perf tools: Streamline bpf examples and headers installation
[linux/fpc-iii.git] / drivers / regulator / core.c
blob6ed568b96c0ec1edf77cc2b4059c36d51b58cb93
1 /*
2 * core.c -- Voltage/Current Regulator framework.
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
39 #include "dummy.h"
40 #include "internal.h"
42 #define rdev_crit(rdev, fmt, ...) \
43 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...) \
45 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...) \
47 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...) \
49 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...) \
51 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_map_list);
55 static LIST_HEAD(regulator_ena_gpio_list);
56 static LIST_HEAD(regulator_supply_alias_list);
57 static bool has_full_constraints;
59 static struct dentry *debugfs_root;
62 * struct regulator_map
64 * Used to provide symbolic supply names to devices.
66 struct regulator_map {
67 struct list_head list;
68 const char *dev_name; /* The dev_name() for the consumer */
69 const char *supply;
70 struct regulator_dev *regulator;
74 * struct regulator_enable_gpio
76 * Management for shared enable GPIO pin
78 struct regulator_enable_gpio {
79 struct list_head list;
80 struct gpio_desc *gpiod;
81 u32 enable_count; /* a number of enabled shared GPIO */
82 u32 request_count; /* a number of requested shared GPIO */
83 unsigned int ena_gpio_invert:1;
87 * struct regulator_supply_alias
89 * Used to map lookups for a supply onto an alternative device.
91 struct regulator_supply_alias {
92 struct list_head list;
93 struct device *src_dev;
94 const char *src_supply;
95 struct device *alias_dev;
96 const char *alias_supply;
99 static int _regulator_is_enabled(struct regulator_dev *rdev);
100 static int _regulator_disable(struct regulator_dev *rdev);
101 static int _regulator_get_voltage(struct regulator_dev *rdev);
102 static int _regulator_get_current_limit(struct regulator_dev *rdev);
103 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
104 static int _notifier_call_chain(struct regulator_dev *rdev,
105 unsigned long event, void *data);
106 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
107 int min_uV, int max_uV);
108 static struct regulator *create_regulator(struct regulator_dev *rdev,
109 struct device *dev,
110 const char *supply_name);
111 static void _regulator_put(struct regulator *regulator);
113 static const char *rdev_get_name(struct regulator_dev *rdev)
115 if (rdev->constraints && rdev->constraints->name)
116 return rdev->constraints->name;
117 else if (rdev->desc->name)
118 return rdev->desc->name;
119 else
120 return "";
123 static bool have_full_constraints(void)
125 return has_full_constraints || of_have_populated_dt();
128 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
130 if (!rdev->constraints) {
131 rdev_err(rdev, "no constraints\n");
132 return false;
135 if (rdev->constraints->valid_ops_mask & ops)
136 return true;
138 return false;
141 static inline struct regulator_dev *rdev_get_supply(struct regulator_dev *rdev)
143 if (rdev && rdev->supply)
144 return rdev->supply->rdev;
146 return NULL;
150 * regulator_lock_nested - lock a single regulator
151 * @rdev: regulator source
152 * @subclass: mutex subclass used for lockdep
154 * This function can be called many times by one task on
155 * a single regulator and its mutex will be locked only
156 * once. If a task, which is calling this function is other
157 * than the one, which initially locked the mutex, it will
158 * wait on mutex.
160 static void regulator_lock_nested(struct regulator_dev *rdev,
161 unsigned int subclass)
163 if (!mutex_trylock(&rdev->mutex)) {
164 if (rdev->mutex_owner == current) {
165 rdev->ref_cnt++;
166 return;
168 mutex_lock_nested(&rdev->mutex, subclass);
171 rdev->ref_cnt = 1;
172 rdev->mutex_owner = current;
175 static inline void regulator_lock(struct regulator_dev *rdev)
177 regulator_lock_nested(rdev, 0);
181 * regulator_unlock - unlock a single regulator
182 * @rdev: regulator_source
184 * This function unlocks the mutex when the
185 * reference counter reaches 0.
187 static void regulator_unlock(struct regulator_dev *rdev)
189 if (rdev->ref_cnt != 0) {
190 rdev->ref_cnt--;
192 if (!rdev->ref_cnt) {
193 rdev->mutex_owner = NULL;
194 mutex_unlock(&rdev->mutex);
200 * regulator_lock_supply - lock a regulator and its supplies
201 * @rdev: regulator source
203 static void regulator_lock_supply(struct regulator_dev *rdev)
205 int i;
207 for (i = 0; rdev; rdev = rdev_get_supply(rdev), i++)
208 regulator_lock_nested(rdev, i);
212 * regulator_unlock_supply - unlock a regulator and its supplies
213 * @rdev: regulator source
215 static void regulator_unlock_supply(struct regulator_dev *rdev)
217 struct regulator *supply;
219 while (1) {
220 regulator_unlock(rdev);
221 supply = rdev->supply;
223 if (!rdev->supply)
224 return;
226 rdev = supply->rdev;
231 * of_get_regulator - get a regulator device node based on supply name
232 * @dev: Device pointer for the consumer (of regulator) device
233 * @supply: regulator supply name
235 * Extract the regulator device node corresponding to the supply name.
236 * returns the device node corresponding to the regulator if found, else
237 * returns NULL.
239 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
241 struct device_node *regnode = NULL;
242 char prop_name[32]; /* 32 is max size of property name */
244 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
246 snprintf(prop_name, 32, "%s-supply", supply);
247 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
249 if (!regnode) {
250 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
251 prop_name, dev->of_node);
252 return NULL;
254 return regnode;
257 /* Platform voltage constraint check */
258 static int regulator_check_voltage(struct regulator_dev *rdev,
259 int *min_uV, int *max_uV)
261 BUG_ON(*min_uV > *max_uV);
263 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
264 rdev_err(rdev, "voltage operation not allowed\n");
265 return -EPERM;
268 if (*max_uV > rdev->constraints->max_uV)
269 *max_uV = rdev->constraints->max_uV;
270 if (*min_uV < rdev->constraints->min_uV)
271 *min_uV = rdev->constraints->min_uV;
273 if (*min_uV > *max_uV) {
274 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
275 *min_uV, *max_uV);
276 return -EINVAL;
279 return 0;
282 /* return 0 if the state is valid */
283 static int regulator_check_states(suspend_state_t state)
285 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
288 /* Make sure we select a voltage that suits the needs of all
289 * regulator consumers
291 static int regulator_check_consumers(struct regulator_dev *rdev,
292 int *min_uV, int *max_uV,
293 suspend_state_t state)
295 struct regulator *regulator;
296 struct regulator_voltage *voltage;
298 list_for_each_entry(regulator, &rdev->consumer_list, list) {
299 voltage = &regulator->voltage[state];
301 * Assume consumers that didn't say anything are OK
302 * with anything in the constraint range.
304 if (!voltage->min_uV && !voltage->max_uV)
305 continue;
307 if (*max_uV > voltage->max_uV)
308 *max_uV = voltage->max_uV;
309 if (*min_uV < voltage->min_uV)
310 *min_uV = voltage->min_uV;
313 if (*min_uV > *max_uV) {
314 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
315 *min_uV, *max_uV);
316 return -EINVAL;
319 return 0;
322 /* current constraint check */
323 static int regulator_check_current_limit(struct regulator_dev *rdev,
324 int *min_uA, int *max_uA)
326 BUG_ON(*min_uA > *max_uA);
328 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
329 rdev_err(rdev, "current operation not allowed\n");
330 return -EPERM;
333 if (*max_uA > rdev->constraints->max_uA)
334 *max_uA = rdev->constraints->max_uA;
335 if (*min_uA < rdev->constraints->min_uA)
336 *min_uA = rdev->constraints->min_uA;
338 if (*min_uA > *max_uA) {
339 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
340 *min_uA, *max_uA);
341 return -EINVAL;
344 return 0;
347 /* operating mode constraint check */
348 static int regulator_mode_constrain(struct regulator_dev *rdev,
349 unsigned int *mode)
351 switch (*mode) {
352 case REGULATOR_MODE_FAST:
353 case REGULATOR_MODE_NORMAL:
354 case REGULATOR_MODE_IDLE:
355 case REGULATOR_MODE_STANDBY:
356 break;
357 default:
358 rdev_err(rdev, "invalid mode %x specified\n", *mode);
359 return -EINVAL;
362 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
363 rdev_err(rdev, "mode operation not allowed\n");
364 return -EPERM;
367 /* The modes are bitmasks, the most power hungry modes having
368 * the lowest values. If the requested mode isn't supported
369 * try higher modes. */
370 while (*mode) {
371 if (rdev->constraints->valid_modes_mask & *mode)
372 return 0;
373 *mode /= 2;
376 return -EINVAL;
379 static inline struct regulator_state *
380 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
382 if (rdev->constraints == NULL)
383 return NULL;
385 switch (state) {
386 case PM_SUSPEND_STANDBY:
387 return &rdev->constraints->state_standby;
388 case PM_SUSPEND_MEM:
389 return &rdev->constraints->state_mem;
390 case PM_SUSPEND_MAX:
391 return &rdev->constraints->state_disk;
392 default:
393 return NULL;
397 static ssize_t regulator_uV_show(struct device *dev,
398 struct device_attribute *attr, char *buf)
400 struct regulator_dev *rdev = dev_get_drvdata(dev);
401 ssize_t ret;
403 regulator_lock(rdev);
404 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
405 regulator_unlock(rdev);
407 return ret;
409 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
411 static ssize_t regulator_uA_show(struct device *dev,
412 struct device_attribute *attr, char *buf)
414 struct regulator_dev *rdev = dev_get_drvdata(dev);
416 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
418 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
420 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
421 char *buf)
423 struct regulator_dev *rdev = dev_get_drvdata(dev);
425 return sprintf(buf, "%s\n", rdev_get_name(rdev));
427 static DEVICE_ATTR_RO(name);
429 static ssize_t regulator_print_opmode(char *buf, int mode)
431 switch (mode) {
432 case REGULATOR_MODE_FAST:
433 return sprintf(buf, "fast\n");
434 case REGULATOR_MODE_NORMAL:
435 return sprintf(buf, "normal\n");
436 case REGULATOR_MODE_IDLE:
437 return sprintf(buf, "idle\n");
438 case REGULATOR_MODE_STANDBY:
439 return sprintf(buf, "standby\n");
441 return sprintf(buf, "unknown\n");
444 static ssize_t regulator_opmode_show(struct device *dev,
445 struct device_attribute *attr, char *buf)
447 struct regulator_dev *rdev = dev_get_drvdata(dev);
449 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
451 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
453 static ssize_t regulator_print_state(char *buf, int state)
455 if (state > 0)
456 return sprintf(buf, "enabled\n");
457 else if (state == 0)
458 return sprintf(buf, "disabled\n");
459 else
460 return sprintf(buf, "unknown\n");
463 static ssize_t regulator_state_show(struct device *dev,
464 struct device_attribute *attr, char *buf)
466 struct regulator_dev *rdev = dev_get_drvdata(dev);
467 ssize_t ret;
469 regulator_lock(rdev);
470 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
471 regulator_unlock(rdev);
473 return ret;
475 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
477 static ssize_t regulator_status_show(struct device *dev,
478 struct device_attribute *attr, char *buf)
480 struct regulator_dev *rdev = dev_get_drvdata(dev);
481 int status;
482 char *label;
484 status = rdev->desc->ops->get_status(rdev);
485 if (status < 0)
486 return status;
488 switch (status) {
489 case REGULATOR_STATUS_OFF:
490 label = "off";
491 break;
492 case REGULATOR_STATUS_ON:
493 label = "on";
494 break;
495 case REGULATOR_STATUS_ERROR:
496 label = "error";
497 break;
498 case REGULATOR_STATUS_FAST:
499 label = "fast";
500 break;
501 case REGULATOR_STATUS_NORMAL:
502 label = "normal";
503 break;
504 case REGULATOR_STATUS_IDLE:
505 label = "idle";
506 break;
507 case REGULATOR_STATUS_STANDBY:
508 label = "standby";
509 break;
510 case REGULATOR_STATUS_BYPASS:
511 label = "bypass";
512 break;
513 case REGULATOR_STATUS_UNDEFINED:
514 label = "undefined";
515 break;
516 default:
517 return -ERANGE;
520 return sprintf(buf, "%s\n", label);
522 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
524 static ssize_t regulator_min_uA_show(struct device *dev,
525 struct device_attribute *attr, char *buf)
527 struct regulator_dev *rdev = dev_get_drvdata(dev);
529 if (!rdev->constraints)
530 return sprintf(buf, "constraint not defined\n");
532 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
534 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
536 static ssize_t regulator_max_uA_show(struct device *dev,
537 struct device_attribute *attr, char *buf)
539 struct regulator_dev *rdev = dev_get_drvdata(dev);
541 if (!rdev->constraints)
542 return sprintf(buf, "constraint not defined\n");
544 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
546 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
548 static ssize_t regulator_min_uV_show(struct device *dev,
549 struct device_attribute *attr, char *buf)
551 struct regulator_dev *rdev = dev_get_drvdata(dev);
553 if (!rdev->constraints)
554 return sprintf(buf, "constraint not defined\n");
556 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
558 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
560 static ssize_t regulator_max_uV_show(struct device *dev,
561 struct device_attribute *attr, char *buf)
563 struct regulator_dev *rdev = dev_get_drvdata(dev);
565 if (!rdev->constraints)
566 return sprintf(buf, "constraint not defined\n");
568 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
570 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
572 static ssize_t regulator_total_uA_show(struct device *dev,
573 struct device_attribute *attr, char *buf)
575 struct regulator_dev *rdev = dev_get_drvdata(dev);
576 struct regulator *regulator;
577 int uA = 0;
579 regulator_lock(rdev);
580 list_for_each_entry(regulator, &rdev->consumer_list, list)
581 uA += regulator->uA_load;
582 regulator_unlock(rdev);
583 return sprintf(buf, "%d\n", uA);
585 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
587 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
588 char *buf)
590 struct regulator_dev *rdev = dev_get_drvdata(dev);
591 return sprintf(buf, "%d\n", rdev->use_count);
593 static DEVICE_ATTR_RO(num_users);
595 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
596 char *buf)
598 struct regulator_dev *rdev = dev_get_drvdata(dev);
600 switch (rdev->desc->type) {
601 case REGULATOR_VOLTAGE:
602 return sprintf(buf, "voltage\n");
603 case REGULATOR_CURRENT:
604 return sprintf(buf, "current\n");
606 return sprintf(buf, "unknown\n");
608 static DEVICE_ATTR_RO(type);
610 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
611 struct device_attribute *attr, char *buf)
613 struct regulator_dev *rdev = dev_get_drvdata(dev);
615 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
617 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
618 regulator_suspend_mem_uV_show, NULL);
620 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
621 struct device_attribute *attr, char *buf)
623 struct regulator_dev *rdev = dev_get_drvdata(dev);
625 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
627 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
628 regulator_suspend_disk_uV_show, NULL);
630 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
631 struct device_attribute *attr, char *buf)
633 struct regulator_dev *rdev = dev_get_drvdata(dev);
635 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
637 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
638 regulator_suspend_standby_uV_show, NULL);
640 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
641 struct device_attribute *attr, char *buf)
643 struct regulator_dev *rdev = dev_get_drvdata(dev);
645 return regulator_print_opmode(buf,
646 rdev->constraints->state_mem.mode);
648 static DEVICE_ATTR(suspend_mem_mode, 0444,
649 regulator_suspend_mem_mode_show, NULL);
651 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
652 struct device_attribute *attr, char *buf)
654 struct regulator_dev *rdev = dev_get_drvdata(dev);
656 return regulator_print_opmode(buf,
657 rdev->constraints->state_disk.mode);
659 static DEVICE_ATTR(suspend_disk_mode, 0444,
660 regulator_suspend_disk_mode_show, NULL);
662 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
663 struct device_attribute *attr, char *buf)
665 struct regulator_dev *rdev = dev_get_drvdata(dev);
667 return regulator_print_opmode(buf,
668 rdev->constraints->state_standby.mode);
670 static DEVICE_ATTR(suspend_standby_mode, 0444,
671 regulator_suspend_standby_mode_show, NULL);
673 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
674 struct device_attribute *attr, char *buf)
676 struct regulator_dev *rdev = dev_get_drvdata(dev);
678 return regulator_print_state(buf,
679 rdev->constraints->state_mem.enabled);
681 static DEVICE_ATTR(suspend_mem_state, 0444,
682 regulator_suspend_mem_state_show, NULL);
684 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
685 struct device_attribute *attr, char *buf)
687 struct regulator_dev *rdev = dev_get_drvdata(dev);
689 return regulator_print_state(buf,
690 rdev->constraints->state_disk.enabled);
692 static DEVICE_ATTR(suspend_disk_state, 0444,
693 regulator_suspend_disk_state_show, NULL);
695 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
696 struct device_attribute *attr, char *buf)
698 struct regulator_dev *rdev = dev_get_drvdata(dev);
700 return regulator_print_state(buf,
701 rdev->constraints->state_standby.enabled);
703 static DEVICE_ATTR(suspend_standby_state, 0444,
704 regulator_suspend_standby_state_show, NULL);
706 static ssize_t regulator_bypass_show(struct device *dev,
707 struct device_attribute *attr, char *buf)
709 struct regulator_dev *rdev = dev_get_drvdata(dev);
710 const char *report;
711 bool bypass;
712 int ret;
714 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
716 if (ret != 0)
717 report = "unknown";
718 else if (bypass)
719 report = "enabled";
720 else
721 report = "disabled";
723 return sprintf(buf, "%s\n", report);
725 static DEVICE_ATTR(bypass, 0444,
726 regulator_bypass_show, NULL);
728 /* Calculate the new optimum regulator operating mode based on the new total
729 * consumer load. All locks held by caller */
730 static int drms_uA_update(struct regulator_dev *rdev)
732 struct regulator *sibling;
733 int current_uA = 0, output_uV, input_uV, err;
734 unsigned int mode;
736 lockdep_assert_held_once(&rdev->mutex);
739 * first check to see if we can set modes at all, otherwise just
740 * tell the consumer everything is OK.
