2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
25 #include <linux/module.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
42 #include "ext4_jbd2.h"
45 #include "ext4_extents.h"
47 #include <trace/events/ext4.h>
49 #define MPAGE_DA_EXTENT_TAIL 0x01
51 static inline int ext4_begin_ordered_truncate(struct inode
*inode
,
54 return jbd2_journal_begin_ordered_truncate(
55 EXT4_SB(inode
->i_sb
)->s_journal
,
56 &EXT4_I(inode
)->jinode
,
60 static void ext4_invalidatepage(struct page
*page
, unsigned long offset
);
63 * Test whether an inode is a fast symlink.
65 static int ext4_inode_is_fast_symlink(struct inode
*inode
)
67 int ea_blocks
= EXT4_I(inode
)->i_file_acl
?
68 (inode
->i_sb
->s_blocksize
>> 9) : 0;
70 return (S_ISLNK(inode
->i_mode
) && inode
->i_blocks
- ea_blocks
== 0);
74 * The ext4 forget function must perform a revoke if we are freeing data
75 * which has been journaled. Metadata (eg. indirect blocks) must be
76 * revoked in all cases.
78 * "bh" may be NULL: a metadata block may have been freed from memory
79 * but there may still be a record of it in the journal, and that record
80 * still needs to be revoked.
82 * If the handle isn't valid we're not journaling, but we still need to
83 * call into ext4_journal_revoke() to put the buffer head.
85 int ext4_forget(handle_t
*handle
, int is_metadata
, struct inode
*inode
,
86 struct buffer_head
*bh
, ext4_fsblk_t blocknr
)
92 BUFFER_TRACE(bh
, "enter");
94 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
96 bh
, is_metadata
, inode
->i_mode
,
97 test_opt(inode
->i_sb
, DATA_FLAGS
));
99 /* Never use the revoke function if we are doing full data
100 * journaling: there is no need to, and a V1 superblock won't
101 * support it. Otherwise, only skip the revoke on un-journaled
104 if (test_opt(inode
->i_sb
, DATA_FLAGS
) == EXT4_MOUNT_JOURNAL_DATA
||
105 (!is_metadata
&& !ext4_should_journal_data(inode
))) {
107 BUFFER_TRACE(bh
, "call jbd2_journal_forget");
108 return ext4_journal_forget(handle
, bh
);
114 * data!=journal && (is_metadata || should_journal_data(inode))
116 BUFFER_TRACE(bh
, "call ext4_journal_revoke");
117 err
= ext4_journal_revoke(handle
, blocknr
, bh
);
119 ext4_abort(inode
->i_sb
, __func__
,
120 "error %d when attempting revoke", err
);
121 BUFFER_TRACE(bh
, "exit");
126 * Work out how many blocks we need to proceed with the next chunk of a
127 * truncate transaction.
129 static unsigned long blocks_for_truncate(struct inode
*inode
)
133 needed
= inode
->i_blocks
>> (inode
->i_sb
->s_blocksize_bits
- 9);
135 /* Give ourselves just enough room to cope with inodes in which
136 * i_blocks is corrupt: we've seen disk corruptions in the past
137 * which resulted in random data in an inode which looked enough
138 * like a regular file for ext4 to try to delete it. Things
139 * will go a bit crazy if that happens, but at least we should
140 * try not to panic the whole kernel. */
144 /* But we need to bound the transaction so we don't overflow the
146 if (needed
> EXT4_MAX_TRANS_DATA
)
147 needed
= EXT4_MAX_TRANS_DATA
;
149 return EXT4_DATA_TRANS_BLOCKS(inode
->i_sb
) + needed
;
153 * Truncate transactions can be complex and absolutely huge. So we need to
154 * be able to restart the transaction at a conventient checkpoint to make
155 * sure we don't overflow the journal.
157 * start_transaction gets us a new handle for a truncate transaction,
158 * and extend_transaction tries to extend the existing one a bit. If
159 * extend fails, we need to propagate the failure up and restart the
160 * transaction in the top-level truncate loop. --sct
162 static handle_t
*start_transaction(struct inode
*inode
)
166 result
= ext4_journal_start(inode
, blocks_for_truncate(inode
));
170 ext4_std_error(inode
->i_sb
, PTR_ERR(result
));
175 * Try to extend this transaction for the purposes of truncation.
177 * Returns 0 if we managed to create more room. If we can't create more
178 * room, and the transaction must be restarted we return 1.
180 static int try_to_extend_transaction(handle_t
*handle
, struct inode
*inode
)
182 if (!ext4_handle_valid(handle
))
184 if (ext4_handle_has_enough_credits(handle
, EXT4_RESERVE_TRANS_BLOCKS
+1))
186 if (!ext4_journal_extend(handle
, blocks_for_truncate(inode
)))
192 * Restart the transaction associated with *handle. This does a commit,
193 * so before we call here everything must be consistently dirtied against
196 int ext4_truncate_restart_trans(handle_t
*handle
, struct inode
*inode
,
202 * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this
203 * moment, get_block can be called only for blocks inside i_size since
204 * page cache has been already dropped and writes are blocked by
205 * i_mutex. So we can safely drop the i_data_sem here.
