1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
13 * This handles all read/write requests to block devices
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/backing-dev.h>
18 #include <linux/bio.h>
19 #include <linux/blkdev.h>
20 #include <linux/blk-mq.h>
21 #include <linux/highmem.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/string.h>
25 #include <linux/init.h>
26 #include <linux/completion.h>
27 #include <linux/slab.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/fault-inject.h>
32 #include <linux/list_sort.h>
33 #include <linux/delay.h>
34 #include <linux/ratelimit.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/blk-cgroup.h>
37 #include <linux/t10-pi.h>
38 #include <linux/debugfs.h>
39 #include <linux/bpf.h>
40 #include <linux/psi.h>
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/block.h>
47 #include "blk-mq-sched.h"
49 #include "blk-rq-qos.h"
51 #ifdef CONFIG_DEBUG_FS
52 struct dentry
*blk_debugfs_root
;
55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap
);
56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap
);
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete
);
58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split
);
59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug
);
61 DEFINE_IDA(blk_queue_ida
);
64 * For queue allocation
66 struct kmem_cache
*blk_requestq_cachep
;
69 * Controlling structure to kblockd
71 static struct workqueue_struct
*kblockd_workqueue
;
74 * blk_queue_flag_set - atomically set a queue flag
75 * @flag: flag to be set
78 void blk_queue_flag_set(unsigned int flag
, struct request_queue
*q
)
80 set_bit(flag
, &q
->queue_flags
);
82 EXPORT_SYMBOL(blk_queue_flag_set
);
85 * blk_queue_flag_clear - atomically clear a queue flag
86 * @flag: flag to be cleared
89 void blk_queue_flag_clear(unsigned int flag
, struct request_queue
*q
)
91 clear_bit(flag
, &q
->queue_flags
);
93 EXPORT_SYMBOL(blk_queue_flag_clear
);
96 * blk_queue_flag_test_and_set - atomically test and set a queue flag
97 * @flag: flag to be set
100 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
101 * the flag was already set.
103 bool blk_queue_flag_test_and_set(unsigned int flag
, struct request_queue
*q
)
105 return test_and_set_bit(flag
, &q
->queue_flags
);
107 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set
);
109 void blk_rq_init(struct request_queue
*q
, struct request
*rq
)
111 memset(rq
, 0, sizeof(*rq
));
113 INIT_LIST_HEAD(&rq
->queuelist
);
115 rq
->__sector
= (sector_t
) -1;
116 INIT_HLIST_NODE(&rq
->hash
);
117 RB_CLEAR_NODE(&rq
->rb_node
);
119 rq
->internal_tag
= -1;
120 rq
->start_time_ns
= ktime_get_ns();
122 refcount_set(&rq
->ref
, 1);
124 EXPORT_SYMBOL(blk_rq_init
);
126 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
127 static const char *const blk_op_name
[] = {
131 REQ_OP_NAME(DISCARD
),
132 REQ_OP_NAME(SECURE_ERASE
),
133 REQ_OP_NAME(ZONE_RESET
),
134 REQ_OP_NAME(ZONE_RESET_ALL
),
135 REQ_OP_NAME(WRITE_SAME
),
136 REQ_OP_NAME(WRITE_ZEROES
),
137 REQ_OP_NAME(SCSI_IN
),
138 REQ_OP_NAME(SCSI_OUT
),
140 REQ_OP_NAME(DRV_OUT
),
145 * blk_op_str - Return string XXX in the REQ_OP_XXX.
148 * Description: Centralize block layer function to convert REQ_OP_XXX into
149 * string format. Useful in the debugging and tracing bio or request. For
150 * invalid REQ_OP_XXX it returns string "UNKNOWN".
152 inline const char *blk_op_str(unsigned int op
)
154 const char *op_str
= "UNKNOWN";
156 if (op
< ARRAY_SIZE(blk_op_name
) && blk_op_name
[op
])
157 op_str
= blk_op_name
[op
];
161 EXPORT_SYMBOL_GPL(blk_op_str
);
163 static const struct {
167 [BLK_STS_OK
] = { 0, "" },
168 [BLK_STS_NOTSUPP
] = { -EOPNOTSUPP
, "operation not supported" },
169 [BLK_STS_TIMEOUT
] = { -ETIMEDOUT
, "timeout" },
170 [BLK_STS_NOSPC
] = { -ENOSPC
, "critical space allocation" },
171 [BLK_STS_TRANSPORT
] = { -ENOLINK
, "recoverable transport" },
172 [BLK_STS_TARGET
] = { -EREMOTEIO
, "critical target" },
173 [BLK_STS_NEXUS
] = { -EBADE
, "critical nexus" },
174 [BLK_STS_MEDIUM
] = { -ENODATA
, "critical medium" },
175 [BLK_STS_PROTECTION
] = { -EILSEQ
, "protection" },
176 [BLK_STS_RESOURCE
] = { -ENOMEM
, "kernel resource" },
177 [BLK_STS_DEV_RESOURCE
] = { -EBUSY
, "device resource" },
178 [BLK_STS_AGAIN
] = { -EAGAIN
, "nonblocking retry" },
180 /* device mapper special case, should not leak out: */
181 [BLK_STS_DM_REQUEUE
] = { -EREMCHG
, "dm internal retry" },
183 /* everything else not covered above: */
184 [BLK_STS_IOERR
] = { -EIO
, "I/O" },
187 blk_status_t
errno_to_blk_status(int errno
)
191 for (i
= 0; i
< ARRAY_SIZE(blk_errors
); i
++) {
192 if (blk_errors
[i
].errno
== errno
)
193 return (__force blk_status_t
)i
;
196 return BLK_STS_IOERR
;
198 EXPORT_SYMBOL_GPL(errno_to_blk_status
);
200 int blk_status_to_errno(blk_status_t status
)
202 int idx
= (__force
int)status
;
204 if (WARN_ON_ONCE(idx
>= ARRAY_SIZE(blk_errors
)))
206 return blk_errors
[idx
].errno
;
208 EXPORT_SYMBOL_GPL(blk_status_to_errno
);
210 static void print_req_error(struct request
*req
, blk_status_t status
,
213 int idx
= (__force
int)status
;
215 if (WARN_ON_ONCE(idx
>= ARRAY_SIZE(blk_errors
)))
218 printk_ratelimited(KERN_ERR
219 "%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
220 "phys_seg %u prio class %u\n",
221 caller
, blk_errors
[idx
].name
,
222 req
->rq_disk
? req
->rq_disk
->disk_name
: "?",
223 blk_rq_pos(req
), req_op(req
), blk_op_str(req_op(req
)),
224 req
->cmd_flags
& ~REQ_OP_MASK
,
225 req
->nr_phys_segments
,
226 IOPRIO_PRIO_CLASS(req
->ioprio
));
229 static void req_bio_endio(struct request
*rq
, struct bio
*bio
,
230 unsigned int nbytes
, blk_status_t error
)
233 bio
->bi_status
= error
;
235 if (unlikely(rq
->rq_flags
& RQF_QUIET
))
236 bio_set_flag(bio
, BIO_QUIET
);
238 bio_advance(bio
, nbytes
);
240 /* don't actually finish bio if it's part of flush sequence */
241 if (bio
->bi_iter
.bi_size
== 0 && !(rq
->rq_flags
& RQF_FLUSH_SEQ
))
245 void blk_dump_rq_flags(struct request
*rq
, char *msg
)
247 printk(KERN_INFO
"%s: dev %s: flags=%llx\n", msg
,
248 rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?",
249 (unsigned long long) rq
->cmd_flags
);
251 printk(KERN_INFO
" sector %llu, nr/cnr %u/%u\n",
252 (unsigned long long)blk_rq_pos(rq
),
253 blk_rq_sectors(rq
), blk_rq_cur_sectors(rq
));
254 printk(KERN_INFO
" bio %p, biotail %p, len %u\n",
255 rq
->bio
, rq
->biotail
, blk_rq_bytes(rq
));
257 EXPORT_SYMBOL(blk_dump_rq_flags
);
260 * blk_sync_queue - cancel any pending callbacks on a queue
264 * The block layer may perform asynchronous callback activity
265 * on a queue, such as calling the unplug function after a timeout.
