1 #ifndef _ASM_GENERIC_PGTABLE_H
2 #define _ASM_GENERIC_PGTABLE_H
9 #include <linux/mm_types.h>
10 #include <linux/bug.h>
11 #include <linux/errno.h>
13 #if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
14 defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
15 #error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
19 * On almost all architectures and configurations, 0 can be used as the
20 * upper ceiling to free_pgtables(): on many architectures it has the same
21 * effect as using TASK_SIZE. However, there is one configuration which
22 * must impose a more careful limit, to avoid freeing kernel pgtables.
24 #ifndef USER_PGTABLES_CEILING
25 #define USER_PGTABLES_CEILING 0UL
28 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
29 extern int ptep_set_access_flags(struct vm_area_struct
*vma
,
30 unsigned long address
, pte_t
*ptep
,
31 pte_t entry
, int dirty
);
34 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
35 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
36 extern int pmdp_set_access_flags(struct vm_area_struct
*vma
,
37 unsigned long address
, pmd_t
*pmdp
,
38 pmd_t entry
, int dirty
);
39 extern int pudp_set_access_flags(struct vm_area_struct
*vma
,
40 unsigned long address
, pud_t
*pudp
,
41 pud_t entry
, int dirty
);
43 static inline int pmdp_set_access_flags(struct vm_area_struct
*vma
,
44 unsigned long address
, pmd_t
*pmdp
,
45 pmd_t entry
, int dirty
)
50 static inline int pudp_set_access_flags(struct vm_area_struct
*vma
,
51 unsigned long address
, pud_t
*pudp
,
52 pud_t entry
, int dirty
)
57 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
60 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
61 static inline int ptep_test_and_clear_young(struct vm_area_struct
*vma
,
62 unsigned long address
,
70 set_pte_at(vma
->vm_mm
, address
, ptep
, pte_mkold(pte
));
75 #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
76 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
77 static inline int pmdp_test_and_clear_young(struct vm_area_struct
*vma
,
78 unsigned long address
,
86 set_pmd_at(vma
->vm_mm
, address
, pmdp
, pmd_mkold(pmd
));
90 static inline int pmdp_test_and_clear_young(struct vm_area_struct
*vma
,
91 unsigned long address
,
97 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
100 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
101 int ptep_clear_flush_young(struct vm_area_struct
*vma
,
102 unsigned long address
, pte_t
*ptep
);
105 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
106 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
107 extern int pmdp_clear_flush_young(struct vm_area_struct
*vma
,
108 unsigned long address
, pmd_t
*pmdp
);
111 * Despite relevant to THP only, this API is called from generic rmap code
112 * under PageTransHuge(), hence needs a dummy implementation for !THP
114 static inline int pmdp_clear_flush_young(struct vm_area_struct
*vma
,
115 unsigned long address
, pmd_t
*pmdp
)
120 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
123 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
124 static inline pte_t
ptep_get_and_clear(struct mm_struct
*mm
,
125 unsigned long address
,
129 pte_clear(mm
, address
, ptep
);
134 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
135 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
136 static inline pmd_t
pmdp_huge_get_and_clear(struct mm_struct
*mm
,
137 unsigned long address
,
144 #endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
145 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
146 static inline pud_t
pudp_huge_get_and_clear(struct mm_struct
*mm
,
147 unsigned long address
,
155 #endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
156 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
158 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
159 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
160 static inline pmd_t
pmdp_huge_get_and_clear_full(struct mm_struct
*mm
,
161 unsigned long address
, pmd_t
*pmdp
,
164 return pmdp_huge_get_and_clear(mm
, address
, pmdp
);
168 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
169 static inline pud_t
pudp_huge_get_and_clear_full(struct mm_struct
*mm
,
170 unsigned long address
, pud_t
*pudp
,
173 return pudp_huge_get_and_clear(mm
, address
, pudp
);
176 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
178 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
179 static inline pte_t
ptep_get_and_clear_full(struct mm_struct
*mm
,
180 unsigned long address
, pte_t
*ptep
,
184 pte
= ptep_get_and_clear(mm
, address
, ptep
);
190 * Some architectures may be able to avoid expensive synchronization
191 * primitives when modifications are made to PTE's which are already
192 * not present, or in the process of an address space destruction.
