perf tools: Streamline bpf examples and headers installation
[linux/fpc-iii.git] / net / ipv4 / ipmr.c
blob9f79b9803a161675c5907c1016fd219ad1f33fc9
1 /*
2 * IP multicast routing support for mrouted 3.6/3.8
4 * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
5 * Linux Consultancy and Custom Driver Development
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
12 * Fixes:
13 * Michael Chastain : Incorrect size of copying.
14 * Alan Cox : Added the cache manager code
15 * Alan Cox : Fixed the clone/copy bug and device race.
16 * Mike McLagan : Routing by source
17 * Malcolm Beattie : Buffer handling fixes.
18 * Alexey Kuznetsov : Double buffer free and other fixes.
19 * SVR Anand : Fixed several multicast bugs and problems.
20 * Alexey Kuznetsov : Status, optimisations and more.
21 * Brad Parker : Better behaviour on mrouted upcall
22 * overflow.
23 * Carlos Picoto : PIMv1 Support
24 * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header
25 * Relax this requirement to work with older peers.
29 #include <linux/uaccess.h>
30 #include <linux/types.h>
31 #include <linux/cache.h>
32 #include <linux/capability.h>
33 #include <linux/errno.h>
34 #include <linux/mm.h>
35 #include <linux/kernel.h>
36 #include <linux/fcntl.h>
37 #include <linux/stat.h>
38 #include <linux/socket.h>
39 #include <linux/in.h>
40 #include <linux/inet.h>
41 #include <linux/netdevice.h>
42 #include <linux/inetdevice.h>
43 #include <linux/igmp.h>
44 #include <linux/proc_fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/mroute.h>
47 #include <linux/init.h>
48 #include <linux/if_ether.h>
49 #include <linux/slab.h>
50 #include <net/net_namespace.h>
51 #include <net/ip.h>
52 #include <net/protocol.h>
53 #include <linux/skbuff.h>
54 #include <net/route.h>
55 #include <net/icmp.h>
56 #include <net/udp.h>
57 #include <net/raw.h>
58 #include <linux/notifier.h>
59 #include <linux/if_arp.h>
60 #include <linux/netfilter_ipv4.h>
61 #include <linux/compat.h>
62 #include <linux/export.h>
63 #include <net/ip_tunnels.h>
64 #include <net/checksum.h>
65 #include <net/netlink.h>
66 #include <net/fib_rules.h>
67 #include <linux/netconf.h>
68 #include <net/nexthop.h>
69 #include <net/switchdev.h>
71 struct ipmr_rule {
72 struct fib_rule common;
75 struct ipmr_result {
76 struct mr_table *mrt;
79 /* Big lock, protecting vif table, mrt cache and mroute socket state.
80 * Note that the changes are semaphored via rtnl_lock.
83 static DEFINE_RWLOCK(mrt_lock);
85 /* Multicast router control variables */
87 /* Special spinlock for queue of unresolved entries */
88 static DEFINE_SPINLOCK(mfc_unres_lock);
90 /* We return to original Alan's scheme. Hash table of resolved
91 * entries is changed only in process context and protected
92 * with weak lock mrt_lock. Queue of unresolved entries is protected
93 * with strong spinlock mfc_unres_lock.
95 * In this case data path is free of exclusive locks at all.
98 static struct kmem_cache *mrt_cachep __ro_after_init;
100 static struct mr_table *ipmr_new_table(struct net *net, u32 id);
101 static void ipmr_free_table(struct mr_table *mrt);
103 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
104 struct net_device *dev, struct sk_buff *skb,
105 struct mfc_cache *cache, int local);
106 static int ipmr_cache_report(struct mr_table *mrt,
107 struct sk_buff *pkt, vifi_t vifi, int assert);
108 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
109 int cmd);
110 static void igmpmsg_netlink_event(struct mr_table *mrt, struct sk_buff *pkt);
111 static void mroute_clean_tables(struct mr_table *mrt, bool all);
112 static void ipmr_expire_process(struct timer_list *t);
114 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
115 #define ipmr_for_each_table(mrt, net) \
116 list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
118 static struct mr_table *ipmr_mr_table_iter(struct net *net,
119 struct mr_table *mrt)
121 struct mr_table *ret;
123 if (!mrt)
124 ret = list_entry_rcu(net->ipv4.mr_tables.next,
125 struct mr_table, list);
126 else
127 ret = list_entry_rcu(mrt->list.next,
128 struct mr_table, list);
130 if (&ret->list == &net->ipv4.mr_tables)
131 return NULL;
132 return ret;
135 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
137 struct mr_table *mrt;
139 ipmr_for_each_table(mrt, net) {
140 if (mrt->id == id)
141 return mrt;
143 return NULL;
146 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
147 struct mr_table **mrt)
149 int err;
150 struct ipmr_result res;
151 struct fib_lookup_arg arg = {
152 .result = &res,
153 .flags = FIB_LOOKUP_NOREF,
156 /* update flow if oif or iif point to device enslaved to l3mdev */
157 l3mdev_update_flow(net, flowi4_to_flowi(flp4));
159 err = fib_rules_lookup(net->ipv4.mr_rules_ops,
160 flowi4_to_flowi(flp4), 0, &arg);
161 if (err < 0)
162 return err;
163 *mrt = res.mrt;
164 return 0;
167 static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
168 int flags, struct fib_lookup_arg *arg)
170 struct ipmr_result *res = arg->result;
171 struct mr_table *mrt;
173 switch (rule->action) {
174 case FR_ACT_TO_TBL:
175 break;
176 case FR_ACT_UNREACHABLE:
177 return -ENETUNREACH;
178 case FR_ACT_PROHIBIT:
179 return -EACCES;
180 case FR_ACT_BLACKHOLE:
181 default:
182 return -EINVAL;
185 arg->table = fib_rule_get_table(rule, arg);
187 mrt = ipmr_get_table(rule->fr_net, arg->table);
188 if (!mrt)
189 return -EAGAIN;
190 res->mrt = mrt;
191 return 0;
194 static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
196 return 1;
199 static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
200 FRA_GENERIC_POLICY,
203 static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
204 struct fib_rule_hdr *frh, struct nlattr **tb,
205 struct netlink_ext_ack *extack)
207 return 0;
210 static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
211 struct nlattr **tb)
213 return 1;
216 static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
217 struct fib_rule_hdr *frh)
219 frh->dst_len = 0;
220 frh->src_len = 0;
221 frh->tos = 0;
222 return 0;
225 static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
226 .family = RTNL_FAMILY_IPMR,
227 .rule_size = sizeof(struct ipmr_rule),
228 .addr_size = sizeof(u32),
229 .action = ipmr_rule_action,
230 .match = ipmr_rule_match,
231 .configure = ipmr_rule_configure,
232 .compare = ipmr_rule_compare,
233 .fill = ipmr_rule_fill,
234 .nlgroup = RTNLGRP_IPV4_RULE,
235 .policy = ipmr_rule_policy,
236 .owner = THIS_MODULE,
239 static int __net_init ipmr_rules_init(struct net *net)
241 struct fib_rules_ops *ops;
242 struct mr_table *mrt;
243 int err;
245 ops = fib_rules_register(&ipmr_rules_ops_template, net);
246 if (IS_ERR(ops))
247 return PTR_ERR(ops);
249 INIT_LIST_HEAD(&net->ipv4.mr_tables);
251 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
252 if (IS_ERR(mrt)) {
253 err = PTR_ERR(mrt);
254 goto err1;
257 err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
258 if (err < 0)
259 goto err2;
261 net->ipv4.mr_rules_ops = ops;
262 return 0;
264 err2:
265 ipmr_free_table(mrt);
266 err1:
267 fib_rules_unregister(ops);
268 return err;
271 static void __net_exit ipmr_rules_exit(struct net *net)
273 struct mr_table *mrt, *next;
275 rtnl_lock();
276 list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
277 list_del(&mrt->list);
278 ipmr_free_table(mrt);
280 fib_rules_unregister(net->ipv4.mr_rules_ops);
281 rtnl_unlock();
284 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb)
286 return fib_rules_dump(net, nb, RTNL_FAMILY_IPMR);
289 static unsigned int ipmr_rules_seq_read(struct net *net)
291 return fib_rules_seq_read(net, RTNL_FAMILY_IPMR);
294 bool ipmr_rule_default(const struct fib_rule *rule)
296 return fib_rule_matchall(rule) && rule->table == RT_TABLE_DEFAULT;
298 EXPORT_SYMBOL(ipmr_rule_default);
299 #else
300 #define ipmr_for_each_table(mrt, net) \
301 for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
303 static struct mr_table *ipmr_mr_table_iter(struct net *net,
304 struct mr_table *mrt)
306 if (!mrt)
307 return net->ipv4.mrt;
308 return NULL;
311 static struct mr_table *ipmr_get_table(struct net *net, u32 id)
313 return net->ipv4.mrt;
316 static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
317 struct mr_table **mrt)
319 *mrt = net->ipv4.mrt;
320 return 0;
323 static int __net_init ipmr_rules_init(struct net *net)
325 struct mr_table *mrt;
327 mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
328 if (IS_ERR(mrt))
329 return PTR_ERR(mrt);
330 net->ipv4.mrt = mrt;
331 return 0;
334 static void __net_exit ipmr_rules_exit(struct net *net)
336 rtnl_lock();
337 ipmr_free_table(net->ipv4.mrt);
338 net->ipv4.mrt = NULL;
339 rtnl_unlock();
342 static int ipmr_rules_dump(struct net *net, struct notifier_block *nb)
344 return 0;
347 static unsigned int ipmr_rules_seq_read(struct net *net)
349 return 0;
352 bool ipmr_rule_default(const struct fib_rule *rule)
354 return true;
356 EXPORT_SYMBOL(ipmr_rule_default);
357 #endif
359 static inline int ipmr_hash_cmp(struct rhashtable_compare_arg *arg,
360 const void *ptr)
362 const struct mfc_cache_cmp_arg *cmparg = arg->key;
363 struct mfc_cache *c = (struct mfc_cache *)ptr;
365 return cmparg->mfc_mcastgrp != c->mfc_mcastgrp ||
366 cmparg->mfc_origin != c->mfc_origin;
369 static const struct rhashtable_params ipmr_rht_params = {
370 .head_offset = offsetof(struct mr_mfc, mnode),
371 .key_offset = offsetof(struct mfc_cache, cmparg),
372 .key_len = sizeof(struct mfc_cache_cmp_arg),
373 .nelem_hint = 3,
374 .locks_mul = 1,
375 .obj_cmpfn = ipmr_hash_cmp,
376 .automatic_shrinking = true,
379 static void ipmr_new_table_set(struct mr_table *mrt,
380 struct net *net)
382 #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
383 list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
384 #endif
387 static struct mfc_cache_cmp_arg ipmr_mr_table_ops_cmparg_any = {
388 .mfc_mcastgrp = htonl(INADDR_ANY),
389 .mfc_origin = htonl(INADDR_ANY),
392 static struct mr_table_ops ipmr_mr_table_ops = {
393 .rht_params = &ipmr_rht_params,
394 .cmparg_any = &ipmr_mr_table_ops_cmparg_any,
397 static struct mr_table *ipmr_new_table(struct net *net, u32 id)
399 struct mr_table *mrt;
401 /* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
402 if (id != RT_TABLE_DEFAULT && id >= 1000000000)
403 return ERR_PTR(-EINVAL);
405 mrt = ipmr_get_table(net, id);
406 if (mrt)
407 return mrt;
409 return mr_table_alloc(net, id, &ipmr_mr_table_ops,
410 ipmr_expire_process, ipmr_new_table_set);
413 static void ipmr_free_table(struct mr_table *mrt)
415 del_timer_sync(&mrt->ipmr_expire_timer);
416 mroute_clean_tables(mrt, true);
417 rhltable_destroy(&mrt->mfc_hash);
418 kfree(mrt);
421 /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
423 static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
425 struct net *net = dev_net(dev);
427 dev_close(dev);
