perf tools: Streamline bpf examples and headers installation
[linux/fpc-iii.git] / arch / x86 / events / core.c
blob5f4829f10129c5bfd59b803d0ddd4a21be0b3107
1 /*
2 * Performance events x86 architecture code
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
12 * For licencing details see kernel-base/COPYING
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kdebug.h>
23 #include <linux/sched/mm.h>
24 #include <linux/sched/clock.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/bitops.h>
29 #include <linux/device.h>
30 #include <linux/nospec.h>
32 #include <asm/apic.h>
33 #include <asm/stacktrace.h>
34 #include <asm/nmi.h>
35 #include <asm/smp.h>
36 #include <asm/alternative.h>
37 #include <asm/mmu_context.h>
38 #include <asm/tlbflush.h>
39 #include <asm/timer.h>
40 #include <asm/desc.h>
41 #include <asm/ldt.h>
42 #include <asm/unwind.h>
44 #include "perf_event.h"
46 struct x86_pmu x86_pmu __read_mostly;
48 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
49 .enabled = 1,
52 DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key);
54 u64 __read_mostly hw_cache_event_ids
55 [PERF_COUNT_HW_CACHE_MAX]
56 [PERF_COUNT_HW_CACHE_OP_MAX]
57 [PERF_COUNT_HW_CACHE_RESULT_MAX];
58 u64 __read_mostly hw_cache_extra_regs
59 [PERF_COUNT_HW_CACHE_MAX]
60 [PERF_COUNT_HW_CACHE_OP_MAX]
61 [PERF_COUNT_HW_CACHE_RESULT_MAX];
64 * Propagate event elapsed time into the generic event.
65 * Can only be executed on the CPU where the event is active.
66 * Returns the delta events processed.
68 u64 x86_perf_event_update(struct perf_event *event)
70 struct hw_perf_event *hwc = &event->hw;
71 int shift = 64 - x86_pmu.cntval_bits;
72 u64 prev_raw_count, new_raw_count;
73 int idx = hwc->idx;
74 u64 delta;
76 if (idx == INTEL_PMC_IDX_FIXED_BTS)
77 return 0;
80 * Careful: an NMI might modify the previous event value.
82 * Our tactic to handle this is to first atomically read and
83 * exchange a new raw count - then add that new-prev delta
84 * count to the generic event atomically:
86 again:
87 prev_raw_count = local64_read(&hwc->prev_count);
88 rdpmcl(hwc->event_base_rdpmc, new_raw_count);
90 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
91 new_raw_count) != prev_raw_count)
92 goto again;
95 * Now we have the new raw value and have updated the prev
96 * timestamp already. We can now calculate the elapsed delta
97 * (event-)time and add that to the generic event.
99 * Careful, not all hw sign-extends above the physical width
100 * of the count.
102 delta = (new_raw_count << shift) - (prev_raw_count << shift);
103 delta >>= shift;
105 local64_add(delta, &event->count);
106 local64_sub(delta, &hwc->period_left);
108 return new_raw_count;
112 * Find and validate any extra registers to set up.
114 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
116 struct hw_perf_event_extra *reg;
117 struct extra_reg *er;
119 reg = &event->hw.extra_reg;
121 if (!x86_pmu.extra_regs)
122 return 0;
124 for (er = x86_pmu.extra_regs; er->msr; er++) {
125 if (er->event != (config & er->config_mask))
126 continue;
127 if (event->attr.config1 & ~er->valid_mask)
128 return -EINVAL;
129 /* Check if the extra msrs can be safely accessed*/
130 if (!er->extra_msr_access)
131 return -ENXIO;
133 reg->idx = er->idx;
134 reg->config = event->attr.config1;
135 reg->reg = er->msr;
136 break;
138 return 0;
141 static atomic_t active_events;
142 static atomic_t pmc_refcount;
143 static DEFINE_MUTEX(pmc_reserve_mutex);
145 #ifdef CONFIG_X86_LOCAL_APIC
147 static bool reserve_pmc_hardware(void)
149 int i;
151 for (i = 0; i < x86_pmu.num_counters; i++) {
152 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
153 goto perfctr_fail;
156 for (i = 0; i < x86_pmu.num_counters; i++) {
157 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
158 goto eventsel_fail;
161 return true;
163 eventsel_fail:
164 for (i--; i >= 0; i--)
165 release_evntsel_nmi(x86_pmu_config_addr(i));
167 i = x86_pmu.num_counters;
169 perfctr_fail:
170 for (i--; i >= 0; i--)
171 release_perfctr_nmi(x86_pmu_event_addr(i));
173 return false;
176 static void release_pmc_hardware(void)
178 int i;
180 for (i = 0; i < x86_pmu.num_counters; i++) {
181 release_perfctr_nmi(x86_pmu_event_addr(i));
182 release_evntsel_nmi(x86_pmu_config_addr(i));
186 #else
188 static bool reserve_pmc_hardware(void) { return true; }
189 static void release_pmc_hardware(void) {}
191 #endif
193 static bool check_hw_exists(void)
195 u64 val, val_fail = -1, val_new= ~0;
196 int i, reg, reg_fail = -1, ret = 0;
197 int bios_fail = 0;
198 int reg_safe = -1;
201 * Check to see if the BIOS enabled any of the counters, if so
202 * complain and bail.
204 for (i = 0; i < x86_pmu.num_counters; i++) {
205 reg = x86_pmu_config_addr(i);
206 ret = rdmsrl_safe(reg, &val);
207 if (ret)
208 goto msr_fail;
209 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
210 bios_fail = 1;
211 val_fail = val;
212 reg_fail = reg;
213 } else {
214 reg_safe = i;
218 if (x86_pmu.num_counters_fixed) {
219 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
220 ret = rdmsrl_safe(reg, &val);
221 if (ret)
222 goto msr_fail;
223 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
224 if (val & (0x03 << i*4)) {
225 bios_fail = 1;
226 val_fail = val;
227 reg_fail = reg;
233 * If all the counters are enabled, the below test will always
234 * fail. The tools will also become useless in this scenario.
235 * Just fail and disable the hardware counters.
238 if (reg_safe == -1) {
239 reg = reg_safe;
240 goto msr_fail;
244 * Read the current value, change it and read it back to see if it
245 * matches, this is needed to detect certain hardware emulators
246 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
248 reg = x86_pmu_event_addr(reg_safe);
249 if (rdmsrl_safe(reg, &val))
250 goto msr_fail;
251 val ^= 0xffffUL;
252 ret = wrmsrl_safe(reg, val);
253 ret |= rdmsrl_safe(reg, &val_new);
254 if (ret || val != val_new)
255 goto msr_fail;
258 * We still allow the PMU driver to operate:
260 if (bios_fail) {
261 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
262 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
263 reg_fail, val_fail);
266 return true;
268 msr_fail:
269 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
270 pr_cont("PMU not available due to virtualization, using software events only.\n");
271 } else {
272 pr_cont("Broken PMU hardware detected, using software events only.\n");
273 pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
274 reg, val_new);
277 return false;
280 static void hw_perf_event_destroy(struct perf_event *event)
282 x86_release_hardware();
283 atomic_dec(&active_events);
286 void hw_perf_lbr_event_destroy(struct perf_event *event)
288 hw_perf_event_destroy(event);
290 /* undo the lbr/bts event accounting */
291 x86_del_exclusive(x86_lbr_exclusive_lbr);
294 static inline int x86_pmu_initialized(void)
296 return x86_pmu.handle_irq != NULL;
299 static inline int
300 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
302 struct perf_event_attr *attr = &event->attr;
303 unsigned int cache_type, cache_op, cache_result;
304 u64 config, val;
306 config = attr->config;
308 cache_type = (config >> 0) & 0xff;
309 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
310 return -EINVAL;
311 cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
313 cache_op = (config >> 8) & 0xff;
314 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
315 return -EINVAL;
316 cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
318 cache_result = (config >> 16) & 0xff;
319 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
320 return -EINVAL;
321 cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
323 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
325 if (val == 0)
326 return -ENOENT;
328 if (val == -1)
329 return -EINVAL;
331 hwc->config |= val;
332 attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
333 return x86_pmu_extra_regs(val, event);
336 int x86_reserve_hardware(void)
338 int err = 0;
340 if (!atomic_inc_not_zero(&pmc_refcount)) {
341 mutex_lock(&pmc_reserve_mutex);
342 if (atomic_read(&pmc_refcount) == 0) {
343 if (!reserve_pmc_hardware())
344 err = -EBUSY;
345 else
346 reserve_ds_buffers();
348 if (!err)
349 atomic_inc(&pmc_refcount);
350 mutex_unlock(&pmc_reserve_mutex);
353 return err;
356 void x86_release_hardware(void)
358 if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
359 release_pmc_hardware();
360 release_ds_buffers();
361 mutex_unlock(&pmc_reserve_mutex);
366 * Check if we can create event of a certain type (that no conflicting events
367 * are present).
