2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * Copyright (C) 2005-2009, 2010 Cavium Networks
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/msi.h>
11 #include <linux/spinlock.h>
12 #include <linux/interrupt.h>
14 #include <asm/octeon/octeon.h>
15 #include <asm/octeon/cvmx-npi-defs.h>
16 #include <asm/octeon/cvmx-pci-defs.h>
17 #include <asm/octeon/cvmx-npei-defs.h>
18 #include <asm/octeon/cvmx-sli-defs.h>
19 #include <asm/octeon/cvmx-pexp-defs.h>
20 #include <asm/octeon/pci-octeon.h>
23 * Each bit in msi_free_irq_bitmask represents a MSI interrupt that is
26 static u64 msi_free_irq_bitmask
[4];
29 * Each bit in msi_multiple_irq_bitmask tells that the device using
30 * this bit in msi_free_irq_bitmask is also using the next bit. This
31 * is used so we can disable all of the MSI interrupts when a device
34 static u64 msi_multiple_irq_bitmask
[4];
37 * This lock controls updates to msi_free_irq_bitmask and
38 * msi_multiple_irq_bitmask.
40 static DEFINE_SPINLOCK(msi_free_irq_bitmask_lock
);
43 * Number of MSI IRQs used. This variable is set up in
44 * the module init time.
46 static int msi_irq_size
;
49 * Called when a driver request MSI interrupts instead of the
50 * legacy INT A-D. This routine will allocate multiple interrupts
51 * for MSI devices that support them. A device can override this by
52 * programming the MSI control bits [6:4] before calling
55 * @dev: Device requesting MSI interrupts
56 * @desc: MSI descriptor
58 * Returns 0 on success.
60 int arch_setup_msi_irq(struct pci_dev
*dev
, struct msi_desc
*desc
)
64 int configured_private_bits
;
65 int request_private_bits
;
72 * Read the MSI config to figure out how many IRQs this device
73 * wants. Most devices only want 1, which will give
74 * configured_private_bits and request_private_bits equal 0.
76 pci_read_config_word(dev
, dev
->msi_cap
+ PCI_MSI_FLAGS
, &control
);
79 * If the number of private bits has been configured then use
80 * that value instead of the requested number. This gives the
81 * driver the chance to override the number of interrupts
82 * before calling pci_enable_msi().
84 configured_private_bits
= (control
& PCI_MSI_FLAGS_QSIZE
) >> 4;
85 if (configured_private_bits
== 0) {
86 /* Nothing is configured, so use the hardware requested size */
87 request_private_bits
= (control
& PCI_MSI_FLAGS_QMASK
) >> 1;
90 * Use the number of configured bits, assuming the
91 * driver wanted to override the hardware request
94 request_private_bits
= configured_private_bits
;
98 * The PCI 2.3 spec mandates that there are at most 32
99 * interrupts. If this device asks for more, only give it one.
101 if (request_private_bits
> 5)
102 request_private_bits
= 0;
106 * The IRQs have to be aligned on a power of two based on the
107 * number being requested.