429 dev = __dev_get_by_name(net, "tunl0");
430 if (dev) {
431 const struct net_device_ops *ops = dev->netdev_ops;
432 struct ifreq ifr;
433 struct ip_tunnel_parm p;
435 memset(&p, 0, sizeof(p));
436 p.iph.daddr = v->vifc_rmt_addr.s_addr;
437 p.iph.saddr = v->vifc_lcl_addr.s_addr;
438 p.iph.version = 4;
439 p.iph.ihl = 5;
440 p.iph.protocol = IPPROTO_IPIP;
441 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
442 ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
444 if (ops->ndo_do_ioctl) {
445 mm_segment_t oldfs = get_fs();
447 set_fs(KERNEL_DS);
448 ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
449 set_fs(oldfs);
454 /* Initialize ipmr pimreg/tunnel in_device */
455 static bool ipmr_init_vif_indev(const struct net_device *dev)
457 struct in_device *in_dev;
459 ASSERT_RTNL();
461 in_dev = __in_dev_get_rtnl(dev);
462 if (!in_dev)
463 return false;
464 ipv4_devconf_setall(in_dev);
465 neigh_parms_data_state_setall(in_dev->arp_parms);
466 IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
468 return true;
471 static struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
473 struct net_device *dev;
475 dev = __dev_get_by_name(net, "tunl0");
477 if (dev) {
478 const struct net_device_ops *ops = dev->netdev_ops;
479 int err;
480 struct ifreq ifr;
481 struct ip_tunnel_parm p;
483 memset(&p, 0, sizeof(p));
484 p.iph.daddr = v->vifc_rmt_addr.s_addr;
485 p.iph.saddr = v->vifc_lcl_addr.s_addr;
486 p.iph.version = 4;
487 p.iph.ihl = 5;
488 p.iph.protocol = IPPROTO_IPIP;
489 sprintf(p.name, "dvmrp%d", v->vifc_vifi);
490 ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
492 if (ops->ndo_do_ioctl) {
493 mm_segment_t oldfs = get_fs();
495 set_fs(KERNEL_DS);
496 err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
497 set_fs(oldfs);
498 } else {
499 err = -EOPNOTSUPP;
501 dev = NULL;
503 if (err == 0 &&
504 (dev = __dev_get_by_name(net, p.name)) != NULL) {
505 dev->flags |= IFF_MULTICAST;
506 if (!ipmr_init_vif_indev(dev))
507 goto failure;
508 if (dev_open(dev))
509 goto failure;
510 dev_hold(dev);
513 return dev;
515 failure:
516 unregister_netdevice(dev);
517 return NULL;
520 #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
521 static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
523 struct net *net = dev_net(dev);
524 struct mr_table *mrt;
525 struct flowi4 fl4 = {
526 .flowi4_oif = dev->ifindex,
527 .flowi4_iif = skb->skb_iif ? : LOOPBACK_IFINDEX,
528 .flowi4_mark = skb->mark,
530 int err;
532 err = ipmr_fib_lookup(net, &fl4, &mrt);
533 if (err < 0) {
534 kfree_skb(skb);
535 return err;
538 read_lock(&mrt_lock);
539 dev->stats.tx_bytes += skb->len;
540 dev->stats.tx_packets++;
541 ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
542 read_unlock(&mrt_lock);
543 kfree_skb(skb);
544 return NETDEV_TX_OK;
547 static int reg_vif_get_iflink(const struct net_device *dev)
549 return 0;
552 static const struct net_device_ops reg_vif_netdev_ops = {
553 .ndo_start_xmit = reg_vif_xmit,
554 .ndo_get_iflink = reg_vif_get_iflink,
557 static void reg_vif_setup(struct net_device *dev)
559 dev->type = ARPHRD_PIMREG;
560 dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8;
561 dev->flags = IFF_NOARP;
562 dev->netdev_ops = &reg_vif_netdev_ops;
563 dev->needs_free_netdev = true;
564 dev->features |= NETIF_F_NETNS_LOCAL;
567 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
569 struct net_device *dev;
570 char name[IFNAMSIZ];
572 if (mrt->id == RT_TABLE_DEFAULT)
573 sprintf(name, "pimreg");
574 else
575 sprintf(name, "pimreg%u", mrt->id);
577 dev = alloc_netdev(0, name, NET_NAME_UNKNOWN, reg_vif_setup);
579 if (!dev)
580 return NULL;
582 dev_net_set(dev, net);
584 if (register_netdevice(dev)) {
585 free_netdev(dev);
586 return NULL;
589 if (!ipmr_init_vif_indev(dev))
590 goto failure;
591 if (dev_open(dev))
592 goto failure;
594 dev_hold(dev);
596 return dev;
598 failure:
599 unregister_netdevice(dev);
600 return NULL;
603 /* called with rcu_read_lock() */
604 static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
605 unsigned int pimlen)
607 struct net_device *reg_dev = NULL;
608 struct iphdr *encap;
610 encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
611 /* Check that:
612 * a. packet is really sent to a multicast group
613 * b. packet is not a NULL-REGISTER
614 * c. packet is not truncated
616 if (!ipv4_is_multicast(encap->daddr) ||
617 encap->tot_len == 0 ||
618 ntohs(encap->tot_len) + pimlen > skb->len)
619 return 1;
621 read_lock(&mrt_lock);
622 if (mrt->mroute_reg_vif_num >= 0)
623 reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
624 read_unlock(&mrt_lock);
626 if (!reg_dev)
627 return 1;
629 skb->mac_header = skb->network_header;
630 skb_pull(skb, (u8 *)encap - skb->data);
631 skb_reset_network_header(skb);
632 skb->protocol = htons(ETH_P_IP);
633 skb->ip_summed = CHECKSUM_NONE;
635 skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
637 netif_rx(skb);
639 return NET_RX_SUCCESS;
641 #else
642 static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
644 return NULL;
646 #endif
648 static int call_ipmr_vif_entry_notifiers(struct net *net,
649 enum fib_event_type event_type,
650 struct vif_device *vif,
651 vifi_t vif_index, u32 tb_id)
653 return mr_call_vif_notifiers(net, RTNL_FAMILY_IPMR, event_type,
654 vif, vif_index, tb_id,
655 &net->ipv4.ipmr_seq);
658 static int call_ipmr_mfc_entry_notifiers(struct net *net,
659 enum fib_event_type event_type,
660 struct mfc_cache *mfc, u32 tb_id)
662 return mr_call_mfc_notifiers(net, RTNL_FAMILY_IPMR, event_type,
663 &mfc->_c, tb_id, &net->ipv4.ipmr_seq);
667 * vif_delete - Delete a VIF entry
668 * @notify: Set to 1, if the caller is a notifier_call
670 static int vif_delete(struct mr_table *mrt, int vifi, int notify,
671 struct list_head *head)
673 struct net *net = read_pnet(&mrt->net);
674 struct vif_device *v;
675 struct net_device *dev;
676 struct in_device *in_dev;
678 if (vifi < 0 || vifi >= mrt->maxvif)
679 return -EADDRNOTAVAIL;
681 v = &mrt->vif_table[vifi];
683 if (VIF_EXISTS(mrt, vifi))
684 call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_DEL, v, vifi,
685 mrt->id);
687 write_lock_bh(&mrt_lock);
688 dev = v->dev;
689 v->dev = NULL;
691 if (!dev) {
692 write_unlock_bh(&mrt_lock);
693 return -EADDRNOTAVAIL;
696 if (vifi == mrt->mroute_reg_vif_num)
697 mrt->mroute_reg_vif_num = -1;
699 if (vifi + 1 == mrt->maxvif) {
700 int tmp;
702 for (tmp = vifi - 1; tmp >= 0; tmp--) {
703 if (VIF_EXISTS(mrt, tmp))
704 break;
706 mrt->maxvif = tmp+1;
709 write_unlock_bh(&mrt_lock);
711 dev_set_allmulti(dev, -1);
713 in_dev = __in_dev_get_rtnl(dev);
714 if (in_dev) {
715 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
716 inet_netconf_notify_devconf(dev_net(dev), RTM_NEWNETCONF,
717 NETCONFA_MC_FORWARDING,
718 dev->ifindex, &in_dev->cnf);
719 ip_rt_multicast_event(in_dev);
722 if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
723 unregister_netdevice_queue(dev, head);
725 dev_put(dev);
726 return 0;
729 static void ipmr_cache_free_rcu(struct rcu_head *head)
731 struct mr_mfc *c = container_of(head, struct mr_mfc, rcu);
733 kmem_cache_free(mrt_cachep, (struct mfc_cache *)c);
736 static void ipmr_cache_free(struct mfc_cache *c)
738 call_rcu(&c->_c.rcu, ipmr_cache_free_rcu);
741 /* Destroy an unresolved cache entry, killing queued skbs
742 * and reporting error to netlink readers.
744 static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
746 struct net *net = read_pnet(&mrt->net);
747 struct sk_buff *skb;
748 struct nlmsgerr *e;
750 atomic_dec(&mrt->cache_resolve_queue_len);
752 while ((skb = skb_dequeue(&c->_c.mfc_un.unres.unresolved))) {
753 if (ip_hdr(skb)->version == 0) {
754 struct nlmsghdr *nlh = skb_pull(skb,
755 sizeof(struct iphdr));
756 nlh->nlmsg_type = NLMSG_ERROR;
757 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
758 skb_trim(skb, nlh->nlmsg_len);
759 e = nlmsg_data(nlh);
760 e->error = -ETIMEDOUT;
761 memset(&e->msg, 0, sizeof(e->msg));
763 rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
764 } else {
765 kfree_skb(skb);
769 ipmr_cache_free(c);
772 /* Timer process for the unresolved queue. */
773 static void ipmr_expire_process(struct timer_list *t)
775 struct mr_table *mrt = from_timer(mrt, t, ipmr_expire_timer);
776 struct mr_mfc *c, *next;
777 unsigned long expires;
778 unsigned long now;
780 if (!spin_trylock(&mfc_unres_lock)) {
781 mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
782 return;
785 if (list_empty(&mrt->mfc_unres_queue))
786 goto out;
788 now = jiffies;
789 expires = 10*HZ;
791 list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
792 if (time_after(c->mfc_un.unres.expires, now)) {
793 unsigned long interval = c->mfc_un.unres.expires - now;
794 if (interval < expires)
795 expires = interval;
796 continue;
799 list_del(&c->list);
800 mroute_netlink_event(mrt, (struct mfc_cache *)c, RTM_DELROUTE);
801 ipmr_destroy_unres(mrt, (struct mfc_cache *)c);
804 if (!list_empty(&mrt->mfc_unres_queue))
805 mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
807 out:
808 spin_unlock(&mfc_unres_lock);
811 /* Fill oifs list. It is called under write locked mrt_lock. */
812 static void ipmr_update_thresholds(struct mr_table *mrt, struct mr_mfc *cache,
813 unsigned char *ttls)
815 int vifi;
817 cache->mfc_un.res.minvif = MAXVIFS;
818 cache->mfc_un.res.maxvif = 0;
819 memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
821 for (vifi = 0; vifi < mrt->maxvif; vifi++) {
822 if (VIF_EXISTS(mrt, vifi) &&
823 ttls[vifi] && ttls[vifi] < 255) {
824 cache->mfc_un.res.ttls[vifi] = ttls[vifi];
825 if (cache->mfc_un.res.minvif > vifi)
826 cache->mfc_un.res.minvif = vifi;
827 if (cache->mfc_un.res.maxvif <= vifi)
828 cache->mfc_un.res.maxvif = vifi + 1;
831 cache->mfc_un.res.lastuse = jiffies;
834 static int vif_add(struct net *net, struct mr_table *mrt,
835 struct vifctl *vifc, int mrtsock)
837 int vifi = vifc->vifc_vifi;
838 struct switchdev_attr attr = {
839 .id = SWITCHDEV_ATTR_ID_PORT_PARENT_ID,
841 struct vif_device *v = &mrt->vif_table[vifi];
842 struct net_device *dev;
843 struct in_device *in_dev;
844 int err;
846 /* Is vif busy ? */
847 if (VIF_EXISTS(mrt, vifi))
848 return -EADDRINUSE;
850 switch (vifc->vifc_flags) {
851 case VIFF_REGISTER:
852 if (!ipmr_pimsm_enabled())
853 return -EINVAL;
854 /* Special Purpose VIF in PIM
855 * All the packets will be sent to the daemon
857 if (mrt->mroute_reg_vif_num >= 0)
858 return -EADDRINUSE;
859 dev = ipmr_reg_vif(net, mrt);
860 if (!dev)
861 return -ENOBUFS;
862 err = dev_set_allmulti(dev, 1);
863 if (err) {
864 unregister_netdevice(dev);
865 dev_put(dev);
866 return err;
868 break;
869 case VIFF_TUNNEL:
870 dev = ipmr_new_tunnel(net, vifc);
871 if (!dev)
872 return -ENOBUFS;
873 err = dev_set_allmulti(dev, 1);
874 if (err) {
875 ipmr_del_tunnel(dev, vifc);
876 dev_put(dev);
877 return err;