207 BUG_ON(EXT4_JOURNAL(inode
) == NULL
);
208 jbd_debug(2, "restarting handle %p\n", handle
);
209 up_write(&EXT4_I(inode
)->i_data_sem
);
210 ret
= ext4_journal_restart(handle
, blocks_for_truncate(inode
));
211 down_write(&EXT4_I(inode
)->i_data_sem
);
212 ext4_discard_preallocations(inode
);
218 * Called at the last iput() if i_nlink is zero.
220 void ext4_delete_inode(struct inode
*inode
)
225 if (ext4_should_order_data(inode
))
226 ext4_begin_ordered_truncate(inode
, 0);
227 truncate_inode_pages(&inode
->i_data
, 0);
229 if (is_bad_inode(inode
))
232 handle
= ext4_journal_start(inode
, blocks_for_truncate(inode
)+3);
233 if (IS_ERR(handle
)) {
234 ext4_std_error(inode
->i_sb
, PTR_ERR(handle
));
236 * If we're going to skip the normal cleanup, we still need to
237 * make sure that the in-core orphan linked list is properly
240 ext4_orphan_del(NULL
, inode
);
245 ext4_handle_sync(handle
);
247 err
= ext4_mark_inode_dirty(handle
, inode
);
249 ext4_warning(inode
->i_sb
, __func__
,
250 "couldn't mark inode dirty (err %d)", err
);
254 ext4_truncate(inode
);
257 * ext4_ext_truncate() doesn't reserve any slop when it
258 * restarts journal transactions; therefore there may not be
259 * enough credits left in the handle to remove the inode from
260 * the orphan list and set the dtime field.
262 if (!ext4_handle_has_enough_credits(handle
, 3)) {
263 err
= ext4_journal_extend(handle
, 3);
265 err
= ext4_journal_restart(handle
, 3);
267 ext4_warning(inode
->i_sb
, __func__
,
268 "couldn't extend journal (err %d)", err
);
270 ext4_journal_stop(handle
);
276 * Kill off the orphan record which ext4_truncate created.
277 * AKPM: I think this can be inside the above `if'.
278 * Note that ext4_orphan_del() has to be able to cope with the
279 * deletion of a non-existent orphan - this is because we don't
280 * know if ext4_truncate() actually created an orphan record.
281 * (Well, we could do this if we need to, but heck - it works)
283 ext4_orphan_del(handle
, inode
);
284 EXT4_I(inode
)->i_dtime
= get_seconds();
287 * One subtle ordering requirement: if anything has gone wrong
288 * (transaction abort, IO errors, whatever), then we can still
289 * do these next steps (the fs will already have been marked as
290 * having errors), but we can't free the inode if the mark_dirty
293 if (ext4_mark_inode_dirty(handle
, inode
))
294 /* If that failed, just do the required in-core inode clear. */
297 ext4_free_inode(handle
, inode
);
298 ext4_journal_stop(handle
);
301 clear_inode(inode
); /* We must guarantee clearing of inode... */
307 struct buffer_head
*bh
;
310 static inline void add_chain(Indirect
*p
, struct buffer_head
*bh
, __le32
*v
)
312 p
->key
= *(p
->p
= v
);
317 * ext4_block_to_path - parse the block number into array of offsets
318 * @inode: inode in question (we are only interested in its superblock)
319 * @i_block: block number to be parsed
320 * @offsets: array to store the offsets in
321 * @boundary: set this non-zero if the referred-to block is likely to be
322 * followed (on disk) by an indirect block.
324 * To store the locations of file's data ext4 uses a data structure common
325 * for UNIX filesystems - tree of pointers anchored in the inode, with
326 * data blocks at leaves and indirect blocks in intermediate nodes.
327 * This function translates the block number into path in that tree -
328 * return value is the path length and @offsets[n] is the offset of
329 * pointer to (n+1)th node in the nth one. If @block is out of range
330 * (negative or too large) warning is printed and zero returned.