194 #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
195 static inline void pte_clear_not_present_full(struct mm_struct
*mm
,
196 unsigned long address
,
200 pte_clear(mm
, address
, ptep
);
204 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
205 extern pte_t
ptep_clear_flush(struct vm_area_struct
*vma
,
206 unsigned long address
,
210 #ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
211 extern pmd_t
pmdp_huge_clear_flush(struct vm_area_struct
*vma
,
212 unsigned long address
,
214 extern pud_t
pudp_huge_clear_flush(struct vm_area_struct
*vma
,
215 unsigned long address
,
219 #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
221 static inline void ptep_set_wrprotect(struct mm_struct
*mm
, unsigned long address
, pte_t
*ptep
)
223 pte_t old_pte
= *ptep
;
224 set_pte_at(mm
, address
, ptep
, pte_wrprotect(old_pte
));
228 #ifndef pte_savedwrite
229 #define pte_savedwrite pte_write
232 #ifndef pte_mk_savedwrite
233 #define pte_mk_savedwrite pte_mkwrite
236 #ifndef pte_clear_savedwrite
237 #define pte_clear_savedwrite pte_wrprotect
240 #ifndef pmd_savedwrite
241 #define pmd_savedwrite pmd_write
244 #ifndef pmd_mk_savedwrite
245 #define pmd_mk_savedwrite pmd_mkwrite
248 #ifndef pmd_clear_savedwrite
249 #define pmd_clear_savedwrite pmd_wrprotect
252 #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
253 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
254 static inline void pmdp_set_wrprotect(struct mm_struct
*mm
,
255 unsigned long address
, pmd_t
*pmdp
)
257 pmd_t old_pmd
= *pmdp
;
258 set_pmd_at(mm
, address
, pmdp
, pmd_wrprotect(old_pmd
));
261 static inline void pmdp_set_wrprotect(struct mm_struct
*mm
,
262 unsigned long address
, pmd_t
*pmdp
)
266 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
268 #ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
269 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
270 static inline void pudp_set_wrprotect(struct mm_struct
*mm
,
271 unsigned long address
, pud_t
*pudp
)
273 pud_t old_pud
= *pudp
;
275 set_pud_at(mm
, address
, pudp
, pud_wrprotect(old_pud
));
278 static inline void pudp_set_wrprotect(struct mm_struct
*mm
,
279 unsigned long address
, pud_t
*pudp
)
283 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
286 #ifndef pmdp_collapse_flush
287 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
288 extern pmd_t
pmdp_collapse_flush(struct vm_area_struct
*vma
,
289 unsigned long address
, pmd_t
*pmdp
);
291 static inline pmd_t
pmdp_collapse_flush(struct vm_area_struct
*vma
,
292 unsigned long address
,
298 #define pmdp_collapse_flush pmdp_collapse_flush
299 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
302 #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
303 extern void pgtable_trans_huge_deposit(struct mm_struct
*mm
, pmd_t
*pmdp
,
307 #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
308 extern pgtable_t
pgtable_trans_huge_withdraw(struct mm_struct
*mm
, pmd_t
*pmdp
);
311 #ifndef __HAVE_ARCH_PMDP_INVALIDATE
312 extern void pmdp_invalidate(struct vm_area_struct
*vma
, unsigned long address
,
316 #ifndef __HAVE_ARCH_PMDP_HUGE_SPLIT_PREPARE
317 static inline void pmdp_huge_split_prepare(struct vm_area_struct
*vma
,
318 unsigned long address
, pmd_t
*pmdp
)
324 #ifndef __HAVE_ARCH_PTE_SAME
325 static inline int pte_same(pte_t pte_a
, pte_t pte_b
)
327 return pte_val(pte_a
) == pte_val(pte_b
);
331 #ifndef __HAVE_ARCH_PTE_UNUSED
333 * Some architectures provide facilities to virtualization guests
334 * so that they can flag allocated pages as unused. This allows the
335 * host to transparently reclaim unused pages. This function returns
336 * whether the pte's page is unused.
