KVM: PPC: Book3S HV: Avoid preemptibility warning in module initialization
[linux/fpc-iii.git] / include / asm-generic / pgtable.h
blob1fad160f35de8e89953af075173a2ad219c9693b
1 #ifndef _ASM_GENERIC_PGTABLE_H
2 #define _ASM_GENERIC_PGTABLE_H
4 #include <linux/pfn.h>
6 #ifndef __ASSEMBLY__
7 #ifdef CONFIG_MMU
9 #include <linux/mm_types.h>
10 #include <linux/bug.h>
11 #include <linux/errno.h>
13 #if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
14 defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
15 #error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
16 #endif
19 * On almost all architectures and configurations, 0 can be used as the
20 * upper ceiling to free_pgtables(): on many architectures it has the same
21 * effect as using TASK_SIZE. However, there is one configuration which
22 * must impose a more careful limit, to avoid freeing kernel pgtables.
24 #ifndef USER_PGTABLES_CEILING
25 #define USER_PGTABLES_CEILING 0UL
26 #endif
28 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
29 extern int ptep_set_access_flags(struct vm_area_struct *vma,
30 unsigned long address, pte_t *ptep,
31 pte_t entry, int dirty);
32 #endif
34 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
35 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
36 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
37 unsigned long address, pmd_t *pmdp,
38 pmd_t entry, int dirty);
39 extern int pudp_set_access_flags(struct vm_area_struct *vma,
40 unsigned long address, pud_t *pudp,
41 pud_t entry, int dirty);
42 #else
43 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
44 unsigned long address, pmd_t *pmdp,
45 pmd_t entry, int dirty)
47 BUILD_BUG();
48 return 0;
50 static inline int pudp_set_access_flags(struct vm_area_struct *vma,
51 unsigned long address, pud_t *pudp,
52 pud_t entry, int dirty)
54 BUILD_BUG();
55 return 0;
57 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
58 #endif
60 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
61 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
62 unsigned long address,
63 pte_t *ptep)
65 pte_t pte = *ptep;
66 int r = 1;
67 if (!pte_young(pte))
68 r = 0;
69 else
70 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
71 return r;
73 #endif
75 #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
76 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
77 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
78 unsigned long address,
79 pmd_t *pmdp)
81 pmd_t pmd = *pmdp;
82 int r = 1;
83 if (!pmd_young(pmd))
84 r = 0;
85 else
86 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
87 return r;
89 #else
90 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
91 unsigned long address,
92 pmd_t *pmdp)
94 BUILD_BUG();
95 return 0;
97 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
98 #endif
100 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
101 int ptep_clear_flush_young(struct vm_area_struct *vma,
102 unsigned long address, pte_t *ptep);
103 #endif
105 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
106 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
107 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
108 unsigned long address, pmd_t *pmdp);
109 #else
111 * Despite relevant to THP only, this API is called from generic rmap code
112 * under PageTransHuge(), hence needs a dummy implementation for !THP
114 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
115 unsigned long address, pmd_t *pmdp)
117 BUILD_BUG();
118 return 0;
120 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
121 #endif
123 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
124 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
125 unsigned long address,
126 pte_t *ptep)
128 pte_t pte = *ptep;
129 pte_clear(mm, address, ptep);
130 return pte;
132 #endif
134 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
135 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
136 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
137 unsigned long address,
138 pmd_t *pmdp)
140 pmd_t pmd = *pmdp;
141 pmd_clear(pmdp);
142 return pmd;
144 #endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
145 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
146 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
147 unsigned long address,
148 pud_t *pudp)
150 pud_t pud = *pudp;
152 pud_clear(pudp);
153 return pud;
155 #endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
156 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
158 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
159 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
160 static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
161 unsigned long address, pmd_t *pmdp,
162 int full)
164 return pmdp_huge_get_and_clear(mm, address, pmdp);
166 #endif
168 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
169 static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm,
170 unsigned long address, pud_t *pudp,
171 int full)
173 return pudp_huge_get_and_clear(mm, address, pudp);
175 #endif
176 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
178 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
179 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
180 unsigned long address, pte_t *ptep,
181 int full)
183 pte_t pte;
184 pte = ptep_get_and_clear(mm, address, ptep);
185 return pte;
187 #endif
190 * Some architectures may be able to avoid expensive synchronization
191 * primitives when modifications are made to PTE's which are already
192 * not present, or in the process of an address space destruction.
