perf tools: Streamline bpf examples and headers installation
[linux/fpc-iii.git] / arch / mips / kernel / cevt-r4k.c
blobdd6a18bc10abd0c34a6717fe12bb7169a4589231
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Copyright (C) 2007 MIPS Technologies, Inc.
7 * Copyright (C) 2007 Ralf Baechle <ralf@linux-mips.org>
8 */
9 #include <linux/clockchips.h>
10 #include <linux/interrupt.h>
11 #include <linux/percpu.h>
12 #include <linux/smp.h>
13 #include <linux/irq.h>
15 #include <asm/time.h>
16 #include <asm/cevt-r4k.h>
18 static int mips_next_event(unsigned long delta,
19 struct clock_event_device *evt)
21 unsigned int cnt;
22 int res;
24 cnt = read_c0_count();
25 cnt += delta;
26 write_c0_compare(cnt);
27 res = ((int)(read_c0_count() - cnt) >= 0) ? -ETIME : 0;
28 return res;
31 /**
32 * calculate_min_delta() - Calculate a good minimum delta for mips_next_event().
34 * Running under virtualisation can introduce overhead into mips_next_event() in
35 * the form of hypervisor emulation of CP0_Count/CP0_Compare registers,
36 * potentially with an unnatural frequency, which makes a fixed min_delta_ns
37 * value inappropriate as it may be too small.
39 * It can also introduce occasional latency from the guest being descheduled.
41 * This function calculates a good minimum delta based roughly on the 75th
42 * percentile of the time taken to do the mips_next_event() sequence, in order
43 * to handle potentially higher overhead while also eliminating outliers due to
44 * unpredictable hypervisor latency (which can be handled by retries).
46 * Return: An appropriate minimum delta for the clock event device.
48 static unsigned int calculate_min_delta(void)
50 unsigned int cnt, i, j, k, l;
51 unsigned int buf1[4], buf2[3];
52 unsigned int min_delta;
55 * Calculate the median of 5 75th percentiles of 5 samples of how long
56 * it takes to set CP0_Compare = CP0_Count + delta.
58 for (i = 0; i < 5; ++i) {
59 for (j = 0; j < 5; ++j) {
61 * This is like the code in mips_next_event(), and
62 * directly measures the borderline "safe" delta.
64 cnt = read_c0_count();
65 write_c0_compare(cnt);
66 cnt = read_c0_count() - cnt;
68 /* Sorted insert into buf1 */
69 for (k = 0; k < j; ++k) {
70 if (cnt < buf1[k]) {
71 l = min_t(unsigned int,
72 j, ARRAY_SIZE(buf1) - 1);
73 for (; l > k; --l)
74 buf1[l] = buf1[l - 1];
75 break;
78 if (k < ARRAY_SIZE(buf1))
79 buf1[k] = cnt;
82 /* Sorted insert of 75th percentile into buf2 */
83 for (k = 0; k < i && k < ARRAY_SIZE(buf2); ++k) {
84 if (buf1[ARRAY_SIZE(buf1) - 1] < buf2[k]) {
85 l = min_t(unsigned int,
86 i, ARRAY_SIZE(buf2) - 1);
87 for (; l > k; --l)
88 buf2[l] = buf2[l - 1];
89 break;
92 if (k < ARRAY_SIZE(buf2))
93 buf2[k] = buf1[ARRAY_SIZE(buf1) - 1];
96 /* Use 2 * median of 75th percentiles */
97 min_delta = buf2[ARRAY_SIZE(buf2) - 1] * 2;
99 /* Don't go too low */
100 if (min_delta < 0x300)
101 min_delta = 0x300;
103 pr_debug("%s: median 75th percentile=%#x, min_delta=%#x\n",
104 __func__, buf2[ARRAY_SIZE(buf2) - 1], min_delta);
105 return min_delta;
108 DEFINE_PER_CPU(struct clock_event_device, mips_clockevent_device);
109 int cp0_timer_irq_installed;
112 * Possibly handle a performance counter interrupt.
113 * Return true if the timer interrupt should not be checked
115 static inline int handle_perf_irq(int r2)
118 * The performance counter overflow interrupt may be shared with the
119 * timer interrupt (cp0_perfcount_irq < 0). If it is and a
120 * performance counter has overflowed (perf_irq() == IRQ_HANDLED)
121 * and we can't reliably determine if a counter interrupt has also
122 * happened (!r2) then don't check for a timer interrupt.
124 return (cp0_perfcount_irq < 0) &&
125 perf_irq() == IRQ_HANDLED &&
126 !r2;
129 irqreturn_t c0_compare_interrupt(int irq, void *dev_id)
131 const int r2 = cpu_has_mips_r2_r6;
132 struct clock_event_device *cd;
133 int cpu = smp_processor_id();
136 * Suckage alert:
137 * Before R2 of the architecture there was no way to see if a
138 * performance counter interrupt was pending, so we have to run
139 * the performance counter interrupt handler anyway.
