2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
22 #include <linux/module.h>
23 #include <linux/slab.h>
24 #include <linux/sysctl.h>
25 #include <linux/workqueue.h>
26 #include <linux/static_key.h>
28 #include <net/inet_common.h>
30 #include <net/busy_poll.h>
32 static bool tcp_in_window(u32 seq
, u32 end_seq
, u32 s_win
, u32 e_win
)
36 if (after(end_seq
, s_win
) && before(seq
, e_win
))
38 return seq
== e_win
&& seq
== end_seq
;
41 static enum tcp_tw_status
42 tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock
*tw
,
43 const struct sk_buff
*skb
, int mib_idx
)
45 struct tcp_timewait_sock
*tcptw
= tcp_twsk((struct sock
*)tw
);
47 if (!tcp_oow_rate_limited(twsk_net(tw
), skb
, mib_idx
,
48 &tcptw
->tw_last_oow_ack_time
)) {
49 /* Send ACK. Note, we do not put the bucket,
50 * it will be released by caller.
55 /* We are rate-limiting, so just release the tw sock and drop skb. */
57 return TCP_TW_SUCCESS
;
61 * * Main purpose of TIME-WAIT state is to close connection gracefully,
62 * when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
63 * (and, probably, tail of data) and one or more our ACKs are lost.
64 * * What is TIME-WAIT timeout? It is associated with maximal packet
65 * lifetime in the internet, which results in wrong conclusion, that
66 * it is set to catch "old duplicate segments" wandering out of their path.
67 * It is not quite correct. This timeout is calculated so that it exceeds
68 * maximal retransmission timeout enough to allow to lose one (or more)
69 * segments sent by peer and our ACKs. This time may be calculated from RTO.
70 * * When TIME-WAIT socket receives RST, it means that another end
71 * finally closed and we are allowed to kill TIME-WAIT too.
72 * * Second purpose of TIME-WAIT is catching old duplicate segments.
73 * Well, certainly it is pure paranoia, but if we load TIME-WAIT
74 * with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
75 * * If we invented some more clever way to catch duplicates
76 * (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
78 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
79 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
80 * from the very beginning.
82 * NOTE. With recycling (and later with fin-wait-2) TW bucket
83 * is _not_ stateless. It means, that strictly speaking we must
84 * spinlock it. I do not want! Well, probability of misbehaviour
85 * is ridiculously low and, seems, we could use some mb() tricks
86 * to avoid misread sequence numbers, states etc. --ANK
88 * We don't need to initialize tmp_out.sack_ok as we don't use the results
91 tcp_timewait_state_process(struct inet_timewait_sock
*tw
, struct sk_buff
*skb
,
92 const struct tcphdr
*th
)
94 struct tcp_options_received tmp_opt
;
95 struct tcp_timewait_sock
*tcptw
= tcp_twsk((struct sock
*)tw
);
96 bool paws_reject
= false;
98 tmp_opt
.saw_tstamp
= 0;
99 if (th
->doff
> (sizeof(*th
) >> 2) && tcptw
->tw_ts_recent_stamp
) {
100 tcp_parse_options(twsk_net(tw
), skb
, &tmp_opt
, 0, NULL
);
102 if (tmp_opt
.saw_tstamp
) {
103 if (tmp_opt
.rcv_tsecr
)
104 tmp_opt
.rcv_tsecr
-= tcptw
->tw_ts_offset
;
105 tmp_opt
.ts_recent
= tcptw
->tw_ts_recent
;
106 tmp_opt
.ts_recent_stamp
= tcptw
->tw_ts_recent_stamp
;
107 paws_reject
= tcp_paws_reject(&tmp_opt
, th
->rst
);
111 if (tw
->tw_substate
== TCP_FIN_WAIT2
) {
112 /* Just repeat all the checks of tcp_rcv_state_process() */
114 /* Out of window, send ACK */
116 !tcp_in_window(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
,
118 tcptw
->tw_rcv_nxt
+ tcptw
->tw_rcv_wnd
))
119 return tcp_timewait_check_oow_rate_limit(
120 tw
, skb
, LINUX_MIB_TCPACKSKIPPEDFINWAIT2
);
125 if (th
->syn
&& !before(TCP_SKB_CB(skb
)->seq
, tcptw
->tw_rcv_nxt
))
130 !after(TCP_SKB_CB(skb
)->end_seq
, tcptw
->tw_rcv_nxt
) ||
131 TCP_SKB_CB(skb
)->end_seq
== TCP_SKB_CB(skb
)->seq
) {
133 return TCP_TW_SUCCESS
;
136 /* New data or FIN. If new data arrive after half-duplex close,
140 TCP_SKB_CB(skb
)->end_seq
!= tcptw
->tw_rcv_nxt
+ 1)
143 /* FIN arrived, enter true time-wait state. */
144 tw
->tw_substate
= TCP_TIME_WAIT
;
145 tcptw
->tw_rcv_nxt
= TCP_SKB_CB(skb
)->end_seq
;
146 if (tmp_opt
.saw_tstamp
) {
147 tcptw
->tw_ts_recent_stamp
= get_seconds();
148 tcptw
->tw_ts_recent
= tmp_opt
.rcv_tsval
;
151 inet_twsk_reschedule(tw
, TCP_TIMEWAIT_LEN
);
156 * Now real TIME-WAIT state.