742 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
743 return 0;
745 if (!rdev->desc->ops->get_optimum_mode &&
746 !rdev->desc->ops->set_load)
747 return 0;
749 if (!rdev->desc->ops->set_mode &&
750 !rdev->desc->ops->set_load)
751 return -EINVAL;
753 /* calc total requested load */
754 list_for_each_entry(sibling, &rdev->consumer_list, list)
755 current_uA += sibling->uA_load;
757 current_uA += rdev->constraints->system_load;
759 if (rdev->desc->ops->set_load) {
760 /* set the optimum mode for our new total regulator load */
761 err = rdev->desc->ops->set_load(rdev, current_uA);
762 if (err < 0)
763 rdev_err(rdev, "failed to set load %d\n", current_uA);
764 } else {
765 /* get output voltage */
766 output_uV = _regulator_get_voltage(rdev);
767 if (output_uV <= 0) {
768 rdev_err(rdev, "invalid output voltage found\n");
769 return -EINVAL;
772 /* get input voltage */
773 input_uV = 0;
774 if (rdev->supply)
775 input_uV = regulator_get_voltage(rdev->supply);
776 if (input_uV <= 0)
777 input_uV = rdev->constraints->input_uV;
778 if (input_uV <= 0) {
779 rdev_err(rdev, "invalid input voltage found\n");
780 return -EINVAL;
783 /* now get the optimum mode for our new total regulator load */
784 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
785 output_uV, current_uA);
787 /* check the new mode is allowed */
788 err = regulator_mode_constrain(rdev, &mode);
789 if (err < 0) {
790 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
791 current_uA, input_uV, output_uV);
792 return err;
795 err = rdev->desc->ops->set_mode(rdev, mode);
796 if (err < 0)
797 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
800 return err;
803 static int suspend_set_state(struct regulator_dev *rdev,
804 suspend_state_t state)
806 int ret = 0;
807 struct regulator_state *rstate;
809 rstate = regulator_get_suspend_state(rdev, state);
810 if (rstate == NULL)
811 return 0;
813 /* If we have no suspend mode configration don't set anything;
814 * only warn if the driver implements set_suspend_voltage or
815 * set_suspend_mode callback.
817 if (rstate->enabled != ENABLE_IN_SUSPEND &&
818 rstate->enabled != DISABLE_IN_SUSPEND) {
819 if (rdev->desc->ops->set_suspend_voltage ||
820 rdev->desc->ops->set_suspend_mode)
821 rdev_warn(rdev, "No configuration\n");
822 return 0;
825 if (rstate->enabled == ENABLE_IN_SUSPEND &&
826 rdev->desc->ops->set_suspend_enable)
827 ret = rdev->desc->ops->set_suspend_enable(rdev);
828 else if (rstate->enabled == DISABLE_IN_SUSPEND &&
829 rdev->desc->ops->set_suspend_disable)
830 ret = rdev->desc->ops->set_suspend_disable(rdev);
831 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
832 ret = 0;
834 if (ret < 0) {
835 rdev_err(rdev, "failed to enabled/disable\n");
836 return ret;
839 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
840 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
841 if (ret < 0) {
842 rdev_err(rdev, "failed to set voltage\n");
843 return ret;
847 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
848 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
849 if (ret < 0) {
850 rdev_err(rdev, "failed to set mode\n");
851 return ret;
855 return ret;
858 static void print_constraints(struct regulator_dev *rdev)
860 struct regulation_constraints *constraints = rdev->constraints;
861 char buf[160] = "";
862 size_t len = sizeof(buf) - 1;
863 int count = 0;
864 int ret;
866 if (constraints->min_uV && constraints->max_uV) {
867 if (constraints->min_uV == constraints->max_uV)
868 count += scnprintf(buf + count, len - count, "%d mV ",
869 constraints->min_uV / 1000);
870 else
871 count += scnprintf(buf + count, len - count,
872 "%d <--> %d mV ",
873 constraints->min_uV / 1000,
874 constraints->max_uV / 1000);
877 if (!constraints->min_uV ||
878 constraints->min_uV != constraints->max_uV) {
879 ret = _regulator_get_voltage(rdev);
880 if (ret > 0)
881 count += scnprintf(buf + count, len - count,
882 "at %d mV ", ret / 1000);
885 if (constraints->uV_offset)
886 count += scnprintf(buf + count, len - count, "%dmV offset ",
887 constraints->uV_offset / 1000);
889 if (constraints->min_uA && constraints->max_uA) {
890 if (constraints->min_uA == constraints->max_uA)
891 count += scnprintf(buf + count, len - count, "%d mA ",
892 constraints->min_uA / 1000);
893 else
894 count += scnprintf(buf + count, len - count,
895 "%d <--> %d mA ",
896 constraints->min_uA / 1000,
897 constraints->max_uA / 1000);
900 if (!constraints->min_uA ||
901 constraints->min_uA != constraints->max_uA) {
902 ret = _regulator_get_current_limit(rdev);
903 if (ret > 0)
904 count += scnprintf(buf + count, len - count,
905 "at %d mA ", ret / 1000);
908 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
909 count += scnprintf(buf + count, len - count, "fast ");
910 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
911 count += scnprintf(buf + count, len - count, "normal ");
912 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
913 count += scnprintf(buf + count, len - count, "idle ");
914 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
915 count += scnprintf(buf + count, len - count, "standby");
917 if (!count)
918 scnprintf(buf, len, "no parameters");
920 rdev_dbg(rdev, "%s\n", buf);
922 if ((constraints->min_uV != constraints->max_uV) &&
923 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
924 rdev_warn(rdev,
925 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
928 static int machine_constraints_voltage(struct regulator_dev *rdev,
929 struct regulation_constraints *constraints)
931 const struct regulator_ops *ops = rdev->desc->ops;
932 int ret;
934 /* do we need to apply the constraint voltage */
935 if (rdev->constraints->apply_uV &&
936 rdev->constraints->min_uV && rdev->constraints->max_uV) {
937 int target_min, target_max;
938 int current_uV = _regulator_get_voltage(rdev);
940 if (current_uV == -ENOTRECOVERABLE) {
941 /* This regulator can't be read and must be initted */
942 rdev_info(rdev, "Setting %d-%duV\n",
943 rdev->constraints->min_uV,
944 rdev->constraints->max_uV);
945 _regulator_do_set_voltage(rdev,
946 rdev->constraints->min_uV,
947 rdev->constraints->max_uV);
948 current_uV = _regulator_get_voltage(rdev);
951 if (current_uV < 0) {
952 rdev_err(rdev,
953 "failed to get the current voltage(%d)\n",
954 current_uV);
955 return current_uV;
959 * If we're below the minimum voltage move up to the
960 * minimum voltage, if we're above the maximum voltage
961 * then move down to the maximum.
963 target_min = current_uV;
964 target_max = current_uV;
966 if (current_uV < rdev->constraints->min_uV) {
967 target_min = rdev->constraints->min_uV;
968 target_max = rdev->constraints->min_uV;
971 if (current_uV > rdev->constraints->max_uV) {
972 target_min = rdev->constraints->max_uV;
973 target_max = rdev->constraints->max_uV;
976 if (target_min != current_uV || target_max != current_uV) {
977 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
978 current_uV, target_min, target_max);
979 ret = _regulator_do_set_voltage(
980 rdev, target_min, target_max);
981 if (ret < 0) {
982 rdev_err(rdev,
983 "failed to apply %d-%duV constraint(%d)\n",
984 target_min, target_max, ret);
985 return ret;
990 /* constrain machine-level voltage specs to fit
991 * the actual range supported by this regulator.
993 if (ops->list_voltage && rdev->desc->n_voltages) {
994 int count = rdev->desc->n_voltages;
995 int i;
996 int min_uV = INT_MAX;
997 int max_uV = INT_MIN;
998 int cmin = constraints->min_uV;
999 int cmax = constraints->max_uV;
1001 /* it's safe to autoconfigure fixed-voltage supplies
1002 and the constraints are used by list_voltage. */
1003 if (count == 1 && !cmin) {
1004 cmin = 1;
1005 cmax = INT_MAX;
1006 constraints->min_uV = cmin;
1007 constraints->max_uV = cmax;
1010 /* voltage constraints are optional */
1011 if ((cmin == 0) && (cmax == 0))
1012 return 0;
1014 /* else require explicit machine-level constraints */
1015 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1016 rdev_err(rdev, "invalid voltage constraints\n");
1017 return -EINVAL;
1020 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1021 for (i = 0; i < count; i++) {
1022 int value;
1024 value = ops->list_voltage(rdev, i);
1025 if (value <= 0)
1026 continue;
1028 /* maybe adjust [min_uV..max_uV] */
1029 if (value >= cmin && value < min_uV)
1030 min_uV = value;
1031 if (value <= cmax && value > max_uV)
1032 max_uV = value;
1035 /* final: [min_uV..max_uV] valid iff constraints valid */
1036 if (max_uV < min_uV) {
1037 rdev_err(rdev,
1038 "unsupportable voltage constraints %u-%uuV\n",
1039 min_uV, max_uV);
1040 return -EINVAL;
1043 /* use regulator's subset of machine constraints */
1044 if (constraints->min_uV < min_uV) {
1045 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1046 constraints->min_uV, min_uV);
1047 constraints->min_uV = min_uV;
1049 if (constraints->max_uV > max_uV) {
1050 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1051 constraints->max_uV, max_uV);
1052 constraints->max_uV = max_uV;
1056 return 0;
1059 static int machine_constraints_current(struct regulator_dev *rdev,
1060 struct regulation_constraints *constraints)
1062 const struct regulator_ops *ops = rdev->desc->ops;
1063 int ret;
1065 if (!constraints->min_uA && !constraints->max_uA)
1066 return 0;
1068 if (constraints->min_uA > constraints->max_uA) {
1069 rdev_err(rdev, "Invalid current constraints\n");
1070 return -EINVAL;
1073 if (!ops->set_current_limit || !ops->get_current_limit) {
1074 rdev_warn(rdev, "Operation of current configuration missing\n");
1075 return 0;
1078 /* Set regulator current in constraints range */
1079 ret = ops->set_current_limit(rdev, constraints->min_uA,
1080 constraints->max_uA);
1081 if (ret < 0) {
1082 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1083 return ret;
1086 return 0;
1089 static int _regulator_do_enable(struct regulator_dev *rdev);
1092 * set_machine_constraints - sets regulator constraints
1093 * @rdev: regulator source
1094 * @constraints: constraints to apply
1096 * Allows platform initialisation code to define and constrain
1097 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1098 * Constraints *must* be set by platform code in order for some
1099 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1100 * set_mode.
1102 static int set_machine_constraints(struct regulator_dev *rdev,
1103 const struct regulation_constraints *constraints)
1105 int ret = 0;
1106 const struct regulator_ops *ops = rdev->desc->ops;
1108 if (constraints)
1109 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1110 GFP_KERNEL);
1111 else
1112 rdev->constraints = kzalloc(sizeof(*constraints),
1113 GFP_KERNEL);
1114 if (!rdev->constraints)
1115 return -ENOMEM;
1117 ret = machine_constraints_voltage(rdev, rdev->constraints);
1118 if (ret != 0)
1119 return ret;
1121 ret = machine_constraints_current(rdev, rdev->constraints);
1122 if (ret != 0)
1123 return ret;
1125 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1126 ret = ops->set_input_current_limit(rdev,
1127 rdev->constraints->ilim_uA);
1128 if (ret < 0) {
1129 rdev_err(rdev, "failed to set input limit\n");
1130 return ret;
1134 /* do we need to setup our suspend state */
1135 if (rdev->constraints->initial_state) {
1136 ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1137 if (ret < 0) {
1138 rdev_err(rdev, "failed to set suspend state\n");
1139 return ret;
1143 if (rdev->constraints->initial_mode) {
1144 if (!ops->set_mode) {
1145 rdev_err(rdev, "no set_mode operation\n");
1146 return -EINVAL;
1149 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1150 if (ret < 0) {
1151 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1152 return ret;
1156 /* If the constraints say the regulator should be on at this point
1157 * and we have control then make sure it is enabled.
1159 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1160 ret = _regulator_do_enable(rdev);
1161 if (ret < 0 && ret != -EINVAL) {
1162 rdev_err(rdev, "failed to enable\n");
1163 return ret;
1167 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1168 && ops->set_ramp_delay) {
1169 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1170 if (ret < 0) {
1171 rdev_err(rdev, "failed to set ramp_delay\n");
1172 return ret;
1176 if (rdev->constraints->pull_down && ops->set_pull_down) {
1177 ret = ops->set_pull_down(rdev);
1178 if (ret < 0) {
1179 rdev_err(rdev, "failed to set pull down\n");
1180 return ret;
1184 if (rdev->constraints->soft_start && ops->set_soft_start) {
1185 ret = ops->set_soft_start(rdev);
1186 if (ret < 0) {
1187 rdev_err(rdev, "failed to set soft start\n");
1188 return ret;
1192 if (rdev->constraints->over_current_protection
1193 && ops->set_over_current_protection) {
1194 ret = ops->set_over_current_protection(rdev);
1195 if (ret < 0) {
1196 rdev_err(rdev, "failed to set over current protection\n");
1197 return ret;
1201 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1202 bool ad_state = (rdev->constraints->active_discharge ==
1203 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1205 ret = ops->set_active_discharge(rdev, ad_state);
1206 if (ret < 0) {
1207 rdev_err(rdev, "failed to set active discharge\n");
1208 return ret;
1212 print_constraints(rdev);
1213 return 0;
1217 * set_supply - set regulator supply regulator
1218 * @rdev: regulator name
1219 * @supply_rdev: supply regulator name
1221 * Called by platform initialisation code to set the supply regulator for this
1222 * regulator. This ensures that a regulators supply will also be enabled by the
1223 * core if it's child is enabled.
1225 static int set_supply(struct regulator_dev *rdev,
1226 struct regulator_dev *supply_rdev)
1228 int err;
1230 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1232 if (!try_module_get(supply_rdev->owner))
1233 return -ENODEV;
1235 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1236 if (rdev->supply == NULL) {
1237 err = -ENOMEM;
1238 return err;
1240 supply_rdev->open_count++;
1242 return 0;
1246 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1247 * @rdev: regulator source
1248 * @consumer_dev_name: dev_name() string for device supply applies to
1249 * @supply: symbolic name for supply
1251 * Allows platform initialisation code to map physical regulator
1252 * sources to symbolic names for supplies for use by devices. Devices
1253 * should use these symbolic names to request regulators, avoiding the
1254 * need to provide board-specific regulator names as platform data.
