Input: hilkbd - Add casts to HP9000/300 I/O accessors
[linux/fpc-iii.git] / drivers / lightnvm / pblk-rb.c
blob55e9442a99e2bfd664932d50a7a5b5ece9b9c9a8
1 /*
2 * Copyright (C) 2016 CNEX Labs
3 * Initial release: Javier Gonzalez <javier@cnexlabs.com>
5 * Based upon the circular ringbuffer.
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License version
9 * 2 as published by the Free Software Foundation.
11 * This program is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
16 * pblk-rb.c - pblk's write buffer
19 #include <linux/circ_buf.h>
21 #include "pblk.h"
23 static DECLARE_RWSEM(pblk_rb_lock);
25 void pblk_rb_data_free(struct pblk_rb *rb)
27 struct pblk_rb_pages *p, *t;
29 down_write(&pblk_rb_lock);
30 list_for_each_entry_safe(p, t, &rb->pages, list) {
31 free_pages((unsigned long)page_address(p->pages), p->order);
32 list_del(&p->list);
33 kfree(p);
35 up_write(&pblk_rb_lock);
39 * Initialize ring buffer. The data and metadata buffers must be previously
40 * allocated and their size must be a power of two
41 * (Documentation/core-api/circular-buffers.rst)
43 int pblk_rb_init(struct pblk_rb *rb, struct pblk_rb_entry *rb_entry_base,
44 unsigned int power_size, unsigned int power_seg_sz)
46 struct pblk *pblk = container_of(rb, struct pblk, rwb);
47 unsigned int init_entry = 0;
48 unsigned int alloc_order = power_size;
49 unsigned int max_order = MAX_ORDER - 1;
50 unsigned int order, iter;
52 down_write(&pblk_rb_lock);
53 rb->entries = rb_entry_base;
54 rb->seg_size = (1 << power_seg_sz);
55 rb->nr_entries = (1 << power_size);
56 rb->mem = rb->subm = rb->sync = rb->l2p_update = 0;
57 rb->flush_point = EMPTY_ENTRY;
59 spin_lock_init(&rb->w_lock);
60 spin_lock_init(&rb->s_lock);
62 INIT_LIST_HEAD(&rb->pages);
64 if (alloc_order >= max_order) {
65 order = max_order;
66 iter = (1 << (alloc_order - max_order));
67 } else {
68 order = alloc_order;
69 iter = 1;
72 do {
73 struct pblk_rb_entry *entry;
74 struct pblk_rb_pages *page_set;
75 void *kaddr;
76 unsigned long set_size;
77 int i;
79 page_set = kmalloc(sizeof(struct pblk_rb_pages), GFP_KERNEL);
80 if (!page_set) {
81 up_write(&pblk_rb_lock);
82 return -ENOMEM;
85 page_set->order = order;
86 page_set->pages = alloc_pages(GFP_KERNEL, order);
87 if (!page_set->pages) {
88 kfree(page_set);
89 pblk_rb_data_free(rb);
90 up_write(&pblk_rb_lock);
91 return -ENOMEM;
93 kaddr = page_address(page_set->pages);
95 entry = &rb->entries[init_entry];
96 entry->data = kaddr;
97 entry->cacheline = pblk_cacheline_to_addr(init_entry++);
98 entry->w_ctx.flags = PBLK_WRITABLE_ENTRY;
100 set_size = (1 << order);
101 for (i = 1; i < set_size; i++) {
102 entry = &rb->entries[init_entry];
103 entry->cacheline = pblk_cacheline_to_addr(init_entry++);
104 entry->data = kaddr + (i * rb->seg_size);
105 entry->w_ctx.flags = PBLK_WRITABLE_ENTRY;
106 bio_list_init(&entry->w_ctx.bios);
109 list_add_tail(&page_set->list, &rb->pages);
110 iter--;
111 } while (iter > 0);
112 up_write(&pblk_rb_lock);
114 #ifdef CONFIG_NVM_DEBUG
115 atomic_set(&rb->inflight_flush_point, 0);
116 #endif
119 * Initialize rate-limiter, which controls access to the write buffer
120 * but user and GC I/O
122 pblk_rl_init(&pblk->rl, rb->nr_entries);
