perf tools: Streamline bpf examples and headers installation
[linux/fpc-iii.git] / net / socket.c
blob8c24d5dc4bc8f7f4faab62638e41f6d2ac66a842
1 /*
2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
58 * Based upon Swansea University Computer Society NET3.039
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 #include <linux/nospec.h>
94 #include <linux/uaccess.h>
95 #include <asm/unistd.h>
97 #include <net/compat.h>
98 #include <net/wext.h>
99 #include <net/cls_cgroup.h>
101 #include <net/sock.h>
102 #include <linux/netfilter.h>
104 #include <linux/if_tun.h>
105 #include <linux/ipv6_route.h>
106 #include <linux/route.h>
107 #include <linux/sockios.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
120 static int sock_close(struct inode *inode, struct file *file);
121 static __poll_t sock_poll(struct file *file,
122 struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 struct pipe_inode_info *pipe, size_t len,
133 unsigned int flags);
136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137 * in the operation structures but are done directly via the socketcall() multiplexor.
140 static const struct file_operations socket_file_ops = {
141 .owner = THIS_MODULE,
142 .llseek = no_llseek,
143 .read_iter = sock_read_iter,
144 .write_iter = sock_write_iter,
145 .poll = sock_poll,
146 .unlocked_ioctl = sock_ioctl,
147 #ifdef CONFIG_COMPAT
148 .compat_ioctl = compat_sock_ioctl,
149 #endif
150 .mmap = sock_mmap,
151 .release = sock_close,
152 .fasync = sock_fasync,
153 .sendpage = sock_sendpage,
154 .splice_write = generic_splice_sendpage,
155 .splice_read = sock_splice_read,
159 * The protocol list. Each protocol is registered in here.
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
166 * Support routines.
167 * Move socket addresses back and forth across the kernel/user
168 * divide and look after the messy bits.
172 * move_addr_to_kernel - copy a socket address into kernel space
173 * @uaddr: Address in user space
174 * @kaddr: Address in kernel space
175 * @ulen: Length in user space
177 * The address is copied into kernel space. If the provided address is
178 * too long an error code of -EINVAL is returned. If the copy gives
179 * invalid addresses -EFAULT is returned. On a success 0 is returned.
182 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
184 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
185 return -EINVAL;
186 if (ulen == 0)
187 return 0;
188 if (copy_from_user(kaddr, uaddr, ulen))
189 return -EFAULT;
190 return audit_sockaddr(ulen, kaddr);
194 * move_addr_to_user - copy an address to user space
195 * @kaddr: kernel space address
196 * @klen: length of address in kernel
197 * @uaddr: user space address
198 * @ulen: pointer to user length field
200 * The value pointed to by ulen on entry is the buffer length available.
201 * This is overwritten with the buffer space used. -EINVAL is returned
202 * if an overlong buffer is specified or a negative buffer size. -EFAULT
203 * is returned if either the buffer or the length field are not
204 * accessible.
205 * After copying the data up to the limit the user specifies, the true
206 * length of the data is written over the length limit the user
207 * specified. Zero is returned for a success.
210 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
211 void __user *uaddr, int __user *ulen)
213 int err;
214 int len;
216 BUG_ON(klen > sizeof(struct sockaddr_storage));
217 err = get_user(len, ulen);
218 if (err)
219 return err;
220 if (len > klen)
221 len = klen;
222 if (len < 0)
223 return -EINVAL;
224 if (len) {
225 if (audit_sockaddr(klen, kaddr))
226 return -ENOMEM;
227 if (copy_to_user(uaddr, kaddr, len))
228 return -EFAULT;
231 * "fromlen shall refer to the value before truncation.."
232 * 1003.1g
234 return __put_user(klen, ulen);
237 static struct kmem_cache *sock_inode_cachep __ro_after_init;
239 static struct inode *sock_alloc_inode(struct super_block *sb)
241 struct socket_alloc *ei;
242 struct socket_wq *wq;
244 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
245 if (!ei)
246 return NULL;
247 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
248 if (!wq) {
249 kmem_cache_free(sock_inode_cachep, ei);
250 return NULL;
252 init_waitqueue_head(&wq->wait);
253 wq->fasync_list = NULL;
254 wq->flags = 0;
255 RCU_INIT_POINTER(ei->socket.wq, wq);
257 ei->socket.state = SS_UNCONNECTED;
258 ei->socket.flags = 0;
259 ei->socket.ops = NULL;
260 ei->socket.sk = NULL;
261 ei->socket.file = NULL;
263 return &ei->vfs_inode;
266 static void sock_destroy_inode(struct inode *inode)
268 struct socket_alloc *ei;
269 struct socket_wq *wq;
271 ei = container_of(inode, struct socket_alloc, vfs_inode);
272 wq = rcu_dereference_protected(ei->socket.wq, 1);
273 kfree_rcu(wq, rcu);
274 kmem_cache_free(sock_inode_cachep, ei);
277 static void init_once(void *foo)
279 struct socket_alloc *ei = (struct socket_alloc *)foo;
281 inode_init_once(&ei->vfs_inode);
284 static void init_inodecache(void)
286 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
287 sizeof(struct socket_alloc),
289 (SLAB_HWCACHE_ALIGN |
290 SLAB_RECLAIM_ACCOUNT |
291 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
292 init_once);
293 BUG_ON(sock_inode_cachep == NULL);
296 static const struct super_operations sockfs_ops = {
297 .alloc_inode = sock_alloc_inode,
298 .destroy_inode = sock_destroy_inode,
299 .statfs = simple_statfs,
303 * sockfs_dname() is called from d_path().
305 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
307 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
308 d_inode(dentry)->i_ino);
311 static const struct dentry_operations sockfs_dentry_operations = {
312 .d_dname = sockfs_dname,
315 static int sockfs_xattr_get(const struct xattr_handler *handler,
316 struct dentry *dentry, struct inode *inode,
317 const char *suffix, void *value, size_t size)
319 if (value) {
320 if (dentry->d_name.len + 1 > size)
321 return -ERANGE;
322 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
324 return dentry->d_name.len + 1;
327 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
328 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
329 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
331 static const struct xattr_handler sockfs_xattr_handler = {
332 .name = XATTR_NAME_SOCKPROTONAME,
333 .get = sockfs_xattr_get,
336 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
337 struct dentry *dentry, struct inode *inode,
338 const char *suffix, const void *value,
339 size_t size, int flags)
341 /* Handled by LSM. */
342 return -EAGAIN;
345 static const struct xattr_handler sockfs_security_xattr_handler = {
346 .prefix = XATTR_SECURITY_PREFIX,
347 .set = sockfs_security_xattr_set,
350 static const struct xattr_handler *sockfs_xattr_handlers[] = {
351 &sockfs_xattr_handler,
352 &sockfs_security_xattr_handler,
353 NULL
356 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
357 int flags, const char *dev_name, void *data)
359 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
360 sockfs_xattr_handlers,
361 &sockfs_dentry_operations, SOCKFS_MAGIC);
364 static struct vfsmount *sock_mnt __read_mostly;
366 static struct file_system_type sock_fs_type = {
367 .name = "sockfs",
368 .mount = sockfs_mount,
369 .kill_sb = kill_anon_super,
373 * Obtains the first available file descriptor and sets it up for use.
375 * These functions create file structures and maps them to fd space
376 * of the current process. On success it returns file descriptor
377 * and file struct implicitly stored in sock->file.
378 * Note that another thread may close file descriptor before we return
379 * from this function. We use the fact that now we do not refer
380 * to socket after mapping. If one day we will need it, this
381 * function will increment ref. count on file by 1.
383 * In any case returned fd MAY BE not valid!
384 * This race condition is unavoidable
385 * with shared fd spaces, we cannot solve it inside kernel,
386 * but we take care of internal coherence yet.
389 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
391 struct qstr name = { .name = "" };
392 struct path path;
393 struct file *file;
395 if (dname) {
396 name.name = dname;
397 name.len = strlen(name.name);
398 } else if (sock->sk) {
399 name.name = sock->sk->sk_prot_creator->name;
400 name.len = strlen(name.name);
402 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
403 if (unlikely(!path.dentry)) {
404 sock_release(sock);
405 return ERR_PTR(-ENOMEM);
407 path.mnt = mntget(sock_mnt);
409 d_instantiate(path.dentry, SOCK_INODE(sock));
411 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
412 &socket_file_ops);
413 if (IS_ERR(file)) {
414 /* drop dentry, keep inode for a bit */
415 ihold(d_inode(path.dentry));
416 path_put(&path);
417 /* ... and now kill it properly */
418 sock_release(sock);
419 return file;
422 sock->file = file;
423 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
424 file->private_data = sock;
425 return file;
427 EXPORT_SYMBOL(sock_alloc_file);
429 static int sock_map_fd(struct socket *sock, int flags)
431 struct file *newfile;
432 int fd = get_unused_fd_flags(flags);
433 if (unlikely(fd < 0)) {
434 sock_release(sock);
435 return fd;
438 newfile = sock_alloc_file(sock, flags, NULL);
439 if (likely(!IS_ERR(newfile))) {
440 fd_install(fd, newfile);
441 return fd;
444 put_unused_fd(fd);
445 return PTR_ERR(newfile);
448 struct socket *sock_from_file(struct file *file, int *err)
450 if (file->f_op == &socket_file_ops)
451 return file->private_data; /* set in sock_map_fd */
453 *err = -ENOTSOCK;
454 return NULL;
456 EXPORT_SYMBOL(sock_from_file);
459 * sockfd_lookup - Go from a file number to its socket slot
460 * @fd: file handle
461 * @err: pointer to an error code return
463 * The file handle passed in is locked and the socket it is bound
464 * to is returned. If an error occurs the err pointer is overwritten
465 * with a negative errno code and NULL is returned. The function checks
466 * for both invalid handles and passing a handle which is not a socket.
468 * On a success the socket object pointer is returned.
