2 * core.c -- Voltage/Current Regulator framework.
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
42 #define rdev_crit(rdev, fmt, ...) \
43 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...) \
45 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...) \
47 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...) \
49 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...) \
51 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
53 static DEFINE_MUTEX(regulator_list_mutex
);
54 static LIST_HEAD(regulator_map_list
);
55 static LIST_HEAD(regulator_ena_gpio_list
);
56 static LIST_HEAD(regulator_supply_alias_list
);
57 static bool has_full_constraints
;
59 static struct dentry
*debugfs_root
;
62 * struct regulator_map
64 * Used to provide symbolic supply names to devices.
66 struct regulator_map
{
67 struct list_head list
;
68 const char *dev_name
; /* The dev_name() for the consumer */
70 struct regulator_dev
*regulator
;
74 * struct regulator_enable_gpio
76 * Management for shared enable GPIO pin
78 struct regulator_enable_gpio
{
79 struct list_head list
;
80 struct gpio_desc
*gpiod
;
81 u32 enable_count
; /* a number of enabled shared GPIO */
82 u32 request_count
; /* a number of requested shared GPIO */
83 unsigned int ena_gpio_invert
:1;
87 * struct regulator_supply_alias
89 * Used to map lookups for a supply onto an alternative device.
91 struct regulator_supply_alias
{
92 struct list_head list
;
93 struct device
*src_dev
;
94 const char *src_supply
;
95 struct device
*alias_dev
;
96 const char *alias_supply
;
99 static int _regulator_is_enabled(struct regulator_dev
*rdev
);
100 static int _regulator_disable(struct regulator_dev
*rdev
);
101 static int _regulator_get_voltage(struct regulator_dev
*rdev
);
102 static int _regulator_get_current_limit(struct regulator_dev
*rdev
);
103 static unsigned int _regulator_get_mode(struct regulator_dev
*rdev
);
104 static int _notifier_call_chain(struct regulator_dev
*rdev
,
105 unsigned long event
, void *data
);
106 static int _regulator_do_set_voltage(struct regulator_dev
*rdev
,
107 int min_uV
, int max_uV
);
108 static struct regulator
*create_regulator(struct regulator_dev
*rdev
,
110 const char *supply_name
);
111 static void _regulator_put(struct regulator
*regulator
);
113 static const char *rdev_get_name(struct regulator_dev
*rdev
)
115 if (rdev
->constraints
&& rdev
->constraints
->name
)
116 return rdev
->constraints
->name
;
117 else if (rdev
->desc
->name
)
118 return rdev
->desc
->name
;
123 static bool have_full_constraints(void)
125 return has_full_constraints
|| of_have_populated_dt();
128 static bool regulator_ops_is_valid(struct regulator_dev
*rdev
, int ops
)
130 if (!rdev
->constraints
) {
131 rdev_err(rdev
, "no constraints\n");
135 if (rdev
->constraints
->valid_ops_mask
& ops
)
141 static inline struct regulator_dev
*rdev_get_supply(struct regulator_dev
*rdev
)
143 if (rdev
&& rdev
->supply
)
144 return rdev
->supply
->rdev
;
150 * regulator_lock_nested - lock a single regulator
151 * @rdev: regulator source
152 * @subclass: mutex subclass used for lockdep
154 * This function can be called many times by one task on
155 * a single regulator and its mutex will be locked only
156 * once. If a task, which is calling this function is other
157 * than the one, which initially locked the mutex, it will
160 static void regulator_lock_nested(struct regulator_dev
*rdev
,
161 unsigned int subclass
)
163 if (!mutex_trylock(&rdev
->mutex
)) {
164 if (rdev
->mutex_owner
== current
) {
168 mutex_lock_nested(&rdev
->mutex
, subclass
);
172 rdev
->mutex_owner
= current
;
175 static inline void regulator_lock(struct regulator_dev
*rdev
)
177 regulator_lock_nested(rdev
, 0);
181 * regulator_unlock - unlock a single regulator
182 * @rdev: regulator_source
184 * This function unlocks the mutex when the
185 * reference counter reaches 0.
187 static void regulator_unlock(struct regulator_dev
*rdev
)
189 if (rdev
->ref_cnt
!= 0) {
192 if (!rdev
->ref_cnt
) {
193 rdev
->mutex_owner
= NULL
;
194 mutex_unlock(&rdev
->mutex
);
200 * regulator_lock_supply - lock a regulator and its supplies
201 * @rdev: regulator source
203 static void regulator_lock_supply(struct regulator_dev
*rdev
)
207 for (i
= 0; rdev
; rdev
= rdev_get_supply(rdev
), i
++)
208 regulator_lock_nested(rdev
, i
);
212 * regulator_unlock_supply - unlock a regulator and its supplies
213 * @rdev: regulator source
215 static void regulator_unlock_supply(struct regulator_dev
*rdev
)
217 struct regulator
*supply
;
220 regulator_unlock(rdev
);
221 supply
= rdev
->supply
;
231 * of_get_regulator - get a regulator device node based on supply name
232 * @dev: Device pointer for the consumer (of regulator) device
233 * @supply: regulator supply name
235 * Extract the regulator device node corresponding to the supply name.
236 * returns the device node corresponding to the regulator if found, else
239 static struct device_node
*of_get_regulator(struct device
*dev
, const char *supply
)
241 struct device_node
*regnode
= NULL
;
242 char prop_name
[32]; /* 32 is max size of property name */
244 dev_dbg(dev
, "Looking up %s-supply from device tree\n", supply
);
246 snprintf(prop_name
, 32, "%s-supply", supply
);
247 regnode
= of_parse_phandle(dev
->of_node
, prop_name
, 0);
250 dev_dbg(dev
, "Looking up %s property in node %pOF failed\n",
251 prop_name
, dev
->of_node
);
257 /* Platform voltage constraint check */
258 static int regulator_check_voltage(struct regulator_dev
*rdev
,
259 int *min_uV
, int *max_uV
)
261 BUG_ON(*min_uV
> *max_uV
);
263 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_VOLTAGE
)) {
264 rdev_err(rdev
, "voltage operation not allowed\n");
268 if (*max_uV
> rdev
->constraints
->max_uV
)
269 *max_uV
= rdev
->constraints
->max_uV
;
270 if (*min_uV
< rdev
->constraints
->min_uV
)
271 *min_uV
= rdev
->constraints
->min_uV
;
273 if (*min_uV
> *max_uV
) {
274 rdev_err(rdev
, "unsupportable voltage range: %d-%duV\n",
282 /* return 0 if the state is valid */
283 static int regulator_check_states(suspend_state_t state
)
285 return (state
> PM_SUSPEND_MAX
|| state
== PM_SUSPEND_TO_IDLE
);
288 /* Make sure we select a voltage that suits the needs of all
289 * regulator consumers
291 static int regulator_check_consumers(struct regulator_dev
*rdev
,
292 int *min_uV
, int *max_uV
,
293 suspend_state_t state
)
295 struct regulator
*regulator
;
296 struct regulator_voltage
*voltage
;
298 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
) {
299 voltage
= ®ulator
->voltage
[state
];
301 * Assume consumers that didn't say anything are OK
302 * with anything in the constraint range.
304 if (!voltage
->min_uV
&& !voltage
->max_uV
)
307 if (*max_uV
> voltage
->max_uV
)
308 *max_uV
= voltage
->max_uV
;
309 if (*min_uV
< voltage
->min_uV
)
310 *min_uV
= voltage
->min_uV
;
313 if (*min_uV
> *max_uV
) {
314 rdev_err(rdev
, "Restricting voltage, %u-%uuV\n",
322 /* current constraint check */
323 static int regulator_check_current_limit(struct regulator_dev
*rdev
,
324 int *min_uA
, int *max_uA
)
326 BUG_ON(*min_uA
> *max_uA
);
328 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_CURRENT
)) {
329 rdev_err(rdev
, "current operation not allowed\n");
333 if (*max_uA
> rdev
->constraints
->max_uA
)
334 *max_uA
= rdev
->constraints
->max_uA
;
335 if (*min_uA
< rdev
->constraints
->min_uA
)
336 *min_uA
= rdev
->constraints
->min_uA
;
338 if (*min_uA
> *max_uA
) {
339 rdev_err(rdev
, "unsupportable current range: %d-%duA\n",
347 /* operating mode constraint check */
348 static int regulator_mode_constrain(struct regulator_dev
*rdev
,
352 case REGULATOR_MODE_FAST
:
353 case REGULATOR_MODE_NORMAL
:
354 case REGULATOR_MODE_IDLE
:
355 case REGULATOR_MODE_STANDBY
:
358 rdev_err(rdev
, "invalid mode %x specified\n", *mode
);
362 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_MODE
)) {
363 rdev_err(rdev
, "mode operation not allowed\n");
367 /* The modes are bitmasks, the most power hungry modes having
368 * the lowest values. If the requested mode isn't supported
369 * try higher modes. */
371 if (rdev
->constraints
->valid_modes_mask
& *mode
)
379 static inline struct regulator_state
*
380 regulator_get_suspend_state(struct regulator_dev
*rdev
, suspend_state_t state
)
382 if (rdev
->constraints
== NULL
)
386 case PM_SUSPEND_STANDBY
:
387 return &rdev
->constraints
->state_standby
;
389 return &rdev
->constraints
->state_mem
;
391 return &rdev
->constraints
->state_disk
;
397 static ssize_t
regulator_uV_show(struct device
*dev
,
398 struct device_attribute
*attr
, char *buf
)
400 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
403 regulator_lock(rdev
);
404 ret
= sprintf(buf
, "%d\n", _regulator_get_voltage(rdev
));
405 regulator_unlock(rdev
);
409 static DEVICE_ATTR(microvolts
, 0444, regulator_uV_show
, NULL
);
411 static ssize_t
regulator_uA_show(struct device
*dev
,
412 struct device_attribute
*attr
, char *buf
)
414 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
416 return sprintf(buf
, "%d\n", _regulator_get_current_limit(rdev
));
418 static DEVICE_ATTR(microamps
, 0444, regulator_uA_show
, NULL
);
420 static ssize_t
name_show(struct device
*dev
, struct device_attribute
*attr
,
423 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
425 return sprintf(buf
, "%s\n", rdev_get_name(rdev
));
427 static DEVICE_ATTR_RO(name
);
429 static ssize_t
regulator_print_opmode(char *buf
, int mode
)
432 case REGULATOR_MODE_FAST
:
433 return sprintf(buf
, "fast\n");
434 case REGULATOR_MODE_NORMAL
:
435 return sprintf(buf
, "normal\n");
436 case REGULATOR_MODE_IDLE
:
437 return sprintf(buf
, "idle\n");
438 case REGULATOR_MODE_STANDBY
:
439 return sprintf(buf
, "standby\n");
441 return sprintf(buf
, "unknown\n");
444 static ssize_t
regulator_opmode_show(struct device
*dev
,
445 struct device_attribute
*attr
, char *buf
)
447 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
449 return regulator_print_opmode(buf
, _regulator_get_mode(rdev
));
451 static DEVICE_ATTR(opmode
, 0444, regulator_opmode_show
, NULL
);
453 static ssize_t
regulator_print_state(char *buf
, int state
)
456 return sprintf(buf
, "enabled\n");
458 return sprintf(buf
, "disabled\n");
460 return sprintf(buf
, "unknown\n");
463 static ssize_t
regulator_state_show(struct device
*dev
,
464 struct device_attribute
*attr
, char *buf
)
466 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
469 regulator_lock(rdev
);
470 ret
= regulator_print_state(buf
, _regulator_is_enabled(rdev
));
471 regulator_unlock(rdev
);
475 static DEVICE_ATTR(state
, 0444, regulator_state_show
, NULL
);
477 static ssize_t
regulator_status_show(struct device
*dev
,
478 struct device_attribute
*attr
, char *buf
)
480 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
484 status
= rdev
->desc
->ops
->get_status(rdev
);
489 case REGULATOR_STATUS_OFF
:
492 case REGULATOR_STATUS_ON
:
495 case REGULATOR_STATUS_ERROR
:
498 case REGULATOR_STATUS_FAST
:
501 case REGULATOR_STATUS_NORMAL
:
504 case REGULATOR_STATUS_IDLE
:
507 case REGULATOR_STATUS_STANDBY
:
510 case REGULATOR_STATUS_BYPASS
:
513 case REGULATOR_STATUS_UNDEFINED
:
520 return sprintf(buf
, "%s\n", label
);
522 static DEVICE_ATTR(status
, 0444, regulator_status_show
, NULL
);
524 static ssize_t
regulator_min_uA_show(struct device
*dev
,
525 struct device_attribute
*attr
, char *buf
)
527 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
529 if (!rdev
->constraints
)
530 return sprintf(buf
, "constraint not defined\n");
532 return sprintf(buf
, "%d\n", rdev
->constraints
->min_uA
);
534 static DEVICE_ATTR(min_microamps
, 0444, regulator_min_uA_show
, NULL
);
536 static ssize_t
regulator_max_uA_show(struct device
*dev
,
537 struct device_attribute
*attr
, char *buf
)
539 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
541 if (!rdev
->constraints
)
542 return sprintf(buf
, "constraint not defined\n");
544 return sprintf(buf
, "%d\n", rdev
->constraints
->max_uA
);
546 static DEVICE_ATTR(max_microamps
, 0444, regulator_max_uA_show
, NULL
);
548 static ssize_t
regulator_min_uV_show(struct device
*dev
,
549 struct device_attribute
*attr
, char *buf
)
551 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
553 if (!rdev
->constraints
)
554 return sprintf(buf
, "constraint not defined\n");
556 return sprintf(buf
, "%d\n", rdev
->constraints
->min_uV
);
558 static DEVICE_ATTR(min_microvolts
, 0444, regulator_min_uV_show
, NULL
);
560 static ssize_t
regulator_max_uV_show(struct device
*dev
,
561 struct device_attribute
*attr
, char *buf
)
563 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
565 if (!rdev
->constraints
)
566 return sprintf(buf
, "constraint not defined\n");
568 return sprintf(buf
, "%d\n", rdev
->constraints
->max_uV
);
570 static DEVICE_ATTR(max_microvolts
, 0444, regulator_max_uV_show
, NULL
);
572 static ssize_t
regulator_total_uA_show(struct device
*dev
,
573 struct device_attribute
*attr
, char *buf
)
575 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
576 struct regulator
*regulator
;
579 regulator_lock(rdev
);
580 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
)
581 uA
+= regulator
->uA_load
;
582 regulator_unlock(rdev
);
583 return sprintf(buf
, "%d\n", uA
);
585 static DEVICE_ATTR(requested_microamps
, 0444, regulator_total_uA_show
, NULL
);
587 static ssize_t
num_users_show(struct device
*dev
, struct device_attribute
*attr
,
590 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
591 return sprintf(buf
, "%d\n", rdev
->use_count
);
593 static DEVICE_ATTR_RO(num_users
);
595 static ssize_t
type_show(struct device
*dev
, struct device_attribute
*attr
,
598 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
600 switch (rdev
->desc
->type
) {
601 case REGULATOR_VOLTAGE
:
602 return sprintf(buf
, "voltage\n");
603 case REGULATOR_CURRENT
:
604 return sprintf(buf
, "current\n");
606 return sprintf(buf
, "unknown\n");
608 static DEVICE_ATTR_RO(type
);
610 static ssize_t
regulator_suspend_mem_uV_show(struct device
*dev
,
611 struct device_attribute
*attr
, char *buf
)
613 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
615 return sprintf(buf
, "%d\n", rdev
->constraints
->state_mem
.uV
);
617 static DEVICE_ATTR(suspend_mem_microvolts
, 0444,
618 regulator_suspend_mem_uV_show
, NULL
);
620 static ssize_t
regulator_suspend_disk_uV_show(struct device
*dev
,
621 struct device_attribute
*attr
, char *buf
)
623 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
625 return sprintf(buf
, "%d\n", rdev
->constraints
->state_disk
.uV
);
627 static DEVICE_ATTR(suspend_disk_microvolts
, 0444,
628 regulator_suspend_disk_uV_show
, NULL
);
630 static ssize_t
regulator_suspend_standby_uV_show(struct device
*dev
,
631 struct device_attribute
*attr
, char *buf
)
633 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
635 return sprintf(buf
, "%d\n", rdev
->constraints
->state_standby
.uV
);
637 static DEVICE_ATTR(suspend_standby_microvolts
, 0444,
638 regulator_suspend_standby_uV_show
, NULL
);
640 static ssize_t
regulator_suspend_mem_mode_show(struct device
*dev
,
641 struct device_attribute
*attr
, char *buf
)
643 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
645 return regulator_print_opmode(buf
,
646 rdev
->constraints
->state_mem
.mode
);
648 static DEVICE_ATTR(suspend_mem_mode
, 0444,
649 regulator_suspend_mem_mode_show
, NULL
);
651 static ssize_t
regulator_suspend_disk_mode_show(struct device
*dev
,
652 struct device_attribute
*attr
, char *buf
)
654 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
656 return regulator_print_opmode(buf
,
657 rdev
->constraints
->state_disk
.mode
);
659 static DEVICE_ATTR(suspend_disk_mode
, 0444,
660 regulator_suspend_disk_mode_show
, NULL
);
662 static ssize_t
regulator_suspend_standby_mode_show(struct device
*dev
,
663 struct device_attribute
*attr
, char *buf
)
665 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
667 return regulator_print_opmode(buf
,
668 rdev
->constraints
->state_standby
.mode
);
670 static DEVICE_ATTR(suspend_standby_mode
, 0444,
671 regulator_suspend_standby_mode_show
, NULL
);
673 static ssize_t
regulator_suspend_mem_state_show(struct device
*dev
,
674 struct device_attribute
*attr
, char *buf
)
676 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
678 return regulator_print_state(buf
,
679 rdev
->constraints
->state_mem
.enabled
);
681 static DEVICE_ATTR(suspend_mem_state
, 0444,
682 regulator_suspend_mem_state_show
, NULL
);
684 static ssize_t
regulator_suspend_disk_state_show(struct device
*dev
,
685 struct device_attribute
*attr
, char *buf
)
687 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
689 return regulator_print_state(buf
,
690 rdev
->constraints
->state_disk
.enabled
);
692 static DEVICE_ATTR(suspend_disk_state
, 0444,
693 regulator_suspend_disk_state_show
, NULL
);
695 static ssize_t
regulator_suspend_standby_state_show(struct device
*dev
,
696 struct device_attribute
*attr
, char *buf
)
698 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
700 return regulator_print_state(buf
,
701 rdev
->constraints
->state_standby
.enabled
);
703 static DEVICE_ATTR(suspend_standby_state
, 0444,
704 regulator_suspend_standby_state_show
, NULL
);
706 static ssize_t
regulator_bypass_show(struct device
*dev
,
707 struct device_attribute
*attr
, char *buf
)
709 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
714 ret
= rdev
->desc
->ops
->get_bypass(rdev
, &bypass
);
723 return sprintf(buf
, "%s\n", report
);
725 static DEVICE_ATTR(bypass
, 0444,
726 regulator_bypass_show
, NULL
);
728 /* Calculate the new optimum regulator operating mode based on the new total
729 * consumer load. All locks held by caller */
730 static int drms_uA_update(struct regulator_dev
*rdev
)
732 struct regulator
*sibling
;
733 int current_uA
= 0, output_uV
, input_uV
, err
;
736 lockdep_assert_held_once(&rdev
->mutex
);
739 * first check to see if we can set modes at all, otherwise just
740 * tell the consumer everything is OK.