332 * Note: function doesn't find node addresses, so no IO is needed. All
333 * we need to know is the capacity of indirect blocks (taken from the
338 * Portability note: the last comparison (check that we fit into triple
339 * indirect block) is spelled differently, because otherwise on an
340 * architecture with 32-bit longs and 8Kb pages we might get into trouble
341 * if our filesystem had 8Kb blocks. We might use long long, but that would
342 * kill us on x86. Oh, well, at least the sign propagation does not matter -
343 * i_block would have to be negative in the very beginning, so we would not
347 static int ext4_block_to_path(struct inode
*inode
,
349 ext4_lblk_t offsets
[4], int *boundary
)
351 int ptrs
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
352 int ptrs_bits
= EXT4_ADDR_PER_BLOCK_BITS(inode
->i_sb
);
353 const long direct_blocks
= EXT4_NDIR_BLOCKS
,
354 indirect_blocks
= ptrs
,
355 double_blocks
= (1 << (ptrs_bits
* 2));
359 if (i_block
< direct_blocks
) {
360 offsets
[n
++] = i_block
;
361 final
= direct_blocks
;
362 } else if ((i_block
-= direct_blocks
) < indirect_blocks
) {
363 offsets
[n
++] = EXT4_IND_BLOCK
;
364 offsets
[n
++] = i_block
;
366 } else if ((i_block
-= indirect_blocks
) < double_blocks
) {
367 offsets
[n
++] = EXT4_DIND_BLOCK
;
368 offsets
[n
++] = i_block
>> ptrs_bits
;
369 offsets
[n
++] = i_block
& (ptrs
- 1);
371 } else if (((i_block
-= double_blocks
) >> (ptrs_bits
* 2)) < ptrs
) {
372 offsets
[n
++] = EXT4_TIND_BLOCK
;
373 offsets
[n
++] = i_block
>> (ptrs_bits
* 2);
374 offsets
[n
++] = (i_block
>> ptrs_bits
) & (ptrs
- 1);
375 offsets
[n
++] = i_block
& (ptrs
- 1);
378 ext4_warning(inode
->i_sb
, "ext4_block_to_path",
379 "block %lu > max in inode %lu",
380 i_block
+ direct_blocks
+
381 indirect_blocks
+ double_blocks
, inode
->i_ino
);
384 *boundary
= final
- 1 - (i_block
& (ptrs
- 1));
388 static int __ext4_check_blockref(const char *function
, struct inode
*inode
,
389 __le32
*p
, unsigned int max
)
394 while (bref
< p
+max
) {
395 blk
= le32_to_cpu(*bref
++);
397 unlikely(!ext4_data_block_valid(EXT4_SB(inode
->i_sb
),
399 ext4_error(inode
->i_sb
, function
,
400 "invalid block reference %u "
401 "in inode #%lu", blk
, inode
->i_ino
);
409 #define ext4_check_indirect_blockref(inode, bh) \
410 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
411 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
413 #define ext4_check_inode_blockref(inode) \
414 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
418 * ext4_get_branch - read the chain of indirect blocks leading to data
419 * @inode: inode in question
420 * @depth: depth of the chain (1 - direct pointer, etc.)
421 * @offsets: offsets of pointers in inode/indirect blocks
422 * @chain: place to store the result
423 * @err: here we store the error value
425 * Function fills the array of triples <key, p, bh> and returns %NULL
426 * if everything went OK or the pointer to the last filled triple
427 * (incomplete one) otherwise. Upon the return chain[i].key contains
428 * the number of (i+1)-th block in the chain (as it is stored in memory,
429 * i.e. little-endian 32-bit), chain[i].p contains the address of that
430 * number (it points into struct inode for i==0 and into the bh->b_data
431 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
432 * block for i>0 and NULL for i==0. In other words, it holds the block
433 * numbers of the chain, addresses they were taken from (and where we can
434 * verify that chain did not change) and buffer_heads hosting these
437 * Function stops when it stumbles upon zero pointer (absent block)
438 * (pointer to last triple returned, *@err == 0)
439 * or when it gets an IO error reading an indirect block
440 * (ditto, *@err == -EIO)
441 * or when it reads all @depth-1 indirect blocks successfully and finds
442 * the whole chain, all way to the data (returns %NULL, *err == 0).
444 * Need to be called with
445 * down_read(&EXT4_I(inode)->i_data_sem)
447 static Indirect
*ext4_get_branch(struct inode
*inode
, int depth
,
448 ext4_lblk_t
*offsets
,
449 Indirect chain
[4], int *err
)
451 struct super_block
*sb
= inode
->i_sb
;
453 struct buffer_head
*bh
;
456 /* i_data is not going away, no lock needed */
457 add_chain(chain
, NULL
, EXT4_I(inode
)->i_data
+ *offsets
);
461 bh
= sb_getblk(sb
, le32_to_cpu(p
->key
));
465 if (!bh_uptodate_or_lock(bh
)) {
466 if (bh_submit_read(bh
) < 0) {
470 /* validate block references */
471 if (ext4_check_indirect_blockref(inode
, bh
)) {
477 add_chain(++p
, bh
, (__le32
*)bh
->b_data
+ *++offsets
);
491 * ext4_find_near - find a place for allocation with sufficient locality
493 * @ind: descriptor of indirect block.
495 * This function returns the preferred place for block allocation.
496 * It is used when heuristic for sequential allocation fails.
498 * + if there is a block to the left of our position - allocate near it.
499 * + if pointer will live in indirect block - allocate near that block.
500 * + if pointer will live in inode - allocate in the same
503 * In the latter case we colour the starting block by the callers PID to
504 * prevent it from clashing with concurrent allocations for a different inode
505 * in the same block group. The PID is used here so that functionally related
506 * files will be close-by on-disk.
508 * Caller must make sure that @ind is valid and will stay that way.
510 static ext4_fsblk_t
ext4_find_near(struct inode
*inode
, Indirect
*ind
)
512 struct ext4_inode_info
*ei
= EXT4_I(inode
);
513 __le32
*start
= ind
->bh
? (__le32
*) ind
->bh
->b_data
: ei
->i_data
;
515 ext4_fsblk_t bg_start
;
516 ext4_fsblk_t last_block
;
517 ext4_grpblk_t colour
;
518 ext4_group_t block_group
;
519 int flex_size
= ext4_flex_bg_size(EXT4_SB(inode
->i_sb
));
521 /* Try to find previous block */
522 for (p
= ind
->p
- 1; p
>= start
; p
--) {
524 return le32_to_cpu(*p
);
527 /* No such thing, so let's try location of indirect block */
529 return ind
->bh
->b_blocknr
;
532 * It is going to be referred to from the inode itself? OK, just put it
533 * into the same cylinder group then.