159 * "When a connection is [...] on TIME-WAIT state [...]
160 * [a TCP] MAY accept a new SYN from the remote TCP to
161 * reopen the connection directly, if it:
163 * (1) assigns its initial sequence number for the new
164 * connection to be larger than the largest sequence
165 * number it used on the previous connection incarnation,
168 * (2) returns to TIME-WAIT state if the SYN turns out
169 * to be an old duplicate".
173 (TCP_SKB_CB(skb
)->seq
== tcptw
->tw_rcv_nxt
&&
174 (TCP_SKB_CB(skb
)->seq
== TCP_SKB_CB(skb
)->end_seq
|| th
->rst
))) {
175 /* In window segment, it may be only reset or bare ack. */
178 /* This is TIME_WAIT assassination, in two flavors.
179 * Oh well... nobody has a sufficient solution to this
182 if (twsk_net(tw
)->ipv4
.sysctl_tcp_rfc1337
== 0) {
184 inet_twsk_deschedule_put(tw
);
185 return TCP_TW_SUCCESS
;
188 inet_twsk_reschedule(tw
, TCP_TIMEWAIT_LEN
);
190 if (tmp_opt
.saw_tstamp
) {
191 tcptw
->tw_ts_recent
= tmp_opt
.rcv_tsval
;
192 tcptw
->tw_ts_recent_stamp
= get_seconds();
196 return TCP_TW_SUCCESS
;
199 /* Out of window segment.
201 All the segments are ACKed immediately.
203 The only exception is new SYN. We accept it, if it is
204 not old duplicate and we are not in danger to be killed
205 by delayed old duplicates. RFC check is that it has
206 newer sequence number works at rates <40Mbit/sec.
207 However, if paws works, it is reliable AND even more,
208 we even may relax silly seq space cutoff.
210 RED-PEN: we violate main RFC requirement, if this SYN will appear
211 old duplicate (i.e. we receive RST in reply to SYN-ACK),
212 we must return socket to time-wait state. It is not good,
216 if (th
->syn
&& !th
->rst
&& !th
->ack
&& !paws_reject
&&
217 (after(TCP_SKB_CB(skb
)->seq
, tcptw
->tw_rcv_nxt
) ||
218 (tmp_opt
.saw_tstamp
&&
219 (s32
)(tcptw
->tw_ts_recent
- tmp_opt
.rcv_tsval
) < 0))) {
220 u32 isn
= tcptw
->tw_snd_nxt
+ 65535 + 2;
223 TCP_SKB_CB(skb
)->tcp_tw_isn
= isn
;
228 __NET_INC_STATS(twsk_net(tw
), LINUX_MIB_PAWSESTABREJECTED
);
231 /* In this case we must reset the TIMEWAIT timer.
233 * If it is ACKless SYN it may be both old duplicate
234 * and new good SYN with random sequence number <rcv_nxt.
235 * Do not reschedule in the last case.
237 if (paws_reject
|| th
->ack
)
238 inet_twsk_reschedule(tw
, TCP_TIMEWAIT_LEN
);
240 return tcp_timewait_check_oow_rate_limit(
241 tw
, skb
, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT
);
244 return TCP_TW_SUCCESS
;
246 EXPORT_SYMBOL(tcp_timewait_state_process
);
249 * Move a socket to time-wait or dead fin-wait-2 state.
