR_BR_MISPREDICT = 0x6,
51 ARMV6_PERFCTR_INSTR_EXEC = 0x7,
52 ARMV6_PERFCTR_DCACHE_HIT = 0x9,
53 ARMV6_PERFCTR_DCACHE_ACCESS = 0xA,
54 ARMV6_PERFCTR_DCACHE_MISS = 0xB,
55 ARMV6_PERFCTR_DCACHE_WBACK = 0xC,
56 ARMV6_PERFCTR_SW_PC_CHANGE = 0xD,
57 ARMV6_PERFCTR_MAIN_TLB_MISS = 0xF,
58 ARMV6_PERFCTR_EXPL_D_ACCESS = 0x10,
59 ARMV6_PERFCTR_LSU_FULL_STALL = 0x11,
60 ARMV6_PERFCTR_WBUF_DRAINED = 0x12,
61 ARMV6_PERFCTR_CPU_CYCLES = 0xFF,
62 ARMV6_PERFCTR_NOP = 0x20,
65 enum armv6_counters {
66 ARMV6_CYCLE_COUNTER = 0,
67 ARMV6_COUNTER0,
68 ARMV6_COUNTER1,
72 * The hardware events that we support. We do support cache operations but
73 * we have harvard caches and no way to combine instruction and data
74 * accesses/misses in hardware.
76 static const unsigned armv6_perf_map[PERF_COUNT_HW_MAX] = {
77 PERF_MAP_ALL_UNSUPPORTED,
78 [PERF_COUNT_HW_CPU_CYCLES] = ARMV6_PERFCTR_CPU_CYCLES,
79 [PERF_COUNT_HW_INSTRUCTIONS] = ARMV6_PERFCTR_INSTR_EXEC,
80 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = ARMV6_PERFCTR_BR_EXEC,
81 [PERF_COUNT_HW_BRANCH_MISSES] = ARMV6_PERFCTR_BR_MISPREDICT,
82 [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = ARMV6_PERFCTR_IBUF_STALL,
83 [PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = ARMV6_PERFCTR_LSU_FULL_STALL,
86 static const unsigned armv6_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
87 [PERF_COUNT_HW_CACHE_OP_MAX]
88 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
89 PERF_CACHE_MAP_ALL_UNSUPPORTED,
92 * The performance counters don't differentiate between read and write
93 * accesses/misses so this isn't strictly correct, but it's the best we
94 * can do. Writes and reads get combined.
96 [C(L1D)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV6_PERFCTR_DCACHE_ACCESS,
97 [C(L1D)][C(OP_READ)][C(RESULT_MISS)] = ARMV6_PERFCTR_DCACHE_MISS,
98 [C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV6_PERFCTR_DCACHE_ACCESS,
99 [C(L1D)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV6_PERFCTR_DCACHE_MISS,
101 [C(L1I)][C(OP_READ)][C(RESULT_MISS)] = ARMV6_PERFCTR_ICACHE_MISS,
104 * The ARM performance counters can count micro DTLB misses, micro ITLB
105 * misses and main TLB misses. There isn't an event for TLB misses, so
106 * use the micro misses here and if users want the main TLB misses they
107 * can use a raw counter.