879 break;
880 case VIFF_USE_IFINDEX:
881 case 0:
882 if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
883 dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
884 if (dev && !__in_dev_get_rtnl(dev)) {
885 dev_put(dev);
886 return -EADDRNOTAVAIL;
888 } else {
889 dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
891 if (!dev)
892 return -EADDRNOTAVAIL;
893 err = dev_set_allmulti(dev, 1);
894 if (err) {
895 dev_put(dev);
896 return err;
898 break;
899 default:
900 return -EINVAL;
903 in_dev = __in_dev_get_rtnl(dev);
904 if (!in_dev) {
905 dev_put(dev);
906 return -EADDRNOTAVAIL;
908 IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
909 inet_netconf_notify_devconf(net, RTM_NEWNETCONF, NETCONFA_MC_FORWARDING,
910 dev->ifindex, &in_dev->cnf);
911 ip_rt_multicast_event(in_dev);
913 /* Fill in the VIF structures */
914 vif_device_init(v, dev, vifc->vifc_rate_limit,
915 vifc->vifc_threshold,
916 vifc->vifc_flags | (!mrtsock ? VIFF_STATIC : 0),
917 (VIFF_TUNNEL | VIFF_REGISTER));
919 attr.orig_dev = dev;
920 if (!switchdev_port_attr_get(dev, &attr)) {
921 memcpy(v->dev_parent_id.id, attr.u.ppid.id, attr.u.ppid.id_len);
922 v->dev_parent_id.id_len = attr.u.ppid.id_len;
923 } else {
924 v->dev_parent_id.id_len = 0;
927 v->local = vifc->vifc_lcl_addr.s_addr;
928 v->remote = vifc->vifc_rmt_addr.s_addr;
930 /* And finish update writing critical data */
931 write_lock_bh(&mrt_lock);
932 v->dev = dev;
933 if (v->flags & VIFF_REGISTER)
934 mrt->mroute_reg_vif_num = vifi;
935 if (vifi+1 > mrt->maxvif)
936 mrt->maxvif = vifi+1;
937 write_unlock_bh(&mrt_lock);
938 call_ipmr_vif_entry_notifiers(net, FIB_EVENT_VIF_ADD, v, vifi, mrt->id);
939 return 0;
942 /* called with rcu_read_lock() */
943 static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
944 __be32 origin,
945 __be32 mcastgrp)
947 struct mfc_cache_cmp_arg arg = {
948 .mfc_mcastgrp = mcastgrp,
949 .mfc_origin = origin
952 return mr_mfc_find(mrt, &arg);
955 /* Look for a (*,G) entry */
956 static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
957 __be32 mcastgrp, int vifi)
959 struct mfc_cache_cmp_arg arg = {
960 .mfc_mcastgrp = mcastgrp,
961 .mfc_origin = htonl(INADDR_ANY)
964 if (mcastgrp == htonl(INADDR_ANY))
965 return mr_mfc_find_any_parent(mrt, vifi);
966 return mr_mfc_find_any(mrt, vifi, &arg);
969 /* Look for a (S,G,iif) entry if parent != -1 */
970 static struct mfc_cache *ipmr_cache_find_parent(struct mr_table *mrt,
971 __be32 origin, __be32 mcastgrp,
972 int parent)
974 struct mfc_cache_cmp_arg arg = {
975 .mfc_mcastgrp = mcastgrp,
976 .mfc_origin = origin,
979 return mr_mfc_find_parent(mrt, &arg, parent);
982 /* Allocate a multicast cache entry */
983 static struct mfc_cache *ipmr_cache_alloc(void)
985 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
987 if (c) {
988 c->_c.mfc_un.res.last_assert = jiffies - MFC_ASSERT_THRESH - 1;
989 c->_c.mfc_un.res.minvif = MAXVIFS;
990 c->_c.free = ipmr_cache_free_rcu;
991 refcount_set(&c->_c.mfc_un.res.refcount, 1);
993 return c;
996 static struct mfc_cache *ipmr_cache_alloc_unres(void)
998 struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
1000 if (c) {
1001 skb_queue_head_init(&c->_c.mfc_un.unres.unresolved);
1002 c->_c.mfc_un.unres.expires = jiffies + 10 * HZ;
1004 return c;
1007 /* A cache entry has gone into a resolved state from queued */
1008 static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
1009 struct mfc_cache *uc, struct mfc_cache *c)
1011 struct sk_buff *skb;
1012 struct nlmsgerr *e;
1014 /* Play the pending entries through our router */
1015 while ((skb = __skb_dequeue(&uc->_c.mfc_un.unres.unresolved))) {
1016 if (ip_hdr(skb)->version == 0) {
1017 struct nlmsghdr *nlh = skb_pull(skb,
1018 sizeof(struct iphdr));
1020 if (mr_fill_mroute(mrt, skb, &c->_c,
1021 nlmsg_data(nlh)) > 0) {
1022 nlh->nlmsg_len = skb_tail_pointer(skb) -
1023 (u8 *)nlh;
1024 } else {
1025 nlh->nlmsg_type = NLMSG_ERROR;
1026 nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
1027 skb_trim(skb, nlh->nlmsg_len);
1028 e = nlmsg_data(nlh);
1029 e->error = -EMSGSIZE;
1030 memset(&e->msg, 0, sizeof(e->msg));
1033 rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
1034 } else {
1035 ip_mr_forward(net, mrt, skb->dev, skb, c, 0);
1040 /* Bounce a cache query up to mrouted and netlink.
1042 * Called under mrt_lock.
1044 static int ipmr_cache_report(struct mr_table *mrt,
1045 struct sk_buff *pkt, vifi_t vifi, int assert)
1047 const int ihl = ip_hdrlen(pkt);
1048 struct sock *mroute_sk;
1049 struct igmphdr *igmp;
1050 struct igmpmsg *msg;
1051 struct sk_buff *skb;
1052 int ret;
1054 if (assert == IGMPMSG_WHOLEPKT)
1055 skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
1056 else
1057 skb = alloc_skb(128, GFP_ATOMIC);
1059 if (!skb)
1060 return -ENOBUFS;
1062 if (assert == IGMPMSG_WHOLEPKT) {
1063 /* Ugly, but we have no choice with this interface.
1064 * Duplicate old header, fix ihl, length etc.
1065 * And all this only to mangle msg->im_msgtype and
1066 * to set msg->im_mbz to "mbz" :-)
1068 skb_push(skb, sizeof(struct iphdr));
1069 skb_reset_network_header(skb);
1070 skb_reset_transport_header(skb);
1071 msg = (struct igmpmsg *)skb_network_header(skb);
1072 memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
1073 msg->im_msgtype = IGMPMSG_WHOLEPKT;
1074 msg->im_mbz = 0;
1075 msg->im_vif = mrt->mroute_reg_vif_num;
1076 ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
1077 ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
1078 sizeof(struct iphdr));
1079 } else {
1080 /* Copy the IP header */
1081 skb_set_network_header(skb, skb->len);
1082 skb_put(skb, ihl);
1083 skb_copy_to_linear_data(skb, pkt->data, ihl);
1084 /* Flag to the kernel this is a route add */
1085 ip_hdr(skb)->protocol = 0;
1086 msg = (struct igmpmsg *)skb_network_header(skb);
1087 msg->im_vif = vifi;
1088 skb_dst_set(skb, dst_clone(skb_dst(pkt)));
1089 /* Add our header */
1090 igmp = skb_put(skb, sizeof(struct igmphdr));
1091 igmp->type = assert;
1092 msg->im_msgtype = assert;
1093 igmp->code = 0;
1094 ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */
1095 skb->transport_header = skb->network_header;
1098 rcu_read_lock();
1099 mroute_sk = rcu_dereference(mrt->mroute_sk);
1100 if (!mroute_sk) {
1101 rcu_read_unlock();
1102 kfree_skb(skb);
1103 return -EINVAL;
1106 igmpmsg_netlink_event(mrt, skb);
1108 /* Deliver to mrouted */
1109 ret = sock_queue_rcv_skb(mroute_sk, skb);
1110 rcu_read_unlock();
1111 if (ret < 0) {
1112 net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
1113 kfree_skb(skb);
1116 return ret;
1119 /* Queue a packet for resolution. It gets locked cache entry! */
1120 static int ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi,
1121 struct sk_buff *skb, struct net_device *dev)
1123 const struct iphdr *iph = ip_hdr(skb);
1124 struct mfc_cache *c;
1125 bool found = false;
1126 int err;
1128 spin_lock_bh(&mfc_unres_lock);
1129 list_for_each_entry(c, &mrt->mfc_unres_queue, _c.list) {
1130 if (c->mfc_mcastgrp == iph->daddr &&
1131 c->mfc_origin == iph->saddr) {
1132 found = true;
1133 break;
1137 if (!found) {
1138 /* Create a new entry if allowable */
1139 if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
1140 (c = ipmr_cache_alloc_unres()) == NULL) {
1141 spin_unlock_bh(&mfc_unres_lock);
1143 kfree_skb(skb);
1144 return -ENOBUFS;
1147 /* Fill in the new cache entry */
1148 c->_c.mfc_parent = -1;
1149 c->mfc_origin = iph->saddr;
1150 c->mfc_mcastgrp = iph->daddr;
1152 /* Reflect first query at mrouted. */
1153 err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
1155 if (err < 0) {
1156 /* If the report failed throw the cache entry
1157 out - Brad Parker
1159 spin_unlock_bh(&mfc_unres_lock);
1161 ipmr_cache_free(c);
1162 kfree_skb(skb);
1163 return err;
1166 atomic_inc(&mrt->cache_resolve_queue_len);
1167 list_add(&c->_c.list, &mrt->mfc_unres_queue);
1168 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1170 if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
1171 mod_timer(&mrt->ipmr_expire_timer,
1172 c->_c.mfc_un.unres.expires);
1175 /* See if we can append the packet */
1176 if (c->_c.mfc_un.unres.unresolved.qlen > 3) {
1177 kfree_skb(skb);
1178 err = -ENOBUFS;
1179 } else {
1180 if (dev) {
1181 skb->dev = dev;
1182 skb->skb_iif = dev->ifindex;
1184 skb_queue_tail(&c->_c.mfc_un.unres.unresolved, skb);
1185 err = 0;
1188 spin_unlock_bh(&mfc_unres_lock);
1189 return err;
1192 /* MFC cache manipulation by user space mroute daemon */
1194 static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
1196 struct net *net = read_pnet(&mrt->net);
1197 struct mfc_cache *c;
1199 /* The entries are added/deleted only under RTNL */
1200 rcu_read_lock();
1201 c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1202 mfc->mfcc_mcastgrp.s_addr, parent);
1203 rcu_read_unlock();
1204 if (!c)
1205 return -ENOENT;
1206 rhltable_remove(&mrt->mfc_hash, &c->_c.mnode, ipmr_rht_params);
1207 list_del_rcu(&c->_c.list);
1208 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, c, mrt->id);
1209 mroute_netlink_event(mrt, c, RTM_DELROUTE);
1210 mr_cache_put(&c->_c);
1212 return 0;
1215 static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
1216 struct mfcctl *mfc, int mrtsock, int parent)
1218 struct mfc_cache *uc, *c;
1219 struct mr_mfc *_uc;
1220 bool found;
1221 int ret;
1223 if (mfc->mfcc_parent >= MAXVIFS)
1224 return -ENFILE;
1226 /* The entries are added/deleted only under RTNL */
1227 rcu_read_lock();
1228 c = ipmr_cache_find_parent(mrt, mfc->mfcc_origin.s_addr,
1229 mfc->mfcc_mcastgrp.s_addr, parent);
1230 rcu_read_unlock();
1231 if (c) {
1232 write_lock_bh(&mrt_lock);
1233 c->_c.mfc_parent = mfc->mfcc_parent;
1234 ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
1235 if (!mrtsock)
1236 c->_c.mfc_flags |= MFC_STATIC;
1237 write_unlock_bh(&mrt_lock);
1238 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE, c,
1239 mrt->id);
1240 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1241 return 0;
1244 if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
1245 !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
1246 return -EINVAL;
1248 c = ipmr_cache_alloc();
1249 if (!c)
1250 return -ENOMEM;
1252 c->mfc_origin = mfc->mfcc_origin.s_addr;
1253 c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
1254 c->_c.mfc_parent = mfc->mfcc_parent;
1255 ipmr_update_thresholds(mrt, &c->_c, mfc->mfcc_ttls);
1256 if (!mrtsock)
1257 c->_c.mfc_flags |= MFC_STATIC;
1259 ret = rhltable_insert_key(&mrt->mfc_hash, &c->cmparg, &c->_c.mnode,
1260 ipmr_rht_params);
1261 if (ret) {
1262 pr_err("ipmr: rhtable insert error %d\n", ret);
1263 ipmr_cache_free(c);
1264 return ret;
1266 list_add_tail_rcu(&c->_c.list, &mrt->mfc_cache_list);
1267 /* Check to see if we resolved a queued list. If so we
1268 * need to send on the frames and tidy up.