266 * A block device may call blk_sync_queue to ensure that any
267 * such activity is cancelled, thus allowing it to release resources
268 * that the callbacks might use. The caller must already have made sure
269 * that its ->make_request_fn will not re-add plugging prior to calling
272 * This function does not cancel any asynchronous activity arising
273 * out of elevator or throttling code. That would require elevator_exit()
274 * and blkcg_exit_queue() to be called with queue lock initialized.
277 void blk_sync_queue(struct request_queue
*q
)
279 del_timer_sync(&q
->timeout
);
280 cancel_work_sync(&q
->timeout_work
);
282 EXPORT_SYMBOL(blk_sync_queue
);
285 * blk_set_pm_only - increment pm_only counter
286 * @q: request queue pointer
288 void blk_set_pm_only(struct request_queue
*q
)
290 atomic_inc(&q
->pm_only
);
292 EXPORT_SYMBOL_GPL(blk_set_pm_only
);
294 void blk_clear_pm_only(struct request_queue
*q
)
298 pm_only
= atomic_dec_return(&q
->pm_only
);
299 WARN_ON_ONCE(pm_only
< 0);
301 wake_up_all(&q
->mq_freeze_wq
);
303 EXPORT_SYMBOL_GPL(blk_clear_pm_only
);
305 void blk_put_queue(struct request_queue
*q
)
307 kobject_put(&q
->kobj
);
309 EXPORT_SYMBOL(blk_put_queue
);
311 void blk_set_queue_dying(struct request_queue
*q
)
313 blk_queue_flag_set(QUEUE_FLAG_DYING
, q
);
316 * When queue DYING flag is set, we need to block new req
317 * entering queue, so we call blk_freeze_queue_start() to
318 * prevent I/O from crossing blk_queue_enter().
320 blk_freeze_queue_start(q
);
323 blk_mq_wake_waiters(q
);
325 /* Make blk_queue_enter() reexamine the DYING flag. */
326 wake_up_all(&q
->mq_freeze_wq
);
328 EXPORT_SYMBOL_GPL(blk_set_queue_dying
);
331 * blk_cleanup_queue - shutdown a request queue
332 * @q: request queue to shutdown
334 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
335 * put it. All future requests will be failed immediately with -ENODEV.
337 void blk_cleanup_queue(struct request_queue
*q
)
339 /* mark @q DYING, no new request or merges will be allowed afterwards */
340 mutex_lock(&q
->sysfs_lock
);
341 blk_set_queue_dying(q
);
343 blk_queue_flag_set(QUEUE_FLAG_NOMERGES
, q
);
344 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES
, q
);
345 blk_queue_flag_set(QUEUE_FLAG_DYING
, q
);
346 mutex_unlock(&q
->sysfs_lock
);
349 * Drain all requests queued before DYING marking. Set DEAD flag to
350 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
351 * after draining finished.
357 blk_queue_flag_set(QUEUE_FLAG_DEAD
, q
);
359 /* for synchronous bio-based driver finish in-flight integrity i/o */
360 blk_flush_integrity();
362 /* @q won't process any more request, flush async actions */
363 del_timer_sync(&q
->backing_dev_info
->laptop_mode_wb_timer
);
367 blk_mq_exit_queue(q
);
370 * In theory, request pool of sched_tags belongs to request queue.
371 * However, the current implementation requires tag_set for freeing
372 * requests, so free the pool now.
374 * Queue has become frozen, there can't be any in-queue requests, so
375 * it is safe to free requests now.
377 mutex_lock(&q
->sysfs_lock
);
379 blk_mq_sched_free_requests(q
);
380 mutex_unlock(&q
->sysfs_lock
);
382 percpu_ref_exit(&q
->q_usage_counter
);
384 /* @q is and will stay empty, shutdown and put */
387 EXPORT_SYMBOL(blk_cleanup_queue
);
389 struct request_queue
*blk_alloc_queue(gfp_t gfp_mask
)
391 return blk_alloc_queue_node(gfp_mask
, NUMA_NO_NODE
);
393 EXPORT_SYMBOL(blk_alloc_queue
);
396 * blk_queue_enter() - try to increase q->q_usage_counter
397 * @q: request queue pointer
398 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
400 int blk_queue_enter(struct request_queue
*q
, blk_mq_req_flags_t flags
)
402 const bool pm
= flags
& BLK_MQ_REQ_PREEMPT
;
405 bool success
= false;
408 if (percpu_ref_tryget_live(&q
->q_usage_counter
)) {
410 * The code that increments the pm_only counter is
411 * responsible for ensuring that that counter is
412 * globally visible before the queue is unfrozen.
414 if (pm
|| !blk_queue_pm_only(q
)) {
417 percpu_ref_put(&q
->q_usage_counter
);
425 if (flags
& BLK_MQ_REQ_NOWAIT
)
429 * read pair of barrier in blk_freeze_queue_start(),
430 * we need to order reading __PERCPU_REF_DEAD flag of
431 * .q_usage_counter and reading .mq_freeze_depth or
432 * queue dying flag, otherwise the following wait may
433 * never return if the two reads are reordered.