109 [C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = ARMV6_PERFCTR_DTLB_MISS,
110 [C(DTLB)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV6_PERFCTR_DTLB_MISS,
112 [C(ITLB)][C(OP_READ)][C(RESULT_MISS)] = ARMV6_PERFCTR_ITLB_MISS,
113 [C(ITLB)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV6_PERFCTR_ITLB_MISS,
116 enum armv6mpcore_perf_types {
117 ARMV6MPCORE_PERFCTR_ICACHE_MISS = 0x0,
118 ARMV6MPCORE_PERFCTR_IBUF_STALL = 0x1,
119 ARMV6MPCORE_PERFCTR_DDEP_STALL = 0x2,
120 ARMV6MPCORE_PERFCTR_ITLB_MISS = 0x3,
121 ARMV6MPCORE_PERFCTR_DTLB_MISS = 0x4,
122 ARMV6MPCORE_PERFCTR_BR_EXEC = 0x5,
123 ARMV6MPCORE_PERFCTR_BR_NOTPREDICT = 0x6,
124 ARMV6MPCORE_PERFCTR_BR_MISPREDICT = 0x7,
125 ARMV6MPCORE_PERFCTR_INSTR_EXEC = 0x8,
126 ARMV6MPCORE_PERFCTR_DCACHE_RDACCESS = 0xA,
127 ARMV6MPCORE_PERFCTR_DCACHE_RDMISS = 0xB,
128 ARMV6MPCORE_PERFCTR_DCACHE_WRACCESS = 0xC,
129 ARMV6MPCORE_PERFCTR_DCACHE_WRMISS = 0xD,
130 ARMV6MPCORE_PERFCTR_DCACHE_EVICTION = 0xE,
131 ARMV6MPCORE_PERFCTR_SW_PC_CHANGE = 0xF,
132 ARMV6MPCORE_PERFCTR_MAIN_TLB_MISS = 0x10,
133 ARMV6MPCORE_PERFCTR_EXPL_MEM_ACCESS = 0x11,
134 ARMV6MPCORE_PERFCTR_LSU_FULL_STALL = 0x12,
135 ARMV6MPCORE_PERFCTR_WBUF_DRAINED = 0x13,
136 ARMV6MPCORE_PERFCTR_CPU_CYCLES = 0xFF,
140 * The hardware events that we support. We do support cache operations but
141 * we have harvard caches and no way to combine instruction and data
142 * accesses/misses in hardware.
144 static const unsigned armv6mpcore_perf_map[PERF_COUNT_HW_MAX] = {
145 PERF_MAP_ALL_UNSUPPORTED,
146 [PERF_COUNT_HW_CPU_CYCLES] = ARMV6MPCORE_PERFCTR_CPU_CYCLES,
147 [PERF_COUNT_HW_INSTRUCTIONS] = ARMV6MPCORE_PERFCTR_INSTR_EXEC,
148 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = ARMV6MPCORE_PERFCTR_BR_EXEC,
149 [PERF_COUNT_HW_BRANCH_MISSES] = ARMV6MPCORE_PERFCTR_BR_MISPREDICT,
150 [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = ARMV6MPCORE_PERFCTR_IBUF_STALL,
151 [PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = ARMV6MPCORE_PERFCTR_LSU_FULL_STALL,
154 static const unsigned armv6mpcore_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
155 [PERF_COUNT_HW_CACHE_OP_MAX]
156 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
157 PERF_CACHE_MAP_ALL_UNSUPPORTED,
159 [C(L1D)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV6MPCORE_PERFCTR_DCACHE_RDACCESS,
160 [C(L1D)][C(OP_READ)][C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_DCACHE_RDMISS,
161 [C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV6MPCORE_PERFCTR_DCACHE_WRACCESS,
162 [C(L1D)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_DCACHE_WRMISS,
164 [C(L1I)][C(OP_READ)][C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_ICACHE_MISS,
167 * The ARM performance counters can count micro DTLB misses, micro ITLB
168 * misses and main TLB misses. There isn't an event for TLB misses, so
169 * use the micro misses here and if users want the main TLB misses they
170 * can use a raw counter.