1256 static int set_consumer_device_supply(struct regulator_dev *rdev,
1257 const char *consumer_dev_name,
1258 const char *supply)
1260 struct regulator_map *node;
1261 int has_dev;
1263 if (supply == NULL)
1264 return -EINVAL;
1266 if (consumer_dev_name != NULL)
1267 has_dev = 1;
1268 else
1269 has_dev = 0;
1271 list_for_each_entry(node, &regulator_map_list, list) {
1272 if (node->dev_name && consumer_dev_name) {
1273 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1274 continue;
1275 } else if (node->dev_name || consumer_dev_name) {
1276 continue;
1279 if (strcmp(node->supply, supply) != 0)
1280 continue;
1282 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1283 consumer_dev_name,
1284 dev_name(&node->regulator->dev),
1285 node->regulator->desc->name,
1286 supply,
1287 dev_name(&rdev->dev), rdev_get_name(rdev));
1288 return -EBUSY;
1291 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1292 if (node == NULL)
1293 return -ENOMEM;
1295 node->regulator = rdev;
1296 node->supply = supply;
1298 if (has_dev) {
1299 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1300 if (node->dev_name == NULL) {
1301 kfree(node);
1302 return -ENOMEM;
1306 list_add(&node->list, &regulator_map_list);
1307 return 0;
1310 static void unset_regulator_supplies(struct regulator_dev *rdev)
1312 struct regulator_map *node, *n;
1314 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1315 if (rdev == node->regulator) {
1316 list_del(&node->list);
1317 kfree(node->dev_name);
1318 kfree(node);
1323 #ifdef CONFIG_DEBUG_FS
1324 static ssize_t constraint_flags_read_file(struct file *file,
1325 char __user *user_buf,
1326 size_t count, loff_t *ppos)
1328 const struct regulator *regulator = file->private_data;
1329 const struct regulation_constraints *c = regulator->rdev->constraints;
1330 char *buf;
1331 ssize_t ret;
1333 if (!c)
1334 return 0;
1336 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1337 if (!buf)
1338 return -ENOMEM;
1340 ret = snprintf(buf, PAGE_SIZE,
1341 "always_on: %u\n"
1342 "boot_on: %u\n"
1343 "apply_uV: %u\n"
1344 "ramp_disable: %u\n"
1345 "soft_start: %u\n"
1346 "pull_down: %u\n"
1347 "over_current_protection: %u\n",
1348 c->always_on,
1349 c->boot_on,
1350 c->apply_uV,
1351 c->ramp_disable,
1352 c->soft_start,
1353 c->pull_down,
1354 c->over_current_protection);
1356 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1357 kfree(buf);
1359 return ret;
1362 #endif
1364 static const struct file_operations constraint_flags_fops = {
1365 #ifdef CONFIG_DEBUG_FS
1366 .open = simple_open,
1367 .read = constraint_flags_read_file,
1368 .llseek = default_llseek,
1369 #endif
1372 #define REG_STR_SIZE 64
1374 static struct regulator *create_regulator(struct regulator_dev *rdev,
1375 struct device *dev,
1376 const char *supply_name)
1378 struct regulator *regulator;
1379 char buf[REG_STR_SIZE];
1380 int err, size;
1382 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1383 if (regulator == NULL)
1384 return NULL;
1386 regulator_lock(rdev);
1387 regulator->rdev = rdev;
1388 list_add(&regulator->list, &rdev->consumer_list);
1390 if (dev) {
1391 regulator->dev = dev;
1393 /* Add a link to the device sysfs entry */
1394 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1395 dev->kobj.name, supply_name);
1396 if (size >= REG_STR_SIZE)
1397 goto overflow_err;
1399 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1400 if (regulator->supply_name == NULL)
1401 goto overflow_err;
1403 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1404 buf);
1405 if (err) {
1406 rdev_dbg(rdev, "could not add device link %s err %d\n",
1407 dev->kobj.name, err);
1408 /* non-fatal */
1410 } else {
1411 regulator->supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1412 if (regulator->supply_name == NULL)
1413 goto overflow_err;
1416 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1417 rdev->debugfs);
1418 if (!regulator->debugfs) {
1419 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1420 } else {
1421 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1422 &regulator->uA_load);
1423 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1424 &regulator->voltage[PM_SUSPEND_ON].min_uV);
1425 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1426 &regulator->voltage[PM_SUSPEND_ON].max_uV);
1427 debugfs_create_file("constraint_flags", 0444,
1428 regulator->debugfs, regulator,
1429 &constraint_flags_fops);
1433 * Check now if the regulator is an always on regulator - if
1434 * it is then we don't need to do nearly so much work for
1435 * enable/disable calls.
1437 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1438 _regulator_is_enabled(rdev))
1439 regulator->always_on = true;
1441 regulator_unlock(rdev);
1442 return regulator;
1443 overflow_err:
1444 list_del(&regulator->list);
1445 kfree(regulator);
1446 regulator_unlock(rdev);
1447 return NULL;
1450 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1452 if (rdev->constraints && rdev->constraints->enable_time)
1453 return rdev->constraints->enable_time;
1454 if (!rdev->desc->ops->enable_time)
1455 return rdev->desc->enable_time;
1456 return rdev->desc->ops->enable_time(rdev);
1459 static struct regulator_supply_alias *regulator_find_supply_alias(
1460 struct device *dev, const char *supply)
1462 struct regulator_supply_alias *map;
1464 list_for_each_entry(map, &regulator_supply_alias_list, list)
1465 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1466 return map;
1468 return NULL;
1471 static void regulator_supply_alias(struct device **dev, const char **supply)
1473 struct regulator_supply_alias *map;
1475 map = regulator_find_supply_alias(*dev, *supply);
1476 if (map) {
1477 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1478 *supply, map->alias_supply,
1479 dev_name(map->alias_dev));
1480 *dev = map->alias_dev;
1481 *supply = map->alias_supply;
1485 static int regulator_match(struct device *dev, const void *data)
1487 struct regulator_dev *r = dev_to_rdev(dev);
1489 return strcmp(rdev_get_name(r), data) == 0;
1492 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1494 struct device *dev;
1496 dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1498 return dev ? dev_to_rdev(dev) : NULL;
1502 * regulator_dev_lookup - lookup a regulator device.
1503 * @dev: device for regulator "consumer".
1504 * @supply: Supply name or regulator ID.
1506 * If successful, returns a struct regulator_dev that corresponds to the name
1507 * @supply and with the embedded struct device refcount incremented by one.
1508 * The refcount must be dropped by calling put_device().
1509 * On failure one of the following ERR-PTR-encoded values is returned:
1510 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1511 * in the future.
1513 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1514 const char *supply)
1516 struct regulator_dev *r = NULL;
1517 struct device_node *node;
1518 struct regulator_map *map;
1519 const char *devname = NULL;
1521 regulator_supply_alias(&dev, &supply);
1523 /* first do a dt based lookup */
1524 if (dev && dev->of_node) {
1525 node = of_get_regulator(dev, supply);
1526 if (node) {
1527 r = of_find_regulator_by_node(node);
1528 if (r)
1529 return r;
1532 * We have a node, but there is no device.
1533 * assume it has not registered yet.
1535 return ERR_PTR(-EPROBE_DEFER);
1539 /* if not found, try doing it non-dt way */
1540 if (dev)
1541 devname = dev_name(dev);
1543 mutex_lock(&regulator_list_mutex);
1544 list_for_each_entry(map, &regulator_map_list, list) {
1545 /* If the mapping has a device set up it must match */
1546 if (map->dev_name &&
1547 (!devname || strcmp(map->dev_name, devname)))
1548 continue;
1550 if (strcmp(map->supply, supply) == 0 &&
1551 get_device(&map->regulator->dev)) {
1552 r = map->regulator;
1553 break;
1556 mutex_unlock(&regulator_list_mutex);
1558 if (r)
1559 return r;
1561 r = regulator_lookup_by_name(supply);
1562 if (r)
1563 return r;
1565 return ERR_PTR(-ENODEV);
1568 static int regulator_resolve_supply(struct regulator_dev *rdev)
1570 struct regulator_dev *r;
1571 struct device *dev = rdev->dev.parent;
1572 int ret;
1574 /* No supply to resovle? */
1575 if (!rdev->supply_name)
1576 return 0;
1578 /* Supply already resolved? */
1579 if (rdev->supply)
1580 return 0;
1582 r = regulator_dev_lookup(dev, rdev->supply_name);
1583 if (IS_ERR(r)) {
1584 ret = PTR_ERR(r);
1586 /* Did the lookup explicitly defer for us? */
1587 if (ret == -EPROBE_DEFER)
1588 return ret;
1590 if (have_full_constraints()) {
1591 r = dummy_regulator_rdev;
1592 get_device(&r->dev);
1593 } else {
1594 dev_err(dev, "Failed to resolve %s-supply for %s\n",
1595 rdev->supply_name, rdev->desc->name);
1596 return -EPROBE_DEFER;
1601 * If the supply's parent device is not the same as the
1602 * regulator's parent device, then ensure the parent device
1603 * is bound before we resolve the supply, in case the parent
1604 * device get probe deferred and unregisters the supply.
1606 if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1607 if (!device_is_bound(r->dev.parent)) {
1608 put_device(&r->dev);
1609 return -EPROBE_DEFER;
1613 /* Recursively resolve the supply of the supply */
1614 ret = regulator_resolve_supply(r);
1615 if (ret < 0) {
1616 put_device(&r->dev);
1617 return ret;
1620 ret = set_supply(rdev, r);
1621 if (ret < 0) {
1622 put_device(&r->dev);
1623 return ret;
1626 /* Cascade always-on state to supply */
1627 if (_regulator_is_enabled(rdev)) {
1628 ret = regulator_enable(rdev->supply);
1629 if (ret < 0) {
1630 _regulator_put(rdev->supply);
1631 rdev->supply = NULL;
1632 return ret;
1636 return 0;
1639 /* Internal regulator request function */
1640 struct regulator *_regulator_get(struct device *dev, const char *id,
1641 enum regulator_get_type get_type)
1643 struct regulator_dev *rdev;
1644 struct regulator *regulator;
1645 const char *devname = dev ? dev_name(dev) : "deviceless";
1646 int ret;
1648 if (get_type >= MAX_GET_TYPE) {
1649 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1650 return ERR_PTR(-EINVAL);
1653 if (id == NULL) {
1654 pr_err("get() with no identifier\n");
1655 return ERR_PTR(-EINVAL);
1658 rdev = regulator_dev_lookup(dev, id);
1659 if (IS_ERR(rdev)) {
1660 ret = PTR_ERR(rdev);
1663 * If regulator_dev_lookup() fails with error other
1664 * than -ENODEV our job here is done, we simply return it.
1666 if (ret != -ENODEV)
1667 return ERR_PTR(ret);
1669 if (!have_full_constraints()) {
1670 dev_warn(dev,
1671 "incomplete constraints, dummy supplies not allowed\n");
1672 return ERR_PTR(-ENODEV);
1675 switch (get_type) {
1676 case NORMAL_GET:
1678 * Assume that a regulator is physically present and
1679 * enabled, even if it isn't hooked up, and just
1680 * provide a dummy.
1682 dev_warn(dev,
1683 "%s supply %s not found, using dummy regulator\n",
1684 devname, id);
1685 rdev = dummy_regulator_rdev;
1686 get_device(&rdev->dev);
1687 break;
1689 case EXCLUSIVE_GET:
1690 dev_warn(dev,
1691 "dummy supplies not allowed for exclusive requests\n");
1692 /* fall through */
1694 default:
1695 return ERR_PTR(-ENODEV);
1699 if (rdev->exclusive) {
1700 regulator = ERR_PTR(-EPERM);
1701 put_device(&rdev->dev);
1702 return regulator;
1705 if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1706 regulator = ERR_PTR(-EBUSY);
1707 put_device(&rdev->dev);
1708 return regulator;
1711 ret = regulator_resolve_supply(rdev);
1712 if (ret < 0) {
1713 regulator = ERR_PTR(ret);
1714 put_device(&rdev->dev);
1715 return regulator;
1718 if (!try_module_get(rdev->owner)) {
1719 regulator = ERR_PTR(-EPROBE_DEFER);
1720 put_device(&rdev->dev);
1721 return regulator;
1724 regulator = create_regulator(rdev, dev, id);
1725 if (regulator == NULL) {
1726 regulator = ERR_PTR(-ENOMEM);
1727 put_device(&rdev->dev);
1728 module_put(rdev->owner);
1729 return regulator;
1732 rdev->open_count++;
1733 if (get_type == EXCLUSIVE_GET) {
1734 rdev->exclusive = 1;
1736 ret = _regulator_is_enabled(rdev);
1737 if (ret > 0)
1738 rdev->use_count = 1;
1739 else
1740 rdev->use_count = 0;
1743 return regulator;
1747 * regulator_get - lookup and obtain a reference to a regulator.
1748 * @dev: device for regulator "consumer"
1749 * @id: Supply name or regulator ID.
1751 * Returns a struct regulator corresponding to the regulator producer,
1752 * or IS_ERR() condition containing errno.
1754 * Use of supply names configured via regulator_set_device_supply() is
1755 * strongly encouraged. It is recommended that the supply name used
1756 * should match the name used for the supply and/or the relevant
1757 * device pins in the datasheet.
1759 struct regulator *regulator_get(struct device *dev, const char *id)
1761 return _regulator_get(dev, id, NORMAL_GET);
1763 EXPORT_SYMBOL_GPL(regulator_get);
1766 * regulator_get_exclusive - obtain exclusive access to a regulator.
1767 * @dev: device for regulator "consumer"
1768 * @id: Supply name or regulator ID.
1770 * Returns a struct regulator corresponding to the regulator producer,
1771 * or IS_ERR() condition containing errno. Other consumers will be
1772 * unable to obtain this regulator while this reference is held and the
1773 * use count for the regulator will be initialised to reflect the current
1774 * state of the regulator.
1776 * This is intended for use by consumers which cannot tolerate shared
1777 * use of the regulator such as those which need to force the
1778 * regulator off for correct operation of the hardware they are
1779 * controlling.
1781 * Use of supply names configured via regulator_set_device_supply() is
1782 * strongly encouraged. It is recommended that the supply name used
1783 * should match the name used for the supply and/or the relevant
1784 * device pins in the datasheet.
1786 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1788 return _regulator_get(dev, id, EXCLUSIVE_GET);
1790 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1793 * regulator_get_optional - obtain optional access to a regulator.
1794 * @dev: device for regulator "consumer"
1795 * @id: Supply name or regulator ID.
1797 * Returns a struct regulator corresponding to the regulator producer,
1798 * or IS_ERR() condition containing errno.
1800 * This is intended for use by consumers for devices which can have
1801 * some supplies unconnected in normal use, such as some MMC devices.
1802 * It can allow the regulator core to provide stub supplies for other
1803 * supplies requested using normal regulator_get() calls without
1804 * disrupting the operation of drivers that can handle absent
1805 * supplies.
1807 * Use of supply names configured via regulator_set_device_supply() is
1808 * strongly encouraged. It is recommended that the supply name used
1809 * should match the name used for the supply and/or the relevant
1810 * device pins in the datasheet.
1812 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1814 return _regulator_get(dev, id, OPTIONAL_GET);
1816 EXPORT_SYMBOL_GPL(regulator_get_optional);
1818 /* regulator_list_mutex lock held by regulator_put() */
1819 static void _regulator_put(struct regulator *regulator)
1821 struct regulator_dev *rdev;
1823 if (IS_ERR_OR_NULL(regulator))
1824 return;
1826 lockdep_assert_held_once(&regulator_list_mutex);
1828 rdev = regulator->rdev;
1830 debugfs_remove_recursive(regulator->debugfs);
1832 /* remove any sysfs entries */
1833 if (regulator->dev)
1834 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1835 regulator_lock(rdev);
1836 list_del(&regulator->list);
1838 rdev->open_count--;
1839 rdev->exclusive = 0;
1840 put_device(&rdev->dev);
1841 regulator_unlock(rdev);
1843 kfree_const(regulator->supply_name);
1844 kfree(regulator);
1846 module_put(rdev->owner);
1850 * regulator_put - "free" the regulator source
1851 * @regulator: regulator source
1853 * Note: drivers must ensure that all regulator_enable calls made on this
1854 * regulator source are balanced by regulator_disable calls prior to calling
1855 * this function.
1857 void regulator_put(struct regulator *regulator)
1859 mutex_lock(&regulator_list_mutex);
1860 _regulator_put(regulator);
1861 mutex_unlock(&regulator_list_mutex);
1863 EXPORT_SYMBOL_GPL(regulator_put);
1866 * regulator_register_supply_alias - Provide device alias for supply lookup
1868 * @dev: device that will be given as the regulator "consumer"
1869 * @id: Supply name or regulator ID
1870 * @alias_dev: device that should be used to lookup the supply
1871 * @alias_id: Supply name or regulator ID that should be used to lookup the
1872 * supply
1874 * All lookups for id on dev will instead be conducted for alias_id on
1875 * alias_dev.
