2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
58 * Based upon Swansea University Computer Society NET3.039
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 #include <linux/nospec.h>
94 #include <linux/uaccess.h>
95 #include <asm/unistd.h>
97 #include <net/compat.h>
99 #include <net/cls_cgroup.h>
101 #include <net/sock.h>
102 #include <linux/netfilter.h>
104 #include <linux/if_tun.h>
105 #include <linux/ipv6_route.h>
106 #include <linux/route.h>
107 #include <linux/sockios.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly
;
113 unsigned int sysctl_net_busy_poll __read_mostly
;
116 static ssize_t
sock_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
);
117 static ssize_t
sock_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
);
118 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
);
120 static int sock_close(struct inode
*inode
, struct file
*file
);
121 static __poll_t
sock_poll(struct file
*file
,
122 struct poll_table_struct
*wait
);
123 static long sock_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
);
125 static long compat_sock_ioctl(struct file
*file
,
126 unsigned int cmd
, unsigned long arg
);
128 static int sock_fasync(int fd
, struct file
*filp
, int on
);
129 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
130 int offset
, size_t size
, loff_t
*ppos
, int more
);
131 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
132 struct pipe_inode_info
*pipe
, size_t len
,
136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137 * in the operation structures but are done directly via the socketcall() multiplexor.
140 static const struct file_operations socket_file_ops
= {
141 .owner
= THIS_MODULE
,
143 .read_iter
= sock_read_iter
,
144 .write_iter
= sock_write_iter
,
146 .unlocked_ioctl
= sock_ioctl
,
148 .compat_ioctl
= compat_sock_ioctl
,
151 .release
= sock_close
,
152 .fasync
= sock_fasync
,
153 .sendpage
= sock_sendpage
,
154 .splice_write
= generic_splice_sendpage
,
155 .splice_read
= sock_splice_read
,
159 * The protocol list. Each protocol is registered in here.
162 static DEFINE_SPINLOCK(net_family_lock
);
163 static const struct net_proto_family __rcu
*net_families
[NPROTO
] __read_mostly
;
167 * Move socket addresses back and forth across the kernel/user
168 * divide and look after the messy bits.
172 * move_addr_to_kernel - copy a socket address into kernel space
173 * @uaddr: Address in user space
174 * @kaddr: Address in kernel space
175 * @ulen: Length in user space
177 * The address is copied into kernel space. If the provided address is
178 * too long an error code of -EINVAL is returned. If the copy gives
179 * invalid addresses -EFAULT is returned. On a success 0 is returned.
182 int move_addr_to_kernel(void __user
*uaddr
, int ulen
, struct sockaddr_storage
*kaddr
)
184 if (ulen
< 0 || ulen
> sizeof(struct sockaddr_storage
))
188 if (copy_from_user(kaddr
, uaddr
, ulen
))
190 return audit_sockaddr(ulen
, kaddr
);
194 * move_addr_to_user - copy an address to user space
195 * @kaddr: kernel space address
196 * @klen: length of address in kernel
197 * @uaddr: user space address
198 * @ulen: pointer to user length field
200 * The value pointed to by ulen on entry is the buffer length available.
201 * This is overwritten with the buffer space used. -EINVAL is returned
202 * if an overlong buffer is specified or a negative buffer size. -EFAULT
203 * is returned if either the buffer or the length field are not
205 * After copying the data up to the limit the user specifies, the true
206 * length of the data is written over the length limit the user
207 * specified. Zero is returned for a success.
210 static int move_addr_to_user(struct sockaddr_storage
*kaddr
, int klen
,
211 void __user
*uaddr
, int __user
*ulen
)
216 BUG_ON(klen
> sizeof(struct sockaddr_storage
));
217 err
= get_user(len
, ulen
);
225 if (audit_sockaddr(klen
, kaddr
))
227 if (copy_to_user(uaddr
, kaddr
, len
))
231 * "fromlen shall refer to the value before truncation.."
234 return __put_user(klen
, ulen
);
237 static struct kmem_cache
*sock_inode_cachep __ro_after_init
;
239 static struct inode
*sock_alloc_inode(struct super_block
*sb
)
241 struct socket_alloc
*ei
;
242 struct socket_wq
*wq
;
244 ei
= kmem_cache_alloc(sock_inode_cachep
, GFP_KERNEL
);
247 wq
= kmalloc(sizeof(*wq
), GFP_KERNEL
);
249 kmem_cache_free(sock_inode_cachep
, ei
);
252 init_waitqueue_head(&wq
->wait
);
253 wq
->fasync_list
= NULL
;
255 RCU_INIT_POINTER(ei
->socket
.wq
, wq
);
257 ei
->socket
.state
= SS_UNCONNECTED
;
258 ei
->socket
.flags
= 0;
259 ei
->socket
.ops
= NULL
;
260 ei
->socket
.sk
= NULL
;
261 ei
->socket
.file
= NULL
;
263 return &ei
->vfs_inode
;
266 static void sock_destroy_inode(struct inode
*inode
)
268 struct socket_alloc
*ei
;
269 struct socket_wq
*wq
;
271 ei
= container_of(inode
, struct socket_alloc
, vfs_inode
);
272 wq
= rcu_dereference_protected(ei
->socket
.wq
, 1);
274 kmem_cache_free(sock_inode_cachep
, ei
);
277 static void init_once(void *foo
)
279 struct socket_alloc
*ei
= (struct socket_alloc
*)foo
;
281 inode_init_once(&ei
->vfs_inode
);
284 static void init_inodecache(void)
286 sock_inode_cachep
= kmem_cache_create("sock_inode_cache",
287 sizeof(struct socket_alloc
),
289 (SLAB_HWCACHE_ALIGN
|
290 SLAB_RECLAIM_ACCOUNT
|
291 SLAB_MEM_SPREAD
| SLAB_ACCOUNT
),
293 BUG_ON(sock_inode_cachep
== NULL
);
296 static const struct super_operations sockfs_ops
= {
297 .alloc_inode
= sock_alloc_inode
,
298 .destroy_inode
= sock_destroy_inode
,
299 .statfs
= simple_statfs
,
303 * sockfs_dname() is called from d_path().
305 static char *sockfs_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
307 return dynamic_dname(dentry
, buffer
, buflen
, "socket:[%lu]",
308 d_inode(dentry
)->i_ino
);
311 static const struct dentry_operations sockfs_dentry_operations
= {
312 .d_dname
= sockfs_dname
,
315 static int sockfs_xattr_get(const struct xattr_handler
*handler
,
316 struct dentry
*dentry
, struct inode
*inode
,
317 const char *suffix
, void *value
, size_t size
)
320 if (dentry
->d_name
.len
+ 1 > size
)
322 memcpy(value
, dentry
->d_name
.name
, dentry
->d_name
.len
+ 1);
324 return dentry
->d_name
.len
+ 1;
327 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
328 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
329 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
331 static const struct xattr_handler sockfs_xattr_handler
= {
332 .name
= XATTR_NAME_SOCKPROTONAME
,
333 .get
= sockfs_xattr_get
,
336 static int sockfs_security_xattr_set(const struct xattr_handler
*handler
,
337 struct dentry
*dentry
, struct inode
*inode
,
338 const char *suffix
, const void *value
,
339 size_t size
, int flags
)
341 /* Handled by LSM. */
345 static const struct xattr_handler sockfs_security_xattr_handler
= {
346 .prefix
= XATTR_SECURITY_PREFIX
,
347 .set
= sockfs_security_xattr_set
,
350 static const struct xattr_handler
*sockfs_xattr_handlers
[] = {
351 &sockfs_xattr_handler
,
352 &sockfs_security_xattr_handler
,
356 static struct dentry
*sockfs_mount(struct file_system_type
*fs_type
,
357 int flags
, const char *dev_name
, void *data
)
359 return mount_pseudo_xattr(fs_type
, "socket:", &sockfs_ops
,
360 sockfs_xattr_handlers
,
361 &sockfs_dentry_operations
, SOCKFS_MAGIC
);
364 static struct vfsmount
*sock_mnt __read_mostly
;
366 static struct file_system_type sock_fs_type
= {
368 .mount
= sockfs_mount
,
369 .kill_sb
= kill_anon_super
,
373 * Obtains the first available file descriptor and sets it up for use.
375 * These functions create file structures and maps them to fd space
376 * of the current process. On success it returns file descriptor
377 * and file struct implicitly stored in sock->file.
378 * Note that another thread may close file descriptor before we return
379 * from this function. We use the fact that now we do not refer
380 * to socket after mapping. If one day we will need it, this
381 * function will increment ref. count on file by 1.
383 * In any case returned fd MAY BE not valid!
384 * This race condition is unavoidable
385 * with shared fd spaces, we cannot solve it inside kernel,
386 * but we take care of internal coherence yet.
389 struct file
*sock_alloc_file(struct socket
*sock
, int flags
, const char *dname
)
391 struct qstr name
= { .name
= "" };
397 name
.len
= strlen(name
.name
);
398 } else if (sock
->sk
) {
399 name
.name
= sock
->sk
->sk_prot_creator
->name
;
400 name
.len
= strlen(name
.name
);
402 path
.dentry
= d_alloc_pseudo(sock_mnt
->mnt_sb
, &name
);
403 if (unlikely(!path
.dentry
)) {
405 return ERR_PTR(-ENOMEM
);
407 path
.mnt
= mntget(sock_mnt
);
409 d_instantiate(path
.dentry
, SOCK_INODE(sock
));
411 file
= alloc_file(&path
, FMODE_READ
| FMODE_WRITE
,
414 /* drop dentry, keep inode for a bit */
415 ihold(d_inode(path
.dentry
));
417 /* ... and now kill it properly */
423 file
->f_flags
= O_RDWR
| (flags
& O_NONBLOCK
);
424 file
->private_data
= sock
;
427 EXPORT_SYMBOL(sock_alloc_file
);
429 static int sock_map_fd(struct socket
*sock
, int flags
)
431 struct file
*newfile
;
432 int fd
= get_unused_fd_flags(flags
);
433 if (unlikely(fd
< 0)) {
438 newfile
= sock_alloc_file(sock
, flags
, NULL
);
439 if (likely(!IS_ERR(newfile
))) {
440 fd_install(fd
, newfile
);
445 return PTR_ERR(newfile
);
448 struct socket
*sock_from_file(struct file
*file
, int *err
)
450 if (file
->f_op
== &socket_file_ops
)
451 return file
->private_data
; /* set in sock_map_fd */
456 EXPORT_SYMBOL(sock_from_file
);
459 * sockfd_lookup - Go from a file number to its socket slot
461 * @err: pointer to an error code return
463 * The file handle passed in is locked and the socket it is bound
464 * to is returned. If an error occurs the err pointer is overwritten
465 * with a negative errno code and NULL is returned. The function checks
466 * for both invalid handles and passing a handle which is not a socket.
468 * On a success the socket object pointer is returned.