251 void tcp_time_wait(struct sock
*sk
, int state
, int timeo
)
253 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
254 const struct tcp_sock
*tp
= tcp_sk(sk
);
255 struct inet_timewait_sock
*tw
;
256 struct inet_timewait_death_row
*tcp_death_row
= &sock_net(sk
)->ipv4
.tcp_death_row
;
258 tw
= inet_twsk_alloc(sk
, tcp_death_row
, state
);
261 struct tcp_timewait_sock
*tcptw
= tcp_twsk((struct sock
*)tw
);
262 const int rto
= (icsk
->icsk_rto
<< 2) - (icsk
->icsk_rto
>> 1);
263 struct inet_sock
*inet
= inet_sk(sk
);
265 tw
->tw_transparent
= inet
->transparent
;
266 tw
->tw_mark
= sk
->sk_mark
;
267 tw
->tw_rcv_wscale
= tp
->rx_opt
.rcv_wscale
;
268 tcptw
->tw_rcv_nxt
= tp
->rcv_nxt
;
269 tcptw
->tw_snd_nxt
= tp
->snd_nxt
;
270 tcptw
->tw_rcv_wnd
= tcp_receive_window(tp
);
271 tcptw
->tw_ts_recent
= tp
->rx_opt
.ts_recent
;
272 tcptw
->tw_ts_recent_stamp
= tp
->rx_opt
.ts_recent_stamp
;
273 tcptw
->tw_ts_offset
= tp
->tsoffset
;
274 tcptw
->tw_last_oow_ack_time
= 0;
276 #if IS_ENABLED(CONFIG_IPV6)
277 if (tw
->tw_family
== PF_INET6
) {
278 struct ipv6_pinfo
*np
= inet6_sk(sk
);
280 tw
->tw_v6_daddr
= sk
->sk_v6_daddr
;
281 tw
->tw_v6_rcv_saddr
= sk
->sk_v6_rcv_saddr
;
282 tw
->tw_tclass
= np
->tclass
;
283 tw
->tw_flowlabel
= be32_to_cpu(np
->flow_label
& IPV6_FLOWLABEL_MASK
);
284 tw
->tw_ipv6only
= sk
->sk_ipv6only
;
288 #ifdef CONFIG_TCP_MD5SIG
290 * The timewait bucket does not have the key DB from the
291 * sock structure. We just make a quick copy of the
292 * md5 key being used (if indeed we are using one)
293 * so the timewait ack generating code has the key.
296 struct tcp_md5sig_key
*key
;
297 tcptw
->tw_md5_key
= NULL
;
298 key
= tp
->af_specific
->md5_lookup(sk
, sk
);
300 tcptw
->tw_md5_key
= kmemdup(key
, sizeof(*key
), GFP_ATOMIC
);
301 BUG_ON(tcptw
->tw_md5_key
&& !tcp_alloc_md5sig_pool());
306 /* Get the TIME_WAIT timeout firing. */
310 if (state
== TCP_TIME_WAIT
)
311 timeo
= TCP_TIMEWAIT_LEN
;
313 /* tw_timer is pinned, so we need to make sure BH are disabled
314 * in following section, otherwise timer handler could run before
315 * we complete the initialization.
318 inet_twsk_schedule(tw
, timeo
);
320 * Note that access to tw after this point is illegal.
322 inet_twsk_hashdance(tw
, sk
, &tcp_hashinfo
);
325 /* Sorry, if we're out of memory, just CLOSE this
326 * socket up. We've got bigger problems than
327 * non-graceful socket closings.
329 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPTIMEWAITOVERFLOW
);
332 tcp_update_metrics(sk
);
335 EXPORT_SYMBOL(tcp_time_wait
);
337 void tcp_twsk_destructor(struct sock
*sk
)
339 #ifdef CONFIG_TCP_MD5SIG
340 struct tcp_timewait_sock
*twsk
= tcp_twsk(sk
);
342 if (twsk
->tw_md5_key
)
343 kfree_rcu(twsk
->tw_md5_key
, rcu
);
346 EXPORT_SYMBOL_GPL(tcp_twsk_destructor
);
348 /* Warning : This function is called without sk_listener being locked.