437 wait_event(q
->mq_freeze_wq
,
438 (!q
->mq_freeze_depth
&&
439 (pm
|| (blk_pm_request_resume(q
),
440 !blk_queue_pm_only(q
)))) ||
442 if (blk_queue_dying(q
))
447 void blk_queue_exit(struct request_queue
*q
)
449 percpu_ref_put(&q
->q_usage_counter
);
452 static void blk_queue_usage_counter_release(struct percpu_ref
*ref
)
454 struct request_queue
*q
=
455 container_of(ref
, struct request_queue
, q_usage_counter
);
457 wake_up_all(&q
->mq_freeze_wq
);
460 static void blk_rq_timed_out_timer(struct timer_list
*t
)
462 struct request_queue
*q
= from_timer(q
, t
, timeout
);
464 kblockd_schedule_work(&q
->timeout_work
);
467 static void blk_timeout_work(struct work_struct
*work
)
472 * blk_alloc_queue_node - allocate a request queue
473 * @gfp_mask: memory allocation flags
474 * @node_id: NUMA node to allocate memory from
476 struct request_queue
*blk_alloc_queue_node(gfp_t gfp_mask
, int node_id
)
478 struct request_queue
*q
;
481 q
= kmem_cache_alloc_node(blk_requestq_cachep
,
482 gfp_mask
| __GFP_ZERO
, node_id
);
486 q
->last_merge
= NULL
;
488 q
->id
= ida_simple_get(&blk_queue_ida
, 0, 0, gfp_mask
);
492 ret
= bioset_init(&q
->bio_split
, BIO_POOL_SIZE
, 0, BIOSET_NEED_BVECS
);
496 q
->backing_dev_info
= bdi_alloc_node(gfp_mask
, node_id
);
497 if (!q
->backing_dev_info
)
500 q
->stats
= blk_alloc_queue_stats();
504 q
->backing_dev_info
->ra_pages
= VM_READAHEAD_PAGES
;
505 q
->backing_dev_info
->capabilities
= BDI_CAP_CGROUP_WRITEBACK
;
506 q
->backing_dev_info
->name
= "block";
509 timer_setup(&q
->backing_dev_info
->laptop_mode_wb_timer
,
510 laptop_mode_timer_fn
, 0);
511 timer_setup(&q
->timeout
, blk_rq_timed_out_timer
, 0);
512 INIT_WORK(&q
->timeout_work
, blk_timeout_work
);
513 INIT_LIST_HEAD(&q
->icq_list
);
514 #ifdef CONFIG_BLK_CGROUP
515 INIT_LIST_HEAD(&q
->blkg_list
);
518 kobject_init(&q
->kobj
, &blk_queue_ktype
);
520 #ifdef CONFIG_BLK_DEV_IO_TRACE
521 mutex_init(&q
->blk_trace_mutex
);
523 mutex_init(&q
->sysfs_lock
);
524 mutex_init(&q
->sysfs_dir_lock
);
525 spin_lock_init(&q
->queue_lock
);
527 init_waitqueue_head(&q
->mq_freeze_wq
);
528 mutex_init(&q
->mq_freeze_lock
);
531 * Init percpu_ref in atomic mode so that it's faster to shutdown.
532 * See blk_register_queue() for details.
534 if (percpu_ref_init(&q
->q_usage_counter
,
535 blk_queue_usage_counter_release
,
536 PERCPU_REF_INIT_ATOMIC
, GFP_KERNEL
))
539 if (blkcg_init_queue(q
))
545 percpu_ref_exit(&q
->q_usage_counter
);
547 blk_free_queue_stats(q
->stats
);
549 bdi_put(q
->backing_dev_info
);
551 bioset_exit(&q
->bio_split
);
553 ida_simple_remove(&blk_queue_ida
, q
->id
);
555 kmem_cache_free(blk_requestq_cachep
, q
);
558 EXPORT_SYMBOL(blk_alloc_queue_node
);
560 bool blk_get_queue(struct request_queue
*q
)
562 if (likely(!blk_queue_dying(q
))) {
569 EXPORT_SYMBOL(blk_get_queue
);
572 * blk_get_request - allocate a request
573 * @q: request queue to allocate a request for
574 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
575 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
577 struct request
*blk_get_request(struct request_queue
*q
, unsigned int op
,
578 blk_mq_req_flags_t flags
)
582 WARN_ON_ONCE(op
& REQ_NOWAIT
);
583 WARN_ON_ONCE(flags
& ~(BLK_MQ_REQ_NOWAIT
| BLK_MQ_REQ_PREEMPT
));
585 req
= blk_mq_alloc_request(q
, op
, flags
);
586 if (!IS_ERR(req
) && q
->mq_ops
->initialize_rq_fn
)
587 q
->mq_ops
->initialize_rq_fn(req
);
591 EXPORT_SYMBOL(blk_get_request
);
593 void blk_put_request(struct request
*req
)
595 blk_mq_free_request(req
);
597 EXPORT_SYMBOL(blk_put_request
);
599 bool bio_attempt_back_merge(struct request
*req
, struct bio
*bio
,
600 unsigned int nr_segs
)
602 const int ff
= bio
->bi_opf
& REQ_FAILFAST_MASK
;
604 if (!ll_back_merge_fn(req
, bio
, nr_segs
))
607 trace_block_bio_backmerge(req
->q
, req
, bio
);
608 rq_qos_merge(req
->q
, req
, bio
);
610 if ((req
->cmd_flags
& REQ_FAILFAST_MASK
) != ff
)
611 blk_rq_set_mixed_merge(req
);
613 req
->biotail
->bi_next
= bio
;
615 req
->__data_len
+= bio
->bi_iter
.bi_size
;
617 blk_account_io_start(req
, false);
621 bool bio_attempt_front_merge(struct request
*req
, struct bio
*bio
,
622 unsigned int nr_segs
)
624 const int ff
= bio
->bi_opf
& REQ_FAILFAST_MASK
;
626 if (!ll_front_merge_fn(req
, bio
, nr_segs
))
629 trace_block_bio_frontmerge(req
->q
, req
, bio
);
630 rq_qos_merge(req
->q
, req
, bio
);
632 if ((req
->cmd_flags
& REQ_FAILFAST_MASK
) != ff
)
633 blk_rq_set_mixed_merge(req
);
635 bio
->bi_next
= req
->bio
;
638 req
->__sector
= bio
->bi_iter
.bi_sector
;
639 req
->__data_len
+= bio
->bi_iter
.bi_size
;
641 blk_account_io_start(req
, false);
645 bool bio_attempt_discard_merge(struct request_queue
*q
, struct request
*req
,
648 unsigned short segments
= blk_rq_nr_discard_segments(req
);
650 if (segments
>= queue_max_discard_segments(q
))
652 if (blk_rq_sectors(req
) + bio_sectors(bio
) >
653 blk_rq_get_max_sectors(req
, blk_rq_pos(req
)))
656 rq_qos_merge(q
, req
, bio
);
658 req
->biotail
->bi_next
= bio
;
660 req
->__data_len
+= bio
->bi_iter
.bi_size
;
661 req
->nr_phys_segments
= segments
+ 1;
663 blk_account_io_start(req
, false);
666 req_set_nomerge(q
, req
);
671 * blk_attempt_plug_merge - try to merge with %current's plugged list
672 * @q: request_queue new bio is being queued at
673 * @bio: new bio being queued
674 * @nr_segs: number of segments in @bio
675 * @same_queue_rq: pointer to &struct request that gets filled in when
676 * another request associated with @q is found on the plug list
677 * (optional, may be %NULL)
679 * Determine whether @bio being queued on @q can be merged with a request
680 * on %current's plugged list. Returns %true if merge was successful,
683 * Plugging coalesces IOs from the same issuer for the same purpose without
684 * going through @q->queue_lock. As such it's more of an issuing mechanism
685 * than scheduling, and the request, while may have elvpriv data, is not
686 * added on the elevator at this point. In addition, we don't have
687 * reliable access to the elevator outside queue lock. Only check basic
688 * merging parameters without querying the elevator.