369 int x86_add_exclusive(unsigned int what)
371 int i;
374 * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
375 * LBR and BTS are still mutually exclusive.
377 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
378 return 0;
380 if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
381 mutex_lock(&pmc_reserve_mutex);
382 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
383 if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
384 goto fail_unlock;
386 atomic_inc(&x86_pmu.lbr_exclusive[what]);
387 mutex_unlock(&pmc_reserve_mutex);
390 atomic_inc(&active_events);
391 return 0;
393 fail_unlock:
394 mutex_unlock(&pmc_reserve_mutex);
395 return -EBUSY;
398 void x86_del_exclusive(unsigned int what)
400 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
401 return;
403 atomic_dec(&x86_pmu.lbr_exclusive[what]);
404 atomic_dec(&active_events);
407 int x86_setup_perfctr(struct perf_event *event)
409 struct perf_event_attr *attr = &event->attr;
410 struct hw_perf_event *hwc = &event->hw;
411 u64 config;
413 if (!is_sampling_event(event)) {
414 hwc->sample_period = x86_pmu.max_period;
415 hwc->last_period = hwc->sample_period;
416 local64_set(&hwc->period_left, hwc->sample_period);
419 if (attr->type == PERF_TYPE_RAW)
420 return x86_pmu_extra_regs(event->attr.config, event);
422 if (attr->type == PERF_TYPE_HW_CACHE)
423 return set_ext_hw_attr(hwc, event);
425 if (attr->config >= x86_pmu.max_events)
426 return -EINVAL;
428 attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
431 * The generic map:
433 config = x86_pmu.event_map(attr->config);
435 if (config == 0)
436 return -ENOENT;
438 if (config == -1LL)
439 return -EINVAL;
442 * Branch tracing:
444 if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
445 !attr->freq && hwc->sample_period == 1) {
446 /* BTS is not supported by this architecture. */
447 if (!x86_pmu.bts_active)
448 return -EOPNOTSUPP;
450 /* BTS is currently only allowed for user-mode. */
451 if (!attr->exclude_kernel)
452 return -EOPNOTSUPP;
454 /* disallow bts if conflicting events are present */
455 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
456 return -EBUSY;
458 event->destroy = hw_perf_lbr_event_destroy;
461 hwc->config |= config;
463 return 0;
467 * check that branch_sample_type is compatible with
468 * settings needed for precise_ip > 1 which implies
469 * using the LBR to capture ALL taken branches at the
470 * priv levels of the measurement
472 static inline int precise_br_compat(struct perf_event *event)
474 u64 m = event->attr.branch_sample_type;
475 u64 b = 0;
477 /* must capture all branches */
478 if (!(m & PERF_SAMPLE_BRANCH_ANY))
479 return 0;
481 m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
483 if (!event->attr.exclude_user)
484 b |= PERF_SAMPLE_BRANCH_USER;
486 if (!event->attr.exclude_kernel)
487 b |= PERF_SAMPLE_BRANCH_KERNEL;
490 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
493 return m == b;
496 int x86_pmu_max_precise(void)
498 int precise = 0;
500 /* Support for constant skid */
501 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
502 precise++;
504 /* Support for IP fixup */
505 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
506 precise++;
508 if (x86_pmu.pebs_prec_dist)
509 precise++;
511 return precise;
514 int x86_pmu_hw_config(struct perf_event *event)
516 if (event->attr.precise_ip) {
517 int precise = x86_pmu_max_precise();
519 if (event->attr.precise_ip > precise)
520 return -EOPNOTSUPP;
522 /* There's no sense in having PEBS for non sampling events: */
523 if (!is_sampling_event(event))
524 return -EINVAL;
527 * check that PEBS LBR correction does not conflict with
528 * whatever the user is asking with attr->branch_sample_type
530 if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
531 u64 *br_type = &event->attr.branch_sample_type;
533 if (has_branch_stack(event)) {
534 if (!precise_br_compat(event))
535 return -EOPNOTSUPP;
537 /* branch_sample_type is compatible */
539 } else {
541 * user did not specify branch_sample_type
543 * For PEBS fixups, we capture all
544 * the branches at the priv level of the
545 * event.
547 *br_type = PERF_SAMPLE_BRANCH_ANY;
549 if (!event->attr.exclude_user)
550 *br_type |= PERF_SAMPLE_BRANCH_USER;
552 if (!event->attr.exclude_kernel)
553 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
557 if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
558 event->attach_state |= PERF_ATTACH_TASK_DATA;
561 * Generate PMC IRQs:
562 * (keep 'enabled' bit clear for now)
564 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
567 * Count user and OS events unless requested not to
569 if (!event->attr.exclude_user)
570 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
571 if (!event->attr.exclude_kernel)
572 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
574 if (event->attr.type == PERF_TYPE_RAW)
575 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
577 if (event->attr.sample_period && x86_pmu.limit_period) {
578 if (x86_pmu.limit_period(event, event->attr.sample_period) >
579 event->attr.sample_period)
580 return -EINVAL;
583 return x86_setup_perfctr(event);
587 * Setup the hardware configuration for a given attr_type
589 static int __x86_pmu_event_init(struct perf_event *event)
591 int err;
593 if (!x86_pmu_initialized())
594 return -ENODEV;
596 err = x86_reserve_hardware();
597 if (err)
598 return err;
600 atomic_inc(&active_events);
601 event->destroy = hw_perf_event_destroy;
603 event->hw.idx = -1;
604 event->hw.last_cpu = -1;
605 event->hw.last_tag = ~0ULL;
607 /* mark unused */
608 event->hw.extra_reg.idx = EXTRA_REG_NONE;
609 event->hw.branch_reg.idx = EXTRA_REG_NONE;
611 return x86_pmu.hw_config(event);
614 void x86_pmu_disable_all(void)
616 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
617 int idx;
619 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
620 u64 val;
622 if (!test_bit(idx, cpuc->active_mask))
623 continue;
624 rdmsrl(x86_pmu_config_addr(idx), val);
625 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
626 continue;
627 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
628 wrmsrl(x86_pmu_config_addr(idx), val);
633 * There may be PMI landing after enabled=0. The PMI hitting could be before or
634 * after disable_all.
636 * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
637 * It will not be re-enabled in the NMI handler again, because enabled=0. After
638 * handling the NMI, disable_all will be called, which will not change the
639 * state either. If PMI hits after disable_all, the PMU is already disabled
640 * before entering NMI handler. The NMI handler will not change the state
641 * either.
643 * So either situation is harmless.
645 static void x86_pmu_disable(struct pmu *pmu)
647 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
649 if (!x86_pmu_initialized())
650 return;
652 if (!cpuc->enabled)
653 return;
655 cpuc->n_added = 0;
656 cpuc->enabled = 0;
657 barrier();
659 x86_pmu.disable_all();
662 void x86_pmu_enable_all(int added)
664 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
665 int idx;
667 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
668 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
670 if (!test_bit(idx, cpuc->active_mask))
671 continue;
673 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
677 static struct pmu pmu;
679 static inline int is_x86_event(struct perf_event *event)
681 return event->pmu == &pmu;
685 * Event scheduler state:
687 * Assign events iterating over all events and counters, beginning
688 * with events with least weights first. Keep the current iterator
689 * state in struct sched_state.