194 #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
195 static inline void pte_clear_not_present_full(struct mm_struct *mm,
196 unsigned long address,
197 pte_t *ptep,
198 int full)
200 pte_clear(mm, address, ptep);
202 #endif
204 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
205 extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
206 unsigned long address,
207 pte_t *ptep);
208 #endif
210 #ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
211 extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
212 unsigned long address,
213 pmd_t *pmdp);
214 extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
215 unsigned long address,
216 pud_t *pudp);
217 #endif
219 #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
220 struct mm_struct;
221 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
223 pte_t old_pte = *ptep;
224 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
226 #endif
228 #ifndef pte_savedwrite
229 #define pte_savedwrite pte_write
230 #endif
232 #ifndef pte_mk_savedwrite
233 #define pte_mk_savedwrite pte_mkwrite
234 #endif
236 #ifndef pte_clear_savedwrite
237 #define pte_clear_savedwrite pte_wrprotect
238 #endif
240 #ifndef pmd_savedwrite
241 #define pmd_savedwrite pmd_write
242 #endif
244 #ifndef pmd_mk_savedwrite
245 #define pmd_mk_savedwrite pmd_mkwrite
246 #endif
248 #ifndef pmd_clear_savedwrite
249 #define pmd_clear_savedwrite pmd_wrprotect
250 #endif
252 #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
253 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
254 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
255 unsigned long address, pmd_t *pmdp)
257 pmd_t old_pmd = *pmdp;
258 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
260 #else
261 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
262 unsigned long address, pmd_t *pmdp)
264 BUILD_BUG();
266 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
267 #endif
268 #ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
269 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
270 static inline void pudp_set_wrprotect(struct mm_struct *mm,
271 unsigned long address, pud_t *pudp)
273 pud_t old_pud = *pudp;
275 set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
277 #else
278 static inline void pudp_set_wrprotect(struct mm_struct *mm,
279 unsigned long address, pud_t *pudp)
281 BUILD_BUG();
283 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
284 #endif
286 #ifndef pmdp_collapse_flush
287 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
288 extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
289 unsigned long address, pmd_t *pmdp);
290 #else
291 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
292 unsigned long address,
293 pmd_t *pmdp)
295 BUILD_BUG();
296 return *pmdp;
298 #define pmdp_collapse_flush pmdp_collapse_flush
299 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
300 #endif
302 #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
303 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
304 pgtable_t pgtable);
305 #endif
307 #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
308 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
309 #endif
311 #ifndef __HAVE_ARCH_PMDP_INVALIDATE
312 extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
313 pmd_t *pmdp);
314 #endif
316 #ifndef __HAVE_ARCH_PMDP_HUGE_SPLIT_PREPARE
317 static inline void pmdp_huge_split_prepare(struct vm_area_struct *vma,
318 unsigned long address, pmd_t *pmdp)
322 #endif
324 #ifndef __HAVE_ARCH_PTE_SAME
325 static inline int pte_same(pte_t pte_a, pte_t pte_b)
327 return pte_val(pte_a) == pte_val(pte_b);
329 #endif
331 #ifndef __HAVE_ARCH_PTE_UNUSED
333 * Some architectures provide facilities to virtualization guests
334 * so that they can flag allocated pages as unused. This allows the
335 * host to transparently reclaim unused pages. This function returns
336 * whether the pte's page is unused.