742 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_DRMS
))
745 if (!rdev
->desc
->ops
->get_optimum_mode
&&
746 !rdev
->desc
->ops
->set_load
)
749 if (!rdev
->desc
->ops
->set_mode
&&
750 !rdev
->desc
->ops
->set_load
)
753 /* calc total requested load */
754 list_for_each_entry(sibling
, &rdev
->consumer_list
, list
)
755 current_uA
+= sibling
->uA_load
;
757 current_uA
+= rdev
->constraints
->system_load
;
759 if (rdev
->desc
->ops
->set_load
) {
760 /* set the optimum mode for our new total regulator load */
761 err
= rdev
->desc
->ops
->set_load(rdev
, current_uA
);
763 rdev_err(rdev
, "failed to set load %d\n", current_uA
);
765 /* get output voltage */
766 output_uV
= _regulator_get_voltage(rdev
);
767 if (output_uV
<= 0) {
768 rdev_err(rdev
, "invalid output voltage found\n");
772 /* get input voltage */
775 input_uV
= regulator_get_voltage(rdev
->supply
);
777 input_uV
= rdev
->constraints
->input_uV
;
779 rdev_err(rdev
, "invalid input voltage found\n");
783 /* now get the optimum mode for our new total regulator load */
784 mode
= rdev
->desc
->ops
->get_optimum_mode(rdev
, input_uV
,
785 output_uV
, current_uA
);
787 /* check the new mode is allowed */
788 err
= regulator_mode_constrain(rdev
, &mode
);
790 rdev_err(rdev
, "failed to get optimum mode @ %d uA %d -> %d uV\n",
791 current_uA
, input_uV
, output_uV
);
795 err
= rdev
->desc
->ops
->set_mode(rdev
, mode
);
797 rdev_err(rdev
, "failed to set optimum mode %x\n", mode
);
803 static int suspend_set_state(struct regulator_dev
*rdev
,
804 suspend_state_t state
)
807 struct regulator_state
*rstate
;
809 rstate
= regulator_get_suspend_state(rdev
, state
);
813 /* If we have no suspend mode configration don't set anything;
814 * only warn if the driver implements set_suspend_voltage or
815 * set_suspend_mode callback.
817 if (rstate
->enabled
!= ENABLE_IN_SUSPEND
&&
818 rstate
->enabled
!= DISABLE_IN_SUSPEND
) {
819 if (rdev
->desc
->ops
->set_suspend_voltage
||
820 rdev
->desc
->ops
->set_suspend_mode
)
821 rdev_warn(rdev
, "No configuration\n");
825 if (rstate
->enabled
== ENABLE_IN_SUSPEND
&&
826 rdev
->desc
->ops
->set_suspend_enable
)
827 ret
= rdev
->desc
->ops
->set_suspend_enable(rdev
);
828 else if (rstate
->enabled
== DISABLE_IN_SUSPEND
&&
829 rdev
->desc
->ops
->set_suspend_disable
)
830 ret
= rdev
->desc
->ops
->set_suspend_disable(rdev
);
831 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
835 rdev_err(rdev
, "failed to enabled/disable\n");
839 if (rdev
->desc
->ops
->set_suspend_voltage
&& rstate
->uV
> 0) {
840 ret
= rdev
->desc
->ops
->set_suspend_voltage(rdev
, rstate
->uV
);
842 rdev_err(rdev
, "failed to set voltage\n");
847 if (rdev
->desc
->ops
->set_suspend_mode
&& rstate
->mode
> 0) {
848 ret
= rdev
->desc
->ops
->set_suspend_mode(rdev
, rstate
->mode
);
850 rdev_err(rdev
, "failed to set mode\n");
858 static void print_constraints(struct regulator_dev
*rdev
)
860 struct regulation_constraints
*constraints
= rdev
->constraints
;
862 size_t len
= sizeof(buf
) - 1;
866 if (constraints
->min_uV
&& constraints
->max_uV
) {
867 if (constraints
->min_uV
== constraints
->max_uV
)
868 count
+= scnprintf(buf
+ count
, len
- count
, "%d mV ",
869 constraints
->min_uV
/ 1000);
871 count
+= scnprintf(buf
+ count
, len
- count
,
873 constraints
->min_uV
/ 1000,
874 constraints
->max_uV
/ 1000);
877 if (!constraints
->min_uV
||
878 constraints
->min_uV
!= constraints
->max_uV
) {
879 ret
= _regulator_get_voltage(rdev
);
881 count
+= scnprintf(buf
+ count
, len
- count
,
882 "at %d mV ", ret
/ 1000);
885 if (constraints
->uV_offset
)
886 count
+= scnprintf(buf
+ count
, len
- count
, "%dmV offset ",
887 constraints
->uV_offset
/ 1000);
889 if (constraints
->min_uA
&& constraints
->max_uA
) {
890 if (constraints
->min_uA
== constraints
->max_uA
)
891 count
+= scnprintf(buf
+ count
, len
- count
, "%d mA ",
892 constraints
->min_uA
/ 1000);
894 count
+= scnprintf(buf
+ count
, len
- count
,
896 constraints
->min_uA
/ 1000,
897 constraints
->max_uA
/ 1000);
900 if (!constraints
->min_uA
||
901 constraints
->min_uA
!= constraints
->max_uA
) {
902 ret
= _regulator_get_current_limit(rdev
);
904 count
+= scnprintf(buf
+ count
, len
- count
,
905 "at %d mA ", ret
/ 1000);
908 if (constraints
->valid_modes_mask
& REGULATOR_MODE_FAST
)
909 count
+= scnprintf(buf
+ count
, len
- count
, "fast ");
910 if (constraints
->valid_modes_mask
& REGULATOR_MODE_NORMAL
)
911 count
+= scnprintf(buf
+ count
, len
- count
, "normal ");
912 if (constraints
->valid_modes_mask
& REGULATOR_MODE_IDLE
)
913 count
+= scnprintf(buf
+ count
, len
- count
, "idle ");
914 if (constraints
->valid_modes_mask
& REGULATOR_MODE_STANDBY
)
915 count
+= scnprintf(buf
+ count
, len
- count
, "standby");
918 scnprintf(buf
, len
, "no parameters");
920 rdev_dbg(rdev
, "%s\n", buf
);
922 if ((constraints
->min_uV
!= constraints
->max_uV
) &&
923 !regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_VOLTAGE
))
925 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
928 static int machine_constraints_voltage(struct regulator_dev
*rdev
,
929 struct regulation_constraints
*constraints
)
931 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
934 /* do we need to apply the constraint voltage */
935 if (rdev
->constraints
->apply_uV
&&
936 rdev
->constraints
->min_uV
&& rdev
->constraints
->max_uV
) {
937 int target_min
, target_max
;
938 int current_uV
= _regulator_get_voltage(rdev
);
940 if (current_uV
== -ENOTRECOVERABLE
) {
941 /* This regulator can't be read and must be initted */
942 rdev_info(rdev
, "Setting %d-%duV\n",
943 rdev
->constraints
->min_uV
,
944 rdev
->constraints
->max_uV
);
945 _regulator_do_set_voltage(rdev
,
946 rdev
->constraints
->min_uV
,
947 rdev
->constraints
->max_uV
);
948 current_uV
= _regulator_get_voltage(rdev
);
951 if (current_uV
< 0) {
953 "failed to get the current voltage(%d)\n",
959 * If we're below the minimum voltage move up to the
960 * minimum voltage, if we're above the maximum voltage
961 * then move down to the maximum.
963 target_min
= current_uV
;
964 target_max
= current_uV
;
966 if (current_uV
< rdev
->constraints
->min_uV
) {
967 target_min
= rdev
->constraints
->min_uV
;
968 target_max
= rdev
->constraints
->min_uV
;
971 if (current_uV
> rdev
->constraints
->max_uV
) {
972 target_min
= rdev
->constraints
->max_uV
;
973 target_max
= rdev
->constraints
->max_uV
;
976 if (target_min
!= current_uV
|| target_max
!= current_uV
) {
977 rdev_info(rdev
, "Bringing %duV into %d-%duV\n",
978 current_uV
, target_min
, target_max
);
979 ret
= _regulator_do_set_voltage(
980 rdev
, target_min
, target_max
);
983 "failed to apply %d-%duV constraint(%d)\n",
984 target_min
, target_max
, ret
);
990 /* constrain machine-level voltage specs to fit
991 * the actual range supported by this regulator.
993 if (ops
->list_voltage
&& rdev
->desc
->n_voltages
) {
994 int count
= rdev
->desc
->n_voltages
;
996 int min_uV
= INT_MAX
;
997 int max_uV
= INT_MIN
;
998 int cmin
= constraints
->min_uV
;
999 int cmax
= constraints
->max_uV
;
1001 /* it's safe to autoconfigure fixed-voltage supplies
1002 and the constraints are used by list_voltage. */
1003 if (count
== 1 && !cmin
) {
1006 constraints
->min_uV
= cmin
;
1007 constraints
->max_uV
= cmax
;
1010 /* voltage constraints are optional */
1011 if ((cmin
== 0) && (cmax
== 0))
1014 /* else require explicit machine-level constraints */
1015 if (cmin
<= 0 || cmax
<= 0 || cmax
< cmin
) {
1016 rdev_err(rdev
, "invalid voltage constraints\n");
1020 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1021 for (i
= 0; i
< count
; i
++) {
1024 value
= ops
->list_voltage(rdev
, i
);
1028 /* maybe adjust [min_uV..max_uV] */
1029 if (value
>= cmin
&& value
< min_uV
)
1031 if (value
<= cmax
&& value
> max_uV
)
1035 /* final: [min_uV..max_uV] valid iff constraints valid */
1036 if (max_uV
< min_uV
) {
1038 "unsupportable voltage constraints %u-%uuV\n",
1043 /* use regulator's subset of machine constraints */
1044 if (constraints
->min_uV
< min_uV
) {
1045 rdev_dbg(rdev
, "override min_uV, %d -> %d\n",
1046 constraints
->min_uV
, min_uV
);
1047 constraints
->min_uV
= min_uV
;
1049 if (constraints
->max_uV
> max_uV
) {
1050 rdev_dbg(rdev
, "override max_uV, %d -> %d\n",
1051 constraints
->max_uV
, max_uV
);
1052 constraints
->max_uV
= max_uV
;
1059 static int machine_constraints_current(struct regulator_dev
*rdev
,
1060 struct regulation_constraints
*constraints
)
1062 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
1065 if (!constraints
->min_uA
&& !constraints
->max_uA
)
1068 if (constraints
->min_uA
> constraints
->max_uA
) {
1069 rdev_err(rdev
, "Invalid current constraints\n");
1073 if (!ops
->set_current_limit
|| !ops
->get_current_limit
) {
1074 rdev_warn(rdev
, "Operation of current configuration missing\n");
1078 /* Set regulator current in constraints range */
1079 ret
= ops
->set_current_limit(rdev
, constraints
->min_uA
,
1080 constraints
->max_uA
);
1082 rdev_err(rdev
, "Failed to set current constraint, %d\n", ret
);
1089 static int _regulator_do_enable(struct regulator_dev
*rdev
);
1092 * set_machine_constraints - sets regulator constraints
1093 * @rdev: regulator source
1094 * @constraints: constraints to apply
1096 * Allows platform initialisation code to define and constrain
1097 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1098 * Constraints *must* be set by platform code in order for some
1099 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1102 static int set_machine_constraints(struct regulator_dev
*rdev
,
1103 const struct regulation_constraints
*constraints
)
1106 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
1109 rdev
->constraints
= kmemdup(constraints
, sizeof(*constraints
),
1112 rdev
->constraints
= kzalloc(sizeof(*constraints
),
1114 if (!rdev
->constraints
)
1117 ret
= machine_constraints_voltage(rdev
, rdev
->constraints
);
1121 ret
= machine_constraints_current(rdev
, rdev
->constraints
);
1125 if (rdev
->constraints
->ilim_uA
&& ops
->set_input_current_limit
) {
1126 ret
= ops
->set_input_current_limit(rdev
,
1127 rdev
->constraints
->ilim_uA
);
1129 rdev_err(rdev
, "failed to set input limit\n");
1134 /* do we need to setup our suspend state */
1135 if (rdev
->constraints
->initial_state
) {
1136 ret
= suspend_set_state(rdev
, rdev
->constraints
->initial_state
);
1138 rdev_err(rdev
, "failed to set suspend state\n");
1143 if (rdev
->constraints
->initial_mode
) {
1144 if (!ops
->set_mode
) {
1145 rdev_err(rdev
, "no set_mode operation\n");
1149 ret
= ops
->set_mode(rdev
, rdev
->constraints
->initial_mode
);
1151 rdev_err(rdev
, "failed to set initial mode: %d\n", ret
);
1156 /* If the constraints say the regulator should be on at this point
1157 * and we have control then make sure it is enabled.
1159 if (rdev
->constraints
->always_on
|| rdev
->constraints
->boot_on
) {
1160 ret
= _regulator_do_enable(rdev
);
1161 if (ret
< 0 && ret
!= -EINVAL
) {
1162 rdev_err(rdev
, "failed to enable\n");
1167 if ((rdev
->constraints
->ramp_delay
|| rdev
->constraints
->ramp_disable
)
1168 && ops
->set_ramp_delay
) {
1169 ret
= ops
->set_ramp_delay(rdev
, rdev
->constraints
->ramp_delay
);
1171 rdev_err(rdev
, "failed to set ramp_delay\n");
1176 if (rdev
->constraints
->pull_down
&& ops
->set_pull_down
) {
1177 ret
= ops
->set_pull_down(rdev
);
1179 rdev_err(rdev
, "failed to set pull down\n");
1184 if (rdev
->constraints
->soft_start
&& ops
->set_soft_start
) {
1185 ret
= ops
->set_soft_start(rdev
);
1187 rdev_err(rdev
, "failed to set soft start\n");
1192 if (rdev
->constraints
->over_current_protection
1193 && ops
->set_over_current_protection
) {
1194 ret
= ops
->set_over_current_protection(rdev
);
1196 rdev_err(rdev
, "failed to set over current protection\n");
1201 if (rdev
->constraints
->active_discharge
&& ops
->set_active_discharge
) {
1202 bool ad_state
= (rdev
->constraints
->active_discharge
==
1203 REGULATOR_ACTIVE_DISCHARGE_ENABLE
) ? true : false;
1205 ret
= ops
->set_active_discharge(rdev
, ad_state
);
1207 rdev_err(rdev
, "failed to set active discharge\n");
1212 print_constraints(rdev
);
1217 * set_supply - set regulator supply regulator
1218 * @rdev: regulator name
1219 * @supply_rdev: supply regulator name
1221 * Called by platform initialisation code to set the supply regulator for this
1222 * regulator. This ensures that a regulators supply will also be enabled by the
1223 * core if it's child is enabled.
1225 static int set_supply(struct regulator_dev
*rdev
,
1226 struct regulator_dev
*supply_rdev
)
1230 rdev_info(rdev
, "supplied by %s\n", rdev_get_name(supply_rdev
));
1232 if (!try_module_get(supply_rdev
->owner
))
1235 rdev
->supply
= create_regulator(supply_rdev
, &rdev
->dev
, "SUPPLY");
1236 if (rdev
->supply
== NULL
) {
1240 supply_rdev
->open_count
++;
1246 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1247 * @rdev: regulator source
1248 * @consumer_dev_name: dev_name() string for device supply applies to
1249 * @supply: symbolic name for supply
1251 * Allows platform initialisation code to map physical regulator
1252 * sources to symbolic names for supplies for use by devices. Devices
1253 * should use these symbolic names to request regulators, avoiding the
1254 * need to provide board-specific regulator names as platform data.