691 struct sched_state {
692 int weight;
693 int event; /* event index */
694 int counter; /* counter index */
695 int unassigned; /* number of events to be assigned left */
696 int nr_gp; /* number of GP counters used */
697 unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
700 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
701 #define SCHED_STATES_MAX 2
703 struct perf_sched {
704 int max_weight;
705 int max_events;
706 int max_gp;
707 int saved_states;
708 struct event_constraint **constraints;
709 struct sched_state state;
710 struct sched_state saved[SCHED_STATES_MAX];
714 * Initialize interator that runs through all events and counters.
716 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
717 int num, int wmin, int wmax, int gpmax)
719 int idx;
721 memset(sched, 0, sizeof(*sched));
722 sched->max_events = num;
723 sched->max_weight = wmax;
724 sched->max_gp = gpmax;
725 sched->constraints = constraints;
727 for (idx = 0; idx < num; idx++) {
728 if (constraints[idx]->weight == wmin)
729 break;
732 sched->state.event = idx; /* start with min weight */
733 sched->state.weight = wmin;
734 sched->state.unassigned = num;
737 static void perf_sched_save_state(struct perf_sched *sched)
739 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
740 return;
742 sched->saved[sched->saved_states] = sched->state;
743 sched->saved_states++;
746 static bool perf_sched_restore_state(struct perf_sched *sched)
748 if (!sched->saved_states)
749 return false;
751 sched->saved_states--;
752 sched->state = sched->saved[sched->saved_states];
754 /* continue with next counter: */
755 clear_bit(sched->state.counter++, sched->state.used);
757 return true;
761 * Select a counter for the current event to schedule. Return true on
762 * success.
764 static bool __perf_sched_find_counter(struct perf_sched *sched)
766 struct event_constraint *c;
767 int idx;
769 if (!sched->state.unassigned)
770 return false;
772 if (sched->state.event >= sched->max_events)
773 return false;
775 c = sched->constraints[sched->state.event];
776 /* Prefer fixed purpose counters */
777 if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
778 idx = INTEL_PMC_IDX_FIXED;
779 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
780 if (!__test_and_set_bit(idx, sched->state.used))
781 goto done;
785 /* Grab the first unused counter starting with idx */
786 idx = sched->state.counter;
787 for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
788 if (!__test_and_set_bit(idx, sched->state.used)) {
789 if (sched->state.nr_gp++ >= sched->max_gp)
790 return false;
792 goto done;
796 return false;
798 done:
799 sched->state.counter = idx;
801 if (c->overlap)
802 perf_sched_save_state(sched);
804 return true;
807 static bool perf_sched_find_counter(struct perf_sched *sched)
809 while (!__perf_sched_find_counter(sched)) {
810 if (!perf_sched_restore_state(sched))
811 return false;
814 return true;
818 * Go through all unassigned events and find the next one to schedule.
819 * Take events with the least weight first. Return true on success.
821 static bool perf_sched_next_event(struct perf_sched *sched)
823 struct event_constraint *c;
825 if (!sched->state.unassigned || !--sched->state.unassigned)
826 return false;
828 do {
829 /* next event */
830 sched->state.event++;
831 if (sched->state.event >= sched->max_events) {
832 /* next weight */
833 sched->state.event = 0;
834 sched->state.weight++;
835 if (sched->state.weight > sched->max_weight)
836 return false;
838 c = sched->constraints[sched->state.event];
839 } while (c->weight != sched->state.weight);
841 sched->state.counter = 0; /* start with first counter */
843 return true;
847 * Assign a counter for each event.
849 int perf_assign_events(struct event_constraint **constraints, int n,
850 int wmin, int wmax, int gpmax, int *assign)
852 struct perf_sched sched;
854 perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
856 do {
857 if (!perf_sched_find_counter(&sched))
858 break; /* failed */
859 if (assign)
860 assign[sched.state.event] = sched.state.counter;
861 } while (perf_sched_next_event(&sched));
863 return sched.state.unassigned;
865 EXPORT_SYMBOL_GPL(perf_assign_events);
867 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
869 struct event_constraint *c;
870 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
871 struct perf_event *e;
872 int i, wmin, wmax, unsched = 0;
873 struct hw_perf_event *hwc;
875 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
877 if (x86_pmu.start_scheduling)
878 x86_pmu.start_scheduling(cpuc);
880 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
881 cpuc->event_constraint[i] = NULL;
882 c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
883 cpuc->event_constraint[i] = c;
885 wmin = min(wmin, c->weight);
886 wmax = max(wmax, c->weight);
890 * fastpath, try to reuse previous register
892 for (i = 0; i < n; i++) {
893 hwc = &cpuc->event_list[i]->hw;
894 c = cpuc->event_constraint[i];
896 /* never assigned */
897 if (hwc->idx == -1)
898 break;
900 /* constraint still honored */
901 if (!test_bit(hwc->idx, c->idxmsk))
902 break;
904 /* not already used */
905 if (test_bit(hwc->idx, used_mask))
906 break;
908 __set_bit(hwc->idx, used_mask);
909 if (assign)
910 assign[i] = hwc->idx;
913 /* slow path */
914 if (i != n) {
915 int gpmax = x86_pmu.num_counters;
918 * Do not allow scheduling of more than half the available
919 * generic counters.
921 * This helps avoid counter starvation of sibling thread by
922 * ensuring at most half the counters cannot be in exclusive
923 * mode. There is no designated counters for the limits. Any
924 * N/2 counters can be used. This helps with events with
925 * specific counter constraints.
927 if (is_ht_workaround_enabled() && !cpuc->is_fake &&
928 READ_ONCE(cpuc->excl_cntrs->exclusive_present))
929 gpmax /= 2;
931 unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
932 wmax, gpmax, assign);
936 * In case of success (unsched = 0), mark events as committed,
937 * so we do not put_constraint() in case new events are added
938 * and fail to be scheduled
940 * We invoke the lower level commit callback to lock the resource
942 * We do not need to do all of this in case we are called to
943 * validate an event group (assign == NULL)
945 if (!unsched && assign) {
946 for (i = 0; i < n; i++) {
947 e = cpuc->event_list[i];
948 e->hw.flags |= PERF_X86_EVENT_COMMITTED;
949 if (x86_pmu.commit_scheduling)
950 x86_pmu.commit_scheduling(cpuc, i, assign[i]);
952 } else {
953 for (i = 0; i < n; i++) {
954 e = cpuc->event_list[i];
956 * do not put_constraint() on comitted events,
957 * because they are good to go
959 if ((e->hw.flags & PERF_X86_EVENT_COMMITTED))
960 continue;
963 * release events that failed scheduling
965 if (x86_pmu.put_event_constraints)
966 x86_pmu.put_event_constraints(cpuc, e);
970 if (x86_pmu.stop_scheduling)
971 x86_pmu.stop_scheduling(cpuc);
973 return unsched ? -EINVAL : 0;
977 * dogrp: true if must collect siblings events (group)
978 * returns total number of events and error code
980 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
982 struct perf_event *event;
983 int n, max_count;
985 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
987 /* current number of events already accepted */
988 n = cpuc->n_events;
990 if (is_x86_event(leader)) {
991 if (n >= max_count)
992 return -EINVAL;
993 cpuc->event_list[n] = leader;
994 n++;
996 if (!dogrp)
997 return n;
999 for_each_sibling_event(event, leader) {
1000 if (!is_x86_event(event) ||
1001 event->state <= PERF_EVENT_STATE_OFF)
1002 continue;
1004 if (n >= max_count)
1005 return -EINVAL;
1007 cpuc->event_list[n] = event;
1008 n++;
1010 return n;
1013 static inline void x86_assign_hw_event(struct perf_event *event,
1014 struct cpu_hw_events *cpuc, int i)
1016 struct hw_perf_event *hwc = &event->hw;
1018 hwc->idx = cpuc->assign[i];
1019 hwc->last_cpu = smp_processor_id();
1020 hwc->last_tag = ++cpuc->tags[i];
1022 if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
1023 hwc->config_base = 0;
1024 hwc->event_base = 0;
1025 } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1026 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1027 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
1028 hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
1029 } else {
1030 hwc->config_base = x86_pmu_config_addr(hwc->idx);
1031 hwc->event_base = x86_pmu_event_addr(hwc->idx);
1032 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1036 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1037 struct cpu_hw_events *cpuc,
1038 int i)
1040 return hwc->idx == cpuc->assign[i] &&
1041 hwc->last_cpu == smp_processor_id() &&
1042 hwc->last_tag == cpuc->tags[i];
1045 static void x86_pmu_start(struct perf_event *event, int flags);
1047 static void x86_pmu_enable(struct pmu *pmu)
1049 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1050 struct perf_event *event;
1051 struct hw_perf_event *hwc;
1052 int i, added = cpuc->n_added;
1054 if (!x86_pmu_initialized())
1055 return;
1057 if (cpuc->enabled)
1058 return;
1060 if (cpuc->n_added) {
1061 int n_running = cpuc->n_events - cpuc->n_added;
1063 * apply assignment obtained either from
1064 * hw_perf_group_sched_in() or x86_pmu_enable()
1066 * step1: save events moving to new counters
1068 for (i = 0; i < n_running; i++) {
1069 event = cpuc->event_list[i];
1070 hwc = &event->hw;
1073 * we can avoid reprogramming counter if:
1074 * - assigned same counter as last time
1075 * - running on same CPU as last time
1076 * - no other event has used the counter since
1078 if (hwc->idx == -1 ||
1079 match_prev_assignment(hwc, cpuc, i))
1080 continue;
1083 * Ensure we don't accidentally enable a stopped
1084 * counter simply because we rescheduled.