535 block_group
= ei
->i_block_group
;
536 if (flex_size
>= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME
) {
537 block_group
&= ~(flex_size
-1);
538 if (S_ISREG(inode
->i_mode
))
541 bg_start
= ext4_group_first_block_no(inode
->i_sb
, block_group
);
542 last_block
= ext4_blocks_count(EXT4_SB(inode
->i_sb
)->s_es
) - 1;
545 * If we are doing delayed allocation, we don't need take
546 * colour into account.
548 if (test_opt(inode
->i_sb
, DELALLOC
))
551 if (bg_start
+ EXT4_BLOCKS_PER_GROUP(inode
->i_sb
) <= last_block
)
552 colour
= (current
->pid
% 16) *
553 (EXT4_BLOCKS_PER_GROUP(inode
->i_sb
) / 16);
555 colour
= (current
->pid
% 16) * ((last_block
- bg_start
) / 16);
556 return bg_start
+ colour
;
560 * ext4_find_goal - find a preferred place for allocation.
562 * @block: block we want
563 * @partial: pointer to the last triple within a chain
565 * Normally this function find the preferred place for block allocation,
567 * Because this is only used for non-extent files, we limit the block nr
570 static ext4_fsblk_t
ext4_find_goal(struct inode
*inode
, ext4_lblk_t block
,
576 * XXX need to get goal block from mballoc's data structures
579 goal
= ext4_find_near(inode
, partial
);
580 goal
= goal
& EXT4_MAX_BLOCK_FILE_PHYS
;
585 * ext4_blks_to_allocate: Look up the block map and count the number
586 * of direct blocks need to be allocated for the given branch.
588 * @branch: chain of indirect blocks
589 * @k: number of blocks need for indirect blocks
590 * @blks: number of data blocks to be mapped.
591 * @blocks_to_boundary: the offset in the indirect block
593 * return the total number of blocks to be allocate, including the
594 * direct and indirect blocks.
596 static int ext4_blks_to_allocate(Indirect
*branch
, int k
, unsigned int blks
,
597 int blocks_to_boundary
)
599 unsigned int count
= 0;
602 * Simple case, [t,d]Indirect block(s) has not allocated yet
603 * then it's clear blocks on that path have not allocated
606 /* right now we don't handle cross boundary allocation */
607 if (blks
< blocks_to_boundary
+ 1)
610 count
+= blocks_to_boundary
+ 1;
615 while (count
< blks
&& count
<= blocks_to_boundary
&&
616 le32_to_cpu(*(branch
[0].p
+ count
)) == 0) {
623 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
624 * @indirect_blks: the number of blocks need to allocate for indirect
627 * @new_blocks: on return it will store the new block numbers for
628 * the indirect blocks(if needed) and the first direct block,
629 * @blks: on return it will store the total number of allocated
632 static int ext4_alloc_blocks(handle_t
*handle
, struct inode
*inode
,
633 ext4_lblk_t iblock
, ext4_fsblk_t goal
,
634 int indirect_blks
, int blks
,
635 ext4_fsblk_t new_blocks
[4], int *err
)
637 struct ext4_allocation_request ar
;
639 unsigned long count
= 0, blk_allocated
= 0;
641 ext4_fsblk_t current_block
= 0;
645 * Here we try to allocate the requested multiple blocks at once,
646 * on a best-effort basis.
647 * To build a branch, we should allocate blocks for
648 * the indirect blocks(if not allocated yet), and at least
649 * the first direct block of this branch. That's the
650 * minimum number of blocks need to allocate(required)
652 /* first we try to allocate the indirect blocks */
653 target
= indirect_blks
;
656 /* allocating blocks for indirect blocks and direct blocks */
657 current_block
= ext4_new_meta_blocks(handle
, inode
,
662 BUG_ON(current_block
+ count
> EXT4_MAX_BLOCK_FILE_PHYS
);
665 /* allocate blocks for indirect blocks */
666 while (index
< indirect_blks
&& count
) {
667 new_blocks
[index
++] = current_block
++;
672 * save the new block number
673 * for the first direct block
675 new_blocks
[index
] = current_block
;
676 printk(KERN_INFO
"%s returned more blocks than "
677 "requested\n", __func__
);
683 target
= blks
- count
;
684 blk_allocated
= count
;
687 /* Now allocate data blocks */
688 memset(&ar
, 0, sizeof(ar
));
693 if (S_ISREG(inode
->i_mode
))
694 /* enable in-core preallocation only for regular files */
695 ar
.flags
= EXT4_MB_HINT_DATA
;
697 current_block
= ext4_mb_new_blocks(handle
, &ar
, err
);
698 BUG_ON(current_block
+ ar
.len
> EXT4_MAX_BLOCK_FILE_PHYS
);
700 if (*err
&& (target
== blks
)) {
702 * if the allocation failed and we didn't allocate
708 if (target
== blks
) {
710 * save the new block number
711 * for the first direct block
713 new_blocks
[index
] = current_block
;
715 blk_allocated
+= ar
.len
;
718 /* total number of blocks allocated for direct blocks */
723 for (i
= 0; i
< index
; i
++)
724 ext4_free_blocks(handle
, inode
, new_blocks
[i
], 1, 0);
729 * ext4_alloc_branch - allocate and set up a chain of blocks.