1256 static int set_consumer_device_supply(struct regulator_dev
*rdev
,
1257 const char *consumer_dev_name
,
1260 struct regulator_map
*node
;
1266 if (consumer_dev_name
!= NULL
)
1271 list_for_each_entry(node
, ®ulator_map_list
, list
) {
1272 if (node
->dev_name
&& consumer_dev_name
) {
1273 if (strcmp(node
->dev_name
, consumer_dev_name
) != 0)
1275 } else if (node
->dev_name
|| consumer_dev_name
) {
1279 if (strcmp(node
->supply
, supply
) != 0)
1282 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1284 dev_name(&node
->regulator
->dev
),
1285 node
->regulator
->desc
->name
,
1287 dev_name(&rdev
->dev
), rdev_get_name(rdev
));
1291 node
= kzalloc(sizeof(struct regulator_map
), GFP_KERNEL
);
1295 node
->regulator
= rdev
;
1296 node
->supply
= supply
;
1299 node
->dev_name
= kstrdup(consumer_dev_name
, GFP_KERNEL
);
1300 if (node
->dev_name
== NULL
) {
1306 list_add(&node
->list
, ®ulator_map_list
);
1310 static void unset_regulator_supplies(struct regulator_dev
*rdev
)
1312 struct regulator_map
*node
, *n
;
1314 list_for_each_entry_safe(node
, n
, ®ulator_map_list
, list
) {
1315 if (rdev
== node
->regulator
) {
1316 list_del(&node
->list
);
1317 kfree(node
->dev_name
);
1323 #ifdef CONFIG_DEBUG_FS
1324 static ssize_t
constraint_flags_read_file(struct file
*file
,
1325 char __user
*user_buf
,
1326 size_t count
, loff_t
*ppos
)
1328 const struct regulator
*regulator
= file
->private_data
;
1329 const struct regulation_constraints
*c
= regulator
->rdev
->constraints
;
1336 buf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
1340 ret
= snprintf(buf
, PAGE_SIZE
,
1344 "ramp_disable: %u\n"
1347 "over_current_protection: %u\n",
1354 c
->over_current_protection
);
1356 ret
= simple_read_from_buffer(user_buf
, count
, ppos
, buf
, ret
);
1364 static const struct file_operations constraint_flags_fops
= {
1365 #ifdef CONFIG_DEBUG_FS
1366 .open
= simple_open
,
1367 .read
= constraint_flags_read_file
,
1368 .llseek
= default_llseek
,
1372 #define REG_STR_SIZE 64
1374 static struct regulator
*create_regulator(struct regulator_dev
*rdev
,
1376 const char *supply_name
)
1378 struct regulator
*regulator
;
1379 char buf
[REG_STR_SIZE
];
1382 regulator
= kzalloc(sizeof(*regulator
), GFP_KERNEL
);
1383 if (regulator
== NULL
)
1386 regulator_lock(rdev
);
1387 regulator
->rdev
= rdev
;
1388 list_add(®ulator
->list
, &rdev
->consumer_list
);
1391 regulator
->dev
= dev
;
1393 /* Add a link to the device sysfs entry */
1394 size
= snprintf(buf
, REG_STR_SIZE
, "%s-%s",
1395 dev
->kobj
.name
, supply_name
);
1396 if (size
>= REG_STR_SIZE
)
1399 regulator
->supply_name
= kstrdup(buf
, GFP_KERNEL
);
1400 if (regulator
->supply_name
== NULL
)
1403 err
= sysfs_create_link_nowarn(&rdev
->dev
.kobj
, &dev
->kobj
,
1406 rdev_dbg(rdev
, "could not add device link %s err %d\n",
1407 dev
->kobj
.name
, err
);
1411 regulator
->supply_name
= kstrdup_const(supply_name
, GFP_KERNEL
);
1412 if (regulator
->supply_name
== NULL
)
1416 regulator
->debugfs
= debugfs_create_dir(regulator
->supply_name
,
1418 if (!regulator
->debugfs
) {
1419 rdev_dbg(rdev
, "Failed to create debugfs directory\n");
1421 debugfs_create_u32("uA_load", 0444, regulator
->debugfs
,
1422 ®ulator
->uA_load
);
1423 debugfs_create_u32("min_uV", 0444, regulator
->debugfs
,
1424 ®ulator
->voltage
[PM_SUSPEND_ON
].min_uV
);
1425 debugfs_create_u32("max_uV", 0444, regulator
->debugfs
,
1426 ®ulator
->voltage
[PM_SUSPEND_ON
].max_uV
);
1427 debugfs_create_file("constraint_flags", 0444,
1428 regulator
->debugfs
, regulator
,
1429 &constraint_flags_fops
);
1433 * Check now if the regulator is an always on regulator - if
1434 * it is then we don't need to do nearly so much work for
1435 * enable/disable calls.
1437 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_STATUS
) &&
1438 _regulator_is_enabled(rdev
))
1439 regulator
->always_on
= true;
1441 regulator_unlock(rdev
);
1444 list_del(®ulator
->list
);
1446 regulator_unlock(rdev
);
1450 static int _regulator_get_enable_time(struct regulator_dev
*rdev
)
1452 if (rdev
->constraints
&& rdev
->constraints
->enable_time
)
1453 return rdev
->constraints
->enable_time
;
1454 if (!rdev
->desc
->ops
->enable_time
)
1455 return rdev
->desc
->enable_time
;
1456 return rdev
->desc
->ops
->enable_time(rdev
);
1459 static struct regulator_supply_alias
*regulator_find_supply_alias(
1460 struct device
*dev
, const char *supply
)
1462 struct regulator_supply_alias
*map
;
1464 list_for_each_entry(map
, ®ulator_supply_alias_list
, list
)
1465 if (map
->src_dev
== dev
&& strcmp(map
->src_supply
, supply
) == 0)
1471 static void regulator_supply_alias(struct device
**dev
, const char **supply
)
1473 struct regulator_supply_alias
*map
;
1475 map
= regulator_find_supply_alias(*dev
, *supply
);
1477 dev_dbg(*dev
, "Mapping supply %s to %s,%s\n",
1478 *supply
, map
->alias_supply
,
1479 dev_name(map
->alias_dev
));
1480 *dev
= map
->alias_dev
;
1481 *supply
= map
->alias_supply
;
1485 static int regulator_match(struct device
*dev
, const void *data
)
1487 struct regulator_dev
*r
= dev_to_rdev(dev
);
1489 return strcmp(rdev_get_name(r
), data
) == 0;
1492 static struct regulator_dev
*regulator_lookup_by_name(const char *name
)
1496 dev
= class_find_device(®ulator_class
, NULL
, name
, regulator_match
);
1498 return dev
? dev_to_rdev(dev
) : NULL
;
1502 * regulator_dev_lookup - lookup a regulator device.
1503 * @dev: device for regulator "consumer".
1504 * @supply: Supply name or regulator ID.
1506 * If successful, returns a struct regulator_dev that corresponds to the name
1507 * @supply and with the embedded struct device refcount incremented by one.
1508 * The refcount must be dropped by calling put_device().
1509 * On failure one of the following ERR-PTR-encoded values is returned:
1510 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1513 static struct regulator_dev
*regulator_dev_lookup(struct device
*dev
,
1516 struct regulator_dev
*r
= NULL
;
1517 struct device_node
*node
;
1518 struct regulator_map
*map
;
1519 const char *devname
= NULL
;
1521 regulator_supply_alias(&dev
, &supply
);
1523 /* first do a dt based lookup */
1524 if (dev
&& dev
->of_node
) {
1525 node
= of_get_regulator(dev
, supply
);
1527 r
= of_find_regulator_by_node(node
);
1532 * We have a node, but there is no device.
1533 * assume it has not registered yet.
1535 return ERR_PTR(-EPROBE_DEFER
);
1539 /* if not found, try doing it non-dt way */
1541 devname
= dev_name(dev
);
1543 mutex_lock(®ulator_list_mutex
);
1544 list_for_each_entry(map
, ®ulator_map_list
, list
) {
1545 /* If the mapping has a device set up it must match */
1546 if (map
->dev_name
&&
1547 (!devname
|| strcmp(map
->dev_name
, devname
)))
1550 if (strcmp(map
->supply
, supply
) == 0 &&
1551 get_device(&map
->regulator
->dev
)) {
1556 mutex_unlock(®ulator_list_mutex
);
1561 r
= regulator_lookup_by_name(supply
);
1565 return ERR_PTR(-ENODEV
);
1568 static int regulator_resolve_supply(struct regulator_dev
*rdev
)
1570 struct regulator_dev
*r
;
1571 struct device
*dev
= rdev
->dev
.parent
;
1574 /* No supply to resovle? */
1575 if (!rdev
->supply_name
)
1578 /* Supply already resolved? */
1582 r
= regulator_dev_lookup(dev
, rdev
->supply_name
);
1586 /* Did the lookup explicitly defer for us? */
1587 if (ret
== -EPROBE_DEFER
)
1590 if (have_full_constraints()) {
1591 r
= dummy_regulator_rdev
;
1592 get_device(&r
->dev
);
1594 dev_err(dev
, "Failed to resolve %s-supply for %s\n",
1595 rdev
->supply_name
, rdev
->desc
->name
);
1596 return -EPROBE_DEFER
;
1601 * If the supply's parent device is not the same as the
1602 * regulator's parent device, then ensure the parent device
1603 * is bound before we resolve the supply, in case the parent
1604 * device get probe deferred and unregisters the supply.
1606 if (r
->dev
.parent
&& r
->dev
.parent
!= rdev
->dev
.parent
) {
1607 if (!device_is_bound(r
->dev
.parent
)) {
1608 put_device(&r
->dev
);
1609 return -EPROBE_DEFER
;
1613 /* Recursively resolve the supply of the supply */
1614 ret
= regulator_resolve_supply(r
);
1616 put_device(&r
->dev
);
1620 ret
= set_supply(rdev
, r
);
1622 put_device(&r
->dev
);
1626 /* Cascade always-on state to supply */
1627 if (_regulator_is_enabled(rdev
)) {
1628 ret
= regulator_enable(rdev
->supply
);
1630 _regulator_put(rdev
->supply
);
1631 rdev
->supply
= NULL
;
1639 /* Internal regulator request function */
1640 struct regulator
*_regulator_get(struct device
*dev
, const char *id
,
1641 enum regulator_get_type get_type
)
1643 struct regulator_dev
*rdev
;
1644 struct regulator
*regulator
;
1645 const char *devname
= dev
? dev_name(dev
) : "deviceless";
1648 if (get_type
>= MAX_GET_TYPE
) {
1649 dev_err(dev
, "invalid type %d in %s\n", get_type
, __func__
);
1650 return ERR_PTR(-EINVAL
);
1654 pr_err("get() with no identifier\n");
1655 return ERR_PTR(-EINVAL
);
1658 rdev
= regulator_dev_lookup(dev
, id
);
1660 ret
= PTR_ERR(rdev
);
1663 * If regulator_dev_lookup() fails with error other
1664 * than -ENODEV our job here is done, we simply return it.
1667 return ERR_PTR(ret
);
1669 if (!have_full_constraints()) {
1671 "incomplete constraints, dummy supplies not allowed\n");
1672 return ERR_PTR(-ENODEV
);
1678 * Assume that a regulator is physically present and
1679 * enabled, even if it isn't hooked up, and just
1683 "%s supply %s not found, using dummy regulator\n",
1685 rdev
= dummy_regulator_rdev
;
1686 get_device(&rdev
->dev
);
1691 "dummy supplies not allowed for exclusive requests\n");
1695 return ERR_PTR(-ENODEV
);
1699 if (rdev
->exclusive
) {
1700 regulator
= ERR_PTR(-EPERM
);
1701 put_device(&rdev
->dev
);
1705 if (get_type
== EXCLUSIVE_GET
&& rdev
->open_count
) {
1706 regulator
= ERR_PTR(-EBUSY
);
1707 put_device(&rdev
->dev
);
1711 ret
= regulator_resolve_supply(rdev
);
1713 regulator
= ERR_PTR(ret
);
1714 put_device(&rdev
->dev
);
1718 if (!try_module_get(rdev
->owner
)) {
1719 regulator
= ERR_PTR(-EPROBE_DEFER
);
1720 put_device(&rdev
->dev
);
1724 regulator
= create_regulator(rdev
, dev
, id
);
1725 if (regulator
== NULL
) {
1726 regulator
= ERR_PTR(-ENOMEM
);
1727 put_device(&rdev
->dev
);
1728 module_put(rdev
->owner
);
1733 if (get_type
== EXCLUSIVE_GET
) {
1734 rdev
->exclusive
= 1;
1736 ret
= _regulator_is_enabled(rdev
);
1738 rdev
->use_count
= 1;
1740 rdev
->use_count
= 0;
1747 * regulator_get - lookup and obtain a reference to a regulator.
1748 * @dev: device for regulator "consumer"
1749 * @id: Supply name or regulator ID.
1751 * Returns a struct regulator corresponding to the regulator producer,
1752 * or IS_ERR() condition containing errno.
1754 * Use of supply names configured via regulator_set_device_supply() is
1755 * strongly encouraged. It is recommended that the supply name used
1756 * should match the name used for the supply and/or the relevant
1757 * device pins in the datasheet.
1759 struct regulator
*regulator_get(struct device
*dev
, const char *id
)
1761 return _regulator_get(dev
, id
, NORMAL_GET
);
1763 EXPORT_SYMBOL_GPL(regulator_get
);
1766 * regulator_get_exclusive - obtain exclusive access to a regulator.
1767 * @dev: device for regulator "consumer"
1768 * @id: Supply name or regulator ID.
1770 * Returns a struct regulator corresponding to the regulator producer,
1771 * or IS_ERR() condition containing errno. Other consumers will be
1772 * unable to obtain this regulator while this reference is held and the
1773 * use count for the regulator will be initialised to reflect the current
1774 * state of the regulator.
1776 * This is intended for use by consumers which cannot tolerate shared
1777 * use of the regulator such as those which need to force the
1778 * regulator off for correct operation of the hardware they are
1781 * Use of supply names configured via regulator_set_device_supply() is
1782 * strongly encouraged. It is recommended that the supply name used
1783 * should match the name used for the supply and/or the relevant
1784 * device pins in the datasheet.
1786 struct regulator
*regulator_get_exclusive(struct device
*dev
, const char *id
)
1788 return _regulator_get(dev
, id
, EXCLUSIVE_GET
);
1790 EXPORT_SYMBOL_GPL(regulator_get_exclusive
);
1793 * regulator_get_optional - obtain optional access to a regulator.
1794 * @dev: device for regulator "consumer"
1795 * @id: Supply name or regulator ID.
1797 * Returns a struct regulator corresponding to the regulator producer,
1798 * or IS_ERR() condition containing errno.
1800 * This is intended for use by consumers for devices which can have
1801 * some supplies unconnected in normal use, such as some MMC devices.
1802 * It can allow the regulator core to provide stub supplies for other
1803 * supplies requested using normal regulator_get() calls without
1804 * disrupting the operation of drivers that can handle absent
1807 * Use of supply names configured via regulator_set_device_supply() is
1808 * strongly encouraged. It is recommended that the supply name used
1809 * should match the name used for the supply and/or the relevant
1810 * device pins in the datasheet.
1812 struct regulator
*regulator_get_optional(struct device
*dev
, const char *id
)
1814 return _regulator_get(dev
, id
, OPTIONAL_GET
);
1816 EXPORT_SYMBOL_GPL(regulator_get_optional
);
1818 /* regulator_list_mutex lock held by regulator_put() */
1819 static void _regulator_put(struct regulator
*regulator
)
1821 struct regulator_dev
*rdev
;
1823 if (IS_ERR_OR_NULL(regulator
))
1826 lockdep_assert_held_once(®ulator_list_mutex
);
1828 rdev
= regulator
->rdev
;
1830 debugfs_remove_recursive(regulator
->debugfs
);
1832 /* remove any sysfs entries */
1834 sysfs_remove_link(&rdev
->dev
.kobj
, regulator
->supply_name
);
1835 regulator_lock(rdev
);
1836 list_del(®ulator
->list
);
1839 rdev
->exclusive
= 0;
1840 put_device(&rdev
->dev
);
1841 regulator_unlock(rdev
);
1843 kfree_const(regulator
->supply_name
);
1846 module_put(rdev
->owner
);
1850 * regulator_put - "free" the regulator source
1851 * @regulator: regulator source
1853 * Note: drivers must ensure that all regulator_enable calls made on this
1854 * regulator source are balanced by regulator_disable calls prior to calling
1857 void regulator_put(struct regulator
*regulator
)
1859 mutex_lock(®ulator_list_mutex
);
1860 _regulator_put(regulator
);
1861 mutex_unlock(®ulator_list_mutex
);
1863 EXPORT_SYMBOL_GPL(regulator_put
);
1866 * regulator_register_supply_alias - Provide device alias for supply lookup
1868 * @dev: device that will be given as the regulator "consumer"
1869 * @id: Supply name or regulator ID
1870 * @alias_dev: device that should be used to lookup the supply
1871 * @alias_id: Supply name or regulator ID that should be used to lookup the
1874 * All lookups for id on dev will instead be conducted for alias_id on
1877 int regulator_register_supply_alias(struct device
*dev
, const char *id
,
1878 struct device
*alias_dev
,
1879 const char *alias_id
)
1881 struct regulator_supply_alias
*map
;
1883 map
= regulator_find_supply_alias(dev
, id
);
1887 map
= kzalloc(sizeof(struct regulator_supply_alias
), GFP_KERNEL
);
1892 map
->src_supply
= id
;
1893 map
->alias_dev
= alias_dev
;
1894 map
->alias_supply
= alias_id
;
1896 list_add(&map
->list
, ®ulator_supply_alias_list
);
1898 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1899 id
, dev_name(dev
), alias_id
, dev_name(alias_dev
));
1903 EXPORT_SYMBOL_GPL(regulator_register_supply_alias
);
1906 * regulator_unregister_supply_alias - Remove device alias
1908 * @dev: device that will be given as the regulator "consumer"
1909 * @id: Supply name or regulator ID
1911 * Remove a lookup alias if one exists for id on dev.