471 struct socket
*sockfd_lookup(int fd
, int *err
)
482 sock
= sock_from_file(file
, err
);
487 EXPORT_SYMBOL(sockfd_lookup
);
489 static struct socket
*sockfd_lookup_light(int fd
, int *err
, int *fput_needed
)
491 struct fd f
= fdget(fd
);
496 sock
= sock_from_file(f
.file
, err
);
498 *fput_needed
= f
.flags
;
506 static ssize_t
sockfs_listxattr(struct dentry
*dentry
, char *buffer
,
512 len
= security_inode_listsecurity(d_inode(dentry
), buffer
, size
);
522 len
= (XATTR_NAME_SOCKPROTONAME_LEN
+ 1);
527 memcpy(buffer
, XATTR_NAME_SOCKPROTONAME
, len
);
534 static int sockfs_setattr(struct dentry
*dentry
, struct iattr
*iattr
)
536 int err
= simple_setattr(dentry
, iattr
);
538 if (!err
&& (iattr
->ia_valid
& ATTR_UID
)) {
539 struct socket
*sock
= SOCKET_I(d_inode(dentry
));
542 sock
->sk
->sk_uid
= iattr
->ia_uid
;
550 static const struct inode_operations sockfs_inode_ops
= {
551 .listxattr
= sockfs_listxattr
,
552 .setattr
= sockfs_setattr
,
556 * sock_alloc - allocate a socket
558 * Allocate a new inode and socket object. The two are bound together
559 * and initialised. The socket is then returned. If we are out of inodes
563 struct socket
*sock_alloc(void)
568 inode
= new_inode_pseudo(sock_mnt
->mnt_sb
);
572 sock
= SOCKET_I(inode
);
574 inode
->i_ino
= get_next_ino();
575 inode
->i_mode
= S_IFSOCK
| S_IRWXUGO
;
576 inode
->i_uid
= current_fsuid();
577 inode
->i_gid
= current_fsgid();
578 inode
->i_op
= &sockfs_inode_ops
;
582 EXPORT_SYMBOL(sock_alloc
);
585 * sock_release - close a socket
586 * @sock: socket to close
588 * The socket is released from the protocol stack if it has a release
589 * callback, and the inode is then released if the socket is bound to
590 * an inode not a file.
593 static void __sock_release(struct socket
*sock
, struct inode
*inode
)
596 struct module
*owner
= sock
->ops
->owner
;
600 sock
->ops
->release(sock
);
607 if (rcu_dereference_protected(sock
->wq
, 1)->fasync_list
)
608 pr_err("%s: fasync list not empty!\n", __func__
);
611 iput(SOCK_INODE(sock
));
617 void sock_release(struct socket
*sock
)
619 __sock_release(sock
, NULL
);
621 EXPORT_SYMBOL(sock_release
);
623 void __sock_tx_timestamp(__u16 tsflags
, __u8
*tx_flags
)
625 u8 flags
= *tx_flags
;
627 if (tsflags
& SOF_TIMESTAMPING_TX_HARDWARE
)
628 flags
|= SKBTX_HW_TSTAMP
;
630 if (tsflags
& SOF_TIMESTAMPING_TX_SOFTWARE
)
631 flags
|= SKBTX_SW_TSTAMP
;
633 if (tsflags
& SOF_TIMESTAMPING_TX_SCHED
)
634 flags
|= SKBTX_SCHED_TSTAMP
;
638 EXPORT_SYMBOL(__sock_tx_timestamp
);
640 static inline int sock_sendmsg_nosec(struct socket
*sock
, struct msghdr
*msg
)
642 int ret
= sock
->ops
->sendmsg(sock
, msg
, msg_data_left(msg
));
643 BUG_ON(ret
== -EIOCBQUEUED
);
647 int sock_sendmsg(struct socket
*sock
, struct msghdr
*msg
)
649 int err
= security_socket_sendmsg(sock
, msg
,
652 return err
?: sock_sendmsg_nosec(sock
, msg
);
654 EXPORT_SYMBOL(sock_sendmsg
);
656 int kernel_sendmsg(struct socket
*sock
, struct msghdr
*msg
,
657 struct kvec
*vec
, size_t num
, size_t size
)
659 iov_iter_kvec(&msg
->msg_iter
, WRITE
| ITER_KVEC
, vec
, num
, size
);
660 return sock_sendmsg(sock
, msg
);
662 EXPORT_SYMBOL(kernel_sendmsg
);
664 int kernel_sendmsg_locked(struct sock
*sk
, struct msghdr
*msg
,
665 struct kvec
*vec
, size_t num
, size_t size
)
667 struct socket
*sock
= sk
->sk_socket
;
669 if (!sock
->ops
->sendmsg_locked
)
670 return sock_no_sendmsg_locked(sk
, msg
, size
);
672 iov_iter_kvec(&msg
->msg_iter
, WRITE
| ITER_KVEC
, vec
, num
, size
);
674 return sock
->ops
->sendmsg_locked(sk
, msg
, msg_data_left(msg
));
676 EXPORT_SYMBOL(kernel_sendmsg_locked
);
678 static bool skb_is_err_queue(const struct sk_buff
*skb
)
680 /* pkt_type of skbs enqueued on the error queue are set to
681 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
682 * in recvmsg, since skbs received on a local socket will never
683 * have a pkt_type of PACKET_OUTGOING.
685 return skb
->pkt_type
== PACKET_OUTGOING
;
688 /* On transmit, software and hardware timestamps are returned independently.
689 * As the two skb clones share the hardware timestamp, which may be updated
690 * before the software timestamp is received, a hardware TX timestamp may be
691 * returned only if there is no software TX timestamp. Ignore false software
692 * timestamps, which may be made in the __sock_recv_timestamp() call when the
693 * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a
694 * hardware timestamp.
696 static bool skb_is_swtx_tstamp(const struct sk_buff
*skb
, int false_tstamp
)
698 return skb
->tstamp
&& !false_tstamp
&& skb_is_err_queue(skb
);
701 static void put_ts_pktinfo(struct msghdr
*msg
, struct sk_buff
*skb
)
703 struct scm_ts_pktinfo ts_pktinfo
;
704 struct net_device
*orig_dev
;
706 if (!skb_mac_header_was_set(skb
))
709 memset(&ts_pktinfo
, 0, sizeof(ts_pktinfo
));
712 orig_dev
= dev_get_by_napi_id(skb_napi_id(skb
));
714 ts_pktinfo
.if_index
= orig_dev
->ifindex
;
717 ts_pktinfo
.pkt_length
= skb
->len
- skb_mac_offset(skb
);
718 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMPING_PKTINFO
,
719 sizeof(ts_pktinfo
), &ts_pktinfo
);
723 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
725 void __sock_recv_timestamp(struct msghdr
*msg
, struct sock
*sk
,
728 int need_software_tstamp
= sock_flag(sk
, SOCK_RCVTSTAMP
);
729 struct scm_timestamping tss
;
730 int empty
= 1, false_tstamp
= 0;
731 struct skb_shared_hwtstamps
*shhwtstamps
=
734 /* Race occurred between timestamp enabling and packet
735 receiving. Fill in the current time for now. */
736 if (need_software_tstamp
&& skb
->tstamp
== 0) {
737 __net_timestamp(skb
);
741 if (need_software_tstamp
) {
742 if (!sock_flag(sk
, SOCK_RCVTSTAMPNS
)) {
744 skb_get_timestamp(skb
, &tv
);
745 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMP
,
749 skb_get_timestampns(skb
, &ts
);
750 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMPNS
,
755 memset(&tss
, 0, sizeof(tss
));
756 if ((sk
->sk_tsflags
& SOF_TIMESTAMPING_SOFTWARE
) &&
757 ktime_to_timespec_cond(skb
->tstamp
, tss
.ts
+ 0))
760 (sk
->sk_tsflags
& SOF_TIMESTAMPING_RAW_HARDWARE
) &&
761 !skb_is_swtx_tstamp(skb
, false_tstamp
) &&
762 ktime_to_timespec_cond(shhwtstamps
->hwtstamp
, tss
.ts
+ 2)) {
764 if ((sk
->sk_tsflags
& SOF_TIMESTAMPING_OPT_PKTINFO
) &&
765 !skb_is_err_queue(skb
))
766 put_ts_pktinfo(msg
, skb
);
769 put_cmsg(msg
, SOL_SOCKET
,
770 SCM_TIMESTAMPING
, sizeof(tss
), &tss
);
772 if (skb_is_err_queue(skb
) && skb
->len
&&
773 SKB_EXT_ERR(skb
)->opt_stats
)
774 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMPING_OPT_STATS
,
775 skb
->len
, skb
->data
);
778 EXPORT_SYMBOL_GPL(__sock_recv_timestamp
);
780 void __sock_recv_wifi_status(struct msghdr
*msg
, struct sock
*sk
,
785 if (!sock_flag(sk
, SOCK_WIFI_STATUS
))
787 if (!skb
->wifi_acked_valid
)
790 ack
= skb
->wifi_acked
;
792 put_cmsg(msg
, SOL_SOCKET
, SCM_WIFI_STATUS
, sizeof(ack
), &ack
);
794 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status
);
796 static inline void sock_recv_drops(struct msghdr
*msg
, struct sock
*sk
,
799 if (sock_flag(sk
, SOCK_RXQ_OVFL
) && skb
&& SOCK_SKB_CB(skb
)->dropcount
)
800 put_cmsg(msg
, SOL_SOCKET
, SO_RXQ_OVFL
,
801 sizeof(__u32
), &SOCK_SKB_CB(skb
)->dropcount
);
804 void __sock_recv_ts_and_drops(struct msghdr
*msg
, struct sock
*sk
,
807 sock_recv_timestamp(msg
, sk
, skb
);
808 sock_recv_drops(msg
, sk
, skb
);
810 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops
);
812 static inline int sock_recvmsg_nosec(struct socket
*sock
, struct msghdr
*msg
,
815 return sock
->ops
->recvmsg(sock
, msg
, msg_data_left(msg
), flags
);
818 int sock_recvmsg(struct socket
*sock
, struct msghdr
*msg
, int flags
)
820 int err
= security_socket_recvmsg(sock
, msg
, msg_data_left(msg
), flags
);
822 return err
?: sock_recvmsg_nosec(sock
, msg
, flags
);
824 EXPORT_SYMBOL(sock_recvmsg
);
827 * kernel_recvmsg - Receive a message from a socket (kernel space)
828 * @sock: The socket to receive the message from
829 * @msg: Received message
830 * @vec: Input s/g array for message data
831 * @num: Size of input s/g array
832 * @size: Number of bytes to read
833 * @flags: Message flags (MSG_DONTWAIT, etc...)
835 * On return the msg structure contains the scatter/gather array passed in the
836 * vec argument. The array is modified so that it consists of the unfilled
837 * portion of the original array.
839 * The returned value is the total number of bytes received, or an error.
841 int kernel_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
842 struct kvec
*vec
, size_t num
, size_t size
, int flags
)
844 mm_segment_t oldfs
= get_fs();
847 iov_iter_kvec(&msg
->msg_iter
, READ
| ITER_KVEC
, vec
, num
, size
);
849 result
= sock_recvmsg(sock
, msg
, flags
);
853 EXPORT_SYMBOL(kernel_recvmsg
);
855 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
856 int offset
, size_t size
, loff_t
*ppos
, int more
)
861 sock
= file
->private_data
;
863 flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
864 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
867 return kernel_sendpage(sock
, page
, offset
, size
, flags
);
870 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
871 struct pipe_inode_info
*pipe
, size_t len
,
874 struct socket
*sock
= file
->private_data
;
876 if (unlikely(!sock
->ops
->splice_read
))
879 return sock
->ops
->splice_read(sock
, ppos
, pipe
, len
, flags
);
882 static ssize_t
sock_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
884 struct file
*file
= iocb
->ki_filp
;
885 struct socket
*sock
= file
->private_data
;
886 struct msghdr msg
= {.msg_iter
= *to
,
890 if (file
->f_flags
& O_NONBLOCK
)
891 msg
.msg_flags
= MSG_DONTWAIT
;
893 if (iocb
->ki_pos
!= 0)
896 if (!iov_iter_count(to
)) /* Match SYS5 behaviour */
899 res
= sock_recvmsg(sock
, &msg
, msg
.msg_flags
);
904 static ssize_t
sock_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
)
906 struct file
*file
= iocb
->ki_filp
;
907 struct socket
*sock
= file
->private_data
;
908 struct msghdr msg
= {.msg_iter
= *from
,
912 if (iocb
->ki_pos
!= 0)
915 if (file
->f_flags
& O_NONBLOCK
)
916 msg
.msg_flags
= MSG_DONTWAIT
;
918 if (sock
->type
== SOCK_SEQPACKET
)
919 msg
.msg_flags
|= MSG_EOR
;
921 res
= sock_sendmsg(sock
, &msg
);
922 *from
= msg
.msg_iter
;
927 * Atomic setting of ioctl hooks to avoid race
928 * with module unload.