1877 int regulator_register_supply_alias(struct device *dev, const char *id,
1878 struct device *alias_dev,
1879 const char *alias_id)
1881 struct regulator_supply_alias *map;
1883 map = regulator_find_supply_alias(dev, id);
1884 if (map)
1885 return -EEXIST;
1887 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1888 if (!map)
1889 return -ENOMEM;
1891 map->src_dev = dev;
1892 map->src_supply = id;
1893 map->alias_dev = alias_dev;
1894 map->alias_supply = alias_id;
1896 list_add(&map->list, &regulator_supply_alias_list);
1898 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1899 id, dev_name(dev), alias_id, dev_name(alias_dev));
1901 return 0;
1903 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1906 * regulator_unregister_supply_alias - Remove device alias
1908 * @dev: device that will be given as the regulator "consumer"
1909 * @id: Supply name or regulator ID
1911 * Remove a lookup alias if one exists for id on dev.
1913 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1915 struct regulator_supply_alias *map;
1917 map = regulator_find_supply_alias(dev, id);
1918 if (map) {
1919 list_del(&map->list);
1920 kfree(map);
1923 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1926 * regulator_bulk_register_supply_alias - register multiple aliases
1928 * @dev: device that will be given as the regulator "consumer"
1929 * @id: List of supply names or regulator IDs
1930 * @alias_dev: device that should be used to lookup the supply
1931 * @alias_id: List of supply names or regulator IDs that should be used to
1932 * lookup the supply
1933 * @num_id: Number of aliases to register
1935 * @return 0 on success, an errno on failure.
1937 * This helper function allows drivers to register several supply
1938 * aliases in one operation. If any of the aliases cannot be
1939 * registered any aliases that were registered will be removed
1940 * before returning to the caller.
1942 int regulator_bulk_register_supply_alias(struct device *dev,
1943 const char *const *id,
1944 struct device *alias_dev,
1945 const char *const *alias_id,
1946 int num_id)
1948 int i;
1949 int ret;
1951 for (i = 0; i < num_id; ++i) {
1952 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1953 alias_id[i]);
1954 if (ret < 0)
1955 goto err;
1958 return 0;
1960 err:
1961 dev_err(dev,
1962 "Failed to create supply alias %s,%s -> %s,%s\n",
1963 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1965 while (--i >= 0)
1966 regulator_unregister_supply_alias(dev, id[i]);
1968 return ret;
1970 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1973 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1975 * @dev: device that will be given as the regulator "consumer"
1976 * @id: List of supply names or regulator IDs
1977 * @num_id: Number of aliases to unregister
1979 * This helper function allows drivers to unregister several supply
1980 * aliases in one operation.
1982 void regulator_bulk_unregister_supply_alias(struct device *dev,
1983 const char *const *id,
1984 int num_id)
1986 int i;
1988 for (i = 0; i < num_id; ++i)
1989 regulator_unregister_supply_alias(dev, id[i]);
1991 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1994 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1995 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1996 const struct regulator_config *config)
1998 struct regulator_enable_gpio *pin;
1999 struct gpio_desc *gpiod;
2000 int ret;
2002 if (config->ena_gpiod)
2003 gpiod = config->ena_gpiod;
2004 else
2005 gpiod = gpio_to_desc(config->ena_gpio);
2007 list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2008 if (pin->gpiod == gpiod) {
2009 rdev_dbg(rdev, "GPIO %d is already used\n",
2010 config->ena_gpio);
2011 goto update_ena_gpio_to_rdev;
2015 if (!config->ena_gpiod) {
2016 ret = gpio_request_one(config->ena_gpio,
2017 GPIOF_DIR_OUT | config->ena_gpio_flags,
2018 rdev_get_name(rdev));
2019 if (ret)
2020 return ret;
2023 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
2024 if (pin == NULL) {
2025 if (!config->ena_gpiod)
2026 gpio_free(config->ena_gpio);
2027 return -ENOMEM;
2030 pin->gpiod = gpiod;
2031 pin->ena_gpio_invert = config->ena_gpio_invert;
2032 list_add(&pin->list, &regulator_ena_gpio_list);
2034 update_ena_gpio_to_rdev:
2035 pin->request_count++;
2036 rdev->ena_pin = pin;
2037 return 0;
2040 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2042 struct regulator_enable_gpio *pin, *n;
2044 if (!rdev->ena_pin)
2045 return;
2047 /* Free the GPIO only in case of no use */
2048 list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2049 if (pin->gpiod == rdev->ena_pin->gpiod) {
2050 if (pin->request_count <= 1) {
2051 pin->request_count = 0;
2052 gpiod_put(pin->gpiod);
2053 list_del(&pin->list);
2054 kfree(pin);
2055 rdev->ena_pin = NULL;
2056 return;
2057 } else {
2058 pin->request_count--;
2065 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2066 * @rdev: regulator_dev structure
2067 * @enable: enable GPIO at initial use?
2069 * GPIO is enabled in case of initial use. (enable_count is 0)
2070 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2072 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2074 struct regulator_enable_gpio *pin = rdev->ena_pin;
2076 if (!pin)
2077 return -EINVAL;
2079 if (enable) {
2080 /* Enable GPIO at initial use */
2081 if (pin->enable_count == 0)
2082 gpiod_set_value_cansleep(pin->gpiod,
2083 !pin->ena_gpio_invert);
2085 pin->enable_count++;
2086 } else {
2087 if (pin->enable_count > 1) {
2088 pin->enable_count--;
2089 return 0;
2092 /* Disable GPIO if not used */
2093 if (pin->enable_count <= 1) {
2094 gpiod_set_value_cansleep(pin->gpiod,
2095 pin->ena_gpio_invert);
2096 pin->enable_count = 0;
2100 return 0;
2104 * _regulator_enable_delay - a delay helper function
2105 * @delay: time to delay in microseconds
2107 * Delay for the requested amount of time as per the guidelines in:
2109 * Documentation/timers/timers-howto.txt
2111 * The assumption here is that regulators will never be enabled in
2112 * atomic context and therefore sleeping functions can be used.
2114 static void _regulator_enable_delay(unsigned int delay)
2116 unsigned int ms = delay / 1000;
2117 unsigned int us = delay % 1000;
2119 if (ms > 0) {
2121 * For small enough values, handle super-millisecond
2122 * delays in the usleep_range() call below.
2124 if (ms < 20)
2125 us += ms * 1000;
2126 else
2127 msleep(ms);
2131 * Give the scheduler some room to coalesce with any other
2132 * wakeup sources. For delays shorter than 10 us, don't even
2133 * bother setting up high-resolution timers and just busy-
2134 * loop.
2136 if (us >= 10)
2137 usleep_range(us, us + 100);
2138 else
2139 udelay(us);
2142 static int _regulator_do_enable(struct regulator_dev *rdev)
2144 int ret, delay;
2146 /* Query before enabling in case configuration dependent. */
2147 ret = _regulator_get_enable_time(rdev);
2148 if (ret >= 0) {
2149 delay = ret;
2150 } else {
2151 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2152 delay = 0;
2155 trace_regulator_enable(rdev_get_name(rdev));
2157 if (rdev->desc->off_on_delay) {
2158 /* if needed, keep a distance of off_on_delay from last time
2159 * this regulator was disabled.
2161 unsigned long start_jiffy = jiffies;
2162 unsigned long intended, max_delay, remaining;
2164 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2165 intended = rdev->last_off_jiffy + max_delay;
2167 if (time_before(start_jiffy, intended)) {
2168 /* calc remaining jiffies to deal with one-time
2169 * timer wrapping.
2170 * in case of multiple timer wrapping, either it can be
2171 * detected by out-of-range remaining, or it cannot be
2172 * detected and we gets a panelty of
2173 * _regulator_enable_delay().
2175 remaining = intended - start_jiffy;
2176 if (remaining <= max_delay)
2177 _regulator_enable_delay(
2178 jiffies_to_usecs(remaining));
2182 if (rdev->ena_pin) {
2183 if (!rdev->ena_gpio_state) {
2184 ret = regulator_ena_gpio_ctrl(rdev, true);
2185 if (ret < 0)
2186 return ret;
2187 rdev->ena_gpio_state = 1;
2189 } else if (rdev->desc->ops->enable) {
2190 ret = rdev->desc->ops->enable(rdev);
2191 if (ret < 0)
2192 return ret;
2193 } else {
2194 return -EINVAL;
2197 /* Allow the regulator to ramp; it would be useful to extend
2198 * this for bulk operations so that the regulators can ramp
2199 * together. */
2200 trace_regulator_enable_delay(rdev_get_name(rdev));
2202 _regulator_enable_delay(delay);
2204 trace_regulator_enable_complete(rdev_get_name(rdev));
2206 return 0;
2209 /* locks held by regulator_enable() */
2210 static int _regulator_enable(struct regulator_dev *rdev)
2212 int ret;
2214 lockdep_assert_held_once(&rdev->mutex);
2216 /* check voltage and requested load before enabling */
2217 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2218 drms_uA_update(rdev);
2220 if (rdev->use_count == 0) {
2221 /* The regulator may on if it's not switchable or left on */
2222 ret = _regulator_is_enabled(rdev);
2223 if (ret == -EINVAL || ret == 0) {
2224 if (!regulator_ops_is_valid(rdev,
2225 REGULATOR_CHANGE_STATUS))
2226 return -EPERM;
2228 ret = _regulator_do_enable(rdev);
2229 if (ret < 0)
2230 return ret;
2232 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2233 NULL);
2234 } else if (ret < 0) {
2235 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2236 return ret;
2238 /* Fallthrough on positive return values - already enabled */
2241 rdev->use_count++;
2243 return 0;
2247 * regulator_enable - enable regulator output
2248 * @regulator: regulator source
2250 * Request that the regulator be enabled with the regulator output at
2251 * the predefined voltage or current value. Calls to regulator_enable()
2252 * must be balanced with calls to regulator_disable().
2254 * NOTE: the output value can be set by other drivers, boot loader or may be
2255 * hardwired in the regulator.
2257 int regulator_enable(struct regulator *regulator)
2259 struct regulator_dev *rdev = regulator->rdev;
2260 int ret = 0;
2262 if (regulator->always_on)
2263 return 0;
2265 if (rdev->supply) {
2266 ret = regulator_enable(rdev->supply);
2267 if (ret != 0)
2268 return ret;
2271 mutex_lock(&rdev->mutex);
2272 ret = _regulator_enable(rdev);
2273 mutex_unlock(&rdev->mutex);
2275 if (ret != 0 && rdev->supply)
2276 regulator_disable(rdev->supply);
2278 return ret;
2280 EXPORT_SYMBOL_GPL(regulator_enable);
2282 static int _regulator_do_disable(struct regulator_dev *rdev)
2284 int ret;
2286 trace_regulator_disable(rdev_get_name(rdev));
2288 if (rdev->ena_pin) {
2289 if (rdev->ena_gpio_state) {
2290 ret = regulator_ena_gpio_ctrl(rdev, false);
2291 if (ret < 0)
2292 return ret;
2293 rdev->ena_gpio_state = 0;
2296 } else if (rdev->desc->ops->disable) {
2297 ret = rdev->desc->ops->disable(rdev);
2298 if (ret != 0)
2299 return ret;
2302 /* cares about last_off_jiffy only if off_on_delay is required by
2303 * device.
2305 if (rdev->desc->off_on_delay)
2306 rdev->last_off_jiffy = jiffies;
2308 trace_regulator_disable_complete(rdev_get_name(rdev));
2310 return 0;
2313 /* locks held by regulator_disable() */
2314 static int _regulator_disable(struct regulator_dev *rdev)
2316 int ret = 0;
2318 lockdep_assert_held_once(&rdev->mutex);
2320 if (WARN(rdev->use_count <= 0,
2321 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2322 return -EIO;
2324 /* are we the last user and permitted to disable ? */
2325 if (rdev->use_count == 1 &&
2326 (rdev->constraints && !rdev->constraints->always_on)) {
2328 /* we are last user */
2329 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2330 ret = _notifier_call_chain(rdev,
2331 REGULATOR_EVENT_PRE_DISABLE,
2332 NULL);
2333 if (ret & NOTIFY_STOP_MASK)
2334 return -EINVAL;
2336 ret = _regulator_do_disable(rdev);
2337 if (ret < 0) {
2338 rdev_err(rdev, "failed to disable\n");
2339 _notifier_call_chain(rdev,
2340 REGULATOR_EVENT_ABORT_DISABLE,
2341 NULL);
2342 return ret;
2344 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2345 NULL);
2348 rdev->use_count = 0;
2349 } else if (rdev->use_count > 1) {
2350 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS))
2351 drms_uA_update(rdev);
2353 rdev->use_count--;
2356 return ret;
2360 * regulator_disable - disable regulator output
2361 * @regulator: regulator source
2363 * Disable the regulator output voltage or current. Calls to
2364 * regulator_enable() must be balanced with calls to
2365 * regulator_disable().
2367 * NOTE: this will only disable the regulator output if no other consumer
2368 * devices have it enabled, the regulator device supports disabling and
2369 * machine constraints permit this operation.
2371 int regulator_disable(struct regulator *regulator)
2373 struct regulator_dev *rdev = regulator->rdev;
2374 int ret = 0;
2376 if (regulator->always_on)
2377 return 0;
2379 mutex_lock(&rdev->mutex);
2380 ret = _regulator_disable(rdev);
2381 mutex_unlock(&rdev->mutex);
2383 if (ret == 0 && rdev->supply)
2384 regulator_disable(rdev->supply);
2386 return ret;
2388 EXPORT_SYMBOL_GPL(regulator_disable);
2390 /* locks held by regulator_force_disable() */
2391 static int _regulator_force_disable(struct regulator_dev *rdev)
2393 int ret = 0;
2395 lockdep_assert_held_once(&rdev->mutex);
2397 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2398 REGULATOR_EVENT_PRE_DISABLE, NULL);
2399 if (ret & NOTIFY_STOP_MASK)
2400 return -EINVAL;
2402 ret = _regulator_do_disable(rdev);
2403 if (ret < 0) {
2404 rdev_err(rdev, "failed to force disable\n");
2405 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2406 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2407 return ret;
2410 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2411 REGULATOR_EVENT_DISABLE, NULL);
2413 return 0;
2417 * regulator_force_disable - force disable regulator output
2418 * @regulator: regulator source
2420 * Forcibly disable the regulator output voltage or current.
2421 * NOTE: this *will* disable the regulator output even if other consumer
2422 * devices have it enabled. This should be used for situations when device
2423 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2425 int regulator_force_disable(struct regulator *regulator)
2427 struct regulator_dev *rdev = regulator->rdev;
2428 int ret;
2430 mutex_lock(&rdev->mutex);
2431 regulator->uA_load = 0;
2432 ret = _regulator_force_disable(regulator->rdev);
2433 mutex_unlock(&rdev->mutex);
2435 if (rdev->supply)
2436 while (rdev->open_count--)
2437 regulator_disable(rdev->supply);
2439 return ret;
2441 EXPORT_SYMBOL_GPL(regulator_force_disable);
2443 static void regulator_disable_work(struct work_struct *work)
2445 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2446 disable_work.work);
2447 int count, i, ret;
2449 regulator_lock(rdev);
2451 BUG_ON(!rdev->deferred_disables);
2453 count = rdev->deferred_disables;
2454 rdev->deferred_disables = 0;
2457 * Workqueue functions queue the new work instance while the previous
2458 * work instance is being processed. Cancel the queued work instance
2459 * as the work instance under processing does the job of the queued
2460 * work instance.
2462 cancel_delayed_work(&rdev->disable_work);
2464 for (i = 0; i < count; i++) {
2465 ret = _regulator_disable(rdev);
2466 if (ret != 0)
2467 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2470 regulator_unlock(rdev);
2472 if (rdev->supply) {
2473 for (i = 0; i < count; i++) {
2474 ret = regulator_disable(rdev->supply);
2475 if (ret != 0) {
2476 rdev_err(rdev,
2477 "Supply disable failed: %d\n", ret);
2484 * regulator_disable_deferred - disable regulator output with delay
2485 * @regulator: regulator source
2486 * @ms: miliseconds until the regulator is disabled
2488 * Execute regulator_disable() on the regulator after a delay. This
2489 * is intended for use with devices that require some time to quiesce.
2491 * NOTE: this will only disable the regulator output if no other consumer
2492 * devices have it enabled, the regulator device supports disabling and
2493 * machine constraints permit this operation.