1913 void regulator_unregister_supply_alias(struct device
*dev
, const char *id
)
1915 struct regulator_supply_alias
*map
;
1917 map
= regulator_find_supply_alias(dev
, id
);
1919 list_del(&map
->list
);
1923 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias
);
1926 * regulator_bulk_register_supply_alias - register multiple aliases
1928 * @dev: device that will be given as the regulator "consumer"
1929 * @id: List of supply names or regulator IDs
1930 * @alias_dev: device that should be used to lookup the supply
1931 * @alias_id: List of supply names or regulator IDs that should be used to
1933 * @num_id: Number of aliases to register
1935 * @return 0 on success, an errno on failure.
1937 * This helper function allows drivers to register several supply
1938 * aliases in one operation. If any of the aliases cannot be
1939 * registered any aliases that were registered will be removed
1940 * before returning to the caller.
1942 int regulator_bulk_register_supply_alias(struct device
*dev
,
1943 const char *const *id
,
1944 struct device
*alias_dev
,
1945 const char *const *alias_id
,
1951 for (i
= 0; i
< num_id
; ++i
) {
1952 ret
= regulator_register_supply_alias(dev
, id
[i
], alias_dev
,
1962 "Failed to create supply alias %s,%s -> %s,%s\n",
1963 id
[i
], dev_name(dev
), alias_id
[i
], dev_name(alias_dev
));
1966 regulator_unregister_supply_alias(dev
, id
[i
]);
1970 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias
);
1973 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1975 * @dev: device that will be given as the regulator "consumer"
1976 * @id: List of supply names or regulator IDs
1977 * @num_id: Number of aliases to unregister
1979 * This helper function allows drivers to unregister several supply
1980 * aliases in one operation.
1982 void regulator_bulk_unregister_supply_alias(struct device
*dev
,
1983 const char *const *id
,
1988 for (i
= 0; i
< num_id
; ++i
)
1989 regulator_unregister_supply_alias(dev
, id
[i
]);
1991 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias
);
1994 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1995 static int regulator_ena_gpio_request(struct regulator_dev
*rdev
,
1996 const struct regulator_config
*config
)
1998 struct regulator_enable_gpio
*pin
;
1999 struct gpio_desc
*gpiod
;
2002 if (config
->ena_gpiod
)
2003 gpiod
= config
->ena_gpiod
;
2005 gpiod
= gpio_to_desc(config
->ena_gpio
);
2007 list_for_each_entry(pin
, ®ulator_ena_gpio_list
, list
) {
2008 if (pin
->gpiod
== gpiod
) {
2009 rdev_dbg(rdev
, "GPIO %d is already used\n",
2011 goto update_ena_gpio_to_rdev
;
2015 if (!config
->ena_gpiod
) {
2016 ret
= gpio_request_one(config
->ena_gpio
,
2017 GPIOF_DIR_OUT
| config
->ena_gpio_flags
,
2018 rdev_get_name(rdev
));
2023 pin
= kzalloc(sizeof(struct regulator_enable_gpio
), GFP_KERNEL
);
2025 if (!config
->ena_gpiod
)
2026 gpio_free(config
->ena_gpio
);
2031 pin
->ena_gpio_invert
= config
->ena_gpio_invert
;
2032 list_add(&pin
->list
, ®ulator_ena_gpio_list
);
2034 update_ena_gpio_to_rdev
:
2035 pin
->request_count
++;
2036 rdev
->ena_pin
= pin
;
2040 static void regulator_ena_gpio_free(struct regulator_dev
*rdev
)
2042 struct regulator_enable_gpio
*pin
, *n
;
2047 /* Free the GPIO only in case of no use */
2048 list_for_each_entry_safe(pin
, n
, ®ulator_ena_gpio_list
, list
) {
2049 if (pin
->gpiod
== rdev
->ena_pin
->gpiod
) {
2050 if (pin
->request_count
<= 1) {
2051 pin
->request_count
= 0;
2052 gpiod_put(pin
->gpiod
);
2053 list_del(&pin
->list
);
2055 rdev
->ena_pin
= NULL
;
2058 pin
->request_count
--;
2065 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2066 * @rdev: regulator_dev structure
2067 * @enable: enable GPIO at initial use?
2069 * GPIO is enabled in case of initial use. (enable_count is 0)
2070 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2072 static int regulator_ena_gpio_ctrl(struct regulator_dev
*rdev
, bool enable
)
2074 struct regulator_enable_gpio
*pin
= rdev
->ena_pin
;
2080 /* Enable GPIO at initial use */
2081 if (pin
->enable_count
== 0)
2082 gpiod_set_value_cansleep(pin
->gpiod
,
2083 !pin
->ena_gpio_invert
);
2085 pin
->enable_count
++;
2087 if (pin
->enable_count
> 1) {
2088 pin
->enable_count
--;
2092 /* Disable GPIO if not used */
2093 if (pin
->enable_count
<= 1) {
2094 gpiod_set_value_cansleep(pin
->gpiod
,
2095 pin
->ena_gpio_invert
);
2096 pin
->enable_count
= 0;
2104 * _regulator_enable_delay - a delay helper function
2105 * @delay: time to delay in microseconds
2107 * Delay for the requested amount of time as per the guidelines in:
2109 * Documentation/timers/timers-howto.txt
2111 * The assumption here is that regulators will never be enabled in
2112 * atomic context and therefore sleeping functions can be used.
2114 static void _regulator_enable_delay(unsigned int delay
)
2116 unsigned int ms
= delay
/ 1000;
2117 unsigned int us
= delay
% 1000;
2121 * For small enough values, handle super-millisecond
2122 * delays in the usleep_range() call below.
2131 * Give the scheduler some room to coalesce with any other
2132 * wakeup sources. For delays shorter than 10 us, don't even
2133 * bother setting up high-resolution timers and just busy-
2137 usleep_range(us
, us
+ 100);
2142 static int _regulator_do_enable(struct regulator_dev
*rdev
)
2146 /* Query before enabling in case configuration dependent. */
2147 ret
= _regulator_get_enable_time(rdev
);
2151 rdev_warn(rdev
, "enable_time() failed: %d\n", ret
);
2155 trace_regulator_enable(rdev_get_name(rdev
));
2157 if (rdev
->desc
->off_on_delay
) {
2158 /* if needed, keep a distance of off_on_delay from last time
2159 * this regulator was disabled.
2161 unsigned long start_jiffy
= jiffies
;
2162 unsigned long intended
, max_delay
, remaining
;
2164 max_delay
= usecs_to_jiffies(rdev
->desc
->off_on_delay
);
2165 intended
= rdev
->last_off_jiffy
+ max_delay
;
2167 if (time_before(start_jiffy
, intended
)) {
2168 /* calc remaining jiffies to deal with one-time
2170 * in case of multiple timer wrapping, either it can be
2171 * detected by out-of-range remaining, or it cannot be
2172 * detected and we gets a panelty of
2173 * _regulator_enable_delay().
2175 remaining
= intended
- start_jiffy
;
2176 if (remaining
<= max_delay
)
2177 _regulator_enable_delay(
2178 jiffies_to_usecs(remaining
));
2182 if (rdev
->ena_pin
) {
2183 if (!rdev
->ena_gpio_state
) {
2184 ret
= regulator_ena_gpio_ctrl(rdev
, true);
2187 rdev
->ena_gpio_state
= 1;
2189 } else if (rdev
->desc
->ops
->enable
) {
2190 ret
= rdev
->desc
->ops
->enable(rdev
);
2197 /* Allow the regulator to ramp; it would be useful to extend
2198 * this for bulk operations so that the regulators can ramp
2200 trace_regulator_enable_delay(rdev_get_name(rdev
));
2202 _regulator_enable_delay(delay
);
2204 trace_regulator_enable_complete(rdev_get_name(rdev
));
2209 /* locks held by regulator_enable() */
2210 static int _regulator_enable(struct regulator_dev
*rdev
)
2214 lockdep_assert_held_once(&rdev
->mutex
);
2216 /* check voltage and requested load before enabling */
2217 if (regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_DRMS
))
2218 drms_uA_update(rdev
);
2220 if (rdev
->use_count
== 0) {
2221 /* The regulator may on if it's not switchable or left on */
2222 ret
= _regulator_is_enabled(rdev
);
2223 if (ret
== -EINVAL
|| ret
== 0) {
2224 if (!regulator_ops_is_valid(rdev
,
2225 REGULATOR_CHANGE_STATUS
))
2228 ret
= _regulator_do_enable(rdev
);
2232 _notifier_call_chain(rdev
, REGULATOR_EVENT_ENABLE
,
2234 } else if (ret
< 0) {
2235 rdev_err(rdev
, "is_enabled() failed: %d\n", ret
);
2238 /* Fallthrough on positive return values - already enabled */
2247 * regulator_enable - enable regulator output
2248 * @regulator: regulator source
2250 * Request that the regulator be enabled with the regulator output at
2251 * the predefined voltage or current value. Calls to regulator_enable()
2252 * must be balanced with calls to regulator_disable().
2254 * NOTE: the output value can be set by other drivers, boot loader or may be
2255 * hardwired in the regulator.
2257 int regulator_enable(struct regulator
*regulator
)
2259 struct regulator_dev
*rdev
= regulator
->rdev
;
2262 if (regulator
->always_on
)
2266 ret
= regulator_enable(rdev
->supply
);
2271 mutex_lock(&rdev
->mutex
);
2272 ret
= _regulator_enable(rdev
);
2273 mutex_unlock(&rdev
->mutex
);
2275 if (ret
!= 0 && rdev
->supply
)
2276 regulator_disable(rdev
->supply
);
2280 EXPORT_SYMBOL_GPL(regulator_enable
);
2282 static int _regulator_do_disable(struct regulator_dev
*rdev
)
2286 trace_regulator_disable(rdev_get_name(rdev
));
2288 if (rdev
->ena_pin
) {
2289 if (rdev
->ena_gpio_state
) {
2290 ret
= regulator_ena_gpio_ctrl(rdev
, false);
2293 rdev
->ena_gpio_state
= 0;
2296 } else if (rdev
->desc
->ops
->disable
) {
2297 ret
= rdev
->desc
->ops
->disable(rdev
);
2302 /* cares about last_off_jiffy only if off_on_delay is required by
2305 if (rdev
->desc
->off_on_delay
)
2306 rdev
->last_off_jiffy
= jiffies
;
2308 trace_regulator_disable_complete(rdev_get_name(rdev
));
2313 /* locks held by regulator_disable() */
2314 static int _regulator_disable(struct regulator_dev
*rdev
)
2318 lockdep_assert_held_once(&rdev
->mutex
);
2320 if (WARN(rdev
->use_count
<= 0,
2321 "unbalanced disables for %s\n", rdev_get_name(rdev
)))
2324 /* are we the last user and permitted to disable ? */
2325 if (rdev
->use_count
== 1 &&
2326 (rdev
->constraints
&& !rdev
->constraints
->always_on
)) {
2328 /* we are last user */
2329 if (regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_STATUS
)) {
2330 ret
= _notifier_call_chain(rdev
,
2331 REGULATOR_EVENT_PRE_DISABLE
,
2333 if (ret
& NOTIFY_STOP_MASK
)
2336 ret
= _regulator_do_disable(rdev
);
2338 rdev_err(rdev
, "failed to disable\n");
2339 _notifier_call_chain(rdev
,
2340 REGULATOR_EVENT_ABORT_DISABLE
,
2344 _notifier_call_chain(rdev
, REGULATOR_EVENT_DISABLE
,
2348 rdev
->use_count
= 0;
2349 } else if (rdev
->use_count
> 1) {
2350 if (regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_DRMS
))
2351 drms_uA_update(rdev
);
2360 * regulator_disable - disable regulator output
2361 * @regulator: regulator source
2363 * Disable the regulator output voltage or current. Calls to
2364 * regulator_enable() must be balanced with calls to
2365 * regulator_disable().
2367 * NOTE: this will only disable the regulator output if no other consumer
2368 * devices have it enabled, the regulator device supports disabling and
2369 * machine constraints permit this operation.
2371 int regulator_disable(struct regulator
*regulator
)
2373 struct regulator_dev
*rdev
= regulator
->rdev
;
2376 if (regulator
->always_on
)
2379 mutex_lock(&rdev
->mutex
);
2380 ret
= _regulator_disable(rdev
);
2381 mutex_unlock(&rdev
->mutex
);
2383 if (ret
== 0 && rdev
->supply
)
2384 regulator_disable(rdev
->supply
);
2388 EXPORT_SYMBOL_GPL(regulator_disable
);
2390 /* locks held by regulator_force_disable() */
2391 static int _regulator_force_disable(struct regulator_dev
*rdev
)
2395 lockdep_assert_held_once(&rdev
->mutex
);
2397 ret
= _notifier_call_chain(rdev
, REGULATOR_EVENT_FORCE_DISABLE
|
2398 REGULATOR_EVENT_PRE_DISABLE
, NULL
);
2399 if (ret
& NOTIFY_STOP_MASK
)
2402 ret
= _regulator_do_disable(rdev
);
2404 rdev_err(rdev
, "failed to force disable\n");
2405 _notifier_call_chain(rdev
, REGULATOR_EVENT_FORCE_DISABLE
|
2406 REGULATOR_EVENT_ABORT_DISABLE
, NULL
);
2410 _notifier_call_chain(rdev
, REGULATOR_EVENT_FORCE_DISABLE
|
2411 REGULATOR_EVENT_DISABLE
, NULL
);
2417 * regulator_force_disable - force disable regulator output
2418 * @regulator: regulator source
2420 * Forcibly disable the regulator output voltage or current.
2421 * NOTE: this *will* disable the regulator output even if other consumer
2422 * devices have it enabled. This should be used for situations when device
2423 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2425 int regulator_force_disable(struct regulator
*regulator
)
2427 struct regulator_dev
*rdev
= regulator
->rdev
;
2430 mutex_lock(&rdev
->mutex
);
2431 regulator
->uA_load
= 0;
2432 ret
= _regulator_force_disable(regulator
->rdev
);
2433 mutex_unlock(&rdev
->mutex
);
2436 while (rdev
->open_count
--)
2437 regulator_disable(rdev
->supply
);
2441 EXPORT_SYMBOL_GPL(regulator_force_disable
);
2443 static void regulator_disable_work(struct work_struct
*work
)
2445 struct regulator_dev
*rdev
= container_of(work
, struct regulator_dev
,
2449 regulator_lock(rdev
);
2451 BUG_ON(!rdev
->deferred_disables
);
2453 count
= rdev
->deferred_disables
;
2454 rdev
->deferred_disables
= 0;
2457 * Workqueue functions queue the new work instance while the previous
2458 * work instance is being processed. Cancel the queued work instance
2459 * as the work instance under processing does the job of the queued
2462 cancel_delayed_work(&rdev
->disable_work
);
2464 for (i
= 0; i
< count
; i
++) {
2465 ret
= _regulator_disable(rdev
);
2467 rdev_err(rdev
, "Deferred disable failed: %d\n", ret
);
2470 regulator_unlock(rdev
);
2473 for (i
= 0; i
< count
; i
++) {
2474 ret
= regulator_disable(rdev
->supply
);
2477 "Supply disable failed: %d\n", ret
);
2484 * regulator_disable_deferred - disable regulator output with delay
2485 * @regulator: regulator source
2486 * @ms: miliseconds until the regulator is disabled
2488 * Execute regulator_disable() on the regulator after a delay. This
2489 * is intended for use with devices that require some time to quiesce.
2491 * NOTE: this will only disable the regulator output if no other consumer
2492 * devices have it enabled, the regulator device supports disabling and
2493 * machine constraints permit this operation.