338 static inline int pte_unused(pte_t pte)
340 return 0;
342 #endif
344 #ifndef __HAVE_ARCH_PMD_SAME
345 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
346 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
348 return pmd_val(pmd_a) == pmd_val(pmd_b);
351 static inline int pud_same(pud_t pud_a, pud_t pud_b)
353 return pud_val(pud_a) == pud_val(pud_b);
355 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
356 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
358 BUILD_BUG();
359 return 0;
362 static inline int pud_same(pud_t pud_a, pud_t pud_b)
364 BUILD_BUG();
365 return 0;
367 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
368 #endif
370 #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
371 #define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
372 #endif
374 #ifndef __HAVE_ARCH_MOVE_PTE
375 #define move_pte(pte, prot, old_addr, new_addr) (pte)
376 #endif
378 #ifndef pte_accessible
379 # define pte_accessible(mm, pte) ((void)(pte), 1)
380 #endif
382 #ifndef flush_tlb_fix_spurious_fault
383 #define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
384 #endif
386 #ifndef pgprot_noncached
387 #define pgprot_noncached(prot) (prot)
388 #endif
390 #ifndef pgprot_writecombine
391 #define pgprot_writecombine pgprot_noncached
392 #endif
394 #ifndef pgprot_writethrough
395 #define pgprot_writethrough pgprot_noncached
396 #endif
398 #ifndef pgprot_device
399 #define pgprot_device pgprot_noncached
400 #endif
402 #ifndef pgprot_modify
403 #define pgprot_modify pgprot_modify
404 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
406 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
407 newprot = pgprot_noncached(newprot);
408 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
409 newprot = pgprot_writecombine(newprot);
410 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
411 newprot = pgprot_device(newprot);
412 return newprot;
414 #endif
417 * When walking page tables, get the address of the next boundary,
418 * or the end address of the range if that comes earlier. Although no
419 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
422 #define pgd_addr_end(addr, end) \
423 ({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
424 (__boundary - 1 < (end) - 1)? __boundary: (end); \
427 #ifndef p4d_addr_end
428 #define p4d_addr_end(addr, end) \
429 ({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \
430 (__boundary - 1 < (end) - 1)? __boundary: (end); \
432 #endif
434 #ifndef pud_addr_end
435 #define pud_addr_end(addr, end) \
436 ({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
437 (__boundary - 1 < (end) - 1)? __boundary: (end); \
439 #endif
441 #ifndef pmd_addr_end
442 #define pmd_addr_end(addr, end) \
443 ({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
444 (__boundary - 1 < (end) - 1)? __boundary: (end); \
446 #endif
449 * When walking page tables, we usually want to skip any p?d_none entries;
450 * and any p?d_bad entries - reporting the error before resetting to none.
451 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
453 void pgd_clear_bad(pgd_t *);
454 void p4d_clear_bad(p4d_t *);
455 void pud_clear_bad(pud_t *);
456 void pmd_clear_bad(pmd_t *);
458 static inline int pgd_none_or_clear_bad(pgd_t *pgd)
460 if (pgd_none(*pgd))
461 return 1;
462 if (unlikely(pgd_bad(*pgd))) {
463 pgd_clear_bad(pgd);
464 return 1;
466 return 0;
469 static inline int p4d_none_or_clear_bad(p4d_t *p4d)
471 if (p4d_none(*p4d))
472 return 1;
473 if (unlikely(p4d_bad(*p4d))) {
474 p4d_clear_bad(p4d);
475 return 1;
477 return 0;
480 static inline int pud_none_or_clear_bad(pud_t *pud)
482 if (pud_none(*pud))
483 return 1;
484 if (unlikely(pud_bad(*pud))) {
485 pud_clear_bad(pud);
486 return 1;
488 return 0;
491 static inline int pmd_none_or_clear_bad(pmd_t *pmd)
493 if (pmd_none(*pmd))
494 return 1;
495 if (unlikely(pmd_bad(*pmd))) {
496 pmd_clear_bad(pmd);
497 return 1;
499 return 0;
502 static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm,
503 unsigned long addr,
504 pte_t *ptep)
507 * Get the current pte state, but zero it out to make it
508 * non-present, preventing the hardware from asynchronously
509 * updating it.