471 struct socket *sockfd_lookup(int fd, int *err)
473 struct file *file;
474 struct socket *sock;
476 file = fget(fd);
477 if (!file) {
478 *err = -EBADF;
479 return NULL;
482 sock = sock_from_file(file, err);
483 if (!sock)
484 fput(file);
485 return sock;
487 EXPORT_SYMBOL(sockfd_lookup);
489 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
491 struct fd f = fdget(fd);
492 struct socket *sock;
494 *err = -EBADF;
495 if (f.file) {
496 sock = sock_from_file(f.file, err);
497 if (likely(sock)) {
498 *fput_needed = f.flags;
499 return sock;
501 fdput(f);
503 return NULL;
506 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
507 size_t size)
509 ssize_t len;
510 ssize_t used = 0;
512 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
513 if (len < 0)
514 return len;
515 used += len;
516 if (buffer) {
517 if (size < used)
518 return -ERANGE;
519 buffer += len;
522 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
523 used += len;
524 if (buffer) {
525 if (size < used)
526 return -ERANGE;
527 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
528 buffer += len;
531 return used;
534 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
536 int err = simple_setattr(dentry, iattr);
538 if (!err && (iattr->ia_valid & ATTR_UID)) {
539 struct socket *sock = SOCKET_I(d_inode(dentry));
541 if (sock->sk)
542 sock->sk->sk_uid = iattr->ia_uid;
543 else
544 err = -ENOENT;
547 return err;
550 static const struct inode_operations sockfs_inode_ops = {
551 .listxattr = sockfs_listxattr,
552 .setattr = sockfs_setattr,
556 * sock_alloc - allocate a socket
558 * Allocate a new inode and socket object. The two are bound together
559 * and initialised. The socket is then returned. If we are out of inodes
560 * NULL is returned.
563 struct socket *sock_alloc(void)
565 struct inode *inode;
566 struct socket *sock;
568 inode = new_inode_pseudo(sock_mnt->mnt_sb);
569 if (!inode)
570 return NULL;
572 sock = SOCKET_I(inode);
574 inode->i_ino = get_next_ino();
575 inode->i_mode = S_IFSOCK | S_IRWXUGO;
576 inode->i_uid = current_fsuid();
577 inode->i_gid = current_fsgid();
578 inode->i_op = &sockfs_inode_ops;
580 return sock;
582 EXPORT_SYMBOL(sock_alloc);
585 * sock_release - close a socket
586 * @sock: socket to close
588 * The socket is released from the protocol stack if it has a release
589 * callback, and the inode is then released if the socket is bound to
590 * an inode not a file.
593 static void __sock_release(struct socket *sock, struct inode *inode)
595 if (sock->ops) {
596 struct module *owner = sock->ops->owner;
598 if (inode)
599 inode_lock(inode);
600 sock->ops->release(sock);
601 if (inode)
602 inode_unlock(inode);
603 sock->ops = NULL;
604 module_put(owner);
607 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
608 pr_err("%s: fasync list not empty!\n", __func__);
610 if (!sock->file) {
611 iput(SOCK_INODE(sock));
612 return;
614 sock->file = NULL;
617 void sock_release(struct socket *sock)
619 __sock_release(sock, NULL);
621 EXPORT_SYMBOL(sock_release);
623 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
625 u8 flags = *tx_flags;
627 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
628 flags |= SKBTX_HW_TSTAMP;
630 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
631 flags |= SKBTX_SW_TSTAMP;
633 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
634 flags |= SKBTX_SCHED_TSTAMP;
636 *tx_flags = flags;
638 EXPORT_SYMBOL(__sock_tx_timestamp);
640 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
642 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
643 BUG_ON(ret == -EIOCBQUEUED);
644 return ret;
647 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
649 int err = security_socket_sendmsg(sock, msg,
650 msg_data_left(msg));
652 return err ?: sock_sendmsg_nosec(sock, msg);
654 EXPORT_SYMBOL(sock_sendmsg);
656 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
657 struct kvec *vec, size_t num, size_t size)
659 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
660 return sock_sendmsg(sock, msg);
662 EXPORT_SYMBOL(kernel_sendmsg);
664 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
665 struct kvec *vec, size_t num, size_t size)
667 struct socket *sock = sk->sk_socket;
669 if (!sock->ops->sendmsg_locked)
670 return sock_no_sendmsg_locked(sk, msg, size);
672 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
674 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
676 EXPORT_SYMBOL(kernel_sendmsg_locked);
678 static bool skb_is_err_queue(const struct sk_buff *skb)
680 /* pkt_type of skbs enqueued on the error queue are set to
681 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
682 * in recvmsg, since skbs received on a local socket will never
683 * have a pkt_type of PACKET_OUTGOING.
685 return skb->pkt_type == PACKET_OUTGOING;
688 /* On transmit, software and hardware timestamps are returned independently.
689 * As the two skb clones share the hardware timestamp, which may be updated
690 * before the software timestamp is received, a hardware TX timestamp may be
691 * returned only if there is no software TX timestamp. Ignore false software
692 * timestamps, which may be made in the __sock_recv_timestamp() call when the
693 * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a
694 * hardware timestamp.
696 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
698 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
701 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
703 struct scm_ts_pktinfo ts_pktinfo;
704 struct net_device *orig_dev;
706 if (!skb_mac_header_was_set(skb))
707 return;
709 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
711 rcu_read_lock();
712 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
713 if (orig_dev)
714 ts_pktinfo.if_index = orig_dev->ifindex;
715 rcu_read_unlock();
717 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
718 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
719 sizeof(ts_pktinfo), &ts_pktinfo);
723 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
725 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
726 struct sk_buff *skb)
728 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
729 struct scm_timestamping tss;
730 int empty = 1, false_tstamp = 0;
731 struct skb_shared_hwtstamps *shhwtstamps =
732 skb_hwtstamps(skb);
734 /* Race occurred between timestamp enabling and packet
735 receiving. Fill in the current time for now. */
736 if (need_software_tstamp && skb->tstamp == 0) {
737 __net_timestamp(skb);
738 false_tstamp = 1;
741 if (need_software_tstamp) {
742 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
743 struct timeval tv;
744 skb_get_timestamp(skb, &tv);
745 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
746 sizeof(tv), &tv);
747 } else {
748 struct timespec ts;
749 skb_get_timestampns(skb, &ts);
750 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
751 sizeof(ts), &ts);
755 memset(&tss, 0, sizeof(tss));
756 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
757 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
758 empty = 0;
759 if (shhwtstamps &&
760 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
761 !skb_is_swtx_tstamp(skb, false_tstamp) &&
762 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
763 empty = 0;
764 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
765 !skb_is_err_queue(skb))
766 put_ts_pktinfo(msg, skb);
768 if (!empty) {
769 put_cmsg(msg, SOL_SOCKET,
770 SCM_TIMESTAMPING, sizeof(tss), &tss);
772 if (skb_is_err_queue(skb) && skb->len &&
773 SKB_EXT_ERR(skb)->opt_stats)
774 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
775 skb->len, skb->data);
778 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
780 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
781 struct sk_buff *skb)
783 int ack;
785 if (!sock_flag(sk, SOCK_WIFI_STATUS))
786 return;
787 if (!skb->wifi_acked_valid)
788 return;
790 ack = skb->wifi_acked;
792 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
794 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
796 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
797 struct sk_buff *skb)
799 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
800 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
801 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
804 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
805 struct sk_buff *skb)
807 sock_recv_timestamp(msg, sk, skb);
808 sock_recv_drops(msg, sk, skb);
810 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
812 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
813 int flags)
815 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
818 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
820 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
822 return err ?: sock_recvmsg_nosec(sock, msg, flags);
824 EXPORT_SYMBOL(sock_recvmsg);
827 * kernel_recvmsg - Receive a message from a socket (kernel space)
828 * @sock: The socket to receive the message from
829 * @msg: Received message
830 * @vec: Input s/g array for message data
831 * @num: Size of input s/g array
832 * @size: Number of bytes to read
833 * @flags: Message flags (MSG_DONTWAIT, etc...)
835 * On return the msg structure contains the scatter/gather array passed in the
836 * vec argument. The array is modified so that it consists of the unfilled
837 * portion of the original array.
839 * The returned value is the total number of bytes received, or an error.
841 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
842 struct kvec *vec, size_t num, size_t size, int flags)
844 mm_segment_t oldfs = get_fs();
845 int result;
847 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
848 set_fs(KERNEL_DS);
849 result = sock_recvmsg(sock, msg, flags);
850 set_fs(oldfs);
851 return result;
853 EXPORT_SYMBOL(kernel_recvmsg);
855 static ssize_t sock_sendpage(struct file *file, struct page *page,
856 int offset, size_t size, loff_t *ppos, int more)
858 struct socket *sock;
859 int flags;
861 sock = file->private_data;
863 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
864 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
865 flags |= more;
867 return kernel_sendpage(sock, page, offset, size, flags);
870 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
871 struct pipe_inode_info *pipe, size_t len,
872 unsigned int flags)
874 struct socket *sock = file->private_data;
876 if (unlikely(!sock->ops->splice_read))
877 return -EINVAL;
879 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
882 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
884 struct file *file = iocb->ki_filp;
885 struct socket *sock = file->private_data;
886 struct msghdr msg = {.msg_iter = *to,
887 .msg_iocb = iocb};
888 ssize_t res;
890 if (file->f_flags & O_NONBLOCK)
891 msg.msg_flags = MSG_DONTWAIT;
893 if (iocb->ki_pos != 0)
894 return -ESPIPE;
896 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
897 return 0;
899 res = sock_recvmsg(sock, &msg, msg.msg_flags);
900 *to = msg.msg_iter;
901 return res;
904 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
906 struct file *file = iocb->ki_filp;
907 struct socket *sock = file->private_data;
908 struct msghdr msg = {.msg_iter = *from,
909 .msg_iocb = iocb};
910 ssize_t res;
912 if (iocb->ki_pos != 0)
913 return -ESPIPE;
915 if (file->f_flags & O_NONBLOCK)
916 msg.msg_flags = MSG_DONTWAIT;
918 if (sock->type == SOCK_SEQPACKET)
919 msg.msg_flags |= MSG_EOR;
921 res = sock_sendmsg(sock, &msg);
922 *from = msg.msg_iter;
923 return res;
927 * Atomic setting of ioctl hooks to avoid race
928 * with module unload.
931 static DEFINE_MUTEX(br_ioctl_mutex);
932 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
934 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
936 mutex_lock(&br_ioctl_mutex);
937 br_ioctl_hook = hook;
938 mutex_unlock(&br_ioctl_mutex);
940 EXPORT_SYMBOL(brioctl_set);
942 static DEFINE_MUTEX(vlan_ioctl_mutex);
943 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
945 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
947 mutex_lock(&vlan_ioctl_mutex);
948 vlan_ioctl_hook = hook;
949 mutex_unlock(&vlan_ioctl_mutex);
951 EXPORT_SYMBOL(vlan_ioctl_set);
953 static DEFINE_MUTEX(dlci_ioctl_mutex);
954 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
956 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
958 mutex_lock(&dlci_ioctl_mutex);
959 dlci_ioctl_hook = hook;
960 mutex_unlock(&dlci_ioctl_mutex);
962 EXPORT_SYMBOL(dlci_ioctl_set);
964 static long sock_do_ioctl(struct net *net, struct socket *sock,
965 unsigned int cmd, unsigned long arg)
967 int err;
968 void __user *argp = (void __user *)arg;
970 err = sock->ops->ioctl(sock, cmd, arg);
973 * If this ioctl is unknown try to hand it down
974 * to the NIC driver.
