1 // SPDX-License-Identifier: GPL-2.0
3 * blk-mq scheduling framework
5 * Copyright (C) 2016 Jens Axboe
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/blk-mq.h>
11 #include <trace/events/block.h>
15 #include "blk-mq-debugfs.h"
16 #include "blk-mq-sched.h"
17 #include "blk-mq-tag.h"
20 void blk_mq_sched_free_hctx_data(struct request_queue
*q
,
21 void (*exit
)(struct blk_mq_hw_ctx
*))
23 struct blk_mq_hw_ctx
*hctx
;
26 queue_for_each_hw_ctx(q
, hctx
, i
) {
27 if (exit
&& hctx
->sched_data
)
29 kfree(hctx
->sched_data
);
30 hctx
->sched_data
= NULL
;
33 EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data
);
35 void blk_mq_sched_assign_ioc(struct request
*rq
)
37 struct request_queue
*q
= rq
->q
;
38 struct io_context
*ioc
;
42 * May not have an IO context if it's a passthrough request
44 ioc
= current
->io_context
;
48 spin_lock_irq(&q
->queue_lock
);
49 icq
= ioc_lookup_icq(ioc
, q
);
50 spin_unlock_irq(&q
->queue_lock
);
53 icq
= ioc_create_icq(ioc
, q
, GFP_ATOMIC
);
57 get_io_context(icq
->ioc
);
62 * Mark a hardware queue as needing a restart. For shared queues, maintain
63 * a count of how many hardware queues are marked for restart.
65 void blk_mq_sched_mark_restart_hctx(struct blk_mq_hw_ctx
*hctx
)
67 if (test_bit(BLK_MQ_S_SCHED_RESTART
, &hctx
->state
))
70 set_bit(BLK_MQ_S_SCHED_RESTART
, &hctx
->state
);
72 EXPORT_SYMBOL_GPL(blk_mq_sched_mark_restart_hctx
);
74 void blk_mq_sched_restart(struct blk_mq_hw_ctx
*hctx
)
76 if (!test_bit(BLK_MQ_S_SCHED_RESTART
, &hctx
->state
))
78 clear_bit(BLK_MQ_S_SCHED_RESTART
, &hctx
->state
);
80 blk_mq_run_hw_queue(hctx
, true);
84 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
85 * its queue by itself in its completion handler, so we don't need to
86 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
88 static void blk_mq_do_dispatch_sched(struct blk_mq_hw_ctx
*hctx
)
90 struct request_queue
*q
= hctx
->queue
;
91 struct elevator_queue
*e
= q
->elevator
;
97 if (e
->type
->ops
.has_work
&& !e
->type
->ops
.has_work(hctx
))
100 if (!blk_mq_get_dispatch_budget(hctx
))
103 rq
= e
->type
->ops
.dispatch_request(hctx
);
105 blk_mq_put_dispatch_budget(hctx
);
110 * Now this rq owns the budget which has to be released
111 * if this rq won't be queued to driver via .queue_rq()
112 * in blk_mq_dispatch_rq_list().
114 list_add(&rq
->queuelist
, &rq_list
);
115 } while (blk_mq_dispatch_rq_list(q
, &rq_list
, true));
118 static struct blk_mq_ctx
*blk_mq_next_ctx(struct blk_mq_hw_ctx
*hctx
,
119 struct blk_mq_ctx
*ctx
)
121 unsigned short idx
= ctx
->index_hw
[hctx
->type
];
123 if (++idx
== hctx
->nr_ctx
)
126 return hctx
->ctxs
[idx
];
130 * Only SCSI implements .get_budget and .put_budget, and SCSI restarts
131 * its queue by itself in its completion handler, so we don't need to
132 * restart queue if .get_budget() returns BLK_STS_NO_RESOURCE.