1270 found = false;
1271 spin_lock_bh(&mfc_unres_lock);
1272 list_for_each_entry(_uc, &mrt->mfc_unres_queue, list) {
1273 uc = (struct mfc_cache *)_uc;
1274 if (uc->mfc_origin == c->mfc_origin &&
1275 uc->mfc_mcastgrp == c->mfc_mcastgrp) {
1276 list_del(&_uc->list);
1277 atomic_dec(&mrt->cache_resolve_queue_len);
1278 found = true;
1279 break;
1282 if (list_empty(&mrt->mfc_unres_queue))
1283 del_timer(&mrt->ipmr_expire_timer);
1284 spin_unlock_bh(&mfc_unres_lock);
1286 if (found) {
1287 ipmr_cache_resolve(net, mrt, uc, c);
1288 ipmr_cache_free(uc);
1290 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_ADD, c, mrt->id);
1291 mroute_netlink_event(mrt, c, RTM_NEWROUTE);
1292 return 0;
1295 /* Close the multicast socket, and clear the vif tables etc */
1296 static void mroute_clean_tables(struct mr_table *mrt, bool all)
1298 struct net *net = read_pnet(&mrt->net);
1299 struct mr_mfc *c, *tmp;
1300 struct mfc_cache *cache;
1301 LIST_HEAD(list);
1302 int i;
1304 /* Shut down all active vif entries */
1305 for (i = 0; i < mrt->maxvif; i++) {
1306 if (!all && (mrt->vif_table[i].flags & VIFF_STATIC))
1307 continue;
1308 vif_delete(mrt, i, 0, &list);
1310 unregister_netdevice_many(&list);
1312 /* Wipe the cache */
1313 list_for_each_entry_safe(c, tmp, &mrt->mfc_cache_list, list) {
1314 if (!all && (c->mfc_flags & MFC_STATIC))
1315 continue;
1316 rhltable_remove(&mrt->mfc_hash, &c->mnode, ipmr_rht_params);
1317 list_del_rcu(&c->list);
1318 cache = (struct mfc_cache *)c;
1319 call_ipmr_mfc_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, cache,
1320 mrt->id);
1321 mroute_netlink_event(mrt, cache, RTM_DELROUTE);
1322 mr_cache_put(c);
1325 if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
1326 spin_lock_bh(&mfc_unres_lock);
1327 list_for_each_entry_safe(c, tmp, &mrt->mfc_unres_queue, list) {
1328 list_del(&c->list);
1329 cache = (struct mfc_cache *)c;
1330 mroute_netlink_event(mrt, cache, RTM_DELROUTE);
1331 ipmr_destroy_unres(mrt, cache);
1333 spin_unlock_bh(&mfc_unres_lock);
1337 /* called from ip_ra_control(), before an RCU grace period,
1338 * we dont need to call synchronize_rcu() here
1340 static void mrtsock_destruct(struct sock *sk)
1342 struct net *net = sock_net(sk);
1343 struct mr_table *mrt;
1345 rtnl_lock();
1346 ipmr_for_each_table(mrt, net) {
1347 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1348 IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
1349 inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1350 NETCONFA_MC_FORWARDING,
1351 NETCONFA_IFINDEX_ALL,
1352 net->ipv4.devconf_all);
1353 RCU_INIT_POINTER(mrt->mroute_sk, NULL);
1354 mroute_clean_tables(mrt, false);
1357 rtnl_unlock();
1360 /* Socket options and virtual interface manipulation. The whole
1361 * virtual interface system is a complete heap, but unfortunately
1362 * that's how BSD mrouted happens to think. Maybe one day with a proper
1363 * MOSPF/PIM router set up we can clean this up.
1366 int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval,
1367 unsigned int optlen)
1369 struct net *net = sock_net(sk);
1370 int val, ret = 0, parent = 0;
1371 struct mr_table *mrt;
1372 struct vifctl vif;
1373 struct mfcctl mfc;
1374 u32 uval;
1376 /* There's one exception to the lock - MRT_DONE which needs to unlock */
1377 rtnl_lock();
1378 if (sk->sk_type != SOCK_RAW ||
1379 inet_sk(sk)->inet_num != IPPROTO_IGMP) {
1380 ret = -EOPNOTSUPP;
1381 goto out_unlock;
1384 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1385 if (!mrt) {
1386 ret = -ENOENT;
1387 goto out_unlock;
1389 if (optname != MRT_INIT) {
1390 if (sk != rcu_access_pointer(mrt->mroute_sk) &&
1391 !ns_capable(net->user_ns, CAP_NET_ADMIN)) {
1392 ret = -EACCES;
1393 goto out_unlock;
1397 switch (optname) {
1398 case MRT_INIT:
1399 if (optlen != sizeof(int)) {
1400 ret = -EINVAL;
1401 break;
1403 if (rtnl_dereference(mrt->mroute_sk)) {
1404 ret = -EADDRINUSE;
1405 break;
1408 ret = ip_ra_control(sk, 1, mrtsock_destruct);
1409 if (ret == 0) {
1410 rcu_assign_pointer(mrt->mroute_sk, sk);
1411 IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
1412 inet_netconf_notify_devconf(net, RTM_NEWNETCONF,
1413 NETCONFA_MC_FORWARDING,
1414 NETCONFA_IFINDEX_ALL,
1415 net->ipv4.devconf_all);
1417 break;
1418 case MRT_DONE:
1419 if (sk != rcu_access_pointer(mrt->mroute_sk)) {
1420 ret = -EACCES;
1421 } else {
1422 /* We need to unlock here because mrtsock_destruct takes
1423 * care of rtnl itself and we can't change that due to
1424 * the IP_ROUTER_ALERT setsockopt which runs without it.
1426 rtnl_unlock();
1427 ret = ip_ra_control(sk, 0, NULL);
1428 goto out;
1430 break;
1431 case MRT_ADD_VIF:
1432 case MRT_DEL_VIF:
1433 if (optlen != sizeof(vif)) {
1434 ret = -EINVAL;
1435 break;
1437 if (copy_from_user(&vif, optval, sizeof(vif))) {
1438 ret = -EFAULT;
1439 break;
1441 if (vif.vifc_vifi >= MAXVIFS) {
1442 ret = -ENFILE;
1443 break;
1445 if (optname == MRT_ADD_VIF) {
1446 ret = vif_add(net, mrt, &vif,
1447 sk == rtnl_dereference(mrt->mroute_sk));
1448 } else {
1449 ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
1451 break;
1452 /* Manipulate the forwarding caches. These live
1453 * in a sort of kernel/user symbiosis.
1455 case MRT_ADD_MFC:
1456 case MRT_DEL_MFC:
1457 parent = -1;
1458 /* fall through */
1459 case MRT_ADD_MFC_PROXY:
1460 case MRT_DEL_MFC_PROXY:
1461 if (optlen != sizeof(mfc)) {
1462 ret = -EINVAL;
1463 break;
1465 if (copy_from_user(&mfc, optval, sizeof(mfc))) {
1466 ret = -EFAULT;
1467 break;
1469 if (parent == 0)
1470 parent = mfc.mfcc_parent;
1471 if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
1472 ret = ipmr_mfc_delete(mrt, &mfc, parent);
1473 else
1474 ret = ipmr_mfc_add(net, mrt, &mfc,
1475 sk == rtnl_dereference(mrt->mroute_sk),
1476 parent);
1477 break;
1478 /* Control PIM assert. */
1479 case MRT_ASSERT:
1480 if (optlen != sizeof(val)) {
1481 ret = -EINVAL;
1482 break;
1484 if (get_user(val, (int __user *)optval)) {
1485 ret = -EFAULT;
1486 break;
1488 mrt->mroute_do_assert = val;
1489 break;
1490 case MRT_PIM:
1491 if (!ipmr_pimsm_enabled()) {
1492 ret = -ENOPROTOOPT;
1493 break;
1495 if (optlen != sizeof(val)) {
1496 ret = -EINVAL;
1497 break;
1499 if (get_user(val, (int __user *)optval)) {
1500 ret = -EFAULT;
1501 break;
1504 val = !!val;
1505 if (val != mrt->mroute_do_pim) {
1506 mrt->mroute_do_pim = val;
1507 mrt->mroute_do_assert = val;
1509 break;
1510 case MRT_TABLE:
1511 if (!IS_BUILTIN(CONFIG_IP_MROUTE_MULTIPLE_TABLES)) {
1512 ret = -ENOPROTOOPT;
1513 break;
1515 if (optlen != sizeof(uval)) {
1516 ret = -EINVAL;
1517 break;
1519 if (get_user(uval, (u32 __user *)optval)) {
1520 ret = -EFAULT;
1521 break;
1524 if (sk == rtnl_dereference(mrt->mroute_sk)) {
1525 ret = -EBUSY;
1526 } else {
1527 mrt = ipmr_new_table(net, uval);
1528 if (IS_ERR(mrt))
1529 ret = PTR_ERR(mrt);
1530 else
1531 raw_sk(sk)->ipmr_table = uval;
1533 break;
1534 /* Spurious command, or MRT_VERSION which you cannot set. */
1535 default:
1536 ret = -ENOPROTOOPT;
1538 out_unlock:
1539 rtnl_unlock();
1540 out:
1541 return ret;
1544 /* Getsock opt support for the multicast routing system. */
1545 int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
1547 int olr;
1548 int val;
1549 struct net *net = sock_net(sk);
1550 struct mr_table *mrt;
1552 if (sk->sk_type != SOCK_RAW ||
1553 inet_sk(sk)->inet_num != IPPROTO_IGMP)
1554 return -EOPNOTSUPP;
1556 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1557 if (!mrt)
1558 return -ENOENT;
1560 switch (optname) {
1561 case MRT_VERSION:
1562 val = 0x0305;
1563 break;
1564 case MRT_PIM:
1565 if (!ipmr_pimsm_enabled())
1566 return -ENOPROTOOPT;
1567 val = mrt->mroute_do_pim;
1568 break;
1569 case MRT_ASSERT:
1570 val = mrt->mroute_do_assert;
1571 break;
1572 default:
1573 return -ENOPROTOOPT;
1576 if (get_user(olr, optlen))
1577 return -EFAULT;
1578 olr = min_t(unsigned int, olr, sizeof(int));
1579 if (olr < 0)
1580 return -EINVAL;
1581 if (put_user(olr, optlen))
1582 return -EFAULT;
1583 if (copy_to_user(optval, &val, olr))
1584 return -EFAULT;
1585 return 0;
1588 /* The IP multicast ioctl support routines. */
1589 int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
1591 struct sioc_sg_req sr;
1592 struct sioc_vif_req vr;
1593 struct vif_device *vif;
1594 struct mfc_cache *c;
1595 struct net *net = sock_net(sk);
1596 struct mr_table *mrt;
1598 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1599 if (!mrt)
1600 return -ENOENT;
1602 switch (cmd) {
1603 case SIOCGETVIFCNT:
1604 if (copy_from_user(&vr, arg, sizeof(vr)))
1605 return -EFAULT;
1606 if (vr.vifi >= mrt->maxvif)
1607 return -EINVAL;
1608 read_lock(&mrt_lock);
1609 vif = &mrt->vif_table[vr.vifi];
1610 if (VIF_EXISTS(mrt, vr.vifi)) {
1611 vr.icount = vif->pkt_in;
1612 vr.ocount = vif->pkt_out;
1613 vr.ibytes = vif->bytes_in;
1614 vr.obytes = vif->bytes_out;
1615 read_unlock(&mrt_lock);
1617 if (copy_to_user(arg, &vr, sizeof(vr)))
1618 return -EFAULT;
1619 return 0;
1621 read_unlock(&mrt_lock);
1622 return -EADDRNOTAVAIL;
1623 case SIOCGETSGCNT:
1624 if (copy_from_user(&sr, arg, sizeof(sr)))
1625 return -EFAULT;
1627 rcu_read_lock();
1628 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1629 if (c) {
1630 sr.pktcnt = c->_c.mfc_un.res.pkt;
1631 sr.bytecnt = c->_c.mfc_un.res.bytes;
1632 sr.wrong_if = c->_c.mfc_un.res.wrong_if;