1086 if (hwc->state & PERF_HES_STOPPED)
1087 hwc->state |= PERF_HES_ARCH;
1089 x86_pmu_stop(event, PERF_EF_UPDATE);
1093 * step2: reprogram moved events into new counters
1095 for (i = 0; i < cpuc->n_events; i++) {
1096 event = cpuc->event_list[i];
1097 hwc = &event->hw;
1099 if (!match_prev_assignment(hwc, cpuc, i))
1100 x86_assign_hw_event(event, cpuc, i);
1101 else if (i < n_running)
1102 continue;
1104 if (hwc->state & PERF_HES_ARCH)
1105 continue;
1107 x86_pmu_start(event, PERF_EF_RELOAD);
1109 cpuc->n_added = 0;
1110 perf_events_lapic_init();
1113 cpuc->enabled = 1;
1114 barrier();
1116 x86_pmu.enable_all(added);
1119 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1122 * Set the next IRQ period, based on the hwc->period_left value.
1123 * To be called with the event disabled in hw:
1125 int x86_perf_event_set_period(struct perf_event *event)
1127 struct hw_perf_event *hwc = &event->hw;
1128 s64 left = local64_read(&hwc->period_left);
1129 s64 period = hwc->sample_period;
1130 int ret = 0, idx = hwc->idx;
1132 if (idx == INTEL_PMC_IDX_FIXED_BTS)
1133 return 0;
1136 * If we are way outside a reasonable range then just skip forward:
1138 if (unlikely(left <= -period)) {
1139 left = period;
1140 local64_set(&hwc->period_left, left);
1141 hwc->last_period = period;
1142 ret = 1;
1145 if (unlikely(left <= 0)) {
1146 left += period;
1147 local64_set(&hwc->period_left, left);
1148 hwc->last_period = period;
1149 ret = 1;
1152 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1154 if (unlikely(left < 2))
1155 left = 2;
1157 if (left > x86_pmu.max_period)
1158 left = x86_pmu.max_period;
1160 if (x86_pmu.limit_period)
1161 left = x86_pmu.limit_period(event, left);
1163 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1166 * The hw event starts counting from this event offset,
1167 * mark it to be able to extra future deltas:
1169 local64_set(&hwc->prev_count, (u64)-left);
1171 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1174 * Due to erratum on certan cpu we need
1175 * a second write to be sure the register
1176 * is updated properly
1178 if (x86_pmu.perfctr_second_write) {
1179 wrmsrl(hwc->event_base,
1180 (u64)(-left) & x86_pmu.cntval_mask);
1183 perf_event_update_userpage(event);
1185 return ret;
1188 void x86_pmu_enable_event(struct perf_event *event)
1190 if (__this_cpu_read(cpu_hw_events.enabled))
1191 __x86_pmu_enable_event(&event->hw,
1192 ARCH_PERFMON_EVENTSEL_ENABLE);
1196 * Add a single event to the PMU.
1198 * The event is added to the group of enabled events
1199 * but only if it can be scehduled with existing events.
1201 static int x86_pmu_add(struct perf_event *event, int flags)
1203 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1204 struct hw_perf_event *hwc;
1205 int assign[X86_PMC_IDX_MAX];
1206 int n, n0, ret;
1208 hwc = &event->hw;
1210 n0 = cpuc->n_events;
1211 ret = n = collect_events(cpuc, event, false);
1212 if (ret < 0)
1213 goto out;
1215 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1216 if (!(flags & PERF_EF_START))
1217 hwc->state |= PERF_HES_ARCH;
1220 * If group events scheduling transaction was started,
1221 * skip the schedulability test here, it will be performed
1222 * at commit time (->commit_txn) as a whole.
1224 * If commit fails, we'll call ->del() on all events
1225 * for which ->add() was called.
1227 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1228 goto done_collect;
1230 ret = x86_pmu.schedule_events(cpuc, n, assign);
1231 if (ret)
1232 goto out;
1234 * copy new assignment, now we know it is possible
1235 * will be used by hw_perf_enable()
1237 memcpy(cpuc->assign, assign, n*sizeof(int));
1239 done_collect:
1241 * Commit the collect_events() state. See x86_pmu_del() and
1242 * x86_pmu_*_txn().
1244 cpuc->n_events = n;
1245 cpuc->n_added += n - n0;
1246 cpuc->n_txn += n - n0;
1248 if (x86_pmu.add) {
1250 * This is before x86_pmu_enable() will call x86_pmu_start(),
1251 * so we enable LBRs before an event needs them etc..
1253 x86_pmu.add(event);
1256 ret = 0;
1257 out:
1258 return ret;
1261 static void x86_pmu_start(struct perf_event *event, int flags)
1263 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1264 int idx = event->hw.idx;
1266 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1267 return;
1269 if (WARN_ON_ONCE(idx == -1))
1270 return;
1272 if (flags & PERF_EF_RELOAD) {
1273 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1274 x86_perf_event_set_period(event);
1277 event->hw.state = 0;
1279 cpuc->events[idx] = event;
1280 __set_bit(idx, cpuc->active_mask);
1281 __set_bit(idx, cpuc->running);
1282 x86_pmu.enable(event);
1283 perf_event_update_userpage(event);
1286 void perf_event_print_debug(void)
1288 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1289 u64 pebs, debugctl;
1290 struct cpu_hw_events *cpuc;
1291 unsigned long flags;
1292 int cpu, idx;
1294 if (!x86_pmu.num_counters)
1295 return;
1297 local_irq_save(flags);
1299 cpu = smp_processor_id();
1300 cpuc = &per_cpu(cpu_hw_events, cpu);
1302 if (x86_pmu.version >= 2) {
1303 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1304 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1305 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1306 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1308 pr_info("\n");
1309 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1310 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1311 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1312 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1313 if (x86_pmu.pebs_constraints) {
1314 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1315 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1317 if (x86_pmu.lbr_nr) {
1318 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1319 pr_info("CPU#%d: debugctl: %016llx\n", cpu, debugctl);
1322 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1324 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1325 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1326 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1328 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1330 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1331 cpu, idx, pmc_ctrl);
1332 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1333 cpu, idx, pmc_count);
1334 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1335 cpu, idx, prev_left);
1337 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1338 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1340 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1341 cpu, idx, pmc_count);
1343 local_irq_restore(flags);
1346 void x86_pmu_stop(struct perf_event *event, int flags)
1348 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1349 struct hw_perf_event *hwc = &event->hw;
1351 if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1352 x86_pmu.disable(event);
1353 cpuc->events[hwc->idx] = NULL;
1354 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1355 hwc->state |= PERF_HES_STOPPED;
1358 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1360 * Drain the remaining delta count out of a event
1361 * that we are disabling:
1363 x86_perf_event_update(event);
1364 hwc->state |= PERF_HES_UPTODATE;
1368 static void x86_pmu_del(struct perf_event *event, int flags)
1370 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1371 int i;
1374 * event is descheduled
1376 event->hw.flags &= ~PERF_X86_EVENT_COMMITTED;
1379 * If we're called during a txn, we only need to undo x86_pmu.add.