2495 int regulator_disable_deferred(struct regulator
*regulator
, int ms
)
2497 struct regulator_dev
*rdev
= regulator
->rdev
;
2499 if (regulator
->always_on
)
2503 return regulator_disable(regulator
);
2505 regulator_lock(rdev
);
2506 rdev
->deferred_disables
++;
2507 mod_delayed_work(system_power_efficient_wq
, &rdev
->disable_work
,
2508 msecs_to_jiffies(ms
));
2509 regulator_unlock(rdev
);
2513 EXPORT_SYMBOL_GPL(regulator_disable_deferred
);
2515 static int _regulator_is_enabled(struct regulator_dev
*rdev
)
2517 /* A GPIO control always takes precedence */
2519 return rdev
->ena_gpio_state
;
2521 /* If we don't know then assume that the regulator is always on */
2522 if (!rdev
->desc
->ops
->is_enabled
)
2525 return rdev
->desc
->ops
->is_enabled(rdev
);
2528 static int _regulator_list_voltage(struct regulator_dev
*rdev
,
2529 unsigned selector
, int lock
)
2531 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
2534 if (rdev
->desc
->fixed_uV
&& rdev
->desc
->n_voltages
== 1 && !selector
)
2535 return rdev
->desc
->fixed_uV
;
2537 if (ops
->list_voltage
) {
2538 if (selector
>= rdev
->desc
->n_voltages
)
2541 regulator_lock(rdev
);
2542 ret
= ops
->list_voltage(rdev
, selector
);
2544 regulator_unlock(rdev
);
2545 } else if (rdev
->is_switch
&& rdev
->supply
) {
2546 ret
= _regulator_list_voltage(rdev
->supply
->rdev
,
2553 if (ret
< rdev
->constraints
->min_uV
)
2555 else if (ret
> rdev
->constraints
->max_uV
)
2563 * regulator_is_enabled - is the regulator output enabled
2564 * @regulator: regulator source
2566 * Returns positive if the regulator driver backing the source/client
2567 * has requested that the device be enabled, zero if it hasn't, else a
2568 * negative errno code.
2570 * Note that the device backing this regulator handle can have multiple
2571 * users, so it might be enabled even if regulator_enable() was never
2572 * called for this particular source.
2574 int regulator_is_enabled(struct regulator
*regulator
)
2578 if (regulator
->always_on
)
2581 mutex_lock(®ulator
->rdev
->mutex
);
2582 ret
= _regulator_is_enabled(regulator
->rdev
);
2583 mutex_unlock(®ulator
->rdev
->mutex
);
2587 EXPORT_SYMBOL_GPL(regulator_is_enabled
);
2590 * regulator_count_voltages - count regulator_list_voltage() selectors
2591 * @regulator: regulator source
2593 * Returns number of selectors, or negative errno. Selectors are
2594 * numbered starting at zero, and typically correspond to bitfields
2595 * in hardware registers.
2597 int regulator_count_voltages(struct regulator
*regulator
)
2599 struct regulator_dev
*rdev
= regulator
->rdev
;
2601 if (rdev
->desc
->n_voltages
)
2602 return rdev
->desc
->n_voltages
;
2604 if (!rdev
->is_switch
|| !rdev
->supply
)
2607 return regulator_count_voltages(rdev
->supply
);
2609 EXPORT_SYMBOL_GPL(regulator_count_voltages
);
2612 * regulator_list_voltage - enumerate supported voltages
2613 * @regulator: regulator source
2614 * @selector: identify voltage to list
2615 * Context: can sleep
2617 * Returns a voltage that can be passed to @regulator_set_voltage(),
2618 * zero if this selector code can't be used on this system, or a
2621 int regulator_list_voltage(struct regulator
*regulator
, unsigned selector
)
2623 return _regulator_list_voltage(regulator
->rdev
, selector
, 1);
2625 EXPORT_SYMBOL_GPL(regulator_list_voltage
);
2628 * regulator_get_regmap - get the regulator's register map
2629 * @regulator: regulator source
2631 * Returns the register map for the given regulator, or an ERR_PTR value
2632 * if the regulator doesn't use regmap.
2634 struct regmap
*regulator_get_regmap(struct regulator
*regulator
)
2636 struct regmap
*map
= regulator
->rdev
->regmap
;
2638 return map
? map
: ERR_PTR(-EOPNOTSUPP
);
2642 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2643 * @regulator: regulator source
2644 * @vsel_reg: voltage selector register, output parameter
2645 * @vsel_mask: mask for voltage selector bitfield, output parameter
2647 * Returns the hardware register offset and bitmask used for setting the
2648 * regulator voltage. This might be useful when configuring voltage-scaling
2649 * hardware or firmware that can make I2C requests behind the kernel's back,
2652 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2653 * and 0 is returned, otherwise a negative errno is returned.
2655 int regulator_get_hardware_vsel_register(struct regulator
*regulator
,
2657 unsigned *vsel_mask
)
2659 struct regulator_dev
*rdev
= regulator
->rdev
;
2660 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
2662 if (ops
->set_voltage_sel
!= regulator_set_voltage_sel_regmap
)
2665 *vsel_reg
= rdev
->desc
->vsel_reg
;
2666 *vsel_mask
= rdev
->desc
->vsel_mask
;
2670 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register
);
2673 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2674 * @regulator: regulator source
2675 * @selector: identify voltage to list
2677 * Converts the selector to a hardware-specific voltage selector that can be
2678 * directly written to the regulator registers. The address of the voltage
2679 * register can be determined by calling @regulator_get_hardware_vsel_register.
2681 * On error a negative errno is returned.
2683 int regulator_list_hardware_vsel(struct regulator
*regulator
,
2686 struct regulator_dev
*rdev
= regulator
->rdev
;
2687 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
2689 if (selector
>= rdev
->desc
->n_voltages
)
2691 if (ops
->set_voltage_sel
!= regulator_set_voltage_sel_regmap
)
2696 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel
);
2699 * regulator_get_linear_step - return the voltage step size between VSEL values
2700 * @regulator: regulator source
2702 * Returns the voltage step size between VSEL values for linear
2703 * regulators, or return 0 if the regulator isn't a linear regulator.
2705 unsigned int regulator_get_linear_step(struct regulator
*regulator
)
2707 struct regulator_dev
*rdev
= regulator
->rdev
;
2709 return rdev
->desc
->uV_step
;
2711 EXPORT_SYMBOL_GPL(regulator_get_linear_step
);
2714 * regulator_is_supported_voltage - check if a voltage range can be supported
2716 * @regulator: Regulator to check.
2717 * @min_uV: Minimum required voltage in uV.
2718 * @max_uV: Maximum required voltage in uV.
2720 * Returns a boolean or a negative error code.
2722 int regulator_is_supported_voltage(struct regulator
*regulator
,
2723 int min_uV
, int max_uV
)
2725 struct regulator_dev
*rdev
= regulator
->rdev
;
2726 int i
, voltages
, ret
;
2728 /* If we can't change voltage check the current voltage */
2729 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_VOLTAGE
)) {
2730 ret
= regulator_get_voltage(regulator
);
2732 return min_uV
<= ret
&& ret
<= max_uV
;
2737 /* Any voltage within constrains range is fine? */
2738 if (rdev
->desc
->continuous_voltage_range
)
2739 return min_uV
>= rdev
->constraints
->min_uV
&&
2740 max_uV
<= rdev
->constraints
->max_uV
;
2742 ret
= regulator_count_voltages(regulator
);
2747 for (i
= 0; i
< voltages
; i
++) {
2748 ret
= regulator_list_voltage(regulator
, i
);
2750 if (ret
>= min_uV
&& ret
<= max_uV
)
2756 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage
);
2758 static int regulator_map_voltage(struct regulator_dev
*rdev
, int min_uV
,
2761 const struct regulator_desc
*desc
= rdev
->desc
;
2763 if (desc
->ops
->map_voltage
)
2764 return desc
->ops
->map_voltage(rdev
, min_uV
, max_uV
);
2766 if (desc
->ops
->list_voltage
== regulator_list_voltage_linear
)
2767 return regulator_map_voltage_linear(rdev
, min_uV
, max_uV
);
2769 if (desc
->ops
->list_voltage
== regulator_list_voltage_linear_range
)
2770 return regulator_map_voltage_linear_range(rdev
, min_uV
, max_uV
);
2772 return regulator_map_voltage_iterate(rdev
, min_uV
, max_uV
);
2775 static int _regulator_call_set_voltage(struct regulator_dev
*rdev
,
2776 int min_uV
, int max_uV
,
2779 struct pre_voltage_change_data data
;
2782 data
.old_uV
= _regulator_get_voltage(rdev
);
2783 data
.min_uV
= min_uV
;
2784 data
.max_uV
= max_uV
;
2785 ret
= _notifier_call_chain(rdev
, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE
,
2787 if (ret
& NOTIFY_STOP_MASK
)
2790 ret
= rdev
->desc
->ops
->set_voltage(rdev
, min_uV
, max_uV
, selector
);
2794 _notifier_call_chain(rdev
, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE
,
2795 (void *)data
.old_uV
);
2800 static int _regulator_call_set_voltage_sel(struct regulator_dev
*rdev
,
2801 int uV
, unsigned selector
)
2803 struct pre_voltage_change_data data
;
2806 data
.old_uV
= _regulator_get_voltage(rdev
);
2809 ret
= _notifier_call_chain(rdev
, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE
,
2811 if (ret
& NOTIFY_STOP_MASK
)
2814 ret
= rdev
->desc
->ops
->set_voltage_sel(rdev
, selector
);
2818 _notifier_call_chain(rdev
, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE
,
2819 (void *)data
.old_uV
);
2824 static int _regulator_set_voltage_time(struct regulator_dev
*rdev
,
2825 int old_uV
, int new_uV
)
2827 unsigned int ramp_delay
= 0;
2829 if (rdev
->constraints
->ramp_delay
)
2830 ramp_delay
= rdev
->constraints
->ramp_delay
;
2831 else if (rdev
->desc
->ramp_delay
)
2832 ramp_delay
= rdev
->desc
->ramp_delay
;
2833 else if (rdev
->constraints
->settling_time
)
2834 return rdev
->constraints
->settling_time
;
2835 else if (rdev
->constraints
->settling_time_up
&&
2837 return rdev
->constraints
->settling_time_up
;
2838 else if (rdev
->constraints
->settling_time_down
&&
2840 return rdev
->constraints
->settling_time_down
;
2842 if (ramp_delay
== 0) {
2843 rdev_dbg(rdev
, "ramp_delay not set\n");
2847 return DIV_ROUND_UP(abs(new_uV
- old_uV
), ramp_delay
);
2850 static int _regulator_do_set_voltage(struct regulator_dev
*rdev
,
2851 int min_uV
, int max_uV
)
2856 unsigned int selector
;
2857 int old_selector
= -1;
2858 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
2859 int old_uV
= _regulator_get_voltage(rdev
);
2861 trace_regulator_set_voltage(rdev_get_name(rdev
), min_uV
, max_uV
);
2863 min_uV
+= rdev
->constraints
->uV_offset
;
2864 max_uV
+= rdev
->constraints
->uV_offset
;
2867 * If we can't obtain the old selector there is not enough
2868 * info to call set_voltage_time_sel().
2870 if (_regulator_is_enabled(rdev
) &&
2871 ops
->set_voltage_time_sel
&& ops
->get_voltage_sel
) {
2872 old_selector
= ops
->get_voltage_sel(rdev
);
2873 if (old_selector
< 0)
2874 return old_selector
;
2877 if (ops
->set_voltage
) {
2878 ret
= _regulator_call_set_voltage(rdev
, min_uV
, max_uV
,
2882 if (ops
->list_voltage
)
2883 best_val
= ops
->list_voltage(rdev
,
2886 best_val
= _regulator_get_voltage(rdev
);
2889 } else if (ops
->set_voltage_sel
) {
2890 ret
= regulator_map_voltage(rdev
, min_uV
, max_uV
);
2892 best_val
= ops
->list_voltage(rdev
, ret
);
2893 if (min_uV
<= best_val
&& max_uV
>= best_val
) {
2895 if (old_selector
== selector
)
2898 ret
= _regulator_call_set_voltage_sel(
2899 rdev
, best_val
, selector
);
2911 if (ops
->set_voltage_time_sel
) {
2913 * Call set_voltage_time_sel if successfully obtained
2916 if (old_selector
>= 0 && old_selector
!= selector
)
2917 delay
= ops
->set_voltage_time_sel(rdev
, old_selector
,
2920 if (old_uV
!= best_val
) {
2921 if (ops
->set_voltage_time
)
2922 delay
= ops
->set_voltage_time(rdev
, old_uV
,
2925 delay
= _regulator_set_voltage_time(rdev
,
2932 rdev_warn(rdev
, "failed to get delay: %d\n", delay
);
2936 /* Insert any necessary delays */
2937 if (delay
>= 1000) {
2938 mdelay(delay
/ 1000);
2939 udelay(delay
% 1000);
2944 if (best_val
>= 0) {
2945 unsigned long data
= best_val
;
2947 _notifier_call_chain(rdev
, REGULATOR_EVENT_VOLTAGE_CHANGE
,
2952 trace_regulator_set_voltage_complete(rdev_get_name(rdev
), best_val
);
2957 static int _regulator_do_set_suspend_voltage(struct regulator_dev
*rdev
,
2958 int min_uV
, int max_uV
, suspend_state_t state
)
2960 struct regulator_state
*rstate
;
2963 rstate
= regulator_get_suspend_state(rdev
, state
);
2967 if (min_uV
< rstate
->min_uV
)
2968 min_uV
= rstate
->min_uV
;
2969 if (max_uV
> rstate
->max_uV
)
2970 max_uV
= rstate
->max_uV
;
2972 sel
= regulator_map_voltage(rdev
, min_uV
, max_uV
);
2976 uV
= rdev
->desc
->ops
->list_voltage(rdev
, sel
);
2977 if (uV
>= min_uV
&& uV
<= max_uV
)
2983 static int regulator_set_voltage_unlocked(struct regulator
*regulator
,
2984 int min_uV
, int max_uV
,
2985 suspend_state_t state
)
2987 struct regulator_dev
*rdev
= regulator
->rdev
;
2988 struct regulator_voltage
*voltage
= ®ulator
->voltage
[state
];
2990 int old_min_uV
, old_max_uV
;
2992 int best_supply_uV
= 0;
2993 int supply_change_uV
= 0;
2995 /* If we're setting the same range as last time the change
2996 * should be a noop (some cpufreq implementations use the same
2997 * voltage for multiple frequencies, for example).
2999 if (voltage
->min_uV
== min_uV
&& voltage
->max_uV
== max_uV
)
3002 /* If we're trying to set a range that overlaps the current voltage,
3003 * return successfully even though the regulator does not support
3004 * changing the voltage.
3006 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_VOLTAGE
)) {
3007 current_uV
= _regulator_get_voltage(rdev
);
3008 if (min_uV
<= current_uV
&& current_uV
<= max_uV
) {
3009 voltage
->min_uV
= min_uV
;
3010 voltage
->max_uV
= max_uV
;
3016 if (!rdev
->desc
->ops
->set_voltage
&&
3017 !rdev
->desc
->ops
->set_voltage_sel
) {
3022 /* constraints check */
3023 ret
= regulator_check_voltage(rdev
, &min_uV
, &max_uV
);
3027 /* restore original values in case of error */
3028 old_min_uV
= voltage
->min_uV
;
3029 old_max_uV
= voltage
->max_uV
;
3030 voltage
->min_uV
= min_uV
;
3031 voltage
->max_uV
= max_uV
;
3033 ret
= regulator_check_consumers(rdev
, &min_uV
, &max_uV
, state
);
3038 regulator_ops_is_valid(rdev
->supply
->rdev
,
3039 REGULATOR_CHANGE_VOLTAGE
) &&
3040 (rdev
->desc
->min_dropout_uV
|| !(rdev
->desc
->ops
->get_voltage
||
3041 rdev
->desc
->ops
->get_voltage_sel
))) {
3042 int current_supply_uV
;
3045 selector
= regulator_map_voltage(rdev
, min_uV
, max_uV
);
3051 best_supply_uV
= _regulator_list_voltage(rdev
, selector
, 0);
3052 if (best_supply_uV
< 0) {
3053 ret
= best_supply_uV
;
3057 best_supply_uV
+= rdev
->desc
->min_dropout_uV
;
3059 current_supply_uV
= _regulator_get_voltage(rdev
->supply
->rdev
);
3060 if (current_supply_uV
< 0) {
3061 ret
= current_supply_uV
;
3065 supply_change_uV
= best_supply_uV
- current_supply_uV
;
3068 if (supply_change_uV
> 0) {
3069 ret
= regulator_set_voltage_unlocked(rdev
->supply
,
3070 best_supply_uV
, INT_MAX
, state
);
3072 dev_err(&rdev
->dev
, "Failed to increase supply voltage: %d\n",
3078 if (state
== PM_SUSPEND_ON
)
3079 ret
= _regulator_do_set_voltage(rdev
, min_uV
, max_uV
);
3081 ret
= _regulator_do_set_suspend_voltage(rdev
, min_uV
,
3086 if (supply_change_uV
< 0) {
3087 ret
= regulator_set_voltage_unlocked(rdev
->supply
,
3088 best_supply_uV
, INT_MAX
, state
);
3090 dev_warn(&rdev
->dev
, "Failed to decrease supply voltage: %d\n",
3092 /* No need to fail here */
3099 voltage
->min_uV
= old_min_uV
;
3100 voltage
->max_uV
= old_max_uV
;
3106 * regulator_set_voltage - set regulator output voltage
3107 * @regulator: regulator source
3108 * @min_uV: Minimum required voltage in uV
3109 * @max_uV: Maximum acceptable voltage in uV
3111 * Sets a voltage regulator to the desired output voltage. This can be set
3112 * during any regulator state. IOW, regulator can be disabled or enabled.
3114 * If the regulator is enabled then the voltage will change to the new value
3115 * immediately otherwise if the regulator is disabled the regulator will
3116 * output at the new voltage when enabled.
3118 * NOTE: If the regulator is shared between several devices then the lowest
3119 * request voltage that meets the system constraints will be used.
3120 * Regulator system constraints must be set for this regulator before
3121 * calling this function otherwise this call will fail.