338 static inline int pte_unused(pte_t pte
)
344 #ifndef __HAVE_ARCH_PMD_SAME
345 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
346 static inline int pmd_same(pmd_t pmd_a
, pmd_t pmd_b
)
348 return pmd_val(pmd_a
) == pmd_val(pmd_b
);
351 static inline int pud_same(pud_t pud_a
, pud_t pud_b
)
353 return pud_val(pud_a
) == pud_val(pud_b
);
355 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
356 static inline int pmd_same(pmd_t pmd_a
, pmd_t pmd_b
)
362 static inline int pud_same(pud_t pud_a
, pud_t pud_b
)
367 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
370 #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
371 #define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
374 #ifndef __HAVE_ARCH_MOVE_PTE
375 #define move_pte(pte, prot, old_addr, new_addr) (pte)
378 #ifndef pte_accessible
379 # define pte_accessible(mm, pte) ((void)(pte), 1)
382 #ifndef flush_tlb_fix_spurious_fault
383 #define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
386 #ifndef pgprot_noncached
387 #define pgprot_noncached(prot) (prot)
390 #ifndef pgprot_writecombine
391 #define pgprot_writecombine pgprot_noncached
394 #ifndef pgprot_writethrough
395 #define pgprot_writethrough pgprot_noncached
398 #ifndef pgprot_device
399 #define pgprot_device pgprot_noncached
402 #ifndef pgprot_modify
403 #define pgprot_modify pgprot_modify
404 static inline pgprot_t
pgprot_modify(pgprot_t oldprot
, pgprot_t newprot
)
406 if (pgprot_val(oldprot
) == pgprot_val(pgprot_noncached(oldprot
)))
407 newprot
= pgprot_noncached(newprot
);
408 if (pgprot_val(oldprot
) == pgprot_val(pgprot_writecombine(oldprot
)))
409 newprot
= pgprot_writecombine(newprot
);
410 if (pgprot_val(oldprot
) == pgprot_val(pgprot_device(oldprot
)))
411 newprot
= pgprot_device(newprot
);
417 * When walking page tables, get the address of the next boundary,
418 * or the end address of the range if that comes earlier. Although no
419 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
422 #define pgd_addr_end(addr, end) \
423 ({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
424 (__boundary - 1 < (end) - 1)? __boundary: (end); \
428 #define p4d_addr_end(addr, end) \
429 ({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \
430 (__boundary - 1 < (end) - 1)? __boundary: (end); \
435 #define pud_addr_end(addr, end) \
436 ({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
437 (__boundary - 1 < (end) - 1)? __boundary: (end); \
442 #define pmd_addr_end(addr, end) \
443 ({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
444 (__boundary - 1 < (end) - 1)? __boundary: (end); \
449 * When walking page tables, we usually want to skip any p?d_none entries;
450 * and any p?d_bad entries - reporting the error before resetting to none.
451 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
453 void pgd_clear_bad(pgd_t
*);
454 void p4d_clear_bad(p4d_t
*);
455 void pud_clear_bad(pud_t
*);
456 void pmd_clear_bad(pmd_t
*);
458 static inline int pgd_none_or_clear_bad(pgd_t
*pgd
)
462 if (unlikely(pgd_bad(*pgd
))) {
469 static inline int p4d_none_or_clear_bad(p4d_t
*p4d
)
473 if (unlikely(p4d_bad(*p4d
))) {
480 static inline int pud_none_or_clear_bad(pud_t
*pud
)
484 if (unlikely(pud_bad(*pud
))) {
491 static inline int pmd_none_or_clear_bad(pmd_t
*pmd
)
495 if (unlikely(pmd_bad(*pmd
))) {
502 static inline pte_t
__ptep_modify_prot_start(struct mm_struct
*mm
,
507 * Get the current pte state, but zero it out to make it
508 * non-present, preventing the hardware from asynchronously
511 return ptep_get_and_clear(mm
, addr
, ptep
);
514 static inline void __ptep_modify_prot_commit(struct mm_struct
*mm
,
516 pte_t
*ptep
, pte_t pte
)
519 * The pte is non-present, so there's no hardware state to
522 set_pte_at(mm
, addr
, ptep
, pte
);
525 #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
527 * Start a pte protection read-modify-write transaction, which
528 * protects against asynchronous hardware modifications to the pte.
