KVM: PPC: Book3S HV: Avoid preemptibility warning in module initialization
[linux/fpc-iii.git] / include / asm-generic / tlb.h
blob8afa4335e5b2bfd0c42c00e1b1506d4e1f7377ac
1 /* include/asm-generic/tlb.h
3 * Generic TLB shootdown code
5 * Copyright 2001 Red Hat, Inc.
6 * Based on code from mm/memory.c Copyright Linus Torvalds and others.
8 * Copyright 2011 Red Hat, Inc., Peter Zijlstra
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
15 #ifndef _ASM_GENERIC__TLB_H
16 #define _ASM_GENERIC__TLB_H
18 #include <linux/swap.h>
19 #include <asm/pgalloc.h>
20 #include <asm/tlbflush.h>
22 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
24 * Semi RCU freeing of the page directories.
26 * This is needed by some architectures to implement software pagetable walkers.
28 * gup_fast() and other software pagetable walkers do a lockless page-table
29 * walk and therefore needs some synchronization with the freeing of the page
30 * directories. The chosen means to accomplish that is by disabling IRQs over
31 * the walk.
33 * Architectures that use IPIs to flush TLBs will then automagically DTRT,
34 * since we unlink the page, flush TLBs, free the page. Since the disabling of
35 * IRQs delays the completion of the TLB flush we can never observe an already
36 * freed page.
38 * Architectures that do not have this (PPC) need to delay the freeing by some
39 * other means, this is that means.
41 * What we do is batch the freed directory pages (tables) and RCU free them.
42 * We use the sched RCU variant, as that guarantees that IRQ/preempt disabling
43 * holds off grace periods.
45 * However, in order to batch these pages we need to allocate storage, this
46 * allocation is deep inside the MM code and can thus easily fail on memory
47 * pressure. To guarantee progress we fall back to single table freeing, see
48 * the implementation of tlb_remove_table_one().
51 struct mmu_table_batch {
52 struct rcu_head rcu;
53 unsigned int nr;
54 void *tables[0];
57 #define MAX_TABLE_BATCH \
58 ((PAGE_SIZE - sizeof(struct mmu_table_batch)) / sizeof(void *))
60 extern void tlb_table_flush(struct mmu_gather *tlb);
61 extern void tlb_remove_table(struct mmu_gather *tlb, void *table);
63 #endif
66 * If we can't allocate a page to make a big batch of page pointers
67 * to work on, then just handle a few from the on-stack structure.
69 #define MMU_GATHER_BUNDLE 8
71 struct mmu_gather_batch {
72 struct mmu_gather_batch *next;
73 unsigned int nr;
74 unsigned int max;
75 struct page *pages[0];
78 #define MAX_GATHER_BATCH \
79 ((PAGE_SIZE - sizeof(struct mmu_gather_batch)) / sizeof(void *))
82 * Limit the maximum number of mmu_gather batches to reduce a risk of soft
83 * lockups for non-preemptible kernels on huge machines when a lot of memory
84 * is zapped during unmapping.
85 * 10K pages freed at once should be safe even without a preemption point.
87 #define MAX_GATHER_BATCH_COUNT (10000UL/MAX_GATHER_BATCH)
89 /* struct mmu_gather is an opaque type used by the mm code for passing around
90 * any data needed by arch specific code for tlb_remove_page.
92 struct mmu_gather {
93 struct mm_struct *mm;
94 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
95 struct mmu_table_batch *batch;
96 #endif
97 unsigned long start;
98 unsigned long end;
99 /* we are in the middle of an operation to clear
100 * a full mm and can make some optimizations */
101 unsigned int fullmm : 1,
102 /* we have performed an operation which
103 * requires a complete flush of the tlb */
104 need_flush_all : 1;
106 struct mmu_gather_batch *active;
107 struct mmu_gather_batch local;
108 struct page *__pages[MMU_GATHER_BUNDLE];
109 unsigned int batch_count;
110 int page_size;
113 #define HAVE_GENERIC_MMU_GATHER
115 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end);
116 void tlb_flush_mmu(struct mmu_gather *tlb);
117 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start,
118 unsigned long end);
119 extern bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page,
120 int page_size);
122 static inline void __tlb_adjust_range(struct mmu_gather *tlb,
123 unsigned long address,
124 unsigned int range_size)
126 tlb->start = min(tlb->start, address);
127 tlb->end = max(tlb->end, address + range_size);
130 static inline void __tlb_reset_range(struct mmu_gather *tlb)
132 if (tlb->fullmm) {
133 tlb->start = tlb->end = ~0;
134 } else {
135 tlb->start = TASK_SIZE;
136 tlb->end = 0;
140 static inline void tlb_remove_page_size(struct mmu_gather *tlb,
141 struct page *page, int page_size)
143 if (__tlb_remove_page_size(tlb, page, page_size))
144 tlb_flush_mmu(tlb);
147 static inline bool __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
149 return __tlb_remove_page_size(tlb, page, PAGE_SIZE);
152 /* tlb_remove_page
153 * Similar to __tlb_remove_page but will call tlb_flush_mmu() itself when
154 * required.
156 static inline void tlb_remove_page(struct mmu_gather *tlb, struct page *page)
158 return tlb_remove_page_size(tlb, page, PAGE_SIZE);
161 #ifndef tlb_remove_check_page_size_change
162 #define tlb_remove_check_page_size_change tlb_remove_check_page_size_change
163 static inline void tlb_remove_check_page_size_change(struct mmu_gather *tlb,
164 unsigned int page_size)
167 * We don't care about page size change, just update
168 * mmu_gather page size here so that debug checks
169 * doesn't throw false warning.