976 if (err != -ENOIOCTLCMD)
977 return err;
979 if (cmd == SIOCGIFCONF) {
980 struct ifconf ifc;
981 if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
982 return -EFAULT;
983 rtnl_lock();
984 err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
985 rtnl_unlock();
986 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
987 err = -EFAULT;
988 } else {
989 struct ifreq ifr;
990 bool need_copyout;
991 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
992 return -EFAULT;
993 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
994 if (!err && need_copyout)
995 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
996 return -EFAULT;
998 return err;
1002 * With an ioctl, arg may well be a user mode pointer, but we don't know
1003 * what to do with it - that's up to the protocol still.
1006 struct ns_common *get_net_ns(struct ns_common *ns)
1008 return &get_net(container_of(ns, struct net, ns))->ns;
1010 EXPORT_SYMBOL_GPL(get_net_ns);
1012 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1014 struct socket *sock;
1015 struct sock *sk;
1016 void __user *argp = (void __user *)arg;
1017 int pid, err;
1018 struct net *net;
1020 sock = file->private_data;
1021 sk = sock->sk;
1022 net = sock_net(sk);
1023 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1024 struct ifreq ifr;
1025 bool need_copyout;
1026 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1027 return -EFAULT;
1028 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1029 if (!err && need_copyout)
1030 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1031 return -EFAULT;
1032 } else
1033 #ifdef CONFIG_WEXT_CORE
1034 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1035 err = wext_handle_ioctl(net, cmd, argp);
1036 } else
1037 #endif
1038 switch (cmd) {
1039 case FIOSETOWN:
1040 case SIOCSPGRP:
1041 err = -EFAULT;
1042 if (get_user(pid, (int __user *)argp))
1043 break;
1044 err = f_setown(sock->file, pid, 1);
1045 break;
1046 case FIOGETOWN:
1047 case SIOCGPGRP:
1048 err = put_user(f_getown(sock->file),
1049 (int __user *)argp);
1050 break;
1051 case SIOCGIFBR:
1052 case SIOCSIFBR:
1053 case SIOCBRADDBR:
1054 case SIOCBRDELBR:
1055 err = -ENOPKG;
1056 if (!br_ioctl_hook)
1057 request_module("bridge");
1059 mutex_lock(&br_ioctl_mutex);
1060 if (br_ioctl_hook)
1061 err = br_ioctl_hook(net, cmd, argp);
1062 mutex_unlock(&br_ioctl_mutex);
1063 break;
1064 case SIOCGIFVLAN:
1065 case SIOCSIFVLAN:
1066 err = -ENOPKG;
1067 if (!vlan_ioctl_hook)
1068 request_module("8021q");
1070 mutex_lock(&vlan_ioctl_mutex);
1071 if (vlan_ioctl_hook)
1072 err = vlan_ioctl_hook(net, argp);
1073 mutex_unlock(&vlan_ioctl_mutex);
1074 break;
1075 case SIOCADDDLCI:
1076 case SIOCDELDLCI:
1077 err = -ENOPKG;
1078 if (!dlci_ioctl_hook)
1079 request_module("dlci");
1081 mutex_lock(&dlci_ioctl_mutex);
1082 if (dlci_ioctl_hook)
1083 err = dlci_ioctl_hook(cmd, argp);
1084 mutex_unlock(&dlci_ioctl_mutex);
1085 break;
1086 case SIOCGSKNS:
1087 err = -EPERM;
1088 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1089 break;
1091 err = open_related_ns(&net->ns, get_net_ns);
1092 break;
1093 default:
1094 err = sock_do_ioctl(net, sock, cmd, arg);
1095 break;
1097 return err;
1100 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1102 int err;
1103 struct socket *sock = NULL;
1105 err = security_socket_create(family, type, protocol, 1);
1106 if (err)
1107 goto out;
1109 sock = sock_alloc();
1110 if (!sock) {
1111 err = -ENOMEM;
1112 goto out;
1115 sock->type = type;
1116 err = security_socket_post_create(sock, family, type, protocol, 1);
1117 if (err)
1118 goto out_release;
1120 out:
1121 *res = sock;
1122 return err;
1123 out_release:
1124 sock_release(sock);
1125 sock = NULL;
1126 goto out;
1128 EXPORT_SYMBOL(sock_create_lite);
1130 /* No kernel lock held - perfect */
1131 static __poll_t sock_poll(struct file *file, poll_table *wait)
1133 struct socket *sock = file->private_data;
1134 __poll_t events = poll_requested_events(wait);
1136 sock_poll_busy_loop(sock, events);
1137 if (!sock->ops->poll)
1138 return 0;
1139 return sock->ops->poll(file, sock, wait) | sock_poll_busy_flag(sock);
1142 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1144 struct socket *sock = file->private_data;
1146 return sock->ops->mmap(file, sock, vma);
1149 static int sock_close(struct inode *inode, struct file *filp)
1151 __sock_release(SOCKET_I(inode), inode);
1152 return 0;
1156 * Update the socket async list
1158 * Fasync_list locking strategy.
1160 * 1. fasync_list is modified only under process context socket lock
1161 * i.e. under semaphore.
1162 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1163 * or under socket lock
1166 static int sock_fasync(int fd, struct file *filp, int on)
1168 struct socket *sock = filp->private_data;
1169 struct sock *sk = sock->sk;
1170 struct socket_wq *wq;
1172 if (sk == NULL)
1173 return -EINVAL;
1175 lock_sock(sk);
1176 wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1177 fasync_helper(fd, filp, on, &wq->fasync_list);
1179 if (!wq->fasync_list)
1180 sock_reset_flag(sk, SOCK_FASYNC);
1181 else
1182 sock_set_flag(sk, SOCK_FASYNC);
1184 release_sock(sk);
1185 return 0;
1188 /* This function may be called only under rcu_lock */
1190 int sock_wake_async(struct socket_wq *wq, int how, int band)
1192 if (!wq || !wq->fasync_list)
1193 return -1;
1195 switch (how) {
1196 case SOCK_WAKE_WAITD:
1197 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1198 break;
1199 goto call_kill;
1200 case SOCK_WAKE_SPACE:
1201 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1202 break;
1203 /* fall through */
1204 case SOCK_WAKE_IO:
1205 call_kill:
1206 kill_fasync(&wq->fasync_list, SIGIO, band);
1207 break;
1208 case SOCK_WAKE_URG:
1209 kill_fasync(&wq->fasync_list, SIGURG, band);
1212 return 0;
1214 EXPORT_SYMBOL(sock_wake_async);
1216 int __sock_create(struct net *net, int family, int type, int protocol,
1217 struct socket **res, int kern)
1219 int err;
1220 struct socket *sock;
1221 const struct net_proto_family *pf;
1224 * Check protocol is in range
1226 if (family < 0 || family >= NPROTO)
1227 return -EAFNOSUPPORT;
1228 if (type < 0 || type >= SOCK_MAX)
1229 return -EINVAL;
1231 /* Compatibility.
1233 This uglymoron is moved from INET layer to here to avoid
1234 deadlock in module load.
1236 if (family == PF_INET && type == SOCK_PACKET) {
1237 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1238 current->comm);
1239 family = PF_PACKET;
1242 err = security_socket_create(family, type, protocol, kern);
1243 if (err)
1244 return err;
1247 * Allocate the socket and allow the family to set things up. if
1248 * the protocol is 0, the family is instructed to select an appropriate
1249 * default.
1251 sock = sock_alloc();
1252 if (!sock) {
1253 net_warn_ratelimited("socket: no more sockets\n");
1254 return -ENFILE; /* Not exactly a match, but its the
1255 closest posix thing */
1258 sock->type = type;
1260 #ifdef CONFIG_MODULES
1261 /* Attempt to load a protocol module if the find failed.
1263 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1264 * requested real, full-featured networking support upon configuration.
1265 * Otherwise module support will break!
1267 if (rcu_access_pointer(net_families[family]) == NULL)
1268 request_module("net-pf-%d", family);
1269 #endif
1271 rcu_read_lock();
1272 pf = rcu_dereference(net_families[family]);
1273 err = -EAFNOSUPPORT;
1274 if (!pf)
1275 goto out_release;
1278 * We will call the ->create function, that possibly is in a loadable
1279 * module, so we have to bump that loadable module refcnt first.
1281 if (!try_module_get(pf->owner))
1282 goto out_release;
1284 /* Now protected by module ref count */
1285 rcu_read_unlock();
1287 err = pf->create(net, sock, protocol, kern);
1288 if (err < 0)
1289 goto out_module_put;
1292 * Now to bump the refcnt of the [loadable] module that owns this
1293 * socket at sock_release time we decrement its refcnt.
1295 if (!try_module_get(sock->ops->owner))
1296 goto out_module_busy;
1299 * Now that we're done with the ->create function, the [loadable]
1300 * module can have its refcnt decremented
1302 module_put(pf->owner);
1303 err = security_socket_post_create(sock, family, type, protocol, kern);
1304 if (err)
1305 goto out_sock_release;
1306 *res = sock;
1308 return 0;
1310 out_module_busy:
1311 err = -EAFNOSUPPORT;
1312 out_module_put:
1313 sock->ops = NULL;
1314 module_put(pf->owner);
1315 out_sock_release:
1316 sock_release(sock);
1317 return err;
1319 out_release:
1320 rcu_read_unlock();
1321 goto out_sock_release;
1323 EXPORT_SYMBOL(__sock_create);
1325 int sock_create(int family, int type, int protocol, struct socket **res)
1327 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1329 EXPORT_SYMBOL(sock_create);
1331 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1333 return __sock_create(net, family, type, protocol, res, 1);
1335 EXPORT_SYMBOL(sock_create_kern);
1337 int __sys_socket(int family, int type, int protocol)
1339 int retval;
1340 struct socket *sock;
1341 int flags;
1343 /* Check the SOCK_* constants for consistency. */
1344 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1345 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1346 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1347 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1349 flags = type & ~SOCK_TYPE_MASK;
1350 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1351 return -EINVAL;
1352 type &= SOCK_TYPE_MASK;
1354 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1355 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1357 retval = sock_create(family, type, protocol, &sock);
1358 if (retval < 0)
1359 return retval;
1361 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1364 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1366 return __sys_socket(family, type, protocol);
1370 * Create a pair of connected sockets.