731 * @indirect_blks: number of allocated indirect blocks
732 * @blks: number of allocated direct blocks
733 * @offsets: offsets (in the blocks) to store the pointers to next.
734 * @branch: place to store the chain in.
736 * This function allocates blocks, zeroes out all but the last one,
737 * links them into chain and (if we are synchronous) writes them to disk.
738 * In other words, it prepares a branch that can be spliced onto the
739 * inode. It stores the information about that chain in the branch[], in
740 * the same format as ext4_get_branch() would do. We are calling it after
741 * we had read the existing part of chain and partial points to the last
742 * triple of that (one with zero ->key). Upon the exit we have the same
743 * picture as after the successful ext4_get_block(), except that in one
744 * place chain is disconnected - *branch->p is still zero (we did not
745 * set the last link), but branch->key contains the number that should
746 * be placed into *branch->p to fill that gap.
748 * If allocation fails we free all blocks we've allocated (and forget
749 * their buffer_heads) and return the error value the from failed
750 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
751 * as described above and return 0.
753 static int ext4_alloc_branch(handle_t
*handle
, struct inode
*inode
,
754 ext4_lblk_t iblock
, int indirect_blks
,
755 int *blks
, ext4_fsblk_t goal
,
756 ext4_lblk_t
*offsets
, Indirect
*branch
)
758 int blocksize
= inode
->i_sb
->s_blocksize
;
761 struct buffer_head
*bh
;
763 ext4_fsblk_t new_blocks
[4];
764 ext4_fsblk_t current_block
;
766 num
= ext4_alloc_blocks(handle
, inode
, iblock
, goal
, indirect_blks
,
767 *blks
, new_blocks
, &err
);
771 branch
[0].key
= cpu_to_le32(new_blocks
[0]);
773 * metadata blocks and data blocks are allocated.
775 for (n
= 1; n
<= indirect_blks
; n
++) {
777 * Get buffer_head for parent block, zero it out
778 * and set the pointer to new one, then send
781 bh
= sb_getblk(inode
->i_sb
, new_blocks
[n
-1]);
784 BUFFER_TRACE(bh
, "call get_create_access");
785 err
= ext4_journal_get_create_access(handle
, bh
);
787 /* Don't brelse(bh) here; it's done in
788 * ext4_journal_forget() below */
793 memset(bh
->b_data
, 0, blocksize
);
794 branch
[n
].p
= (__le32
*) bh
->b_data
+ offsets
[n
];
795 branch
[n
].key
= cpu_to_le32(new_blocks
[n
]);
796 *branch
[n
].p
= branch
[n
].key
;
797 if (n
== indirect_blks
) {
798 current_block
= new_blocks
[n
];
800 * End of chain, update the last new metablock of
801 * the chain to point to the new allocated
802 * data blocks numbers
804 for (i
= 1; i
< num
; i
++)
805 *(branch
[n
].p
+ i
) = cpu_to_le32(++current_block
);
807 BUFFER_TRACE(bh
, "marking uptodate");
808 set_buffer_uptodate(bh
);
811 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
812 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
819 /* Allocation failed, free what we already allocated */
820 for (i
= 1; i
<= n
; i
++) {
821 BUFFER_TRACE(branch
[i
].bh
, "call jbd2_journal_forget");
822 ext4_journal_forget(handle
, branch
[i
].bh
);
824 for (i
= 0; i
< indirect_blks
; i
++)
825 ext4_free_blocks(handle
, inode
, new_blocks
[i
], 1, 0);
827 ext4_free_blocks(handle
, inode
, new_blocks
[i
], num
, 0);
833 * ext4_splice_branch - splice the allocated branch onto inode.
835 * @block: (logical) number of block we are adding
836 * @chain: chain of indirect blocks (with a missing link - see
838 * @where: location of missing link
839 * @num: number of indirect blocks we are adding
840 * @blks: number of direct blocks we are adding
842 * This function fills the missing link and does all housekeeping needed in
843 * inode (->i_blocks, etc.). In case of success we end up with the full
844 * chain to new block and return 0.