172 [C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_DTLB_MISS,
173 [C(DTLB)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_DTLB_MISS,
175 [C(ITLB)][C(OP_READ)][C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_ITLB_MISS,
176 [C(ITLB)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_ITLB_MISS,
179 static inline unsigned long
180 armv6_pmcr_read(void)
182 u32 val;
183 asm volatile("mrc p15, 0, %0, c15, c12, 0" : "=r"(val));
184 return val;
187 static inline void
188 armv6_pmcr_write(unsigned long val)
190 asm volatile("mcr p15, 0, %0, c15, c12, 0" : : "r"(val));
193 #define ARMV6_PMCR_ENABLE (1 << 0)
194 #define ARMV6_PMCR_CTR01_RESET (1 << 1)
195 #define ARMV6_PMCR_CCOUNT_RESET (1 << 2)
196 #define ARMV6_PMCR_CCOUNT_DIV (1 << 3)
197 #define ARMV6_PMCR_COUNT0_IEN (1 << 4)
198 #define ARMV6_PMCR_COUNT1_IEN (1 << 5)
199 #define ARMV6_PMCR_CCOUNT_IEN (1 << 6)
200 #define ARMV6_PMCR_COUNT0_OVERFLOW (1 << 8)
201 #define ARMV6_PMCR_COUNT1_OVERFLOW (1 << 9)
202 #define ARMV6_PMCR_CCOUNT_OVERFLOW (1 << 10)
203 #define ARMV6_PMCR_EVT_COUNT0_SHIFT 20
204 #define ARMV6_PMCR_EVT_COUNT0_MASK (0xFF << ARMV6_PMCR_EVT_COUNT0_SHIFT)
205 #define ARMV6_PMCR_EVT_COUNT1_SHIFT 12
206 #define ARMV6_PMCR_EVT_COUNT1_MASK (0xFF << ARMV6_PMCR_EVT_COUNT1_SHIFT)
208 #define ARMV6_PMCR_OVERFLOWED_MASK \
209 (ARMV6_PMCR_COUNT0_OVERFLOW | ARMV6_PMCR_COUNT1_OVERFLOW | \
210 ARMV6_PMCR_CCOUNT_OVERFLOW)
212 static inline int
213 armv6_pmcr_has_overflowed(unsigned long pmcr)
215 return pmcr & ARMV6_PMCR_OVERFLOWED_MASK;
218 static inline int
219 armv6_pmcr_counter_has_overflowed(unsigned long pmcr,
220 enum armv6_counters counter)
222 int ret = 0;
224 if (ARMV6_CYCLE_COUNTER == counter)
225 ret = pmcr & ARMV6_PMCR_CCOUNT_OVERFLOW;
226 else if (ARMV6_COUNTER0 == counter)
227 ret = pmcr & ARMV6_PMCR_COUNT0_OVERFLOW;
228 else if (ARMV6_COUNTER1 == counter)
229 ret = pmcr & ARMV6_PMCR_COUNT1_OVERFLOW;
230 else
231 WARN_ONCE(1, "invalid counter number (%d)\n", counter);
233 return ret;
236 static inline u32 armv6pmu_read_counter(struct perf_event *event)
238 struct hw_perf_event *hwc = &event->hw;
239 int counter = hwc->idx;
240 unsigned long value = 0;
242 if (ARMV6_CYCLE_COUNTER == counter)
243 asm volatile("mrc p15, 0, %0, c15, c12, 1" : "=r"(value));
244 else if (ARMV6_COUNTER0 == counter)
245 asm volatile("mrc p15, 0, %0, c15, c12, 2" : "=r"(value));
246 else if (ARMV6_COUNTER1 == counter)
247 asm volatile("mrc p15, 0, %0, c15, c12, 3" : "=r"(value));
248 else
249 WARN_ONCE(1, "invalid counter number (%d)\n", counter);
251 return value;
254 static inline void armv6pmu_write_counter(struct perf_event *event, u32 value)
256 struct hw_perf_event *hwc = &event->hw;
257 int counter = hwc->idx;
259 if (ARMV6_CYCLE_COUNTER == counter)
260 asm volatile("mcr p15, 0, %0, c15, c12, 1" : : "r"(value));
261 else if (ARMV6_COUNTER0 == counter)
262 asm volatile("mcr p15, 0, %0, c15, c12, 2" : : "r"(value));
263 else if (ARMV6_COUNTER1 == counter)
264 asm volatile("mcr p15, 0, %0, c15, c12, 3" : : "r"(value));
265 else
266 WARN_ONCE(1, "invalid counter number (%d)\n", counter);
269 static void armv6pmu_enable_event(struct perf_event *event)
271 unsigned long val, mask, evt, flags;
272 struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu);
273 struct hw_perf_event *hwc = &event->hw;
274 struct pmu_hw_events *events = this_cpu_ptr(cpu_pmu->hw_events);
275 int idx = hwc->idx;
277 if (ARMV6_CYCLE_COUNTER == idx) {
278 mask = 0;
279 evt = ARMV6_PMCR_CCOUNT_IEN;
280 } else if (ARMV6_COUNTER0 == idx) {
281 mask = ARMV6_PMCR_EVT_COUNT0_MASK;
282 evt = (hwc->config_base << ARMV6_PMCR_EVT_COUNT0_SHIFT) |
283 ARMV6_PMCR_COUNT0_IEN;
284 } else if (ARMV6_COUNTER1 == idx) {
285 mask = ARMV6_PMCR_EVT_COUNT1_MASK;
286 evt = (hwc->config_base << ARMV6_PMCR_EVT_COUNT1_SHIFT) |
287 ARMV6_PMCR_COUNT1_IEN;
288 } else {
289 WARN_ONCE(1, "invalid counter number (%d)\n", idx);
290 return;
294 * Mask out the current event and set the counter to count the event
295 * that we're interested in.