1633 rcu_read_unlock();
1635 if (copy_to_user(arg, &sr, sizeof(sr)))
1636 return -EFAULT;
1637 return 0;
1639 rcu_read_unlock();
1640 return -EADDRNOTAVAIL;
1641 default:
1642 return -ENOIOCTLCMD;
1646 #ifdef CONFIG_COMPAT
1647 struct compat_sioc_sg_req {
1648 struct in_addr src;
1649 struct in_addr grp;
1650 compat_ulong_t pktcnt;
1651 compat_ulong_t bytecnt;
1652 compat_ulong_t wrong_if;
1655 struct compat_sioc_vif_req {
1656 vifi_t vifi; /* Which iface */
1657 compat_ulong_t icount;
1658 compat_ulong_t ocount;
1659 compat_ulong_t ibytes;
1660 compat_ulong_t obytes;
1663 int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
1665 struct compat_sioc_sg_req sr;
1666 struct compat_sioc_vif_req vr;
1667 struct vif_device *vif;
1668 struct mfc_cache *c;
1669 struct net *net = sock_net(sk);
1670 struct mr_table *mrt;
1672 mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
1673 if (!mrt)
1674 return -ENOENT;
1676 switch (cmd) {
1677 case SIOCGETVIFCNT:
1678 if (copy_from_user(&vr, arg, sizeof(vr)))
1679 return -EFAULT;
1680 if (vr.vifi >= mrt->maxvif)
1681 return -EINVAL;
1682 read_lock(&mrt_lock);
1683 vif = &mrt->vif_table[vr.vifi];
1684 if (VIF_EXISTS(mrt, vr.vifi)) {
1685 vr.icount = vif->pkt_in;
1686 vr.ocount = vif->pkt_out;
1687 vr.ibytes = vif->bytes_in;
1688 vr.obytes = vif->bytes_out;
1689 read_unlock(&mrt_lock);
1691 if (copy_to_user(arg, &vr, sizeof(vr)))
1692 return -EFAULT;
1693 return 0;
1695 read_unlock(&mrt_lock);
1696 return -EADDRNOTAVAIL;
1697 case SIOCGETSGCNT:
1698 if (copy_from_user(&sr, arg, sizeof(sr)))
1699 return -EFAULT;
1701 rcu_read_lock();
1702 c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
1703 if (c) {
1704 sr.pktcnt = c->_c.mfc_un.res.pkt;
1705 sr.bytecnt = c->_c.mfc_un.res.bytes;
1706 sr.wrong_if = c->_c.mfc_un.res.wrong_if;
1707 rcu_read_unlock();
1709 if (copy_to_user(arg, &sr, sizeof(sr)))
1710 return -EFAULT;
1711 return 0;
1713 rcu_read_unlock();
1714 return -EADDRNOTAVAIL;
1715 default:
1716 return -ENOIOCTLCMD;
1719 #endif
1721 static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
1723 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1724 struct net *net = dev_net(dev);
1725 struct mr_table *mrt;
1726 struct vif_device *v;
1727 int ct;
1729 if (event != NETDEV_UNREGISTER)
1730 return NOTIFY_DONE;
1732 ipmr_for_each_table(mrt, net) {
1733 v = &mrt->vif_table[0];
1734 for (ct = 0; ct < mrt->maxvif; ct++, v++) {
1735 if (v->dev == dev)
1736 vif_delete(mrt, ct, 1, NULL);
1739 return NOTIFY_DONE;
1742 static struct notifier_block ip_mr_notifier = {
1743 .notifier_call = ipmr_device_event,
1746 /* Encapsulate a packet by attaching a valid IPIP header to it.
1747 * This avoids tunnel drivers and other mess and gives us the speed so
1748 * important for multicast video.
1750 static void ip_encap(struct net *net, struct sk_buff *skb,
1751 __be32 saddr, __be32 daddr)
1753 struct iphdr *iph;
1754 const struct iphdr *old_iph = ip_hdr(skb);
1756 skb_push(skb, sizeof(struct iphdr));
1757 skb->transport_header = skb->network_header;
1758 skb_reset_network_header(skb);
1759 iph = ip_hdr(skb);
1761 iph->version = 4;
1762 iph->tos = old_iph->tos;
1763 iph->ttl = old_iph->ttl;
1764 iph->frag_off = 0;
1765 iph->daddr = daddr;
1766 iph->saddr = saddr;
1767 iph->protocol = IPPROTO_IPIP;
1768 iph->ihl = 5;
1769 iph->tot_len = htons(skb->len);
1770 ip_select_ident(net, skb, NULL);
1771 ip_send_check(iph);
1773 memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
1774 nf_reset(skb);
1777 static inline int ipmr_forward_finish(struct net *net, struct sock *sk,
1778 struct sk_buff *skb)
1780 struct ip_options *opt = &(IPCB(skb)->opt);
1782 IP_INC_STATS(net, IPSTATS_MIB_OUTFORWDATAGRAMS);
1783 IP_ADD_STATS(net, IPSTATS_MIB_OUTOCTETS, skb->len);
1785 if (unlikely(opt->optlen))
1786 ip_forward_options(skb);
1788 return dst_output(net, sk, skb);
1791 #ifdef CONFIG_NET_SWITCHDEV
1792 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1793 int in_vifi, int out_vifi)
1795 struct vif_device *out_vif = &mrt->vif_table[out_vifi];
1796 struct vif_device *in_vif = &mrt->vif_table[in_vifi];
1798 if (!skb->offload_mr_fwd_mark)
1799 return false;
1800 if (!out_vif->dev_parent_id.id_len || !in_vif->dev_parent_id.id_len)
1801 return false;
1802 return netdev_phys_item_id_same(&out_vif->dev_parent_id,
1803 &in_vif->dev_parent_id);
1805 #else
1806 static bool ipmr_forward_offloaded(struct sk_buff *skb, struct mr_table *mrt,
1807 int in_vifi, int out_vifi)
1809 return false;
1811 #endif
1813 /* Processing handlers for ipmr_forward */
1815 static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
1816 int in_vifi, struct sk_buff *skb,
1817 struct mfc_cache *c, int vifi)
1819 const struct iphdr *iph = ip_hdr(skb);
1820 struct vif_device *vif = &mrt->vif_table[vifi];
1821 struct net_device *dev;
1822 struct rtable *rt;
1823 struct flowi4 fl4;
1824 int encap = 0;
1826 if (!vif->dev)
1827 goto out_free;
1829 if (vif->flags & VIFF_REGISTER) {
1830 vif->pkt_out++;
1831 vif->bytes_out += skb->len;
1832 vif->dev->stats.tx_bytes += skb->len;
1833 vif->dev->stats.tx_packets++;
1834 ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
1835 goto out_free;
1838 if (ipmr_forward_offloaded(skb, mrt, in_vifi, vifi))
1839 goto out_free;
1841 if (vif->flags & VIFF_TUNNEL) {
1842 rt = ip_route_output_ports(net, &fl4, NULL,
1843 vif->remote, vif->local,
1844 0, 0,
1845 IPPROTO_IPIP,
1846 RT_TOS(iph->tos), vif->link);
1847 if (IS_ERR(rt))
1848 goto out_free;
1849 encap = sizeof(struct iphdr);
1850 } else {
1851 rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
1852 0, 0,
1853 IPPROTO_IPIP,
1854 RT_TOS(iph->tos), vif->link);
1855 if (IS_ERR(rt))
1856 goto out_free;
1859 dev = rt->dst.dev;
1861 if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
1862 /* Do not fragment multicasts. Alas, IPv4 does not
1863 * allow to send ICMP, so that packets will disappear
1864 * to blackhole.
1866 IP_INC_STATS(net, IPSTATS_MIB_FRAGFAILS);
1867 ip_rt_put(rt);
1868 goto out_free;
1871 encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
1873 if (skb_cow(skb, encap)) {
1874 ip_rt_put(rt);
1875 goto out_free;
1878 vif->pkt_out++;
1879 vif->bytes_out += skb->len;
1881 skb_dst_drop(skb);
1882 skb_dst_set(skb, &rt->dst);
1883 ip_decrease_ttl(ip_hdr(skb));
1885 /* FIXME: forward and output firewalls used to be called here.
1886 * What do we do with netfilter? -- RR
1888 if (vif->flags & VIFF_TUNNEL) {
1889 ip_encap(net, skb, vif->local, vif->remote);
1890 /* FIXME: extra output firewall step used to be here. --RR */
1891 vif->dev->stats.tx_packets++;
1892 vif->dev->stats.tx_bytes += skb->len;
1895 IPCB(skb)->flags |= IPSKB_FORWARDED;
1897 /* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
1898 * not only before forwarding, but after forwarding on all output
1899 * interfaces. It is clear, if mrouter runs a multicasting
1900 * program, it should receive packets not depending to what interface
1901 * program is joined.
1902 * If we will not make it, the program will have to join on all
1903 * interfaces. On the other hand, multihoming host (or router, but
1904 * not mrouter) cannot join to more than one interface - it will
1905 * result in receiving multiple packets.
1907 NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD,
1908 net, NULL, skb, skb->dev, dev,
1909 ipmr_forward_finish);
1910 return;
1912 out_free:
1913 kfree_skb(skb);
1916 static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
1918 int ct;
1920 for (ct = mrt->maxvif-1; ct >= 0; ct--) {
1921 if (mrt->vif_table[ct].dev == dev)
1922 break;
1924 return ct;
1927 /* "local" means that we should preserve one skb (for local delivery) */
1928 static void ip_mr_forward(struct net *net, struct mr_table *mrt,
1929 struct net_device *dev, struct sk_buff *skb,
1930 struct mfc_cache *c, int local)
1932 int true_vifi = ipmr_find_vif(mrt, dev);
1933 int psend = -1;
1934 int vif, ct;
1936 vif = c->_c.mfc_parent;
1937 c->_c.mfc_un.res.pkt++;
1938 c->_c.mfc_un.res.bytes += skb->len;
1939 c->_c.mfc_un.res.lastuse = jiffies;
1941 if (c->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
1942 struct mfc_cache *cache_proxy;
1944 /* For an (*,G) entry, we only check that the incomming
1945 * interface is part of the static tree.
1947 cache_proxy = mr_mfc_find_any_parent(mrt, vif);
1948 if (cache_proxy &&
1949 cache_proxy->_c.mfc_un.res.ttls[true_vifi] < 255)
1950 goto forward;
1953 /* Wrong interface: drop packet and (maybe) send PIM assert. */
1954 if (mrt->vif_table[vif].dev != dev) {
1955 if (rt_is_output_route(skb_rtable(skb))) {
1956 /* It is our own packet, looped back.
1957 * Very complicated situation...
1959 * The best workaround until routing daemons will be
1960 * fixed is not to redistribute packet, if it was
1961 * send through wrong interface. It means, that
1962 * multicast applications WILL NOT work for
1963 * (S,G), which have default multicast route pointing
1964 * to wrong oif. In any case, it is not a good
1965 * idea to use multicasting applications on router.
1967 goto dont_forward;
1970 c->_c.mfc_un.res.wrong_if++;
1972 if (true_vifi >= 0 && mrt->mroute_do_assert &&
1973 /* pimsm uses asserts, when switching from RPT to SPT,
1974 * so that we cannot check that packet arrived on an oif.