846 static int ext4_splice_branch(handle_t
*handle
, struct inode
*inode
,
847 ext4_lblk_t block
, Indirect
*where
, int num
,
852 ext4_fsblk_t current_block
;
855 * If we're splicing into a [td]indirect block (as opposed to the
856 * inode) then we need to get write access to the [td]indirect block
860 BUFFER_TRACE(where
->bh
, "get_write_access");
861 err
= ext4_journal_get_write_access(handle
, where
->bh
);
867 *where
->p
= where
->key
;
870 * Update the host buffer_head or inode to point to more just allocated
871 * direct blocks blocks
873 if (num
== 0 && blks
> 1) {
874 current_block
= le32_to_cpu(where
->key
) + 1;
875 for (i
= 1; i
< blks
; i
++)
876 *(where
->p
+ i
) = cpu_to_le32(current_block
++);
879 /* We are done with atomic stuff, now do the rest of housekeeping */
880 /* had we spliced it onto indirect block? */
883 * If we spliced it onto an indirect block, we haven't
884 * altered the inode. Note however that if it is being spliced
885 * onto an indirect block at the very end of the file (the
886 * file is growing) then we *will* alter the inode to reflect
887 * the new i_size. But that is not done here - it is done in
888 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
890 jbd_debug(5, "splicing indirect only\n");
891 BUFFER_TRACE(where
->bh
, "call ext4_handle_dirty_metadata");
892 err
= ext4_handle_dirty_metadata(handle
, inode
, where
->bh
);
897 * OK, we spliced it into the inode itself on a direct block.
899 ext4_mark_inode_dirty(handle
, inode
);
900 jbd_debug(5, "splicing direct\n");
905 for (i
= 1; i
<= num
; i
++) {
906 BUFFER_TRACE(where
[i
].bh
, "call jbd2_journal_forget");
907 ext4_journal_forget(handle
, where
[i
].bh
);
908 ext4_free_blocks(handle
, inode
,
909 le32_to_cpu(where
[i
-1].key
), 1, 0);
911 ext4_free_blocks(handle
, inode
, le32_to_cpu(where
[num
].key
), blks
, 0);
917 * The ext4_ind_get_blocks() function handles non-extents inodes
918 * (i.e., using the traditional indirect/double-indirect i_blocks
919 * scheme) for ext4_get_blocks().
921 * Allocation strategy is simple: if we have to allocate something, we will
922 * have to go the whole way to leaf. So let's do it before attaching anything
923 * to tree, set linkage between the newborn blocks, write them if sync is
924 * required, recheck the path, free and repeat if check fails, otherwise
925 * set the last missing link (that will protect us from any truncate-generated
926 * removals - all blocks on the path are immune now) and possibly force the
927 * write on the parent block.
928 * That has a nice additional property: no special recovery from the failed
929 * allocations is needed - we simply release blocks and do not touch anything
930 * reachable from inode.
932 * `handle' can be NULL if create == 0.
934 * return > 0, # of blocks mapped or allocated.
935 * return = 0, if plain lookup failed.
936 * return < 0, error case.
938 * The ext4_ind_get_blocks() function should be called with
939 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
940 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
941 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
944 static int ext4_ind_get_blocks(handle_t
*handle
, struct inode
*inode
,
945 ext4_lblk_t iblock
, unsigned int maxblocks
,
946 struct buffer_head
*bh_result
,
950 ext4_lblk_t offsets
[4];
955 int blocks_to_boundary
= 0;
958 ext4_fsblk_t first_block
= 0;
960 J_ASSERT(!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)));
961 J_ASSERT(handle
!= NULL
|| (flags
& EXT4_GET_BLOCKS_CREATE
) == 0);
962 depth
= ext4_block_to_path(inode
, iblock
, offsets
,
963 &blocks_to_boundary
);
968 partial
= ext4_get_branch(inode
, depth
, offsets
, chain
, &err
);
970 /* Simplest case - block found, no allocation needed */
972 first_block
= le32_to_cpu(chain
[depth
- 1].key
);
973 clear_buffer_new(bh_result
);
976 while (count
< maxblocks
&& count
<= blocks_to_boundary
) {
979 blk
= le32_to_cpu(*(chain
[depth
-1].p
+ count
));
981 if (blk
== first_block
+ count
)
989 /* Next simple case - plain lookup or failed read of indirect block */
990 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0 || err
== -EIO
)
994 * Okay, we need to do block allocation.
996 goal
= ext4_find_goal(inode
, iblock
, partial
);
998 /* the number of blocks need to allocate for [d,t]indirect blocks */
999 indirect_blks
= (chain
+ depth
) - partial
- 1;
1002 * Next look up the indirect map to count the totoal number of
1003 * direct blocks to allocate for this branch.