297 raw_spin_lock_irqsave(&events->pmu_lock, flags);
298 val = armv6_pmcr_read();
299 val &= ~mask;
300 val |= evt;
301 armv6_pmcr_write(val);
302 raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
305 static irqreturn_t
306 armv6pmu_handle_irq(struct arm_pmu *cpu_pmu)
308 unsigned long pmcr = armv6_pmcr_read();
309 struct perf_sample_data data;
310 struct pmu_hw_events *cpuc = this_cpu_ptr(cpu_pmu->hw_events);
311 struct pt_regs *regs;
312 int idx;
314 if (!armv6_pmcr_has_overflowed(pmcr))
315 return IRQ_NONE;
317 regs = get_irq_regs();
320 * The interrupts are cleared by writing the overflow flags back to
321 * the control register. All of the other bits don't have any effect
322 * if they are rewritten, so write the whole value back.
324 armv6_pmcr_write(pmcr);
326 for (idx = 0; idx < cpu_pmu->num_events; ++idx) {
327 struct perf_event *event = cpuc->events[idx];
328 struct hw_perf_event *hwc;
330 /* Ignore if we don't have an event. */
331 if (!event)
332 continue;
335 * We have a single interrupt for all counters. Check that
336 * each counter has overflowed before we process it.
338 if (!armv6_pmcr_counter_has_overflowed(pmcr, idx))
339 continue;
341 hwc = &event->hw;
342 armpmu_event_update(event);
343 perf_sample_data_init(&data, 0, hwc->last_period);
344 if (!armpmu_event_set_period(event))
345 continue;
347 if (perf_event_overflow(event, &data, regs))
348 cpu_pmu->disable(event);
352 * Handle the pending perf events.
354 * Note: this call *must* be run with interrupts disabled. For
355 * platforms that can have the PMU interrupts raised as an NMI, this
356 * will not work.
358 irq_work_run();
360 return IRQ_HANDLED;
363 static void armv6pmu_start(struct arm_pmu *cpu_pmu)
365 unsigned long flags, val;
366 struct pmu_hw_events *events = this_cpu_ptr(cpu_pmu->hw_events);
368 raw_spin_lock_irqsave(&events->pmu_lock, flags);
369 val = armv6_pmcr_read();
370 val |= ARMV6_PMCR_ENABLE;
371 armv6_pmcr_write(val);
372 raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
375 static void armv6pmu_stop(struct arm_pmu *cpu_pmu)
377 unsigned long flags, val;
378 struct pmu_hw_events *events = this_cpu_ptr(cpu_pmu->hw_events);
380 raw_spin_lock_irqsave(&events->pmu_lock, flags);
381 val = armv6_pmcr_read();
382 val &= ~ARMV6_PMCR_ENABLE;
383 armv6_pmcr_write(val);
384 raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
387 static int
388 armv6pmu_get_event_idx(struct pmu_hw_events *cpuc,
389 struct perf_event *event)
391 struct hw_perf_event *hwc = &event->hw;
392 /* Always place a cycle counter into the cycle counter. */
393 if (ARMV6_PERFCTR_CPU_CYCLES == hwc->config_base) {
394 if (test_and_set_bit(ARMV6_CYCLE_COUNTER, cpuc->used_mask))
395 return -EAGAIN;
397 return ARMV6_CYCLE_COUNTER;
398 } else {
400 * For anything other than a cycle counter, try and use
401 * counter0 and counter1.