124 return 0;
128 * pblk_rb_calculate_size -- calculate the size of the write buffer
130 unsigned int pblk_rb_calculate_size(unsigned int nr_entries)
132 /* Alloc a write buffer that can at least fit 128 entries */
133 return (1 << max(get_count_order(nr_entries), 7));
136 void *pblk_rb_entries_ref(struct pblk_rb *rb)
138 return rb->entries;
141 static void clean_wctx(struct pblk_w_ctx *w_ctx)
143 int flags;
145 flags = READ_ONCE(w_ctx->flags);
146 WARN_ONCE(!(flags & PBLK_SUBMITTED_ENTRY),
147 "pblk: overwriting unsubmitted data\n");
149 /* Release flags on context. Protect from writes and reads */
150 smp_store_release(&w_ctx->flags, PBLK_WRITABLE_ENTRY);
151 pblk_ppa_set_empty(&w_ctx->ppa);
152 w_ctx->lba = ADDR_EMPTY;
155 #define pblk_rb_ring_count(head, tail, size) CIRC_CNT(head, tail, size)
156 #define pblk_rb_ring_space(rb, head, tail, size) \
157 (CIRC_SPACE(head, tail, size))
160 * Buffer space is calculated with respect to the back pointer signaling
161 * synchronized entries to the media.
163 static unsigned int pblk_rb_space(struct pblk_rb *rb)
165 unsigned int mem = READ_ONCE(rb->mem);
166 unsigned int sync = READ_ONCE(rb->sync);
168 return pblk_rb_ring_space(rb, mem, sync, rb->nr_entries);
172 * Buffer count is calculated with respect to the submission entry signaling the
173 * entries that are available to send to the media
175 unsigned int pblk_rb_read_count(struct pblk_rb *rb)
177 unsigned int mem = READ_ONCE(rb->mem);
178 unsigned int subm = READ_ONCE(rb->subm);
180 return pblk_rb_ring_count(mem, subm, rb->nr_entries);
183 unsigned int pblk_rb_sync_count(struct pblk_rb *rb)
185 unsigned int mem = READ_ONCE(rb->mem);
186 unsigned int sync = READ_ONCE(rb->sync);
188 return pblk_rb_ring_count(mem, sync, rb->nr_entries);
191 unsigned int pblk_rb_read_commit(struct pblk_rb *rb, unsigned int nr_entries)
193 unsigned int subm;
195 subm = READ_ONCE(rb->subm);
196 /* Commit read means updating submission pointer */
197 smp_store_release(&rb->subm,
198 (subm + nr_entries) & (rb->nr_entries - 1));
200 return subm;
203 static int __pblk_rb_update_l2p(struct pblk_rb *rb, unsigned int to_update)
205 struct pblk *pblk = container_of(rb, struct pblk, rwb);
206 struct pblk_line *line;
207 struct pblk_rb_entry *entry;
208 struct pblk_w_ctx *w_ctx;
209 unsigned int user_io = 0, gc_io = 0;
210 unsigned int i;
211 int flags;
213 for (i = 0; i < to_update; i++) {
214 entry = &rb->entries[rb->l2p_update];
215 w_ctx = &entry->w_ctx;
217 flags = READ_ONCE(entry->w_ctx.flags);
218 if (flags & PBLK_IOTYPE_USER)
219 user_io++;
220 else if (flags & PBLK_IOTYPE_GC)
221 gc_io++;
222 else
223 WARN(1, "pblk: unknown IO type\n");
225 pblk_update_map_dev(pblk, w_ctx->lba, w_ctx->ppa,
226 entry->cacheline);
228 line = &pblk->lines[pblk_ppa_to_line(w_ctx->ppa)];
229 kref_put(&line->ref, pblk_line_put);
230 clean_wctx(w_ctx);
231 rb->l2p_update = (rb->l2p_update + 1) & (rb->nr_entries - 1);
234 pblk_rl_out(&pblk->rl, user_io, gc_io);
236 return 0;
240 * When we move the l2p_update pointer, we update the l2p table - lookups will
241 * point to the physical address instead of to the cacheline in the write buffer
242 * from this moment on.