141 if (handle_perf_irq(r2))
142 return IRQ_HANDLED;
145 * The same applies to performance counter interrupts. But with the
146 * above we now know that the reason we got here must be a timer
147 * interrupt. Being the paranoiacs we are we check anyway.
149 if (!r2 || (read_c0_cause() & CAUSEF_TI)) {
150 /* Clear Count/Compare Interrupt */
151 write_c0_compare(read_c0_compare());
152 cd = &per_cpu(mips_clockevent_device, cpu);
153 cd->event_handler(cd);
155 return IRQ_HANDLED;
158 return IRQ_NONE;
161 struct irqaction c0_compare_irqaction = {
162 .handler = c0_compare_interrupt,
164 * IRQF_SHARED: The timer interrupt may be shared with other interrupts
165 * such as perf counter and FDC interrupts.
167 .flags = IRQF_PERCPU | IRQF_TIMER | IRQF_SHARED,
168 .name = "timer",
172 void mips_event_handler(struct clock_event_device *dev)
177 * FIXME: This doesn't hold for the relocated E9000 compare interrupt.
179 static int c0_compare_int_pending(void)
181 /* When cpu_has_mips_r2, this checks Cause.TI instead of Cause.IP7 */
182 return (read_c0_cause() >> cp0_compare_irq_shift) & (1ul << CAUSEB_IP);
186 * Compare interrupt can be routed and latched outside the core,
187 * so wait up to worst case number of cycle counter ticks for timer interrupt
188 * changes to propagate to the cause register.
190 #define COMPARE_INT_SEEN_TICKS 50
192 int c0_compare_int_usable(void)
194 unsigned int delta;
195 unsigned int cnt;
197 #ifdef CONFIG_KVM_GUEST
198 return 1;
199 #endif
202 * IP7 already pending? Try to clear it by acking the timer.
204 if (c0_compare_int_pending()) {
205 cnt = read_c0_count();
206 write_c0_compare(cnt);
207 back_to_back_c0_hazard();
208 while (read_c0_count() < (cnt + COMPARE_INT_SEEN_TICKS))
209 if (!c0_compare_int_pending())
210 break;
211 if (c0_compare_int_pending())
212 return 0;
215 for (delta = 0x10; delta <= 0x400000; delta <<= 1) {
216 cnt = read_c0_count();
217 cnt += delta;
218 write_c0_compare(cnt);
219 back_to_back_c0_hazard();
220 if ((int)(read_c0_count() - cnt) < 0)
221 break;
222 /* increase delta if the timer was already expired */
225 while ((int)(read_c0_count() - cnt) <= 0)
226 ; /* Wait for expiry */
228 while (read_c0_count() < (cnt + COMPARE_INT_SEEN_TICKS))
229 if (c0_compare_int_pending())
230 break;
231 if (!c0_compare_int_pending())
232 return 0;
233 cnt = read_c0_count();
234 write_c0_compare(cnt);
235 back_to_back_c0_hazard();
236 while (read_c0_count() < (cnt + COMPARE_INT_SEEN_TICKS))
237 if (!c0_compare_int_pending())
238 break;
239 if (c0_compare_int_pending())
240 return 0;
243 * Feels like a real count / compare timer.
245 return 1;
248 unsigned int __weak get_c0_compare_int(void)
250 return MIPS_CPU_IRQ_BASE + cp0_compare_irq;
253 int r4k_clockevent_init(void)
255 unsigned int cpu = smp_processor_id();
256 struct clock_event_device *cd;
257 unsigned int irq, min_delta;
259 if (!cpu_has_counter || !mips_hpt_frequency)
260 return -ENXIO;
262 if (!c0_compare_int_usable())
263 return -ENXIO;
266 * With vectored interrupts things are getting platform specific.
267 * get_c0_compare_int is a hook to allow a platform to return the
268 * interrupt number of its liking.
270 irq = get_c0_compare_int();
272 cd = &per_cpu(mips_clockevent_device, cpu);
274 cd->name = "MIPS";
275 cd->features = CLOCK_EVT_FEAT_ONESHOT |
276 CLOCK_EVT_FEAT_C3STOP |
277 CLOCK_EVT_FEAT_PERCPU;
279 min_delta = calculate_min_delta();
281 cd->rating = 300;
282 cd->irq = irq;
283 cd->cpumask = cpumask_of(cpu);
284 cd->set_next_event = mips_next_event;
285 cd->event_handler = mips_event_handler;
287 clockevents_config_and_register(cd, mips_hpt_frequency, min_delta, 0x7fffffff);
289 if (cp0_timer_irq_installed)
290 return 0;
292 cp0_timer_irq_installed = 1;
294 setup_irq(irq, &c0_compare_irqaction);
296 return 0;