690 * Caller must ensure !blk_queue_nomerges(q) beforehand.
692 bool blk_attempt_plug_merge(struct request_queue
*q
, struct bio
*bio
,
693 unsigned int nr_segs
, struct request
**same_queue_rq
)
695 struct blk_plug
*plug
;
697 struct list_head
*plug_list
;
699 plug
= blk_mq_plug(q
, bio
);
703 plug_list
= &plug
->mq_list
;
705 list_for_each_entry_reverse(rq
, plug_list
, queuelist
) {
708 if (rq
->q
== q
&& same_queue_rq
) {
710 * Only blk-mq multiple hardware queues case checks the
711 * rq in the same queue, there should be only one such
717 if (rq
->q
!= q
|| !blk_rq_merge_ok(rq
, bio
))
720 switch (blk_try_merge(rq
, bio
)) {
721 case ELEVATOR_BACK_MERGE
:
722 merged
= bio_attempt_back_merge(rq
, bio
, nr_segs
);
724 case ELEVATOR_FRONT_MERGE
:
725 merged
= bio_attempt_front_merge(rq
, bio
, nr_segs
);
727 case ELEVATOR_DISCARD_MERGE
:
728 merged
= bio_attempt_discard_merge(q
, rq
, bio
);
741 static void handle_bad_sector(struct bio
*bio
, sector_t maxsector
)
743 char b
[BDEVNAME_SIZE
];
745 printk(KERN_INFO
"attempt to access beyond end of device\n");
746 printk(KERN_INFO
"%s: rw=%d, want=%Lu, limit=%Lu\n",
747 bio_devname(bio
, b
), bio
->bi_opf
,
748 (unsigned long long)bio_end_sector(bio
),
749 (long long)maxsector
);
752 #ifdef CONFIG_FAIL_MAKE_REQUEST
754 static DECLARE_FAULT_ATTR(fail_make_request
);
756 static int __init
setup_fail_make_request(char *str
)
758 return setup_fault_attr(&fail_make_request
, str
);
760 __setup("fail_make_request=", setup_fail_make_request
);
762 static bool should_fail_request(struct hd_struct
*part
, unsigned int bytes
)
764 return part
->make_it_fail
&& should_fail(&fail_make_request
, bytes
);
767 static int __init
fail_make_request_debugfs(void)
769 struct dentry
*dir
= fault_create_debugfs_attr("fail_make_request",
770 NULL
, &fail_make_request
);
772 return PTR_ERR_OR_ZERO(dir
);
775 late_initcall(fail_make_request_debugfs
);
777 #else /* CONFIG_FAIL_MAKE_REQUEST */
779 static inline bool should_fail_request(struct hd_struct
*part
,
785 #endif /* CONFIG_FAIL_MAKE_REQUEST */
787 static inline bool bio_check_ro(struct bio
*bio
, struct hd_struct
*part
)
789 const int op
= bio_op(bio
);
791 if (part
->policy
&& op_is_write(op
)) {
792 char b
[BDEVNAME_SIZE
];
794 if (op_is_flush(bio
->bi_opf
) && !bio_sectors(bio
))
798 "generic_make_request: Trying to write "
799 "to read-only block-device %s (partno %d)\n",
800 bio_devname(bio
, b
), part
->partno
);
801 /* Older lvm-tools actually trigger this */
808 static noinline
int should_fail_bio(struct bio
*bio
)
810 if (should_fail_request(&bio
->bi_disk
->part0
, bio
->bi_iter
.bi_size
))
814 ALLOW_ERROR_INJECTION(should_fail_bio
, ERRNO
);
817 * Check whether this bio extends beyond the end of the device or partition.
818 * This may well happen - the kernel calls bread() without checking the size of
819 * the device, e.g., when mounting a file system.
821 static inline int bio_check_eod(struct bio
*bio
, sector_t maxsector
)
823 unsigned int nr_sectors
= bio_sectors(bio
);
825 if (nr_sectors
&& maxsector
&&
826 (nr_sectors
> maxsector
||
827 bio
->bi_iter
.bi_sector
> maxsector
- nr_sectors
)) {
828 handle_bad_sector(bio
, maxsector
);
835 * Remap block n of partition p to block n+start(p) of the disk.
837 static inline int blk_partition_remap(struct bio
*bio
)
843 p
= __disk_get_part(bio
->bi_disk
, bio
->bi_partno
);
846 if (unlikely(should_fail_request(p
, bio
->bi_iter
.bi_size
)))
848 if (unlikely(bio_check_ro(bio
, p
)))
852 * Zone reset does not include bi_size so bio_sectors() is always 0.
853 * Include a test for the reset op code and perform the remap if needed.
855 if (bio_sectors(bio
) || bio_op(bio
) == REQ_OP_ZONE_RESET
) {
856 if (bio_check_eod(bio
, part_nr_sects_read(p
)))
858 bio
->bi_iter
.bi_sector
+= p
->start_sect
;
859 trace_block_bio_remap(bio
->bi_disk
->queue
, bio
, part_devt(p
),
860 bio
->bi_iter
.bi_sector
- p
->start_sect
);
869 static noinline_for_stack
bool
870 generic_make_request_checks(struct bio
*bio
)
872 struct request_queue
*q
;
873 int nr_sectors
= bio_sectors(bio
);
874 blk_status_t status
= BLK_STS_IOERR
;
875 char b
[BDEVNAME_SIZE
];
879 q
= bio
->bi_disk
->queue
;
882 "generic_make_request: Trying to access "
883 "nonexistent block-device %s (%Lu)\n",
884 bio_devname(bio
, b
), (long long)bio
->bi_iter
.bi_sector
);
889 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
890 * if queue is not a request based queue.
892 if ((bio
->bi_opf
& REQ_NOWAIT
) && !queue_is_mq(q
))
895 if (should_fail_bio(bio
))
898 if (bio
->bi_partno
) {
899 if (unlikely(blk_partition_remap(bio
)))
902 if (unlikely(bio_check_ro(bio
, &bio
->bi_disk
->part0
)))
904 if (unlikely(bio_check_eod(bio
, get_capacity(bio
->bi_disk
))))
909 * Filter flush bio's early so that make_request based
910 * drivers without flush support don't have to worry
913 if (op_is_flush(bio
->bi_opf
) &&
914 !test_bit(QUEUE_FLAG_WC
, &q
->queue_flags
)) {
915 bio
->bi_opf
&= ~(REQ_PREFLUSH
| REQ_FUA
);
922 if (!test_bit(QUEUE_FLAG_POLL
, &q
->queue_flags
))
923 bio
->bi_opf
&= ~REQ_HIPRI
;
925 switch (bio_op(bio
)) {
927 if (!blk_queue_discard(q
))
930 case REQ_OP_SECURE_ERASE
:
931 if (!blk_queue_secure_erase(q
))
934 case REQ_OP_WRITE_SAME
:
935 if (!q
->limits
.max_write_same_sectors
)
938 case REQ_OP_ZONE_RESET
:
939 if (!blk_queue_is_zoned(q
))
942 case REQ_OP_ZONE_RESET_ALL
:
943 if (!blk_queue_is_zoned(q
) || !blk_queue_zone_resetall(q
))
946 case REQ_OP_WRITE_ZEROES
:
947 if (!q
->limits
.max_write_zeroes_sectors
)
955 * Various block parts want %current->io_context and lazy ioc
956 * allocation ends up trading a lot of pain for a small amount of
957 * memory. Just allocate it upfront. This may fail and block
958 * layer knows how to live with it.