349 * Be sure to read socket fields once, as their value could change under us.
351 void tcp_openreq_init_rwin(struct request_sock
*req
,
352 const struct sock
*sk_listener
,
353 const struct dst_entry
*dst
)
355 struct inet_request_sock
*ireq
= inet_rsk(req
);
356 const struct tcp_sock
*tp
= tcp_sk(sk_listener
);
357 int full_space
= tcp_full_space(sk_listener
);
363 mss
= tcp_mss_clamp(tp
, dst_metric_advmss(dst
));
364 window_clamp
= READ_ONCE(tp
->window_clamp
);
365 /* Set this up on the first call only */
366 req
->rsk_window_clamp
= window_clamp
? : dst_metric(dst
, RTAX_WINDOW
);
368 /* limit the window selection if the user enforce a smaller rx buffer */
369 if (sk_listener
->sk_userlocks
& SOCK_RCVBUF_LOCK
&&
370 (req
->rsk_window_clamp
> full_space
|| req
->rsk_window_clamp
== 0))
371 req
->rsk_window_clamp
= full_space
;
373 rcv_wnd
= tcp_rwnd_init_bpf((struct sock
*)req
);
375 rcv_wnd
= dst_metric(dst
, RTAX_INITRWND
);
376 else if (full_space
< rcv_wnd
* mss
)
377 full_space
= rcv_wnd
* mss
;
379 /* tcp_full_space because it is guaranteed to be the first packet */
380 tcp_select_initial_window(sk_listener
, full_space
,
381 mss
- (ireq
->tstamp_ok
? TCPOLEN_TSTAMP_ALIGNED
: 0),
383 &req
->rsk_window_clamp
,
387 ireq
->rcv_wscale
= rcv_wscale
;
389 EXPORT_SYMBOL(tcp_openreq_init_rwin
);
391 static void tcp_ecn_openreq_child(struct tcp_sock
*tp
,
392 const struct request_sock
*req
)
394 tp
->ecn_flags
= inet_rsk(req
)->ecn_ok
? TCP_ECN_OK
: 0;
397 void tcp_ca_openreq_child(struct sock
*sk
, const struct dst_entry
*dst
)
399 struct inet_connection_sock
*icsk
= inet_csk(sk
);
400 u32 ca_key
= dst_metric(dst
, RTAX_CC_ALGO
);
401 bool ca_got_dst
= false;
403 if (ca_key
!= TCP_CA_UNSPEC
) {
404 const struct tcp_congestion_ops
*ca
;
407 ca
= tcp_ca_find_key(ca_key
);
408 if (likely(ca
&& try_module_get(ca
->owner
))) {
409 icsk
->icsk_ca_dst_locked
= tcp_ca_dst_locked(dst
);
410 icsk
->icsk_ca_ops
= ca
;
416 /* If no valid choice made yet, assign current system default ca. */
418 (!icsk
->icsk_ca_setsockopt
||
419 !try_module_get(icsk
->icsk_ca_ops
->owner
)))
420 tcp_assign_congestion_control(sk
);
422 tcp_set_ca_state(sk
, TCP_CA_Open
);
424 EXPORT_SYMBOL_GPL(tcp_ca_openreq_child
);
426 static void smc_check_reset_syn_req(struct tcp_sock
*oldtp
,
427 struct request_sock
*req
,
428 struct tcp_sock
*newtp
)
430 #if IS_ENABLED(CONFIG_SMC)
431 struct inet_request_sock
*ireq
;
433 if (static_branch_unlikely(&tcp_have_smc
)) {
434 ireq
= inet_rsk(req
);
435 if (oldtp
->syn_smc
&& !ireq
->smc_ok
)
441 /* This is not only more efficient than what we used to do, it eliminates
442 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
444 * Actually, we could lots of memory writes here. tp of listening
445 * socket contains all necessary default parameters.