134 static void blk_mq_do_dispatch_ctx(struct blk_mq_hw_ctx
*hctx
)
136 struct request_queue
*q
= hctx
->queue
;
138 struct blk_mq_ctx
*ctx
= READ_ONCE(hctx
->dispatch_from
);
143 if (!sbitmap_any_bit_set(&hctx
->ctx_map
))
146 if (!blk_mq_get_dispatch_budget(hctx
))
149 rq
= blk_mq_dequeue_from_ctx(hctx
, ctx
);
151 blk_mq_put_dispatch_budget(hctx
);
156 * Now this rq owns the budget which has to be released
157 * if this rq won't be queued to driver via .queue_rq()
158 * in blk_mq_dispatch_rq_list().
160 list_add(&rq
->queuelist
, &rq_list
);
162 /* round robin for fair dispatch */
163 ctx
= blk_mq_next_ctx(hctx
, rq
->mq_ctx
);
165 } while (blk_mq_dispatch_rq_list(q
, &rq_list
, true));
167 WRITE_ONCE(hctx
->dispatch_from
, ctx
);
170 void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx
*hctx
)
172 struct request_queue
*q
= hctx
->queue
;
173 struct elevator_queue
*e
= q
->elevator
;
174 const bool has_sched_dispatch
= e
&& e
->type
->ops
.dispatch_request
;
177 /* RCU or SRCU read lock is needed before checking quiesced flag */
178 if (unlikely(blk_mq_hctx_stopped(hctx
) || blk_queue_quiesced(q
)))
184 * If we have previous entries on our dispatch list, grab them first for
185 * more fair dispatch.
187 if (!list_empty_careful(&hctx
->dispatch
)) {
188 spin_lock(&hctx
->lock
);
189 if (!list_empty(&hctx
->dispatch
))
190 list_splice_init(&hctx
->dispatch
, &rq_list
);
191 spin_unlock(&hctx
->lock
);
195 * Only ask the scheduler for requests, if we didn't have residual
196 * requests from the dispatch list. This is to avoid the case where
197 * we only ever dispatch a fraction of the requests available because
198 * of low device queue depth. Once we pull requests out of the IO
199 * scheduler, we can no longer merge or sort them. So it's best to
200 * leave them there for as long as we can. Mark the hw queue as
201 * needing a restart in that case.
203 * We want to dispatch from the scheduler if there was nothing
204 * on the dispatch list or we were able to dispatch from the
207 if (!list_empty(&rq_list
)) {
208 blk_mq_sched_mark_restart_hctx(hctx
);
209 if (blk_mq_dispatch_rq_list(q
, &rq_list
, false)) {
210 if (has_sched_dispatch
)
211 blk_mq_do_dispatch_sched(hctx
);
213 blk_mq_do_dispatch_ctx(hctx
);
215 } else if (has_sched_dispatch
) {
216 blk_mq_do_dispatch_sched(hctx
);
217 } else if (hctx
->dispatch_busy
) {
218 /* dequeue request one by one from sw queue if queue is busy */
219 blk_mq_do_dispatch_ctx(hctx
);
221 blk_mq_flush_busy_ctxs(hctx
, &rq_list
);
222 blk_mq_dispatch_rq_list(q
, &rq_list
, false);
226 bool blk_mq_sched_try_merge(struct request_queue
*q
, struct bio
*bio
,
227 unsigned int nr_segs
, struct request
**merged_request
)
231 switch (elv_merge(q
, &rq
, bio
)) {
232 case ELEVATOR_BACK_MERGE
:
233 if (!blk_mq_sched_allow_merge(q
, rq
, bio
))
235 if (!bio_attempt_back_merge(rq
, bio
, nr_segs
))
237 *merged_request
= attempt_back_merge(q
, rq
);
238 if (!*merged_request
)
239 elv_merged_request(q
, rq
, ELEVATOR_BACK_MERGE
);
241 case ELEVATOR_FRONT_MERGE
:
242 if (!blk_mq_sched_allow_merge(q
, rq
, bio
))
244 if (!bio_attempt_front_merge(rq
, bio
, nr_segs
))