1975 * It is bad, but otherwise we would need to move pretty
1976 * large chunk of pimd to kernel. Ough... --ANK
1978 (mrt->mroute_do_pim ||
1979 c->_c.mfc_un.res.ttls[true_vifi] < 255) &&
1980 time_after(jiffies,
1981 c->_c.mfc_un.res.last_assert +
1982 MFC_ASSERT_THRESH)) {
1983 c->_c.mfc_un.res.last_assert = jiffies;
1984 ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
1986 goto dont_forward;
1989 forward:
1990 mrt->vif_table[vif].pkt_in++;
1991 mrt->vif_table[vif].bytes_in += skb->len;
1993 /* Forward the frame */
1994 if (c->mfc_origin == htonl(INADDR_ANY) &&
1995 c->mfc_mcastgrp == htonl(INADDR_ANY)) {
1996 if (true_vifi >= 0 &&
1997 true_vifi != c->_c.mfc_parent &&
1998 ip_hdr(skb)->ttl >
1999 c->_c.mfc_un.res.ttls[c->_c.mfc_parent]) {
2000 /* It's an (*,*) entry and the packet is not coming from
2001 * the upstream: forward the packet to the upstream
2002 * only.
2004 psend = c->_c.mfc_parent;
2005 goto last_forward;
2007 goto dont_forward;
2009 for (ct = c->_c.mfc_un.res.maxvif - 1;
2010 ct >= c->_c.mfc_un.res.minvif; ct--) {
2011 /* For (*,G) entry, don't forward to the incoming interface */
2012 if ((c->mfc_origin != htonl(INADDR_ANY) ||
2013 ct != true_vifi) &&
2014 ip_hdr(skb)->ttl > c->_c.mfc_un.res.ttls[ct]) {
2015 if (psend != -1) {
2016 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2018 if (skb2)
2019 ipmr_queue_xmit(net, mrt, true_vifi,
2020 skb2, c, psend);
2022 psend = ct;
2025 last_forward:
2026 if (psend != -1) {
2027 if (local) {
2028 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2030 if (skb2)
2031 ipmr_queue_xmit(net, mrt, true_vifi, skb2,
2032 c, psend);
2033 } else {
2034 ipmr_queue_xmit(net, mrt, true_vifi, skb, c, psend);
2035 return;
2039 dont_forward:
2040 if (!local)
2041 kfree_skb(skb);
2044 static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
2046 struct rtable *rt = skb_rtable(skb);
2047 struct iphdr *iph = ip_hdr(skb);
2048 struct flowi4 fl4 = {
2049 .daddr = iph->daddr,
2050 .saddr = iph->saddr,
2051 .flowi4_tos = RT_TOS(iph->tos),
2052 .flowi4_oif = (rt_is_output_route(rt) ?
2053 skb->dev->ifindex : 0),
2054 .flowi4_iif = (rt_is_output_route(rt) ?
2055 LOOPBACK_IFINDEX :
2056 skb->dev->ifindex),
2057 .flowi4_mark = skb->mark,
2059 struct mr_table *mrt;
2060 int err;
2062 err = ipmr_fib_lookup(net, &fl4, &mrt);
2063 if (err)
2064 return ERR_PTR(err);
2065 return mrt;
2068 /* Multicast packets for forwarding arrive here
2069 * Called with rcu_read_lock();
2071 int ip_mr_input(struct sk_buff *skb)
2073 struct mfc_cache *cache;
2074 struct net *net = dev_net(skb->dev);
2075 int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
2076 struct mr_table *mrt;
2077 struct net_device *dev;
2079 /* skb->dev passed in is the loX master dev for vrfs.
2080 * As there are no vifs associated with loopback devices,
2081 * get the proper interface that does have a vif associated with it.
2083 dev = skb->dev;
2084 if (netif_is_l3_master(skb->dev)) {
2085 dev = dev_get_by_index_rcu(net, IPCB(skb)->iif);
2086 if (!dev) {
2087 kfree_skb(skb);
2088 return -ENODEV;
2092 /* Packet is looped back after forward, it should not be
2093 * forwarded second time, but still can be delivered locally.
2095 if (IPCB(skb)->flags & IPSKB_FORWARDED)
2096 goto dont_forward;
2098 mrt = ipmr_rt_fib_lookup(net, skb);
2099 if (IS_ERR(mrt)) {
2100 kfree_skb(skb);
2101 return PTR_ERR(mrt);
2103 if (!local) {
2104 if (IPCB(skb)->opt.router_alert) {
2105 if (ip_call_ra_chain(skb))
2106 return 0;
2107 } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
2108 /* IGMPv1 (and broken IGMPv2 implementations sort of
2109 * Cisco IOS <= 11.2(8)) do not put router alert
2110 * option to IGMP packets destined to routable
2111 * groups. It is very bad, because it means
2112 * that we can forward NO IGMP messages.
2114 struct sock *mroute_sk;
2116 mroute_sk = rcu_dereference(mrt->mroute_sk);
2117 if (mroute_sk) {
2118 nf_reset(skb);
2119 raw_rcv(mroute_sk, skb);
2120 return 0;
2125 /* already under rcu_read_lock() */
2126 cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
2127 if (!cache) {
2128 int vif = ipmr_find_vif(mrt, dev);
2130 if (vif >= 0)
2131 cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
2132 vif);
2135 /* No usable cache entry */
2136 if (!cache) {
2137 int vif;
2139 if (local) {
2140 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
2141 ip_local_deliver(skb);
2142 if (!skb2)
2143 return -ENOBUFS;
2144 skb = skb2;
2147 read_lock(&mrt_lock);
2148 vif = ipmr_find_vif(mrt, dev);
2149 if (vif >= 0) {
2150 int err2 = ipmr_cache_unresolved(mrt, vif, skb, dev);
2151 read_unlock(&mrt_lock);
2153 return err2;
2155 read_unlock(&mrt_lock);
2156 kfree_skb(skb);
2157 return -ENODEV;
2160 read_lock(&mrt_lock);
2161 ip_mr_forward(net, mrt, dev, skb, cache, local);
2162 read_unlock(&mrt_lock);
2164 if (local)
2165 return ip_local_deliver(skb);
2167 return 0;
2169 dont_forward:
2170 if (local)
2171 return ip_local_deliver(skb);
2172 kfree_skb(skb);
2173 return 0;
2176 #ifdef CONFIG_IP_PIMSM_V1
2177 /* Handle IGMP messages of PIMv1 */
2178 int pim_rcv_v1(struct sk_buff *skb)
2180 struct igmphdr *pim;
2181 struct net *net = dev_net(skb->dev);
2182 struct mr_table *mrt;
2184 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2185 goto drop;
2187 pim = igmp_hdr(skb);
2189 mrt = ipmr_rt_fib_lookup(net, skb);
2190 if (IS_ERR(mrt))
2191 goto drop;
2192 if (!mrt->mroute_do_pim ||
2193 pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
2194 goto drop;
2196 if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2197 drop:
2198 kfree_skb(skb);
2200 return 0;
2202 #endif
2204 #ifdef CONFIG_IP_PIMSM_V2
2205 static int pim_rcv(struct sk_buff *skb)
2207 struct pimreghdr *pim;
2208 struct net *net = dev_net(skb->dev);
2209 struct mr_table *mrt;
2211 if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
2212 goto drop;
2214 pim = (struct pimreghdr *)skb_transport_header(skb);
2215 if (pim->type != ((PIM_VERSION << 4) | (PIM_TYPE_REGISTER)) ||
2216 (pim->flags & PIM_NULL_REGISTER) ||
2217 (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
2218 csum_fold(skb_checksum(skb, 0, skb->len, 0))))
2219 goto drop;
2221 mrt = ipmr_rt_fib_lookup(net, skb);
2222 if (IS_ERR(mrt))
2223 goto drop;
2224 if (__pim_rcv(mrt, skb, sizeof(*pim))) {
2225 drop:
2226 kfree_skb(skb);
2228 return 0;
2230 #endif
2232 int ipmr_get_route(struct net *net, struct sk_buff *skb,
2233 __be32 saddr, __be32 daddr,
2234 struct rtmsg *rtm, u32 portid)
2236 struct mfc_cache *cache;
2237 struct mr_table *mrt;
2238 int err;
2240 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2241 if (!mrt)
2242 return -ENOENT;
2244 rcu_read_lock();
2245 cache = ipmr_cache_find(mrt, saddr, daddr);
2246 if (!cache && skb->dev) {
2247 int vif = ipmr_find_vif(mrt, skb->dev);
2249 if (vif >= 0)
2250 cache = ipmr_cache_find_any(mrt, daddr, vif);
2252 if (!cache) {
2253 struct sk_buff *skb2;
2254 struct iphdr *iph;
2255 struct net_device *dev;
2256 int vif = -1;
2258 dev = skb->dev;
2259 read_lock(&mrt_lock);
2260 if (dev)
2261 vif = ipmr_find_vif(mrt, dev);
2262 if (vif < 0) {
2263 read_unlock(&mrt_lock);
2264 rcu_read_unlock();
2265 return -ENODEV;
2267 skb2 = skb_clone(skb, GFP_ATOMIC);
2268 if (!skb2) {
2269 read_unlock(&mrt_lock);
2270 rcu_read_unlock();
2271 return -ENOMEM;
2274 NETLINK_CB(skb2).portid = portid;
2275 skb_push(skb2, sizeof(struct iphdr));
2276 skb_reset_network_header(skb2);
2277 iph = ip_hdr(skb2);
2278 iph->ihl = sizeof(struct iphdr) >> 2;
2279 iph->saddr = saddr;
2280 iph->daddr = daddr;
2281 iph->version = 0;
2282 err = ipmr_cache_unresolved(mrt, vif, skb2, dev);
2283 read_unlock(&mrt_lock);
2284 rcu_read_unlock();
2285 return err;
2288 read_lock(&mrt_lock);
2289 err = mr_fill_mroute(mrt, skb, &cache->_c, rtm);
2290 read_unlock(&mrt_lock);
2291 rcu_read_unlock();
2292 return err;
2295 static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2296 u32 portid, u32 seq, struct mfc_cache *c, int cmd,
2297 int flags)
2299 struct nlmsghdr *nlh;
2300 struct rtmsg *rtm;
2301 int err;
2303 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
2304 if (!nlh)
2305 return -EMSGSIZE;
2307 rtm = nlmsg_data(nlh);
2308 rtm->rtm_family = RTNL_FAMILY_IPMR;
2309 rtm->rtm_dst_len = 32;
2310 rtm->rtm_src_len = 32;
2311 rtm->rtm_tos = 0;
2312 rtm->rtm_table = mrt->id;
2313 if (nla_put_u32(skb, RTA_TABLE, mrt->id))
2314 goto nla_put_failure;
2315 rtm->rtm_type = RTN_MULTICAST;
2316 rtm->rtm_scope = RT_SCOPE_UNIVERSE;
2317 if (c->_c.mfc_flags & MFC_STATIC)
2318 rtm->rtm_protocol = RTPROT_STATIC;
2319 else
2320 rtm->rtm_protocol = RTPROT_MROUTED;
2321 rtm->rtm_flags = 0;
2323 if (nla_put_in_addr(skb, RTA_SRC, c->mfc_origin) ||
2324 nla_put_in_addr(skb, RTA_DST, c->mfc_mcastgrp))
2325 goto nla_put_failure;
2326 err = mr_fill_mroute(mrt, skb, &c->_c, rtm);
2327 /* do not break the dump if cache is unresolved */
2328 if (err < 0 && err != -ENOENT)
2329 goto nla_put_failure;
2331 nlmsg_end(skb, nlh);
2332 return 0;
2334 nla_put_failure:
2335 nlmsg_cancel(skb, nlh);