511 return ptep_get_and_clear(mm, addr, ptep);
514 static inline void __ptep_modify_prot_commit(struct mm_struct *mm,
515 unsigned long addr,
516 pte_t *ptep, pte_t pte)
519 * The pte is non-present, so there's no hardware state to
520 * preserve.
522 set_pte_at(mm, addr, ptep, pte);
525 #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
527 * Start a pte protection read-modify-write transaction, which
528 * protects against asynchronous hardware modifications to the pte.
529 * The intention is not to prevent the hardware from making pte
530 * updates, but to prevent any updates it may make from being lost.
532 * This does not protect against other software modifications of the
533 * pte; the appropriate pte lock must be held over the transation.
535 * Note that this interface is intended to be batchable, meaning that
536 * ptep_modify_prot_commit may not actually update the pte, but merely
537 * queue the update to be done at some later time. The update must be
538 * actually committed before the pte lock is released, however.
540 static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
541 unsigned long addr,
542 pte_t *ptep)
544 return __ptep_modify_prot_start(mm, addr, ptep);
548 * Commit an update to a pte, leaving any hardware-controlled bits in
549 * the PTE unmodified.
551 static inline void ptep_modify_prot_commit(struct mm_struct *mm,
552 unsigned long addr,
553 pte_t *ptep, pte_t pte)
555 __ptep_modify_prot_commit(mm, addr, ptep, pte);
557 #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
558 #endif /* CONFIG_MMU */
561 * A facility to provide lazy MMU batching. This allows PTE updates and
562 * page invalidations to be delayed until a call to leave lazy MMU mode
563 * is issued. Some architectures may benefit from doing this, and it is
564 * beneficial for both shadow and direct mode hypervisors, which may batch
565 * the PTE updates which happen during this window. Note that using this
566 * interface requires that read hazards be removed from the code. A read
567 * hazard could result in the direct mode hypervisor case, since the actual
568 * write to the page tables may not yet have taken place, so reads though
569 * a raw PTE pointer after it has been modified are not guaranteed to be
570 * up to date. This mode can only be entered and left under the protection of
571 * the page table locks for all page tables which may be modified. In the UP
572 * case, this is required so that preemption is disabled, and in the SMP case,
573 * it must synchronize the delayed page table writes properly on other CPUs.
575 #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
576 #define arch_enter_lazy_mmu_mode() do {} while (0)
577 #define arch_leave_lazy_mmu_mode() do {} while (0)
578 #define arch_flush_lazy_mmu_mode() do {} while (0)
579 #endif
582 * A facility to provide batching of the reload of page tables and
583 * other process state with the actual context switch code for
584 * paravirtualized guests. By convention, only one of the batched
585 * update (lazy) modes (CPU, MMU) should be active at any given time,
586 * entry should never be nested, and entry and exits should always be
587 * paired. This is for sanity of maintaining and reasoning about the
588 * kernel code. In this case, the exit (end of the context switch) is
589 * in architecture-specific code, and so doesn't need a generic
590 * definition.
592 #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
593 #define arch_start_context_switch(prev) do {} while (0)
594 #endif
596 #ifndef CONFIG_HAVE_ARCH_SOFT_DIRTY
597 static inline int pte_soft_dirty(pte_t pte)
599 return 0;
602 static inline int pmd_soft_dirty(pmd_t pmd)
604 return 0;
607 static inline pte_t pte_mksoft_dirty(pte_t pte)
609 return pte;
612 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
614 return pmd;
617 static inline pte_t pte_clear_soft_dirty(pte_t pte)
619 return pte;
622 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
624 return pmd;
627 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
629 return pte;
632 static inline int pte_swp_soft_dirty(pte_t pte)
634 return 0;
637 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
639 return pte;
641 #endif
643 #ifndef __HAVE_PFNMAP_TRACKING
645 * Interfaces that can be used by architecture code to keep track of
646 * memory type of pfn mappings specified by the remap_pfn_range,
647 * vm_insert_pfn.
651 * track_pfn_remap is called when a _new_ pfn mapping is being established
652 * by remap_pfn_range() for physical range indicated by pfn and size.