2495 int regulator_disable_deferred(struct regulator *regulator, int ms)
2497 struct regulator_dev *rdev = regulator->rdev;
2499 if (regulator->always_on)
2500 return 0;
2502 if (!ms)
2503 return regulator_disable(regulator);
2505 regulator_lock(rdev);
2506 rdev->deferred_disables++;
2507 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2508 msecs_to_jiffies(ms));
2509 regulator_unlock(rdev);
2511 return 0;
2513 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2515 static int _regulator_is_enabled(struct regulator_dev *rdev)
2517 /* A GPIO control always takes precedence */
2518 if (rdev->ena_pin)
2519 return rdev->ena_gpio_state;
2521 /* If we don't know then assume that the regulator is always on */
2522 if (!rdev->desc->ops->is_enabled)
2523 return 1;
2525 return rdev->desc->ops->is_enabled(rdev);
2528 static int _regulator_list_voltage(struct regulator_dev *rdev,
2529 unsigned selector, int lock)
2531 const struct regulator_ops *ops = rdev->desc->ops;
2532 int ret;
2534 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2535 return rdev->desc->fixed_uV;
2537 if (ops->list_voltage) {
2538 if (selector >= rdev->desc->n_voltages)
2539 return -EINVAL;
2540 if (lock)
2541 regulator_lock(rdev);
2542 ret = ops->list_voltage(rdev, selector);
2543 if (lock)
2544 regulator_unlock(rdev);
2545 } else if (rdev->is_switch && rdev->supply) {
2546 ret = _regulator_list_voltage(rdev->supply->rdev,
2547 selector, lock);
2548 } else {
2549 return -EINVAL;
2552 if (ret > 0) {
2553 if (ret < rdev->constraints->min_uV)
2554 ret = 0;
2555 else if (ret > rdev->constraints->max_uV)
2556 ret = 0;
2559 return ret;
2563 * regulator_is_enabled - is the regulator output enabled
2564 * @regulator: regulator source
2566 * Returns positive if the regulator driver backing the source/client
2567 * has requested that the device be enabled, zero if it hasn't, else a
2568 * negative errno code.
2570 * Note that the device backing this regulator handle can have multiple
2571 * users, so it might be enabled even if regulator_enable() was never
2572 * called for this particular source.
2574 int regulator_is_enabled(struct regulator *regulator)
2576 int ret;
2578 if (regulator->always_on)
2579 return 1;
2581 mutex_lock(&regulator->rdev->mutex);
2582 ret = _regulator_is_enabled(regulator->rdev);
2583 mutex_unlock(&regulator->rdev->mutex);
2585 return ret;
2587 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2590 * regulator_count_voltages - count regulator_list_voltage() selectors
2591 * @regulator: regulator source
2593 * Returns number of selectors, or negative errno. Selectors are
2594 * numbered starting at zero, and typically correspond to bitfields
2595 * in hardware registers.
2597 int regulator_count_voltages(struct regulator *regulator)
2599 struct regulator_dev *rdev = regulator->rdev;
2601 if (rdev->desc->n_voltages)
2602 return rdev->desc->n_voltages;
2604 if (!rdev->is_switch || !rdev->supply)
2605 return -EINVAL;
2607 return regulator_count_voltages(rdev->supply);
2609 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2612 * regulator_list_voltage - enumerate supported voltages
2613 * @regulator: regulator source
2614 * @selector: identify voltage to list
2615 * Context: can sleep
2617 * Returns a voltage that can be passed to @regulator_set_voltage(),
2618 * zero if this selector code can't be used on this system, or a
2619 * negative errno.
2621 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2623 return _regulator_list_voltage(regulator->rdev, selector, 1);
2625 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2628 * regulator_get_regmap - get the regulator's register map
2629 * @regulator: regulator source
2631 * Returns the register map for the given regulator, or an ERR_PTR value
2632 * if the regulator doesn't use regmap.
2634 struct regmap *regulator_get_regmap(struct regulator *regulator)
2636 struct regmap *map = regulator->rdev->regmap;
2638 return map ? map : ERR_PTR(-EOPNOTSUPP);
2642 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2643 * @regulator: regulator source
2644 * @vsel_reg: voltage selector register, output parameter
2645 * @vsel_mask: mask for voltage selector bitfield, output parameter
2647 * Returns the hardware register offset and bitmask used for setting the
2648 * regulator voltage. This might be useful when configuring voltage-scaling
2649 * hardware or firmware that can make I2C requests behind the kernel's back,
2650 * for example.
2652 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2653 * and 0 is returned, otherwise a negative errno is returned.
2655 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2656 unsigned *vsel_reg,
2657 unsigned *vsel_mask)
2659 struct regulator_dev *rdev = regulator->rdev;
2660 const struct regulator_ops *ops = rdev->desc->ops;
2662 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2663 return -EOPNOTSUPP;
2665 *vsel_reg = rdev->desc->vsel_reg;
2666 *vsel_mask = rdev->desc->vsel_mask;
2668 return 0;
2670 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2673 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2674 * @regulator: regulator source
2675 * @selector: identify voltage to list
2677 * Converts the selector to a hardware-specific voltage selector that can be
2678 * directly written to the regulator registers. The address of the voltage
2679 * register can be determined by calling @regulator_get_hardware_vsel_register.
2681 * On error a negative errno is returned.
2683 int regulator_list_hardware_vsel(struct regulator *regulator,
2684 unsigned selector)
2686 struct regulator_dev *rdev = regulator->rdev;
2687 const struct regulator_ops *ops = rdev->desc->ops;
2689 if (selector >= rdev->desc->n_voltages)
2690 return -EINVAL;
2691 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2692 return -EOPNOTSUPP;
2694 return selector;
2696 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2699 * regulator_get_linear_step - return the voltage step size between VSEL values
2700 * @regulator: regulator source
2702 * Returns the voltage step size between VSEL values for linear
2703 * regulators, or return 0 if the regulator isn't a linear regulator.
2705 unsigned int regulator_get_linear_step(struct regulator *regulator)
2707 struct regulator_dev *rdev = regulator->rdev;
2709 return rdev->desc->uV_step;
2711 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2714 * regulator_is_supported_voltage - check if a voltage range can be supported
2716 * @regulator: Regulator to check.
2717 * @min_uV: Minimum required voltage in uV.
2718 * @max_uV: Maximum required voltage in uV.
2720 * Returns a boolean or a negative error code.
2722 int regulator_is_supported_voltage(struct regulator *regulator,
2723 int min_uV, int max_uV)
2725 struct regulator_dev *rdev = regulator->rdev;
2726 int i, voltages, ret;
2728 /* If we can't change voltage check the current voltage */
2729 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
2730 ret = regulator_get_voltage(regulator);
2731 if (ret >= 0)
2732 return min_uV <= ret && ret <= max_uV;
2733 else
2734 return ret;
2737 /* Any voltage within constrains range is fine? */
2738 if (rdev->desc->continuous_voltage_range)
2739 return min_uV >= rdev->constraints->min_uV &&
2740 max_uV <= rdev->constraints->max_uV;
2742 ret = regulator_count_voltages(regulator);
2743 if (ret < 0)
2744 return ret;
2745 voltages = ret;
2747 for (i = 0; i < voltages; i++) {
2748 ret = regulator_list_voltage(regulator, i);
2750 if (ret >= min_uV && ret <= max_uV)
2751 return 1;
2754 return 0;
2756 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2758 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
2759 int max_uV)
2761 const struct regulator_desc *desc = rdev->desc;
2763 if (desc->ops->map_voltage)
2764 return desc->ops->map_voltage(rdev, min_uV, max_uV);
2766 if (desc->ops->list_voltage == regulator_list_voltage_linear)
2767 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
2769 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
2770 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
2772 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
2775 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2776 int min_uV, int max_uV,
2777 unsigned *selector)
2779 struct pre_voltage_change_data data;
2780 int ret;
2782 data.old_uV = _regulator_get_voltage(rdev);
2783 data.min_uV = min_uV;
2784 data.max_uV = max_uV;
2785 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2786 &data);
2787 if (ret & NOTIFY_STOP_MASK)
2788 return -EINVAL;
2790 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2791 if (ret >= 0)
2792 return ret;
2794 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2795 (void *)data.old_uV);
2797 return ret;
2800 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2801 int uV, unsigned selector)
2803 struct pre_voltage_change_data data;
2804 int ret;
2806 data.old_uV = _regulator_get_voltage(rdev);
2807 data.min_uV = uV;
2808 data.max_uV = uV;
2809 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2810 &data);
2811 if (ret & NOTIFY_STOP_MASK)
2812 return -EINVAL;
2814 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2815 if (ret >= 0)
2816 return ret;
2818 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2819 (void *)data.old_uV);
2821 return ret;
2824 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
2825 int old_uV, int new_uV)
2827 unsigned int ramp_delay = 0;
2829 if (rdev->constraints->ramp_delay)
2830 ramp_delay = rdev->constraints->ramp_delay;
2831 else if (rdev->desc->ramp_delay)
2832 ramp_delay = rdev->desc->ramp_delay;
2833 else if (rdev->constraints->settling_time)
2834 return rdev->constraints->settling_time;
2835 else if (rdev->constraints->settling_time_up &&
2836 (new_uV > old_uV))
2837 return rdev->constraints->settling_time_up;
2838 else if (rdev->constraints->settling_time_down &&
2839 (new_uV < old_uV))
2840 return rdev->constraints->settling_time_down;
2842 if (ramp_delay == 0) {
2843 rdev_dbg(rdev, "ramp_delay not set\n");
2844 return 0;
2847 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
2850 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2851 int min_uV, int max_uV)
2853 int ret;
2854 int delay = 0;
2855 int best_val = 0;
2856 unsigned int selector;
2857 int old_selector = -1;
2858 const struct regulator_ops *ops = rdev->desc->ops;
2859 int old_uV = _regulator_get_voltage(rdev);
2861 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2863 min_uV += rdev->constraints->uV_offset;
2864 max_uV += rdev->constraints->uV_offset;
2867 * If we can't obtain the old selector there is not enough
2868 * info to call set_voltage_time_sel().
2870 if (_regulator_is_enabled(rdev) &&
2871 ops->set_voltage_time_sel && ops->get_voltage_sel) {
2872 old_selector = ops->get_voltage_sel(rdev);
2873 if (old_selector < 0)
2874 return old_selector;
2877 if (ops->set_voltage) {
2878 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2879 &selector);
2881 if (ret >= 0) {
2882 if (ops->list_voltage)
2883 best_val = ops->list_voltage(rdev,
2884 selector);
2885 else
2886 best_val = _regulator_get_voltage(rdev);
2889 } else if (ops->set_voltage_sel) {
2890 ret = regulator_map_voltage(rdev, min_uV, max_uV);
2891 if (ret >= 0) {
2892 best_val = ops->list_voltage(rdev, ret);
2893 if (min_uV <= best_val && max_uV >= best_val) {
2894 selector = ret;
2895 if (old_selector == selector)
2896 ret = 0;
2897 else
2898 ret = _regulator_call_set_voltage_sel(
2899 rdev, best_val, selector);
2900 } else {
2901 ret = -EINVAL;
2904 } else {
2905 ret = -EINVAL;
2908 if (ret)
2909 goto out;
2911 if (ops->set_voltage_time_sel) {
2913 * Call set_voltage_time_sel if successfully obtained
2914 * old_selector
2916 if (old_selector >= 0 && old_selector != selector)
2917 delay = ops->set_voltage_time_sel(rdev, old_selector,
2918 selector);
2919 } else {
2920 if (old_uV != best_val) {
2921 if (ops->set_voltage_time)
2922 delay = ops->set_voltage_time(rdev, old_uV,
2923 best_val);
2924 else
2925 delay = _regulator_set_voltage_time(rdev,
2926 old_uV,
2927 best_val);
2931 if (delay < 0) {
2932 rdev_warn(rdev, "failed to get delay: %d\n", delay);
2933 delay = 0;
2936 /* Insert any necessary delays */
2937 if (delay >= 1000) {
2938 mdelay(delay / 1000);
2939 udelay(delay % 1000);
2940 } else if (delay) {
2941 udelay(delay);
2944 if (best_val >= 0) {
2945 unsigned long data = best_val;
2947 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2948 (void *)data);
2951 out:
2952 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2954 return ret;
2957 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
2958 int min_uV, int max_uV, suspend_state_t state)
2960 struct regulator_state *rstate;
2961 int uV, sel;
2963 rstate = regulator_get_suspend_state(rdev, state);
2964 if (rstate == NULL)
2965 return -EINVAL;
2967 if (min_uV < rstate->min_uV)
2968 min_uV = rstate->min_uV;
2969 if (max_uV > rstate->max_uV)
2970 max_uV = rstate->max_uV;
2972 sel = regulator_map_voltage(rdev, min_uV, max_uV);
2973 if (sel < 0)
2974 return sel;
2976 uV = rdev->desc->ops->list_voltage(rdev, sel);
2977 if (uV >= min_uV && uV <= max_uV)
2978 rstate->uV = uV;
2980 return 0;
2983 static int regulator_set_voltage_unlocked(struct regulator *regulator,
2984 int min_uV, int max_uV,
2985 suspend_state_t state)
2987 struct regulator_dev *rdev = regulator->rdev;
2988 struct regulator_voltage *voltage = &regulator->voltage[state];
2989 int ret = 0;
2990 int old_min_uV, old_max_uV;
2991 int current_uV;
2992 int best_supply_uV = 0;
2993 int supply_change_uV = 0;
2995 /* If we're setting the same range as last time the change
2996 * should be a noop (some cpufreq implementations use the same
2997 * voltage for multiple frequencies, for example).
2999 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3000 goto out;
3002 /* If we're trying to set a range that overlaps the current voltage,
3003 * return successfully even though the regulator does not support
3004 * changing the voltage.
3006 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3007 current_uV = _regulator_get_voltage(rdev);
3008 if (min_uV <= current_uV && current_uV <= max_uV) {
3009 voltage->min_uV = min_uV;
3010 voltage->max_uV = max_uV;
3011 goto out;
3015 /* sanity check */
3016 if (!rdev->desc->ops->set_voltage &&
3017 !rdev->desc->ops->set_voltage_sel) {
3018 ret = -EINVAL;
3019 goto out;
3022 /* constraints check */
3023 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3024 if (ret < 0)
3025 goto out;
3027 /* restore original values in case of error */
3028 old_min_uV = voltage->min_uV;
3029 old_max_uV = voltage->max_uV;
3030 voltage->min_uV = min_uV;
3031 voltage->max_uV = max_uV;
3033 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, state);
3034 if (ret < 0)
3035 goto out2;
3037 if (rdev->supply &&
3038 regulator_ops_is_valid(rdev->supply->rdev,
3039 REGULATOR_CHANGE_VOLTAGE) &&
3040 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3041 rdev->desc->ops->get_voltage_sel))) {
3042 int current_supply_uV;
3043 int selector;
3045 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3046 if (selector < 0) {
3047 ret = selector;
3048 goto out2;
3051 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3052 if (best_supply_uV < 0) {
3053 ret = best_supply_uV;
3054 goto out2;
3057 best_supply_uV += rdev->desc->min_dropout_uV;
3059 current_supply_uV = _regulator_get_voltage(rdev->supply->rdev);
3060 if (current_supply_uV < 0) {
3061 ret = current_supply_uV;
3062 goto out2;
3065 supply_change_uV = best_supply_uV - current_supply_uV;
3068 if (supply_change_uV > 0) {
3069 ret = regulator_set_voltage_unlocked(rdev->supply,
3070 best_supply_uV, INT_MAX, state);
3071 if (ret) {
3072 dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
3073 ret);
3074 goto out2;
3078 if (state == PM_SUSPEND_ON)
3079 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3080 else
3081 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3082 max_uV, state);
3083 if (ret < 0)
3084 goto out2;
3086 if (supply_change_uV < 0) {
3087 ret = regulator_set_voltage_unlocked(rdev->supply,
3088 best_supply_uV, INT_MAX, state);
3089 if (ret)
3090 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
3091 ret);
3092 /* No need to fail here */
3093 ret = 0;
3096 out:
3097 return ret;
3098 out2:
3099 voltage->min_uV = old_min_uV;
3100 voltage->max_uV = old_max_uV;
3102 return ret;
3106 * regulator_set_voltage - set regulator output voltage
3107 * @regulator: regulator source
3108 * @min_uV: Minimum required voltage in uV
3109 * @max_uV: Maximum acceptable voltage in uV
3111 * Sets a voltage regulator to the desired output voltage. This can be set
3112 * during any regulator state. IOW, regulator can be disabled or enabled.
3114 * If the regulator is enabled then the voltage will change to the new value
3115 * immediately otherwise if the regulator is disabled the regulator will
3116 * output at the new voltage when enabled.
3118 * NOTE: If the regulator is shared between several devices then the lowest
3119 * request voltage that meets the system constraints will be used.
3120 * Regulator system constraints must be set for this regulator before
3121 * calling this function otherwise this call will fail.