1380 * The events never got scheduled and ->cancel_txn will truncate
1381 * the event_list.
1383 * XXX assumes any ->del() called during a TXN will only be on
1384 * an event added during that same TXN.
1386 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1387 goto do_del;
1390 * Not a TXN, therefore cleanup properly.
1392 x86_pmu_stop(event, PERF_EF_UPDATE);
1394 for (i = 0; i < cpuc->n_events; i++) {
1395 if (event == cpuc->event_list[i])
1396 break;
1399 if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1400 return;
1402 /* If we have a newly added event; make sure to decrease n_added. */
1403 if (i >= cpuc->n_events - cpuc->n_added)
1404 --cpuc->n_added;
1406 if (x86_pmu.put_event_constraints)
1407 x86_pmu.put_event_constraints(cpuc, event);
1409 /* Delete the array entry. */
1410 while (++i < cpuc->n_events) {
1411 cpuc->event_list[i-1] = cpuc->event_list[i];
1412 cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1414 --cpuc->n_events;
1416 perf_event_update_userpage(event);
1418 do_del:
1419 if (x86_pmu.del) {
1421 * This is after x86_pmu_stop(); so we disable LBRs after any
1422 * event can need them etc..
1424 x86_pmu.del(event);
1428 int x86_pmu_handle_irq(struct pt_regs *regs)
1430 struct perf_sample_data data;
1431 struct cpu_hw_events *cpuc;
1432 struct perf_event *event;
1433 int idx, handled = 0;
1434 u64 val;
1436 cpuc = this_cpu_ptr(&cpu_hw_events);
1439 * Some chipsets need to unmask the LVTPC in a particular spot
1440 * inside the nmi handler. As a result, the unmasking was pushed
1441 * into all the nmi handlers.
1443 * This generic handler doesn't seem to have any issues where the
1444 * unmasking occurs so it was left at the top.
1446 apic_write(APIC_LVTPC, APIC_DM_NMI);
1448 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1449 if (!test_bit(idx, cpuc->active_mask)) {
1451 * Though we deactivated the counter some cpus
1452 * might still deliver spurious interrupts still
1453 * in flight. Catch them:
1455 if (__test_and_clear_bit(idx, cpuc->running))
1456 handled++;
1457 continue;
1460 event = cpuc->events[idx];
1462 val = x86_perf_event_update(event);
1463 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1464 continue;
1467 * event overflow
1469 handled++;
1470 perf_sample_data_init(&data, 0, event->hw.last_period);
1472 if (!x86_perf_event_set_period(event))
1473 continue;
1475 if (perf_event_overflow(event, &data, regs))
1476 x86_pmu_stop(event, 0);
1479 if (handled)
1480 inc_irq_stat(apic_perf_irqs);
1482 return handled;
1485 void perf_events_lapic_init(void)
1487 if (!x86_pmu.apic || !x86_pmu_initialized())
1488 return;
1491 * Always use NMI for PMU
1493 apic_write(APIC_LVTPC, APIC_DM_NMI);
1496 static int
1497 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1499 u64 start_clock;
1500 u64 finish_clock;
1501 int ret;
1504 * All PMUs/events that share this PMI handler should make sure to
1505 * increment active_events for their events.
1507 if (!atomic_read(&active_events))
1508 return NMI_DONE;
1510 start_clock = sched_clock();
1511 ret = x86_pmu.handle_irq(regs);
1512 finish_clock = sched_clock();
1514 perf_sample_event_took(finish_clock - start_clock);
1516 return ret;
1518 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1520 struct event_constraint emptyconstraint;
1521 struct event_constraint unconstrained;
1523 static int x86_pmu_prepare_cpu(unsigned int cpu)
1525 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1526 int i;
1528 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1529 cpuc->kfree_on_online[i] = NULL;
1530 if (x86_pmu.cpu_prepare)
1531 return x86_pmu.cpu_prepare(cpu);
1532 return 0;
1535 static int x86_pmu_dead_cpu(unsigned int cpu)
1537 if (x86_pmu.cpu_dead)
1538 x86_pmu.cpu_dead(cpu);
1539 return 0;
1542 static int x86_pmu_online_cpu(unsigned int cpu)
1544 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1545 int i;
1547 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1548 kfree(cpuc->kfree_on_online[i]);
1549 cpuc->kfree_on_online[i] = NULL;
1551 return 0;
1554 static int x86_pmu_starting_cpu(unsigned int cpu)
1556 if (x86_pmu.cpu_starting)
1557 x86_pmu.cpu_starting(cpu);
1558 return 0;
1561 static int x86_pmu_dying_cpu(unsigned int cpu)
1563 if (x86_pmu.cpu_dying)
1564 x86_pmu.cpu_dying(cpu);
1565 return 0;
1568 static void __init pmu_check_apic(void)
1570 if (boot_cpu_has(X86_FEATURE_APIC))
1571 return;
1573 x86_pmu.apic = 0;
1574 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1575 pr_info("no hardware sampling interrupt available.\n");
1578 * If we have a PMU initialized but no APIC
1579 * interrupts, we cannot sample hardware
1580 * events (user-space has to fall back and
1581 * sample via a hrtimer based software event):
1583 pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1587 static struct attribute_group x86_pmu_format_group = {
1588 .name = "format",
1589 .attrs = NULL,
1593 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1594 * out of events_attr attributes.
1596 static void __init filter_events(struct attribute **attrs)
1598 struct device_attribute *d;
1599 struct perf_pmu_events_attr *pmu_attr;
1600 int offset = 0;
1601 int i, j;
1603 for (i = 0; attrs[i]; i++) {
1604 d = (struct device_attribute *)attrs[i];
1605 pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1606 /* str trumps id */
1607 if (pmu_attr->event_str)
1608 continue;
1609 if (x86_pmu.event_map(i + offset))
1610 continue;
1612 for (j = i; attrs[j]; j++)
1613 attrs[j] = attrs[j + 1];
1615 /* Check the shifted attr. */
1616 i--;
1619 * event_map() is index based, the attrs array is organized
1620 * by increasing event index. If we shift the events, then
1621 * we need to compensate for the event_map(), otherwise
1622 * we are looking up the wrong event in the map
1624 offset++;
1628 /* Merge two pointer arrays */
1629 __init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1631 struct attribute **new;
1632 int j, i;
1634 for (j = 0; a[j]; j++)
1636 for (i = 0; b[i]; i++)
1637 j++;
1638 j++;
1640 new = kmalloc_array(j, sizeof(struct attribute *), GFP_KERNEL);
1641 if (!new)
1642 return NULL;
1644 j = 0;
1645 for (i = 0; a[i]; i++)
1646 new[j++] = a[i];
1647 for (i = 0; b[i]; i++)
1648 new[j++] = b[i];
1649 new[j] = NULL;
1651 return new;
1654 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1656 struct perf_pmu_events_attr *pmu_attr = \
1657 container_of(attr, struct perf_pmu_events_attr, attr);
1658 u64 config = x86_pmu.event_map(pmu_attr->id);
1660 /* string trumps id */
1661 if (pmu_attr->event_str)
1662 return sprintf(page, "%s", pmu_attr->event_str);
1664 return x86_pmu.events_sysfs_show(page, config);
1666 EXPORT_SYMBOL_GPL(events_sysfs_show);
1668 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1669 char *page)
1671 struct perf_pmu_events_ht_attr *pmu_attr =
1672 container_of(attr, struct perf_pmu_events_ht_attr, attr);
1675 * Report conditional events depending on Hyper-Threading.