931 static DEFINE_MUTEX(br_ioctl_mutex
);
932 static int (*br_ioctl_hook
) (struct net
*, unsigned int cmd
, void __user
*arg
);
934 void brioctl_set(int (*hook
) (struct net
*, unsigned int, void __user
*))
936 mutex_lock(&br_ioctl_mutex
);
937 br_ioctl_hook
= hook
;
938 mutex_unlock(&br_ioctl_mutex
);
940 EXPORT_SYMBOL(brioctl_set
);
942 static DEFINE_MUTEX(vlan_ioctl_mutex
);
943 static int (*vlan_ioctl_hook
) (struct net
*, void __user
*arg
);
945 void vlan_ioctl_set(int (*hook
) (struct net
*, void __user
*))
947 mutex_lock(&vlan_ioctl_mutex
);
948 vlan_ioctl_hook
= hook
;
949 mutex_unlock(&vlan_ioctl_mutex
);
951 EXPORT_SYMBOL(vlan_ioctl_set
);
953 static DEFINE_MUTEX(dlci_ioctl_mutex
);
954 static int (*dlci_ioctl_hook
) (unsigned int, void __user
*);
956 void dlci_ioctl_set(int (*hook
) (unsigned int, void __user
*))
958 mutex_lock(&dlci_ioctl_mutex
);
959 dlci_ioctl_hook
= hook
;
960 mutex_unlock(&dlci_ioctl_mutex
);
962 EXPORT_SYMBOL(dlci_ioctl_set
);
964 static long sock_do_ioctl(struct net
*net
, struct socket
*sock
,
965 unsigned int cmd
, unsigned long arg
)
968 void __user
*argp
= (void __user
*)arg
;
970 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
973 * If this ioctl is unknown try to hand it down
976 if (err
!= -ENOIOCTLCMD
)
979 if (cmd
== SIOCGIFCONF
) {
981 if (copy_from_user(&ifc
, argp
, sizeof(struct ifconf
)))
984 err
= dev_ifconf(net
, &ifc
, sizeof(struct ifreq
));
986 if (!err
&& copy_to_user(argp
, &ifc
, sizeof(struct ifconf
)))
991 if (copy_from_user(&ifr
, argp
, sizeof(struct ifreq
)))
993 err
= dev_ioctl(net
, cmd
, &ifr
, &need_copyout
);
994 if (!err
&& need_copyout
)
995 if (copy_to_user(argp
, &ifr
, sizeof(struct ifreq
)))
1002 * With an ioctl, arg may well be a user mode pointer, but we don't know
1003 * what to do with it - that's up to the protocol still.
1006 struct ns_common
*get_net_ns(struct ns_common
*ns
)
1008 return &get_net(container_of(ns
, struct net
, ns
))->ns
;
1010 EXPORT_SYMBOL_GPL(get_net_ns
);
1012 static long sock_ioctl(struct file
*file
, unsigned cmd
, unsigned long arg
)
1014 struct socket
*sock
;
1016 void __user
*argp
= (void __user
*)arg
;
1020 sock
= file
->private_data
;
1023 if (unlikely(cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15))) {
1026 if (copy_from_user(&ifr
, argp
, sizeof(struct ifreq
)))
1028 err
= dev_ioctl(net
, cmd
, &ifr
, &need_copyout
);
1029 if (!err
&& need_copyout
)
1030 if (copy_to_user(argp
, &ifr
, sizeof(struct ifreq
)))
1033 #ifdef CONFIG_WEXT_CORE
1034 if (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
) {
1035 err
= wext_handle_ioctl(net
, cmd
, argp
);
1042 if (get_user(pid
, (int __user
*)argp
))
1044 err
= f_setown(sock
->file
, pid
, 1);
1048 err
= put_user(f_getown(sock
->file
),
1049 (int __user
*)argp
);
1057 request_module("bridge");
1059 mutex_lock(&br_ioctl_mutex
);
1061 err
= br_ioctl_hook(net
, cmd
, argp
);
1062 mutex_unlock(&br_ioctl_mutex
);
1067 if (!vlan_ioctl_hook
)
1068 request_module("8021q");
1070 mutex_lock(&vlan_ioctl_mutex
);
1071 if (vlan_ioctl_hook
)
1072 err
= vlan_ioctl_hook(net
, argp
);
1073 mutex_unlock(&vlan_ioctl_mutex
);
1078 if (!dlci_ioctl_hook
)
1079 request_module("dlci");
1081 mutex_lock(&dlci_ioctl_mutex
);
1082 if (dlci_ioctl_hook
)
1083 err
= dlci_ioctl_hook(cmd
, argp
);
1084 mutex_unlock(&dlci_ioctl_mutex
);
1088 if (!ns_capable(net
->user_ns
, CAP_NET_ADMIN
))
1091 err
= open_related_ns(&net
->ns
, get_net_ns
);
1094 err
= sock_do_ioctl(net
, sock
, cmd
, arg
);
1100 int sock_create_lite(int family
, int type
, int protocol
, struct socket
**res
)
1103 struct socket
*sock
= NULL
;
1105 err
= security_socket_create(family
, type
, protocol
, 1);
1109 sock
= sock_alloc();
1116 err
= security_socket_post_create(sock
, family
, type
, protocol
, 1);
1128 EXPORT_SYMBOL(sock_create_lite
);
1130 /* No kernel lock held - perfect */
1131 static __poll_t
sock_poll(struct file
*file
, poll_table
*wait
)
1133 struct socket
*sock
= file
->private_data
;
1134 __poll_t events
= poll_requested_events(wait
);
1136 sock_poll_busy_loop(sock
, events
);
1137 if (!sock
->ops
->poll
)
1139 return sock
->ops
->poll(file
, sock
, wait
) | sock_poll_busy_flag(sock
);
1142 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1144 struct socket
*sock
= file
->private_data
;
1146 return sock
->ops
->mmap(file
, sock
, vma
);
1149 static int sock_close(struct inode
*inode
, struct file
*filp
)
1151 __sock_release(SOCKET_I(inode
), inode
);
1156 * Update the socket async list
1158 * Fasync_list locking strategy.
1160 * 1. fasync_list is modified only under process context socket lock
1161 * i.e. under semaphore.
1162 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1163 * or under socket lock
1166 static int sock_fasync(int fd
, struct file
*filp
, int on
)
1168 struct socket
*sock
= filp
->private_data
;
1169 struct sock
*sk
= sock
->sk
;
1170 struct socket_wq
*wq
;
1176 wq
= rcu_dereference_protected(sock
->wq
, lockdep_sock_is_held(sk
));
1177 fasync_helper(fd
, filp
, on
, &wq
->fasync_list
);
1179 if (!wq
->fasync_list
)
1180 sock_reset_flag(sk
, SOCK_FASYNC
);
1182 sock_set_flag(sk
, SOCK_FASYNC
);
1188 /* This function may be called only under rcu_lock */
1190 int sock_wake_async(struct socket_wq
*wq
, int how
, int band
)
1192 if (!wq
|| !wq
->fasync_list
)
1196 case SOCK_WAKE_WAITD
:
1197 if (test_bit(SOCKWQ_ASYNC_WAITDATA
, &wq
->flags
))
1200 case SOCK_WAKE_SPACE
:
1201 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE
, &wq
->flags
))
1206 kill_fasync(&wq
->fasync_list
, SIGIO
, band
);
1209 kill_fasync(&wq
->fasync_list
, SIGURG
, band
);
1214 EXPORT_SYMBOL(sock_wake_async
);
1216 int __sock_create(struct net
*net
, int family
, int type
, int protocol
,
1217 struct socket
**res
, int kern
)
1220 struct socket
*sock
;
1221 const struct net_proto_family
*pf
;
1224 * Check protocol is in range
1226 if (family
< 0 || family
>= NPROTO
)
1227 return -EAFNOSUPPORT
;
1228 if (type
< 0 || type
>= SOCK_MAX
)
1233 This uglymoron is moved from INET layer to here to avoid
1234 deadlock in module load.
1236 if (family
== PF_INET
&& type
== SOCK_PACKET
) {
1237 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1242 err
= security_socket_create(family
, type
, protocol
, kern
);
1247 * Allocate the socket and allow the family to set things up. if
1248 * the protocol is 0, the family is instructed to select an appropriate
1251 sock
= sock_alloc();
1253 net_warn_ratelimited("socket: no more sockets\n");
1254 return -ENFILE
; /* Not exactly a match, but its the
1255 closest posix thing */
1260 #ifdef CONFIG_MODULES
1261 /* Attempt to load a protocol module if the find failed.
1263 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1264 * requested real, full-featured networking support upon configuration.
1265 * Otherwise module support will break!
1267 if (rcu_access_pointer(net_families
[family
]) == NULL
)
1268 request_module("net-pf-%d", family
);
1272 pf
= rcu_dereference(net_families
[family
]);
1273 err
= -EAFNOSUPPORT
;
1278 * We will call the ->create function, that possibly is in a loadable
1279 * module, so we have to bump that loadable module refcnt first.
1281 if (!try_module_get(pf
->owner
))
1284 /* Now protected by module ref count */
1287 err
= pf
->create(net
, sock
, protocol
, kern
);
1289 goto out_module_put
;
1292 * Now to bump the refcnt of the [loadable] module that owns this
1293 * socket at sock_release time we decrement its refcnt.
1295 if (!try_module_get(sock
->ops
->owner
))
1296 goto out_module_busy
;
1299 * Now that we're done with the ->create function, the [loadable]
1300 * module can have its refcnt decremented
1302 module_put(pf
->owner
);
1303 err
= security_socket_post_create(sock
, family
, type
, protocol
, kern
);
1305 goto out_sock_release
;
1311 err
= -EAFNOSUPPORT
;
1314 module_put(pf
->owner
);
1321 goto out_sock_release
;
1323 EXPORT_SYMBOL(__sock_create
);
1325 int sock_create(int family
, int type
, int protocol
, struct socket
**res
)
1327 return __sock_create(current
->nsproxy
->net_ns
, family
, type
, protocol
, res
, 0);
1329 EXPORT_SYMBOL(sock_create
);
1331 int sock_create_kern(struct net
*net
, int family
, int type
, int protocol
, struct socket
**res
)
1333 return __sock_create(net
, family
, type
, protocol
, res
, 1);
1335 EXPORT_SYMBOL(sock_create_kern
);
1337 int __sys_socket(int family
, int type
, int protocol
)
1340 struct socket
*sock
;
1343 /* Check the SOCK_* constants for consistency. */
1344 BUILD_BUG_ON(SOCK_CLOEXEC
!= O_CLOEXEC
);
1345 BUILD_BUG_ON((SOCK_MAX
| SOCK_TYPE_MASK
) != SOCK_TYPE_MASK
);
1346 BUILD_BUG_ON(SOCK_CLOEXEC
& SOCK_TYPE_MASK
);
1347 BUILD_BUG_ON(SOCK_NONBLOCK
& SOCK_TYPE_MASK
);
1349 flags
= type
& ~SOCK_TYPE_MASK
;
1350 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1352 type
&= SOCK_TYPE_MASK
;
1354 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1355 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1357 retval
= sock_create(family
, type
, protocol
, &sock
);
1361 return sock_map_fd(sock
, flags
& (O_CLOEXEC
| O_NONBLOCK
));
1364 SYSCALL_DEFINE3(socket
, int, family
, int, type
, int, protocol
)
1366 return __sys_socket(family
, type
, protocol
);
1370 * Create a pair of connected sockets.