3123 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3125 int ret = 0;
3127 regulator_lock_supply(regulator->rdev);
3129 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3130 PM_SUSPEND_ON);
3132 regulator_unlock_supply(regulator->rdev);
3134 return ret;
3136 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3138 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3139 suspend_state_t state, bool en)
3141 struct regulator_state *rstate;
3143 rstate = regulator_get_suspend_state(rdev, state);
3144 if (rstate == NULL)
3145 return -EINVAL;
3147 if (!rstate->changeable)
3148 return -EPERM;
3150 rstate->enabled = en;
3152 return 0;
3155 int regulator_suspend_enable(struct regulator_dev *rdev,
3156 suspend_state_t state)
3158 return regulator_suspend_toggle(rdev, state, true);
3160 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3162 int regulator_suspend_disable(struct regulator_dev *rdev,
3163 suspend_state_t state)
3165 struct regulator *regulator;
3166 struct regulator_voltage *voltage;
3169 * if any consumer wants this regulator device keeping on in
3170 * suspend states, don't set it as disabled.
3172 list_for_each_entry(regulator, &rdev->consumer_list, list) {
3173 voltage = &regulator->voltage[state];
3174 if (voltage->min_uV || voltage->max_uV)
3175 return 0;
3178 return regulator_suspend_toggle(rdev, state, false);
3180 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3182 static int _regulator_set_suspend_voltage(struct regulator *regulator,
3183 int min_uV, int max_uV,
3184 suspend_state_t state)
3186 struct regulator_dev *rdev = regulator->rdev;
3187 struct regulator_state *rstate;
3189 rstate = regulator_get_suspend_state(rdev, state);
3190 if (rstate == NULL)
3191 return -EINVAL;
3193 if (rstate->min_uV == rstate->max_uV) {
3194 rdev_err(rdev, "The suspend voltage can't be changed!\n");
3195 return -EPERM;
3198 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
3201 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
3202 int max_uV, suspend_state_t state)
3204 int ret = 0;
3206 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3207 if (regulator_check_states(state) || state == PM_SUSPEND_ON)
3208 return -EINVAL;
3210 regulator_lock_supply(regulator->rdev);
3212 ret = _regulator_set_suspend_voltage(regulator, min_uV,
3213 max_uV, state);
3215 regulator_unlock_supply(regulator->rdev);
3217 return ret;
3219 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
3222 * regulator_set_voltage_time - get raise/fall time
3223 * @regulator: regulator source
3224 * @old_uV: starting voltage in microvolts
3225 * @new_uV: target voltage in microvolts
3227 * Provided with the starting and ending voltage, this function attempts to
3228 * calculate the time in microseconds required to rise or fall to this new
3229 * voltage.
3231 int regulator_set_voltage_time(struct regulator *regulator,
3232 int old_uV, int new_uV)
3234 struct regulator_dev *rdev = regulator->rdev;
3235 const struct regulator_ops *ops = rdev->desc->ops;
3236 int old_sel = -1;
3237 int new_sel = -1;
3238 int voltage;
3239 int i;
3241 if (ops->set_voltage_time)
3242 return ops->set_voltage_time(rdev, old_uV, new_uV);
3243 else if (!ops->set_voltage_time_sel)
3244 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3246 /* Currently requires operations to do this */
3247 if (!ops->list_voltage || !rdev->desc->n_voltages)
3248 return -EINVAL;
3250 for (i = 0; i < rdev->desc->n_voltages; i++) {
3251 /* We only look for exact voltage matches here */
3252 voltage = regulator_list_voltage(regulator, i);
3253 if (voltage < 0)
3254 return -EINVAL;
3255 if (voltage == 0)
3256 continue;
3257 if (voltage == old_uV)
3258 old_sel = i;
3259 if (voltage == new_uV)
3260 new_sel = i;
3263 if (old_sel < 0 || new_sel < 0)
3264 return -EINVAL;
3266 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
3268 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
3271 * regulator_set_voltage_time_sel - get raise/fall time
3272 * @rdev: regulator source device
3273 * @old_selector: selector for starting voltage
3274 * @new_selector: selector for target voltage
3276 * Provided with the starting and target voltage selectors, this function
3277 * returns time in microseconds required to rise or fall to this new voltage
3279 * Drivers providing ramp_delay in regulation_constraints can use this as their
3280 * set_voltage_time_sel() operation.
3282 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
3283 unsigned int old_selector,
3284 unsigned int new_selector)
3286 int old_volt, new_volt;
3288 /* sanity check */
3289 if (!rdev->desc->ops->list_voltage)
3290 return -EINVAL;
3292 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
3293 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
3295 if (rdev->desc->ops->set_voltage_time)
3296 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
3297 new_volt);
3298 else
3299 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
3301 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
3304 * regulator_sync_voltage - re-apply last regulator output voltage
3305 * @regulator: regulator source
3307 * Re-apply the last configured voltage. This is intended to be used
3308 * where some external control source the consumer is cooperating with
3309 * has caused the configured voltage to change.
3311 int regulator_sync_voltage(struct regulator *regulator)
3313 struct regulator_dev *rdev = regulator->rdev;
3314 struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
3315 int ret, min_uV, max_uV;
3317 regulator_lock(rdev);
3319 if (!rdev->desc->ops->set_voltage &&
3320 !rdev->desc->ops->set_voltage_sel) {
3321 ret = -EINVAL;
3322 goto out;
3325 /* This is only going to work if we've had a voltage configured. */
3326 if (!voltage->min_uV && !voltage->max_uV) {
3327 ret = -EINVAL;
3328 goto out;
3331 min_uV = voltage->min_uV;
3332 max_uV = voltage->max_uV;
3334 /* This should be a paranoia check... */
3335 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3336 if (ret < 0)
3337 goto out;
3339 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
3340 if (ret < 0)
3341 goto out;
3343 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3345 out:
3346 regulator_unlock(rdev);
3347 return ret;
3349 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
3351 static int _regulator_get_voltage(struct regulator_dev *rdev)
3353 int sel, ret;
3354 bool bypassed;
3356 if (rdev->desc->ops->get_bypass) {
3357 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
3358 if (ret < 0)
3359 return ret;
3360 if (bypassed) {
3361 /* if bypassed the regulator must have a supply */
3362 if (!rdev->supply) {
3363 rdev_err(rdev,
3364 "bypassed regulator has no supply!\n");
3365 return -EPROBE_DEFER;
3368 return _regulator_get_voltage(rdev->supply->rdev);
3372 if (rdev->desc->ops->get_voltage_sel) {
3373 sel = rdev->desc->ops->get_voltage_sel(rdev);
3374 if (sel < 0)
3375 return sel;
3376 ret = rdev->desc->ops->list_voltage(rdev, sel);
3377 } else if (rdev->desc->ops->get_voltage) {
3378 ret = rdev->desc->ops->get_voltage(rdev);
3379 } else if (rdev->desc->ops->list_voltage) {
3380 ret = rdev->desc->ops->list_voltage(rdev, 0);
3381 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
3382 ret = rdev->desc->fixed_uV;
3383 } else if (rdev->supply) {
3384 ret = _regulator_get_voltage(rdev->supply->rdev);
3385 } else {
3386 return -EINVAL;
3389 if (ret < 0)
3390 return ret;
3391 return ret - rdev->constraints->uV_offset;
3395 * regulator_get_voltage - get regulator output voltage
3396 * @regulator: regulator source
3398 * This returns the current regulator voltage in uV.
3400 * NOTE: If the regulator is disabled it will return the voltage value. This
3401 * function should not be used to determine regulator state.
3403 int regulator_get_voltage(struct regulator *regulator)
3405 int ret;
3407 regulator_lock_supply(regulator->rdev);
3409 ret = _regulator_get_voltage(regulator->rdev);
3411 regulator_unlock_supply(regulator->rdev);
3413 return ret;
3415 EXPORT_SYMBOL_GPL(regulator_get_voltage);
3418 * regulator_set_current_limit - set regulator output current limit
3419 * @regulator: regulator source
3420 * @min_uA: Minimum supported current in uA
3421 * @max_uA: Maximum supported current in uA
3423 * Sets current sink to the desired output current. This can be set during
3424 * any regulator state. IOW, regulator can be disabled or enabled.
3426 * If the regulator is enabled then the current will change to the new value
3427 * immediately otherwise if the regulator is disabled the regulator will
3428 * output at the new current when enabled.
3430 * NOTE: Regulator system constraints must be set for this regulator before
3431 * calling this function otherwise this call will fail.
3433 int regulator_set_current_limit(struct regulator *regulator,
3434 int min_uA, int max_uA)
3436 struct regulator_dev *rdev = regulator->rdev;
3437 int ret;
3439 regulator_lock(rdev);
3441 /* sanity check */
3442 if (!rdev->desc->ops->set_current_limit) {
3443 ret = -EINVAL;
3444 goto out;
3447 /* constraints check */
3448 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
3449 if (ret < 0)
3450 goto out;
3452 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
3453 out:
3454 regulator_unlock(rdev);
3455 return ret;
3457 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
3459 static int _regulator_get_current_limit(struct regulator_dev *rdev)
3461 int ret;
3463 regulator_lock(rdev);
3465 /* sanity check */
3466 if (!rdev->desc->ops->get_current_limit) {
3467 ret = -EINVAL;
3468 goto out;
3471 ret = rdev->desc->ops->get_current_limit(rdev);
3472 out:
3473 regulator_unlock(rdev);
3474 return ret;
3478 * regulator_get_current_limit - get regulator output current
3479 * @regulator: regulator source
3481 * This returns the current supplied by the specified current sink in uA.
3483 * NOTE: If the regulator is disabled it will return the current value. This
3484 * function should not be used to determine regulator state.
3486 int regulator_get_current_limit(struct regulator *regulator)
3488 return _regulator_get_current_limit(regulator->rdev);
3490 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
3493 * regulator_set_mode - set regulator operating mode
3494 * @regulator: regulator source
3495 * @mode: operating mode - one of the REGULATOR_MODE constants
3497 * Set regulator operating mode to increase regulator efficiency or improve
3498 * regulation performance.
3500 * NOTE: Regulator system constraints must be set for this regulator before
3501 * calling this function otherwise this call will fail.
3503 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
3505 struct regulator_dev *rdev = regulator->rdev;
3506 int ret;
3507 int regulator_curr_mode;
3509 regulator_lock(rdev);
3511 /* sanity check */
3512 if (!rdev->desc->ops->set_mode) {
3513 ret = -EINVAL;
3514 goto out;
3517 /* return if the same mode is requested */
3518 if (rdev->desc->ops->get_mode) {
3519 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
3520 if (regulator_curr_mode == mode) {
3521 ret = 0;
3522 goto out;
3526 /* constraints check */
3527 ret = regulator_mode_constrain(rdev, &mode);
3528 if (ret < 0)
3529 goto out;
3531 ret = rdev->desc->ops->set_mode(rdev, mode);
3532 out:
3533 regulator_unlock(rdev);
3534 return ret;
3536 EXPORT_SYMBOL_GPL(regulator_set_mode);
3538 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
3540 int ret;
3542 regulator_lock(rdev);
3544 /* sanity check */
3545 if (!rdev->desc->ops->get_mode) {
3546 ret = -EINVAL;
3547 goto out;
3550 ret = rdev->desc->ops->get_mode(rdev);
3551 out:
3552 regulator_unlock(rdev);
3553 return ret;
3557 * regulator_get_mode - get regulator operating mode
3558 * @regulator: regulator source
3560 * Get the current regulator operating mode.
3562 unsigned int regulator_get_mode(struct regulator *regulator)
3564 return _regulator_get_mode(regulator->rdev);
3566 EXPORT_SYMBOL_GPL(regulator_get_mode);
3568 static int _regulator_get_error_flags(struct regulator_dev *rdev,
3569 unsigned int *flags)
3571 int ret;
3573 regulator_lock(rdev);
3575 /* sanity check */
3576 if (!rdev->desc->ops->get_error_flags) {
3577 ret = -EINVAL;
3578 goto out;
3581 ret = rdev->desc->ops->get_error_flags(rdev, flags);
3582 out:
3583 regulator_unlock(rdev);
3584 return ret;
3588 * regulator_get_error_flags - get regulator error information
3589 * @regulator: regulator source
3590 * @flags: pointer to store error flags
3592 * Get the current regulator error information.
3594 int regulator_get_error_flags(struct regulator *regulator,
3595 unsigned int *flags)
3597 return _regulator_get_error_flags(regulator->rdev, flags);
3599 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
3602 * regulator_set_load - set regulator load
3603 * @regulator: regulator source
3604 * @uA_load: load current
3606 * Notifies the regulator core of a new device load. This is then used by
3607 * DRMS (if enabled by constraints) to set the most efficient regulator
3608 * operating mode for the new regulator loading.
3610 * Consumer devices notify their supply regulator of the maximum power
3611 * they will require (can be taken from device datasheet in the power
3612 * consumption tables) when they change operational status and hence power
3613 * state. Examples of operational state changes that can affect power
3614 * consumption are :-
3616 * o Device is opened / closed.
3617 * o Device I/O is about to begin or has just finished.
3618 * o Device is idling in between work.
3620 * This information is also exported via sysfs to userspace.
3622 * DRMS will sum the total requested load on the regulator and change
3623 * to the most efficient operating mode if platform constraints allow.
3625 * On error a negative errno is returned.
3627 int regulator_set_load(struct regulator *regulator, int uA_load)
3629 struct regulator_dev *rdev = regulator->rdev;
3630 int ret;
3632 regulator_lock(rdev);
3633 regulator->uA_load = uA_load;
3634 ret = drms_uA_update(rdev);
3635 regulator_unlock(rdev);
3637 return ret;
3639 EXPORT_SYMBOL_GPL(regulator_set_load);
3642 * regulator_allow_bypass - allow the regulator to go into bypass mode
3644 * @regulator: Regulator to configure
3645 * @enable: enable or disable bypass mode
3647 * Allow the regulator to go into bypass mode if all other consumers
3648 * for the regulator also enable bypass mode and the machine
3649 * constraints allow this. Bypass mode means that the regulator is
3650 * simply passing the input directly to the output with no regulation.
3652 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3654 struct regulator_dev *rdev = regulator->rdev;
3655 int ret = 0;
3657 if (!rdev->desc->ops->set_bypass)
3658 return 0;
3660 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
3661 return 0;
3663 regulator_lock(rdev);
3665 if (enable && !regulator->bypass) {
3666 rdev->bypass_count++;
3668 if (rdev->bypass_count == rdev->open_count) {
3669 ret = rdev->desc->ops->set_bypass(rdev, enable);
3670 if (ret != 0)
3671 rdev->bypass_count--;
3674 } else if (!enable && regulator->bypass) {
3675 rdev->bypass_count--;
3677 if (rdev->bypass_count != rdev->open_count) {
3678 ret = rdev->desc->ops->set_bypass(rdev, enable);
3679 if (ret != 0)
3680 rdev->bypass_count++;
3684 if (ret == 0)
3685 regulator->bypass = enable;
3687 regulator_unlock(rdev);
3689 return ret;
3691 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3694 * regulator_register_notifier - register regulator event notifier
3695 * @regulator: regulator source
3696 * @nb: notifier block
3698 * Register notifier block to receive regulator events.
3700 int regulator_register_notifier(struct regulator *regulator,
3701 struct notifier_block *nb)
3703 return blocking_notifier_chain_register(&regulator->rdev->notifier,
3704 nb);
3706 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3709 * regulator_unregister_notifier - unregister regulator event notifier
3710 * @regulator: regulator source
3711 * @nb: notifier block
3713 * Unregister regulator event notifier block.
3715 int regulator_unregister_notifier(struct regulator *regulator,
3716 struct notifier_block *nb)
3718 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3719 nb);
3721 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3723 /* notify regulator consumers and downstream regulator consumers.
3724 * Note mutex must be held by caller.
3726 static int _notifier_call_chain(struct regulator_dev *rdev,
3727 unsigned long event, void *data)
3729 /* call rdev chain first */
3730 return blocking_notifier_call_chain(&rdev->notifier, event, data);
3734 * regulator_bulk_get - get multiple regulator consumers
3736 * @dev: Device to supply
3737 * @num_consumers: Number of consumers to register
3738 * @consumers: Configuration of consumers; clients are stored here.
3740 * @return 0 on success, an errno on failure.
3742 * This helper function allows drivers to get several regulator
3743 * consumers in one operation. If any of the regulators cannot be
3744 * acquired then any regulators that were allocated will be freed
3745 * before returning to the caller.
