2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * A small micro-assembler. It is intentionally kept simple, does only
7 * support a subset of instructions, and does not try to hide pipeline
8 * effects like branch delay slots.
10 * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
11 * Copyright (C) 2005, 2007 Maciej W. Rozycki
12 * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
13 * Copyright (C) 2012, 2013 MIPS Technologies, Inc. All rights reserved.
16 #include <linux/kernel.h>
17 #include <linux/types.h>
22 #define UASM_ISA _UASM_ISA_MICROMIPS
29 #define SCIMM_MASK 0x3ff
32 /* This macro sets the non-variable bits of an instruction. */
33 #define M(a, b, c, d, e, f) \
43 static const struct insn insn_table_MM
[insn_invalid
] = {
44 [insn_addu
] = {M(mm_pool32a_op
, 0, 0, 0, 0, mm_addu32_op
), RT
| RS
| RD
},
45 [insn_addiu
] = {M(mm_addiu32_op
, 0, 0, 0, 0, 0), RT
| RS
| SIMM
},
46 [insn_and
] = {M(mm_pool32a_op
, 0, 0, 0, 0, mm_and_op
), RT
| RS
| RD
},
47 [insn_andi
] = {M(mm_andi32_op
, 0, 0, 0, 0, 0), RT
| RS
| UIMM
},
48 [insn_beq
] = {M(mm_beq32_op
, 0, 0, 0, 0, 0), RS
| RT
| BIMM
},
50 [insn_bgez
] = {M(mm_pool32i_op
, mm_bgez_op
, 0, 0, 0, 0), RS
| BIMM
},
51 [insn_bgezl
] = {0, 0},
52 [insn_bltz
] = {M(mm_pool32i_op
, mm_bltz_op
, 0, 0, 0, 0), RS
| BIMM
},
53 [insn_bltzl
] = {0, 0},
54 [insn_bne
] = {M(mm_bne32_op
, 0, 0, 0, 0, 0), RT
| RS
| BIMM
},
55 [insn_cache
] = {M(mm_pool32b_op
, 0, 0, mm_cache_func
, 0, 0), RT
| RS
| SIMM
},
56 [insn_cfc1
] = {M(mm_pool32f_op
, 0, 0, 0, mm_cfc1_op
, mm_32f_73_op
), RT
| RS
},
57 [insn_cfcmsa
] = {M(mm_pool32s_op
, 0, msa_cfc_op
, 0, 0, mm_32s_elm_op
), RD
| RE
},
58 [insn_ctc1
] = {M(mm_pool32f_op
, 0, 0, 0, mm_ctc1_op
, mm_32f_73_op
), RT
| RS
},
59 [insn_ctcmsa
] = {M(mm_pool32s_op
, 0, msa_ctc_op
, 0, 0, mm_32s_elm_op
), RD
| RE
},
60 [insn_daddu
] = {0, 0},
61 [insn_daddiu
] = {0, 0},
62 [insn_di
] = {M(mm_pool32a_op
, 0, 0, 0, mm_di_op
, mm_pool32axf_op
), RS
},
63 [insn_divu
] = {M(mm_pool32a_op
, 0, 0, 0, mm_divu_op
, mm_pool32axf_op
), RT
| RS
},
64 [insn_dmfc0
] = {0, 0},
65 [insn_dmtc0
] = {0, 0},
67 [insn_dsll32
] = {0, 0},
70 [insn_dsrl32
] = {0, 0},
71 [insn_drotr
] = {0, 0},
72 [insn_drotr32
] = {0, 0},
73 [insn_dsubu
] = {0, 0},
74 [insn_eret
] = {M(mm_pool32a_op
, 0, 0, 0, mm_eret_op
, mm_pool32axf_op
), 0},
75 [insn_ins
] = {M(mm_pool32a_op
, 0, 0, 0, 0, mm_ins_op
), RT
| RS
| RD
| RE
},
76 [insn_ext
] = {M(mm_pool32a_op
, 0, 0, 0, 0, mm_ext_op
), RT
| RS
| RD
| RE
},
77 [insn_j
] = {M(mm_j32_op
, 0, 0, 0, 0, 0), JIMM
},
78 [insn_jal
] = {M(mm_jal32_op
, 0, 0, 0, 0, 0), JIMM
},
79 [insn_jalr
] = {M(mm_pool32a_op
, 0, 0, 0, mm_jalr_op
, mm_pool32axf_op
), RT
| RS
},
80 [insn_jr
] = {M(mm_pool32a_op