1373 int __sys_socketpair(int family
, int type
, int protocol
, int __user
*usockvec
)
1375 struct socket
*sock1
, *sock2
;
1377 struct file
*newfile1
, *newfile2
;
1380 flags
= type
& ~SOCK_TYPE_MASK
;
1381 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1383 type
&= SOCK_TYPE_MASK
;
1385 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1386 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1389 * reserve descriptors and make sure we won't fail
1390 * to return them to userland.
1392 fd1
= get_unused_fd_flags(flags
);
1393 if (unlikely(fd1
< 0))
1396 fd2
= get_unused_fd_flags(flags
);
1397 if (unlikely(fd2
< 0)) {
1402 err
= put_user(fd1
, &usockvec
[0]);
1406 err
= put_user(fd2
, &usockvec
[1]);
1411 * Obtain the first socket and check if the underlying protocol
1412 * supports the socketpair call.
1415 err
= sock_create(family
, type
, protocol
, &sock1
);
1416 if (unlikely(err
< 0))
1419 err
= sock_create(family
, type
, protocol
, &sock2
);
1420 if (unlikely(err
< 0)) {
1421 sock_release(sock1
);
1425 err
= security_socket_socketpair(sock1
, sock2
);
1426 if (unlikely(err
)) {
1427 sock_release(sock2
);
1428 sock_release(sock1
);
1432 err
= sock1
->ops
->socketpair(sock1
, sock2
);
1433 if (unlikely(err
< 0)) {
1434 sock_release(sock2
);
1435 sock_release(sock1
);
1439 newfile1
= sock_alloc_file(sock1
, flags
, NULL
);
1440 if (IS_ERR(newfile1
)) {
1441 err
= PTR_ERR(newfile1
);
1442 sock_release(sock2
);
1446 newfile2
= sock_alloc_file(sock2
, flags
, NULL
);
1447 if (IS_ERR(newfile2
)) {
1448 err
= PTR_ERR(newfile2
);
1453 audit_fd_pair(fd1
, fd2
);
1455 fd_install(fd1
, newfile1
);
1456 fd_install(fd2
, newfile2
);
1465 SYSCALL_DEFINE4(socketpair
, int, family
, int, type
, int, protocol
,
1466 int __user
*, usockvec
)
1468 return __sys_socketpair(family
, type
, protocol
, usockvec
);
1472 * Bind a name to a socket. Nothing much to do here since it's
1473 * the protocol's responsibility to handle the local address.
1475 * We move the socket address to kernel space before we call
1476 * the protocol layer (having also checked the address is ok).
1479 int __sys_bind(int fd
, struct sockaddr __user
*umyaddr
, int addrlen
)
1481 struct socket
*sock
;
1482 struct sockaddr_storage address
;
1483 int err
, fput_needed
;
1485 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1487 err
= move_addr_to_kernel(umyaddr
, addrlen
, &address
);
1489 err
= security_socket_bind(sock
,
1490 (struct sockaddr
*)&address
,
1493 err
= sock
->ops
->bind(sock
,
1497 fput_light(sock
->file
, fput_needed
);
1502 SYSCALL_DEFINE3(bind
, int, fd
, struct sockaddr __user
*, umyaddr
, int, addrlen
)
1504 return __sys_bind(fd
, umyaddr
, addrlen
);
1508 * Perform a listen. Basically, we allow the protocol to do anything
1509 * necessary for a listen, and if that works, we mark the socket as
1510 * ready for listening.
1513 int __sys_listen(int fd
, int backlog
)
1515 struct socket
*sock
;
1516 int err
, fput_needed
;
1519 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1521 somaxconn
= sock_net(sock
->sk
)->core
.sysctl_somaxconn
;
1522 if ((unsigned int)backlog
> somaxconn
)
1523 backlog
= somaxconn
;
1525 err
= security_socket_listen(sock
, backlog
);
1527 err
= sock
->ops
->listen(sock
, backlog
);
1529 fput_light(sock
->file
, fput_needed
);
1534 SYSCALL_DEFINE2(listen
, int, fd
, int, backlog
)
1536 return __sys_listen(fd
, backlog
);
1540 * For accept, we attempt to create a new socket, set up the link
1541 * with the client, wake up the client, then return the new
1542 * connected fd. We collect the address of the connector in kernel
1543 * space and move it to user at the very end. This is unclean because
1544 * we open the socket then return an error.
1546 * 1003.1g adds the ability to recvmsg() to query connection pending
1547 * status to recvmsg. We need to add that support in a way thats
1548 * clean when we restructure accept also.
1551 int __sys_accept4(int fd
, struct sockaddr __user
*upeer_sockaddr
,
1552 int __user
*upeer_addrlen
, int flags
)
1554 struct socket
*sock
, *newsock
;
1555 struct file
*newfile
;
1556 int err
, len
, newfd
, fput_needed
;
1557 struct sockaddr_storage address
;
1559 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1562 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1563 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1565 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1570 newsock
= sock_alloc();
1574 newsock
->type
= sock
->type
;
1575 newsock
->ops
= sock
->ops
;
1578 * We don't need try_module_get here, as the listening socket (sock)
1579 * has the protocol module (sock->ops->owner) held.
1581 __module_get(newsock
->ops
->owner
);
1583 newfd
= get_unused_fd_flags(flags
);
1584 if (unlikely(newfd
< 0)) {
1586 sock_release(newsock
);
1589 newfile
= sock_alloc_file(newsock
, flags
, sock
->sk
->sk_prot_creator
->name
);
1590 if (IS_ERR(newfile
)) {
1591 err
= PTR_ERR(newfile
);
1592 put_unused_fd(newfd
);
1596 err
= security_socket_accept(sock
, newsock
);
1600 err
= sock
->ops
->accept(sock
, newsock
, sock
->file
->f_flags
, false);
1604 if (upeer_sockaddr
) {
1605 len
= newsock
->ops
->getname(newsock
,
1606 (struct sockaddr
*)&address
, 2);
1608 err
= -ECONNABORTED
;
1611 err
= move_addr_to_user(&address
,
1612 len
, upeer_sockaddr
, upeer_addrlen
);
1617 /* File flags are not inherited via accept() unlike another OSes. */
1619 fd_install(newfd
, newfile
);
1623 fput_light(sock
->file
, fput_needed
);
1628 put_unused_fd(newfd
);
1632 SYSCALL_DEFINE4(accept4
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
1633 int __user
*, upeer_addrlen
, int, flags
)
1635 return __sys_accept4(fd
, upeer_sockaddr
, upeer_addrlen
, flags
);
1638 SYSCALL_DEFINE3(accept
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
1639 int __user
*, upeer_addrlen
)
1641 return __sys_accept4(fd
, upeer_sockaddr
, upeer_addrlen
, 0);
1645 * Attempt to connect to a socket with the server address. The address
1646 * is in user space so we verify it is OK and move it to kernel space.
1648 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1651 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1652 * other SEQPACKET protocols that take time to connect() as it doesn't
1653 * include the -EINPROGRESS status for such sockets.
1656 int __sys_connect(int fd
, struct sockaddr __user
*uservaddr
, int addrlen
)
1658 struct socket
*sock
;
1659 struct sockaddr_storage address
;
1660 int err
, fput_needed
;
1662 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1665 err
= move_addr_to_kernel(uservaddr
, addrlen
, &address
);
1670 security_socket_connect(sock
, (struct sockaddr
*)&address
, addrlen
);
1674 err
= sock
->ops
->connect(sock
, (struct sockaddr
*)&address
, addrlen
,
1675 sock
->file
->f_flags
);
1677 fput_light(sock
->file
, fput_needed
);
1682 SYSCALL_DEFINE3(connect
, int, fd
, struct sockaddr __user
*, uservaddr
,
1685 return __sys_connect(fd
, uservaddr
, addrlen
);
1689 * Get the local address ('name') of a socket object. Move the obtained
1690 * name to user space.
1693 int __sys_getsockname(int fd
, struct sockaddr __user
*usockaddr
,
1694 int __user
*usockaddr_len
)
1696 struct socket
*sock
;
1697 struct sockaddr_storage address
;
1698 int err
, fput_needed
;
1700 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1704 err
= security_socket_getsockname(sock
);
1708 err
= sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, 0);
1711 /* "err" is actually length in this case */
1712 err
= move_addr_to_user(&address
, err
, usockaddr
, usockaddr_len
);
1715 fput_light(sock
->file
, fput_needed
);
1720 SYSCALL_DEFINE3(getsockname
, int, fd
, struct sockaddr __user
*, usockaddr
,
1721 int __user
*, usockaddr_len
)
1723 return __sys_getsockname(fd
, usockaddr
, usockaddr_len
);
1727 * Get the remote address ('name') of a socket object. Move the obtained
1728 * name to user space.
1731 int __sys_getpeername(int fd
, struct sockaddr __user
*usockaddr
,
1732 int __user
*usockaddr_len
)
1734 struct socket
*sock
;
1735 struct sockaddr_storage address
;
1736 int err
, fput_needed
;
1738 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1740 err
= security_socket_getpeername(sock
);
1742 fput_light(sock
->file
, fput_needed
);
1746 err
= sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, 1);
1748 /* "err" is actually length in this case */
1749 err
= move_addr_to_user(&address
, err
, usockaddr
,
1751 fput_light(sock
->file
, fput_needed
);
1756 SYSCALL_DEFINE3(getpeername
, int, fd
, struct sockaddr __user
*, usockaddr
,
1757 int __user
*, usockaddr_len
)
1759 return __sys_getpeername(fd
, usockaddr
, usockaddr_len
);
1763 * Send a datagram to a given address. We move the address into kernel
1764 * space and check the user space data area is readable before invoking
1767 int __sys_sendto(int fd
, void __user
*buff
, size_t len
, unsigned int flags
,
1768 struct sockaddr __user
*addr
, int addr_len
)
1770 struct socket
*sock
;
1771 struct sockaddr_storage address
;
1777 err
= import_single_range(WRITE
, buff
, len
, &iov
, &msg
.msg_iter
);
1780 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1784 msg
.msg_name
= NULL
;
1785 msg
.msg_control
= NULL
;
1786 msg
.msg_controllen
= 0;
1787 msg
.msg_namelen
= 0;
1789 err
= move_addr_to_kernel(addr
, addr_len
, &address
);
1792 msg
.msg_name
= (struct sockaddr
*)&address
;
1793 msg
.msg_namelen
= addr_len
;
1795 if (sock
->file
->f_flags
& O_NONBLOCK
)
1796 flags
|= MSG_DONTWAIT
;
1797 msg
.msg_flags
= flags
;
1798 err
= sock_sendmsg(sock
, &msg
);
1801 fput_light(sock
->file
, fput_needed
);
1806 SYSCALL_DEFINE6(sendto
, int, fd
, void __user
*, buff
, size_t, len
,
1807 unsigned int, flags
, struct sockaddr __user
*, addr
,
1810 return __sys_sendto(fd
, buff
, len
, flags
, addr
, addr_len
);
1814 * Send a datagram down a socket.
1817 SYSCALL_DEFINE4(send
, int, fd
, void __user
*, buff
, size_t, len
,
1818 unsigned int, flags
)
1820 return __sys_sendto(fd
, buff
, len
, flags
, NULL
, 0);
1824 * Receive a frame from the socket and optionally record the address of the
1825 * sender. We verify the buffers are writable and if needed move the
1826 * sender address from kernel to user space.