447 struct sock
*tcp_create_openreq_child(const struct sock
*sk
,
448 struct request_sock
*req
,
451 struct sock
*newsk
= inet_csk_clone_lock(sk
, req
, GFP_ATOMIC
);
454 const struct inet_request_sock
*ireq
= inet_rsk(req
);
455 struct tcp_request_sock
*treq
= tcp_rsk(req
);
456 struct inet_connection_sock
*newicsk
= inet_csk(newsk
);
457 struct tcp_sock
*newtp
= tcp_sk(newsk
);
458 struct tcp_sock
*oldtp
= tcp_sk(sk
);
460 smc_check_reset_syn_req(oldtp
, req
, newtp
);
462 /* Now setup tcp_sock */
463 newtp
->pred_flags
= 0;
465 newtp
->rcv_wup
= newtp
->copied_seq
=
466 newtp
->rcv_nxt
= treq
->rcv_isn
+ 1;
469 newtp
->snd_sml
= newtp
->snd_una
=
470 newtp
->snd_nxt
= newtp
->snd_up
= treq
->snt_isn
+ 1;
472 INIT_LIST_HEAD(&newtp
->tsq_node
);
473 INIT_LIST_HEAD(&newtp
->tsorted_sent_queue
);
475 tcp_init_wl(newtp
, treq
->rcv_isn
);
478 newtp
->mdev_us
= jiffies_to_usecs(TCP_TIMEOUT_INIT
);
479 minmax_reset(&newtp
->rtt_min
, tcp_jiffies32
, ~0U);
480 newicsk
->icsk_rto
= TCP_TIMEOUT_INIT
;
481 newicsk
->icsk_ack
.lrcvtime
= tcp_jiffies32
;
483 newtp
->packets_out
= 0;
484 newtp
->retrans_out
= 0;
485 newtp
->sacked_out
= 0;
486 newtp
->snd_ssthresh
= TCP_INFINITE_SSTHRESH
;
487 newtp
->tlp_high_seq
= 0;
488 newtp
->lsndtime
= tcp_jiffies32
;
489 newsk
->sk_txhash
= treq
->txhash
;
490 newtp
->last_oow_ack_time
= 0;
491 newtp
->total_retrans
= req
->num_retrans
;
493 /* So many TCP implementations out there (incorrectly) count the
494 * initial SYN frame in their delayed-ACK and congestion control
495 * algorithms that we must have the following bandaid to talk
496 * efficiently to them. -DaveM
498 newtp
->snd_cwnd
= TCP_INIT_CWND
;
499 newtp
->snd_cwnd_cnt
= 0;
501 /* There's a bubble in the pipe until at least the first ACK. */
502 newtp
->app_limited
= ~0U;
504 tcp_init_xmit_timers(newsk
);
505 newtp
->write_seq
= newtp
->pushed_seq
= treq
->snt_isn
+ 1;
507 newtp
->rx_opt
.saw_tstamp
= 0;
509 newtp
->rx_opt
.dsack
= 0;
510 newtp
->rx_opt
.num_sacks
= 0;
514 if (sock_flag(newsk
, SOCK_KEEPOPEN
))
515 inet_csk_reset_keepalive_timer(newsk
,
516 keepalive_time_when(newtp
));
518 newtp
->rx_opt
.tstamp_ok
= ireq
->tstamp_ok
;
519 newtp
->rx_opt
.sack_ok
= ireq
->sack_ok
;
520 newtp
->window_clamp
= req
->rsk_window_clamp
;
521 newtp
->rcv_ssthresh
= req
->rsk_rcv_wnd
;
522 newtp
->rcv_wnd
= req
->rsk_rcv_wnd
;
523 newtp
->rx_opt
.wscale_ok
= ireq
->wscale_ok
;
524 if (newtp
->rx_opt
.wscale_ok
) {
525 newtp
->rx_opt
.snd_wscale
= ireq
->snd_wscale
;
526 newtp
->rx_opt
.rcv_wscale
= ireq
->rcv_wscale
;
528 newtp
->rx_opt
.snd_wscale
= newtp
->rx_opt
.rcv_wscale
= 0;
529 newtp
->window_clamp
= min(newtp
->window_clamp
, 65535U);
531 newtp
->snd_wnd
= (ntohs(tcp_hdr(skb
)->window
) <<
532 newtp
->rx_opt
.snd_wscale
);
533 newtp
->max_window
= newtp
->snd_wnd
;
535 if (newtp
->rx_opt
.tstamp_ok
) {
536 newtp
->rx_opt
.ts_recent
= req
->ts_recent
;
537 newtp
->rx_opt
.ts_recent_stamp
= get_seconds();
538 newtp
->tcp_header_len