1005 count
= ext4_blks_to_allocate(partial
, indirect_blks
,
1006 maxblocks
, blocks_to_boundary
);
1008 * Block out ext4_truncate while we alter the tree
1010 err
= ext4_alloc_branch(handle
, inode
, iblock
, indirect_blks
,
1012 offsets
+ (partial
- chain
), partial
);
1015 * The ext4_splice_branch call will free and forget any buffers
1016 * on the new chain if there is a failure, but that risks using
1017 * up transaction credits, especially for bitmaps where the
1018 * credits cannot be returned. Can we handle this somehow? We
1019 * may need to return -EAGAIN upwards in the worst case. --sct
1022 err
= ext4_splice_branch(handle
, inode
, iblock
,
1023 partial
, indirect_blks
, count
);
1027 set_buffer_new(bh_result
);
1029 ext4_update_inode_fsync_trans(handle
, inode
, 1);
1031 map_bh(bh_result
, inode
->i_sb
, le32_to_cpu(chain
[depth
-1].key
));
1032 if (count
> blocks_to_boundary
)
1033 set_buffer_boundary(bh_result
);
1035 /* Clean up and exit */
1036 partial
= chain
+ depth
- 1; /* the whole chain */
1038 while (partial
> chain
) {
1039 BUFFER_TRACE(partial
->bh
, "call brelse");
1040 brelse(partial
->bh
);
1043 BUFFER_TRACE(bh_result
, "returned");
1049 qsize_t
*ext4_get_reserved_space(struct inode
*inode
)
1051 return &EXT4_I(inode
)->i_reserved_quota
;
1056 * Calculate the number of metadata blocks need to reserve
1057 * to allocate a new block at @lblocks for non extent file based file
1059 static int ext4_indirect_calc_metadata_amount(struct inode
*inode
,
1062 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1063 sector_t dind_mask
= ~((sector_t
)EXT4_ADDR_PER_BLOCK(inode
->i_sb
) - 1);
1066 if (lblock
< EXT4_NDIR_BLOCKS
)
1069 lblock
-= EXT4_NDIR_BLOCKS
;
1071 if (ei
->i_da_metadata_calc_len
&&
1072 (lblock
& dind_mask
) == ei
->i_da_metadata_calc_last_lblock
) {
1073 ei
->i_da_metadata_calc_len
++;
1076 ei
->i_da_metadata_calc_last_lblock
= lblock
& dind_mask
;
1077 ei
->i_da_metadata_calc_len
= 1;
1078 blk_bits
= order_base_2(lblock
);
1079 return (blk_bits
/ EXT4_ADDR_PER_BLOCK_BITS(inode
->i_sb
)) + 1;
1083 * Calculate the number of metadata blocks need to reserve
1084 * to allocate a block located at @lblock
1086 static int ext4_calc_metadata_amount(struct inode
*inode
, sector_t lblock
)
1088 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
1089 return ext4_ext_calc_metadata_amount(inode
, lblock
);
1091 return ext4_indirect_calc_metadata_amount(inode
, lblock
);
1095 * Called with i_data_sem down, which is important since we can call
1096 * ext4_discard_preallocations() from here.
1098 void ext4_da_update_reserve_space(struct inode
*inode
,
1099 int used
, int quota_claim
)
1101 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1102 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1103 int mdb_free
= 0, allocated_meta_blocks
= 0;
1105 spin_lock(&ei
->i_block_reservation_lock
);
1106 if (unlikely(used
> ei
->i_reserved_data_blocks
)) {
1107 ext4_msg(inode
->i_sb
, KERN_NOTICE
, "%s: ino %lu, used %d "
1108 "with only %d reserved data blocks\n",
1109 __func__
, inode
->i_ino
, used
,
1110 ei
->i_reserved_data_blocks
);
1112 used
= ei
->i_reserved_data_blocks
;
1115 /* Update per-inode reservations */
1116 ei
->i_reserved_data_blocks
-= used
;
1117 used
+= ei
->i_allocated_meta_blocks
;
1118 ei
->i_reserved_meta_blocks
-= ei
->i_allocated_meta_blocks
;
1119 allocated_meta_blocks
= ei
->i_allocated_meta_blocks
;
1120 ei
->i_allocated_meta_blocks
= 0;
1121 percpu_counter_sub(&sbi
->s_dirtyblocks_counter
, used
);
1123 if (ei
->i_reserved_data_blocks
== 0) {
1125 * We can release all of the reserved metadata blocks
1126 * only when we have written all of the delayed
1127 * allocation blocks.
1129 mdb_free
= ei
->i_reserved_meta_blocks
;
1130 ei
->i_reserved_meta_blocks
= 0;
1131 ei
->i_da_metadata_calc_len
= 0;
1132 percpu_counter_sub(&sbi
->s_dirtyblocks_counter
, mdb_free
);
1134 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1136 /* Update quota subsystem */
1138 vfs_dq_claim_block(inode
, used
);
1140 vfs_dq_release_reservation_block(inode
, mdb_free
);
1143 * We did fallocate with an offset that is already delayed
1144 * allocated. So on delayed allocated writeback we should
1145 * not update the quota for allocated blocks. But then
1146 * converting an fallocate region to initialized region would
1147 * have caused a metadata allocation. So claim quota for
1150 if (allocated_meta_blocks
)
1151 vfs_dq_claim_block(inode
, allocated_meta_blocks
);
1152 vfs_dq_release_reservation_block(inode
, mdb_free
+ used
-
1153 allocated_meta_blocks
);
1157 * If we have done all the pending block allocations and if
1158 * there aren't any writers on the inode, we can discard the
1159 * inode's preallocations.