3747 int regulator_bulk_get(struct device *dev, int num_consumers,
3748 struct regulator_bulk_data *consumers)
3750 int i;
3751 int ret;
3753 for (i = 0; i < num_consumers; i++)
3754 consumers[i].consumer = NULL;
3756 for (i = 0; i < num_consumers; i++) {
3757 consumers[i].consumer = regulator_get(dev,
3758 consumers[i].supply);
3759 if (IS_ERR(consumers[i].consumer)) {
3760 ret = PTR_ERR(consumers[i].consumer);
3761 dev_err(dev, "Failed to get supply '%s': %d\n",
3762 consumers[i].supply, ret);
3763 consumers[i].consumer = NULL;
3764 goto err;
3768 return 0;
3770 err:
3771 while (--i >= 0)
3772 regulator_put(consumers[i].consumer);
3774 return ret;
3776 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3778 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3780 struct regulator_bulk_data *bulk = data;
3782 bulk->ret = regulator_enable(bulk->consumer);
3786 * regulator_bulk_enable - enable multiple regulator consumers
3788 * @num_consumers: Number of consumers
3789 * @consumers: Consumer data; clients are stored here.
3790 * @return 0 on success, an errno on failure
3792 * This convenience API allows consumers to enable multiple regulator
3793 * clients in a single API call. If any consumers cannot be enabled
3794 * then any others that were enabled will be disabled again prior to
3795 * return.
3797 int regulator_bulk_enable(int num_consumers,
3798 struct regulator_bulk_data *consumers)
3800 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3801 int i;
3802 int ret = 0;
3804 for (i = 0; i < num_consumers; i++) {
3805 if (consumers[i].consumer->always_on)
3806 consumers[i].ret = 0;
3807 else
3808 async_schedule_domain(regulator_bulk_enable_async,
3809 &consumers[i], &async_domain);
3812 async_synchronize_full_domain(&async_domain);
3814 /* If any consumer failed we need to unwind any that succeeded */
3815 for (i = 0; i < num_consumers; i++) {
3816 if (consumers[i].ret != 0) {
3817 ret = consumers[i].ret;
3818 goto err;
3822 return 0;
3824 err:
3825 for (i = 0; i < num_consumers; i++) {
3826 if (consumers[i].ret < 0)
3827 pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3828 consumers[i].ret);
3829 else
3830 regulator_disable(consumers[i].consumer);
3833 return ret;
3835 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3838 * regulator_bulk_disable - disable multiple regulator consumers
3840 * @num_consumers: Number of consumers
3841 * @consumers: Consumer data; clients are stored here.
3842 * @return 0 on success, an errno on failure
3844 * This convenience API allows consumers to disable multiple regulator
3845 * clients in a single API call. If any consumers cannot be disabled
3846 * then any others that were disabled will be enabled again prior to
3847 * return.
3849 int regulator_bulk_disable(int num_consumers,
3850 struct regulator_bulk_data *consumers)
3852 int i;
3853 int ret, r;
3855 for (i = num_consumers - 1; i >= 0; --i) {
3856 ret = regulator_disable(consumers[i].consumer);
3857 if (ret != 0)
3858 goto err;
3861 return 0;
3863 err:
3864 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3865 for (++i; i < num_consumers; ++i) {
3866 r = regulator_enable(consumers[i].consumer);
3867 if (r != 0)
3868 pr_err("Failed to re-enable %s: %d\n",
3869 consumers[i].supply, r);
3872 return ret;
3874 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3877 * regulator_bulk_force_disable - force disable multiple regulator consumers
3879 * @num_consumers: Number of consumers
3880 * @consumers: Consumer data; clients are stored here.
3881 * @return 0 on success, an errno on failure
3883 * This convenience API allows consumers to forcibly disable multiple regulator
3884 * clients in a single API call.
3885 * NOTE: This should be used for situations when device damage will
3886 * likely occur if the regulators are not disabled (e.g. over temp).
3887 * Although regulator_force_disable function call for some consumers can
3888 * return error numbers, the function is called for all consumers.
3890 int regulator_bulk_force_disable(int num_consumers,
3891 struct regulator_bulk_data *consumers)
3893 int i;
3894 int ret = 0;
3896 for (i = 0; i < num_consumers; i++) {
3897 consumers[i].ret =
3898 regulator_force_disable(consumers[i].consumer);
3900 /* Store first error for reporting */
3901 if (consumers[i].ret && !ret)
3902 ret = consumers[i].ret;
3905 return ret;
3907 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3910 * regulator_bulk_free - free multiple regulator consumers
3912 * @num_consumers: Number of consumers
3913 * @consumers: Consumer data; clients are stored here.
3915 * This convenience API allows consumers to free multiple regulator
3916 * clients in a single API call.
3918 void regulator_bulk_free(int num_consumers,
3919 struct regulator_bulk_data *consumers)
3921 int i;
3923 for (i = 0; i < num_consumers; i++) {
3924 regulator_put(consumers[i].consumer);
3925 consumers[i].consumer = NULL;
3928 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3931 * regulator_notifier_call_chain - call regulator event notifier
3932 * @rdev: regulator source
3933 * @event: notifier block
3934 * @data: callback-specific data.
3936 * Called by regulator drivers to notify clients a regulator event has
3937 * occurred. We also notify regulator clients downstream.
3938 * Note lock must be held by caller.
3940 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3941 unsigned long event, void *data)
3943 lockdep_assert_held_once(&rdev->mutex);
3945 _notifier_call_chain(rdev, event, data);
3946 return NOTIFY_DONE;
3949 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3952 * regulator_mode_to_status - convert a regulator mode into a status
3954 * @mode: Mode to convert
3956 * Convert a regulator mode into a status.
3958 int regulator_mode_to_status(unsigned int mode)
3960 switch (mode) {
3961 case REGULATOR_MODE_FAST:
3962 return REGULATOR_STATUS_FAST;
3963 case REGULATOR_MODE_NORMAL:
3964 return REGULATOR_STATUS_NORMAL;
3965 case REGULATOR_MODE_IDLE:
3966 return REGULATOR_STATUS_IDLE;
3967 case REGULATOR_MODE_STANDBY:
3968 return REGULATOR_STATUS_STANDBY;
3969 default:
3970 return REGULATOR_STATUS_UNDEFINED;
3973 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3975 static struct attribute *regulator_dev_attrs[] = {
3976 &dev_attr_name.attr,
3977 &dev_attr_num_users.attr,
3978 &dev_attr_type.attr,
3979 &dev_attr_microvolts.attr,
3980 &dev_attr_microamps.attr,
3981 &dev_attr_opmode.attr,
3982 &dev_attr_state.attr,
3983 &dev_attr_status.attr,
3984 &dev_attr_bypass.attr,
3985 &dev_attr_requested_microamps.attr,
3986 &dev_attr_min_microvolts.attr,
3987 &dev_attr_max_microvolts.attr,
3988 &dev_attr_min_microamps.attr,
3989 &dev_attr_max_microamps.attr,
3990 &dev_attr_suspend_standby_state.attr,
3991 &dev_attr_suspend_mem_state.attr,
3992 &dev_attr_suspend_disk_state.attr,
3993 &dev_attr_suspend_standby_microvolts.attr,
3994 &dev_attr_suspend_mem_microvolts.attr,
3995 &dev_attr_suspend_disk_microvolts.attr,
3996 &dev_attr_suspend_standby_mode.attr,
3997 &dev_attr_suspend_mem_mode.attr,
3998 &dev_attr_suspend_disk_mode.attr,
3999 NULL
4003 * To avoid cluttering sysfs (and memory) with useless state, only
4004 * create attributes that can be meaningfully displayed.
4006 static umode_t regulator_attr_is_visible(struct kobject *kobj,
4007 struct attribute *attr, int idx)
4009 struct device *dev = kobj_to_dev(kobj);
4010 struct regulator_dev *rdev = dev_to_rdev(dev);
4011 const struct regulator_ops *ops = rdev->desc->ops;
4012 umode_t mode = attr->mode;
4014 /* these three are always present */
4015 if (attr == &dev_attr_name.attr ||
4016 attr == &dev_attr_num_users.attr ||
4017 attr == &dev_attr_type.attr)
4018 return mode;
4020 /* some attributes need specific methods to be displayed */
4021 if (attr == &dev_attr_microvolts.attr) {
4022 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4023 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4024 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4025 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4026 return mode;
4027 return 0;
4030 if (attr == &dev_attr_microamps.attr)
4031 return ops->get_current_limit ? mode : 0;
4033 if (attr == &dev_attr_opmode.attr)
4034 return ops->get_mode ? mode : 0;
4036 if (attr == &dev_attr_state.attr)
4037 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4039 if (attr == &dev_attr_status.attr)
4040 return ops->get_status ? mode : 0;
4042 if (attr == &dev_attr_bypass.attr)
4043 return ops->get_bypass ? mode : 0;
4045 /* some attributes are type-specific */
4046 if (attr == &dev_attr_requested_microamps.attr)
4047 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
4049 /* constraints need specific supporting methods */
4050 if (attr == &dev_attr_min_microvolts.attr ||
4051 attr == &dev_attr_max_microvolts.attr)
4052 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4054 if (attr == &dev_attr_min_microamps.attr ||
4055 attr == &dev_attr_max_microamps.attr)
4056 return ops->set_current_limit ? mode : 0;
4058 if (attr == &dev_attr_suspend_standby_state.attr ||
4059 attr == &dev_attr_suspend_mem_state.attr ||
4060 attr == &dev_attr_suspend_disk_state.attr)
4061 return mode;
4063 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4064 attr == &dev_attr_suspend_mem_microvolts.attr ||
4065 attr == &dev_attr_suspend_disk_microvolts.attr)
4066 return ops->set_suspend_voltage ? mode : 0;
4068 if (attr == &dev_attr_suspend_standby_mode.attr ||
4069 attr == &dev_attr_suspend_mem_mode.attr ||
4070 attr == &dev_attr_suspend_disk_mode.attr)
4071 return ops->set_suspend_mode ? mode : 0;
4073 return mode;
4076 static const struct attribute_group regulator_dev_group = {
4077 .attrs = regulator_dev_attrs,
4078 .is_visible = regulator_attr_is_visible,
4081 static const struct attribute_group *regulator_dev_groups[] = {
4082 &regulator_dev_group,
4083 NULL
4086 static void regulator_dev_release(struct device *dev)
4088 struct regulator_dev *rdev = dev_get_drvdata(dev);
4090 kfree(rdev->constraints);
4091 of_node_put(rdev->dev.of_node);
4092 kfree(rdev);
4095 static void rdev_init_debugfs(struct regulator_dev *rdev)
4097 struct device *parent = rdev->dev.parent;
4098 const char *rname = rdev_get_name(rdev);
4099 char name[NAME_MAX];
4101 /* Avoid duplicate debugfs directory names */
4102 if (parent && rname == rdev->desc->name) {
4103 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4104 rname);
4105 rname = name;
4108 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4109 if (!rdev->debugfs) {
4110 rdev_warn(rdev, "Failed to create debugfs directory\n");
4111 return;
4114 debugfs_create_u32("use_count", 0444, rdev->debugfs,
4115 &rdev->use_count);
4116 debugfs_create_u32("open_count", 0444, rdev->debugfs,
4117 &rdev->open_count);
4118 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4119 &rdev->bypass_count);
4122 static int regulator_register_resolve_supply(struct device *dev, void *data)
4124 struct regulator_dev *rdev = dev_to_rdev(dev);
4126 if (regulator_resolve_supply(rdev))
4127 rdev_dbg(rdev, "unable to resolve supply\n");
4129 return 0;
4132 static int regulator_fill_coupling_array(struct regulator_dev *rdev)
4134 struct coupling_desc *c_desc = &rdev->coupling_desc;
4135 int n_coupled = c_desc->n_coupled;
4136 struct regulator_dev *c_rdev;
4137 int i;
4139 for (i = 1; i < n_coupled; i++) {
4140 /* already resolved */
4141 if (c_desc->coupled_rdevs[i])
4142 continue;
4144 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
4146 if (c_rdev) {
4147 c_desc->coupled_rdevs[i] = c_rdev;
4148 c_desc->n_resolved++;
4152 if (rdev->coupling_desc.n_resolved < n_coupled)
4153 return -1;
4154 else
4155 return 0;
4158 static int regulator_register_fill_coupling_array(struct device *dev,
4159 void *data)
4161 struct regulator_dev *rdev = dev_to_rdev(dev);
4163 if (!IS_ENABLED(CONFIG_OF))
4164 return 0;
4166 if (regulator_fill_coupling_array(rdev))
4167 rdev_dbg(rdev, "unable to resolve coupling\n");
4169 return 0;
4172 static int regulator_resolve_coupling(struct regulator_dev *rdev)
4174 int n_phandles;
4176 if (!IS_ENABLED(CONFIG_OF))
4177 n_phandles = 0;
4178 else
4179 n_phandles = of_get_n_coupled(rdev);
4181 if (n_phandles + 1 > MAX_COUPLED) {
4182 rdev_err(rdev, "too many regulators coupled\n");
4183 return -EPERM;
4187 * Every regulator should always have coupling descriptor filled with
4188 * at least pointer to itself.
4190 rdev->coupling_desc.coupled_rdevs[0] = rdev;
4191 rdev->coupling_desc.n_coupled = n_phandles + 1;
4192 rdev->coupling_desc.n_resolved++;
4194 /* regulator isn't coupled */
4195 if (n_phandles == 0)
4196 return 0;
4198 /* regulator, which can't change its voltage, can't be coupled */
4199 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
4200 rdev_err(rdev, "voltage operation not allowed\n");
4201 return -EPERM;
4204 if (rdev->constraints->max_spread <= 0) {
4205 rdev_err(rdev, "wrong max_spread value\n");
4206 return -EPERM;
4209 if (!of_check_coupling_data(rdev))
4210 return -EPERM;
4213 * After everything has been checked, try to fill rdevs array
4214 * with pointers to regulators parsed from device tree. If some
4215 * regulators are not registered yet, retry in late init call
4217 regulator_fill_coupling_array(rdev);
4219 return 0;
4223 * regulator_register - register regulator
4224 * @regulator_desc: regulator to register
4225 * @cfg: runtime configuration for regulator
4227 * Called by regulator drivers to register a regulator.
4228 * Returns a valid pointer to struct regulator_dev on success
4229 * or an ERR_PTR() on error.
4231 struct regulator_dev *
4232 regulator_register(const struct regulator_desc *regulator_desc,
4233 const struct regulator_config *cfg)
4235 const struct regulation_constraints *constraints = NULL;
4236 const struct regulator_init_data *init_data;
4237 struct regulator_config *config = NULL;
4238 static atomic_t regulator_no = ATOMIC_INIT(-1);
4239 struct regulator_dev *rdev;
4240 struct device *dev;
4241 int ret, i;
4243 if (regulator_desc == NULL || cfg == NULL)
4244 return ERR_PTR(-EINVAL);
4246 dev = cfg->dev;
4247 WARN_ON(!dev);
4249 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
4250 return ERR_PTR(-EINVAL);
4252 if (regulator_desc->type != REGULATOR_VOLTAGE &&
4253 regulator_desc->type != REGULATOR_CURRENT)
4254 return ERR_PTR(-EINVAL);
4256 /* Only one of each should be implemented */
4257 WARN_ON(regulator_desc->ops->get_voltage &&
4258 regulator_desc->ops->get_voltage_sel);
4259 WARN_ON(regulator_desc->ops->set_voltage &&
4260 regulator_desc->ops->set_voltage_sel);
4262 /* If we're using selectors we must implement list_voltage. */
4263 if (regulator_desc->ops->get_voltage_sel &&
4264 !regulator_desc->ops->list_voltage) {
4265 return ERR_PTR(-EINVAL);
4267 if (regulator_desc->ops->set_voltage_sel &&
4268 !regulator_desc->ops->list_voltage) {
4269 return ERR_PTR(-EINVAL);
4272 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
4273 if (rdev == NULL)
4274 return ERR_PTR(-ENOMEM);
4277 * Duplicate the config so the driver could override it after
4278 * parsing init data.