654 static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
655 unsigned long pfn, unsigned long addr,
656 unsigned long size)
658 return 0;
662 * track_pfn_insert is called when a _new_ single pfn is established
663 * by vm_insert_pfn().
665 static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
666 pfn_t pfn)
671 * track_pfn_copy is called when vma that is covering the pfnmap gets
672 * copied through copy_page_range().
674 static inline int track_pfn_copy(struct vm_area_struct *vma)
676 return 0;
680 * untrack_pfn is called while unmapping a pfnmap for a region.
681 * untrack can be called for a specific region indicated by pfn and size or
682 * can be for the entire vma (in which case pfn, size are zero).
684 static inline void untrack_pfn(struct vm_area_struct *vma,
685 unsigned long pfn, unsigned long size)
690 * untrack_pfn_moved is called while mremapping a pfnmap for a new region.
692 static inline void untrack_pfn_moved(struct vm_area_struct *vma)
695 #else
696 extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
697 unsigned long pfn, unsigned long addr,
698 unsigned long size);
699 extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
700 pfn_t pfn);
701 extern int track_pfn_copy(struct vm_area_struct *vma);
702 extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
703 unsigned long size);
704 extern void untrack_pfn_moved(struct vm_area_struct *vma);
705 #endif
707 #ifdef __HAVE_COLOR_ZERO_PAGE
708 static inline int is_zero_pfn(unsigned long pfn)
710 extern unsigned long zero_pfn;
711 unsigned long offset_from_zero_pfn = pfn - zero_pfn;
712 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
715 #define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
717 #else
718 static inline int is_zero_pfn(unsigned long pfn)
720 extern unsigned long zero_pfn;
721 return pfn == zero_pfn;
724 static inline unsigned long my_zero_pfn(unsigned long addr)
726 extern unsigned long zero_pfn;
727 return zero_pfn;
729 #endif
731 #ifdef CONFIG_MMU
733 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
734 static inline int pmd_trans_huge(pmd_t pmd)
736 return 0;
738 #ifndef __HAVE_ARCH_PMD_WRITE
739 static inline int pmd_write(pmd_t pmd)
741 BUG();
742 return 0;
744 #endif /* __HAVE_ARCH_PMD_WRITE */
745 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
747 #if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
748 (defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
749 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD))
750 static inline int pud_trans_huge(pud_t pud)
752 return 0;
754 #endif
756 #ifndef pmd_read_atomic
757 static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
760 * Depend on compiler for an atomic pmd read. NOTE: this is
761 * only going to work, if the pmdval_t isn't larger than
762 * an unsigned long.
764 return *pmdp;
766 #endif
768 #ifndef arch_needs_pgtable_deposit
769 #define arch_needs_pgtable_deposit() (false)
770 #endif
772 * This function is meant to be used by sites walking pagetables with
773 * the mmap_sem hold in read mode to protect against MADV_DONTNEED and
774 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
775 * into a null pmd and the transhuge page fault can convert a null pmd
776 * into an hugepmd or into a regular pmd (if the hugepage allocation
777 * fails). While holding the mmap_sem in read mode the pmd becomes
778 * stable and stops changing under us only if it's not null and not a
779 * transhuge pmd. When those races occurs and this function makes a
780 * difference vs the standard pmd_none_or_clear_bad, the result is
781 * undefined so behaving like if the pmd was none is safe (because it
782 * can return none anyway). The compiler level barrier() is critically
783 * important to compute the two checks atomically on the same pmdval.
785 * For 32bit kernels with a 64bit large pmd_t this automatically takes
786 * care of reading the pmd atomically to avoid SMP race conditions
787 * against pmd_populate() when the mmap_sem is hold for reading by the
788 * caller (a special atomic read not done by "gcc" as in the generic
789 * version above, is also needed when THP is disabled because the page
790 * fault can populate the pmd from under us).
792 static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
794 pmd_t pmdval = pmd_read_atomic(pmd);
796 * The barrier will stabilize the pmdval in a register or on
797 * the stack so that it will stop changing under the code.