960 create_io_context(GFP_ATOMIC
, q
->node
);
962 if (!blkcg_bio_issue_check(q
, bio
))
965 if (!bio_flagged(bio
, BIO_TRACE_COMPLETION
)) {
966 trace_block_bio_queue(q
, bio
);
967 /* Now that enqueuing has been traced, we need to trace
968 * completion as well.
970 bio_set_flag(bio
, BIO_TRACE_COMPLETION
);
975 status
= BLK_STS_NOTSUPP
;
977 bio
->bi_status
= status
;
983 * generic_make_request - hand a buffer to its device driver for I/O
984 * @bio: The bio describing the location in memory and on the device.
986 * generic_make_request() is used to make I/O requests of block
987 * devices. It is passed a &struct bio, which describes the I/O that needs
990 * generic_make_request() does not return any status. The
991 * success/failure status of the request, along with notification of
992 * completion, is delivered asynchronously through the bio->bi_end_io
993 * function described (one day) else where.
995 * The caller of generic_make_request must make sure that bi_io_vec
996 * are set to describe the memory buffer, and that bi_dev and bi_sector are
997 * set to describe the device address, and the
998 * bi_end_io and optionally bi_private are set to describe how
999 * completion notification should be signaled.
1001 * generic_make_request and the drivers it calls may use bi_next if this
1002 * bio happens to be merged with someone else, and may resubmit the bio to
1003 * a lower device by calling into generic_make_request recursively, which
1004 * means the bio should NOT be touched after the call to ->make_request_fn.
1006 blk_qc_t
generic_make_request(struct bio
*bio
)
1009 * bio_list_on_stack[0] contains bios submitted by the current
1011 * bio_list_on_stack[1] contains bios that were submitted before
1012 * the current make_request_fn, but that haven't been processed
1015 struct bio_list bio_list_on_stack
[2];
1016 blk_qc_t ret
= BLK_QC_T_NONE
;
1018 if (!generic_make_request_checks(bio
))
1022 * We only want one ->make_request_fn to be active at a time, else
1023 * stack usage with stacked devices could be a problem. So use
1024 * current->bio_list to keep a list of requests submited by a
1025 * make_request_fn function. current->bio_list is also used as a
1026 * flag to say if generic_make_request is currently active in this
1027 * task or not. If it is NULL, then no make_request is active. If
1028 * it is non-NULL, then a make_request is active, and new requests
1029 * should be added at the tail
1031 if (current
->bio_list
) {
1032 bio_list_add(¤t
->bio_list
[0], bio
);
1036 /* following loop may be a bit non-obvious, and so deserves some
1038 * Before entering the loop, bio->bi_next is NULL (as all callers
1039 * ensure that) so we have a list with a single bio.
1040 * We pretend that we have just taken it off a longer list, so
1041 * we assign bio_list to a pointer to the bio_list_on_stack,
1042 * thus initialising the bio_list of new bios to be
1043 * added. ->make_request() may indeed add some more bios
1044 * through a recursive call to generic_make_request. If it
1045 * did, we find a non-NULL value in bio_list and re-enter the loop
1046 * from the top. In this case we really did just take the bio
1047 * of the top of the list (no pretending) and so remove it from
1048 * bio_list, and call into ->make_request() again.
1050 BUG_ON(bio
->bi_next
);
1051 bio_list_init(&bio_list_on_stack
[0]);
1052 current
->bio_list
= bio_list_on_stack
;
1054 struct request_queue
*q
= bio
->bi_disk
->queue
;
1055 blk_mq_req_flags_t flags
= bio
->bi_opf
& REQ_NOWAIT
?
1056 BLK_MQ_REQ_NOWAIT
: 0;
1058 if (likely(blk_queue_enter(q
, flags
) == 0)) {
1059 struct bio_list lower
, same
;
1061 /* Create a fresh bio_list for all subordinate requests */
1062 bio_list_on_stack
[1] = bio_list_on_stack
[0];
1063 bio_list_init(&bio_list_on_stack
[0]);
1064 ret
= q
->make_request_fn(q
, bio
);
1068 /* sort new bios into those for a lower level
1069 * and those for the same level
1071 bio_list_init(&lower
);
1072 bio_list_init(&same
);
1073 while ((bio
= bio_list_pop(&bio_list_on_stack
[0])) != NULL
)
1074 if (q
== bio
->bi_disk
->queue
)
1075 bio_list_add(&same
, bio
);
1077 bio_list_add(&lower
, bio
);
1078 /* now assemble so we handle the lowest level first */
1079 bio_list_merge(&bio_list_on_stack
[0], &lower
);
1080 bio_list_merge(&bio_list_on_stack
[0], &same
);
1081 bio_list_merge(&bio_list_on_stack
[0], &bio_list_on_stack
[1]);
1083 if (unlikely(!blk_queue_dying(q
) &&
1084 (bio
->bi_opf
& REQ_NOWAIT
)))
1085 bio_wouldblock_error(bio
);
1089 bio
= bio_list_pop(&bio_list_on_stack
[0]);
1091 current
->bio_list
= NULL
; /* deactivate */
1096 EXPORT_SYMBOL(generic_make_request
);
1099 * direct_make_request - hand a buffer directly to its device driver for I/O
1100 * @bio: The bio describing the location in memory and on the device.
1102 * This function behaves like generic_make_request(), but does not protect
1103 * against recursion. Must only be used if the called driver is known
1104 * to not call generic_make_request (or direct_make_request) again from
1105 * its make_request function. (Calling direct_make_request again from
1106 * a workqueue is perfectly fine as that doesn't recurse).
1108 blk_qc_t
direct_make_request(struct bio
*bio
)
1110 struct request_queue
*q
= bio
->bi_disk
->queue
;
1111 bool nowait
= bio
->bi_opf
& REQ_NOWAIT
;
1114 if (!generic_make_request_checks(bio
))
1115 return BLK_QC_T_NONE
;
1117 if (unlikely(blk_queue_enter(q
, nowait
? BLK_MQ_REQ_NOWAIT
: 0))) {
1118 if (nowait
&& !blk_queue_dying(q
))
1119 bio
->bi_status
= BLK_STS_AGAIN
;
1121 bio
->bi_status
= BLK_STS_IOERR
;
1123 return BLK_QC_T_NONE
;
1126 ret
= q
->make_request_fn(q
, bio
);
1130 EXPORT_SYMBOL_GPL(direct_make_request
);
1133 * submit_bio - submit a bio to the block device layer for I/O
1134 * @bio: The &struct bio which describes the I/O
1136 * submit_bio() is very similar in purpose to generic_make_request(), and
1137 * uses that function to do most of the work. Both are fairly rough
1138 * interfaces; @bio must be presetup and ready for I/O.