1373 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1375 struct socket *sock1, *sock2;
1376 int fd1, fd2, err;
1377 struct file *newfile1, *newfile2;
1378 int flags;
1380 flags = type & ~SOCK_TYPE_MASK;
1381 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1382 return -EINVAL;
1383 type &= SOCK_TYPE_MASK;
1385 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1386 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1389 * reserve descriptors and make sure we won't fail
1390 * to return them to userland.
1392 fd1 = get_unused_fd_flags(flags);
1393 if (unlikely(fd1 < 0))
1394 return fd1;
1396 fd2 = get_unused_fd_flags(flags);
1397 if (unlikely(fd2 < 0)) {
1398 put_unused_fd(fd1);
1399 return fd2;
1402 err = put_user(fd1, &usockvec[0]);
1403 if (err)
1404 goto out;
1406 err = put_user(fd2, &usockvec[1]);
1407 if (err)
1408 goto out;
1411 * Obtain the first socket and check if the underlying protocol
1412 * supports the socketpair call.
1415 err = sock_create(family, type, protocol, &sock1);
1416 if (unlikely(err < 0))
1417 goto out;
1419 err = sock_create(family, type, protocol, &sock2);
1420 if (unlikely(err < 0)) {
1421 sock_release(sock1);
1422 goto out;
1425 err = security_socket_socketpair(sock1, sock2);
1426 if (unlikely(err)) {
1427 sock_release(sock2);
1428 sock_release(sock1);
1429 goto out;
1432 err = sock1->ops->socketpair(sock1, sock2);
1433 if (unlikely(err < 0)) {
1434 sock_release(sock2);
1435 sock_release(sock1);
1436 goto out;
1439 newfile1 = sock_alloc_file(sock1, flags, NULL);
1440 if (IS_ERR(newfile1)) {
1441 err = PTR_ERR(newfile1);
1442 sock_release(sock2);
1443 goto out;
1446 newfile2 = sock_alloc_file(sock2, flags, NULL);
1447 if (IS_ERR(newfile2)) {
1448 err = PTR_ERR(newfile2);
1449 fput(newfile1);
1450 goto out;
1453 audit_fd_pair(fd1, fd2);
1455 fd_install(fd1, newfile1);
1456 fd_install(fd2, newfile2);
1457 return 0;
1459 out:
1460 put_unused_fd(fd2);
1461 put_unused_fd(fd1);
1462 return err;
1465 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1466 int __user *, usockvec)
1468 return __sys_socketpair(family, type, protocol, usockvec);
1472 * Bind a name to a socket. Nothing much to do here since it's
1473 * the protocol's responsibility to handle the local address.
1475 * We move the socket address to kernel space before we call
1476 * the protocol layer (having also checked the address is ok).
1479 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1481 struct socket *sock;
1482 struct sockaddr_storage address;
1483 int err, fput_needed;
1485 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1486 if (sock) {
1487 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1488 if (err >= 0) {
1489 err = security_socket_bind(sock,
1490 (struct sockaddr *)&address,
1491 addrlen);
1492 if (!err)
1493 err = sock->ops->bind(sock,
1494 (struct sockaddr *)
1495 &address, addrlen);
1497 fput_light(sock->file, fput_needed);
1499 return err;
1502 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1504 return __sys_bind(fd, umyaddr, addrlen);
1508 * Perform a listen. Basically, we allow the protocol to do anything
1509 * necessary for a listen, and if that works, we mark the socket as
1510 * ready for listening.
1513 int __sys_listen(int fd, int backlog)
1515 struct socket *sock;
1516 int err, fput_needed;
1517 int somaxconn;
1519 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1520 if (sock) {
1521 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1522 if ((unsigned int)backlog > somaxconn)
1523 backlog = somaxconn;
1525 err = security_socket_listen(sock, backlog);
1526 if (!err)
1527 err = sock->ops->listen(sock, backlog);
1529 fput_light(sock->file, fput_needed);
1531 return err;
1534 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1536 return __sys_listen(fd, backlog);
1540 * For accept, we attempt to create a new socket, set up the link
1541 * with the client, wake up the client, then return the new
1542 * connected fd. We collect the address of the connector in kernel
1543 * space and move it to user at the very end. This is unclean because
1544 * we open the socket then return an error.
1546 * 1003.1g adds the ability to recvmsg() to query connection pending
1547 * status to recvmsg. We need to add that support in a way thats
1548 * clean when we restructure accept also.
1551 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1552 int __user *upeer_addrlen, int flags)
1554 struct socket *sock, *newsock;
1555 struct file *newfile;
1556 int err, len, newfd, fput_needed;
1557 struct sockaddr_storage address;
1559 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1560 return -EINVAL;
1562 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1563 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1565 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1566 if (!sock)
1567 goto out;
1569 err = -ENFILE;
1570 newsock = sock_alloc();
1571 if (!newsock)
1572 goto out_put;
1574 newsock->type = sock->type;
1575 newsock->ops = sock->ops;
1578 * We don't need try_module_get here, as the listening socket (sock)
1579 * has the protocol module (sock->ops->owner) held.
1581 __module_get(newsock->ops->owner);
1583 newfd = get_unused_fd_flags(flags);
1584 if (unlikely(newfd < 0)) {
1585 err = newfd;
1586 sock_release(newsock);
1587 goto out_put;
1589 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1590 if (IS_ERR(newfile)) {
1591 err = PTR_ERR(newfile);
1592 put_unused_fd(newfd);
1593 goto out_put;
1596 err = security_socket_accept(sock, newsock);
1597 if (err)
1598 goto out_fd;
1600 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1601 if (err < 0)
1602 goto out_fd;
1604 if (upeer_sockaddr) {
1605 len = newsock->ops->getname(newsock,
1606 (struct sockaddr *)&address, 2);
1607 if (len < 0) {
1608 err = -ECONNABORTED;
1609 goto out_fd;
1611 err = move_addr_to_user(&address,
1612 len, upeer_sockaddr, upeer_addrlen);
1613 if (err < 0)
1614 goto out_fd;
1617 /* File flags are not inherited via accept() unlike another OSes. */
1619 fd_install(newfd, newfile);
1620 err = newfd;
1622 out_put:
1623 fput_light(sock->file, fput_needed);
1624 out:
1625 return err;
1626 out_fd:
1627 fput(newfile);
1628 put_unused_fd(newfd);
1629 goto out_put;
1632 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1633 int __user *, upeer_addrlen, int, flags)
1635 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1638 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1639 int __user *, upeer_addrlen)
1641 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1645 * Attempt to connect to a socket with the server address. The address
1646 * is in user space so we verify it is OK and move it to kernel space.
1648 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1649 * break bindings
1651 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1652 * other SEQPACKET protocols that take time to connect() as it doesn't
1653 * include the -EINPROGRESS status for such sockets.
1656 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1658 struct socket *sock;
1659 struct sockaddr_storage address;
1660 int err, fput_needed;
1662 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1663 if (!sock)
1664 goto out;
1665 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1666 if (err < 0)
1667 goto out_put;
1669 err =
1670 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1671 if (err)
1672 goto out_put;
1674 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1675 sock->file->f_flags);
1676 out_put:
1677 fput_light(sock->file, fput_needed);
1678 out:
1679 return err;
1682 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1683 int, addrlen)
1685 return __sys_connect(fd, uservaddr, addrlen);
1689 * Get the local address ('name') of a socket object. Move the obtained
1690 * name to user space.
1693 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1694 int __user *usockaddr_len)
1696 struct socket *sock;
1697 struct sockaddr_storage address;
1698 int err, fput_needed;
1700 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1701 if (!sock)
1702 goto out;
1704 err = security_socket_getsockname(sock);
1705 if (err)
1706 goto out_put;
1708 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1709 if (err < 0)
1710 goto out_put;
1711 /* "err" is actually length in this case */
1712 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1714 out_put:
1715 fput_light(sock->file, fput_needed);
1716 out:
1717 return err;
1720 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1721 int __user *, usockaddr_len)
1723 return __sys_getsockname(fd, usockaddr, usockaddr_len);
1727 * Get the remote address ('name') of a socket object. Move the obtained
1728 * name to user space.
1731 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1732 int __user *usockaddr_len)
1734 struct socket *sock;
1735 struct sockaddr_storage address;
1736 int err, fput_needed;
1738 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1739 if (sock != NULL) {
1740 err = security_socket_getpeername(sock);
1741 if (err) {
1742 fput_light(sock->file, fput_needed);
1743 return err;
1746 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1747 if (err >= 0)
1748 /* "err" is actually length in this case */
1749 err = move_addr_to_user(&address, err, usockaddr,
1750 usockaddr_len);
1751 fput_light(sock->file, fput_needed);
1753 return err;
1756 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1757 int __user *, usockaddr_len)
1759 return __sys_getpeername(fd, usockaddr, usockaddr_len);
1763 * Send a datagram to a given address. We move the address into kernel
1764 * space and check the user space data area is readable before invoking
1765 * the protocol.
1767 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1768 struct sockaddr __user *addr, int addr_len)
1770 struct socket *sock;
1771 struct sockaddr_storage address;
1772 int err;
1773 struct msghdr msg;
1774 struct iovec iov;
1775 int fput_needed;
1777 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1778 if (unlikely(err))
1779 return err;
1780 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1781 if (!sock)
1782 goto out;
1784 msg.msg_name = NULL;
1785 msg.msg_control = NULL;
1786 msg.msg_controllen = 0;
1787 msg.msg_namelen = 0;
1788 if (addr) {
1789 err = move_addr_to_kernel(addr, addr_len, &address);
1790 if (err < 0)
1791 goto out_put;
1792 msg.msg_name = (struct sockaddr *)&address;
1793 msg.msg_namelen = addr_len;
1795 if (sock->file->f_flags & O_NONBLOCK)
1796 flags |= MSG_DONTWAIT;
1797 msg.msg_flags = flags;
1798 err = sock_sendmsg(sock, &msg);
1800 out_put:
1801 fput_light(sock->file, fput_needed);
1802 out:
1803 return err;
1806 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1807 unsigned int, flags, struct sockaddr __user *, addr,
1808 int, addr_len)
1810 return __sys_sendto(fd, buff, len, flags, addr, addr_len);
1814 * Send a datagram down a socket.