= sizeof(struct tcphdr
) + TCPOLEN_TSTAMP_ALIGNED
;
540 newtp
->rx_opt
.ts_recent_stamp
= 0;
541 newtp
->tcp_header_len
= sizeof(struct tcphdr
);
543 newtp
->tsoffset
= treq
->ts_off
;
544 #ifdef CONFIG_TCP_MD5SIG
545 newtp
->md5sig_info
= NULL
; /*XXX*/
546 if (newtp
->af_specific
->md5_lookup(sk
, newsk
))
547 newtp
->tcp_header_len
+= TCPOLEN_MD5SIG_ALIGNED
;
549 if (skb
->len
>= TCP_MSS_DEFAULT
+ newtp
->tcp_header_len
)
550 newicsk
->icsk_ack
.last_seg_size
= skb
->len
- newtp
->tcp_header_len
;
551 newtp
->rx_opt
.mss_clamp
= req
->mss
;
552 tcp_ecn_openreq_child(newtp
, req
);
553 newtp
->fastopen_req
= NULL
;
554 newtp
->fastopen_rsk
= NULL
;
555 newtp
->syn_data_acked
= 0;
556 newtp
->rack
.mstamp
= 0;
557 newtp
->rack
.advanced
= 0;
558 newtp
->rack
.reo_wnd_steps
= 1;
559 newtp
->rack
.last_delivered
= 0;
560 newtp
->rack
.reo_wnd_persist
= 0;
561 newtp
->rack
.dsack_seen
= 0;
563 __TCP_INC_STATS(sock_net(sk
), TCP_MIB_PASSIVEOPENS
);
567 EXPORT_SYMBOL(tcp_create_openreq_child
);
570 * Process an incoming packet for SYN_RECV sockets represented as a
571 * request_sock. Normally sk is the listener socket but for TFO it
572 * points to the child socket.
574 * XXX (TFO) - The current impl contains a special check for ack
575 * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
577 * We don't need to initialize tmp_opt.sack_ok as we don't use the results
580 struct sock
*tcp_check_req(struct sock
*sk
, struct sk_buff
*skb
,
581 struct request_sock
*req
,
582 bool fastopen
, bool *req_stolen
)
584 struct tcp_options_received tmp_opt
;
586 const struct tcphdr
*th
= tcp_hdr(skb
);
587 __be32 flg
= tcp_flag_word(th
) & (TCP_FLAG_RST
|TCP_FLAG_SYN
|TCP_FLAG_ACK
);
588 bool paws_reject
= false;
591 tmp_opt
.saw_tstamp
= 0;
592 if (th
->doff
> (sizeof(struct tcphdr
)>>2)) {
593 tcp_parse_options(sock_net(sk
), skb
, &tmp_opt
, 0, NULL
);
595 if (tmp_opt
.saw_tstamp
) {
596 tmp_opt
.ts_recent
= req
->ts_recent
;
597 if (tmp_opt
.rcv_tsecr
)
598 tmp_opt
.rcv_tsecr
-= tcp_rsk(req
)->ts_off
;
599 /* We do not store true stamp, but it is not required,
600 * it can be estimated (approximately)
603 tmp_opt
.ts_recent_stamp
= get_seconds() - ((TCP_TIMEOUT_INIT
/HZ
)<<req
->num_timeout
);
604 paws_reject
= tcp_paws_reject(&tmp_opt
, th
->rst
);
608 /* Check for pure retransmitted SYN. */
609 if (TCP_SKB_CB(skb
)->seq
== tcp_rsk(req
)->rcv_isn
&&
610 flg
== TCP_FLAG_SYN
&&
613 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
614 * this case on figure 6 and figure 8, but formal
615 * protocol description says NOTHING.
616 * To be more exact, it says that we should send ACK,
617 * because this segment (at least, if it has no data)
620 * CONCLUSION: RFC793 (even with RFC1122) DOES NOT
621 * describe SYN-RECV state. All the description
622 * is wrong, we cannot believe to it and should
623 * rely only on common sense and implementation
626 * Enforce "SYN-ACK" according to figure 8, figure 6
627 * of RFC793, fixed by RFC1122.