529 * The intention is not to prevent the hardware from making pte
530 * updates, but to prevent any updates it may make from being lost.
532 * This does not protect against other software modifications of the
533 * pte; the appropriate pte lock must be held over the transation.
535 * Note that this interface is intended to be batchable, meaning that
536 * ptep_modify_prot_commit may not actually update the pte, but merely
537 * queue the update to be done at some later time. The update must be
538 * actually committed before the pte lock is released, however.
540 static inline pte_t
ptep_modify_prot_start(struct mm_struct
*mm
,
544 return __ptep_modify_prot_start(mm
, addr
, ptep
);
548 * Commit an update to a pte, leaving any hardware-controlled bits in
549 * the PTE unmodified.
551 static inline void ptep_modify_prot_commit(struct mm_struct
*mm
,
553 pte_t
*ptep
, pte_t pte
)
555 __ptep_modify_prot_commit(mm
, addr
, ptep
, pte
);
557 #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
558 #endif /* CONFIG_MMU */
561 * A facility to provide lazy MMU batching. This allows PTE updates and
562 * page invalidations to be delayed until a call to leave lazy MMU mode
563 * is issued. Some architectures may benefit from doing this, and it is
564 * beneficial for both shadow and direct mode hypervisors, which may batch
565 * the PTE updates which happen during this window. Note that using this
566 * interface requires that read hazards be removed from the code. A read
567 * hazard could result in the direct mode hypervisor case, since the actual
568 * write to the page tables may not yet have taken place, so reads though
569 * a raw PTE pointer after it has been modified are not guaranteed to be
570 * up to date. This mode can only be entered and left under the protection of
571 * the page table locks for all page tables which may be modified. In the UP
572 * case, this is required so that preemption is disabled, and in the SMP case,
573 * it must synchronize the delayed page table writes properly on other CPUs.
575 #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
576 #define arch_enter_lazy_mmu_mode() do {} while (0)
577 #define arch_leave_lazy_mmu_mode() do {} while (0)
578 #define arch_flush_lazy_mmu_mode() do {} while (0)
582 * A facility to provide batching of the reload of page tables and
583 * other process state with the actual context switch code for
584 * paravirtualized guests. By convention, only one of the batched
585 * update (lazy) modes (CPU, MMU) should be active at any given time,
586 * entry should never be nested, and entry and exits should always be
587 * paired. This is for sanity of maintaining and reasoning about the
588 * kernel code. In this case, the exit (end of the context switch) is
589 * in architecture-specific code, and so doesn't need a generic
592 #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
593 #define arch_start_context_switch(prev) do {} while (0)
596 #ifndef CONFIG_HAVE_ARCH_SOFT_DIRTY
597 static inline int pte_soft_dirty(pte_t pte
)
602 static inline int pmd_soft_dirty(pmd_t pmd
)
607 static inline pte_t
pte_mksoft_dirty(pte_t pte
)
612 static inline pmd_t
pmd_mksoft_dirty(pmd_t pmd
)
617 static inline pte_t
pte_clear_soft_dirty(pte_t pte
)
622 static inline pmd_t
pmd_clear_soft_dirty(pmd_t pmd
)
627 static inline pte_t
pte_swp_mksoft_dirty(pte_t pte
)
632 static inline int pte_swp_soft_dirty(pte_t pte
)
637 static inline pte_t
pte_swp_clear_soft_dirty(pte_t pte
)
643 #ifndef __HAVE_PFNMAP_TRACKING
645 * Interfaces that can be used by architecture code to keep track of
646 * memory type of pfn mappings specified by the remap_pfn_range,
651 * track_pfn_remap is called when a _new_ pfn mapping is being established
652 * by remap_pfn_range() for physical range indicated by pfn and size.
654 static inline int track_pfn_remap(struct vm_area_struct
*vma
, pgprot_t
*prot
,
655 unsigned long pfn
, unsigned long addr
,
662 * track_pfn_insert is called when a _new_ single pfn is established
663 * by vm_insert_pfn().
665 static inline void track_pfn_insert(struct vm_area_struct
*vma
, pgprot_t
*prot
,
671 * track_pfn_copy is called when vma that is covering the pfnmap gets
672 * copied through copy_page_range().