1817 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1818 unsigned int, flags)
1820 return __sys_sendto(fd, buff, len, flags, NULL, 0);
1824 * Receive a frame from the socket and optionally record the address of the
1825 * sender. We verify the buffers are writable and if needed move the
1826 * sender address from kernel to user space.
1828 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
1829 struct sockaddr __user *addr, int __user *addr_len)
1831 struct socket *sock;
1832 struct iovec iov;
1833 struct msghdr msg;
1834 struct sockaddr_storage address;
1835 int err, err2;
1836 int fput_needed;
1838 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1839 if (unlikely(err))
1840 return err;
1841 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1842 if (!sock)
1843 goto out;
1845 msg.msg_control = NULL;
1846 msg.msg_controllen = 0;
1847 /* Save some cycles and don't copy the address if not needed */
1848 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1849 /* We assume all kernel code knows the size of sockaddr_storage */
1850 msg.msg_namelen = 0;
1851 msg.msg_iocb = NULL;
1852 msg.msg_flags = 0;
1853 if (sock->file->f_flags & O_NONBLOCK)
1854 flags |= MSG_DONTWAIT;
1855 err = sock_recvmsg(sock, &msg, flags);
1857 if (err >= 0 && addr != NULL) {
1858 err2 = move_addr_to_user(&address,
1859 msg.msg_namelen, addr, addr_len);
1860 if (err2 < 0)
1861 err = err2;
1864 fput_light(sock->file, fput_needed);
1865 out:
1866 return err;
1869 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1870 unsigned int, flags, struct sockaddr __user *, addr,
1871 int __user *, addr_len)
1873 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
1877 * Receive a datagram from a socket.
1880 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1881 unsigned int, flags)
1883 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1887 * Set a socket option. Because we don't know the option lengths we have
1888 * to pass the user mode parameter for the protocols to sort out.
1891 static int __sys_setsockopt(int fd, int level, int optname,
1892 char __user *optval, int optlen)
1894 int err, fput_needed;
1895 struct socket *sock;
1897 if (optlen < 0)
1898 return -EINVAL;
1900 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1901 if (sock != NULL) {
1902 err = security_socket_setsockopt(sock, level, optname);
1903 if (err)
1904 goto out_put;
1906 if (level == SOL_SOCKET)
1907 err =
1908 sock_setsockopt(sock, level, optname, optval,
1909 optlen);
1910 else
1911 err =
1912 sock->ops->setsockopt(sock, level, optname, optval,
1913 optlen);
1914 out_put:
1915 fput_light(sock->file, fput_needed);
1917 return err;
1920 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1921 char __user *, optval, int, optlen)
1923 return __sys_setsockopt(fd, level, optname, optval, optlen);
1927 * Get a socket option. Because we don't know the option lengths we have
1928 * to pass a user mode parameter for the protocols to sort out.
1931 static int __sys_getsockopt(int fd, int level, int optname,
1932 char __user *optval, int __user *optlen)
1934 int err, fput_needed;
1935 struct socket *sock;
1937 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1938 if (sock != NULL) {
1939 err = security_socket_getsockopt(sock, level, optname);
1940 if (err)
1941 goto out_put;
1943 if (level == SOL_SOCKET)
1944 err =
1945 sock_getsockopt(sock, level, optname, optval,
1946 optlen);
1947 else
1948 err =
1949 sock->ops->getsockopt(sock, level, optname, optval,
1950 optlen);
1951 out_put:
1952 fput_light(sock->file, fput_needed);
1954 return err;
1957 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1958 char __user *, optval, int __user *, optlen)
1960 return __sys_getsockopt(fd, level, optname, optval, optlen);
1964 * Shutdown a socket.
1967 int __sys_shutdown(int fd, int how)
1969 int err, fput_needed;
1970 struct socket *sock;
1972 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1973 if (sock != NULL) {
1974 err = security_socket_shutdown(sock, how);
1975 if (!err)
1976 err = sock->ops->shutdown(sock, how);
1977 fput_light(sock->file, fput_needed);
1979 return err;
1982 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1984 return __sys_shutdown(fd, how);
1987 /* A couple of helpful macros for getting the address of the 32/64 bit
1988 * fields which are the same type (int / unsigned) on our platforms.
1990 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1991 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1992 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1994 struct used_address {
1995 struct sockaddr_storage name;
1996 unsigned int name_len;
1999 static int copy_msghdr_from_user(struct msghdr *kmsg,
2000 struct user_msghdr __user *umsg,
2001 struct sockaddr __user **save_addr,
2002 struct iovec **iov)
2004 struct user_msghdr msg;
2005 ssize_t err;
2007 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2008 return -EFAULT;
2010 kmsg->msg_control = (void __force *)msg.msg_control;
2011 kmsg->msg_controllen = msg.msg_controllen;
2012 kmsg->msg_flags = msg.msg_flags;
2014 kmsg->msg_namelen = msg.msg_namelen;
2015 if (!msg.msg_name)
2016 kmsg->msg_namelen = 0;
2018 if (kmsg->msg_namelen < 0)
2019 return -EINVAL;
2021 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2022 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2024 if (save_addr)
2025 *save_addr = msg.msg_name;
2027 if (msg.msg_name && kmsg->msg_namelen) {
2028 if (!save_addr) {
2029 err = move_addr_to_kernel(msg.msg_name,
2030 kmsg->msg_namelen,
2031 kmsg->msg_name);
2032 if (err < 0)
2033 return err;
2035 } else {
2036 kmsg->msg_name = NULL;
2037 kmsg->msg_namelen = 0;
2040 if (msg.msg_iovlen > UIO_MAXIOV)
2041 return -EMSGSIZE;
2043 kmsg->msg_iocb = NULL;
2045 return import_iovec(save_addr ? READ : WRITE,
2046 msg.msg_iov, msg.msg_iovlen,
2047 UIO_FASTIOV, iov, &kmsg->msg_iter);
2050 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2051 struct msghdr *msg_sys, unsigned int flags,
2052 struct used_address *used_address,
2053 unsigned int allowed_msghdr_flags)
2055 struct compat_msghdr __user *msg_compat =
2056 (struct compat_msghdr __user *)msg;
2057 struct sockaddr_storage address;
2058 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2059 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2060 __aligned(sizeof(__kernel_size_t));
2061 /* 20 is size of ipv6_pktinfo */
2062 unsigned char *ctl_buf = ctl;
2063 int ctl_len;
2064 ssize_t err;
2066 msg_sys->msg_name = &address;
2068 if (MSG_CMSG_COMPAT & flags)
2069 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
2070 else
2071 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
2072 if (err < 0)
2073 return err;
2075 err = -ENOBUFS;
2077 if (msg_sys->msg_controllen > INT_MAX)
2078 goto out_freeiov;
2079 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2080 ctl_len = msg_sys->msg_controllen;
2081 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2082 err =
2083 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2084 sizeof(ctl));
2085 if (err)
2086 goto out_freeiov;
2087 ctl_buf = msg_sys->msg_control;
2088 ctl_len = msg_sys->msg_controllen;
2089 } else if (ctl_len) {
2090 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2091 CMSG_ALIGN(sizeof(struct cmsghdr)));
2092 if (ctl_len > sizeof(ctl)) {
2093 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2094 if (ctl_buf == NULL)
2095 goto out_freeiov;
2097 err = -EFAULT;
2099 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2100 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2101 * checking falls down on this.
2103 if (copy_from_user(ctl_buf,
2104 (void __user __force *)msg_sys->msg_control,
2105 ctl_len))
2106 goto out_freectl;
2107 msg_sys->msg_control = ctl_buf;
2109 msg_sys->msg_flags = flags;
2111 if (sock->file->f_flags & O_NONBLOCK)
2112 msg_sys->msg_flags |= MSG_DONTWAIT;
2114 * If this is sendmmsg() and current destination address is same as
2115 * previously succeeded address, omit asking LSM's decision.
2116 * used_address->name_len is initialized to UINT_MAX so that the first
2117 * destination address never matches.
2119 if (used_address && msg_sys->msg_name &&
2120 used_address->name_len == msg_sys->msg_namelen &&
2121 !memcmp(&used_address->name, msg_sys->msg_name,
2122 used_address->name_len)) {
2123 err = sock_sendmsg_nosec(sock, msg_sys);
2124 goto out_freectl;
2126 err = sock_sendmsg(sock, msg_sys);
2128 * If this is sendmmsg() and sending to current destination address was
2129 * successful, remember it.