109 irq_step
= 1 << request_private_bits
;
111 /* Mask with one bit for each IRQ */
112 search_mask
= (1 << irq_step
) - 1;
115 * We're going to search msi_free_irq_bitmask_lock for zero
116 * bits. This represents an MSI interrupt number that isn't in
119 spin_lock(&msi_free_irq_bitmask_lock
);
120 for (index
= 0; index
< msi_irq_size
/64; index
++) {
121 for (irq
= 0; irq
< 64; irq
+= irq_step
) {
122 if ((msi_free_irq_bitmask
[index
] & (search_mask
<< irq
)) == 0) {
123 msi_free_irq_bitmask
[index
] |= search_mask
<< irq
;
124 msi_multiple_irq_bitmask
[index
] |= (search_mask
>> 1) << irq
;
125 goto msi_irq_allocated
;
130 spin_unlock(&msi_free_irq_bitmask_lock
);
132 /* Make sure the search for available interrupts didn't fail */
134 if (request_private_bits
) {
135 pr_err("arch_setup_msi_irq: Unable to find %d free interrupts, trying just one",
136 1 << request_private_bits
);
137 request_private_bits
= 0;
140 panic("arch_setup_msi_irq: Unable to find a free MSI interrupt");
143 /* MSI interrupts start at logical IRQ OCTEON_IRQ_MSI_BIT0 */
145 irq
+= OCTEON_IRQ_MSI_BIT0
;
147 switch (octeon_dma_bar_type
) {
148 case OCTEON_DMA_BAR_TYPE_SMALL
:
149 /* When not using big bar, Bar 0 is based at 128MB */
151 ((128ul << 20) + CVMX_PCI_MSI_RCV
) & 0xffffffff;
152 msg
.address_hi
= ((128ul << 20) + CVMX_PCI_MSI_RCV
) >> 32;
154 case OCTEON_DMA_BAR_TYPE_BIG
:
155 /* When using big bar, Bar 0 is based at 0 */
156 msg
.address_lo
= (0 + CVMX_PCI_MSI_RCV
) & 0xffffffff;
157 msg
.address_hi
= (0 + CVMX_PCI_MSI_RCV
) >> 32;
159 case OCTEON_DMA_BAR_TYPE_PCIE
:
160 /* When using PCIe, Bar 0 is based at 0 */
161 /* FIXME CVMX_NPEI_MSI_RCV* other than 0? */
162 msg
.address_lo
= (0 + CVMX_NPEI_PCIE_MSI_RCV
) & 0xffffffff;
163 msg
.address_hi
= (0 + CVMX_NPEI_PCIE_MSI_RCV
) >> 32;
165 case OCTEON_DMA_BAR_TYPE_PCIE2
:
166 /* When using PCIe2, Bar 0 is based at 0 */
167 msg
.address_lo
= (0 + CVMX_SLI_PCIE_MSI_RCV
) & 0xffffffff;
168 msg
.address_hi
= (0 + CVMX_SLI_PCIE_MSI_RCV
) >> 32;
171 panic("arch_setup_msi_irq: Invalid octeon_dma_bar_type");
173 msg
.data
= irq
- OCTEON_IRQ_MSI_BIT0
;
175 /* Update the number of IRQs the device has available to it */
176 control
&= ~PCI_MSI_FLAGS_QSIZE
;
177 control
|= request_private_bits
<< 4;
178 pci_write_config_word(dev
, dev
->msi_cap
+ PCI_MSI_FLAGS
, control
);
180 irq_set_msi_desc(irq
, desc
);
181 pci_write_msi_msg(irq
, &msg
);
185 int arch_setup_msi_irqs(struct pci_dev
*dev
, int nvec
, int type
)
187 struct msi_desc
*entry
;
191 * MSI-X is not supported.
193 if (type
== PCI_CAP_ID_MSIX
)
197 * If an architecture wants to support multiple MSI, it needs to
198 * override arch_setup_msi_irqs()
200 if (type
== PCI_CAP_ID_MSI
&& nvec
> 1)
203 for_each_pci_msi_entry(entry
, dev
) {
204 ret
= arch_setup_msi_irq(dev
, entry
);
215 * Called when a device no longer needs its MSI interrupts. All
216 * MSI interrupts for the device are freed.
218 * @irq: The devices first irq number. There may be multple in sequence.
220 void arch_teardown_msi_irq(unsigned int irq
)
227 if ((irq
< OCTEON_IRQ_MSI_BIT0
)
228 || (irq
> msi_irq_size
+ OCTEON_IRQ_MSI_BIT0
))
229 panic("arch_teardown_msi_irq: Attempted to teardown illegal "
230 "MSI interrupt (%d)", irq
);
232 irq
-= OCTEON_IRQ_MSI_BIT0
;
237 * Count the number of IRQs we need to free by looking at the
238 * msi_multiple_irq_bitmask. Each bit set means that the next
239 * IRQ is also owned by this device.