, 0, 0, 0, mm_jalr_op
, mm_pool32axf_op
), RS
},
81 [insn_lb
] = {M(mm_lb32_op
, 0, 0, 0, 0, 0), RT
| RS
| SIMM
},
83 [insn_lh
] = {M(mm_lh32_op
, 0, 0, 0, 0, 0), RT
| RS
| SIMM
},
84 [insn_ll
] = {M(mm_pool32c_op
, 0, 0, (mm_ll_func
<< 1), 0, 0), RS
| RT
| SIMM
},
86 [insn_lui
] = {M(mm_pool32i_op
, mm_lui_op
, 0, 0, 0, 0), RS
| SIMM
},
87 [insn_lw
] = {M(mm_lw32_op
, 0, 0, 0, 0, 0), RT
| RS
| SIMM
},
88 [insn_mfc0
] = {M(mm_pool32a_op
, 0, 0, 0, mm_mfc0_op
, mm_pool32axf_op
), RT
| RS
| RD
},
89 [insn_mfhi
] = {M(mm_pool32a_op
, 0, 0, 0, mm_mfhi32_op
, mm_pool32axf_op
), RS
},
90 [insn_mflo
] = {M(mm_pool32a_op
, 0, 0, 0, mm_mflo32_op
, mm_pool32axf_op
), RS
},
91 [insn_mtc0
] = {M(mm_pool32a_op
, 0, 0, 0, mm_mtc0_op
, mm_pool32axf_op
), RT
| RS
| RD
},
92 [insn_mthi
] = {M(mm_pool32a_op
, 0, 0, 0, mm_mthi32_op
, mm_pool32axf_op
), RS
},
93 [insn_mtlo
] = {M(mm_pool32a_op
, 0, 0, 0, mm_mtlo32_op
, mm_pool32axf_op
), RS
},
94 [insn_mul
] = {M(mm_pool32a_op
, 0, 0, 0, 0, mm_mul_op
), RT
| RS
| RD
},
95 [insn_or
] = {M(mm_pool32a_op
, 0, 0, 0, 0, mm_or32_op
), RT
| RS
| RD
},
96 [insn_ori
] = {M(mm_ori32_op
, 0, 0, 0, 0, 0), RT
| RS
| UIMM
},
97 [insn_pref
] = {M(mm_pool32c_op
, 0, 0, (mm_pref_func
<< 1), 0, 0), RT
| RS
| SIMM
},
99 [insn_sc
] = {M(mm_pool32c_op
, 0, 0, (mm_sc_func
<< 1), 0, 0), RT
| RS
| SIMM
},
102 [insn_sll
] = {M(mm_pool32a_op
, 0, 0, 0, 0, mm_sll32_op
), RT
| RS
| RD
},
103 [insn_sllv
] = {M(mm_pool32a_op
, 0, 0, 0, 0, mm_sllv32_op
), RT
| RS
| RD
},
104 [insn_slt
] = {M(mm_pool32a_op
, 0, 0, 0, 0, mm_slt_op
), RT
| RS
| RD
},
105 [insn_sltiu
] = {M(mm_sltiu32_op
, 0, 0, 0, 0, 0), RT
| RS
| SIMM
},
106 [insn_sltu
] = {M(mm_pool32a_op
, 0, 0, 0, 0, mm_sltu_op
), RT
| RS
| RD
},
107 [insn_sra
] = {M(mm_pool32a_op
, 0, 0, 0, 0, mm_sra_op
), RT
| RS
| RD
},
108 [insn_srl
] = {M(mm_pool32a_op
, 0, 0, 0, 0, mm_srl32_op
), RT
| RS
| RD
},
109 [insn_srlv
] = {M(mm_pool32a_op
, 0, 0, 0, 0, mm_srlv32_op
), RT
| RS
| RD
},
110 [insn_rotr
] = {M(mm_pool32a_op
, 0, 0, 0, 0, mm_rotr_op
), RT
| RS
| RD
},
111 [insn_subu
] = {M(mm_pool32a_op
, 0, 0, 0, 0, mm_subu32_op
), RT
| RS
| RD
},
112 [insn_sw
] = {M(mm_sw32_op
, 0, 0, 0, 0, 0), RT
| RS
| SIMM
},
113 [insn_sync
] = {M(mm_pool32a_op
, 0, 0, 0, mm_sync_op
, mm_pool32axf_op
), RS
},
114 [insn_tlbp
] = {M(mm_pool32a_op
, 0, 0, 0, mm_tlbp_op
, mm_pool32axf_op
), 0},
115 [insn_tlbr
] = {M(mm_pool32a_op
, 0, 0, 0, mm_tlbr_op
, mm_pool32axf_op
), 0},
116 [insn_tlbwi
] = {M(mm_pool32a_op
, 0, 0, 0, mm_tlbwi_op
, mm_pool32axf_op
), 0},
117 [insn_tlbwr
] = {M(mm_pool32a_op
, 0, 0, 0, mm_tlbwr_op
, mm_pool32axf_op
), 0},
118 [insn_wait
] = {M(mm_pool32a_op
, 0, 0, 0, mm_wait_op
, mm_pool32axf_op
), SCIMM
},
119 [insn_wsbh
] = {M(mm_pool32a_op