246 *merged_request
= attempt_front_merge(q
, rq
);
247 if (!*merged_request
)
248 elv_merged_request(q
, rq
, ELEVATOR_FRONT_MERGE
);
250 case ELEVATOR_DISCARD_MERGE
:
251 return bio_attempt_discard_merge(q
, rq
, bio
);
256 EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge
);
259 * Iterate list of requests and see if we can merge this bio with any
262 bool blk_mq_bio_list_merge(struct request_queue
*q
, struct list_head
*list
,
263 struct bio
*bio
, unsigned int nr_segs
)
268 list_for_each_entry_reverse(rq
, list
, queuelist
) {
274 if (!blk_rq_merge_ok(rq
, bio
))
277 switch (blk_try_merge(rq
, bio
)) {
278 case ELEVATOR_BACK_MERGE
:
279 if (blk_mq_sched_allow_merge(q
, rq
, bio
))
280 merged
= bio_attempt_back_merge(rq
, bio
,
283 case ELEVATOR_FRONT_MERGE
:
284 if (blk_mq_sched_allow_merge(q
, rq
, bio
))
285 merged
= bio_attempt_front_merge(rq
, bio
,
288 case ELEVATOR_DISCARD_MERGE
:
289 merged
= bio_attempt_discard_merge(q
, rq
, bio
);
300 EXPORT_SYMBOL_GPL(blk_mq_bio_list_merge
);
303 * Reverse check our software queue for entries that we could potentially
304 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
305 * too much time checking for merges.
307 static bool blk_mq_attempt_merge(struct request_queue
*q
,
308 struct blk_mq_hw_ctx
*hctx
,
309 struct blk_mq_ctx
*ctx
, struct bio
*bio
,
310 unsigned int nr_segs
)
312 enum hctx_type type
= hctx
->type
;
314 lockdep_assert_held(&ctx
->lock
);
316 if (blk_mq_bio_list_merge(q
, &ctx
->rq_lists
[type
], bio
, nr_segs
)) {
324 bool __blk_mq_sched_bio_merge(struct request_queue
*q
, struct bio
*bio
,
325 unsigned int nr_segs
)
327 struct elevator_queue
*e
= q
->elevator
;
328 struct blk_mq_ctx
*ctx
= blk_mq_get_ctx(q
);
329 struct blk_mq_hw_ctx
*hctx
= blk_mq_map_queue(q
, bio
->bi_opf
, ctx
);
333 if (e
&& e
->type
->ops
.bio_merge
)
334 return e
->type
->ops
.bio_merge(hctx
, bio
, nr_segs
);
337 if ((hctx
->flags
& BLK_MQ_F_SHOULD_MERGE
) &&
338 !list_empty_careful(&ctx
->rq_lists
[type
])) {
339 /* default per sw-queue merge */
340 spin_lock(&ctx
->lock
);
341 ret
= blk_mq_attempt_merge(q
, hctx
, ctx
, bio
, nr_segs
);
342 spin_unlock(&ctx
->lock
);
348 bool blk_mq_sched_try_insert_merge(struct request_queue
*q
, struct request
*rq
)
350 return rq_mergeable(rq
) && elv_attempt_insert_merge(q
, rq
);
352 EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge
);
354 void blk_mq_sched_request_inserted(struct request
*rq
)
356 trace_block_rq_insert(rq
->q
, rq
);
358 EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted
);
360 static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx
*hctx
,
365 * dispatch flush and passthrough rq directly
367 * passthrough request has to be added to hctx->dispatch directly.
368 * For some reason, device may be in one situation which can't
369 * handle FS request, so STS_RESOURCE is always returned and the
370 * FS request will be added to hctx->dispatch. However passthrough
371 * request may be required at that time for fixing the problem. If
372 * passthrough request is added to scheduler queue, there isn't any
373 * chance to dispatch it given we prioritize requests in hctx->dispatch.