244 static int pblk_rb_update_l2p(struct pblk_rb *rb, unsigned int nr_entries,
245 unsigned int mem, unsigned int sync)
247 unsigned int space, count;
248 int ret = 0;
250 lockdep_assert_held(&rb->w_lock);
252 /* Update l2p only as buffer entries are being overwritten */
253 space = pblk_rb_ring_space(rb, mem, rb->l2p_update, rb->nr_entries);
254 if (space > nr_entries)
255 goto out;
257 count = nr_entries - space;
258 /* l2p_update used exclusively under rb->w_lock */
259 ret = __pblk_rb_update_l2p(rb, count);
261 out:
262 return ret;
266 * Update the l2p entry for all sectors stored on the write buffer. This means
267 * that all future lookups to the l2p table will point to a device address, not
268 * to the cacheline in the write buffer.
270 void pblk_rb_sync_l2p(struct pblk_rb *rb)
272 unsigned int sync;
273 unsigned int to_update;
275 spin_lock(&rb->w_lock);
277 /* Protect from reads and writes */
278 sync = smp_load_acquire(&rb->sync);
280 to_update = pblk_rb_ring_count(sync, rb->l2p_update, rb->nr_entries);
281 __pblk_rb_update_l2p(rb, to_update);
283 spin_unlock(&rb->w_lock);
287 * Write @nr_entries to ring buffer from @data buffer if there is enough space.
288 * Typically, 4KB data chunks coming from a bio will be copied to the ring
289 * buffer, thus the write will fail if not all incoming data can be copied.
292 static void __pblk_rb_write_entry(struct pblk_rb *rb, void *data,
293 struct pblk_w_ctx w_ctx,
294 struct pblk_rb_entry *entry)
296 memcpy(entry->data, data, rb->seg_size);
298 entry->w_ctx.lba = w_ctx.lba;
299 entry->w_ctx.ppa = w_ctx.ppa;
302 void pblk_rb_write_entry_user(struct pblk_rb *rb, void *data,
303 struct pblk_w_ctx w_ctx, unsigned int ring_pos)
305 struct pblk *pblk = container_of(rb, struct pblk, rwb);
306 struct pblk_rb_entry *entry;
307 int flags;
309 entry = &rb->entries[ring_pos];
310 flags = READ_ONCE(entry->w_ctx.flags);
311 #ifdef CONFIG_NVM_DEBUG
312 /* Caller must guarantee that the entry is free */
313 BUG_ON(!(flags & PBLK_WRITABLE_ENTRY));
314 #endif
316 __pblk_rb_write_entry(rb, data, w_ctx, entry);
318 pblk_update_map_cache(pblk, w_ctx.lba, entry->cacheline);
319 flags = w_ctx.flags | PBLK_WRITTEN_DATA;
321 /* Release flags on write context. Protect from writes */
322 smp_store_release(&entry->w_ctx.flags, flags);
325 void pblk_rb_write_entry_gc(struct pblk_rb *rb, void *data,
326 struct pblk_w_ctx w_ctx, struct pblk_line *line,
327 u64 paddr, unsigned int ring_pos)
329 struct pblk *pblk = container_of(rb, struct pblk, rwb);
330 struct pblk_rb_entry *entry;
331 int flags;
333 entry = &rb->entries[ring_pos];
334 flags = READ_ONCE(entry->w_ctx.flags);
335 #ifdef CONFIG_NVM_DEBUG
336 /* Caller must guarantee that the entry is free */
337 BUG_ON(!(flags & PBLK_WRITABLE_ENTRY));
338 #endif
340 __pblk_rb_write_entry(rb, data, w_ctx, entry);
342 if (!pblk_update_map_gc(pblk, w_ctx.lba, entry->cacheline, line, paddr))
343 entry->w_ctx.lba = ADDR_EMPTY;
345 flags = w_ctx.flags | PBLK_WRITTEN_DATA;
347 /* Release flags on write context. Protect from writes */
348 smp_store_release(&entry->w_ctx.flags, flags);
351 static int pblk_rb_flush_point_set(struct pblk_rb *rb, struct bio *bio,
352 unsigned int pos)
354 struct pblk_rb_entry *entry;
355 unsigned int sync, flush_point;
357 pblk_rb_sync_init(rb, NULL);
358 sync = READ_ONCE(rb->sync);
360 if (pos == sync) {