, 0, 0, 0, mm_wsbh_op
, mm_pool32axf_op
), RT
| RS
},
120 [insn_xor
] = {M(mm_pool32a_op
, 0, 0, 0, 0, mm_xor32_op
), RT
| RS
| RD
},
121 [insn_xori
] = {M(mm_xori32_op
, 0, 0, 0, 0, 0), RT
| RS
| UIMM
},
122 [insn_dins
] = {0, 0},
123 [insn_dinsm
] = {0, 0},
124 [insn_syscall
] = {M(mm_pool32a_op
, 0, 0, 0, mm_syscall_op
, mm_pool32axf_op
), SCIMM
},
125 [insn_bbit0
] = {0, 0},
126 [insn_bbit1
] = {0, 0},
133 static inline u32
build_bimm(s32 arg
)
135 WARN(arg
> 0xffff || arg
< -0x10000,
136 KERN_WARNING
"Micro-assembler field overflow\n");
138 WARN(arg
& 0x3, KERN_WARNING
"Invalid micro-assembler branch target\n");
140 return ((arg
< 0) ? (1 << 15) : 0) | ((arg
>> 1) & 0x7fff);
143 static inline u32
build_jimm(u32 arg
)
146 WARN(arg
& ~((JIMM_MASK
<< 2) | 1),
147 KERN_WARNING
"Micro-assembler field overflow\n");
149 return (arg
>> 1) & JIMM_MASK
;
153 * The order of opcode arguments is implicitly left to right,
154 * starting with RS and ending with FUNC or IMM.
156 static void build_insn(u32
**buf
, enum opcode opc
, ...)
158 const struct insn
*ip
;
162 if (opc
< 0 || opc
>= insn_invalid
||
163 (opc
== insn_daddiu
&& r4k_daddiu_bug()) ||
164 (insn_table_MM
[opc
].match
== 0 && insn_table_MM
[opc
].fields
== 0))
165 panic("Unsupported Micro-assembler instruction %d", opc
);
167 ip
= &insn_table_MM
[opc
];
171 if (ip
->fields
& RS
) {
172 if (opc
== insn_mfc0
|| opc
== insn_mtc0
||
173 opc
== insn_cfc1
|| opc
== insn_ctc1
)
174 op
|= build_rt(va_arg(ap
, u32
));
176 op
|= build_rs(va_arg(ap
, u32
));
178 if (ip
->fields
& RT
) {
179 if (opc
== insn_mfc0
|| opc
== insn_mtc0
||
180 opc
== insn_cfc1
|| opc
== insn_ctc1
)
181 op
|= build_rs(va_arg(ap
, u32
));
183 op
|= build_rt(va_arg(ap
, u32
));
186 op
|= build_rd(va_arg(ap
, u32
));
188 op
|= build_re(va_arg(ap
, u32
));
189 if (ip
->fields
& SIMM
)
190 op
|= build_simm(va_arg(ap
, s32
));
191 if (ip
->fields
& UIMM
)
192 op
|= build_uimm(va_arg(ap
, u32
));
193 if (ip
->fields
& BIMM
)
194 op
|= build_bimm(va_arg(ap
, s32
));
195 if (ip
->fields
& JIMM
)
196 op
|= build_jimm(va_arg(ap
, u32
));
197 if (ip
->fields
& FUNC
)
198 op
|= build_func(va_arg(ap
, u32
));
199 if (ip
->fields
& SET
)
200 op
|= build_set(va_arg(ap
, u32
));
201 if (ip
->fields
& SCIMM
)
202 op
|= build_scimm(va_arg(ap
, u32
));
205 #ifdef CONFIG_CPU_LITTLE_ENDIAN
206 **buf
= ((op
& 0xffff) << 16) | (op
>> 16);
214 __resolve_relocs(struct uasm_reloc
*rel
, struct uasm_label
*lab
)
216 long laddr
= (long)lab
->addr
;
217 long raddr
= (long)rel
->addr
;
221 #ifdef CONFIG_CPU_LITTLE_ENDIAN
222 *rel
->addr
|= (build_bimm(laddr
- (raddr
+ 4)) << 16);
224 *rel
->addr
|= build_bimm(laddr
- (raddr
+ 4));
229 panic("Unsupported Micro-assembler relocation %d",