242 while ((irq0
+ number_irqs
< 64) &&
243 (msi_multiple_irq_bitmask
[index
]
244 & (1ull << (irq0
+ number_irqs
))))
247 /* Mask with one bit for each IRQ */
248 bitmask
= (1 << number_irqs
) - 1;
249 /* Shift the mask to the correct bit location */
251 if ((msi_free_irq_bitmask
[index
] & bitmask
) != bitmask
)
252 panic("arch_teardown_msi_irq: Attempted to teardown MSI "
253 "interrupt (%d) not in use", irq
);
255 /* Checks are done, update the in use bitmask */
256 spin_lock(&msi_free_irq_bitmask_lock
);
257 msi_free_irq_bitmask
[index
] &= ~bitmask
;
258 msi_multiple_irq_bitmask
[index
] &= ~bitmask
;
259 spin_unlock(&msi_free_irq_bitmask_lock
);
262 static DEFINE_RAW_SPINLOCK(octeon_irq_msi_lock
);
264 static u64 msi_rcv_reg
[4];
265 static u64 mis_ena_reg
[4];
267 static void octeon_irq_msi_enable_pcie(struct irq_data
*data
)
271 int msi_number
= data
->irq
- OCTEON_IRQ_MSI_BIT0
;
272 int irq_index
= msi_number
>> 6;
273 int irq_bit
= msi_number
& 0x3f;
275 raw_spin_lock_irqsave(&octeon_irq_msi_lock
, flags
);
276 en
= cvmx_read_csr(mis_ena_reg
[irq_index
]);
277 en
|= 1ull << irq_bit
;
278 cvmx_write_csr(mis_ena_reg
[irq_index
], en
);
279 cvmx_read_csr(mis_ena_reg
[irq_index
]);
280 raw_spin_unlock_irqrestore(&octeon_irq_msi_lock
, flags
);
283 static void octeon_irq_msi_disable_pcie(struct irq_data
*data
)
287 int msi_number
= data
->irq
- OCTEON_IRQ_MSI_BIT0
;
288 int irq_index
= msi_number
>> 6;
289 int irq_bit
= msi_number
& 0x3f;
291 raw_spin_lock_irqsave(&octeon_irq_msi_lock
, flags
);
292 en
= cvmx_read_csr(mis_ena_reg
[irq_index
]);
293 en
&= ~(1ull << irq_bit
);
294 cvmx_write_csr(mis_ena_reg
[irq_index
], en
);
295 cvmx_read_csr(mis_ena_reg
[irq_index
]);
296 raw_spin_unlock_irqrestore(&octeon_irq_msi_lock
, flags
);
299 static struct irq_chip octeon_irq_chip_msi_pcie
= {
301 .irq_enable
= octeon_irq_msi_enable_pcie
,
302 .irq_disable
= octeon_irq_msi_disable_pcie
,
305 static void octeon_irq_msi_enable_pci(struct irq_data
*data
)
308 * Octeon PCI doesn't have the ability to mask/unmask MSI
309 * interrupts individually. Instead of masking/unmasking them
310 * in groups of 16, we simple assume MSI devices are well
311 * behaved. MSI interrupts are always enable and the ACK is
312 * assumed to be enough
316 static void octeon_irq_msi_disable_pci(struct irq_data
*data
)
318 /* See comment in enable */
321 static struct irq_chip octeon_irq_chip_msi_pci
= {
323 .irq_enable
= octeon_irq_msi_enable_pci
,
324 .irq_disable
= octeon_irq_msi_disable_pci
,
328 * Called by the interrupt handling code when an MSI interrupt
331 static irqreturn_t
__octeon_msi_do_interrupt(int index
, u64 msi_bits
)
336 bit
= fls64(msi_bits
);
339 /* Acknowledge it first. */
340 cvmx_write_csr(msi_rcv_reg
[index
], 1ull << bit
);
342 irq
= bit
+ OCTEON_IRQ_MSI_BIT0
+ 64 * index
;
349 #define OCTEON_MSI_INT_HANDLER_X(x) \
350 static irqreturn_t octeon_msi_interrupt##x(int cpl, void *dev_id) \