1677 * This is overly conservative as usually the HT special
1678 * handling is not needed if the other CPU thread is idle.
1680 * Note this does not (and cannot) handle the case when thread
1681 * siblings are invisible, for example with virtualization
1682 * if they are owned by some other guest. The user tool
1683 * has to re-read when a thread sibling gets onlined later.
1685 return sprintf(page, "%s",
1686 topology_max_smt_threads() > 1 ?
1687 pmu_attr->event_str_ht :
1688 pmu_attr->event_str_noht);
1691 EVENT_ATTR(cpu-cycles, CPU_CYCLES );
1692 EVENT_ATTR(instructions, INSTRUCTIONS );
1693 EVENT_ATTR(cache-references, CACHE_REFERENCES );
1694 EVENT_ATTR(cache-misses, CACHE_MISSES );
1695 EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS );
1696 EVENT_ATTR(branch-misses, BRANCH_MISSES );
1697 EVENT_ATTR(bus-cycles, BUS_CYCLES );
1698 EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND );
1699 EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND );
1700 EVENT_ATTR(ref-cycles, REF_CPU_CYCLES );
1702 static struct attribute *empty_attrs;
1704 static struct attribute *events_attr[] = {
1705 EVENT_PTR(CPU_CYCLES),
1706 EVENT_PTR(INSTRUCTIONS),
1707 EVENT_PTR(CACHE_REFERENCES),
1708 EVENT_PTR(CACHE_MISSES),
1709 EVENT_PTR(BRANCH_INSTRUCTIONS),
1710 EVENT_PTR(BRANCH_MISSES),
1711 EVENT_PTR(BUS_CYCLES),
1712 EVENT_PTR(STALLED_CYCLES_FRONTEND),
1713 EVENT_PTR(STALLED_CYCLES_BACKEND),
1714 EVENT_PTR(REF_CPU_CYCLES),
1715 NULL,
1718 static struct attribute_group x86_pmu_events_group = {
1719 .name = "events",
1720 .attrs = events_attr,
1723 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1725 u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1726 u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1727 bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1728 bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1729 bool any = (config & ARCH_PERFMON_EVENTSEL_ANY);
1730 bool inv = (config & ARCH_PERFMON_EVENTSEL_INV);
1731 ssize_t ret;
1734 * We have whole page size to spend and just little data
1735 * to write, so we can safely use sprintf.
1737 ret = sprintf(page, "event=0x%02llx", event);
1739 if (umask)
1740 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1742 if (edge)
1743 ret += sprintf(page + ret, ",edge");
1745 if (pc)
1746 ret += sprintf(page + ret, ",pc");
1748 if (any)
1749 ret += sprintf(page + ret, ",any");
1751 if (inv)
1752 ret += sprintf(page + ret, ",inv");
1754 if (cmask)
1755 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1757 ret += sprintf(page + ret, "\n");
1759 return ret;
1762 static struct attribute_group x86_pmu_attr_group;
1763 static struct attribute_group x86_pmu_caps_group;
1765 static int __init init_hw_perf_events(void)
1767 struct x86_pmu_quirk *quirk;
1768 int err;
1770 pr_info("Performance Events: ");
1772 switch (boot_cpu_data.x86_vendor) {
1773 case X86_VENDOR_INTEL:
1774 err = intel_pmu_init();
1775 break;
1776 case X86_VENDOR_AMD:
1777 err = amd_pmu_init();
1778 break;
1779 default:
1780 err = -ENOTSUPP;
1782 if (err != 0) {
1783 pr_cont("no PMU driver, software events only.\n");
1784 return 0;
1787 pmu_check_apic();
1789 /* sanity check that the hardware exists or is emulated */
1790 if (!check_hw_exists())
1791 return 0;
1793 pr_cont("%s PMU driver.\n", x86_pmu.name);
1795 x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1797 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1798 quirk->func();
1800 if (!x86_pmu.intel_ctrl)
1801 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1803 perf_events_lapic_init();
1804 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1806 unconstrained = (struct event_constraint)
1807 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1808 0, x86_pmu.num_counters, 0, 0);
1810 x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1812 if (x86_pmu.caps_attrs) {
1813 struct attribute **tmp;
1815 tmp = merge_attr(x86_pmu_caps_group.attrs, x86_pmu.caps_attrs);
1816 if (!WARN_ON(!tmp))
1817 x86_pmu_caps_group.attrs = tmp;
1820 if (x86_pmu.event_attrs)
1821 x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1823 if (!x86_pmu.events_sysfs_show)
1824 x86_pmu_events_group.attrs = &empty_attrs;
1825 else
1826 filter_events(x86_pmu_events_group.attrs);
1828 if (x86_pmu.cpu_events) {
1829 struct attribute **tmp;
1831 tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1832 if (!WARN_ON(!tmp))
1833 x86_pmu_events_group.attrs = tmp;
1836 if (x86_pmu.attrs) {
1837 struct attribute **tmp;
1839 tmp = merge_attr(x86_pmu_attr_group.attrs, x86_pmu.attrs);
1840 if (!WARN_ON(!tmp))
1841 x86_pmu_attr_group.attrs = tmp;
1844 pr_info("... version: %d\n", x86_pmu.version);
1845 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1846 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1847 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
1848 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
1849 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
1850 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
1853 * Install callbacks. Core will call them for each online
1854 * cpu.
1856 err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
1857 x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
1858 if (err)
1859 return err;
1861 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
1862 "perf/x86:starting", x86_pmu_starting_cpu,
1863 x86_pmu_dying_cpu);
1864 if (err)
1865 goto out;
1867 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
1868 x86_pmu_online_cpu, NULL);
1869 if (err)
1870 goto out1;
1872 err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1873 if (err)
1874 goto out2;
1876 return 0;
1878 out2:
1879 cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
1880 out1:
1881 cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
1882 out:
1883 cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
1884 return err;
1886 early_initcall(init_hw_perf_events);
1888 static inline void x86_pmu_read(struct perf_event *event)
1890 if (x86_pmu.read)
1891 return x86_pmu.read(event);
1892 x86_perf_event_update(event);
1896 * Start group events scheduling transaction
1897 * Set the flag to make pmu::enable() not perform the
1898 * schedulability test, it will be performed at commit time
1900 * We only support PERF_PMU_TXN_ADD transactions. Save the
1901 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1902 * transactions.
1904 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1906 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1908 WARN_ON_ONCE(cpuc->txn_flags); /* txn already in flight */
1910 cpuc->txn_flags = txn_flags;
1911 if (txn_flags & ~PERF_PMU_TXN_ADD)
1912 return;
1914 perf_pmu_disable(pmu);
1915 __this_cpu_write(cpu_hw_events.n_txn, 0);
1919 * Stop group events scheduling transaction
1920 * Clear the flag and pmu::enable() will perform the
1921 * schedulability test.
1923 static void x86_pmu_cancel_txn(struct pmu *pmu)
1925 unsigned int txn_flags;
1926 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1928 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1930 txn_flags = cpuc->txn_flags;
1931 cpuc->txn_flags = 0;
1932 if (txn_flags & ~PERF_PMU_TXN_ADD)
1933 return;
1936 * Truncate collected array by the number of events added in this
1937 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
1939 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1940 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1941 perf_pmu_enable(pmu);
1945 * Commit group events scheduling transaction
1946 * Perform the group schedulability test as a whole
1947 * Return 0 if success
1949 * Does not cancel the transaction on failure; expects the caller to do this.