1141 blk_qc_t
submit_bio(struct bio
*bio
)
1143 bool workingset_read
= false;
1144 unsigned long pflags
;
1147 if (blkcg_punt_bio_submit(bio
))
1148 return BLK_QC_T_NONE
;
1151 * If it's a regular read/write or a barrier with data attached,
1152 * go through the normal accounting stuff before submission.
1154 if (bio_has_data(bio
)) {
1157 if (unlikely(bio_op(bio
) == REQ_OP_WRITE_SAME
))
1158 count
= queue_logical_block_size(bio
->bi_disk
->queue
) >> 9;
1160 count
= bio_sectors(bio
);
1162 if (op_is_write(bio_op(bio
))) {
1163 count_vm_events(PGPGOUT
, count
);
1165 if (bio_flagged(bio
, BIO_WORKINGSET
))
1166 workingset_read
= true;
1167 task_io_account_read(bio
->bi_iter
.bi_size
);
1168 count_vm_events(PGPGIN
, count
);
1171 if (unlikely(block_dump
)) {
1172 char b
[BDEVNAME_SIZE
];
1173 printk(KERN_DEBUG
"%s(%d): %s block %Lu on %s (%u sectors)\n",
1174 current
->comm
, task_pid_nr(current
),
1175 op_is_write(bio_op(bio
)) ? "WRITE" : "READ",
1176 (unsigned long long)bio
->bi_iter
.bi_sector
,
1177 bio_devname(bio
, b
), count
);
1182 * If we're reading data that is part of the userspace
1183 * workingset, count submission time as memory stall. When the
1184 * device is congested, or the submitting cgroup IO-throttled,
1185 * submission can be a significant part of overall IO time.
1187 if (workingset_read
)
1188 psi_memstall_enter(&pflags
);
1190 ret
= generic_make_request(bio
);
1192 if (workingset_read
)
1193 psi_memstall_leave(&pflags
);
1197 EXPORT_SYMBOL(submit_bio
);
1200 * blk_cloned_rq_check_limits - Helper function to check a cloned request
1201 * for new the queue limits
1203 * @rq: the request being checked
1206 * @rq may have been made based on weaker limitations of upper-level queues
1207 * in request stacking drivers, and it may violate the limitation of @q.
1208 * Since the block layer and the underlying device driver trust @rq
1209 * after it is inserted to @q, it should be checked against @q before
1210 * the insertion using this generic function.
1212 * Request stacking drivers like request-based dm may change the queue
1213 * limits when retrying requests on other queues. Those requests need
1214 * to be checked against the new queue limits again during dispatch.
1216 static int blk_cloned_rq_check_limits(struct request_queue
*q
,
1219 if (blk_rq_sectors(rq
) > blk_queue_get_max_sectors(q
, req_op(rq
))) {
1220 printk(KERN_ERR
"%s: over max size limit. (%u > %u)\n",
1221 __func__
, blk_rq_sectors(rq
),
1222 blk_queue_get_max_sectors(q
, req_op(rq
)));
1227 * queue's settings related to segment counting like q->bounce_pfn
1228 * may differ from that of other stacking queues.
1229 * Recalculate it to check the request correctly on this queue's
1232 rq
->nr_phys_segments
= blk_recalc_rq_segments(rq
);
1233 if (rq
->nr_phys_segments
> queue_max_segments(q
)) {
1234 printk(KERN_ERR
"%s: over max segments limit. (%hu > %hu)\n",
1235 __func__
, rq
->nr_phys_segments
, queue_max_segments(q
));
1243 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1244 * @q: the queue to submit the request
1245 * @rq: the request being queued
1247 blk_status_t
blk_insert_cloned_request(struct request_queue
*q
, struct request
*rq
)
1249 if (blk_cloned_rq_check_limits(q
, rq
))
1250 return BLK_STS_IOERR
;
1253 should_fail_request(&rq
->rq_disk
->part0
, blk_rq_bytes(rq
)))
1254 return BLK_STS_IOERR
;
1256 if (blk_queue_io_stat(q
))
1257 blk_account_io_start(rq
, true);
1260 * Since we have a scheduler attached on the top device,
1261 * bypass a potential scheduler on the bottom device for
1264 return blk_mq_request_issue_directly(rq
, true);
1266 EXPORT_SYMBOL_GPL(blk_insert_cloned_request
);
1269 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1270 * @rq: request to examine
1273 * A request could be merge of IOs which require different failure
1274 * handling. This function determines the number of bytes which
1275 * can be failed from the beginning of the request without
1276 * crossing into area which need to be retried further.
1279 * The number of bytes to fail.
1281 unsigned int blk_rq_err_bytes(const struct request
*rq
)
1283 unsigned int ff
= rq
->cmd_flags
& REQ_FAILFAST_MASK
;
1284 unsigned int bytes
= 0;
1287 if (!(rq
->rq_flags
& RQF_MIXED_MERGE
))
1288 return blk_rq_bytes(rq
);
1291 * Currently the only 'mixing' which can happen is between
1292 * different fastfail types. We can safely fail portions
1293 * which have all the failfast bits that the first one has -
1294 * the ones which are at least as eager to fail as the first
1297 for (bio
= rq
->bio
; bio
; bio
= bio
->bi_next
) {
1298 if ((bio
->bi_opf
& ff
) != ff
)
1300 bytes
+= bio
->bi_iter
.bi_size
;
1303 /* this could lead to infinite loop */
1304 BUG_ON(blk_rq_bytes(rq
) && !bytes
);
1307 EXPORT_SYMBOL_GPL(blk_rq_err_bytes
);
1309 void blk_account_io_completion(struct request
*req
, unsigned int bytes
)
1311 if (blk_do_io_stat(req
)) {
1312 const int sgrp
= op_stat_group(req_op(req
));
1313 struct hd_struct
*part
;
1317 part_stat_add(part
, sectors
[sgrp
], bytes
>> 9);
1322 void blk_account_io_done(struct request
*req
, u64 now
)
1325 * Account IO completion. flush_rq isn't accounted as a
1326 * normal IO on queueing nor completion. Accounting the
1327 * containing request is enough.