4280 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
4281 if (config == NULL) {
4282 kfree(rdev);
4283 return ERR_PTR(-ENOMEM);
4286 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
4287 &rdev->dev.of_node);
4288 if (!init_data) {
4289 init_data = config->init_data;
4290 rdev->dev.of_node = of_node_get(config->of_node);
4293 mutex_init(&rdev->mutex);
4294 rdev->reg_data = config->driver_data;
4295 rdev->owner = regulator_desc->owner;
4296 rdev->desc = regulator_desc;
4297 if (config->regmap)
4298 rdev->regmap = config->regmap;
4299 else if (dev_get_regmap(dev, NULL))
4300 rdev->regmap = dev_get_regmap(dev, NULL);
4301 else if (dev->parent)
4302 rdev->regmap = dev_get_regmap(dev->parent, NULL);
4303 INIT_LIST_HEAD(&rdev->consumer_list);
4304 INIT_LIST_HEAD(&rdev->list);
4305 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
4306 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
4308 /* preform any regulator specific init */
4309 if (init_data && init_data->regulator_init) {
4310 ret = init_data->regulator_init(rdev->reg_data);
4311 if (ret < 0)
4312 goto clean;
4315 if (config->ena_gpiod ||
4316 ((config->ena_gpio || config->ena_gpio_initialized) &&
4317 gpio_is_valid(config->ena_gpio))) {
4318 mutex_lock(&regulator_list_mutex);
4319 ret = regulator_ena_gpio_request(rdev, config);
4320 mutex_unlock(&regulator_list_mutex);
4321 if (ret != 0) {
4322 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
4323 config->ena_gpio, ret);
4324 goto clean;
4328 /* register with sysfs */
4329 rdev->dev.class = &regulator_class;
4330 rdev->dev.parent = dev;
4331 dev_set_name(&rdev->dev, "regulator.%lu",
4332 (unsigned long) atomic_inc_return(&regulator_no));
4334 /* set regulator constraints */
4335 if (init_data)
4336 constraints = &init_data->constraints;
4338 if (init_data && init_data->supply_regulator)
4339 rdev->supply_name = init_data->supply_regulator;
4340 else if (regulator_desc->supply_name)
4341 rdev->supply_name = regulator_desc->supply_name;
4344 * Attempt to resolve the regulator supply, if specified,
4345 * but don't return an error if we fail because we will try
4346 * to resolve it again later as more regulators are added.
4348 if (regulator_resolve_supply(rdev))
4349 rdev_dbg(rdev, "unable to resolve supply\n");
4351 ret = set_machine_constraints(rdev, constraints);
4352 if (ret < 0)
4353 goto wash;
4355 mutex_lock(&regulator_list_mutex);
4356 ret = regulator_resolve_coupling(rdev);
4357 mutex_unlock(&regulator_list_mutex);
4359 if (ret != 0)
4360 goto wash;
4362 /* add consumers devices */
4363 if (init_data) {
4364 mutex_lock(&regulator_list_mutex);
4365 for (i = 0; i < init_data->num_consumer_supplies; i++) {
4366 ret = set_consumer_device_supply(rdev,
4367 init_data->consumer_supplies[i].dev_name,
4368 init_data->consumer_supplies[i].supply);
4369 if (ret < 0) {
4370 mutex_unlock(&regulator_list_mutex);
4371 dev_err(dev, "Failed to set supply %s\n",
4372 init_data->consumer_supplies[i].supply);
4373 goto unset_supplies;
4376 mutex_unlock(&regulator_list_mutex);
4379 if (!rdev->desc->ops->get_voltage &&
4380 !rdev->desc->ops->list_voltage &&
4381 !rdev->desc->fixed_uV)
4382 rdev->is_switch = true;
4384 ret = device_register(&rdev->dev);
4385 if (ret != 0) {
4386 put_device(&rdev->dev);
4387 goto unset_supplies;
4390 dev_set_drvdata(&rdev->dev, rdev);
4391 rdev_init_debugfs(rdev);
4393 /* try to resolve regulators supply since a new one was registered */
4394 class_for_each_device(&regulator_class, NULL, NULL,
4395 regulator_register_resolve_supply);
4396 kfree(config);
4397 return rdev;
4399 unset_supplies:
4400 mutex_lock(&regulator_list_mutex);
4401 unset_regulator_supplies(rdev);
4402 mutex_unlock(&regulator_list_mutex);
4403 wash:
4404 kfree(rdev->constraints);
4405 mutex_lock(&regulator_list_mutex);
4406 regulator_ena_gpio_free(rdev);
4407 mutex_unlock(&regulator_list_mutex);
4408 clean:
4409 kfree(rdev);
4410 kfree(config);
4411 return ERR_PTR(ret);
4413 EXPORT_SYMBOL_GPL(regulator_register);
4416 * regulator_unregister - unregister regulator
4417 * @rdev: regulator to unregister
4419 * Called by regulator drivers to unregister a regulator.
4421 void regulator_unregister(struct regulator_dev *rdev)
4423 if (rdev == NULL)
4424 return;
4426 if (rdev->supply) {
4427 while (rdev->use_count--)
4428 regulator_disable(rdev->supply);
4429 regulator_put(rdev->supply);
4431 mutex_lock(&regulator_list_mutex);
4432 debugfs_remove_recursive(rdev->debugfs);
4433 flush_work(&rdev->disable_work.work);
4434 WARN_ON(rdev->open_count);
4435 unset_regulator_supplies(rdev);
4436 list_del(&rdev->list);
4437 regulator_ena_gpio_free(rdev);
4438 mutex_unlock(&regulator_list_mutex);
4439 device_unregister(&rdev->dev);
4441 EXPORT_SYMBOL_GPL(regulator_unregister);
4443 #ifdef CONFIG_SUSPEND
4444 static int _regulator_suspend_late(struct device *dev, void *data)
4446 struct regulator_dev *rdev = dev_to_rdev(dev);
4447 suspend_state_t *state = data;
4448 int ret;
4450 regulator_lock(rdev);
4451 ret = suspend_set_state(rdev, *state);
4452 regulator_unlock(rdev);
4454 return ret;
4458 * regulator_suspend_late - prepare regulators for system wide suspend
4459 * @state: system suspend state
4461 * Configure each regulator with it's suspend operating parameters for state.
4463 static int regulator_suspend_late(struct device *dev)
4465 suspend_state_t state = pm_suspend_target_state;
4467 return class_for_each_device(&regulator_class, NULL, &state,
4468 _regulator_suspend_late);
4471 static int _regulator_resume_early(struct device *dev, void *data)
4473 int ret = 0;
4474 struct regulator_dev *rdev = dev_to_rdev(dev);
4475 suspend_state_t *state = data;
4476 struct regulator_state *rstate;
4478 rstate = regulator_get_suspend_state(rdev, *state);
4479 if (rstate == NULL)
4480 return 0;
4482 regulator_lock(rdev);
4484 if (rdev->desc->ops->resume_early &&
4485 (rstate->enabled == ENABLE_IN_SUSPEND ||
4486 rstate->enabled == DISABLE_IN_SUSPEND))
4487 ret = rdev->desc->ops->resume_early(rdev);
4489 regulator_unlock(rdev);
4491 return ret;
4494 static int regulator_resume_early(struct device *dev)
4496 suspend_state_t state = pm_suspend_target_state;
4498 return class_for_each_device(&regulator_class, NULL, &state,
4499 _regulator_resume_early);
4502 #else /* !CONFIG_SUSPEND */
4504 #define regulator_suspend_late NULL
4505 #define regulator_resume_early NULL
4507 #endif /* !CONFIG_SUSPEND */
4509 #ifdef CONFIG_PM
4510 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
4511 .suspend_late = regulator_suspend_late,
4512 .resume_early = regulator_resume_early,
4514 #endif
4516 struct class regulator_class = {
4517 .name = "regulator",
4518 .dev_release = regulator_dev_release,
4519 .dev_groups = regulator_dev_groups,
4520 #ifdef CONFIG_PM
4521 .pm = &regulator_pm_ops,
4522 #endif
4525 * regulator_has_full_constraints - the system has fully specified constraints
4527 * Calling this function will cause the regulator API to disable all
4528 * regulators which have a zero use count and don't have an always_on
4529 * constraint in a late_initcall.
4531 * The intention is that this will become the default behaviour in a
4532 * future kernel release so users are encouraged to use this facility
4533 * now.
4535 void regulator_has_full_constraints(void)
4537 has_full_constraints = 1;
4539 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
4542 * rdev_get_drvdata - get rdev regulator driver data
4543 * @rdev: regulator
4545 * Get rdev regulator driver private data. This call can be used in the
4546 * regulator driver context.
4548 void *rdev_get_drvdata(struct regulator_dev *rdev)
4550 return rdev->reg_data;
4552 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
4555 * regulator_get_drvdata - get regulator driver data
4556 * @regulator: regulator
4558 * Get regulator driver private data. This call can be used in the consumer
4559 * driver context when non API regulator specific functions need to be called.
4561 void *regulator_get_drvdata(struct regulator *regulator)
4563 return regulator->rdev->reg_data;
4565 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
4568 * regulator_set_drvdata - set regulator driver data
4569 * @regulator: regulator
4570 * @data: data
4572 void regulator_set_drvdata(struct regulator *regulator, void *data)
4574 regulator->rdev->reg_data = data;
4576 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
4579 * regulator_get_id - get regulator ID
4580 * @rdev: regulator
4582 int rdev_get_id(struct regulator_dev *rdev)
4584 return rdev->desc->id;
4586 EXPORT_SYMBOL_GPL(rdev_get_id);
4588 struct device *rdev_get_dev(struct regulator_dev *rdev)
4590 return &rdev->dev;
4592 EXPORT_SYMBOL_GPL(rdev_get_dev);
4594 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
4596 return reg_init_data->driver_data;
4598 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
4600 #ifdef CONFIG_DEBUG_FS
4601 static int supply_map_show(struct seq_file *sf, void *data)
4603 struct regulator_map *map;
4605 list_for_each_entry(map, &regulator_map_list, list) {
4606 seq_printf(sf, "%s -> %s.%s\n",
4607 rdev_get_name(map->regulator), map->dev_name,
4608 map->supply);
4611 return 0;
4614 static int supply_map_open(struct inode *inode, struct file *file)
4616 return single_open(file, supply_map_show, inode->i_private);
4618 #endif
4620 static const struct file_operations supply_map_fops = {
4621 #ifdef CONFIG_DEBUG_FS
4622 .open = supply_map_open,
4623 .read = seq_read,
4624 .llseek = seq_lseek,
4625 .release = single_release,
4626 #endif
4629 #ifdef CONFIG_DEBUG_FS
4630 struct summary_data {
4631 struct seq_file *s;
4632 struct regulator_dev *parent;
4633 int level;
4636 static void regulator_summary_show_subtree(struct seq_file *s,
4637 struct regulator_dev *rdev,
4638 int level);
4640 static int regulator_summary_show_children(struct device *dev, void *data)
4642 struct regulator_dev *rdev = dev_to_rdev(dev);
4643 struct summary_data *summary_data = data;
4645 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
4646 regulator_summary_show_subtree(summary_data->s, rdev,
4647 summary_data->level + 1);
4649 return 0;
4652 static void regulator_summary_show_subtree(struct seq_file *s,
4653 struct regulator_dev *rdev,
4654 int level)
4656 struct regulation_constraints *c;
4657 struct regulator *consumer;
4658 struct summary_data summary_data;
4660 if (!rdev)
4661 return;
4663 seq_printf(s, "%*s%-*s %3d %4d %6d ",
4664 level * 3 + 1, "",
4665 30 - level * 3, rdev_get_name(rdev),
4666 rdev->use_count, rdev->open_count, rdev->bypass_count);
4668 seq_printf(s, "%5dmV ", _regulator_get_voltage(rdev) / 1000);
4669 seq_printf(s, "%5dmA ", _regulator_get_current_limit(rdev) / 1000);
4671 c = rdev->constraints;
4672 if (c) {
4673 switch (rdev->desc->type) {
4674 case REGULATOR_VOLTAGE:
4675 seq_printf(s, "%5dmV %5dmV ",
4676 c->min_uV / 1000, c->max_uV / 1000);
4677 break;
4678 case REGULATOR_CURRENT:
4679 seq_printf(s, "%5dmA %5dmA ",
4680 c->min_uA / 1000, c->max_uA / 1000);
4681 break;
4685 seq_puts(s, "\n");
4687 list_for_each_entry(consumer, &rdev->consumer_list, list) {
4688 if (consumer->dev && consumer->dev->class == &regulator_class)
4689 continue;
4691 seq_printf(s, "%*s%-*s ",
4692 (level + 1) * 3 + 1, "",
4693 30 - (level + 1) * 3,
4694 consumer->dev ? dev_name(consumer->dev) : "deviceless");
4696 switch (rdev->desc->type) {
4697 case REGULATOR_VOLTAGE:
4698 seq_printf(s, "%37dmV %5dmV",
4699 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
4700 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
4701 break;
4702 case REGULATOR_CURRENT:
4703 break;
4706 seq_puts(s, "\n");
4709 summary_data.s = s;
4710 summary_data.level = level;
4711 summary_data.parent = rdev;
4713 class_for_each_device(&regulator_class, NULL, &summary_data,
4714 regulator_summary_show_children);
4717 static int regulator_summary_show_roots(struct device *dev, void *data)
4719 struct regulator_dev *rdev = dev_to_rdev(dev);
4720 struct seq_file *s = data;
4722 if (!rdev->supply)
4723 regulator_summary_show_subtree(s, rdev, 0);
4725 return 0;
4728 static int regulator_summary_show(struct seq_file *s, void *data)
4730 seq_puts(s, " regulator use open bypass voltage current min max\n");
4731 seq_puts(s, "-------------------------------------------------------------------------------\n");
4733 class_for_each_device(&regulator_class, NULL, s,
4734 regulator_summary_show_roots);
4736 return 0;
4739 static int regulator_summary_open(struct inode *inode, struct file *file)
4741 return single_open(file, regulator_summary_show, inode->i_private);
4743 #endif
4745 static const struct file_operations regulator_summary_fops = {
4746 #ifdef CONFIG_DEBUG_FS
4747 .open = regulator_summary_open,
4748 .read = seq_read,
4749 .llseek = seq_lseek,
4750 .release = single_release,
4751 #endif
4754 static int __init regulator_init(void)
4756 int ret;
4758 ret = class_register(&regulator_class);
4760 debugfs_root = debugfs_create_dir("regulator", NULL);
4761 if (!debugfs_root)
4762 pr_warn("regulator: Failed to create debugfs directory\n");
4764 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
4765 &supply_map_fops);
4767 debugfs_create_file("regulator_summary", 0444, debugfs_root,
4768 NULL, &regulator_summary_fops);
4770 regulator_dummy_init();
4772 return ret;
4775 /* init early to allow our consumers to complete system booting */
4776 core_initcall(regulator_init);
4778 static int __init regulator_late_cleanup(struct device *dev, void *data)
4780 struct regulator_dev *rdev = dev_to_rdev(dev);
4781 const struct regulator_ops *ops = rdev->desc->ops;
4782 struct regulation_constraints *c = rdev->constraints;
4783 int enabled, ret;
4785 if (c && c->always_on)
4786 return 0;
4788 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
4789 return 0;
4791 regulator_lock(rdev);
4793 if (rdev->use_count)
4794 goto unlock;
4796 /* If we can't read the status assume it's on. */
4797 if (ops->is_enabled)
4798 enabled = ops->is_enabled(rdev);
4799 else
4800 enabled = 1;
4802 if (!enabled)
4803 goto unlock;
4805 if (have_full_constraints()) {
4806 /* We log since this may kill the system if it goes
4807 * wrong. */
4808 rdev_info(rdev, "disabling\n");
4809 ret = _regulator_do_disable(rdev);
4810 if (ret != 0)
4811 rdev_err(rdev, "couldn't disable: %d\n", ret);
4812 } else {
4813 /* The intention is that in future we will
4814 * assume that full constraints are provided
4815 * so warn even if we aren't going to do
4816 * anything here.
4818 rdev_warn(rdev, "incomplete constraints, leaving on\n");
4821 unlock:
4822 regulator_unlock(rdev);
4824 return 0;
4827 static int __init regulator_init_complete(void)
4830 * Since DT doesn't provide an idiomatic mechanism for
4831 * enabling full constraints and since it's much more natural
4832 * with DT to provide them just assume that a DT enabled
4833 * system has full constraints.
4835 if (of_have_populated_dt())
4836 has_full_constraints = true;
4839 * Regulators may had failed to resolve their input supplies
4840 * when were registered, either because the input supply was
4841 * not registered yet or because its parent device was not
4842 * bound yet. So attempt to resolve the input supplies for
4843 * pending regulators before trying to disable unused ones.
4845 class_for_each_device(&regulator_class, NULL, NULL,
4846 regulator_register_resolve_supply);
4848 /* If we have a full configuration then disable any regulators
4849 * we have permission to change the status for and which are
4850 * not in use or always_on. This is effectively the default
4851 * for DT and ACPI as they have full constraints.
4853 class_for_each_device(&regulator_class, NULL, NULL,
4854 regulator_late_cleanup);
4856 class_for_each_device(&regulator_class, NULL, NULL,
4857 regulator_register_fill_coupling_array);
4859 return 0;
4861 late_initcall_sync(regulator_init_complete);