799 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
800 * pmd_read_atomic is allowed to return a not atomic pmdval
801 * (for example pointing to an hugepage that has never been
802 * mapped in the pmd). The below checks will only care about
803 * the low part of the pmd with 32bit PAE x86 anyway, with the
804 * exception of pmd_none(). So the important thing is that if
805 * the low part of the pmd is found null, the high part will
806 * be also null or the pmd_none() check below would be
807 * confused.
809 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
810 barrier();
811 #endif
812 if (pmd_none(pmdval) || pmd_trans_huge(pmdval))
813 return 1;
814 if (unlikely(pmd_bad(pmdval))) {
815 pmd_clear_bad(pmd);
816 return 1;
818 return 0;
822 * This is a noop if Transparent Hugepage Support is not built into
823 * the kernel. Otherwise it is equivalent to
824 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
825 * places that already verified the pmd is not none and they want to
826 * walk ptes while holding the mmap sem in read mode (write mode don't
827 * need this). If THP is not enabled, the pmd can't go away under the
828 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
829 * run a pmd_trans_unstable before walking the ptes after
830 * split_huge_page_pmd returns (because it may have run when the pmd
831 * become null, but then a page fault can map in a THP and not a
832 * regular page).
834 static inline int pmd_trans_unstable(pmd_t *pmd)
836 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
837 return pmd_none_or_trans_huge_or_clear_bad(pmd);
838 #else
839 return 0;
840 #endif
843 #ifndef CONFIG_NUMA_BALANCING
845 * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
846 * the only case the kernel cares is for NUMA balancing and is only ever set
847 * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
848 * _PAGE_PROTNONE so by by default, implement the helper as "always no". It
849 * is the responsibility of the caller to distinguish between PROT_NONE
850 * protections and NUMA hinting fault protections.
852 static inline int pte_protnone(pte_t pte)
854 return 0;
857 static inline int pmd_protnone(pmd_t pmd)
859 return 0;
861 #endif /* CONFIG_NUMA_BALANCING */
863 #endif /* CONFIG_MMU */
865 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
867 #ifndef __PAGETABLE_P4D_FOLDED
868 int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
869 int p4d_clear_huge(p4d_t *p4d);
870 #else
871 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
873 return 0;
875 static inline int p4d_clear_huge(p4d_t *p4d)
877 return 0;
879 #endif /* !__PAGETABLE_P4D_FOLDED */
881 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
882 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
883 int pud_clear_huge(pud_t *pud);
884 int pmd_clear_huge(pmd_t *pmd);
885 #else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
886 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
888 return 0;
890 static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
892 return 0;
894 static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
896 return 0;
898 static inline int p4d_clear_huge(p4d_t *p4d)
900 return 0;
902 static inline int pud_clear_huge(pud_t *pud)
904 return 0;
906 static inline int pmd_clear_huge(pmd_t *pmd)
908 return 0;
910 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
912 #ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
913 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
915 * ARCHes with special requirements for evicting THP backing TLB entries can
916 * implement this. Otherwise also, it can help optimize normal TLB flush in
917 * THP regime. stock flush_tlb_range() typically has optimization to nuke the
918 * entire TLB TLB if flush span is greater than a threshold, which will
919 * likely be true for a single huge page. Thus a single thp flush will
920 * invalidate the entire TLB which is not desitable.
921 * e.g. see arch/arc: flush_pmd_tlb_range
923 #define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
924 #define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
925 #else
926 #define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG()
927 #define flush_pud_tlb_range(vma, addr, end) BUILD_BUG()
928 #endif
929 #endif
931 struct file;
932 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
933 unsigned long size, pgprot_t *vma_prot);
934 #endif /* !__ASSEMBLY__ */
936 #ifndef io_remap_pfn_range
937 #define io_remap_pfn_range remap_pfn_range
938 #endif
940 #ifndef has_transparent_hugepage
941 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
942 #define has_transparent_hugepage() 1
943 #else
944 #define has_transparent_hugepage() 0
945 #endif
946 #endif
948 #endif /* _ASM_GENERIC_PGTABLE_H */