1329 if (blk_do_io_stat(req
) && !(req
->rq_flags
& RQF_FLUSH_SEQ
)) {
1330 const int sgrp
= op_stat_group(req_op(req
));
1331 struct hd_struct
*part
;
1336 update_io_ticks(part
, jiffies
);
1337 part_stat_inc(part
, ios
[sgrp
]);
1338 part_stat_add(part
, nsecs
[sgrp
], now
- req
->start_time_ns
);
1339 part_stat_add(part
, time_in_queue
, nsecs_to_jiffies64(now
- req
->start_time_ns
));
1340 part_dec_in_flight(req
->q
, part
, rq_data_dir(req
));
1342 hd_struct_put(part
);
1347 void blk_account_io_start(struct request
*rq
, bool new_io
)
1349 struct hd_struct
*part
;
1350 int rw
= rq_data_dir(rq
);
1352 if (!blk_do_io_stat(rq
))
1359 part_stat_inc(part
, merges
[rw
]);
1361 part
= disk_map_sector_rcu(rq
->rq_disk
, blk_rq_pos(rq
));
1362 if (!hd_struct_try_get(part
)) {
1364 * The partition is already being removed,
1365 * the request will be accounted on the disk only
1367 * We take a reference on disk->part0 although that
1368 * partition will never be deleted, so we can treat
1369 * it as any other partition.
1371 part
= &rq
->rq_disk
->part0
;
1372 hd_struct_get(part
);
1374 part_inc_in_flight(rq
->q
, part
, rw
);
1378 update_io_ticks(part
, jiffies
);
1384 * Steal bios from a request and add them to a bio list.
1385 * The request must not have been partially completed before.
1387 void blk_steal_bios(struct bio_list
*list
, struct request
*rq
)
1391 list
->tail
->bi_next
= rq
->bio
;
1393 list
->head
= rq
->bio
;
1394 list
->tail
= rq
->biotail
;
1402 EXPORT_SYMBOL_GPL(blk_steal_bios
);
1405 * blk_update_request - Special helper function for request stacking drivers
1406 * @req: the request being processed
1407 * @error: block status code
1408 * @nr_bytes: number of bytes to complete @req
1411 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1412 * the request structure even if @req doesn't have leftover.
1413 * If @req has leftover, sets it up for the next range of segments.
1415 * This special helper function is only for request stacking drivers
1416 * (e.g. request-based dm) so that they can handle partial completion.
1417 * Actual device drivers should use blk_mq_end_request instead.
1419 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1420 * %false return from this function.
1423 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
1424 * blk_rq_bytes() and in blk_update_request().
1427 * %false - this request doesn't have any more data
1428 * %true - this request has more data
1430 bool blk_update_request(struct request
*req
, blk_status_t error
,
1431 unsigned int nr_bytes
)
1435 trace_block_rq_complete(req
, blk_status_to_errno(error
), nr_bytes
);
1440 #ifdef CONFIG_BLK_DEV_INTEGRITY
1441 if (blk_integrity_rq(req
) && req_op(req
) == REQ_OP_READ
&&
1442 error
== BLK_STS_OK
)
1443 req
->q
->integrity
.profile
->complete_fn(req
, nr_bytes
);
1446 if (unlikely(error
&& !blk_rq_is_passthrough(req
) &&
1447 !(req
->rq_flags
& RQF_QUIET
)))
1448 print_req_error(req
, error
, __func__
);
1450 blk_account_io_completion(req
, nr_bytes
);
1454 struct bio
*bio
= req
->bio
;
1455 unsigned bio_bytes
= min(bio
->bi_iter
.bi_size
, nr_bytes
);
1457 if (bio_bytes
== bio
->bi_iter
.bi_size
)
1458 req
->bio
= bio
->bi_next
;
1460 /* Completion has already been traced */
1461 bio_clear_flag(bio
, BIO_TRACE_COMPLETION
);
1462 req_bio_endio(req
, bio
, bio_bytes
, error
);
1464 total_bytes
+= bio_bytes
;
1465 nr_bytes
-= bio_bytes
;
1476 * Reset counters so that the request stacking driver
1477 * can find how many bytes remain in the request
1480 req
->__data_len
= 0;
1484 req
->__data_len
-= total_bytes
;
1486 /* update sector only for requests with clear definition of sector */
1487 if (!blk_rq_is_passthrough(req
))
1488 req
->__sector
+= total_bytes
>> 9;
1490 /* mixed attributes always follow the first bio */
1491 if (req
->rq_flags
& RQF_MIXED_MERGE
) {
1492 req
->cmd_flags
&= ~REQ_FAILFAST_MASK
;
1493 req
->cmd_flags
|= req
->bio
->bi_opf
& REQ_FAILFAST_MASK
;
1496 if (!(req
->rq_flags
& RQF_SPECIAL_PAYLOAD
)) {
1498 * If total number of sectors is less than the first segment
1499 * size, something has gone terribly wrong.
1501 if (blk_rq_bytes(req
) < blk_rq_cur_bytes(req
)) {
1502 blk_dump_rq_flags(req
, "request botched");
1503 req
->__data_len
= blk_rq_cur_bytes(req
);
1506 /* recalculate the number of segments */
1507 req
->nr_phys_segments
= blk_recalc_rq_segments(req
);
1512 EXPORT_SYMBOL_GPL(blk_update_request
);
1514 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1516 * rq_flush_dcache_pages - Helper function to flush all pages in a request
1517 * @rq: the request to be flushed
1520 * Flush all pages in @rq.
1522 void rq_flush_dcache_pages(struct request
*rq
)
1524 struct req_iterator iter
;
1525 struct bio_vec bvec
;
1527 rq_for_each_segment(bvec
, rq
, iter
)
1528 flush_dcache_page(bvec
.bv_page
);
1530 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages
);
1534 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1535 * @q : the queue of the device being checked
1538 * Check if underlying low-level drivers of a device are busy.
1539 * If the drivers want to export their busy state, they must set own
1540 * exporting function using blk_queue_lld_busy() first.
1542 * Basically, this function is used only by request stacking drivers
1543 * to stop dispatching requests to underlying devices when underlying
1544 * devices are busy. This behavior helps more I/O merging on the queue
1545 * of the request stacking driver and prevents I/O throughput regression
1546 * on burst I/O load.
1549 * 0 - Not busy (The request stacking driver should dispatch request)
1550 * 1 - Busy (The request stacking driver should stop dispatching request)
1552 int blk_lld_busy(struct request_queue
*q
)
1554 if (queue_is_mq(q
) && q
->mq_ops
->busy
)
1555 return q
->mq_ops
->busy(q
);
1559 EXPORT_SYMBOL_GPL(blk_lld_busy
);
1562 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1563 * @rq: the clone request to be cleaned up
1566 * Free all bios in @rq for a cloned request.
1568 void blk_rq_unprep_clone(struct request
*rq
)
1572 while ((bio
= rq
->bio
) != NULL
) {
1573 rq
->bio
= bio
->bi_next
;
1578 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone
);
1581 * Copy attributes of the original request to the clone request.
1582 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
1584 static void __blk_rq_prep_clone(struct request
*dst
, struct request
*src
)
1586 dst
->__sector
= blk_rq_pos(src
);
1587 dst
->__data_len
= blk_rq_bytes(src
);
1588 if (src
->rq_flags
& RQF_SPECIAL_PAYLOAD
) {
1589 dst
->rq_flags
|= RQF_SPECIAL_PAYLOAD
;
1590 dst
->special_vec
= src
->special_vec
;
1592 dst
->nr_phys_segments
= src
->nr_phys_segments
;
1593 dst
->ioprio
= src
->ioprio
;
1594 dst
->extra_len
= src
->extra_len
;
1598 * blk_rq_prep_clone - Helper function to setup clone request
1599 * @rq: the request to be setup
1600 * @rq_src: original request to be cloned
1601 * @bs: bio_set that bios for clone are allocated from
1602 * @gfp_mask: memory allocation mask for bio
1603 * @bio_ctr: setup function to be called for each clone bio.