629 * Note that even if there is new data in the SYN packet
630 * they will be thrown away too.
632 * Reset timer after retransmitting SYNACK, similar to
633 * the idea of fast retransmit in recovery.
635 if (!tcp_oow_rate_limited(sock_net(sk
), skb
,
636 LINUX_MIB_TCPACKSKIPPEDSYNRECV
,
637 &tcp_rsk(req
)->last_oow_ack_time
) &&
639 !inet_rtx_syn_ack(sk
, req
)) {
640 unsigned long expires
= jiffies
;
642 expires
+= min(TCP_TIMEOUT_INIT
<< req
->num_timeout
,
645 mod_timer_pending(&req
->rsk_timer
, expires
);
647 req
->rsk_timer
.expires
= expires
;
652 /* Further reproduces section "SEGMENT ARRIVES"
653 for state SYN-RECEIVED of RFC793.
654 It is broken, however, it does not work only
655 when SYNs are crossed.
657 You would think that SYN crossing is impossible here, since
658 we should have a SYN_SENT socket (from connect()) on our end,
659 but this is not true if the crossed SYNs were sent to both
660 ends by a malicious third party. We must defend against this,
661 and to do that we first verify the ACK (as per RFC793, page
662 36) and reset if it is invalid. Is this a true full defense?
663 To convince ourselves, let us consider a way in which the ACK
664 test can still pass in this 'malicious crossed SYNs' case.
665 Malicious sender sends identical SYNs (and thus identical sequence
666 numbers) to both A and B:
671 By our good fortune, both A and B select the same initial
672 send sequence number of seven :-)
674 A: sends SYN|ACK, seq=7, ack_seq=8
675 B: sends SYN|ACK, seq=7, ack_seq=8
677 So we are now A eating this SYN|ACK, ACK test passes. So
678 does sequence test, SYN is truncated, and thus we consider
681 If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
682 bare ACK. Otherwise, we create an established connection. Both
683 ends (listening sockets) accept the new incoming connection and try
684 to talk to each other. 8-)
686 Note: This case is both harmless, and rare. Possibility is about the
687 same as us discovering intelligent life on another plant tomorrow.
689 But generally, we should (RFC lies!) to accept ACK
690 from SYNACK both here and in tcp_rcv_state_process().
691 tcp_rcv_state_process() does not, hence, we do not too.
693 Note that the case is absolutely generic:
694 we cannot optimize anything here without
695 violating protocol. All the checks must be made
696 before attempt to create socket.
699 /* RFC793 page 36: "If the connection is in any non-synchronized state ...
700 * and the incoming segment acknowledges something not yet
701 * sent (the segment carries an unacceptable ACK) ...
704 * Invalid ACK: reset will be sent by listening socket.
705 * Note that the ACK validity check for a Fast Open socket is done
706 * elsewhere and is checked directly against the child socket rather
707 * than req because user data may have been sent out.
709 if ((flg
& TCP_FLAG_ACK
) && !fastopen
&&
710 (TCP_SKB_CB(skb
)->ack_seq
!=
711 tcp_rsk(req
)->snt_isn
+ 1))
714 /* Also, it would be not so bad idea to check rcv_tsecr, which
715 * is essentially ACK extension and too early or too late values
716 * should cause reset in unsynchronized states.