361 pblk_rb_sync_end(rb, NULL);
362 return 0;
365 #ifdef CONFIG_NVM_DEBUG
366 atomic_inc(&rb->inflight_flush_point);
367 #endif
369 flush_point = (pos == 0) ? (rb->nr_entries - 1) : (pos - 1);
370 entry = &rb->entries[flush_point];
372 /* Protect flush points */
373 smp_store_release(&rb->flush_point, flush_point);
375 if (bio)
376 bio_list_add(&entry->w_ctx.bios, bio);
378 pblk_rb_sync_end(rb, NULL);
380 return bio ? 1 : 0;
383 static int __pblk_rb_may_write(struct pblk_rb *rb, unsigned int nr_entries,
384 unsigned int *pos)
386 unsigned int mem;
387 unsigned int sync;
389 sync = READ_ONCE(rb->sync);
390 mem = READ_ONCE(rb->mem);
392 if (pblk_rb_ring_space(rb, mem, sync, rb->nr_entries) < nr_entries)
393 return 0;
395 if (pblk_rb_update_l2p(rb, nr_entries, mem, sync))
396 return 0;
398 *pos = mem;
400 return 1;
403 static int pblk_rb_may_write(struct pblk_rb *rb, unsigned int nr_entries,
404 unsigned int *pos)
406 if (!__pblk_rb_may_write(rb, nr_entries, pos))
407 return 0;
409 /* Protect from read count */
410 smp_store_release(&rb->mem, (*pos + nr_entries) & (rb->nr_entries - 1));
411 return 1;
414 void pblk_rb_flush(struct pblk_rb *rb)
416 struct pblk *pblk = container_of(rb, struct pblk, rwb);
417 unsigned int mem = READ_ONCE(rb->mem);
419 if (pblk_rb_flush_point_set(rb, NULL, mem))
420 return;
422 pblk_write_kick(pblk);
425 static int pblk_rb_may_write_flush(struct pblk_rb *rb, unsigned int nr_entries,
426 unsigned int *pos, struct bio *bio,
427 int *io_ret)
429 unsigned int mem;
431 if (!__pblk_rb_may_write(rb, nr_entries, pos))
432 return 0;
434 mem = (*pos + nr_entries) & (rb->nr_entries - 1);
435 *io_ret = NVM_IO_DONE;
437 if (bio->bi_opf & REQ_PREFLUSH) {
438 struct pblk *pblk = container_of(rb, struct pblk, rwb);
440 atomic64_inc(&pblk->nr_flush);
441 if (pblk_rb_flush_point_set(&pblk->rwb, bio, mem))
442 *io_ret = NVM_IO_OK;
445 /* Protect from read count */
446 smp_store_release(&rb->mem, mem);
448 return 1;
452 * Atomically check that (i) there is space on the write buffer for the
453 * incoming I/O, and (ii) the current I/O type has enough budget in the write
454 * buffer (rate-limiter).
456 int pblk_rb_may_write_user(struct pblk_rb *rb, struct bio *bio,
457 unsigned int nr_entries, unsigned int *pos)
459 struct pblk *pblk = container_of(rb, struct pblk, rwb);
460 int io_ret;
462 spin_lock(&rb->w_lock);
463 io_ret = pblk_rl_user_may_insert(&pblk->rl, nr_entries);
464 if (io_ret) {
465 spin_unlock(&rb->w_lock);
466 return io_ret;
469 if (!pblk_rb_may_write_flush(rb, nr_entries, pos, bio, &io_ret)) {
470 spin_unlock(&rb->w_lock);
471 return NVM_IO_REQUEUE;
474 pblk_rl_user_in(&pblk->rl, nr_entries);
475 spin_unlock(&rb->w_lock);
477 return io_ret;
481 * Look at pblk_rb_may_write_user comment
483 int pblk_rb_may_write_gc(struct pblk_rb *rb, unsigned int nr_entries,
484 unsigned int *pos)
486 struct pblk *pblk = container_of(rb, struct pblk, rwb);
488 spin_lock(&rb->w_lock);
489 if (!pblk_rl_gc_may_insert(&pblk->rl, nr_entries)) {
490 spin_unlock(&rb->w_lock);
491 return 0;
494 if (!pblk_rb_may_write(rb, nr_entries, pos)) {
495 spin_unlock(&rb->w_lock);
496 return 0;
499 pblk_rl_gc_in(&pblk->rl, nr_entries);
500 spin_unlock(&rb->w_lock);
502 return 1;
506 * Read available entries on rb and add them to the given bio. To avoid a memory
507 * copy, a page reference to the write buffer is used to be added to the bio.