403 if (!test_and_set_bit(ARMV6_COUNTER1, cpuc->used_mask))
404 return ARMV6_COUNTER1;
406 if (!test_and_set_bit(ARMV6_COUNTER0, cpuc->used_mask))
407 return ARMV6_COUNTER0;
409 /* The counters are all in use. */
410 return -EAGAIN;
414 static void armv6pmu_disable_event(struct perf_event *event)
416 unsigned long val, mask, evt, flags;
417 struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu);
418 struct hw_perf_event *hwc = &event->hw;
419 struct pmu_hw_events *events = this_cpu_ptr(cpu_pmu->hw_events);
420 int idx = hwc->idx;
422 if (ARMV6_CYCLE_COUNTER == idx) {
423 mask = ARMV6_PMCR_CCOUNT_IEN;
424 evt = 0;
425 } else if (ARMV6_COUNTER0 == idx) {
426 mask = ARMV6_PMCR_COUNT0_IEN | ARMV6_PMCR_EVT_COUNT0_MASK;
427 evt = ARMV6_PERFCTR_NOP << ARMV6_PMCR_EVT_COUNT0_SHIFT;
428 } else if (ARMV6_COUNTER1 == idx) {
429 mask = ARMV6_PMCR_COUNT1_IEN | ARMV6_PMCR_EVT_COUNT1_MASK;
430 evt = ARMV6_PERFCTR_NOP << ARMV6_PMCR_EVT_COUNT1_SHIFT;
431 } else {
432 WARN_ONCE(1, "invalid counter number (%d)\n", idx);
433 return;
437 * Mask out the current event and set the counter to count the number
438 * of ETM bus signal assertion cycles. The external reporting should
439 * be disabled and so this should never increment.
441 raw_spin_lock_irqsave(&events->pmu_lock, flags);
442 val = armv6_pmcr_read();
443 val &= ~mask;
444 val |= evt;
445 armv6_pmcr_write(val);
446 raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
449 static void armv6mpcore_pmu_disable_event(struct perf_event *event)
451 unsigned long val, mask, flags, evt = 0;
452 struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu);
453 struct hw_perf_event *hwc = &event->hw;
454 struct pmu_hw_events *events = this_cpu_ptr(cpu_pmu->hw_events);
455 int idx = hwc->idx;
457 if (ARMV6_CYCLE_COUNTER == idx) {
458 mask = ARMV6_PMCR_CCOUNT_IEN;
459 } else if (ARMV6_COUNTER0 == idx) {
460 mask = ARMV6_PMCR_COUNT0_IEN;
461 } else if (ARMV6_COUNTER1 == idx) {
462 mask = ARMV6_PMCR_COUNT1_IEN;
463 } else {
464 WARN_ONCE(1, "invalid counter number (%d)\n", idx);
465 return;
469 * Unlike UP ARMv6, we don't have a way of stopping the counters. We
470 * simply disable the interrupt reporting.