1604 * Returns %0 for success, non %0 for failure.
1605 * @data: private data to be passed to @bio_ctr
1608 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1609 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
1610 * are not copied, and copying such parts is the caller's responsibility.
1611 * Also, pages which the original bios are pointing to are not copied
1612 * and the cloned bios just point same pages.
1613 * So cloned bios must be completed before original bios, which means
1614 * the caller must complete @rq before @rq_src.
1616 int blk_rq_prep_clone(struct request
*rq
, struct request
*rq_src
,
1617 struct bio_set
*bs
, gfp_t gfp_mask
,
1618 int (*bio_ctr
)(struct bio
*, struct bio
*, void *),
1621 struct bio
*bio
, *bio_src
;
1626 __rq_for_each_bio(bio_src
, rq_src
) {
1627 bio
= bio_clone_fast(bio_src
, gfp_mask
, bs
);
1631 if (bio_ctr
&& bio_ctr(bio
, bio_src
, data
))
1635 rq
->biotail
->bi_next
= bio
;
1638 rq
->bio
= rq
->biotail
= bio
;
1641 __blk_rq_prep_clone(rq
, rq_src
);
1648 blk_rq_unprep_clone(rq
);
1652 EXPORT_SYMBOL_GPL(blk_rq_prep_clone
);
1654 int kblockd_schedule_work(struct work_struct
*work
)
1656 return queue_work(kblockd_workqueue
, work
);
1658 EXPORT_SYMBOL(kblockd_schedule_work
);
1660 int kblockd_schedule_work_on(int cpu
, struct work_struct
*work
)
1662 return queue_work_on(cpu
, kblockd_workqueue
, work
);
1664 EXPORT_SYMBOL(kblockd_schedule_work_on
);
1666 int kblockd_mod_delayed_work_on(int cpu
, struct delayed_work
*dwork
,
1667 unsigned long delay
)
1669 return mod_delayed_work_on(cpu
, kblockd_workqueue
, dwork
, delay
);
1671 EXPORT_SYMBOL(kblockd_mod_delayed_work_on
);
1674 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1675 * @plug: The &struct blk_plug that needs to be initialized
1678 * blk_start_plug() indicates to the block layer an intent by the caller
1679 * to submit multiple I/O requests in a batch. The block layer may use
1680 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1681 * is called. However, the block layer may choose to submit requests
1682 * before a call to blk_finish_plug() if the number of queued I/Os
1683 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1684 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1685 * the task schedules (see below).
1687 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1688 * pending I/O should the task end up blocking between blk_start_plug() and
1689 * blk_finish_plug(). This is important from a performance perspective, but
1690 * also ensures that we don't deadlock. For instance, if the task is blocking
1691 * for a memory allocation, memory reclaim could end up wanting to free a
1692 * page belonging to that request that is currently residing in our private
1693 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1694 * this kind of deadlock.
1696 void blk_start_plug(struct blk_plug
*plug
)
1698 struct task_struct
*tsk
= current
;
1701 * If this is a nested plug, don't actually assign it.
1706 INIT_LIST_HEAD(&plug
->mq_list
);
1707 INIT_LIST_HEAD(&plug
->cb_list
);
1709 plug
->multiple_queues
= false;
1712 * Store ordering should not be needed here, since a potential
1713 * preempt will imply a full memory barrier
1717 EXPORT_SYMBOL(blk_start_plug
);
1719 static void flush_plug_callbacks(struct blk_plug
*plug
, bool from_schedule
)
1721 LIST_HEAD(callbacks
);
1723 while (!list_empty(&plug
->cb_list
)) {
1724 list_splice_init(&plug
->cb_list
, &callbacks
);
1726 while (!list_empty(&callbacks
)) {
1727 struct blk_plug_cb
*cb
= list_first_entry(&callbacks
,
1730 list_del(&cb
->list
);
1731 cb
->callback(cb
, from_schedule
);
1736 struct blk_plug_cb
*blk_check_plugged(blk_plug_cb_fn unplug
, void *data
,
1739 struct blk_plug
*plug
= current
->plug
;
1740 struct blk_plug_cb
*cb
;
1745 list_for_each_entry(cb
, &plug
->cb_list
, list
)
1746 if (cb
->callback
== unplug
&& cb
->data
== data
)
1749 /* Not currently on the callback list */
1750 BUG_ON(size
< sizeof(*cb
));
1751 cb
= kzalloc(size
, GFP_ATOMIC
);
1754 cb
->callback
= unplug
;
1755 list_add(&cb
->list
, &plug
->cb_list
);
1759 EXPORT_SYMBOL(blk_check_plugged
);
1761 void blk_flush_plug_list(struct blk_plug
*plug
, bool from_schedule
)
1763 flush_plug_callbacks(plug
, from_schedule
);
1765 if (!list_empty(&plug
->mq_list
))
1766 blk_mq_flush_plug_list(plug
, from_schedule
);
1770 * blk_finish_plug - mark the end of a batch of submitted I/O
1771 * @plug: The &struct blk_plug passed to blk_start_plug()
1774 * Indicate that a batch of I/O submissions is complete. This function
1775 * must be paired with an initial call to blk_start_plug(). The intent
1776 * is to allow the block layer to optimize I/O submission. See the
1777 * documentation for blk_start_plug() for more information.
1779 void blk_finish_plug(struct blk_plug
*plug
)
1781 if (plug
!= current
->plug
)
1783 blk_flush_plug_list(plug
, false);
1785 current
->plug
= NULL
;
1787 EXPORT_SYMBOL(blk_finish_plug
);
1789 int __init
blk_dev_init(void)
1791 BUILD_BUG_ON(REQ_OP_LAST
>= (1 << REQ_OP_BITS
));
1792 BUILD_BUG_ON(REQ_OP_BITS
+ REQ_FLAG_BITS
> 8 *
1793 FIELD_SIZEOF(struct request
, cmd_flags
));
1794 BUILD_BUG_ON(REQ_OP_BITS
+ REQ_FLAG_BITS
> 8 *
1795 FIELD_SIZEOF(struct bio
, bi_opf
));
1797 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1798 kblockd_workqueue
= alloc_workqueue("kblockd",
1799 WQ_MEM_RECLAIM
| WQ_HIGHPRI
, 0);
1800 if (!kblockd_workqueue
)
1801 panic("Failed to create kblockd\n");
1803 blk_requestq_cachep
= kmem_cache_create("request_queue",
1804 sizeof(struct request_queue
), 0, SLAB_PANIC
, NULL
);
1806 #ifdef CONFIG_DEBUG_FS
1807 blk_debugfs_root
= debugfs_create_dir("block", NULL
);