674 static inline int track_pfn_copy(struct vm_area_struct
*vma
)
680 * untrack_pfn is called while unmapping a pfnmap for a region.
681 * untrack can be called for a specific region indicated by pfn and size or
682 * can be for the entire vma (in which case pfn, size are zero).
684 static inline void untrack_pfn(struct vm_area_struct
*vma
,
685 unsigned long pfn
, unsigned long size
)
690 * untrack_pfn_moved is called while mremapping a pfnmap for a new region.
692 static inline void untrack_pfn_moved(struct vm_area_struct
*vma
)
696 extern int track_pfn_remap(struct vm_area_struct
*vma
, pgprot_t
*prot
,
697 unsigned long pfn
, unsigned long addr
,
699 extern void track_pfn_insert(struct vm_area_struct
*vma
, pgprot_t
*prot
,
701 extern int track_pfn_copy(struct vm_area_struct
*vma
);
702 extern void untrack_pfn(struct vm_area_struct
*vma
, unsigned long pfn
,
704 extern void untrack_pfn_moved(struct vm_area_struct
*vma
);
707 #ifdef __HAVE_COLOR_ZERO_PAGE
708 static inline int is_zero_pfn(unsigned long pfn
)
710 extern unsigned long zero_pfn
;
711 unsigned long offset_from_zero_pfn
= pfn
- zero_pfn
;
712 return offset_from_zero_pfn
<= (zero_page_mask
>> PAGE_SHIFT
);
715 #define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
718 static inline int is_zero_pfn(unsigned long pfn
)
720 extern unsigned long zero_pfn
;
721 return pfn
== zero_pfn
;
724 static inline unsigned long my_zero_pfn(unsigned long addr
)
726 extern unsigned long zero_pfn
;
733 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
734 static inline int pmd_trans_huge(pmd_t pmd
)
738 #ifndef __HAVE_ARCH_PMD_WRITE
739 static inline int pmd_write(pmd_t pmd
)
744 #endif /* __HAVE_ARCH_PMD_WRITE */
745 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
747 #if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
748 (defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
749 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD))
750 static inline int pud_trans_huge(pud_t pud
)
756 #ifndef pmd_read_atomic
757 static inline pmd_t
pmd_read_atomic(pmd_t
*pmdp
)
760 * Depend on compiler for an atomic pmd read. NOTE: this is
761 * only going to work, if the pmdval_t isn't larger than
768 #ifndef arch_needs_pgtable_deposit
769 #define arch_needs_pgtable_deposit() (false)
772 * This function is meant to be used by sites walking pagetables with
773 * the mmap_sem hold in read mode to protect against MADV_DONTNEED and
774 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
775 * into a null pmd and the transhuge page fault can convert a null pmd
776 * into an hugepmd or into a regular pmd (if the hugepage allocation
777 * fails). While holding the mmap_sem in read mode the pmd becomes
778 * stable and stops changing under us only if it's not null and not a
779 * transhuge pmd. When those races occurs and this function makes a
780 * difference vs the standard pmd_none_or_clear_bad, the result is
781 * undefined so behaving like if the pmd was none is safe (because it
782 * can return none anyway). The compiler level barrier() is critically
783 * important to compute the two checks atomically on the same pmdval.
785 * For 32bit kernels with a 64bit large pmd_t this automatically takes
786 * care of reading the pmd atomically to avoid SMP race conditions
787 * against pmd_populate() when the mmap_sem is hold for reading by the
788 * caller (a special atomic read not done by "gcc" as in the generic
789 * version above, is also needed when THP is disabled because the page
790 * fault can populate the pmd from under us).
792 static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t
*pmd
)
794 pmd_t pmdval
= pmd_read_atomic(pmd
);
796 * The barrier will stabilize the pmdval in a register or on
797 * the stack so that it will stop changing under the code.