1951 static int x86_pmu_commit_txn(struct pmu *pmu)
1953 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1954 int assign[X86_PMC_IDX_MAX];
1955 int n, ret;
1957 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1959 if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1960 cpuc->txn_flags = 0;
1961 return 0;
1964 n = cpuc->n_events;
1966 if (!x86_pmu_initialized())
1967 return -EAGAIN;
1969 ret = x86_pmu.schedule_events(cpuc, n, assign);
1970 if (ret)
1971 return ret;
1974 * copy new assignment, now we know it is possible
1975 * will be used by hw_perf_enable()
1977 memcpy(cpuc->assign, assign, n*sizeof(int));
1979 cpuc->txn_flags = 0;
1980 perf_pmu_enable(pmu);
1981 return 0;
1984 * a fake_cpuc is used to validate event groups. Due to
1985 * the extra reg logic, we need to also allocate a fake
1986 * per_core and per_cpu structure. Otherwise, group events
1987 * using extra reg may conflict without the kernel being
1988 * able to catch this when the last event gets added to
1989 * the group.
1991 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1993 kfree(cpuc->shared_regs);
1994 kfree(cpuc);
1997 static struct cpu_hw_events *allocate_fake_cpuc(void)
1999 struct cpu_hw_events *cpuc;
2000 int cpu = raw_smp_processor_id();
2002 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
2003 if (!cpuc)
2004 return ERR_PTR(-ENOMEM);
2006 /* only needed, if we have extra_regs */
2007 if (x86_pmu.extra_regs) {
2008 cpuc->shared_regs = allocate_shared_regs(cpu);
2009 if (!cpuc->shared_regs)
2010 goto error;
2012 cpuc->is_fake = 1;
2013 return cpuc;
2014 error:
2015 free_fake_cpuc(cpuc);
2016 return ERR_PTR(-ENOMEM);
2020 * validate that we can schedule this event
2022 static int validate_event(struct perf_event *event)
2024 struct cpu_hw_events *fake_cpuc;
2025 struct event_constraint *c;
2026 int ret = 0;
2028 fake_cpuc = allocate_fake_cpuc();
2029 if (IS_ERR(fake_cpuc))
2030 return PTR_ERR(fake_cpuc);
2032 c = x86_pmu.get_event_constraints(fake_cpuc, -1, event);
2034 if (!c || !c->weight)
2035 ret = -EINVAL;
2037 if (x86_pmu.put_event_constraints)
2038 x86_pmu.put_event_constraints(fake_cpuc, event);
2040 free_fake_cpuc(fake_cpuc);
2042 return ret;
2046 * validate a single event group
2048 * validation include:
2049 * - check events are compatible which each other
2050 * - events do not compete for the same counter
2051 * - number of events <= number of counters
2053 * validation ensures the group can be loaded onto the
2054 * PMU if it was the only group available.
2056 static int validate_group(struct perf_event *event)
2058 struct perf_event *leader = event->group_leader;
2059 struct cpu_hw_events *fake_cpuc;
2060 int ret = -EINVAL, n;
2062 fake_cpuc = allocate_fake_cpuc();
2063 if (IS_ERR(fake_cpuc))
2064 return PTR_ERR(fake_cpuc);
2066 * the event is not yet connected with its
2067 * siblings therefore we must first collect
2068 * existing siblings, then add the new event
2069 * before we can simulate the scheduling
2071 n = collect_events(fake_cpuc, leader, true);
2072 if (n < 0)
2073 goto out;
2075 fake_cpuc->n_events = n;
2076 n = collect_events(fake_cpuc, event, false);
2077 if (n < 0)
2078 goto out;
2080 fake_cpuc->n_events = n;
2082 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2084 out:
2085 free_fake_cpuc(fake_cpuc);
2086 return ret;
2089 static int x86_pmu_event_init(struct perf_event *event)
2091 struct pmu *tmp;
2092 int err;
2094 switch (event->attr.type) {
2095 case PERF_TYPE_RAW:
2096 case PERF_TYPE_HARDWARE:
2097 case PERF_TYPE_HW_CACHE:
2098 break;
2100 default:
2101 return -ENOENT;
2104 err = __x86_pmu_event_init(event);
2105 if (!err) {
2107 * we temporarily connect event to its pmu
2108 * such that validate_group() can classify
2109 * it as an x86 event using is_x86_event()
2111 tmp = event->pmu;
2112 event->pmu = &pmu;
2114 if (event->group_leader != event)
2115 err = validate_group(event);
2116 else
2117 err = validate_event(event);
2119 event->pmu = tmp;
2121 if (err) {
2122 if (event->destroy)
2123 event->destroy(event);
2126 if (READ_ONCE(x86_pmu.attr_rdpmc) &&
2127 !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
2128 event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
2130 return err;
2133 static void refresh_pce(void *ignored)
2135 load_mm_cr4(this_cpu_read(cpu_tlbstate.loaded_mm));
2138 static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
2140 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2141 return;
2144 * This function relies on not being called concurrently in two
2145 * tasks in the same mm. Otherwise one task could observe
2146 * perf_rdpmc_allowed > 1 and return all the way back to
2147 * userspace with CR4.PCE clear while another task is still
2148 * doing on_each_cpu_mask() to propagate CR4.PCE.
2150 * For now, this can't happen because all callers hold mmap_sem
2151 * for write. If this changes, we'll need a different solution.
2153 lockdep_assert_held_exclusive(&mm->mmap_sem);
2155 if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
2156 on_each_cpu_mask(mm_cpumask(mm), refresh_pce, NULL, 1);
2159 static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
2162 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2163 return;
2165 if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
2166 on_each_cpu_mask(mm_cpumask(mm), refresh_pce, NULL, 1);
2169 static int x86_pmu_event_idx(struct perf_event *event)
2171 int idx = event->hw.idx;
2173 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2174 return 0;
2176 if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
2177 idx -= INTEL_PMC_IDX_FIXED;
2178 idx |= 1 << 30;
2181 return idx + 1;
2184 static ssize_t get_attr_rdpmc(struct device *cdev,
2185 struct device_attribute *attr,
2186 char *buf)
2188 return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2191 static ssize_t set_attr_rdpmc(struct device *cdev,
2192 struct device_attribute *attr,
2193 const char *buf, size_t count)
2195 unsigned long val;
2196 ssize_t ret;
2198 ret = kstrtoul(buf, 0, &val);
2199 if (ret)
2200 return ret;
2202 if (val > 2)
2203 return -EINVAL;
2205 if (x86_pmu.attr_rdpmc_broken)
2206 return -ENOTSUPP;
2208 if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) {
2210 * Changing into or out of always available, aka
2211 * perf-event-bypassing mode. This path is extremely slow,
2212 * but only root can trigger it, so it's okay.
2214 if (val == 2)
2215 static_branch_inc(&rdpmc_always_available_key);
2216 else
2217 static_branch_dec(&rdpmc_always_available_key);
2218 on_each_cpu(refresh_pce, NULL, 1);
2221 x86_pmu.attr_rdpmc = val;
2223 return count;
2226 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2228 static struct attribute *x86_pmu_attrs[] = {
2229 &dev_attr_rdpmc.attr,
2230 NULL,
2233 static struct attribute_group x86_pmu_attr_group = {
2234 .attrs = x86_pmu_attrs,
2237 static ssize_t max_precise_show(struct device *cdev,
2238 struct device_attribute *attr,
2239 char *buf)
2241 return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
2244 static DEVICE_ATTR_RO(max_precise);
2246 static struct attribute *x86_pmu_caps_attrs[] = {
2247 &dev_attr_max_precise.attr,
2248 NULL
2251 static struct attribute_group x86_pmu_caps_group = {
2252 .name = "caps",
2253 .attrs = x86_pmu_caps_attrs,
2256 static const struct attribute_group *x86_pmu_attr_groups[] = {
2257 &x86_pmu_attr_group,
2258 &x86_pmu_format_group,
2259 &x86_pmu_events_group,
2260 &x86_pmu_caps_group,
2261 NULL,
2264 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2266 if (x86_pmu.sched_task)
2267 x86_pmu.sched_task(ctx, sched_in);
2270 void perf_check_microcode(void)
2272 if (x86_pmu.check_microcode)
2273 x86_pmu.check_microcode();
2276 static struct pmu pmu = {
2277 .pmu_enable = x86_pmu_enable,
2278 .pmu_disable = x86_pmu_disable,
2280 .attr_groups = x86_pmu_attr_groups,
2282 .event_init = x86_pmu_event_init,
2284 .event_mapped = x86_pmu_event_mapped,
2285 .event_unmapped = x86_pmu_event_unmapped,
2287 .add = x86_pmu_add,
2288 .del = x86_pmu_del,
2289 .start = x86_pmu_start,
2290 .stop = x86_pmu_stop,
2291 .read = x86_pmu_read,
2293 .start_txn = x86_pmu_start_txn,
2294 .cancel_txn = x86_pmu_cancel_txn,
2295 .commit_txn = x86_pmu_commit_txn,
2297 .event_idx = x86_pmu_event_idx,
2298 .sched_task = x86_pmu_sched_task,
2299 .task_ctx_size = sizeof(struct x86_perf_task_context),
2302 void arch_perf_update_userpage(struct perf_event *event,
2303 struct perf_event_mmap_page *userpg, u64 now)
2305 struct cyc2ns_data data;
2306 u64 offset;
2308 userpg->cap_user_time = 0;
2309 userpg->cap_user_time_zero = 0;
2310 userpg->cap_user_rdpmc =
2311 !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2312 userpg->pmc_width = x86_pmu.cntval_bits;
2314 if (!using_native_sched_clock() || !sched_clock_stable())
2315 return;
2317 cyc2ns_read_begin(&data);
2319 offset = data.cyc2ns_offset + __sched_clock_offset;
2322 * Internal timekeeping for enabled/running/stopped times
2323 * is always in the local_clock domain.