1828 int __sys_recvfrom(int fd
, void __user
*ubuf
, size_t size
, unsigned int flags
,
1829 struct sockaddr __user
*addr
, int __user
*addr_len
)
1831 struct socket
*sock
;
1834 struct sockaddr_storage address
;
1838 err
= import_single_range(READ
, ubuf
, size
, &iov
, &msg
.msg_iter
);
1841 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1845 msg
.msg_control
= NULL
;
1846 msg
.msg_controllen
= 0;
1847 /* Save some cycles and don't copy the address if not needed */
1848 msg
.msg_name
= addr
? (struct sockaddr
*)&address
: NULL
;
1849 /* We assume all kernel code knows the size of sockaddr_storage */
1850 msg
.msg_namelen
= 0;
1851 msg
.msg_iocb
= NULL
;
1853 if (sock
->file
->f_flags
& O_NONBLOCK
)
1854 flags
|= MSG_DONTWAIT
;
1855 err
= sock_recvmsg(sock
, &msg
, flags
);
1857 if (err
>= 0 && addr
!= NULL
) {
1858 err2
= move_addr_to_user(&address
,
1859 msg
.msg_namelen
, addr
, addr_len
);
1864 fput_light(sock
->file
, fput_needed
);
1869 SYSCALL_DEFINE6(recvfrom
, int, fd
, void __user
*, ubuf
, size_t, size
,
1870 unsigned int, flags
, struct sockaddr __user
*, addr
,
1871 int __user
*, addr_len
)
1873 return __sys_recvfrom(fd
, ubuf
, size
, flags
, addr
, addr_len
);
1877 * Receive a datagram from a socket.
1880 SYSCALL_DEFINE4(recv
, int, fd
, void __user
*, ubuf
, size_t, size
,
1881 unsigned int, flags
)
1883 return __sys_recvfrom(fd
, ubuf
, size
, flags
, NULL
, NULL
);
1887 * Set a socket option. Because we don't know the option lengths we have
1888 * to pass the user mode parameter for the protocols to sort out.
1891 static int __sys_setsockopt(int fd
, int level
, int optname
,
1892 char __user
*optval
, int optlen
)
1894 int err
, fput_needed
;
1895 struct socket
*sock
;
1900 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1902 err
= security_socket_setsockopt(sock
, level
, optname
);
1906 if (level
== SOL_SOCKET
)
1908 sock_setsockopt(sock
, level
, optname
, optval
,
1912 sock
->ops
->setsockopt(sock
, level
, optname
, optval
,
1915 fput_light(sock
->file
, fput_needed
);
1920 SYSCALL_DEFINE5(setsockopt
, int, fd
, int, level
, int, optname
,
1921 char __user
*, optval
, int, optlen
)
1923 return __sys_setsockopt(fd
, level
, optname
, optval
, optlen
);
1927 * Get a socket option. Because we don't know the option lengths we have
1928 * to pass a user mode parameter for the protocols to sort out.
1931 static int __sys_getsockopt(int fd
, int level
, int optname
,
1932 char __user
*optval
, int __user
*optlen
)
1934 int err
, fput_needed
;
1935 struct socket
*sock
;
1937 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1939 err
= security_socket_getsockopt(sock
, level
, optname
);
1943 if (level
== SOL_SOCKET
)
1945 sock_getsockopt(sock
, level
, optname
, optval
,
1949 sock
->ops
->getsockopt(sock
, level
, optname
, optval
,
1952 fput_light(sock
->file
, fput_needed
);
1957 SYSCALL_DEFINE5(getsockopt
, int, fd
, int, level
, int, optname
,
1958 char __user
*, optval
, int __user
*, optlen
)
1960 return __sys_getsockopt(fd
, level
, optname
, optval
, optlen
);
1964 * Shutdown a socket.
1967 int __sys_shutdown(int fd
, int how
)
1969 int err
, fput_needed
;
1970 struct socket
*sock
;
1972 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1974 err
= security_socket_shutdown(sock
, how
);
1976 err
= sock
->ops
->shutdown(sock
, how
);
1977 fput_light(sock
->file
, fput_needed
);
1982 SYSCALL_DEFINE2(shutdown
, int, fd
, int, how
)
1984 return __sys_shutdown(fd
, how
);
1987 /* A couple of helpful macros for getting the address of the 32/64 bit
1988 * fields which are the same type (int / unsigned) on our platforms.
1990 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1991 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1992 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1994 struct used_address
{
1995 struct sockaddr_storage name
;
1996 unsigned int name_len
;
1999 static int copy_msghdr_from_user(struct msghdr
*kmsg
,
2000 struct user_msghdr __user
*umsg
,
2001 struct sockaddr __user
**save_addr
,
2004 struct user_msghdr msg
;
2007 if (copy_from_user(&msg
, umsg
, sizeof(*umsg
)))
2010 kmsg
->msg_control
= (void __force
*)msg
.msg_control
;
2011 kmsg
->msg_controllen
= msg
.msg_controllen
;
2012 kmsg
->msg_flags
= msg
.msg_flags
;
2014 kmsg
->msg_namelen
= msg
.msg_namelen
;
2016 kmsg
->msg_namelen
= 0;
2018 if (kmsg
->msg_namelen
< 0)
2021 if (kmsg
->msg_namelen
> sizeof(struct sockaddr_storage
))
2022 kmsg
->msg_namelen
= sizeof(struct sockaddr_storage
);
2025 *save_addr
= msg
.msg_name
;
2027 if (msg
.msg_name
&& kmsg
->msg_namelen
) {
2029 err
= move_addr_to_kernel(msg
.msg_name
,
2036 kmsg
->msg_name
= NULL
;
2037 kmsg
->msg_namelen
= 0;
2040 if (msg
.msg_iovlen
> UIO_MAXIOV
)
2043 kmsg
->msg_iocb
= NULL
;
2045 return import_iovec(save_addr
? READ
: WRITE
,
2046 msg
.msg_iov
, msg
.msg_iovlen
,
2047 UIO_FASTIOV
, iov
, &kmsg
->msg_iter
);
2050 static int ___sys_sendmsg(struct socket
*sock
, struct user_msghdr __user
*msg
,
2051 struct msghdr
*msg_sys
, unsigned int flags
,
2052 struct used_address
*used_address
,
2053 unsigned int allowed_msghdr_flags
)
2055 struct compat_msghdr __user
*msg_compat
=
2056 (struct compat_msghdr __user
*)msg
;
2057 struct sockaddr_storage address
;
2058 struct iovec iovstack
[UIO_FASTIOV
], *iov
= iovstack
;
2059 unsigned char ctl
[sizeof(struct cmsghdr
) + 20]
2060 __aligned(sizeof(__kernel_size_t
));
2061 /* 20 is size of ipv6_pktinfo */
2062 unsigned char *ctl_buf
= ctl
;
2066 msg_sys
->msg_name
= &address
;
2068 if (MSG_CMSG_COMPAT
& flags
)
2069 err
= get_compat_msghdr(msg_sys
, msg_compat
, NULL
, &iov
);
2071 err
= copy_msghdr_from_user(msg_sys
, msg
, NULL
, &iov
);
2077 if (msg_sys
->msg_controllen
> INT_MAX
)
2079 flags
|= (msg_sys
->msg_flags
& allowed_msghdr_flags
);
2080 ctl_len
= msg_sys
->msg_controllen
;
2081 if ((MSG_CMSG_COMPAT
& flags
) && ctl_len
) {
2083 cmsghdr_from_user_compat_to_kern(msg_sys
, sock
->sk
, ctl
,
2087 ctl_buf
= msg_sys
->msg_control
;
2088 ctl_len
= msg_sys
->msg_controllen
;
2089 } else if (ctl_len
) {
2090 BUILD_BUG_ON(sizeof(struct cmsghdr
) !=
2091 CMSG_ALIGN(sizeof(struct cmsghdr
)));
2092 if (ctl_len
> sizeof(ctl
)) {
2093 ctl_buf
= sock_kmalloc(sock
->sk
, ctl_len
, GFP_KERNEL
);
2094 if (ctl_buf
== NULL
)
2099 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2100 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2101 * checking falls down on this.
2103 if (copy_from_user(ctl_buf
,
2104 (void __user __force
*)msg_sys
->msg_control
,
2107 msg_sys
->msg_control
= ctl_buf
;
2109 msg_sys
->msg_flags
= flags
;
2111 if (sock
->file
->f_flags
& O_NONBLOCK
)
2112 msg_sys
->msg_flags
|= MSG_DONTWAIT
;
2114 * If this is sendmmsg() and current destination address is same as
2115 * previously succeeded address, omit asking LSM's decision.
2116 * used_address->name_len is initialized to UINT_MAX so that the first
2117 * destination address never matches.
2119 if (used_address
&& msg_sys
->msg_name
&&
2120 used_address
->name_len
== msg_sys
->msg_namelen
&&
2121 !memcmp(&used_address
->name
, msg_sys
->msg_name
,
2122 used_address
->name_len
)) {
2123 err
= sock_sendmsg_nosec(sock
, msg_sys
);
2126 err
= sock_sendmsg(sock
, msg_sys
);
2128 * If this is sendmmsg() and sending to current destination address was
2129 * successful, remember it.