3123 int regulator_set_voltage(struct regulator
*regulator
, int min_uV
, int max_uV
)
3127 regulator_lock_supply(regulator
->rdev
);
3129 ret
= regulator_set_voltage_unlocked(regulator
, min_uV
, max_uV
,
3132 regulator_unlock_supply(regulator
->rdev
);
3136 EXPORT_SYMBOL_GPL(regulator_set_voltage
);
3138 static inline int regulator_suspend_toggle(struct regulator_dev
*rdev
,
3139 suspend_state_t state
, bool en
)
3141 struct regulator_state
*rstate
;
3143 rstate
= regulator_get_suspend_state(rdev
, state
);
3147 if (!rstate
->changeable
)
3150 rstate
->enabled
= en
;
3155 int regulator_suspend_enable(struct regulator_dev
*rdev
,
3156 suspend_state_t state
)
3158 return regulator_suspend_toggle(rdev
, state
, true);
3160 EXPORT_SYMBOL_GPL(regulator_suspend_enable
);
3162 int regulator_suspend_disable(struct regulator_dev
*rdev
,
3163 suspend_state_t state
)
3165 struct regulator
*regulator
;
3166 struct regulator_voltage
*voltage
;
3169 * if any consumer wants this regulator device keeping on in
3170 * suspend states, don't set it as disabled.
3172 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
) {
3173 voltage
= ®ulator
->voltage
[state
];
3174 if (voltage
->min_uV
|| voltage
->max_uV
)
3178 return regulator_suspend_toggle(rdev
, state
, false);
3180 EXPORT_SYMBOL_GPL(regulator_suspend_disable
);
3182 static int _regulator_set_suspend_voltage(struct regulator
*regulator
,
3183 int min_uV
, int max_uV
,
3184 suspend_state_t state
)
3186 struct regulator_dev
*rdev
= regulator
->rdev
;
3187 struct regulator_state
*rstate
;
3189 rstate
= regulator_get_suspend_state(rdev
, state
);
3193 if (rstate
->min_uV
== rstate
->max_uV
) {
3194 rdev_err(rdev
, "The suspend voltage can't be changed!\n");
3198 return regulator_set_voltage_unlocked(regulator
, min_uV
, max_uV
, state
);
3201 int regulator_set_suspend_voltage(struct regulator
*regulator
, int min_uV
,
3202 int max_uV
, suspend_state_t state
)
3206 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3207 if (regulator_check_states(state
) || state
== PM_SUSPEND_ON
)
3210 regulator_lock_supply(regulator
->rdev
);
3212 ret
= _regulator_set_suspend_voltage(regulator
, min_uV
,
3215 regulator_unlock_supply(regulator
->rdev
);
3219 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage
);
3222 * regulator_set_voltage_time - get raise/fall time
3223 * @regulator: regulator source
3224 * @old_uV: starting voltage in microvolts
3225 * @new_uV: target voltage in microvolts
3227 * Provided with the starting and ending voltage, this function attempts to
3228 * calculate the time in microseconds required to rise or fall to this new
3231 int regulator_set_voltage_time(struct regulator
*regulator
,
3232 int old_uV
, int new_uV
)
3234 struct regulator_dev
*rdev
= regulator
->rdev
;
3235 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
3241 if (ops
->set_voltage_time
)
3242 return ops
->set_voltage_time(rdev
, old_uV
, new_uV
);
3243 else if (!ops
->set_voltage_time_sel
)
3244 return _regulator_set_voltage_time(rdev
, old_uV
, new_uV
);
3246 /* Currently requires operations to do this */
3247 if (!ops
->list_voltage
|| !rdev
->desc
->n_voltages
)
3250 for (i
= 0; i
< rdev
->desc
->n_voltages
; i
++) {
3251 /* We only look for exact voltage matches here */
3252 voltage
= regulator_list_voltage(regulator
, i
);
3257 if (voltage
== old_uV
)
3259 if (voltage
== new_uV
)
3263 if (old_sel
< 0 || new_sel
< 0)
3266 return ops
->set_voltage_time_sel(rdev
, old_sel
, new_sel
);
3268 EXPORT_SYMBOL_GPL(regulator_set_voltage_time
);
3271 * regulator_set_voltage_time_sel - get raise/fall time
3272 * @rdev: regulator source device
3273 * @old_selector: selector for starting voltage
3274 * @new_selector: selector for target voltage
3276 * Provided with the starting and target voltage selectors, this function
3277 * returns time in microseconds required to rise or fall to this new voltage
3279 * Drivers providing ramp_delay in regulation_constraints can use this as their
3280 * set_voltage_time_sel() operation.
3282 int regulator_set_voltage_time_sel(struct regulator_dev
*rdev
,
3283 unsigned int old_selector
,
3284 unsigned int new_selector
)
3286 int old_volt
, new_volt
;
3289 if (!rdev
->desc
->ops
->list_voltage
)
3292 old_volt
= rdev
->desc
->ops
->list_voltage(rdev
, old_selector
);
3293 new_volt
= rdev
->desc
->ops
->list_voltage(rdev
, new_selector
);
3295 if (rdev
->desc
->ops
->set_voltage_time
)
3296 return rdev
->desc
->ops
->set_voltage_time(rdev
, old_volt
,
3299 return _regulator_set_voltage_time(rdev
, old_volt
, new_volt
);
3301 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel
);
3304 * regulator_sync_voltage - re-apply last regulator output voltage
3305 * @regulator: regulator source
3307 * Re-apply the last configured voltage. This is intended to be used
3308 * where some external control source the consumer is cooperating with
3309 * has caused the configured voltage to change.
3311 int regulator_sync_voltage(struct regulator
*regulator
)
3313 struct regulator_dev
*rdev
= regulator
->rdev
;
3314 struct regulator_voltage
*voltage
= ®ulator
->voltage
[PM_SUSPEND_ON
];
3315 int ret
, min_uV
, max_uV
;
3317 regulator_lock(rdev
);
3319 if (!rdev
->desc
->ops
->set_voltage
&&
3320 !rdev
->desc
->ops
->set_voltage_sel
) {
3325 /* This is only going to work if we've had a voltage configured. */
3326 if (!voltage
->min_uV
&& !voltage
->max_uV
) {
3331 min_uV
= voltage
->min_uV
;
3332 max_uV
= voltage
->max_uV
;
3334 /* This should be a paranoia check... */
3335 ret
= regulator_check_voltage(rdev
, &min_uV
, &max_uV
);
3339 ret
= regulator_check_consumers(rdev
, &min_uV
, &max_uV
, 0);
3343 ret
= _regulator_do_set_voltage(rdev
, min_uV
, max_uV
);
3346 regulator_unlock(rdev
);
3349 EXPORT_SYMBOL_GPL(regulator_sync_voltage
);
3351 static int _regulator_get_voltage(struct regulator_dev
*rdev
)
3356 if (rdev
->desc
->ops
->get_bypass
) {
3357 ret
= rdev
->desc
->ops
->get_bypass(rdev
, &bypassed
);
3361 /* if bypassed the regulator must have a supply */
3362 if (!rdev
->supply
) {
3364 "bypassed regulator has no supply!\n");
3365 return -EPROBE_DEFER
;
3368 return _regulator_get_voltage(rdev
->supply
->rdev
);
3372 if (rdev
->desc
->ops
->get_voltage_sel
) {
3373 sel
= rdev
->desc
->ops
->get_voltage_sel(rdev
);
3376 ret
= rdev
->desc
->ops
->list_voltage(rdev
, sel
);
3377 } else if (rdev
->desc
->ops
->get_voltage
) {
3378 ret
= rdev
->desc
->ops
->get_voltage(rdev
);
3379 } else if (rdev
->desc
->ops
->list_voltage
) {
3380 ret
= rdev
->desc
->ops
->list_voltage(rdev
, 0);
3381 } else if (rdev
->desc
->fixed_uV
&& (rdev
->desc
->n_voltages
== 1)) {
3382 ret
= rdev
->desc
->fixed_uV
;
3383 } else if (rdev
->supply
) {
3384 ret
= _regulator_get_voltage(rdev
->supply
->rdev
);
3391 return ret
- rdev
->constraints
->uV_offset
;
3395 * regulator_get_voltage - get regulator output voltage
3396 * @regulator: regulator source
3398 * This returns the current regulator voltage in uV.
3400 * NOTE: If the regulator is disabled it will return the voltage value. This
3401 * function should not be used to determine regulator state.
3403 int regulator_get_voltage(struct regulator
*regulator
)
3407 regulator_lock_supply(regulator
->rdev
);
3409 ret
= _regulator_get_voltage(regulator
->rdev
);
3411 regulator_unlock_supply(regulator
->rdev
);
3415 EXPORT_SYMBOL_GPL(regulator_get_voltage
);
3418 * regulator_set_current_limit - set regulator output current limit
3419 * @regulator: regulator source
3420 * @min_uA: Minimum supported current in uA
3421 * @max_uA: Maximum supported current in uA
3423 * Sets current sink to the desired output current. This can be set during
3424 * any regulator state. IOW, regulator can be disabled or enabled.
3426 * If the regulator is enabled then the current will change to the new value
3427 * immediately otherwise if the regulator is disabled the regulator will
3428 * output at the new current when enabled.
3430 * NOTE: Regulator system constraints must be set for this regulator before
3431 * calling this function otherwise this call will fail.
3433 int regulator_set_current_limit(struct regulator
*regulator
,
3434 int min_uA
, int max_uA
)
3436 struct regulator_dev
*rdev
= regulator
->rdev
;
3439 regulator_lock(rdev
);
3442 if (!rdev
->desc
->ops
->set_current_limit
) {
3447 /* constraints check */
3448 ret
= regulator_check_current_limit(rdev
, &min_uA
, &max_uA
);
3452 ret
= rdev
->desc
->ops
->set_current_limit(rdev
, min_uA
, max_uA
);
3454 regulator_unlock(rdev
);
3457 EXPORT_SYMBOL_GPL(regulator_set_current_limit
);
3459 static int _regulator_get_current_limit(struct regulator_dev
*rdev
)
3463 regulator_lock(rdev
);
3466 if (!rdev
->desc
->ops
->get_current_limit
) {
3471 ret
= rdev
->desc
->ops
->get_current_limit(rdev
);
3473 regulator_unlock(rdev
);
3478 * regulator_get_current_limit - get regulator output current
3479 * @regulator: regulator source
3481 * This returns the current supplied by the specified current sink in uA.
3483 * NOTE: If the regulator is disabled it will return the current value. This
3484 * function should not be used to determine regulator state.
3486 int regulator_get_current_limit(struct regulator
*regulator
)
3488 return _regulator_get_current_limit(regulator
->rdev
);
3490 EXPORT_SYMBOL_GPL(regulator_get_current_limit
);
3493 * regulator_set_mode - set regulator operating mode
3494 * @regulator: regulator source
3495 * @mode: operating mode - one of the REGULATOR_MODE constants
3497 * Set regulator operating mode to increase regulator efficiency or improve
3498 * regulation performance.
3500 * NOTE: Regulator system constraints must be set for this regulator before
3501 * calling this function otherwise this call will fail.
3503 int regulator_set_mode(struct regulator
*regulator
, unsigned int mode
)
3505 struct regulator_dev
*rdev
= regulator
->rdev
;
3507 int regulator_curr_mode
;
3509 regulator_lock(rdev
);
3512 if (!rdev
->desc
->ops
->set_mode
) {
3517 /* return if the same mode is requested */
3518 if (rdev
->desc
->ops
->get_mode
) {
3519 regulator_curr_mode
= rdev
->desc
->ops
->get_mode(rdev
);
3520 if (regulator_curr_mode
== mode
) {
3526 /* constraints check */
3527 ret
= regulator_mode_constrain(rdev
, &mode
);
3531 ret
= rdev
->desc
->ops
->set_mode(rdev
, mode
);
3533 regulator_unlock(rdev
);
3536 EXPORT_SYMBOL_GPL(regulator_set_mode
);
3538 static unsigned int _regulator_get_mode(struct regulator_dev
*rdev
)
3542 regulator_lock(rdev
);
3545 if (!rdev
->desc
->ops
->get_mode
) {
3550 ret
= rdev
->desc
->ops
->get_mode(rdev
);
3552 regulator_unlock(rdev
);
3557 * regulator_get_mode - get regulator operating mode
3558 * @regulator: regulator source
3560 * Get the current regulator operating mode.
3562 unsigned int regulator_get_mode(struct regulator
*regulator
)
3564 return _regulator_get_mode(regulator
->rdev
);
3566 EXPORT_SYMBOL_GPL(regulator_get_mode
);
3568 static int _regulator_get_error_flags(struct regulator_dev
*rdev
,
3569 unsigned int *flags
)
3573 regulator_lock(rdev
);
3576 if (!rdev
->desc
->ops
->get_error_flags
) {
3581 ret
= rdev
->desc
->ops
->get_error_flags(rdev
, flags
);
3583 regulator_unlock(rdev
);
3588 * regulator_get_error_flags - get regulator error information
3589 * @regulator: regulator source
3590 * @flags: pointer to store error flags
3592 * Get the current regulator error information.
3594 int regulator_get_error_flags(struct regulator
*regulator
,
3595 unsigned int *flags
)
3597 return _regulator_get_error_flags(regulator
->rdev
, flags
);
3599 EXPORT_SYMBOL_GPL(regulator_get_error_flags
);
3602 * regulator_set_load - set regulator load
3603 * @regulator: regulator source
3604 * @uA_load: load current
3606 * Notifies the regulator core of a new device load. This is then used by
3607 * DRMS (if enabled by constraints) to set the most efficient regulator
3608 * operating mode for the new regulator loading.
3610 * Consumer devices notify their supply regulator of the maximum power
3611 * they will require (can be taken from device datasheet in the power
3612 * consumption tables) when they change operational status and hence power
3613 * state. Examples of operational state changes that can affect power
3614 * consumption are :-
3616 * o Device is opened / closed.
3617 * o Device I/O is about to begin or has just finished.
3618 * o Device is idling in between work.
3620 * This information is also exported via sysfs to userspace.
3622 * DRMS will sum the total requested load on the regulator and change
3623 * to the most efficient operating mode if platform constraints allow.
3625 * On error a negative errno is returned.
3627 int regulator_set_load(struct regulator
*regulator
, int uA_load
)
3629 struct regulator_dev
*rdev
= regulator
->rdev
;
3632 regulator_lock(rdev
);
3633 regulator
->uA_load
= uA_load
;
3634 ret
= drms_uA_update(rdev
);
3635 regulator_unlock(rdev
);
3639 EXPORT_SYMBOL_GPL(regulator_set_load
);
3642 * regulator_allow_bypass - allow the regulator to go into bypass mode
3644 * @regulator: Regulator to configure
3645 * @enable: enable or disable bypass mode
3647 * Allow the regulator to go into bypass mode if all other consumers
3648 * for the regulator also enable bypass mode and the machine
3649 * constraints allow this. Bypass mode means that the regulator is
3650 * simply passing the input directly to the output with no regulation.
3652 int regulator_allow_bypass(struct regulator
*regulator
, bool enable
)
3654 struct regulator_dev
*rdev
= regulator
->rdev
;
3657 if (!rdev
->desc
->ops
->set_bypass
)
3660 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_BYPASS
))
3663 regulator_lock(rdev
);
3665 if (enable
&& !regulator
->bypass
) {
3666 rdev
->bypass_count
++;
3668 if (rdev
->bypass_count
== rdev
->open_count
) {
3669 ret
= rdev
->desc
->ops
->set_bypass(rdev
, enable
);
3671 rdev
->bypass_count
--;
3674 } else if (!enable
&& regulator
->bypass
) {
3675 rdev
->bypass_count
--;
3677 if (rdev
->bypass_count
!= rdev
->open_count
) {
3678 ret
= rdev
->desc
->ops
->set_bypass(rdev
, enable
);
3680 rdev
->bypass_count
++;
3685 regulator
->bypass
= enable
;
3687 regulator_unlock(rdev
);
3691 EXPORT_SYMBOL_GPL(regulator_allow_bypass
);
3694 * regulator_register_notifier - register regulator event notifier
3695 * @regulator: regulator source
3696 * @nb: notifier block
3698 * Register notifier block to receive regulator events.
3700 int regulator_register_notifier(struct regulator
*regulator
,
3701 struct notifier_block
*nb
)
3703 return blocking_notifier_chain_register(®ulator
->rdev
->notifier
,
3706 EXPORT_SYMBOL_GPL(regulator_register_notifier
);
3709 * regulator_unregister_notifier - unregister regulator event notifier
3710 * @regulator: regulator source
3711 * @nb: notifier block
3713 * Unregister regulator event notifier block.
3715 int regulator_unregister_notifier(struct regulator
*regulator
,
3716 struct notifier_block
*nb
)
3718 return blocking_notifier_chain_unregister(®ulator
->rdev
->notifier
,
3721 EXPORT_SYMBOL_GPL(regulator_unregister_notifier
);
3723 /* notify regulator consumers and downstream regulator consumers.
3724 * Note mutex must be held by caller.
3726 static int _notifier_call_chain(struct regulator_dev
*rdev
,
3727 unsigned long event
, void *data
)
3729 /* call rdev chain first */
3730 return blocking_notifier_call_chain(&rdev
->notifier
, event
, data
);
3734 * regulator_bulk_get - get multiple regulator consumers
3736 * @dev: Device to supply
3737 * @num_consumers: Number of consumers to register
3738 * @consumers: Configuration of consumers; clients are stored here.