2336 return -EMSGSIZE;
2339 static int _ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
2340 u32 portid, u32 seq, struct mr_mfc *c, int cmd,
2341 int flags)
2343 return ipmr_fill_mroute(mrt, skb, portid, seq, (struct mfc_cache *)c,
2344 cmd, flags);
2347 static size_t mroute_msgsize(bool unresolved, int maxvif)
2349 size_t len =
2350 NLMSG_ALIGN(sizeof(struct rtmsg))
2351 + nla_total_size(4) /* RTA_TABLE */
2352 + nla_total_size(4) /* RTA_SRC */
2353 + nla_total_size(4) /* RTA_DST */
2356 if (!unresolved)
2357 len = len
2358 + nla_total_size(4) /* RTA_IIF */
2359 + nla_total_size(0) /* RTA_MULTIPATH */
2360 + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
2361 /* RTA_MFC_STATS */
2362 + nla_total_size_64bit(sizeof(struct rta_mfc_stats))
2365 return len;
2368 static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
2369 int cmd)
2371 struct net *net = read_pnet(&mrt->net);
2372 struct sk_buff *skb;
2373 int err = -ENOBUFS;
2375 skb = nlmsg_new(mroute_msgsize(mfc->_c.mfc_parent >= MAXVIFS,
2376 mrt->maxvif),
2377 GFP_ATOMIC);
2378 if (!skb)
2379 goto errout;
2381 err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
2382 if (err < 0)
2383 goto errout;
2385 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
2386 return;
2388 errout:
2389 kfree_skb(skb);
2390 if (err < 0)
2391 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
2394 static size_t igmpmsg_netlink_msgsize(size_t payloadlen)
2396 size_t len =
2397 NLMSG_ALIGN(sizeof(struct rtgenmsg))
2398 + nla_total_size(1) /* IPMRA_CREPORT_MSGTYPE */
2399 + nla_total_size(4) /* IPMRA_CREPORT_VIF_ID */
2400 + nla_total_size(4) /* IPMRA_CREPORT_SRC_ADDR */
2401 + nla_total_size(4) /* IPMRA_CREPORT_DST_ADDR */
2402 /* IPMRA_CREPORT_PKT */
2403 + nla_total_size(payloadlen)
2406 return len;
2409 static void igmpmsg_netlink_event(struct mr_table *mrt, struct sk_buff *pkt)
2411 struct net *net = read_pnet(&mrt->net);
2412 struct nlmsghdr *nlh;
2413 struct rtgenmsg *rtgenm;
2414 struct igmpmsg *msg;
2415 struct sk_buff *skb;
2416 struct nlattr *nla;
2417 int payloadlen;
2419 payloadlen = pkt->len - sizeof(struct igmpmsg);
2420 msg = (struct igmpmsg *)skb_network_header(pkt);
2422 skb = nlmsg_new(igmpmsg_netlink_msgsize(payloadlen), GFP_ATOMIC);
2423 if (!skb)
2424 goto errout;
2426 nlh = nlmsg_put(skb, 0, 0, RTM_NEWCACHEREPORT,
2427 sizeof(struct rtgenmsg), 0);
2428 if (!nlh)
2429 goto errout;
2430 rtgenm = nlmsg_data(nlh);
2431 rtgenm->rtgen_family = RTNL_FAMILY_IPMR;
2432 if (nla_put_u8(skb, IPMRA_CREPORT_MSGTYPE, msg->im_msgtype) ||
2433 nla_put_u32(skb, IPMRA_CREPORT_VIF_ID, msg->im_vif) ||
2434 nla_put_in_addr(skb, IPMRA_CREPORT_SRC_ADDR,
2435 msg->im_src.s_addr) ||
2436 nla_put_in_addr(skb, IPMRA_CREPORT_DST_ADDR,
2437 msg->im_dst.s_addr))
2438 goto nla_put_failure;
2440 nla = nla_reserve(skb, IPMRA_CREPORT_PKT, payloadlen);
2441 if (!nla || skb_copy_bits(pkt, sizeof(struct igmpmsg),
2442 nla_data(nla), payloadlen))
2443 goto nla_put_failure;
2445 nlmsg_end(skb, nlh);
2447 rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE_R, NULL, GFP_ATOMIC);
2448 return;
2450 nla_put_failure:
2451 nlmsg_cancel(skb, nlh);
2452 errout:
2453 kfree_skb(skb);
2454 rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE_R, -ENOBUFS);
2457 static int ipmr_rtm_getroute(struct sk_buff *in_skb, struct nlmsghdr *nlh,
2458 struct netlink_ext_ack *extack)
2460 struct net *net = sock_net(in_skb->sk);
2461 struct nlattr *tb[RTA_MAX + 1];
2462 struct sk_buff *skb = NULL;
2463 struct mfc_cache *cache;
2464 struct mr_table *mrt;
2465 struct rtmsg *rtm;
2466 __be32 src, grp;
2467 u32 tableid;
2468 int err;
2470 err = nlmsg_parse(nlh, sizeof(*rtm), tb, RTA_MAX,
2471 rtm_ipv4_policy, extack);
2472 if (err < 0)
2473 goto errout;
2475 rtm = nlmsg_data(nlh);
2477 src = tb[RTA_SRC] ? nla_get_in_addr(tb[RTA_SRC]) : 0;
2478 grp = tb[RTA_DST] ? nla_get_in_addr(tb[RTA_DST]) : 0;
2479 tableid = tb[RTA_TABLE] ? nla_get_u32(tb[RTA_TABLE]) : 0;
2481 mrt = ipmr_get_table(net, tableid ? tableid : RT_TABLE_DEFAULT);
2482 if (!mrt) {
2483 err = -ENOENT;
2484 goto errout_free;
2487 /* entries are added/deleted only under RTNL */
2488 rcu_read_lock();
2489 cache = ipmr_cache_find(mrt, src, grp);
2490 rcu_read_unlock();
2491 if (!cache) {
2492 err = -ENOENT;
2493 goto errout_free;
2496 skb = nlmsg_new(mroute_msgsize(false, mrt->maxvif), GFP_KERNEL);
2497 if (!skb) {
2498 err = -ENOBUFS;
2499 goto errout_free;
2502 err = ipmr_fill_mroute(mrt, skb, NETLINK_CB(in_skb).portid,
2503 nlh->nlmsg_seq, cache,
2504 RTM_NEWROUTE, 0);
2505 if (err < 0)
2506 goto errout_free;
2508 err = rtnl_unicast(skb, net, NETLINK_CB(in_skb).portid);
2510 errout:
2511 return err;
2513 errout_free:
2514 kfree_skb(skb);
2515 goto errout;
2518 static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
2520 return mr_rtm_dumproute(skb, cb, ipmr_mr_table_iter,
2521 _ipmr_fill_mroute, &mfc_unres_lock);
2524 static const struct nla_policy rtm_ipmr_policy[RTA_MAX + 1] = {
2525 [RTA_SRC] = { .type = NLA_U32 },
2526 [RTA_DST] = { .type = NLA_U32 },
2527 [RTA_IIF] = { .type = NLA_U32 },
2528 [RTA_TABLE] = { .type = NLA_U32 },
2529 [RTA_MULTIPATH] = { .len = sizeof(struct rtnexthop) },
2532 static bool ipmr_rtm_validate_proto(unsigned char rtm_protocol)
2534 switch (rtm_protocol) {
2535 case RTPROT_STATIC:
2536 case RTPROT_MROUTED:
2537 return true;
2539 return false;
2542 static int ipmr_nla_get_ttls(const struct nlattr *nla, struct mfcctl *mfcc)
2544 struct rtnexthop *rtnh = nla_data(nla);
2545 int remaining = nla_len(nla), vifi = 0;
2547 while (rtnh_ok(rtnh, remaining)) {
2548 mfcc->mfcc_ttls[vifi] = rtnh->rtnh_hops;
2549 if (++vifi == MAXVIFS)
2550 break;
2551 rtnh = rtnh_next(rtnh, &remaining);
2554 return remaining > 0 ? -EINVAL : vifi;
2557 /* returns < 0 on error, 0 for ADD_MFC and 1 for ADD_MFC_PROXY */
2558 static int rtm_to_ipmr_mfcc(struct net *net, struct nlmsghdr *nlh,
2559 struct mfcctl *mfcc, int *mrtsock,
2560 struct mr_table **mrtret,
2561 struct netlink_ext_ack *extack)
2563 struct net_device *dev = NULL;
2564 u32 tblid = RT_TABLE_DEFAULT;
2565 struct mr_table *mrt;
2566 struct nlattr *attr;
2567 struct rtmsg *rtm;
2568 int ret, rem;
2570 ret = nlmsg_validate(nlh, sizeof(*rtm), RTA_MAX, rtm_ipmr_policy,
2571 extack);
2572 if (ret < 0)
2573 goto out;
2574 rtm = nlmsg_data(nlh);
2576 ret = -EINVAL;
2577 if (rtm->rtm_family != RTNL_FAMILY_IPMR || rtm->rtm_dst_len != 32 ||
2578 rtm->rtm_type != RTN_MULTICAST ||
2579 rtm->rtm_scope != RT_SCOPE_UNIVERSE ||
2580 !ipmr_rtm_validate_proto(rtm->rtm_protocol))
2581 goto out;
2583 memset(mfcc, 0, sizeof(*mfcc));
2584 mfcc->mfcc_parent = -1;
2585 ret = 0;
2586 nlmsg_for_each_attr(attr, nlh, sizeof(struct rtmsg), rem) {
2587 switch (nla_type(attr)) {
2588 case RTA_SRC:
2589 mfcc->mfcc_origin.s_addr = nla_get_be32(attr);
2590 break;
2591 case RTA_DST:
2592 mfcc->mfcc_mcastgrp.s_addr = nla_get_be32(attr);
2593 break;
2594 case RTA_IIF:
2595 dev = __dev_get_by_index(net, nla_get_u32(attr));
2596 if (!dev) {
2597 ret = -ENODEV;
2598 goto out;
2600 break;
2601 case RTA_MULTIPATH:
2602 if (ipmr_nla_get_ttls(attr, mfcc) < 0) {
2603 ret = -EINVAL;
2604 goto out;
2606 break;
2607 case RTA_PREFSRC:
2608 ret = 1;
2609 break;
2610 case RTA_TABLE:
2611 tblid = nla_get_u32(attr);
2612 break;
2615 mrt = ipmr_get_table(net, tblid);
2616 if (!mrt) {
2617 ret = -ENOENT;
2618 goto out;
2620 *mrtret = mrt;
2621 *mrtsock = rtm->rtm_protocol == RTPROT_MROUTED ? 1 : 0;
2622 if (dev)
2623 mfcc->mfcc_parent = ipmr_find_vif(mrt, dev);
2625 out:
2626 return ret;
2629 /* takes care of both newroute and delroute */
2630 static int ipmr_rtm_route(struct sk_buff *skb, struct nlmsghdr *nlh,
2631 struct netlink_ext_ack *extack)
2633 struct net *net = sock_net(skb->sk);
2634 int ret, mrtsock, parent;
2635 struct mr_table *tbl;
2636 struct mfcctl mfcc;
2638 mrtsock = 0;
2639 tbl = NULL;
2640 ret = rtm_to_ipmr_mfcc(net, nlh, &mfcc, &mrtsock, &tbl, extack);
2641 if (ret < 0)
2642 return ret;
2644 parent = ret ? mfcc.mfcc_parent : -1;
2645 if (nlh->nlmsg_type == RTM_NEWROUTE)
2646 return ipmr_mfc_add(net, tbl, &mfcc, mrtsock, parent);
2647 else
2648 return ipmr_mfc_delete(tbl, &mfcc, parent);
2651 static bool ipmr_fill_table(struct mr_table *mrt, struct sk_buff *skb)
2653 u32 queue_len = atomic_read(&mrt->cache_resolve_queue_len);
2655 if (nla_put_u32(skb, IPMRA_TABLE_ID, mrt->id) ||
2656 nla_put_u32(skb, IPMRA_TABLE_CACHE_RES_QUEUE_LEN, queue_len) ||
2657 nla_put_s32(skb, IPMRA_TABLE_MROUTE_REG_VIF_NUM,
2658 mrt->mroute_reg_vif_num) ||
2659 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_ASSERT,
2660 mrt->mroute_do_assert) ||
2661 nla_put_u8(skb, IPMRA_TABLE_MROUTE_DO_PIM, mrt->mroute_do_pim))
2662 return false;
2664 return true;
2667 static bool ipmr_fill_vif(struct mr_table *mrt, u32 vifid, struct sk_buff *skb)
2669 struct nlattr *vif_nest;
2670 struct vif_device *vif;
2672 /* if the VIF doesn't exist just continue */
2673 if (!VIF_EXISTS(mrt, vifid))
2674 return true;
2676 vif = &mrt->vif_table[vifid];