2325 userpg->cap_user_time = 1;
2326 userpg->time_mult = data.cyc2ns_mul;
2327 userpg->time_shift = data.cyc2ns_shift;
2328 userpg->time_offset = offset - now;
2331 * cap_user_time_zero doesn't make sense when we're using a different
2332 * time base for the records.
2334 if (!event->attr.use_clockid) {
2335 userpg->cap_user_time_zero = 1;
2336 userpg->time_zero = offset;
2339 cyc2ns_read_end();
2342 void
2343 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2345 struct unwind_state state;
2346 unsigned long addr;
2348 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2349 /* TODO: We don't support guest os callchain now */
2350 return;
2353 if (perf_callchain_store(entry, regs->ip))
2354 return;
2356 for (unwind_start(&state, current, regs, NULL); !unwind_done(&state);
2357 unwind_next_frame(&state)) {
2358 addr = unwind_get_return_address(&state);
2359 if (!addr || perf_callchain_store(entry, addr))
2360 return;
2364 static inline int
2365 valid_user_frame(const void __user *fp, unsigned long size)
2367 return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2370 static unsigned long get_segment_base(unsigned int segment)
2372 struct desc_struct *desc;
2373 unsigned int idx = segment >> 3;
2375 if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2376 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2377 struct ldt_struct *ldt;
2379 /* IRQs are off, so this synchronizes with smp_store_release */
2380 ldt = READ_ONCE(current->active_mm->context.ldt);
2381 if (!ldt || idx >= ldt->nr_entries)
2382 return 0;
2384 desc = &ldt->entries[idx];
2385 #else
2386 return 0;
2387 #endif
2388 } else {
2389 if (idx >= GDT_ENTRIES)
2390 return 0;
2392 desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2395 return get_desc_base(desc);
2398 #ifdef CONFIG_IA32_EMULATION
2400 #include <linux/compat.h>
2402 static inline int
2403 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2405 /* 32-bit process in 64-bit kernel. */
2406 unsigned long ss_base, cs_base;
2407 struct stack_frame_ia32 frame;
2408 const void __user *fp;
2410 if (!test_thread_flag(TIF_IA32))
2411 return 0;
2413 cs_base = get_segment_base(regs->cs);
2414 ss_base = get_segment_base(regs->ss);
2416 fp = compat_ptr(ss_base + regs->bp);
2417 pagefault_disable();
2418 while (entry->nr < entry->max_stack) {
2419 unsigned long bytes;
2420 frame.next_frame = 0;
2421 frame.return_address = 0;
2423 if (!valid_user_frame(fp, sizeof(frame)))
2424 break;
2426 bytes = __copy_from_user_nmi(&frame.next_frame, fp, 4);
2427 if (bytes != 0)
2428 break;
2429 bytes = __copy_from_user_nmi(&frame.return_address, fp+4, 4);
2430 if (bytes != 0)
2431 break;
2433 perf_callchain_store(entry, cs_base + frame.return_address);
2434 fp = compat_ptr(ss_base + frame.next_frame);
2436 pagefault_enable();
2437 return 1;
2439 #else
2440 static inline int
2441 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2443 return 0;
2445 #endif
2447 void
2448 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2450 struct stack_frame frame;
2451 const unsigned long __user *fp;
2453 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2454 /* TODO: We don't support guest os callchain now */
2455 return;
2459 * We don't know what to do with VM86 stacks.. ignore them for now.
2461 if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2462 return;
2464 fp = (unsigned long __user *)regs->bp;
2466 perf_callchain_store(entry, regs->ip);
2468 if (!current->mm)
2469 return;
2471 if (perf_callchain_user32(regs, entry))
2472 return;
2474 pagefault_disable();
2475 while (entry->nr < entry->max_stack) {
2476 unsigned long bytes;
2478 frame.next_frame = NULL;
2479 frame.return_address = 0;
2481 if (!valid_user_frame(fp, sizeof(frame)))
2482 break;
2484 bytes = __copy_from_user_nmi(&frame.next_frame, fp, sizeof(*fp));
2485 if (bytes != 0)
2486 break;
2487 bytes = __copy_from_user_nmi(&frame.return_address, fp + 1, sizeof(*fp));
2488 if (bytes != 0)
2489 break;
2491 perf_callchain_store(entry, frame.return_address);
2492 fp = (void __user *)frame.next_frame;
2494 pagefault_enable();
2498 * Deal with code segment offsets for the various execution modes:
2500 * VM86 - the good olde 16 bit days, where the linear address is
2501 * 20 bits and we use regs->ip + 0x10 * regs->cs.
2503 * IA32 - Where we need to look at GDT/LDT segment descriptor tables
2504 * to figure out what the 32bit base address is.
2506 * X32 - has TIF_X32 set, but is running in x86_64
2508 * X86_64 - CS,DS,SS,ES are all zero based.
2510 static unsigned long code_segment_base(struct pt_regs *regs)
2513 * For IA32 we look at the GDT/LDT segment base to convert the
2514 * effective IP to a linear address.
2517 #ifdef CONFIG_X86_32
2519 * If we are in VM86 mode, add the segment offset to convert to a
2520 * linear address.
2522 if (regs->flags & X86_VM_MASK)
2523 return 0x10 * regs->cs;
2525 if (user_mode(regs) && regs->cs != __USER_CS)
2526 return get_segment_base(regs->cs);
2527 #else
2528 if (user_mode(regs) && !user_64bit_mode(regs) &&
2529 regs->cs != __USER32_CS)
2530 return get_segment_base(regs->cs);
2531 #endif
2532 return 0;
2535 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2537 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2538 return perf_guest_cbs->get_guest_ip();
2540 return regs->ip + code_segment_base(regs);
2543 unsigned long perf_misc_flags(struct pt_regs *regs)
2545 int misc = 0;
2547 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2548 if (perf_guest_cbs->is_user_mode())
2549 misc |= PERF_RECORD_MISC_GUEST_USER;
2550 else
2551 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2552 } else {
2553 if (user_mode(regs))
2554 misc |= PERF_RECORD_MISC_USER;
2555 else
2556 misc |= PERF_RECORD_MISC_KERNEL;
2559 if (regs->flags & PERF_EFLAGS_EXACT)
2560 misc |= PERF_RECORD_MISC_EXACT_IP;
2562 return misc;
2565 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2567 cap->version = x86_pmu.version;
2568 cap->num_counters_gp = x86_pmu.num_counters;
2569 cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2570 cap->bit_width_gp = x86_pmu.cntval_bits;
2571 cap->bit_width_fixed = x86_pmu.cntval_bits;
2572 cap->events_mask = (unsigned int)x86_pmu.events_maskl;
2573 cap->events_mask_len = x86_pmu.events_mask_len;
2575 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);