3740 * @return 0 on success, an errno on failure.
3742 * This helper function allows drivers to get several regulator
3743 * consumers in one operation. If any of the regulators cannot be
3744 * acquired then any regulators that were allocated will be freed
3745 * before returning to the caller.
3747 int regulator_bulk_get(struct device
*dev
, int num_consumers
,
3748 struct regulator_bulk_data
*consumers
)
3753 for (i
= 0; i
< num_consumers
; i
++)
3754 consumers
[i
].consumer
= NULL
;
3756 for (i
= 0; i
< num_consumers
; i
++) {
3757 consumers
[i
].consumer
= regulator_get(dev
,
3758 consumers
[i
].supply
);
3759 if (IS_ERR(consumers
[i
].consumer
)) {
3760 ret
= PTR_ERR(consumers
[i
].consumer
);
3761 dev_err(dev
, "Failed to get supply '%s': %d\n",
3762 consumers
[i
].supply
, ret
);
3763 consumers
[i
].consumer
= NULL
;
3772 regulator_put(consumers
[i
].consumer
);
3776 EXPORT_SYMBOL_GPL(regulator_bulk_get
);
3778 static void regulator_bulk_enable_async(void *data
, async_cookie_t cookie
)
3780 struct regulator_bulk_data
*bulk
= data
;
3782 bulk
->ret
= regulator_enable(bulk
->consumer
);
3786 * regulator_bulk_enable - enable multiple regulator consumers
3788 * @num_consumers: Number of consumers
3789 * @consumers: Consumer data; clients are stored here.
3790 * @return 0 on success, an errno on failure
3792 * This convenience API allows consumers to enable multiple regulator
3793 * clients in a single API call. If any consumers cannot be enabled
3794 * then any others that were enabled will be disabled again prior to
3797 int regulator_bulk_enable(int num_consumers
,
3798 struct regulator_bulk_data
*consumers
)
3800 ASYNC_DOMAIN_EXCLUSIVE(async_domain
);
3804 for (i
= 0; i
< num_consumers
; i
++) {
3805 if (consumers
[i
].consumer
->always_on
)
3806 consumers
[i
].ret
= 0;
3808 async_schedule_domain(regulator_bulk_enable_async
,
3809 &consumers
[i
], &async_domain
);
3812 async_synchronize_full_domain(&async_domain
);
3814 /* If any consumer failed we need to unwind any that succeeded */
3815 for (i
= 0; i
< num_consumers
; i
++) {
3816 if (consumers
[i
].ret
!= 0) {
3817 ret
= consumers
[i
].ret
;
3825 for (i
= 0; i
< num_consumers
; i
++) {
3826 if (consumers
[i
].ret
< 0)
3827 pr_err("Failed to enable %s: %d\n", consumers
[i
].supply
,
3830 regulator_disable(consumers
[i
].consumer
);
3835 EXPORT_SYMBOL_GPL(regulator_bulk_enable
);
3838 * regulator_bulk_disable - disable multiple regulator consumers
3840 * @num_consumers: Number of consumers
3841 * @consumers: Consumer data; clients are stored here.
3842 * @return 0 on success, an errno on failure
3844 * This convenience API allows consumers to disable multiple regulator
3845 * clients in a single API call. If any consumers cannot be disabled
3846 * then any others that were disabled will be enabled again prior to
3849 int regulator_bulk_disable(int num_consumers
,
3850 struct regulator_bulk_data
*consumers
)
3855 for (i
= num_consumers
- 1; i
>= 0; --i
) {
3856 ret
= regulator_disable(consumers
[i
].consumer
);
3864 pr_err("Failed to disable %s: %d\n", consumers
[i
].supply
, ret
);
3865 for (++i
; i
< num_consumers
; ++i
) {
3866 r
= regulator_enable(consumers
[i
].consumer
);
3868 pr_err("Failed to re-enable %s: %d\n",
3869 consumers
[i
].supply
, r
);
3874 EXPORT_SYMBOL_GPL(regulator_bulk_disable
);
3877 * regulator_bulk_force_disable - force disable multiple regulator consumers
3879 * @num_consumers: Number of consumers
3880 * @consumers: Consumer data; clients are stored here.
3881 * @return 0 on success, an errno on failure
3883 * This convenience API allows consumers to forcibly disable multiple regulator
3884 * clients in a single API call.
3885 * NOTE: This should be used for situations when device damage will
3886 * likely occur if the regulators are not disabled (e.g. over temp).
3887 * Although regulator_force_disable function call for some consumers can
3888 * return error numbers, the function is called for all consumers.
3890 int regulator_bulk_force_disable(int num_consumers
,
3891 struct regulator_bulk_data
*consumers
)
3896 for (i
= 0; i
< num_consumers
; i
++) {
3898 regulator_force_disable(consumers
[i
].consumer
);
3900 /* Store first error for reporting */
3901 if (consumers
[i
].ret
&& !ret
)
3902 ret
= consumers
[i
].ret
;
3907 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable
);
3910 * regulator_bulk_free - free multiple regulator consumers
3912 * @num_consumers: Number of consumers
3913 * @consumers: Consumer data; clients are stored here.
3915 * This convenience API allows consumers to free multiple regulator
3916 * clients in a single API call.
3918 void regulator_bulk_free(int num_consumers
,
3919 struct regulator_bulk_data
*consumers
)
3923 for (i
= 0; i
< num_consumers
; i
++) {
3924 regulator_put(consumers
[i
].consumer
);
3925 consumers
[i
].consumer
= NULL
;
3928 EXPORT_SYMBOL_GPL(regulator_bulk_free
);
3931 * regulator_notifier_call_chain - call regulator event notifier
3932 * @rdev: regulator source
3933 * @event: notifier block
3934 * @data: callback-specific data.
3936 * Called by regulator drivers to notify clients a regulator event has
3937 * occurred. We also notify regulator clients downstream.
3938 * Note lock must be held by caller.
3940 int regulator_notifier_call_chain(struct regulator_dev
*rdev
,
3941 unsigned long event
, void *data
)
3943 lockdep_assert_held_once(&rdev
->mutex
);
3945 _notifier_call_chain(rdev
, event
, data
);
3949 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain
);
3952 * regulator_mode_to_status - convert a regulator mode into a status
3954 * @mode: Mode to convert
3956 * Convert a regulator mode into a status.
3958 int regulator_mode_to_status(unsigned int mode
)
3961 case REGULATOR_MODE_FAST
:
3962 return REGULATOR_STATUS_FAST
;
3963 case REGULATOR_MODE_NORMAL
:
3964 return REGULATOR_STATUS_NORMAL
;
3965 case REGULATOR_MODE_IDLE
:
3966 return REGULATOR_STATUS_IDLE
;
3967 case REGULATOR_MODE_STANDBY
:
3968 return REGULATOR_STATUS_STANDBY
;
3970 return REGULATOR_STATUS_UNDEFINED
;
3973 EXPORT_SYMBOL_GPL(regulator_mode_to_status
);
3975 static struct attribute
*regulator_dev_attrs
[] = {
3976 &dev_attr_name
.attr
,
3977 &dev_attr_num_users
.attr
,
3978 &dev_attr_type
.attr
,
3979 &dev_attr_microvolts
.attr
,
3980 &dev_attr_microamps
.attr
,
3981 &dev_attr_opmode
.attr
,
3982 &dev_attr_state
.attr
,
3983 &dev_attr_status
.attr
,
3984 &dev_attr_bypass
.attr
,
3985 &dev_attr_requested_microamps
.attr
,
3986 &dev_attr_min_microvolts
.attr
,
3987 &dev_attr_max_microvolts
.attr
,
3988 &dev_attr_min_microamps
.attr
,
3989 &dev_attr_max_microamps
.attr
,
3990 &dev_attr_suspend_standby_state
.attr
,
3991 &dev_attr_suspend_mem_state
.attr
,
3992 &dev_attr_suspend_disk_state
.attr
,
3993 &dev_attr_suspend_standby_microvolts
.attr
,
3994 &dev_attr_suspend_mem_microvolts
.attr
,
3995 &dev_attr_suspend_disk_microvolts
.attr
,
3996 &dev_attr_suspend_standby_mode
.attr
,
3997 &dev_attr_suspend_mem_mode
.attr
,
3998 &dev_attr_suspend_disk_mode
.attr
,
4003 * To avoid cluttering sysfs (and memory) with useless state, only
4004 * create attributes that can be meaningfully displayed.
4006 static umode_t
regulator_attr_is_visible(struct kobject
*kobj
,
4007 struct attribute
*attr
, int idx
)
4009 struct device
*dev
= kobj_to_dev(kobj
);
4010 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
4011 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
4012 umode_t mode
= attr
->mode
;
4014 /* these three are always present */
4015 if (attr
== &dev_attr_name
.attr
||
4016 attr
== &dev_attr_num_users
.attr
||
4017 attr
== &dev_attr_type
.attr
)
4020 /* some attributes need specific methods to be displayed */
4021 if (attr
== &dev_attr_microvolts
.attr
) {
4022 if ((ops
->get_voltage
&& ops
->get_voltage(rdev
) >= 0) ||
4023 (ops
->get_voltage_sel
&& ops
->get_voltage_sel(rdev
) >= 0) ||
4024 (ops
->list_voltage
&& ops
->list_voltage(rdev
, 0) >= 0) ||
4025 (rdev
->desc
->fixed_uV
&& rdev
->desc
->n_voltages
== 1))
4030 if (attr
== &dev_attr_microamps
.attr
)
4031 return ops
->get_current_limit
? mode
: 0;
4033 if (attr
== &dev_attr_opmode
.attr
)
4034 return ops
->get_mode
? mode
: 0;
4036 if (attr
== &dev_attr_state
.attr
)
4037 return (rdev
->ena_pin
|| ops
->is_enabled
) ? mode
: 0;
4039 if (attr
== &dev_attr_status
.attr
)
4040 return ops
->get_status
? mode
: 0;
4042 if (attr
== &dev_attr_bypass
.attr
)
4043 return ops
->get_bypass
? mode
: 0;
4045 /* some attributes are type-specific */
4046 if (attr
== &dev_attr_requested_microamps
.attr
)
4047 return rdev
->desc
->type
== REGULATOR_CURRENT
? mode
: 0;
4049 /* constraints need specific supporting methods */
4050 if (attr
== &dev_attr_min_microvolts
.attr
||
4051 attr
== &dev_attr_max_microvolts
.attr
)
4052 return (ops
->set_voltage
|| ops
->set_voltage_sel
) ? mode
: 0;
4054 if (attr
== &dev_attr_min_microamps
.attr
||
4055 attr
== &dev_attr_max_microamps
.attr
)
4056 return ops
->set_current_limit
? mode
: 0;
4058 if (attr
== &dev_attr_suspend_standby_state
.attr
||
4059 attr
== &dev_attr_suspend_mem_state
.attr
||
4060 attr
== &dev_attr_suspend_disk_state
.attr
)
4063 if (attr
== &dev_attr_suspend_standby_microvolts
.attr
||
4064 attr
== &dev_attr_suspend_mem_microvolts
.attr
||
4065 attr
== &dev_attr_suspend_disk_microvolts
.attr
)
4066 return ops
->set_suspend_voltage
? mode
: 0;
4068 if (attr
== &dev_attr_suspend_standby_mode
.attr
||
4069 attr
== &dev_attr_suspend_mem_mode
.attr
||
4070 attr
== &dev_attr_suspend_disk_mode
.attr
)
4071 return ops
->set_suspend_mode
? mode
: 0;
4076 static const struct attribute_group regulator_dev_group
= {
4077 .attrs
= regulator_dev_attrs
,
4078 .is_visible
= regulator_attr_is_visible
,
4081 static const struct attribute_group
*regulator_dev_groups
[] = {
4082 ®ulator_dev_group
,
4086 static void regulator_dev_release(struct device
*dev
)
4088 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
4090 kfree(rdev
->constraints
);
4091 of_node_put(rdev
->dev
.of_node
);
4095 static void rdev_init_debugfs(struct regulator_dev
*rdev
)
4097 struct device
*parent
= rdev
->dev
.parent
;
4098 const char *rname
= rdev_get_name(rdev
);
4099 char name
[NAME_MAX
];
4101 /* Avoid duplicate debugfs directory names */
4102 if (parent
&& rname
== rdev
->desc
->name
) {
4103 snprintf(name
, sizeof(name
), "%s-%s", dev_name(parent
),
4108 rdev
->debugfs
= debugfs_create_dir(rname
, debugfs_root
);
4109 if (!rdev
->debugfs
) {
4110 rdev_warn(rdev
, "Failed to create debugfs directory\n");
4114 debugfs_create_u32("use_count", 0444, rdev
->debugfs
,
4116 debugfs_create_u32("open_count", 0444, rdev
->debugfs
,
4118 debugfs_create_u32("bypass_count", 0444, rdev
->debugfs
,
4119 &rdev
->bypass_count
);
4122 static int regulator_register_resolve_supply(struct device
*dev
, void *data
)
4124 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
4126 if (regulator_resolve_supply(rdev
))
4127 rdev_dbg(rdev
, "unable to resolve supply\n");
4132 static int regulator_fill_coupling_array(struct regulator_dev
*rdev
)
4134 struct coupling_desc
*c_desc
= &rdev
->coupling_desc
;
4135 int n_coupled
= c_desc
->n_coupled
;
4136 struct regulator_dev
*c_rdev
;
4139 for (i
= 1; i
< n_coupled
; i
++) {
4140 /* already resolved */
4141 if (c_desc
->coupled_rdevs
[i
])
4144 c_rdev
= of_parse_coupled_regulator(rdev
, i
- 1);
4147 c_desc
->coupled_rdevs
[i
] = c_rdev
;
4148 c_desc
->n_resolved
++;
4152 if (rdev
->coupling_desc
.n_resolved
< n_coupled
)
4158 static int regulator_register_fill_coupling_array(struct device
*dev
,
4161 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
4163 if (!IS_ENABLED(CONFIG_OF
))
4166 if (regulator_fill_coupling_array(rdev
))
4167 rdev_dbg(rdev
, "unable to resolve coupling\n");
4172 static int regulator_resolve_coupling(struct regulator_dev
*rdev
)
4176 if (!IS_ENABLED(CONFIG_OF
))
4179 n_phandles
= of_get_n_coupled(rdev
);
4181 if (n_phandles
+ 1 > MAX_COUPLED
) {
4182 rdev_err(rdev
, "too many regulators coupled\n");
4187 * Every regulator should always have coupling descriptor filled with
4188 * at least pointer to itself.
4190 rdev
->coupling_desc
.coupled_rdevs
[0] = rdev
;
4191 rdev
->coupling_desc
.n_coupled
= n_phandles
+ 1;
4192 rdev
->coupling_desc
.n_resolved
++;
4194 /* regulator isn't coupled */
4195 if (n_phandles
== 0)
4198 /* regulator, which can't change its voltage, can't be coupled */
4199 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_VOLTAGE
)) {
4200 rdev_err(rdev
, "voltage operation not allowed\n");
4204 if (rdev
->constraints
->max_spread
<= 0) {
4205 rdev_err(rdev
, "wrong max_spread value\n");
4209 if (!of_check_coupling_data(rdev
))
4213 * After everything has been checked, try to fill rdevs array
4214 * with pointers to regulators parsed from device tree. If some
4215 * regulators are not registered yet, retry in late init call
4217 regulator_fill_coupling_array(rdev
);
4223 * regulator_register - register regulator
4224 * @regulator_desc: regulator to register
4225 * @cfg: runtime configuration for regulator
4227 * Called by regulator drivers to register a regulator.
4228 * Returns a valid pointer to struct regulator_dev on success
4229 * or an ERR_PTR() on error.
4231 struct regulator_dev
*
4232 regulator_register(const struct regulator_desc
*regulator_desc
,
4233 const struct regulator_config
*cfg
)
4235 const struct regulation_constraints
*constraints
= NULL
;
4236 const struct regulator_init_data
*init_data
;
4237 struct regulator_config
*config
= NULL
;
4238 static atomic_t regulator_no
= ATOMIC_INIT(-1);
4239 struct regulator_dev
*rdev
;
4243 if (regulator_desc
== NULL
|| cfg
== NULL
)
4244 return ERR_PTR(-EINVAL
);
4249 if (regulator_desc
->name
== NULL
|| regulator_desc
->ops
== NULL
)
4250 return ERR_PTR(-EINVAL
);
4252 if (regulator_desc
->type
!= REGULATOR_VOLTAGE
&&
4253 regulator_desc
->type
!= REGULATOR_CURRENT
)
4254 return ERR_PTR(-EINVAL
);
4256 /* Only one of each should be implemented */
4257 WARN_ON(regulator_desc
->ops
->get_voltage
&&
4258 regulator_desc
->ops
->get_voltage_sel
);
4259 WARN_ON(regulator_desc
->ops
->set_voltage
&&
4260 regulator_desc
->ops
->set_voltage_sel
);
4262 /* If we're using selectors we must implement list_voltage. */
4263 if (regulator_desc
->ops
->get_voltage_sel
&&
4264 !regulator_desc
->ops
->list_voltage
) {
4265 return ERR_PTR(-EINVAL
);
4267 if (regulator_desc
->ops
->set_voltage_sel
&&
4268 !regulator_desc
->ops
->list_voltage
) {
4269 return ERR_PTR(-EINVAL
);
4272 rdev
= kzalloc(sizeof(struct regulator_dev
), GFP_KERNEL
);
4274 return ERR_PTR(-ENOMEM
);
4277 * Duplicate the config so the driver could override it after
4278 * parsing init data.