2131 if (used_address && err >= 0) {
2132 used_address->name_len = msg_sys->msg_namelen;
2133 if (msg_sys->msg_name)
2134 memcpy(&used_address->name, msg_sys->msg_name,
2135 used_address->name_len);
2138 out_freectl:
2139 if (ctl_buf != ctl)
2140 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2141 out_freeiov:
2142 kfree(iov);
2143 return err;
2147 * BSD sendmsg interface
2150 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2151 bool forbid_cmsg_compat)
2153 int fput_needed, err;
2154 struct msghdr msg_sys;
2155 struct socket *sock;
2157 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2158 return -EINVAL;
2160 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2161 if (!sock)
2162 goto out;
2164 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2166 fput_light(sock->file, fput_needed);
2167 out:
2168 return err;
2171 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2173 return __sys_sendmsg(fd, msg, flags, true);
2177 * Linux sendmmsg interface
2180 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2181 unsigned int flags, bool forbid_cmsg_compat)
2183 int fput_needed, err, datagrams;
2184 struct socket *sock;
2185 struct mmsghdr __user *entry;
2186 struct compat_mmsghdr __user *compat_entry;
2187 struct msghdr msg_sys;
2188 struct used_address used_address;
2189 unsigned int oflags = flags;
2191 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2192 return -EINVAL;
2194 if (vlen > UIO_MAXIOV)
2195 vlen = UIO_MAXIOV;
2197 datagrams = 0;
2199 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2200 if (!sock)
2201 return err;
2203 used_address.name_len = UINT_MAX;
2204 entry = mmsg;
2205 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2206 err = 0;
2207 flags |= MSG_BATCH;
2209 while (datagrams < vlen) {
2210 if (datagrams == vlen - 1)
2211 flags = oflags;
2213 if (MSG_CMSG_COMPAT & flags) {
2214 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2215 &msg_sys, flags, &used_address, MSG_EOR);
2216 if (err < 0)
2217 break;
2218 err = __put_user(err, &compat_entry->msg_len);
2219 ++compat_entry;
2220 } else {
2221 err = ___sys_sendmsg(sock,
2222 (struct user_msghdr __user *)entry,
2223 &msg_sys, flags, &used_address, MSG_EOR);
2224 if (err < 0)
2225 break;
2226 err = put_user(err, &entry->msg_len);
2227 ++entry;
2230 if (err)
2231 break;
2232 ++datagrams;
2233 if (msg_data_left(&msg_sys))
2234 break;
2235 cond_resched();
2238 fput_light(sock->file, fput_needed);
2240 /* We only return an error if no datagrams were able to be sent */
2241 if (datagrams != 0)
2242 return datagrams;
2244 return err;
2247 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2248 unsigned int, vlen, unsigned int, flags)
2250 return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2253 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2254 struct msghdr *msg_sys, unsigned int flags, int nosec)
2256 struct compat_msghdr __user *msg_compat =
2257 (struct compat_msghdr __user *)msg;
2258 struct iovec iovstack[UIO_FASTIOV];
2259 struct iovec *iov = iovstack;
2260 unsigned long cmsg_ptr;
2261 int len;
2262 ssize_t err;
2264 /* kernel mode address */
2265 struct sockaddr_storage addr;
2267 /* user mode address pointers */
2268 struct sockaddr __user *uaddr;
2269 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2271 msg_sys->msg_name = &addr;
2273 if (MSG_CMSG_COMPAT & flags)
2274 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2275 else
2276 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2277 if (err < 0)
2278 return err;
2280 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2281 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2283 /* We assume all kernel code knows the size of sockaddr_storage */
2284 msg_sys->msg_namelen = 0;
2286 if (sock->file->f_flags & O_NONBLOCK)
2287 flags |= MSG_DONTWAIT;
2288 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2289 if (err < 0)
2290 goto out_freeiov;
2291 len = err;
2293 if (uaddr != NULL) {
2294 err = move_addr_to_user(&addr,
2295 msg_sys->msg_namelen, uaddr,
2296 uaddr_len);
2297 if (err < 0)
2298 goto out_freeiov;
2300 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2301 COMPAT_FLAGS(msg));
2302 if (err)
2303 goto out_freeiov;
2304 if (MSG_CMSG_COMPAT & flags)
2305 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2306 &msg_compat->msg_controllen);
2307 else
2308 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2309 &msg->msg_controllen);
2310 if (err)
2311 goto out_freeiov;
2312 err = len;
2314 out_freeiov:
2315 kfree(iov);
2316 return err;
2320 * BSD recvmsg interface
2323 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2324 bool forbid_cmsg_compat)
2326 int fput_needed, err;
2327 struct msghdr msg_sys;
2328 struct socket *sock;
2330 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2331 return -EINVAL;
2333 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2334 if (!sock)
2335 goto out;
2337 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2339 fput_light(sock->file, fput_needed);
2340 out:
2341 return err;
2344 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2345 unsigned int, flags)
2347 return __sys_recvmsg(fd, msg, flags, true);
2351 * Linux recvmmsg interface
2354 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2355 unsigned int flags, struct timespec *timeout)
2357 int fput_needed, err, datagrams;
2358 struct socket *sock;
2359 struct mmsghdr __user *entry;
2360 struct compat_mmsghdr __user *compat_entry;
2361 struct msghdr msg_sys;
2362 struct timespec64 end_time;
2363 struct timespec64 timeout64;
2365 if (timeout &&
2366 poll_select_set_timeout(&end_time, timeout->tv_sec,
2367 timeout->tv_nsec))
2368 return -EINVAL;
2370 datagrams = 0;
2372 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2373 if (!sock)
2374 return err;
2376 if (likely(!(flags & MSG_ERRQUEUE))) {
2377 err = sock_error(sock->sk);
2378 if (err) {
2379 datagrams = err;
2380 goto out_put;
2384 entry = mmsg;
2385 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2387 while (datagrams < vlen) {
2389 * No need to ask LSM for more than the first datagram.
2391 if (MSG_CMSG_COMPAT & flags) {
2392 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2393 &msg_sys, flags & ~MSG_WAITFORONE,
2394 datagrams);
2395 if (err < 0)
2396 break;
2397 err = __put_user(err, &compat_entry->msg_len);
2398 ++compat_entry;
2399 } else {
2400 err = ___sys_recvmsg(sock,
2401 (struct user_msghdr __user *)entry,
2402 &msg_sys, flags & ~MSG_WAITFORONE,
2403 datagrams);
2404 if (err < 0)
2405 break;
2406 err = put_user(err, &entry->msg_len);
2407 ++entry;
2410 if (err)
2411 break;
2412 ++datagrams;
2414 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2415 if (flags & MSG_WAITFORONE)
2416 flags |= MSG_DONTWAIT;
2418 if (timeout) {
2419 ktime_get_ts64(&timeout64);
2420 *timeout = timespec64_to_timespec(
2421 timespec64_sub(end_time, timeout64));
2422 if (timeout->tv_sec < 0) {
2423 timeout->tv_sec = timeout->tv_nsec = 0;
2424 break;
2427 /* Timeout, return less than vlen datagrams */
2428 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2429 break;
2432 /* Out of band data, return right away */
2433 if (msg_sys.msg_flags & MSG_OOB)
2434 break;
2435 cond_resched();
2438 if (err == 0)
2439 goto out_put;
2441 if (datagrams == 0) {
2442 datagrams = err;
2443 goto out_put;
2447 * We may return less entries than requested (vlen) if the
2448 * sock is non block and there aren't enough datagrams...
2450 if (err != -EAGAIN) {
2452 * ... or if recvmsg returns an error after we
2453 * received some datagrams, where we record the
2454 * error to return on the next call or if the
2455 * app asks about it using getsockopt(SO_ERROR).
2457 sock->sk->sk_err = -err;
2459 out_put:
2460 fput_light(sock->file, fput_needed);
2462 return datagrams;
2465 static int do_sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2466 unsigned int vlen, unsigned int flags,
2467 struct timespec __user *timeout)
2469 int datagrams;
2470 struct timespec timeout_sys;
2472 if (flags & MSG_CMSG_COMPAT)
2473 return -EINVAL;
2475 if (!timeout)
2476 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2478 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2479 return -EFAULT;
2481 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2483 if (datagrams > 0 &&
2484 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2485 datagrams = -EFAULT;
2487 return datagrams;
2490 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2491 unsigned int, vlen, unsigned int, flags,
2492 struct timespec __user *, timeout)
2494 return do_sys_recvmmsg(fd, mmsg, vlen, flags, timeout);
2497 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2498 /* Argument list sizes for sys_socketcall */
2499 #define AL(x) ((x) * sizeof(unsigned long))
2500 static const unsigned char nargs[21] = {
2501 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2502 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2503 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2504 AL(4), AL(5), AL(4)
2507 #undef AL
2510 * System call vectors.
2512 * Argument checking cleaned up. Saved 20% in size.
2513 * This function doesn't need to set the kernel lock because
2514 * it is set by the callees.
2517 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2519 unsigned long a[AUDITSC_ARGS];
2520 unsigned long a0, a1;
2521 int err;
2522 unsigned int len;
2524 if (call < 1 || call > SYS_SENDMMSG)
2525 return -EINVAL;
2526 call = array_index_nospec(call, SYS_SENDMMSG + 1);
2528 len = nargs[call];
2529 if (len > sizeof(a))
2530 return -EINVAL;
2532 /* copy_from_user should be SMP safe. */
2533 if (copy_from_user(a, args, len))
2534 return -EFAULT;
2536 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2537 if (err)
2538 return err;
2540 a0 = a[0];
2541 a1 = a[1];
2543 switch (call) {
2544 case SYS_SOCKET:
2545 err = __sys_socket(a0, a1, a[2]);
2546 break;
2547 case SYS_BIND:
2548 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2549 break;
2550 case SYS_CONNECT:
2551 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2552 break;
2553 case SYS_LISTEN:
2554 err = __sys_listen(a0, a1);
2555 break;
2556 case SYS_ACCEPT:
2557 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2558 (int __user *)a[2], 0);
2559 break;
2560 case SYS_GETSOCKNAME:
2561 err =
2562 __sys_getsockname(a0, (struct sockaddr __user *)a1,
2563 (int __user *)a[2]);
2564 break;
2565 case SYS_GETPEERNAME:
2566 err =
2567 __sys_getpeername(a0, (struct sockaddr __user *)a1,
2568 (int __user *)a[2]);
2569 break;
2570 case SYS_SOCKETPAIR:
2571 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2572 break;
2573 case SYS_SEND:
2574 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2575 NULL, 0);
2576 break;
2577 case SYS_SENDTO:
2578 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2579 (struct sockaddr __user *)a[4], a[5]);
2580 break;
2581 case SYS_RECV:
2582 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2583 NULL, NULL);
2584 break;
2585 case SYS_RECVFROM:
2586 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2587 (struct sockaddr __user *)a[4],
2588 (int __user *)a[5]);
2589 break;
2590 case SYS_SHUTDOWN:
2591 err = __sys_shutdown(a0, a1);
2592 break;
2593 case SYS_SETSOCKOPT:
2594 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2595 a[4]);
2596 break;
2597 case SYS_GETSOCKOPT:
2598 err =
2599 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2600 (int __user *)a[4]);
2601 break;
2602 case SYS_SENDMSG:
2603 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2604 a[2], true);
2605 break;
2606 case SYS_SENDMMSG:
2607 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2608 a[3], true);
2609 break;
2610 case SYS_RECVMSG:
2611 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2612 a[2], true);
2613 break;
2614 case SYS_RECVMMSG:
2615 err = do_sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2616 a[3], (struct timespec __user *)a[4]);
2617 break;
2618 case SYS_ACCEPT4:
2619 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2620 (int __user *)a[2], a[3]);
2621 break;
2622 default:
2623 err = -EINVAL;
2624 break;
2626 return err;
2629 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2632 * sock_register - add a socket protocol handler
2633 * @ops: description of protocol
2635 * This function is called by a protocol handler that wants to
2636 * advertise its address family, and have it linked into the
2637 * socket interface. The value ops->family corresponds to the
2638 * socket system call protocol family.