171 #ifdef CONFIG_DEBUG_VM
172 tlb->page_size = page_size;
173 #endif
175 #endif
178 * In the case of tlb vma handling, we can optimise these away in the
179 * case where we're doing a full MM flush. When we're doing a munmap,
180 * the vmas are adjusted to only cover the region to be torn down.
182 #ifndef tlb_start_vma
183 #define tlb_start_vma(tlb, vma) do { } while (0)
184 #endif
186 #define __tlb_end_vma(tlb, vma) \
187 do { \
188 if (!tlb->fullmm && tlb->end) { \
189 tlb_flush(tlb); \
190 __tlb_reset_range(tlb); \
192 } while (0)
194 #ifndef tlb_end_vma
195 #define tlb_end_vma __tlb_end_vma
196 #endif
198 #ifndef __tlb_remove_tlb_entry
199 #define __tlb_remove_tlb_entry(tlb, ptep, address) do { } while (0)
200 #endif
203 * tlb_remove_tlb_entry - remember a pte unmapping for later tlb invalidation.
205 * Record the fact that pte's were really unmapped by updating the range,
206 * so we can later optimise away the tlb invalidate. This helps when
207 * userspace is unmapping already-unmapped pages, which happens quite a lot.
209 #define tlb_remove_tlb_entry(tlb, ptep, address) \
210 do { \
211 __tlb_adjust_range(tlb, address, PAGE_SIZE); \
212 __tlb_remove_tlb_entry(tlb, ptep, address); \
213 } while (0)
215 #define tlb_remove_huge_tlb_entry(h, tlb, ptep, address) \
216 do { \
217 __tlb_adjust_range(tlb, address, huge_page_size(h)); \
218 __tlb_remove_tlb_entry(tlb, ptep, address); \
219 } while (0)
222 * tlb_remove_pmd_tlb_entry - remember a pmd mapping for later tlb invalidation
223 * This is a nop so far, because only x86 needs it.
225 #ifndef __tlb_remove_pmd_tlb_entry
226 #define __tlb_remove_pmd_tlb_entry(tlb, pmdp, address) do {} while (0)
227 #endif
229 #define tlb_remove_pmd_tlb_entry(tlb, pmdp, address) \
230 do { \
231 __tlb_adjust_range(tlb, address, HPAGE_PMD_SIZE); \
232 __tlb_remove_pmd_tlb_entry(tlb, pmdp, address); \
233 } while (0)
236 * tlb_remove_pud_tlb_entry - remember a pud mapping for later tlb
237 * invalidation. This is a nop so far, because only x86 needs it.
239 #ifndef __tlb_remove_pud_tlb_entry
240 #define __tlb_remove_pud_tlb_entry(tlb, pudp, address) do {} while (0)
241 #endif
243 #define tlb_remove_pud_tlb_entry(tlb, pudp, address) \
244 do { \
245 __tlb_adjust_range(tlb, address, HPAGE_PUD_SIZE); \
246 __tlb_remove_pud_tlb_entry(tlb, pudp, address); \
247 } while (0)
250 * For things like page tables caches (ie caching addresses "inside" the
251 * page tables, like x86 does), for legacy reasons, flushing an
252 * individual page had better flush the page table caches behind it. This
253 * is definitely how x86 works, for example. And if you have an
254 * architected non-legacy page table cache (which I'm not aware of
255 * anybody actually doing), you're going to have some architecturally
256 * explicit flushing for that, likely *separate* from a regular TLB entry
257 * flush, and thus you'd need more than just some range expansion..
259 * So if we ever find an architecture
260 * that would want something that odd, I think it is up to that
261 * architecture to do its own odd thing, not cause pain for others
262 * http://lkml.kernel.org/r/CA+55aFzBggoXtNXQeng5d_mRoDnaMBE5Y+URs+PHR67nUpMtaw@mail.gmail.com
264 * For now w.r.t page table cache, mark the range_size as PAGE_SIZE
267 #define pte_free_tlb(tlb, ptep, address) \
268 do { \
269 __tlb_adjust_range(tlb, address, PAGE_SIZE); \
270 __pte_free_tlb(tlb, ptep, address); \
271 } while (0)
273 #define pmd_free_tlb(tlb, pmdp, address) \
274 do { \
275 __tlb_adjust_range(tlb, address, PAGE_SIZE); \
276 __pmd_free_tlb(tlb, pmdp, address); \
277 } while (0)
279 #ifndef __ARCH_HAS_4LEVEL_HACK
280 #define pud_free_tlb(tlb, pudp, address) \
281 do { \
282 __tlb_adjust_range(tlb, address, PAGE_SIZE); \
283 __pud_free_tlb(tlb, pudp, address); \
284 } while (0)
285 #endif
287 #ifndef __ARCH_HAS_5LEVEL_HACK
288 #define p4d_free_tlb(tlb, pudp, address) \
289 do { \
290 __tlb_adjust_range(tlb, address, PAGE_SIZE); \
291 __p4d_free_tlb(tlb, pudp, address); \
292 } while (0)
293 #endif
295 #define tlb_migrate_finish(mm) do {} while (0)
297 #endif /* _ASM_GENERIC__TLB_H */