472 raw_spin_lock_irqsave(&events->pmu_lock, flags);
473 val = armv6_pmcr_read();
474 val &= ~mask;
475 val |= evt;
476 armv6_pmcr_write(val);
477 raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
480 static int armv6_map_event(struct perf_event *event)
482 return armpmu_map_event(event, &armv6_perf_map,
483 &armv6_perf_cache_map, 0xFF);
486 static void armv6pmu_init(struct arm_pmu *cpu_pmu)
488 cpu_pmu->handle_irq = armv6pmu_handle_irq;
489 cpu_pmu->enable = armv6pmu_enable_event;
490 cpu_pmu->disable = armv6pmu_disable_event;
491 cpu_pmu->read_counter = armv6pmu_read_counter;
492 cpu_pmu->write_counter = armv6pmu_write_counter;
493 cpu_pmu->get_event_idx = armv6pmu_get_event_idx;
494 cpu_pmu->start = armv6pmu_start;
495 cpu_pmu->stop = armv6pmu_stop;
496 cpu_pmu->map_event = armv6_map_event;
497 cpu_pmu->num_events = 3;
498 cpu_pmu->max_period = (1LLU << 32) - 1;
501 static int armv6_1136_pmu_init(struct arm_pmu *cpu_pmu)
503 armv6pmu_init(cpu_pmu);
504 cpu_pmu->name = "armv6_1136";
505 return 0;
508 static int armv6_1156_pmu_init(struct arm_pmu *cpu_pmu)
510 armv6pmu_init(cpu_pmu);
511 cpu_pmu->name = "armv6_1156";
512 return 0;
515 static int armv6_1176_pmu_init(struct arm_pmu *cpu_pmu)
517 armv6pmu_init(cpu_pmu);
518 cpu_pmu->name = "armv6_1176";
519 return 0;
523 * ARMv6mpcore is almost identical to single core ARMv6 with the exception
524 * that some of the events have different enumerations and that there is no
525 * *hack* to stop the programmable counters. To stop the counters we simply
526 * disable the interrupt reporting and update the event. When unthrottling we
527 * reset the period and enable the interrupt reporting.
530 static int armv6mpcore_map_event(struct perf_event *event)
532 return armpmu_map_event(event, &armv6mpcore_perf_map,
533 &armv6mpcore_perf_cache_map, 0xFF);
536 static int armv6mpcore_pmu_init(struct arm_pmu *cpu_pmu)
538 cpu_pmu->name = "armv6_11mpcore";
539 cpu_pmu->handle_irq = armv6pmu_handle_irq;
540 cpu_pmu->enable = armv6pmu_enable_event;
541 cpu_pmu->disable = armv6mpcore_pmu_disable_event;
542 cpu_pmu->read_counter = armv6pmu_read_counter;
543 cpu_pmu->write_counter = armv6pmu_write_counter;
544 cpu_pmu->get_event_idx = armv6pmu_get_event_idx;
545 cpu_pmu->start = armv6pmu_start;
546 cpu_pmu->stop = armv6pmu_stop;
547 cpu_pmu->map_event = armv6mpcore_map_event;
548 cpu_pmu->num_events = 3;
549 cpu_pmu->max_period = (1LLU << 32) - 1;
551 return 0;
554 static const struct of_device_id armv6_pmu_of_device_ids[] = {
555 {.compatible = "arm,arm11mpcore-pmu", .data = armv6mpcore_pmu_init},
556 {.compatible = "arm,arm1176-pmu", .data = armv6_1176_pmu_init},
557 {.compatible = "arm,arm1136-pmu", .data = armv6_1136_pmu_init},
558 { /* sentinel value */ }
561 static const struct pmu_probe_info armv6_pmu_probe_table[] = {
562 ARM_PMU_PROBE(ARM_CPU_PART_ARM1136, armv6_1136_pmu_init),
563 ARM_PMU_PROBE(ARM_CPU_PART_ARM1156, armv6_1156_pmu_init),
564 ARM_PMU_PROBE(ARM_CPU_PART_ARM1176, armv6_1176_pmu_init),
565 ARM_PMU_PROBE(ARM_CPU_PART_ARM11MPCORE, armv6mpcore_pmu_init),
566 { /* sentinel value */ }
569 static int armv6_pmu_device_probe(struct platform_device *pdev)
571 return arm_pmu_device_probe(pdev, armv6_pmu_of_device_ids,
572 armv6_pmu_probe_table);
575 static struct platform_driver armv6_pmu_driver = {
576 .driver = {
577 .name = "armv6-pmu",
578 .of_match_table = armv6_pmu_of_device_ids,
580 .probe = armv6_pmu_device_probe,
583 builtin_platform_driver(armv6_pmu_driver);
584 #endif /* CONFIG_CPU_V6 || CONFIG_CPU_V6K */