375 if ((rq
->rq_flags
& RQF_FLUSH_SEQ
) || blk_rq_is_passthrough(rq
))
379 rq
->rq_flags
|= RQF_SORTED
;
384 void blk_mq_sched_insert_request(struct request
*rq
, bool at_head
,
385 bool run_queue
, bool async
)
387 struct request_queue
*q
= rq
->q
;
388 struct elevator_queue
*e
= q
->elevator
;
389 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
390 struct blk_mq_hw_ctx
*hctx
= rq
->mq_hctx
;
392 /* flush rq in flush machinery need to be dispatched directly */
393 if (!(rq
->rq_flags
& RQF_FLUSH_SEQ
) && op_is_flush(rq
->cmd_flags
)) {
394 blk_insert_flush(rq
);
398 WARN_ON(e
&& (rq
->tag
!= -1));
400 if (blk_mq_sched_bypass_insert(hctx
, !!e
, rq
)) {
402 * Firstly normal IO request is inserted to scheduler queue or
403 * sw queue, meantime we add flush request to dispatch queue(
404 * hctx->dispatch) directly and there is at most one in-flight
405 * flush request for each hw queue, so it doesn't matter to add
406 * flush request to tail or front of the dispatch queue.
408 * Secondly in case of NCQ, flush request belongs to non-NCQ
409 * command, and queueing it will fail when there is any
410 * in-flight normal IO request(NCQ command). When adding flush
411 * rq to the front of hctx->dispatch, it is easier to introduce
412 * extra time to flush rq's latency because of S_SCHED_RESTART
413 * compared with adding to the tail of dispatch queue, then
414 * chance of flush merge is increased, and less flush requests
415 * will be issued to controller. It is observed that ~10% time
416 * is saved in blktests block/004 on disk attached to AHCI/NCQ
417 * drive when adding flush rq to the front of hctx->dispatch.
419 * Simply queue flush rq to the front of hctx->dispatch so that
420 * intensive flush workloads can benefit in case of NCQ HW.
422 at_head
= (rq
->rq_flags
& RQF_FLUSH_SEQ
) ? true : at_head
;
423 blk_mq_request_bypass_insert(rq
, at_head
, false);
427 if (e
&& e
->type
->ops
.insert_requests
) {
430 list_add(&rq
->queuelist
, &list
);
431 e
->type
->ops
.insert_requests(hctx
, &list
, at_head
);
433 spin_lock(&ctx
->lock
);
434 __blk_mq_insert_request(hctx
, rq
, at_head
);
435 spin_unlock(&ctx
->lock
);
440 blk_mq_run_hw_queue(hctx
, async
);
443 void blk_mq_sched_insert_requests(struct blk_mq_hw_ctx
*hctx
,
444 struct blk_mq_ctx
*ctx
,
445 struct list_head
*list
, bool run_queue_async
)
447 struct elevator_queue
*e
;
448 struct request_queue
*q
= hctx
->queue
;
451 * blk_mq_sched_insert_requests() is called from flush plug
452 * context only, and hold one usage counter to prevent queue
453 * from being released.
455 percpu_ref_get(&q
->q_usage_counter
);
457 e
= hctx
->queue
->elevator
;
458 if (e
&& e
->type
->ops
.insert_requests
)
459 e
->type
->ops
.insert_requests(hctx
, list
, false);
462 * try to issue requests directly if the hw queue isn't
463 * busy in case of 'none' scheduler, and this way may save
464 * us one extra enqueue & dequeue to sw queue.