509 * This function is used by the write thread to form the write bio that will
510 * persist data on the write buffer to the media.
512 unsigned int pblk_rb_read_to_bio(struct pblk_rb *rb, struct nvm_rq *rqd,
513 unsigned int pos, unsigned int nr_entries,
514 unsigned int count)
516 struct pblk *pblk = container_of(rb, struct pblk, rwb);
517 struct request_queue *q = pblk->dev->q;
518 struct pblk_c_ctx *c_ctx = nvm_rq_to_pdu(rqd);
519 struct bio *bio = rqd->bio;
520 struct pblk_rb_entry *entry;
521 struct page *page;
522 unsigned int pad = 0, to_read = nr_entries;
523 unsigned int i;
524 int flags;
526 if (count < nr_entries) {
527 pad = nr_entries - count;
528 to_read = count;
531 c_ctx->sentry = pos;
532 c_ctx->nr_valid = to_read;
533 c_ctx->nr_padded = pad;
535 for (i = 0; i < to_read; i++) {
536 entry = &rb->entries[pos];
538 /* A write has been allowed into the buffer, but data is still
539 * being copied to it. It is ok to busy wait.
541 try:
542 flags = READ_ONCE(entry->w_ctx.flags);
543 if (!(flags & PBLK_WRITTEN_DATA)) {
544 io_schedule();
545 goto try;
548 page = virt_to_page(entry->data);
549 if (!page) {
550 pr_err("pblk: could not allocate write bio page\n");
551 flags &= ~PBLK_WRITTEN_DATA;
552 flags |= PBLK_SUBMITTED_ENTRY;
553 /* Release flags on context. Protect from writes */
554 smp_store_release(&entry->w_ctx.flags, flags);
555 return NVM_IO_ERR;
558 if (bio_add_pc_page(q, bio, page, rb->seg_size, 0) !=
559 rb->seg_size) {
560 pr_err("pblk: could not add page to write bio\n");
561 flags &= ~PBLK_WRITTEN_DATA;
562 flags |= PBLK_SUBMITTED_ENTRY;
563 /* Release flags on context. Protect from writes */
564 smp_store_release(&entry->w_ctx.flags, flags);
565 return NVM_IO_ERR;
568 flags &= ~PBLK_WRITTEN_DATA;
569 flags |= PBLK_SUBMITTED_ENTRY;
571 /* Release flags on context. Protect from writes */
572 smp_store_release(&entry->w_ctx.flags, flags);
574 pos = (pos + 1) & (rb->nr_entries - 1);
577 if (pad) {
578 if (pblk_bio_add_pages(pblk, bio, GFP_KERNEL, pad)) {
579 pr_err("pblk: could not pad page in write bio\n");
580 return NVM_IO_ERR;
583 if (pad < pblk->min_write_pgs)
584 atomic64_inc(&pblk->pad_dist[pad - 1]);
585 else
586 pr_warn("pblk: padding more than min. sectors\n");
588 atomic64_add(pad, &pblk->pad_wa);
591 #ifdef CONFIG_NVM_DEBUG
592 atomic_long_add(pad, &pblk->padded_writes);
593 #endif
595 return NVM_IO_OK;
599 * Copy to bio only if the lba matches the one on the given cache entry.
600 * Otherwise, it means that the entry has been overwritten, and the bio should
601 * be directed to disk.