352 u64 msi_bits = cvmx_read_csr(msi_rcv_reg[(x)]); \
353 return __octeon_msi_do_interrupt((x), msi_bits); \
357 * Create octeon_msi_interrupt{0-3} function body
359 OCTEON_MSI_INT_HANDLER_X(0);
360 OCTEON_MSI_INT_HANDLER_X(1);
361 OCTEON_MSI_INT_HANDLER_X(2);
362 OCTEON_MSI_INT_HANDLER_X(3);
365 * Initializes the MSI interrupt handling code
367 int __init
octeon_msi_initialize(void)
370 struct irq_chip
*msi
;
372 if (octeon_dma_bar_type
== OCTEON_DMA_BAR_TYPE_PCIE
) {
373 msi_rcv_reg
[0] = CVMX_PEXP_NPEI_MSI_RCV0
;
374 msi_rcv_reg
[1] = CVMX_PEXP_NPEI_MSI_RCV1
;
375 msi_rcv_reg
[2] = CVMX_PEXP_NPEI_MSI_RCV2
;
376 msi_rcv_reg
[3] = CVMX_PEXP_NPEI_MSI_RCV3
;
377 mis_ena_reg
[0] = CVMX_PEXP_NPEI_MSI_ENB0
;
378 mis_ena_reg
[1] = CVMX_PEXP_NPEI_MSI_ENB1
;
379 mis_ena_reg
[2] = CVMX_PEXP_NPEI_MSI_ENB2
;
380 mis_ena_reg
[3] = CVMX_PEXP_NPEI_MSI_ENB3
;
381 msi
= &octeon_irq_chip_msi_pcie
;
383 msi_rcv_reg
[0] = CVMX_NPI_NPI_MSI_RCV
;
384 #define INVALID_GENERATE_ADE 0x8700000000000000ULL;
385 msi_rcv_reg
[1] = INVALID_GENERATE_ADE
;
386 msi_rcv_reg
[2] = INVALID_GENERATE_ADE
;
387 msi_rcv_reg
[3] = INVALID_GENERATE_ADE
;
388 mis_ena_reg
[0] = INVALID_GENERATE_ADE
;
389 mis_ena_reg
[1] = INVALID_GENERATE_ADE
;
390 mis_ena_reg
[2] = INVALID_GENERATE_ADE
;
391 mis_ena_reg
[3] = INVALID_GENERATE_ADE
;
392 msi
= &octeon_irq_chip_msi_pci
;
395 for (irq
= OCTEON_IRQ_MSI_BIT0
; irq
<= OCTEON_IRQ_MSI_LAST
; irq
++)
396 irq_set_chip_and_handler(irq
, msi
, handle_simple_irq
);
398 if (octeon_has_feature(OCTEON_FEATURE_PCIE
)) {
399 if (request_irq(OCTEON_IRQ_PCI_MSI0
, octeon_msi_interrupt0
,
400 0, "MSI[0:63]", octeon_msi_interrupt0
))
401 panic("request_irq(OCTEON_IRQ_PCI_MSI0) failed");
403 if (request_irq(OCTEON_IRQ_PCI_MSI1
, octeon_msi_interrupt1
,
404 0, "MSI[64:127]", octeon_msi_interrupt1
))
405 panic("request_irq(OCTEON_IRQ_PCI_MSI1) failed");
407 if (request_irq(OCTEON_IRQ_PCI_MSI2
, octeon_msi_interrupt2
,
408 0, "MSI[127:191]", octeon_msi_interrupt2
))
409 panic("request_irq(OCTEON_IRQ_PCI_MSI2) failed");
411 if (request_irq(OCTEON_IRQ_PCI_MSI3
, octeon_msi_interrupt3
,
412 0, "MSI[192:255]", octeon_msi_interrupt3
))
413 panic("request_irq(OCTEON_IRQ_PCI_MSI3) failed");
416 } else if (octeon_is_pci_host()) {
417 if (request_irq(OCTEON_IRQ_PCI_MSI0
, octeon_msi_interrupt0
,
418 0, "MSI[0:15]", octeon_msi_interrupt0
))
419 panic("request_irq(OCTEON_IRQ_PCI_MSI0) failed");
421 if (request_irq(OCTEON_IRQ_PCI_MSI1
, octeon_msi_interrupt0
,
422 0, "MSI[16:31]", octeon_msi_interrupt0
))
423 panic("request_irq(OCTEON_IRQ_PCI_MSI1) failed");
425 if (request_irq(OCTEON_IRQ_PCI_MSI2
, octeon_msi_interrupt0
,
426 0, "MSI[32:47]", octeon_msi_interrupt0
))
427 panic("request_irq(OCTEON_IRQ_PCI_MSI2) failed");
429 if (request_irq(OCTEON_IRQ_PCI_MSI3
, octeon_msi_interrupt0
,
430 0, "MSI[48:63]", octeon_msi_interrupt0
))
431 panic("request_irq(OCTEON_IRQ_PCI_MSI3) failed");
436 subsys_initcall(octeon_msi_initialize
);