2640 int sock_register(const struct net_proto_family *ops)
2642 int err;
2644 if (ops->family >= NPROTO) {
2645 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2646 return -ENOBUFS;
2649 spin_lock(&net_family_lock);
2650 if (rcu_dereference_protected(net_families[ops->family],
2651 lockdep_is_held(&net_family_lock)))
2652 err = -EEXIST;
2653 else {
2654 rcu_assign_pointer(net_families[ops->family], ops);
2655 err = 0;
2657 spin_unlock(&net_family_lock);
2659 pr_info("NET: Registered protocol family %d\n", ops->family);
2660 return err;
2662 EXPORT_SYMBOL(sock_register);
2665 * sock_unregister - remove a protocol handler
2666 * @family: protocol family to remove
2668 * This function is called by a protocol handler that wants to
2669 * remove its address family, and have it unlinked from the
2670 * new socket creation.
2672 * If protocol handler is a module, then it can use module reference
2673 * counts to protect against new references. If protocol handler is not
2674 * a module then it needs to provide its own protection in
2675 * the ops->create routine.
2677 void sock_unregister(int family)
2679 BUG_ON(family < 0 || family >= NPROTO);
2681 spin_lock(&net_family_lock);
2682 RCU_INIT_POINTER(net_families[family], NULL);
2683 spin_unlock(&net_family_lock);
2685 synchronize_rcu();
2687 pr_info("NET: Unregistered protocol family %d\n", family);
2689 EXPORT_SYMBOL(sock_unregister);
2691 bool sock_is_registered(int family)
2693 return family < NPROTO &&
2694 rcu_access_pointer(net_families[array_index_nospec(family, NPROTO)]);
2697 static int __init sock_init(void)
2699 int err;
2701 * Initialize the network sysctl infrastructure.
2703 err = net_sysctl_init();
2704 if (err)
2705 goto out;
2708 * Initialize skbuff SLAB cache
2710 skb_init();
2713 * Initialize the protocols module.
2716 init_inodecache();
2718 err = register_filesystem(&sock_fs_type);
2719 if (err)
2720 goto out_fs;
2721 sock_mnt = kern_mount(&sock_fs_type);
2722 if (IS_ERR(sock_mnt)) {
2723 err = PTR_ERR(sock_mnt);
2724 goto out_mount;
2727 /* The real protocol initialization is performed in later initcalls.
2730 #ifdef CONFIG_NETFILTER
2731 err = netfilter_init();
2732 if (err)
2733 goto out;
2734 #endif
2736 ptp_classifier_init();
2738 out:
2739 return err;
2741 out_mount:
2742 unregister_filesystem(&sock_fs_type);
2743 out_fs:
2744 goto out;
2747 core_initcall(sock_init); /* early initcall */
2749 #ifdef CONFIG_PROC_FS
2750 void socket_seq_show(struct seq_file *seq)
2752 seq_printf(seq, "sockets: used %d\n",
2753 sock_inuse_get(seq->private));
2755 #endif /* CONFIG_PROC_FS */
2757 #ifdef CONFIG_COMPAT
2758 static int do_siocgstamp(struct net *net, struct socket *sock,
2759 unsigned int cmd, void __user *up)
2761 mm_segment_t old_fs = get_fs();
2762 struct timeval ktv;
2763 int err;
2765 set_fs(KERNEL_DS);
2766 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2767 set_fs(old_fs);
2768 if (!err)
2769 err = compat_put_timeval(&ktv, up);
2771 return err;
2774 static int do_siocgstampns(struct net *net, struct socket *sock,
2775 unsigned int cmd, void __user *up)
2777 mm_segment_t old_fs = get_fs();
2778 struct timespec kts;
2779 int err;
2781 set_fs(KERNEL_DS);
2782 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2783 set_fs(old_fs);
2784 if (!err)
2785 err = compat_put_timespec(&kts, up);
2787 return err;
2790 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2792 struct compat_ifconf ifc32;
2793 struct ifconf ifc;
2794 int err;
2796 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2797 return -EFAULT;
2799 ifc.ifc_len = ifc32.ifc_len;
2800 ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
2802 rtnl_lock();
2803 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
2804 rtnl_unlock();
2805 if (err)
2806 return err;
2808 ifc32.ifc_len = ifc.ifc_len;
2809 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2810 return -EFAULT;
2812 return 0;
2815 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2817 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2818 bool convert_in = false, convert_out = false;
2819 size_t buf_size = 0;
2820 struct ethtool_rxnfc __user *rxnfc = NULL;
2821 struct ifreq ifr;
2822 u32 rule_cnt = 0, actual_rule_cnt;
2823 u32 ethcmd;
2824 u32 data;
2825 int ret;
2827 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2828 return -EFAULT;
2830 compat_rxnfc = compat_ptr(data);
2832 if (get_user(ethcmd, &compat_rxnfc->cmd))
2833 return -EFAULT;
2835 /* Most ethtool structures are defined without padding.
2836 * Unfortunately struct ethtool_rxnfc is an exception.
2838 switch (ethcmd) {
2839 default:
2840 break;
2841 case ETHTOOL_GRXCLSRLALL:
2842 /* Buffer size is variable */
2843 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2844 return -EFAULT;
2845 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2846 return -ENOMEM;
2847 buf_size += rule_cnt * sizeof(u32);
2848 /* fall through */
2849 case ETHTOOL_GRXRINGS:
2850 case ETHTOOL_GRXCLSRLCNT:
2851 case ETHTOOL_GRXCLSRULE:
2852 case ETHTOOL_SRXCLSRLINS:
2853 convert_out = true;
2854 /* fall through */
2855 case ETHTOOL_SRXCLSRLDEL:
2856 buf_size += sizeof(struct ethtool_rxnfc);
2857 convert_in = true;
2858 rxnfc = compat_alloc_user_space(buf_size);
2859 break;
2862 if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2863 return -EFAULT;
2865 ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
2867 if (convert_in) {
2868 /* We expect there to be holes between fs.m_ext and
2869 * fs.ring_cookie and at the end of fs, but nowhere else.
2871 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2872 sizeof(compat_rxnfc->fs.m_ext) !=
2873 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2874 sizeof(rxnfc->fs.m_ext));
2875 BUILD_BUG_ON(
2876 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2877 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2878 offsetof(struct ethtool_rxnfc, fs.location) -
2879 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2881 if (copy_in_user(rxnfc, compat_rxnfc,
2882 (void __user *)(&rxnfc->fs.m_ext + 1) -
2883 (void __user *)rxnfc) ||
2884 copy_in_user(&rxnfc->fs.ring_cookie,
2885 &compat_rxnfc->fs.ring_cookie,
2886 (void __user *)(&rxnfc->fs.location + 1) -
2887 (void __user *)&rxnfc->fs.ring_cookie) ||
2888 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2889 sizeof(rxnfc->rule_cnt)))
2890 return -EFAULT;
2893 ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
2894 if (ret)
2895 return ret;
2897 if (convert_out) {
2898 if (copy_in_user(compat_rxnfc, rxnfc,
2899 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2900 (const void __user *)rxnfc) ||
2901 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2902 &rxnfc->fs.ring_cookie,
2903 (const void __user *)(&rxnfc->fs.location + 1) -
2904 (const void __user *)&rxnfc->fs.ring_cookie) ||
2905 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2906 sizeof(rxnfc->rule_cnt)))
2907 return -EFAULT;
2909 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2910 /* As an optimisation, we only copy the actual
2911 * number of rules that the underlying
2912 * function returned. Since Mallory might
2913 * change the rule count in user memory, we
2914 * check that it is less than the rule count
2915 * originally given (as the user buffer size),
2916 * which has been range-checked.
2918 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2919 return -EFAULT;
2920 if (actual_rule_cnt < rule_cnt)
2921 rule_cnt = actual_rule_cnt;
2922 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2923 &rxnfc->rule_locs[0],
2924 rule_cnt * sizeof(u32)))
2925 return -EFAULT;
2929 return 0;
2932 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2934 compat_uptr_t uptr32;
2935 struct ifreq ifr;
2936 void __user *saved;
2937 int err;
2939 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
2940 return -EFAULT;
2942 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2943 return -EFAULT;
2945 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
2946 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
2948 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
2949 if (!err) {
2950 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
2951 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
2952 err = -EFAULT;
2954 return err;
2957 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2958 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2959 struct compat_ifreq __user *u_ifreq32)
2961 struct ifreq ifreq;
2962 u32 data32;
2964 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
2965 return -EFAULT;
2966 if (get_user(data32, &u_ifreq32->ifr_data))
2967 return -EFAULT;
2968 ifreq.ifr_data = compat_ptr(data32);
2970 return dev_ioctl(net, cmd, &ifreq, NULL);
2973 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2974 struct compat_ifreq __user *uifr32)
2976 struct ifreq ifr;
2977 struct compat_ifmap __user *uifmap32;
2978 int err;
2980 uifmap32 = &uifr32->ifr_ifru.ifru_map;
2981 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2982 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2983 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2984 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2985 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2986 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2987 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2988 if (err)
2989 return -EFAULT;
2991 err = dev_ioctl(net, cmd, &ifr, NULL);
2993 if (cmd == SIOCGIFMAP && !err) {
2994 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2995 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2996 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2997 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2998 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2999 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3000 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3001 if (err)
3002 err = -EFAULT;
3004 return err;
3007 struct rtentry32 {
3008 u32 rt_pad1;
3009 struct sockaddr rt_dst; /* target address */
3010 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3011 struct sockaddr rt_genmask; /* target network mask (IP) */
3012 unsigned short rt_flags;
3013 short rt_pad2;
3014 u32 rt_pad3;
3015 unsigned char rt_tos;
3016 unsigned char rt_class;