2131 if (used_address
&& err
>= 0) {
2132 used_address
->name_len
= msg_sys
->msg_namelen
;
2133 if (msg_sys
->msg_name
)
2134 memcpy(&used_address
->name
, msg_sys
->msg_name
,
2135 used_address
->name_len
);
2140 sock_kfree_s(sock
->sk
, ctl_buf
, ctl_len
);
2147 * BSD sendmsg interface
2150 long __sys_sendmsg(int fd
, struct user_msghdr __user
*msg
, unsigned int flags
,
2151 bool forbid_cmsg_compat
)
2153 int fput_needed
, err
;
2154 struct msghdr msg_sys
;
2155 struct socket
*sock
;
2157 if (forbid_cmsg_compat
&& (flags
& MSG_CMSG_COMPAT
))
2160 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2164 err
= ___sys_sendmsg(sock
, msg
, &msg_sys
, flags
, NULL
, 0);
2166 fput_light(sock
->file
, fput_needed
);
2171 SYSCALL_DEFINE3(sendmsg
, int, fd
, struct user_msghdr __user
*, msg
, unsigned int, flags
)
2173 return __sys_sendmsg(fd
, msg
, flags
, true);
2177 * Linux sendmmsg interface
2180 int __sys_sendmmsg(int fd
, struct mmsghdr __user
*mmsg
, unsigned int vlen
,
2181 unsigned int flags
, bool forbid_cmsg_compat
)
2183 int fput_needed
, err
, datagrams
;
2184 struct socket
*sock
;
2185 struct mmsghdr __user
*entry
;
2186 struct compat_mmsghdr __user
*compat_entry
;
2187 struct msghdr msg_sys
;
2188 struct used_address used_address
;
2189 unsigned int oflags
= flags
;
2191 if (forbid_cmsg_compat
&& (flags
& MSG_CMSG_COMPAT
))
2194 if (vlen
> UIO_MAXIOV
)
2199 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2203 used_address
.name_len
= UINT_MAX
;
2205 compat_entry
= (struct compat_mmsghdr __user
*)mmsg
;
2209 while (datagrams
< vlen
) {
2210 if (datagrams
== vlen
- 1)
2213 if (MSG_CMSG_COMPAT
& flags
) {
2214 err
= ___sys_sendmsg(sock
, (struct user_msghdr __user
*)compat_entry
,
2215 &msg_sys
, flags
, &used_address
, MSG_EOR
);
2218 err
= __put_user(err
, &compat_entry
->msg_len
);
2221 err
= ___sys_sendmsg(sock
,
2222 (struct user_msghdr __user
*)entry
,
2223 &msg_sys
, flags
, &used_address
, MSG_EOR
);
2226 err
= put_user(err
, &entry
->msg_len
);
2233 if (msg_data_left(&msg_sys
))
2238 fput_light(sock
->file
, fput_needed
);
2240 /* We only return an error if no datagrams were able to be sent */
2247 SYSCALL_DEFINE4(sendmmsg
, int, fd
, struct mmsghdr __user
*, mmsg
,
2248 unsigned int, vlen
, unsigned int, flags
)
2250 return __sys_sendmmsg(fd
, mmsg
, vlen
, flags
, true);
2253 static int ___sys_recvmsg(struct socket
*sock
, struct user_msghdr __user
*msg
,
2254 struct msghdr
*msg_sys
, unsigned int flags
, int nosec
)
2256 struct compat_msghdr __user
*msg_compat
=
2257 (struct compat_msghdr __user
*)msg
;
2258 struct iovec iovstack
[UIO_FASTIOV
];
2259 struct iovec
*iov
= iovstack
;
2260 unsigned long cmsg_ptr
;
2264 /* kernel mode address */
2265 struct sockaddr_storage addr
;
2267 /* user mode address pointers */
2268 struct sockaddr __user
*uaddr
;
2269 int __user
*uaddr_len
= COMPAT_NAMELEN(msg
);
2271 msg_sys
->msg_name
= &addr
;
2273 if (MSG_CMSG_COMPAT
& flags
)
2274 err
= get_compat_msghdr(msg_sys
, msg_compat
, &uaddr
, &iov
);
2276 err
= copy_msghdr_from_user(msg_sys
, msg
, &uaddr
, &iov
);
2280 cmsg_ptr
= (unsigned long)msg_sys
->msg_control
;
2281 msg_sys
->msg_flags
= flags
& (MSG_CMSG_CLOEXEC
|MSG_CMSG_COMPAT
);
2283 /* We assume all kernel code knows the size of sockaddr_storage */
2284 msg_sys
->msg_namelen
= 0;
2286 if (sock
->file
->f_flags
& O_NONBLOCK
)
2287 flags
|= MSG_DONTWAIT
;
2288 err
= (nosec
? sock_recvmsg_nosec
: sock_recvmsg
)(sock
, msg_sys
, flags
);
2293 if (uaddr
!= NULL
) {
2294 err
= move_addr_to_user(&addr
,
2295 msg_sys
->msg_namelen
, uaddr
,
2300 err
= __put_user((msg_sys
->msg_flags
& ~MSG_CMSG_COMPAT
),
2304 if (MSG_CMSG_COMPAT
& flags
)
2305 err
= __put_user((unsigned long)msg_sys
->msg_control
- cmsg_ptr
,
2306 &msg_compat
->msg_controllen
);
2308 err
= __put_user((unsigned long)msg_sys
->msg_control
- cmsg_ptr
,
2309 &msg
->msg_controllen
);
2320 * BSD recvmsg interface
2323 long __sys_recvmsg(int fd
, struct user_msghdr __user
*msg
, unsigned int flags
,
2324 bool forbid_cmsg_compat
)
2326 int fput_needed
, err
;
2327 struct msghdr msg_sys
;
2328 struct socket
*sock
;
2330 if (forbid_cmsg_compat
&& (flags
& MSG_CMSG_COMPAT
))
2333 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2337 err
= ___sys_recvmsg(sock
, msg
, &msg_sys
, flags
, 0);
2339 fput_light(sock
->file
, fput_needed
);
2344 SYSCALL_DEFINE3(recvmsg
, int, fd
, struct user_msghdr __user
*, msg
,
2345 unsigned int, flags
)
2347 return __sys_recvmsg(fd
, msg
, flags
, true);
2351 * Linux recvmmsg interface
2354 int __sys_recvmmsg(int fd
, struct mmsghdr __user
*mmsg
, unsigned int vlen
,
2355 unsigned int flags
, struct timespec
*timeout
)
2357 int fput_needed
, err
, datagrams
;
2358 struct socket
*sock
;
2359 struct mmsghdr __user
*entry
;
2360 struct compat_mmsghdr __user
*compat_entry
;
2361 struct msghdr msg_sys
;
2362 struct timespec64 end_time
;
2363 struct timespec64 timeout64
;
2366 poll_select_set_timeout(&end_time
, timeout
->tv_sec
,
2372 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2376 if (likely(!(flags
& MSG_ERRQUEUE
))) {
2377 err
= sock_error(sock
->sk
);
2385 compat_entry
= (struct compat_mmsghdr __user
*)mmsg
;
2387 while (datagrams
< vlen
) {
2389 * No need to ask LSM for more than the first datagram.
2391 if (MSG_CMSG_COMPAT
& flags
) {
2392 err
= ___sys_recvmsg(sock
, (struct user_msghdr __user
*)compat_entry
,
2393 &msg_sys
, flags
& ~MSG_WAITFORONE
,
2397 err
= __put_user(err
, &compat_entry
->msg_len
);
2400 err
= ___sys_recvmsg(sock
,
2401 (struct user_msghdr __user
*)entry
,
2402 &msg_sys
, flags
& ~MSG_WAITFORONE
,
2406 err
= put_user(err
, &entry
->msg_len
);
2414 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2415 if (flags
& MSG_WAITFORONE
)
2416 flags
|= MSG_DONTWAIT
;
2419 ktime_get_ts64(&timeout64
);
2420 *timeout
= timespec64_to_timespec(
2421 timespec64_sub(end_time
, timeout64
));
2422 if (timeout
->tv_sec
< 0) {
2423 timeout
->tv_sec
= timeout
->tv_nsec
= 0;
2427 /* Timeout, return less than vlen datagrams */
2428 if (timeout
->tv_nsec
== 0 && timeout
->tv_sec
== 0)
2432 /* Out of band data, return right away */
2433 if (msg_sys
.msg_flags
& MSG_OOB
)
2441 if (datagrams
== 0) {
2447 * We may return less entries than requested (vlen) if the
2448 * sock is non block and there aren't enough datagrams...
2450 if (err
!= -EAGAIN
) {
2452 * ... or if recvmsg returns an error after we
2453 * received some datagrams, where we record the
2454 * error to return on the next call or if the
2455 * app asks about it using getsockopt(SO_ERROR).
2457 sock
->sk
->sk_err
= -err
;
2460 fput_light(sock
->file
, fput_needed
);
2465 static int do_sys_recvmmsg(int fd
, struct mmsghdr __user
*mmsg
,
2466 unsigned int vlen
, unsigned int flags
,
2467 struct timespec __user
*timeout
)
2470 struct timespec timeout_sys
;
2472 if (flags
& MSG_CMSG_COMPAT
)
2476 return __sys_recvmmsg(fd
, mmsg
, vlen
, flags
, NULL
);
2478 if (copy_from_user(&timeout_sys
, timeout
, sizeof(timeout_sys
)))
2481 datagrams
= __sys_recvmmsg(fd
, mmsg
, vlen
, flags
, &timeout_sys
);
2483 if (datagrams
> 0 &&
2484 copy_to_user(timeout
, &timeout_sys
, sizeof(timeout_sys
)))
2485 datagrams
= -EFAULT
;
2490 SYSCALL_DEFINE5(recvmmsg
, int, fd
, struct mmsghdr __user
*, mmsg
,
2491 unsigned int, vlen
, unsigned int, flags
,
2492 struct timespec __user
*, timeout
)
2494 return do_sys_recvmmsg(fd
, mmsg
, vlen
, flags
, timeout
);
2497 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2498 /* Argument list sizes for sys_socketcall */
2499 #define AL(x) ((x) * sizeof(unsigned long))
2500 static const unsigned char nargs
[21] = {
2501 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2502 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2503 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2510 * System call vectors.
2512 * Argument checking cleaned up. Saved 20% in size.
2513 * This function doesn't need to set the kernel lock because
2514 * it is set by the callees.
2517 SYSCALL_DEFINE2(socketcall
, int, call
, unsigned long __user
*, args
)
2519 unsigned long a
[AUDITSC_ARGS
];
2520 unsigned long a0
, a1
;
2524 if (call
< 1 || call
> SYS_SENDMMSG
)
2526 call
= array_index_nospec(call
, SYS_SENDMMSG
+ 1);
2529 if (len
> sizeof(a
))
2532 /* copy_from_user should be SMP safe. */
2533 if (copy_from_user(a
, args
, len
))
2536 err
= audit_socketcall(nargs
[call
] / sizeof(unsigned long), a
);
2545 err
= __sys_socket(a0
, a1
, a
[2]);
2548 err
= __sys_bind(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2551 err
= __sys_connect(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2554 err
= __sys_listen(a0
, a1
);
2557 err
= __sys_accept4(a0
, (struct sockaddr __user
*)a1
,
2558 (int __user
*)a
[2], 0);
2560 case SYS_GETSOCKNAME
:
2562 __sys_getsockname(a0
, (struct sockaddr __user
*)a1
,
2563 (int __user
*)a
[2]);
2565 case SYS_GETPEERNAME
:
2567 __sys_getpeername(a0
, (struct sockaddr __user
*)a1
,
2568 (int __user
*)a
[2]);
2570 case SYS_SOCKETPAIR
:
2571 err
= __sys_socketpair(a0
, a1
, a
[2], (int __user
*)a
[3]);
2574 err
= __sys_sendto(a0
, (void __user
*)a1
, a
[2], a
[3],
2578 err
= __sys_sendto(a0
, (void __user
*)a1
, a
[2], a
[3],
2579 (struct sockaddr __user
*)a
[4], a
[5]);
2582 err
= __sys_recvfrom(a0
, (void __user
*)a1
, a
[2], a
[3],
2586 err
= __sys_recvfrom(a0
, (void __user
*)a1
, a
[2], a
[3],
2587 (struct sockaddr __user
*)a
[4],
2588 (int __user
*)a
[5]);
2591 err
= __sys_shutdown(a0
, a1
);
2593 case SYS_SETSOCKOPT
:
2594 err
= __sys_setsockopt(a0
, a1
, a
[2], (char __user
*)a
[3],
2597 case SYS_GETSOCKOPT
:
2599 __sys_getsockopt(a0
, a1
, a
[2], (char __user
*)a
[3],
2600 (int __user
*)a
[4]);
2603 err
= __sys_sendmsg(a0
, (struct user_msghdr __user
*)a1
,
2607 err
= __sys_sendmmsg(a0
, (struct mmsghdr __user
*)a1
, a
[2],
2611 err
= __sys_recvmsg(a0
, (struct user_msghdr __user
*)a1
,
2615 err
= do_sys_recvmmsg(a0
, (struct mmsghdr __user
*)a1
, a
[2],
2616 a
[3], (struct timespec __user
*)a
[4]);
2619 err
= __sys_accept4(a0
, (struct sockaddr __user
*)a1
,
2620 (int __user
*)a
[2], a
[3]);
2629 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2632 * sock_register - add a socket protocol handler
2633 * @ops: description of protocol
2635 * This function is called by a protocol handler that wants to
2636 * advertise its address family, and have it linked into the
2637 * socket interface. The value ops->family corresponds to the
2638 * socket system call protocol family.