4280 config
= kmemdup(cfg
, sizeof(*cfg
), GFP_KERNEL
);
4281 if (config
== NULL
) {
4283 return ERR_PTR(-ENOMEM
);
4286 init_data
= regulator_of_get_init_data(dev
, regulator_desc
, config
,
4287 &rdev
->dev
.of_node
);
4289 init_data
= config
->init_data
;
4290 rdev
->dev
.of_node
= of_node_get(config
->of_node
);
4293 mutex_init(&rdev
->mutex
);
4294 rdev
->reg_data
= config
->driver_data
;
4295 rdev
->owner
= regulator_desc
->owner
;
4296 rdev
->desc
= regulator_desc
;
4298 rdev
->regmap
= config
->regmap
;
4299 else if (dev_get_regmap(dev
, NULL
))
4300 rdev
->regmap
= dev_get_regmap(dev
, NULL
);
4301 else if (dev
->parent
)
4302 rdev
->regmap
= dev_get_regmap(dev
->parent
, NULL
);
4303 INIT_LIST_HEAD(&rdev
->consumer_list
);
4304 INIT_LIST_HEAD(&rdev
->list
);
4305 BLOCKING_INIT_NOTIFIER_HEAD(&rdev
->notifier
);
4306 INIT_DELAYED_WORK(&rdev
->disable_work
, regulator_disable_work
);
4308 /* preform any regulator specific init */
4309 if (init_data
&& init_data
->regulator_init
) {
4310 ret
= init_data
->regulator_init(rdev
->reg_data
);
4315 if (config
->ena_gpiod
||
4316 ((config
->ena_gpio
|| config
->ena_gpio_initialized
) &&
4317 gpio_is_valid(config
->ena_gpio
))) {
4318 mutex_lock(®ulator_list_mutex
);
4319 ret
= regulator_ena_gpio_request(rdev
, config
);
4320 mutex_unlock(®ulator_list_mutex
);
4322 rdev_err(rdev
, "Failed to request enable GPIO%d: %d\n",
4323 config
->ena_gpio
, ret
);
4328 /* register with sysfs */
4329 rdev
->dev
.class = ®ulator_class
;
4330 rdev
->dev
.parent
= dev
;
4331 dev_set_name(&rdev
->dev
, "regulator.%lu",
4332 (unsigned long) atomic_inc_return(®ulator_no
));
4334 /* set regulator constraints */
4336 constraints
= &init_data
->constraints
;
4338 if (init_data
&& init_data
->supply_regulator
)
4339 rdev
->supply_name
= init_data
->supply_regulator
;
4340 else if (regulator_desc
->supply_name
)
4341 rdev
->supply_name
= regulator_desc
->supply_name
;
4344 * Attempt to resolve the regulator supply, if specified,
4345 * but don't return an error if we fail because we will try
4346 * to resolve it again later as more regulators are added.
4348 if (regulator_resolve_supply(rdev
))
4349 rdev_dbg(rdev
, "unable to resolve supply\n");
4351 ret
= set_machine_constraints(rdev
, constraints
);
4355 mutex_lock(®ulator_list_mutex
);
4356 ret
= regulator_resolve_coupling(rdev
);
4357 mutex_unlock(®ulator_list_mutex
);
4362 /* add consumers devices */
4364 mutex_lock(®ulator_list_mutex
);
4365 for (i
= 0; i
< init_data
->num_consumer_supplies
; i
++) {
4366 ret
= set_consumer_device_supply(rdev
,
4367 init_data
->consumer_supplies
[i
].dev_name
,
4368 init_data
->consumer_supplies
[i
].supply
);
4370 mutex_unlock(®ulator_list_mutex
);
4371 dev_err(dev
, "Failed to set supply %s\n",
4372 init_data
->consumer_supplies
[i
].supply
);
4373 goto unset_supplies
;
4376 mutex_unlock(®ulator_list_mutex
);
4379 if (!rdev
->desc
->ops
->get_voltage
&&
4380 !rdev
->desc
->ops
->list_voltage
&&
4381 !rdev
->desc
->fixed_uV
)
4382 rdev
->is_switch
= true;
4384 ret
= device_register(&rdev
->dev
);
4386 put_device(&rdev
->dev
);
4387 goto unset_supplies
;
4390 dev_set_drvdata(&rdev
->dev
, rdev
);
4391 rdev_init_debugfs(rdev
);
4393 /* try to resolve regulators supply since a new one was registered */
4394 class_for_each_device(®ulator_class
, NULL
, NULL
,
4395 regulator_register_resolve_supply
);
4400 mutex_lock(®ulator_list_mutex
);
4401 unset_regulator_supplies(rdev
);
4402 mutex_unlock(®ulator_list_mutex
);
4404 kfree(rdev
->constraints
);
4405 mutex_lock(®ulator_list_mutex
);
4406 regulator_ena_gpio_free(rdev
);
4407 mutex_unlock(®ulator_list_mutex
);
4411 return ERR_PTR(ret
);
4413 EXPORT_SYMBOL_GPL(regulator_register
);
4416 * regulator_unregister - unregister regulator
4417 * @rdev: regulator to unregister
4419 * Called by regulator drivers to unregister a regulator.
4421 void regulator_unregister(struct regulator_dev
*rdev
)
4427 while (rdev
->use_count
--)
4428 regulator_disable(rdev
->supply
);
4429 regulator_put(rdev
->supply
);
4431 mutex_lock(®ulator_list_mutex
);
4432 debugfs_remove_recursive(rdev
->debugfs
);
4433 flush_work(&rdev
->disable_work
.work
);
4434 WARN_ON(rdev
->open_count
);
4435 unset_regulator_supplies(rdev
);
4436 list_del(&rdev
->list
);
4437 regulator_ena_gpio_free(rdev
);
4438 mutex_unlock(®ulator_list_mutex
);
4439 device_unregister(&rdev
->dev
);
4441 EXPORT_SYMBOL_GPL(regulator_unregister
);
4443 #ifdef CONFIG_SUSPEND
4444 static int _regulator_suspend_late(struct device
*dev
, void *data
)
4446 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
4447 suspend_state_t
*state
= data
;
4450 regulator_lock(rdev
);
4451 ret
= suspend_set_state(rdev
, *state
);
4452 regulator_unlock(rdev
);
4458 * regulator_suspend_late - prepare regulators for system wide suspend
4459 * @state: system suspend state
4461 * Configure each regulator with it's suspend operating parameters for state.
4463 static int regulator_suspend_late(struct device
*dev
)
4465 suspend_state_t state
= pm_suspend_target_state
;
4467 return class_for_each_device(®ulator_class
, NULL
, &state
,
4468 _regulator_suspend_late
);
4471 static int _regulator_resume_early(struct device
*dev
, void *data
)
4474 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
4475 suspend_state_t
*state
= data
;
4476 struct regulator_state
*rstate
;
4478 rstate
= regulator_get_suspend_state(rdev
, *state
);
4482 regulator_lock(rdev
);
4484 if (rdev
->desc
->ops
->resume_early
&&
4485 (rstate
->enabled
== ENABLE_IN_SUSPEND
||
4486 rstate
->enabled
== DISABLE_IN_SUSPEND
))
4487 ret
= rdev
->desc
->ops
->resume_early(rdev
);
4489 regulator_unlock(rdev
);
4494 static int regulator_resume_early(struct device
*dev
)
4496 suspend_state_t state
= pm_suspend_target_state
;
4498 return class_for_each_device(®ulator_class
, NULL
, &state
,
4499 _regulator_resume_early
);
4502 #else /* !CONFIG_SUSPEND */
4504 #define regulator_suspend_late NULL
4505 #define regulator_resume_early NULL
4507 #endif /* !CONFIG_SUSPEND */
4510 static const struct dev_pm_ops __maybe_unused regulator_pm_ops
= {
4511 .suspend_late
= regulator_suspend_late
,
4512 .resume_early
= regulator_resume_early
,
4516 struct class regulator_class
= {
4517 .name
= "regulator",
4518 .dev_release
= regulator_dev_release
,
4519 .dev_groups
= regulator_dev_groups
,
4521 .pm
= ®ulator_pm_ops
,
4525 * regulator_has_full_constraints - the system has fully specified constraints
4527 * Calling this function will cause the regulator API to disable all
4528 * regulators which have a zero use count and don't have an always_on
4529 * constraint in a late_initcall.
4531 * The intention is that this will become the default behaviour in a
4532 * future kernel release so users are encouraged to use this facility
4535 void regulator_has_full_constraints(void)
4537 has_full_constraints
= 1;
4539 EXPORT_SYMBOL_GPL(regulator_has_full_constraints
);
4542 * rdev_get_drvdata - get rdev regulator driver data
4545 * Get rdev regulator driver private data. This call can be used in the
4546 * regulator driver context.
4548 void *rdev_get_drvdata(struct regulator_dev
*rdev
)
4550 return rdev
->reg_data
;
4552 EXPORT_SYMBOL_GPL(rdev_get_drvdata
);
4555 * regulator_get_drvdata - get regulator driver data
4556 * @regulator: regulator
4558 * Get regulator driver private data. This call can be used in the consumer
4559 * driver context when non API regulator specific functions need to be called.
4561 void *regulator_get_drvdata(struct regulator
*regulator
)
4563 return regulator
->rdev
->reg_data
;
4565 EXPORT_SYMBOL_GPL(regulator_get_drvdata
);
4568 * regulator_set_drvdata - set regulator driver data
4569 * @regulator: regulator
4572 void regulator_set_drvdata(struct regulator
*regulator
, void *data
)
4574 regulator
->rdev
->reg_data
= data
;
4576 EXPORT_SYMBOL_GPL(regulator_set_drvdata
);
4579 * regulator_get_id - get regulator ID
4582 int rdev_get_id(struct regulator_dev
*rdev
)
4584 return rdev
->desc
->id
;
4586 EXPORT_SYMBOL_GPL(rdev_get_id
);
4588 struct device
*rdev_get_dev(struct regulator_dev
*rdev
)
4592 EXPORT_SYMBOL_GPL(rdev_get_dev
);
4594 void *regulator_get_init_drvdata(struct regulator_init_data
*reg_init_data
)
4596 return reg_init_data
->driver_data
;
4598 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata
);
4600 #ifdef CONFIG_DEBUG_FS
4601 static int supply_map_show(struct seq_file
*sf
, void *data
)
4603 struct regulator_map
*map
;
4605 list_for_each_entry(map
, ®ulator_map_list
, list
) {
4606 seq_printf(sf
, "%s -> %s.%s\n",
4607 rdev_get_name(map
->regulator
), map
->dev_name
,
4614 static int supply_map_open(struct inode
*inode
, struct file
*file
)
4616 return single_open(file
, supply_map_show
, inode
->i_private
);
4620 static const struct file_operations supply_map_fops
= {
4621 #ifdef CONFIG_DEBUG_FS
4622 .open
= supply_map_open
,
4624 .llseek
= seq_lseek
,
4625 .release
= single_release
,
4629 #ifdef CONFIG_DEBUG_FS
4630 struct summary_data
{
4632 struct regulator_dev
*parent
;
4636 static void regulator_summary_show_subtree(struct seq_file
*s
,
4637 struct regulator_dev
*rdev
,
4640 static int regulator_summary_show_children(struct device
*dev
, void *data
)
4642 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
4643 struct summary_data
*summary_data
= data
;
4645 if (rdev
->supply
&& rdev
->supply
->rdev
== summary_data
->parent
)
4646 regulator_summary_show_subtree(summary_data
->s
, rdev
,
4647 summary_data
->level
+ 1);
4652 static void regulator_summary_show_subtree(struct seq_file
*s
,
4653 struct regulator_dev
*rdev
,
4656 struct regulation_constraints
*c
;
4657 struct regulator
*consumer
;
4658 struct summary_data summary_data
;
4663 seq_printf(s
, "%*s%-*s %3d %4d %6d ",
4665 30 - level
* 3, rdev_get_name(rdev
),
4666 rdev
->use_count
, rdev
->open_count
, rdev
->bypass_count
);
4668 seq_printf(s
, "%5dmV ", _regulator_get_voltage(rdev
) / 1000);
4669 seq_printf(s
, "%5dmA ", _regulator_get_current_limit(rdev
) / 1000);
4671 c
= rdev
->constraints
;
4673 switch (rdev
->desc
->type
) {
4674 case REGULATOR_VOLTAGE
:
4675 seq_printf(s
, "%5dmV %5dmV ",
4676 c
->min_uV
/ 1000, c
->max_uV
/ 1000);
4678 case REGULATOR_CURRENT
:
4679 seq_printf(s
, "%5dmA %5dmA ",
4680 c
->min_uA
/ 1000, c
->max_uA
/ 1000);
4687 list_for_each_entry(consumer
, &rdev
->consumer_list
, list
) {
4688 if (consumer
->dev
&& consumer
->dev
->class == ®ulator_class
)
4691 seq_printf(s
, "%*s%-*s ",
4692 (level
+ 1) * 3 + 1, "",
4693 30 - (level
+ 1) * 3,
4694 consumer
->dev
? dev_name(consumer
->dev
) : "deviceless");
4696 switch (rdev
->desc
->type
) {
4697 case REGULATOR_VOLTAGE
:
4698 seq_printf(s
, "%37dmV %5dmV",
4699 consumer
->voltage
[PM_SUSPEND_ON
].min_uV
/ 1000,
4700 consumer
->voltage
[PM_SUSPEND_ON
].max_uV
/ 1000);
4702 case REGULATOR_CURRENT
:
4710 summary_data
.level
= level
;
4711 summary_data
.parent
= rdev
;
4713 class_for_each_device(®ulator_class
, NULL
, &summary_data
,
4714 regulator_summary_show_children
);
4717 static int regulator_summary_show_roots(struct device
*dev
, void *data
)
4719 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
4720 struct seq_file
*s
= data
;
4723 regulator_summary_show_subtree(s
, rdev
, 0);
4728 static int regulator_summary_show(struct seq_file
*s
, void *data
)
4730 seq_puts(s
, " regulator use open bypass voltage current min max\n");
4731 seq_puts(s
, "-------------------------------------------------------------------------------\n");
4733 class_for_each_device(®ulator_class
, NULL
, s
,
4734 regulator_summary_show_roots
);
4739 static int regulator_summary_open(struct inode
*inode
, struct file
*file
)
4741 return single_open(file
, regulator_summary_show
, inode
->i_private
);
4745 static const struct file_operations regulator_summary_fops
= {
4746 #ifdef CONFIG_DEBUG_FS
4747 .open
= regulator_summary_open
,
4749 .llseek
= seq_lseek
,
4750 .release
= single_release
,
4754 static int __init
regulator_init(void)
4758 ret
= class_register(®ulator_class
);
4760 debugfs_root
= debugfs_create_dir("regulator", NULL
);
4762 pr_warn("regulator: Failed to create debugfs directory\n");
4764 debugfs_create_file("supply_map", 0444, debugfs_root
, NULL
,
4767 debugfs_create_file("regulator_summary", 0444, debugfs_root
,
4768 NULL
, ®ulator_summary_fops
);
4770 regulator_dummy_init();
4775 /* init early to allow our consumers to complete system booting */
4776 core_initcall(regulator_init
);
4778 static int __init
regulator_late_cleanup(struct device
*dev
, void *data
)
4780 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
4781 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
4782 struct regulation_constraints
*c
= rdev
->constraints
;
4785 if (c
&& c
->always_on
)
4788 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_STATUS
))
4791 regulator_lock(rdev
);
4793 if (rdev
->use_count
)
4796 /* If we can't read the status assume it's on. */
4797 if (ops
->is_enabled
)
4798 enabled
= ops
->is_enabled(rdev
);
4805 if (have_full_constraints()) {
4806 /* We log since this may kill the system if it goes
4808 rdev_info(rdev
, "disabling\n");
4809 ret
= _regulator_do_disable(rdev
);
4811 rdev_err(rdev
, "couldn't disable: %d\n", ret
);
4813 /* The intention is that in future we will
4814 * assume that full constraints are provided
4815 * so warn even if we aren't going to do
4818 rdev_warn(rdev
, "incomplete constraints, leaving on\n");
4822 regulator_unlock(rdev
);
4827 static int __init
regulator_init_complete(void)
4830 * Since DT doesn't provide an idiomatic mechanism for
4831 * enabling full constraints and since it's much more natural
4832 * with DT to provide them just assume that a DT enabled
4833 * system has full constraints.
4835 if (of_have_populated_dt())
4836 has_full_constraints
= true;
4839 * Regulators may had failed to resolve their input supplies
4840 * when were registered, either because the input supply was
4841 * not registered yet or because its parent device was not
4842 * bound yet. So attempt to resolve the input supplies for
4843 * pending regulators before trying to disable unused ones.
4845 class_for_each_device(®ulator_class
, NULL
, NULL
,
4846 regulator_register_resolve_supply
);
4848 /* If we have a full configuration then disable any regulators
4849 * we have permission to change the status for and which are
4850 * not in use or always_on. This is effectively the default
4851 * for DT and ACPI as they have full constraints.
4853 class_for_each_device(®ulator_class
, NULL
, NULL
,
4854 regulator_late_cleanup
);
4856 class_for_each_device(®ulator_class
, NULL
, NULL
,
4857 regulator_register_fill_coupling_array
);
4861 late_initcall_sync(regulator_init_complete
);