466 if (!hctx
->dispatch_busy
&& !e
&& !run_queue_async
) {
467 blk_mq_try_issue_list_directly(hctx
, list
);
468 if (list_empty(list
))
471 blk_mq_insert_requests(hctx
, ctx
, list
);
474 blk_mq_run_hw_queue(hctx
, run_queue_async
);
476 percpu_ref_put(&q
->q_usage_counter
);
479 static void blk_mq_sched_free_tags(struct blk_mq_tag_set
*set
,
480 struct blk_mq_hw_ctx
*hctx
,
481 unsigned int hctx_idx
)
483 if (hctx
->sched_tags
) {
484 blk_mq_free_rqs(set
, hctx
->sched_tags
, hctx_idx
);
485 blk_mq_free_rq_map(hctx
->sched_tags
);
486 hctx
->sched_tags
= NULL
;
490 static int blk_mq_sched_alloc_tags(struct request_queue
*q
,
491 struct blk_mq_hw_ctx
*hctx
,
492 unsigned int hctx_idx
)
494 struct blk_mq_tag_set
*set
= q
->tag_set
;
497 hctx
->sched_tags
= blk_mq_alloc_rq_map(set
, hctx_idx
, q
->nr_requests
,
499 if (!hctx
->sched_tags
)
502 ret
= blk_mq_alloc_rqs(set
, hctx
->sched_tags
, hctx_idx
, q
->nr_requests
);
504 blk_mq_sched_free_tags(set
, hctx
, hctx_idx
);
509 /* called in queue's release handler, tagset has gone away */
510 static void blk_mq_sched_tags_teardown(struct request_queue
*q
)
512 struct blk_mq_hw_ctx
*hctx
;
515 queue_for_each_hw_ctx(q
, hctx
, i
) {
516 if (hctx
->sched_tags
) {
517 blk_mq_free_rq_map(hctx
->sched_tags
);
518 hctx
->sched_tags
= NULL
;
523 int blk_mq_init_sched(struct request_queue
*q
, struct elevator_type
*e
)
525 struct blk_mq_hw_ctx
*hctx
;
526 struct elevator_queue
*eq
;
532 q
->nr_requests
= q
->tag_set
->queue_depth
;
537 * Default to double of smaller one between hw queue_depth and 128,
538 * since we don't split into sync/async like the old code did.
539 * Additionally, this is a per-hw queue depth.
541 q
->nr_requests
= 2 * min_t(unsigned int, q
->tag_set
->queue_depth
,
544 queue_for_each_hw_ctx(q
, hctx
, i
) {
545 ret
= blk_mq_sched_alloc_tags(q
, hctx
, i
);
550 ret
= e
->ops
.init_sched(q
, e
);
554 blk_mq_debugfs_register_sched(q
);
556 queue_for_each_hw_ctx(q
, hctx
, i
) {
557 if (e
->ops
.init_hctx
) {
558 ret
= e
->ops
.init_hctx(hctx
, i
);
561 blk_mq_sched_free_requests(q
);
562 blk_mq_exit_sched(q
, eq
);
563 kobject_put(&eq
->kobj
);
567 blk_mq_debugfs_register_sched_hctx(q
, hctx
);
573 blk_mq_sched_free_requests(q
);
574 blk_mq_sched_tags_teardown(q
);
580 * called in either blk_queue_cleanup or elevator_switch, tagset
581 * is required for freeing requests
583 void blk_mq_sched_free_requests(struct request_queue
*q
)
585 struct blk_mq_hw_ctx
*hctx
;
588 queue_for_each_hw_ctx(q
, hctx
, i
) {
589 if (hctx
->sched_tags
)
590 blk_mq_free_rqs(q
->tag_set
, hctx
->sched_tags
, i
);
594 void blk_mq_exit_sched(struct request_queue
*q
, struct elevator_queue
*e
)
596 struct blk_mq_hw_ctx
*hctx
;
599 queue_for_each_hw_ctx(q
, hctx
, i
) {
600 blk_mq_debugfs_unregister_sched_hctx(hctx
);
601 if (e
->type
->ops
.exit_hctx
&& hctx
->sched_data
) {
602 e
->type
->ops
.exit_hctx(hctx
, i
);
603 hctx
->sched_data
= NULL
;
606 blk_mq_debugfs_unregister_sched(q
);
607 if (e
->type
->ops
.exit_sched
)
608 e
->type
->ops
.exit_sched(e
);
609 blk_mq_sched_tags_teardown(q
);