2640 int sock_register(const struct net_proto_family
*ops
)
2644 if (ops
->family
>= NPROTO
) {
2645 pr_crit("protocol %d >= NPROTO(%d)\n", ops
->family
, NPROTO
);
2649 spin_lock(&net_family_lock
);
2650 if (rcu_dereference_protected(net_families
[ops
->family
],
2651 lockdep_is_held(&net_family_lock
)))
2654 rcu_assign_pointer(net_families
[ops
->family
], ops
);
2657 spin_unlock(&net_family_lock
);
2659 pr_info("NET: Registered protocol family %d\n", ops
->family
);
2662 EXPORT_SYMBOL(sock_register
);
2665 * sock_unregister - remove a protocol handler
2666 * @family: protocol family to remove
2668 * This function is called by a protocol handler that wants to
2669 * remove its address family, and have it unlinked from the
2670 * new socket creation.
2672 * If protocol handler is a module, then it can use module reference
2673 * counts to protect against new references. If protocol handler is not
2674 * a module then it needs to provide its own protection in
2675 * the ops->create routine.
2677 void sock_unregister(int family
)
2679 BUG_ON(family
< 0 || family
>= NPROTO
);
2681 spin_lock(&net_family_lock
);
2682 RCU_INIT_POINTER(net_families
[family
], NULL
);
2683 spin_unlock(&net_family_lock
);
2687 pr_info("NET: Unregistered protocol family %d\n", family
);
2689 EXPORT_SYMBOL(sock_unregister
);
2691 bool sock_is_registered(int family
)
2693 return family
< NPROTO
&&
2694 rcu_access_pointer(net_families
[array_index_nospec(family
, NPROTO
)]);
2697 static int __init
sock_init(void)
2701 * Initialize the network sysctl infrastructure.
2703 err
= net_sysctl_init();
2708 * Initialize skbuff SLAB cache
2713 * Initialize the protocols module.
2718 err
= register_filesystem(&sock_fs_type
);
2721 sock_mnt
= kern_mount(&sock_fs_type
);
2722 if (IS_ERR(sock_mnt
)) {
2723 err
= PTR_ERR(sock_mnt
);
2727 /* The real protocol initialization is performed in later initcalls.
2730 #ifdef CONFIG_NETFILTER
2731 err
= netfilter_init();
2736 ptp_classifier_init();
2742 unregister_filesystem(&sock_fs_type
);
2747 core_initcall(sock_init
); /* early initcall */
2749 #ifdef CONFIG_PROC_FS
2750 void socket_seq_show(struct seq_file
*seq
)
2752 seq_printf(seq
, "sockets: used %d\n",
2753 sock_inuse_get(seq
->private));
2755 #endif /* CONFIG_PROC_FS */
2757 #ifdef CONFIG_COMPAT
2758 static int do_siocgstamp(struct net
*net
, struct socket
*sock
,
2759 unsigned int cmd
, void __user
*up
)
2761 mm_segment_t old_fs
= get_fs();
2766 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)&ktv
);
2769 err
= compat_put_timeval(&ktv
, up
);
2774 static int do_siocgstampns(struct net
*net
, struct socket
*sock
,
2775 unsigned int cmd
, void __user
*up
)
2777 mm_segment_t old_fs
= get_fs();
2778 struct timespec kts
;
2782 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)&kts
);
2785 err
= compat_put_timespec(&kts
, up
);
2790 static int compat_dev_ifconf(struct net
*net
, struct compat_ifconf __user
*uifc32
)
2792 struct compat_ifconf ifc32
;
2796 if (copy_from_user(&ifc32
, uifc32
, sizeof(struct compat_ifconf
)))
2799 ifc
.ifc_len
= ifc32
.ifc_len
;
2800 ifc
.ifc_req
= compat_ptr(ifc32
.ifcbuf
);
2803 err
= dev_ifconf(net
, &ifc
, sizeof(struct compat_ifreq
));
2808 ifc32
.ifc_len
= ifc
.ifc_len
;
2809 if (copy_to_user(uifc32
, &ifc32
, sizeof(struct compat_ifconf
)))
2815 static int ethtool_ioctl(struct net
*net
, struct compat_ifreq __user
*ifr32
)
2817 struct compat_ethtool_rxnfc __user
*compat_rxnfc
;
2818 bool convert_in
= false, convert_out
= false;
2819 size_t buf_size
= 0;
2820 struct ethtool_rxnfc __user
*rxnfc
= NULL
;
2822 u32 rule_cnt
= 0, actual_rule_cnt
;
2827 if (get_user(data
, &ifr32
->ifr_ifru
.ifru_data
))
2830 compat_rxnfc
= compat_ptr(data
);
2832 if (get_user(ethcmd
, &compat_rxnfc
->cmd
))
2835 /* Most ethtool structures are defined without padding.
2836 * Unfortunately struct ethtool_rxnfc is an exception.
2841 case ETHTOOL_GRXCLSRLALL
:
2842 /* Buffer size is variable */
2843 if (get_user(rule_cnt
, &compat_rxnfc
->rule_cnt
))
2845 if (rule_cnt
> KMALLOC_MAX_SIZE
/ sizeof(u32
))
2847 buf_size
+= rule_cnt
* sizeof(u32
);
2849 case ETHTOOL_GRXRINGS
:
2850 case ETHTOOL_GRXCLSRLCNT
:
2851 case ETHTOOL_GRXCLSRULE
:
2852 case ETHTOOL_SRXCLSRLINS
:
2855 case ETHTOOL_SRXCLSRLDEL
:
2856 buf_size
+= sizeof(struct ethtool_rxnfc
);
2858 rxnfc
= compat_alloc_user_space(buf_size
);
2862 if (copy_from_user(&ifr
.ifr_name
, &ifr32
->ifr_name
, IFNAMSIZ
))
2865 ifr
.ifr_data
= convert_in
? rxnfc
: (void __user
*)compat_rxnfc
;
2868 /* We expect there to be holes between fs.m_ext and
2869 * fs.ring_cookie and at the end of fs, but nowhere else.
2871 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc
, fs
.m_ext
) +
2872 sizeof(compat_rxnfc
->fs
.m_ext
) !=
2873 offsetof(struct ethtool_rxnfc
, fs
.m_ext
) +
2874 sizeof(rxnfc
->fs
.m_ext
));
2876 offsetof(struct compat_ethtool_rxnfc
, fs
.location
) -
2877 offsetof(struct compat_ethtool_rxnfc
, fs
.ring_cookie
) !=
2878 offsetof(struct ethtool_rxnfc
, fs
.location
) -
2879 offsetof(struct ethtool_rxnfc
, fs
.ring_cookie
));
2881 if (copy_in_user(rxnfc
, compat_rxnfc
,
2882 (void __user
*)(&rxnfc
->fs
.m_ext
+ 1) -
2883 (void __user
*)rxnfc
) ||
2884 copy_in_user(&rxnfc
->fs
.ring_cookie
,
2885 &compat_rxnfc
->fs
.ring_cookie
,
2886 (void __user
*)(&rxnfc
->fs
.location
+ 1) -
2887 (void __user
*)&rxnfc
->fs
.ring_cookie
) ||
2888 copy_in_user(&rxnfc
->rule_cnt
, &compat_rxnfc
->rule_cnt
,
2889 sizeof(rxnfc
->rule_cnt
)))
2893 ret
= dev_ioctl(net
, SIOCETHTOOL
, &ifr
, NULL
);
2898 if (copy_in_user(compat_rxnfc
, rxnfc
,
2899 (const void __user
*)(&rxnfc
->fs
.m_ext
+ 1) -
2900 (const void __user
*)rxnfc
) ||
2901 copy_in_user(&compat_rxnfc
->fs
.ring_cookie
,
2902 &rxnfc
->fs
.ring_cookie
,
2903 (const void __user
*)(&rxnfc
->fs
.location
+ 1) -
2904 (const void __user
*)&rxnfc
->fs
.ring_cookie
) ||
2905 copy_in_user(&compat_rxnfc
->rule_cnt
, &rxnfc
->rule_cnt
,
2906 sizeof(rxnfc
->rule_cnt
)))
2909 if (ethcmd
== ETHTOOL_GRXCLSRLALL
) {
2910 /* As an optimisation, we only copy the actual
2911 * number of rules that the underlying
2912 * function returned. Since Mallory might
2913 * change the rule count in user memory, we
2914 * check that it is less than the rule count
2915 * originally given (as the user buffer size),
2916 * which has been range-checked.
2918 if (get_user(actual_rule_cnt
, &rxnfc
->rule_cnt
))
2920 if (actual_rule_cnt
< rule_cnt
)
2921 rule_cnt
= actual_rule_cnt
;
2922 if (copy_in_user(&compat_rxnfc
->rule_locs
[0],
2923 &rxnfc
->rule_locs
[0],
2924 rule_cnt
* sizeof(u32
)))
2932 static int compat_siocwandev(struct net
*net
, struct compat_ifreq __user
*uifr32
)
2934 compat_uptr_t uptr32
;
2939 if (copy_from_user(&ifr
, uifr32
, sizeof(struct compat_ifreq
)))
2942 if (get_user(uptr32
, &uifr32
->ifr_settings
.ifs_ifsu
))
2945 saved
= ifr
.ifr_settings
.ifs_ifsu
.raw_hdlc
;
2946 ifr
.ifr_settings
.ifs_ifsu
.raw_hdlc
= compat_ptr(uptr32
);
2948 err
= dev_ioctl(net
, SIOCWANDEV
, &ifr
, NULL
);
2950 ifr
.ifr_settings
.ifs_ifsu
.raw_hdlc
= saved
;
2951 if (copy_to_user(uifr32
, &ifr
, sizeof(struct compat_ifreq
)))
2957 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2958 static int compat_ifr_data_ioctl(struct net
*net
, unsigned int cmd
,
2959 struct compat_ifreq __user
*u_ifreq32
)
2964 if (copy_from_user(ifreq
.ifr_name
, u_ifreq32
->ifr_name
, IFNAMSIZ
))
2966 if (get_user(data32
, &u_ifreq32
->ifr_data
))
2968 ifreq
.ifr_data
= compat_ptr(data32
);
2970 return dev_ioctl(net
, cmd
, &ifreq
, NULL
);
2973 static int compat_sioc_ifmap(struct net
*net
, unsigned int cmd
,
2974 struct compat_ifreq __user
*uifr32
)
2977 struct compat_ifmap __user
*uifmap32
;
2980 uifmap32
= &uifr32
->ifr_ifru
.ifru_map
;
2981 err
= copy_from_user(&ifr
, uifr32
, sizeof(ifr
.ifr_name
));
2982 err
|= get_user(ifr
.ifr_map
.mem_start
, &uifmap32
->mem_start
);
2983 err
|= get_user(ifr
.ifr_map
.mem_end
, &uifmap32
->mem_end
);
2984 err
|= get_user(ifr
.ifr_map
.base_addr
, &uifmap32
->base_addr
);
2985 err
|= get_user(ifr
.ifr_map
.irq
, &uifmap32
->irq
);
2986 err
|= get_user(ifr
.ifr_map
.dma
, &uifmap32
->dma
);
2987 err
|= get_user(ifr
.ifr_map
.port
, &uifmap32
->port
);
2991 err
= dev_ioctl(net
, cmd
, &ifr
, NULL
);
2993 if (cmd
== SIOCGIFMAP
&& !err
) {
2994 err
= copy_to_user(uifr32
, &ifr
, sizeof(ifr
.ifr_name
));
2995 err
|= put_user(ifr
.ifr_map
.mem_start
, &uifmap32
->mem_start
);
2996 err
|= put_user(ifr
.ifr_map
.mem_end
, &uifmap32
->mem_end
);
2997 err
|= put_user(ifr
.ifr_map
.base_addr
, &uifmap32
->base_addr
);
2998 err
|= put_user(ifr
.ifr_map
.irq
, &uifmap32