3017 short rt_pad4;
3018 short rt_metric; /* +1 for binary compatibility! */
3019 /* char * */ u32 rt_dev; /* forcing the device at add */
3020 u32 rt_mtu; /* per route MTU/Window */
3021 u32 rt_window; /* Window clamping */
3022 unsigned short rt_irtt; /* Initial RTT */
3025 struct in6_rtmsg32 {
3026 struct in6_addr rtmsg_dst;
3027 struct in6_addr rtmsg_src;
3028 struct in6_addr rtmsg_gateway;
3029 u32 rtmsg_type;
3030 u16 rtmsg_dst_len;
3031 u16 rtmsg_src_len;
3032 u32 rtmsg_metric;
3033 u32 rtmsg_info;
3034 u32 rtmsg_flags;
3035 s32 rtmsg_ifindex;
3038 static int routing_ioctl(struct net *net, struct socket *sock,
3039 unsigned int cmd, void __user *argp)
3041 int ret;
3042 void *r = NULL;
3043 struct in6_rtmsg r6;
3044 struct rtentry r4;
3045 char devname[16];
3046 u32 rtdev;
3047 mm_segment_t old_fs = get_fs();
3049 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3050 struct in6_rtmsg32 __user *ur6 = argp;
3051 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3052 3 * sizeof(struct in6_addr));
3053 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3054 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3055 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3056 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3057 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3058 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3059 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3061 r = (void *) &r6;
3062 } else { /* ipv4 */
3063 struct rtentry32 __user *ur4 = argp;
3064 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3065 3 * sizeof(struct sockaddr));
3066 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3067 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3068 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3069 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3070 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3071 ret |= get_user(rtdev, &(ur4->rt_dev));
3072 if (rtdev) {
3073 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3074 r4.rt_dev = (char __user __force *)devname;
3075 devname[15] = 0;
3076 } else
3077 r4.rt_dev = NULL;
3079 r = (void *) &r4;
3082 if (ret) {
3083 ret = -EFAULT;
3084 goto out;
3087 set_fs(KERNEL_DS);
3088 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3089 set_fs(old_fs);
3091 out:
3092 return ret;
3095 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3096 * for some operations; this forces use of the newer bridge-utils that
3097 * use compatible ioctls
3099 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3101 compat_ulong_t tmp;
3103 if (get_user(tmp, argp))
3104 return -EFAULT;
3105 if (tmp == BRCTL_GET_VERSION)
3106 return BRCTL_VERSION + 1;
3107 return -EINVAL;
3110 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3111 unsigned int cmd, unsigned long arg)
3113 void __user *argp = compat_ptr(arg);
3114 struct sock *sk = sock->sk;
3115 struct net *net = sock_net(sk);
3117 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3118 return compat_ifr_data_ioctl(net, cmd, argp);
3120 switch (cmd) {
3121 case SIOCSIFBR:
3122 case SIOCGIFBR:
3123 return old_bridge_ioctl(argp);
3124 case SIOCGIFCONF:
3125 return compat_dev_ifconf(net, argp);
3126 case SIOCETHTOOL:
3127 return ethtool_ioctl(net, argp);
3128 case SIOCWANDEV:
3129 return compat_siocwandev(net, argp);
3130 case SIOCGIFMAP:
3131 case SIOCSIFMAP:
3132 return compat_sioc_ifmap(net, cmd, argp);
3133 case SIOCADDRT:
3134 case SIOCDELRT:
3135 return routing_ioctl(net, sock, cmd, argp);
3136 case SIOCGSTAMP:
3137 return do_siocgstamp(net, sock, cmd, argp);
3138 case SIOCGSTAMPNS:
3139 return do_siocgstampns(net, sock, cmd, argp);
3140 case SIOCBONDSLAVEINFOQUERY:
3141 case SIOCBONDINFOQUERY:
3142 case SIOCSHWTSTAMP:
3143 case SIOCGHWTSTAMP:
3144 return compat_ifr_data_ioctl(net, cmd, argp);
3146 case FIOSETOWN:
3147 case SIOCSPGRP:
3148 case FIOGETOWN:
3149 case SIOCGPGRP:
3150 case SIOCBRADDBR:
3151 case SIOCBRDELBR:
3152 case SIOCGIFVLAN:
3153 case SIOCSIFVLAN:
3154 case SIOCADDDLCI:
3155 case SIOCDELDLCI:
3156 case SIOCGSKNS:
3157 return sock_ioctl(file, cmd, arg);
3159 case SIOCGIFFLAGS:
3160 case SIOCSIFFLAGS:
3161 case SIOCGIFMETRIC:
3162 case SIOCSIFMETRIC:
3163 case SIOCGIFMTU:
3164 case SIOCSIFMTU:
3165 case SIOCGIFMEM:
3166 case SIOCSIFMEM:
3167 case SIOCGIFHWADDR:
3168 case SIOCSIFHWADDR:
3169 case SIOCADDMULTI:
3170 case SIOCDELMULTI:
3171 case SIOCGIFINDEX:
3172 case SIOCGIFADDR:
3173 case SIOCSIFADDR:
3174 case SIOCSIFHWBROADCAST:
3175 case SIOCDIFADDR:
3176 case SIOCGIFBRDADDR:
3177 case SIOCSIFBRDADDR:
3178 case SIOCGIFDSTADDR:
3179 case SIOCSIFDSTADDR:
3180 case SIOCGIFNETMASK:
3181 case SIOCSIFNETMASK:
3182 case SIOCSIFPFLAGS:
3183 case SIOCGIFPFLAGS:
3184 case SIOCGIFTXQLEN:
3185 case SIOCSIFTXQLEN:
3186 case SIOCBRADDIF:
3187 case SIOCBRDELIF:
3188 case SIOCSIFNAME:
3189 case SIOCGMIIPHY:
3190 case SIOCGMIIREG:
3191 case SIOCSMIIREG:
3192 case SIOCSARP:
3193 case SIOCGARP:
3194 case SIOCDARP:
3195 case SIOCATMARK:
3196 case SIOCBONDENSLAVE:
3197 case SIOCBONDRELEASE:
3198 case SIOCBONDSETHWADDR:
3199 case SIOCBONDCHANGEACTIVE:
3200 case SIOCGIFNAME:
3201 return sock_do_ioctl(net, sock, cmd, arg);
3204 return -ENOIOCTLCMD;
3207 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3208 unsigned long arg)
3210 struct socket *sock = file->private_data;
3211 int ret = -ENOIOCTLCMD;
3212 struct sock *sk;
3213 struct net *net;
3215 sk = sock->sk;
3216 net = sock_net(sk);
3218 if (sock->ops->compat_ioctl)
3219 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3221 if (ret == -ENOIOCTLCMD &&
3222 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3223 ret = compat_wext_handle_ioctl(net, cmd, arg);
3225 if (ret == -ENOIOCTLCMD)
3226 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3228 return ret;
3230 #endif
3232 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3234 return sock->ops->bind(sock, addr, addrlen);
3236 EXPORT_SYMBOL(kernel_bind);
3238 int kernel_listen(struct socket *sock, int backlog)
3240 return sock->ops->listen(sock, backlog);
3242 EXPORT_SYMBOL(kernel_listen);
3244 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3246 struct sock *sk = sock->sk;
3247 int err;
3249 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3250 newsock);
3251 if (err < 0)
3252 goto done;
3254 err = sock->ops->accept(sock, *newsock, flags, true);
3255 if (err < 0) {
3256 sock_release(*newsock);
3257 *newsock = NULL;
3258 goto done;
3261 (*newsock)->ops = sock->ops;
3262 __module_get((*newsock)->ops->owner);
3264 done:
3265 return err;
3267 EXPORT_SYMBOL(kernel_accept);
3269 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3270 int flags)
3272 return sock->ops->connect(sock, addr, addrlen, flags);
3274 EXPORT_SYMBOL(kernel_connect);
3276 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3278 return sock->ops->getname(sock, addr, 0);
3280 EXPORT_SYMBOL(kernel_getsockname);
3282 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3284 return sock->ops->getname(sock, addr, 1);
3286 EXPORT_SYMBOL(kernel_getpeername);
3288 int kernel_getsockopt(struct socket *sock, int level, int optname,
3289 char *optval, int *optlen)
3291 mm_segment_t oldfs = get_fs();
3292 char __user *uoptval;
3293 int __user *uoptlen;
3294 int err;
3296 uoptval = (char __user __force *) optval;
3297 uoptlen = (int __user __force *) optlen;
3299 set_fs(KERNEL_DS);
3300 if (level == SOL_SOCKET)
3301 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3302 else
3303 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3304 uoptlen);
3305 set_fs(oldfs);
3306 return err;
3308 EXPORT_SYMBOL(kernel_getsockopt);
3310 int kernel_setsockopt(struct socket *sock, int level, int optname,
3311 char *optval, unsigned int optlen)
3313 mm_segment_t oldfs = get_fs();
3314 char __user *uoptval;
3315 int err;
3317 uoptval = (char __user __force *) optval;
3319 set_fs(KERNEL_DS);
3320 if (level == SOL_SOCKET)
3321 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3322 else
3323 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3324 optlen);
3325 set_fs(oldfs);
3326 return err;
3328 EXPORT_SYMBOL(kernel_setsockopt);
3330 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3331 size_t size, int flags)
3333 if (sock->ops->sendpage)
3334 return sock->ops->sendpage(sock, page, offset, size, flags);
3336 return sock_no_sendpage(sock, page, offset, size, flags);
3338 EXPORT_SYMBOL(kernel_sendpage);
3340 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3341 size_t size, int flags)
3343 struct socket *sock = sk->sk_socket;
3345 if (sock->ops->sendpage_locked)
3346 return sock->ops->sendpage_locked(sk, page, offset, size,
3347 flags);
3349 return sock_no_sendpage_locked(sk, page, offset, size, flags);
3351 EXPORT_SYMBOL(kernel_sendpage_locked);
3353 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3355 return sock->ops->shutdown(sock, how);
3357 EXPORT_SYMBOL(kernel_sock_shutdown);
3359 /* This routine returns the IP overhead imposed by a socket i.e.
3360 * the length of the underlying IP header, depending on whether
3361 * this is an IPv4 or IPv6 socket and the length from IP options turned
3362 * on at the socket. Assumes that the caller has a lock on the socket.
3364 u32 kernel_sock_ip_overhead(struct sock *sk)
3366 struct inet_sock *inet;
3367 struct ip_options_rcu *opt;
3368 u32 overhead = 0;
3369 #if IS_ENABLED(CONFIG_IPV6)
3370 struct ipv6_pinfo *np;
3371 struct ipv6_txoptions *optv6 = NULL;
3372 #endif /* IS_ENABLED(CONFIG_IPV6) */
3374 if (!sk)
3375 return overhead;
3377 switch (sk->sk_family) {
3378 case AF_INET:
3379 inet = inet_sk(sk);
3380 overhead += sizeof(struct iphdr);
3381 opt = rcu_dereference_protected(inet->inet_opt,
3382 sock_owned_by_user(sk));
3383 if (opt)
3384 overhead += opt->opt.optlen;
3385 return overhead;
3386 #if IS_ENABLED(CONFIG_IPV6)
3387 case AF_INET6:
3388 np = inet6_sk(sk);
3389 overhead += sizeof(struct ipv6hdr);
3390 if (np)
3391 optv6 = rcu_dereference_protected(np->opt,
3392 sock_owned_by_user(sk));
3393 if (optv6)
3394 overhead += (optv6->opt_flen + optv6->opt_nflen);
3395 return overhead;
3396 #endif /* IS_ENABLED(CONFIG_IPV6) */
3397 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3398 return overhead;
3401 EXPORT_SYMBOL(kernel_sock_ip_overhead);