603 int pblk_rb_copy_to_bio(struct pblk_rb *rb, struct bio *bio, sector_t lba,
604 struct ppa_addr ppa, int bio_iter, bool advanced_bio)
606 struct pblk *pblk = container_of(rb, struct pblk, rwb);
607 struct pblk_rb_entry *entry;
608 struct pblk_w_ctx *w_ctx;
609 struct ppa_addr l2p_ppa;
610 u64 pos = pblk_addr_to_cacheline(ppa);
611 void *data;
612 int flags;
613 int ret = 1;
616 #ifdef CONFIG_NVM_DEBUG
617 /* Caller must ensure that the access will not cause an overflow */
618 BUG_ON(pos >= rb->nr_entries);
619 #endif
620 entry = &rb->entries[pos];
621 w_ctx = &entry->w_ctx;
622 flags = READ_ONCE(w_ctx->flags);
624 spin_lock(&rb->w_lock);
625 spin_lock(&pblk->trans_lock);
626 l2p_ppa = pblk_trans_map_get(pblk, lba);
627 spin_unlock(&pblk->trans_lock);
629 /* Check if the entry has been overwritten or is scheduled to be */
630 if (!pblk_ppa_comp(l2p_ppa, ppa) || w_ctx->lba != lba ||
631 flags & PBLK_WRITABLE_ENTRY) {
632 ret = 0;
633 goto out;
636 /* Only advance the bio if it hasn't been advanced already. If advanced,
637 * this bio is at least a partial bio (i.e., it has partially been
638 * filled with data from the cache). If part of the data resides on the
639 * media, we will read later on
641 if (unlikely(!advanced_bio))
642 bio_advance(bio, bio_iter * PBLK_EXPOSED_PAGE_SIZE);
644 data = bio_data(bio);
645 memcpy(data, entry->data, rb->seg_size);
647 out:
648 spin_unlock(&rb->w_lock);
649 return ret;
652 struct pblk_w_ctx *pblk_rb_w_ctx(struct pblk_rb *rb, unsigned int pos)
654 unsigned int entry = pos & (rb->nr_entries - 1);
656 return &rb->entries[entry].w_ctx;
659 unsigned int pblk_rb_sync_init(struct pblk_rb *rb, unsigned long *flags)
660 __acquires(&rb->s_lock)
662 if (flags)
663 spin_lock_irqsave(&rb->s_lock, *flags);
664 else
665 spin_lock_irq(&rb->s_lock);
667 return rb->sync;
670 void pblk_rb_sync_end(struct pblk_rb *rb, unsigned long *flags)
671 __releases(&rb->s_lock)
673 lockdep_assert_held(&rb->s_lock);
675 if (flags)
676 spin_unlock_irqrestore(&rb->s_lock, *flags);
677 else
678 spin_unlock_irq(&rb->s_lock);
681 unsigned int pblk_rb_sync_advance(struct pblk_rb *rb, unsigned int nr_entries)
683 unsigned int sync, flush_point;
684 lockdep_assert_held(&rb->s_lock);
686 sync = READ_ONCE(rb->sync);
687 flush_point = READ_ONCE(rb->flush_point);
689 if (flush_point != EMPTY_ENTRY) {
690 unsigned int secs_to_flush;
692 secs_to_flush = pblk_rb_ring_count(flush_point, sync,
693 rb->nr_entries);
694 if (secs_to_flush < nr_entries) {
695 /* Protect flush points */
696 smp_store_release(&rb->flush_point, EMPTY_ENTRY);
700 sync = (sync + nr_entries) & (rb->nr_entries - 1);
702 /* Protect from counts */
703 smp_store_release(&rb->sync, sync);
705 return sync;
708 /* Calculate how many sectors to submit up to the current flush point. */
709 unsigned int pblk_rb_flush_point_count(struct pblk_rb *rb)
711 unsigned int subm, sync, flush_point;
712 unsigned int submitted, to_flush;
714 /* Protect flush points */
715 flush_point = smp_load_acquire(&rb->flush_point);
716 if (flush_point == EMPTY_ENTRY)
717 return 0;
719 /* Protect syncs */
720 sync = smp_load_acquire(&rb->sync);
722 subm = READ_ONCE(rb->subm);
723 submitted = pblk_rb_ring_count(subm, sync, rb->nr_entries);
725 /* The sync point itself counts as a sector to sync */
726 to_flush = pblk_rb_ring_count(flush_point, sync, rb->nr_entries) + 1;
728 return (submitted < to_flush) ? (to_flush - submitted) : 0;
732 * Scan from the current position of the sync pointer to find the entry that
733 * corresponds to the given ppa. This is necessary since write requests can be
734 * completed out of order. The assumption is that the ppa is close to the sync
735 * pointer thus the search will not take long.