2677 vif_nest = nla_nest_start(skb, IPMRA_VIF);
2678 if (!vif_nest)
2679 return false;
2680 if (nla_put_u32(skb, IPMRA_VIFA_IFINDEX, vif->dev->ifindex) ||
2681 nla_put_u32(skb, IPMRA_VIFA_VIF_ID, vifid) ||
2682 nla_put_u16(skb, IPMRA_VIFA_FLAGS, vif->flags) ||
2683 nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_IN, vif->bytes_in,
2684 IPMRA_VIFA_PAD) ||
2685 nla_put_u64_64bit(skb, IPMRA_VIFA_BYTES_OUT, vif->bytes_out,
2686 IPMRA_VIFA_PAD) ||
2687 nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_IN, vif->pkt_in,
2688 IPMRA_VIFA_PAD) ||
2689 nla_put_u64_64bit(skb, IPMRA_VIFA_PACKETS_OUT, vif->pkt_out,
2690 IPMRA_VIFA_PAD) ||
2691 nla_put_be32(skb, IPMRA_VIFA_LOCAL_ADDR, vif->local) ||
2692 nla_put_be32(skb, IPMRA_VIFA_REMOTE_ADDR, vif->remote)) {
2693 nla_nest_cancel(skb, vif_nest);
2694 return false;
2696 nla_nest_end(skb, vif_nest);
2698 return true;
2701 static int ipmr_rtm_dumplink(struct sk_buff *skb, struct netlink_callback *cb)
2703 struct net *net = sock_net(skb->sk);
2704 struct nlmsghdr *nlh = NULL;
2705 unsigned int t = 0, s_t;
2706 unsigned int e = 0, s_e;
2707 struct mr_table *mrt;
2709 s_t = cb->args[0];
2710 s_e = cb->args[1];
2712 ipmr_for_each_table(mrt, net) {
2713 struct nlattr *vifs, *af;
2714 struct ifinfomsg *hdr;
2715 u32 i;
2717 if (t < s_t)
2718 goto skip_table;
2719 nlh = nlmsg_put(skb, NETLINK_CB(cb->skb).portid,
2720 cb->nlh->nlmsg_seq, RTM_NEWLINK,
2721 sizeof(*hdr), NLM_F_MULTI);
2722 if (!nlh)
2723 break;
2725 hdr = nlmsg_data(nlh);
2726 memset(hdr, 0, sizeof(*hdr));
2727 hdr->ifi_family = RTNL_FAMILY_IPMR;
2729 af = nla_nest_start(skb, IFLA_AF_SPEC);
2730 if (!af) {
2731 nlmsg_cancel(skb, nlh);
2732 goto out;
2735 if (!ipmr_fill_table(mrt, skb)) {
2736 nlmsg_cancel(skb, nlh);
2737 goto out;
2740 vifs = nla_nest_start(skb, IPMRA_TABLE_VIFS);
2741 if (!vifs) {
2742 nla_nest_end(skb, af);
2743 nlmsg_end(skb, nlh);
2744 goto out;
2746 for (i = 0; i < mrt->maxvif; i++) {
2747 if (e < s_e)
2748 goto skip_entry;
2749 if (!ipmr_fill_vif(mrt, i, skb)) {
2750 nla_nest_end(skb, vifs);
2751 nla_nest_end(skb, af);
2752 nlmsg_end(skb, nlh);
2753 goto out;
2755 skip_entry:
2756 e++;
2758 s_e = 0;
2759 e = 0;
2760 nla_nest_end(skb, vifs);
2761 nla_nest_end(skb, af);
2762 nlmsg_end(skb, nlh);
2763 skip_table:
2764 t++;
2767 out:
2768 cb->args[1] = e;
2769 cb->args[0] = t;
2771 return skb->len;
2774 #ifdef CONFIG_PROC_FS
2775 /* The /proc interfaces to multicast routing :
2776 * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
2779 static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
2780 __acquires(mrt_lock)
2782 struct mr_vif_iter *iter = seq->private;
2783 struct net *net = seq_file_net(seq);
2784 struct mr_table *mrt;
2786 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2787 if (!mrt)
2788 return ERR_PTR(-ENOENT);
2790 iter->mrt = mrt;
2792 read_lock(&mrt_lock);
2793 return mr_vif_seq_start(seq, pos);
2796 static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
2797 __releases(mrt_lock)
2799 read_unlock(&mrt_lock);
2802 static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
2804 struct mr_vif_iter *iter = seq->private;
2805 struct mr_table *mrt = iter->mrt;
2807 if (v == SEQ_START_TOKEN) {
2808 seq_puts(seq,
2809 "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n");
2810 } else {
2811 const struct vif_device *vif = v;
2812 const char *name = vif->dev ?
2813 vif->dev->name : "none";
2815 seq_printf(seq,
2816 "%2td %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n",
2817 vif - mrt->vif_table,
2818 name, vif->bytes_in, vif->pkt_in,
2819 vif->bytes_out, vif->pkt_out,
2820 vif->flags, vif->local, vif->remote);
2822 return 0;
2825 static const struct seq_operations ipmr_vif_seq_ops = {
2826 .start = ipmr_vif_seq_start,
2827 .next = mr_vif_seq_next,
2828 .stop = ipmr_vif_seq_stop,
2829 .show = ipmr_vif_seq_show,
2832 static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
2834 struct net *net = seq_file_net(seq);
2835 struct mr_table *mrt;
2837 mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
2838 if (!mrt)
2839 return ERR_PTR(-ENOENT);
2841 return mr_mfc_seq_start(seq, pos, mrt, &mfc_unres_lock);
2844 static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
2846 int n;
2848 if (v == SEQ_START_TOKEN) {
2849 seq_puts(seq,
2850 "Group Origin Iif Pkts Bytes Wrong Oifs\n");
2851 } else {
2852 const struct mfc_cache *mfc = v;
2853 const struct mr_mfc_iter *it = seq->private;
2854 const struct mr_table *mrt = it->mrt;
2856 seq_printf(seq, "%08X %08X %-3hd",
2857 (__force u32) mfc->mfc_mcastgrp,
2858 (__force u32) mfc->mfc_origin,
2859 mfc->_c.mfc_parent);
2861 if (it->cache != &mrt->mfc_unres_queue) {
2862 seq_printf(seq, " %8lu %8lu %8lu",
2863 mfc->_c.mfc_un.res.pkt,
2864 mfc->_c.mfc_un.res.bytes,
2865 mfc->_c.mfc_un.res.wrong_if);
2866 for (n = mfc->_c.mfc_un.res.minvif;
2867 n < mfc->_c.mfc_un.res.maxvif; n++) {
2868 if (VIF_EXISTS(mrt, n) &&
2869 mfc->_c.mfc_un.res.ttls[n] < 255)
2870 seq_printf(seq,
2871 " %2d:%-3d",
2872 n, mfc->_c.mfc_un.res.ttls[n]);
2874 } else {
2875 /* unresolved mfc_caches don't contain
2876 * pkt, bytes and wrong_if values
2878 seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
2880 seq_putc(seq, '\n');
2882 return 0;
2885 static const struct seq_operations ipmr_mfc_seq_ops = {
2886 .start = ipmr_mfc_seq_start,
2887 .next = mr_mfc_seq_next,
2888 .stop = mr_mfc_seq_stop,
2889 .show = ipmr_mfc_seq_show,
2891 #endif
2893 #ifdef CONFIG_IP_PIMSM_V2
2894 static const struct net_protocol pim_protocol = {
2895 .handler = pim_rcv,
2896 .netns_ok = 1,
2898 #endif
2900 static unsigned int ipmr_seq_read(struct net *net)
2902 ASSERT_RTNL();
2904 return net->ipv4.ipmr_seq + ipmr_rules_seq_read(net);
2907 static int ipmr_dump(struct net *net, struct notifier_block *nb)
2909 return mr_dump(net, nb, RTNL_FAMILY_IPMR, ipmr_rules_dump,
2910 ipmr_mr_table_iter, &mrt_lock);
2913 static const struct fib_notifier_ops ipmr_notifier_ops_template = {
2914 .family = RTNL_FAMILY_IPMR,
2915 .fib_seq_read = ipmr_seq_read,
2916 .fib_dump = ipmr_dump,
2917 .owner = THIS_MODULE,
2920 static int __net_init ipmr_notifier_init(struct net *net)
2922 struct fib_notifier_ops *ops;
2924 net->ipv4.ipmr_seq = 0;
2926 ops = fib_notifier_ops_register(&ipmr_notifier_ops_template, net);
2927 if (IS_ERR(ops))
2928 return PTR_ERR(ops);
2929 net->ipv4.ipmr_notifier_ops = ops;
2931 return 0;
2934 static void __net_exit ipmr_notifier_exit(struct net *net)
2936 fib_notifier_ops_unregister(net->ipv4.ipmr_notifier_ops);
2937 net->ipv4.ipmr_notifier_ops = NULL;
2940 /* Setup for IP multicast routing */
2941 static int __net_init ipmr_net_init(struct net *net)
2943 int err;
2945 err = ipmr_notifier_init(net);
2946 if (err)
2947 goto ipmr_notifier_fail;
2949 err = ipmr_rules_init(net);
2950 if (err < 0)
2951 goto ipmr_rules_fail;
2953 #ifdef CONFIG_PROC_FS
2954 err = -ENOMEM;
2955 if (!proc_create_net("ip_mr_vif", 0, net->proc_net, &ipmr_vif_seq_ops,
2956 sizeof(struct mr_vif_iter)))
2957 goto proc_vif_fail;
2958 if (!proc_create_net("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_seq_ops,
2959 sizeof(struct mr_mfc_iter)))
2960 goto proc_cache_fail;
2961 #endif
2962 return 0;
2964 #ifdef CONFIG_PROC_FS
2965 proc_cache_fail:
2966 remove_proc_entry("ip_mr_vif", net->proc_net);
2967 proc_vif_fail:
2968 ipmr_rules_exit(net);
2969 #endif
2970 ipmr_rules_fail:
2971 ipmr_notifier_exit(net);
2972 ipmr_notifier_fail:
2973 return err;
2976 static void __net_exit ipmr_net_exit(struct net *net)
2978 #ifdef CONFIG_PROC_FS
2979 remove_proc_entry("ip_mr_cache", net->proc_net);
2980 remove_proc_entry("ip_mr_vif", net->proc_net);
2981 #endif
2982 ipmr_notifier_exit(net);
2983 ipmr_rules_exit(net);
2986 static struct pernet_operations ipmr_net_ops = {
2987 .init = ipmr_net_init,
2988 .exit = ipmr_net_exit,
2991 int __init ip_mr_init(void)
2993 int err;
2995 mrt_cachep = kmem_cache_create("ip_mrt_cache",
2996 sizeof(struct mfc_cache),
2997 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
2998 NULL);
3000 err = register_pernet_subsys(&ipmr_net_ops);
3001 if (err)
3002 goto reg_pernet_fail;
3004 err = register_netdevice_notifier(&ip_mr_notifier);
3005 if (err)
3006 goto reg_notif_fail;
3007 #ifdef CONFIG_IP_PIMSM_V2
3008 if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
3009 pr_err("%s: can't add PIM protocol\n", __func__);
3010 err = -EAGAIN;
3011 goto add_proto_fail;
3013 #endif
3014 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
3015 ipmr_rtm_getroute, ipmr_rtm_dumproute, 0);
3016 rtnl_register(RTNL_FAMILY_IPMR, RTM_NEWROUTE,
3017 ipmr_rtm_route, NULL, 0);
3018 rtnl_register(RTNL_FAMILY_IPMR, RTM_DELROUTE,
3019 ipmr_rtm_route, NULL, 0);
3021 rtnl_register(RTNL_FAMILY_IPMR, RTM_GETLINK,
3022 NULL, ipmr_rtm_dumplink, 0);
3023 return 0;
3025 #ifdef CONFIG_IP_PIMSM_V2
3026 add_proto_fail:
3027 unregister_netdevice_notifier(&ip_mr_notifier);
3028 #endif
3029 reg_notif_fail:
3030 unregister_pernet_subsys(&ipmr_net_ops);
3031 reg_pernet_fail:
3032 kmem_cache_destroy(mrt_cachep);
3033 return err;