->irq
);
2999 err
|= put_user(ifr
.ifr_map
.dma
, &uifmap32
->dma
);
3000 err
|= put_user(ifr
.ifr_map
.port
, &uifmap32
->port
);
3009 struct sockaddr rt_dst
; /* target address */
3010 struct sockaddr rt_gateway
; /* gateway addr (RTF_GATEWAY) */
3011 struct sockaddr rt_genmask
; /* target network mask (IP) */
3012 unsigned short rt_flags
;
3015 unsigned char rt_tos
;
3016 unsigned char rt_class
;
3018 short rt_metric
; /* +1 for binary compatibility! */
3019 /* char * */ u32 rt_dev
; /* forcing the device at add */
3020 u32 rt_mtu
; /* per route MTU/Window */
3021 u32 rt_window
; /* Window clamping */
3022 unsigned short rt_irtt
; /* Initial RTT */
3025 struct in6_rtmsg32
{
3026 struct in6_addr rtmsg_dst
;
3027 struct in6_addr rtmsg_src
;
3028 struct in6_addr rtmsg_gateway
;
3038 static int routing_ioctl(struct net
*net
, struct socket
*sock
,
3039 unsigned int cmd
, void __user
*argp
)
3043 struct in6_rtmsg r6
;
3047 mm_segment_t old_fs
= get_fs();
3049 if (sock
&& sock
->sk
&& sock
->sk
->sk_family
== AF_INET6
) { /* ipv6 */
3050 struct in6_rtmsg32 __user
*ur6
= argp
;
3051 ret
= copy_from_user(&r6
.rtmsg_dst
, &(ur6
->rtmsg_dst
),
3052 3 * sizeof(struct in6_addr
));
3053 ret
|= get_user(r6
.rtmsg_type
, &(ur6
->rtmsg_type
));
3054 ret
|= get_user(r6
.rtmsg_dst_len
, &(ur6
->rtmsg_dst_len
));
3055 ret
|= get_user(r6
.rtmsg_src_len
, &(ur6
->rtmsg_src_len
));
3056 ret
|= get_user(r6
.rtmsg_metric
, &(ur6
->rtmsg_metric
));
3057 ret
|= get_user(r6
.rtmsg_info
, &(ur6
->rtmsg_info
));
3058 ret
|= get_user(r6
.rtmsg_flags
, &(ur6
->rtmsg_flags
));
3059 ret
|= get_user(r6
.rtmsg_ifindex
, &(ur6
->rtmsg_ifindex
));
3063 struct rtentry32 __user
*ur4
= argp
;
3064 ret
= copy_from_user(&r4
.rt_dst
, &(ur4
->rt_dst
),
3065 3 * sizeof(struct sockaddr
));
3066 ret
|= get_user(r4
.rt_flags
, &(ur4
->rt_flags
));
3067 ret
|= get_user(r4
.rt_metric
, &(ur4
->rt_metric
));
3068 ret
|= get_user(r4
.rt_mtu
, &(ur4
->rt_mtu
));
3069 ret
|= get_user(r4
.rt_window
, &(ur4
->rt_window
));
3070 ret
|= get_user(r4
.rt_irtt
, &(ur4
->rt_irtt
));
3071 ret
|= get_user(rtdev
, &(ur4
->rt_dev
));
3073 ret
|= copy_from_user(devname
, compat_ptr(rtdev
), 15);
3074 r4
.rt_dev
= (char __user __force
*)devname
;
3088 ret
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long) r
);
3095 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3096 * for some operations; this forces use of the newer bridge-utils that
3097 * use compatible ioctls
3099 static int old_bridge_ioctl(compat_ulong_t __user
*argp
)
3103 if (get_user(tmp
, argp
))
3105 if (tmp
== BRCTL_GET_VERSION
)
3106 return BRCTL_VERSION
+ 1;
3110 static int compat_sock_ioctl_trans(struct file
*file
, struct socket
*sock
,
3111 unsigned int cmd
, unsigned long arg
)
3113 void __user
*argp
= compat_ptr(arg
);
3114 struct sock
*sk
= sock
->sk
;
3115 struct net
*net
= sock_net(sk
);
3117 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15))
3118 return compat_ifr_data_ioctl(net
, cmd
, argp
);
3123 return old_bridge_ioctl(argp
);
3125 return compat_dev_ifconf(net
, argp
);
3127 return ethtool_ioctl(net
, argp
);
3129 return compat_siocwandev(net
, argp
);
3132 return compat_sioc_ifmap(net
, cmd
, argp
);
3135 return routing_ioctl(net
, sock
, cmd
, argp
);
3137 return do_siocgstamp(net
, sock
, cmd
, argp
);
3139 return do_siocgstampns(net
, sock
, cmd
, argp
);
3140 case SIOCBONDSLAVEINFOQUERY
:
3141 case SIOCBONDINFOQUERY
:
3144 return compat_ifr_data_ioctl(net
, cmd
, argp
);
3157 return sock_ioctl(file
, cmd
, arg
);
3174 case SIOCSIFHWBROADCAST
:
3176 case SIOCGIFBRDADDR
:
3177 case SIOCSIFBRDADDR
:
3178 case SIOCGIFDSTADDR
:
3179 case SIOCSIFDSTADDR
:
3180 case SIOCGIFNETMASK
:
3181 case SIOCSIFNETMASK
:
3196 case SIOCBONDENSLAVE
:
3197 case SIOCBONDRELEASE
:
3198 case SIOCBONDSETHWADDR
:
3199 case SIOCBONDCHANGEACTIVE
:
3201 return sock_do_ioctl(net
, sock
, cmd
, arg
);
3204 return -ENOIOCTLCMD
;
3207 static long compat_sock_ioctl(struct file
*file
, unsigned int cmd
,
3210 struct socket
*sock
= file
->private_data
;
3211 int ret
= -ENOIOCTLCMD
;
3218 if (sock
->ops
->compat_ioctl
)
3219 ret
= sock
->ops
->compat_ioctl(sock
, cmd
, arg
);
3221 if (ret
== -ENOIOCTLCMD
&&
3222 (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
))
3223 ret
= compat_wext_handle_ioctl(net
, cmd
, arg
);
3225 if (ret
== -ENOIOCTLCMD
)
3226 ret
= compat_sock_ioctl_trans(file
, sock
, cmd
, arg
);
3232 int kernel_bind(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
)
3234 return sock
->ops
->bind(sock
, addr
, addrlen
);
3236 EXPORT_SYMBOL(kernel_bind
);
3238 int kernel_listen(struct socket
*sock
, int backlog
)
3240 return sock
->ops
->listen(sock
, backlog
);
3242 EXPORT_SYMBOL(kernel_listen
);
3244 int kernel_accept(struct socket
*sock
, struct socket
**newsock
, int flags
)
3246 struct sock
*sk
= sock
->sk
;
3249 err
= sock_create_lite(sk
->sk_family
, sk
->sk_type
, sk
->sk_protocol
,
3254 err
= sock
->ops
->accept(sock
, *newsock
, flags
, true);
3256 sock_release(*newsock
);
3261 (*newsock
)->ops
= sock
->ops
;
3262 __module_get((*newsock
)->ops
->owner
);
3267 EXPORT_SYMBOL(kernel_accept
);
3269 int kernel_connect(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
,
3272 return sock
->ops
->connect(sock
, addr
, addrlen
, flags
);
3274 EXPORT_SYMBOL(kernel_connect
);
3276 int kernel_getsockname(struct socket
*sock
, struct sockaddr
*addr
)
3278 return sock
->ops
->getname(sock
, addr
, 0);
3280 EXPORT_SYMBOL(kernel_getsockname
);
3282 int kernel_getpeername(struct socket
*sock
, struct sockaddr
*addr
)
3284 return sock
->ops
->getname(sock
, addr
, 1);
3286 EXPORT_SYMBOL(kernel_getpeername
);
3288 int kernel_getsockopt(struct socket
*sock
, int level
, int optname
,
3289 char *optval
, int *optlen
)
3291 mm_segment_t oldfs
= get_fs();
3292 char __user
*uoptval
;
3293 int __user
*uoptlen
;
3296 uoptval
= (char __user __force
*) optval
;
3297 uoptlen
= (int __user __force
*) optlen
;
3300 if (level
== SOL_SOCKET
)
3301 err
= sock_getsockopt(sock
, level
, optname
, uoptval
, uoptlen
);
3303 err
= sock
->ops
->getsockopt(sock
, level
, optname
, uoptval
,
3308 EXPORT_SYMBOL(kernel_getsockopt
);
3310 int kernel_setsockopt(struct socket
*sock
, int level
, int optname
,
3311 char *optval
, unsigned int optlen
)
3313 mm_segment_t oldfs
= get_fs();
3314 char __user
*uoptval
;
3317 uoptval
= (char __user __force
*) optval
;
3320 if (level
== SOL_SOCKET
)
3321 err
= sock_setsockopt(sock
, level
, optname
, uoptval
, optlen
);
3323 err
= sock
->ops
->setsockopt(sock
, level
, optname
, uoptval
,
3328 EXPORT_SYMBOL(kernel_setsockopt
);
3330 int kernel_sendpage(struct socket
*sock
, struct page
*page
, int offset
,
3331 size_t size
, int flags
)
3333 if (sock
->ops
->sendpage
)
3334 return sock
->ops
->sendpage(sock
, page
, offset
, size
, flags
);
3336 return sock_no_sendpage(sock
, page
, offset
, size
, flags
);
3338 EXPORT_SYMBOL(kernel_sendpage
);
3340 int kernel_sendpage_locked(struct sock
*sk
, struct page
*page
, int offset
,
3341 size_t size
, int flags
)
3343 struct socket
*sock
= sk
->sk_socket
;
3345 if (sock
->ops
->sendpage_locked
)
3346 return sock
->ops
->sendpage_locked(sk
, page
, offset
, size
,
3349 return sock_no_sendpage_locked(sk
, page
, offset
, size
, flags
);
3351 EXPORT_SYMBOL(kernel_sendpage_locked
);
3353 int kernel_sock_shutdown(struct socket
*sock
, enum sock_shutdown_cmd how
)
3355 return sock
->ops
->shutdown(sock
, how
);
3357 EXPORT_SYMBOL(kernel_sock_shutdown
);
3359 /* This routine returns the IP overhead imposed by a socket i.e.
3360 * the length of the underlying IP header, depending on whether
3361 * this is an IPv4 or IPv6 socket and the length from IP options turned
3362 * on at the socket. Assumes that the caller has a lock on the socket.
3364 u32
kernel_sock_ip_overhead(struct sock
*sk
)
3366 struct inet_sock
*inet
;
3367 struct ip_options_rcu
*opt
;
3369 #if IS_ENABLED(CONFIG_IPV6)
3370 struct ipv6_pinfo
*np
;
3371 struct ipv6_txoptions
*optv6
= NULL
;
3372 #endif /* IS_ENABLED(CONFIG_IPV6) */
3377 switch (sk
->sk_family
) {
3380 overhead
+= sizeof(struct iphdr
);
3381 opt
= rcu_dereference_protected(inet
->inet_opt
,
3382 sock_owned_by_user(sk
));
3384 overhead
+= opt
->opt
.optlen
;
3386 #if IS_ENABLED(CONFIG_IPV6)
3389 overhead
+= sizeof(struct ipv6hdr
);
3391 optv6
= rcu_dereference_protected(np
->opt
,
3392 sock_owned_by_user(sk
));
3394 overhead
+= (optv6
->opt_flen
+ optv6
->opt_nflen
);
3396 #endif /* IS_ENABLED(CONFIG_IPV6) */
3397 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3401 EXPORT_SYMBOL(kernel_sock_ip_overhead
);