737 * The caller of this function must guarantee that the sync pointer will no
738 * reach the entry while it is using the metadata associated with it. With this
739 * assumption in mind, there is no need to take the sync lock.
741 struct pblk_rb_entry *pblk_rb_sync_scan_entry(struct pblk_rb *rb,
742 struct ppa_addr *ppa)
744 unsigned int sync, subm, count;
745 unsigned int i;
747 sync = READ_ONCE(rb->sync);
748 subm = READ_ONCE(rb->subm);
749 count = pblk_rb_ring_count(subm, sync, rb->nr_entries);
751 for (i = 0; i < count; i++)
752 sync = (sync + 1) & (rb->nr_entries - 1);
754 return NULL;
757 int pblk_rb_tear_down_check(struct pblk_rb *rb)
759 struct pblk_rb_entry *entry;
760 int i;
761 int ret = 0;
763 spin_lock(&rb->w_lock);
764 spin_lock_irq(&rb->s_lock);
766 if ((rb->mem == rb->subm) && (rb->subm == rb->sync) &&
767 (rb->sync == rb->l2p_update) &&
768 (rb->flush_point == EMPTY_ENTRY)) {
769 goto out;
772 if (!rb->entries) {
773 ret = 1;
774 goto out;
777 for (i = 0; i < rb->nr_entries; i++) {
778 entry = &rb->entries[i];
780 if (!entry->data) {
781 ret = 1;
782 goto out;
786 out:
787 spin_unlock(&rb->w_lock);
788 spin_unlock_irq(&rb->s_lock);
790 return ret;
793 unsigned int pblk_rb_wrap_pos(struct pblk_rb *rb, unsigned int pos)
795 return (pos & (rb->nr_entries - 1));
798 int pblk_rb_pos_oob(struct pblk_rb *rb, u64 pos)
800 return (pos >= rb->nr_entries);
803 ssize_t pblk_rb_sysfs(struct pblk_rb *rb, char *buf)
805 struct pblk *pblk = container_of(rb, struct pblk, rwb);
806 struct pblk_c_ctx *c;
807 ssize_t offset;
808 int queued_entries = 0;
810 spin_lock_irq(&rb->s_lock);
811 list_for_each_entry(c, &pblk->compl_list, list)
812 queued_entries++;
813 spin_unlock_irq(&rb->s_lock);
815 if (rb->flush_point != EMPTY_ENTRY)
816 offset = scnprintf(buf, PAGE_SIZE,
817 "%u\t%u\t%u\t%u\t%u\t%u\t%u - %u/%u/%u - %d\n",
818 rb->nr_entries,
819 rb->mem,
820 rb->subm,
821 rb->sync,
822 rb->l2p_update,
823 #ifdef CONFIG_NVM_DEBUG
824 atomic_read(&rb->inflight_flush_point),
825 #else
827 #endif
828 rb->flush_point,
829 pblk_rb_read_count(rb),
830 pblk_rb_space(rb),
831 pblk_rb_flush_point_count(rb),
832 queued_entries);
833 else
834 offset = scnprintf(buf, PAGE_SIZE,
835 "%u\t%u\t%u\t%u\t%u\t%u\tNULL - %u/%u/%u - %d\n",
836 rb->nr_entries,
837 rb->mem,
838 rb->subm,
839 rb->sync,
840 rb->l2p_update,
841 #ifdef CONFIG_NVM_DEBUG
842 atomic_read(&rb->inflight_flush_point),
843 #else
845 #endif
846 pblk_rb_read_count(rb),
847 pblk_rb_space(rb),
848 pblk_rb_flush_point_count(rb),
849 queued_entries);
851 return offset;