719 /* RFC793: "first check sequence number". */
721 if (paws_reject
|| !tcp_in_window(TCP_SKB_CB(skb
)->seq
, TCP_SKB_CB(skb
)->end_seq
,
722 tcp_rsk(req
)->rcv_nxt
, tcp_rsk(req
)->rcv_nxt
+ req
->rsk_rcv_wnd
)) {
723 /* Out of window: send ACK and drop. */
724 if (!(flg
& TCP_FLAG_RST
) &&
725 !tcp_oow_rate_limited(sock_net(sk
), skb
,
726 LINUX_MIB_TCPACKSKIPPEDSYNRECV
,
727 &tcp_rsk(req
)->last_oow_ack_time
))
728 req
->rsk_ops
->send_ack(sk
, skb
, req
);
730 __NET_INC_STATS(sock_net(sk
), LINUX_MIB_PAWSESTABREJECTED
);
734 /* In sequence, PAWS is OK. */
736 if (tmp_opt
.saw_tstamp
&& !after(TCP_SKB_CB(skb
)->seq
, tcp_rsk(req
)->rcv_nxt
))
737 req
->ts_recent
= tmp_opt
.rcv_tsval
;
739 if (TCP_SKB_CB(skb
)->seq
== tcp_rsk(req
)->rcv_isn
) {
740 /* Truncate SYN, it is out of window starting
741 at tcp_rsk(req)->rcv_isn + 1. */
742 flg
&= ~TCP_FLAG_SYN
;
745 /* RFC793: "second check the RST bit" and
746 * "fourth, check the SYN bit"
748 if (flg
& (TCP_FLAG_RST
|TCP_FLAG_SYN
)) {
749 __TCP_INC_STATS(sock_net(sk
), TCP_MIB_ATTEMPTFAILS
);
750 goto embryonic_reset
;
753 /* ACK sequence verified above, just make sure ACK is
754 * set. If ACK not set, just silently drop the packet.
756 * XXX (TFO) - if we ever allow "data after SYN", the
757 * following check needs to be removed.
759 if (!(flg
& TCP_FLAG_ACK
))
762 /* For Fast Open no more processing is needed (sk is the
768 /* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
769 if (req
->num_timeout
< inet_csk(sk
)->icsk_accept_queue
.rskq_defer_accept
&&
770 TCP_SKB_CB(skb
)->end_seq
== tcp_rsk(req
)->rcv_isn
+ 1) {
771 inet_rsk(req
)->acked
= 1;
772 __NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPDEFERACCEPTDROP
);
776 /* OK, ACK is valid, create big socket and
777 * feed this segment to it. It will repeat all
778 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
779 * ESTABLISHED STATE. If it will be dropped after
780 * socket is created, wait for troubles.
782 child
= inet_csk(sk
)->icsk_af_ops
->syn_recv_sock(sk
, skb
, req
, NULL
,
785 goto listen_overflow
;
787 sock_rps_save_rxhash(child
, skb
);
788 tcp_synack_rtt_meas(child
, req
);
789 *req_stolen
= !own_req
;
790 return inet_csk_complete_hashdance(sk
, child
, req
, own_req
);
793 if (!sock_net(sk
)->ipv4
.sysctl_tcp_abort_on_overflow
) {
794 inet_rsk(req
)->acked
= 1;
799 if (!(flg
& TCP_FLAG_RST
)) {
800 /* Received a bad SYN pkt - for TFO We try not to reset
801 * the local connection unless it's really necessary to
802 * avoid becoming vulnerable to outside attack aiming at
803 * resetting legit local connections.
805 req
->rsk_ops
->send_reset(sk
, skb
);
806 } else if (fastopen
) { /* received a valid RST pkt */
807 reqsk_fastopen_remove(sk
, req
, true);
811 inet_csk_reqsk_queue_drop(sk
, req
);
812 __NET_INC_STATS(sock_net(sk
), LINUX_MIB_EMBRYONICRSTS
);
816 EXPORT_SYMBOL(tcp_check_req
);
819 * Queue segment on the new socket if the new socket is active,
820 * otherwise we just shortcircuit this and continue with
823 * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
824 * when entering. But other states are possible due to a race condition
825 * where after __inet_lookup_established() fails but before the listener
826 * locked is obtained, other packets cause the same connection to
830 int tcp_child_process(struct sock
*parent
, struct sock
*child
,
834 int state
= child
->sk_state
;
836 /* record NAPI ID of child */
837 sk_mark_napi_id(child
, skb
);
839 tcp_segs_in(tcp_sk(child
), skb
);
840 if (!sock_owned_by_user(child
)) {
841 ret
= tcp_rcv_state_process(child
, skb
);
842 /* Wakeup parent, send SIGIO */
843 if (state
== TCP_SYN_RECV
&& child
->sk_state
!= state
)
844 parent
->sk_data_ready(parent
);
846 /* Alas, it is possible again, because we do lookup
847 * in main socket hash table and lock on listening
848 * socket does not protect us more.
850 __sk_add_backlog(child
, skb
);
853 bh_unlock_sock(child
);
857 EXPORT_SYMBOL(tcp_child_process
);