799 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
800 * pmd_read_atomic is allowed to return a not atomic pmdval
801 * (for example pointing to an hugepage that has never been
802 * mapped in the pmd). The below checks will only care about
803 * the low part of the pmd with 32bit PAE x86 anyway, with the
804 * exception of pmd_none(). So the important thing is that if
805 * the low part of the pmd is found null, the high part will
806 * be also null or the pmd_none() check below would be
809 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
812 if (pmd_none(pmdval
) || pmd_trans_huge(pmdval
))
814 if (unlikely(pmd_bad(pmdval
))) {
822 * This is a noop if Transparent Hugepage Support is not built into
823 * the kernel. Otherwise it is equivalent to
824 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
825 * places that already verified the pmd is not none and they want to
826 * walk ptes while holding the mmap sem in read mode (write mode don't
827 * need this). If THP is not enabled, the pmd can't go away under the
828 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
829 * run a pmd_trans_unstable before walking the ptes after
830 * split_huge_page_pmd returns (because it may have run when the pmd
831 * become null, but then a page fault can map in a THP and not a
834 static inline int pmd_trans_unstable(pmd_t
*pmd
)
836 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
837 return pmd_none_or_trans_huge_or_clear_bad(pmd
);
843 #ifndef CONFIG_NUMA_BALANCING
845 * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
846 * the only case the kernel cares is for NUMA balancing and is only ever set
847 * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
848 * _PAGE_PROTNONE so by by default, implement the helper as "always no". It
849 * is the responsibility of the caller to distinguish between PROT_NONE
850 * protections and NUMA hinting fault protections.
852 static inline int pte_protnone(pte_t pte
)
857 static inline int pmd_protnone(pmd_t pmd
)
861 #endif /* CONFIG_NUMA_BALANCING */
863 #endif /* CONFIG_MMU */
865 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
867 #ifndef __PAGETABLE_P4D_FOLDED
868 int p4d_set_huge(p4d_t
*p4d
, phys_addr_t addr
, pgprot_t prot
);
869 int p4d_clear_huge(p4d_t
*p4d
);
871 static inline int p4d_set_huge(p4d_t
*p4d
, phys_addr_t addr
, pgprot_t prot
)
875 static inline int p4d_clear_huge(p4d_t
*p4d
)
879 #endif /* !__PAGETABLE_P4D_FOLDED */
881 int pud_set_huge(pud_t
*pud
, phys_addr_t addr
, pgprot_t prot
);
882 int pmd_set_huge(pmd_t
*pmd
, phys_addr_t addr
, pgprot_t prot
);
883 int pud_clear_huge(pud_t
*pud
);
884 int pmd_clear_huge(pmd_t
*pmd
);
885 #else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
886 static inline int p4d_set_huge(p4d_t
*p4d
, phys_addr_t addr
, pgprot_t prot
)
890 static inline int pud_set_huge(pud_t
*pud
, phys_addr_t addr
, pgprot_t prot
)
894 static inline int pmd_set_huge(pmd_t
*pmd
, phys_addr_t addr
, pgprot_t prot
)
898 static inline int p4d_clear_huge(p4d_t
*p4d
)
902 static inline int pud_clear_huge(pud_t
*pud
)
906 static inline int pmd_clear_huge(pmd_t
*pmd
)
910 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
912 #ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
913 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
915 * ARCHes with special requirements for evicting THP backing TLB entries can
916 * implement this. Otherwise also, it can help optimize normal TLB flush in
917 * THP regime. stock flush_tlb_range() typically has optimization to nuke the
918 * entire TLB TLB if flush span is greater than a threshold, which will
919 * likely be true for a single huge page. Thus a single thp flush will
920 * invalidate the entire TLB which is not desitable.
921 * e.g. see arch/arc: flush_pmd_tlb_range
923 #define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
924 #define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
926 #define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG()
927 #define flush_pud_tlb_range(vma, addr, end) BUILD_BUG()
932 int phys_mem_access_prot_allowed(struct file
*file
, unsigned long pfn
,
933 unsigned long size
, pgprot_t
*vma_prot
);
934 #endif /* !__ASSEMBLY__ */
936 #ifndef io_remap_pfn_range
937 #define io_remap_pfn_range remap_pfn_range
940 #ifndef has_transparent_hugepage
941 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
942 #define has_transparent_hugepage() 1
944 #define has_transparent_hugepage() 0
948 #endif /* _ASM_GENERIC_PGTABLE_H */