1161 if ((ei
->i_reserved_data_blocks
== 0) &&
1162 (atomic_read(&inode
->i_writecount
) == 0))
1163 ext4_discard_preallocations(inode
);
1166 static int check_block_validity(struct inode
*inode
, const char *msg
,
1167 sector_t logical
, sector_t phys
, int len
)
1169 if (!ext4_data_block_valid(EXT4_SB(inode
->i_sb
), phys
, len
)) {
1170 ext4_error(inode
->i_sb
, msg
,
1171 "inode #%lu logical block %llu mapped to %llu "
1172 "(size %d)", inode
->i_ino
,
1173 (unsigned long long) logical
,
1174 (unsigned long long) phys
, len
);
1181 * Return the number of contiguous dirty pages in a given inode
1182 * starting at page frame idx.
1184 static pgoff_t
ext4_num_dirty_pages(struct inode
*inode
, pgoff_t idx
,
1185 unsigned int max_pages
)
1187 struct address_space
*mapping
= inode
->i_mapping
;
1189 struct pagevec pvec
;
1191 int i
, nr_pages
, done
= 0;
1195 pagevec_init(&pvec
, 0);
1198 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
1199 PAGECACHE_TAG_DIRTY
,
1200 (pgoff_t
)PAGEVEC_SIZE
);
1203 for (i
= 0; i
< nr_pages
; i
++) {
1204 struct page
*page
= pvec
.pages
[i
];
1205 struct buffer_head
*bh
, *head
;
1208 if (unlikely(page
->mapping
!= mapping
) ||
1210 PageWriteback(page
) ||
1211 page
->index
!= idx
) {
1216 if (page_has_buffers(page
)) {
1217 bh
= head
= page_buffers(page
);
1219 if (!buffer_delay(bh
) &&
1220 !buffer_unwritten(bh
))
1222 bh
= bh
->b_this_page
;
1223 } while (!done
&& (bh
!= head
));
1230 if (num
>= max_pages
)
1233 pagevec_release(&pvec
);
1239 * The ext4_get_blocks() function tries to look up the requested blocks,
1240 * and returns if the blocks are already mapped.
1242 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1243 * and store the allocated blocks in the result buffer head and mark it
1246 * If file type is extents based, it will call ext4_ext_get_blocks(),
1247 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1250 * On success, it returns the number of blocks being mapped or allocate.
1251 * if create==0 and the blocks are pre-allocated and uninitialized block,
1252 * the result buffer head is unmapped. If the create ==1, it will make sure
1253 * the buffer head is mapped.
1255 * It returns 0 if plain look up failed (blocks have not been allocated), in
1256 * that casem, buffer head is unmapped
1258 * It returns the error in case of allocation failure.
1260 int ext4_get_blocks(handle_t
*handle
, struct inode
*inode
, sector_t block
,
1261 unsigned int max_blocks
, struct buffer_head
*bh
,
1266 clear_buffer_mapped(bh
);
1267 clear_buffer_unwritten(bh
);
1269 ext_debug("ext4_get_blocks(): inode %lu, flag %d, max_blocks %u,"
1270 "logical block %lu\n", inode
->i_ino
, flags
, max_blocks
,
1271 (unsigned long)block
);
1273 * Try to see if we can get the block without requesting a new
1274 * file system block.
1276 down_read((&EXT4_I(inode
)->i_data_sem
));
1277 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
1278 retval
= ext4_ext_get_blocks(handle
, inode
, block
, max_blocks
,
1281 retval
= ext4_ind_get_blocks(handle
, inode
, block
, max_blocks
,
1284 up_read((&EXT4_I(inode
)->i_data_sem
));
1286 if (retval
> 0 && buffer_mapped(bh
)) {
1287 int ret
= check_block_validity(inode
, "file system corruption",
1288 block
, bh
->b_blocknr
, retval
);
1293 /* If it is only a block(s) look up */
1294 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0)
1298 * Returns if the blocks have already allocated
1300 * Note that if blocks have been preallocated
1301 * ext4_ext_get_block() returns th create = 0
1302 * with buffer head unmapped.
1304 if (retval
> 0 && buffer_mapped(bh
))
1308 * When we call get_blocks without the create flag, the
1309 * BH_Unwritten flag could have gotten set if the blocks
1310 * requested were part of a uninitialized extent. We need to
1311 * clear this flag now that we are committed to convert all or
1312 * part of the uninitialized extent to be an initialized
1313 * extent. This is because we need to avoid the combination
1314 * of BH_Unwritten and BH_Mapped flags being simultaneously
1315 * set on the buffer_head.
1317 clear_buffer_unwritten(bh
);
1320 * New blocks allocate and/or writing to uninitialized extent
1321 * will possibly result in updating i_data, so we take
1322 * the write lock of i_data_sem, and call get_blocks()
1323 * with create == 1 flag.
1325 down_write((&EXT4_I(inode
)->i_data_sem
));
1328 * if the caller is from delayed allocation writeout path
1329 * we have already reserved fs blocks for allocation
1330 * let the underlying get_block() function know to
1331 * avoid double accounting
1333 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
)
1334 EXT4_I(inode
)->i_delalloc_reserved_flag
= 1;
1336 * We need to check for EXT4 here because migrate
1337 * could have changed the inode type in between
1339 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
1340 retval
= ext4_ext_get_blocks(handle
, inode
, block
, max_blocks
,
1343 retval
= ext4_ind_get_blocks(handle
, inode
, block
,
1344 max_blocks
, bh
, flags
);
1346 if (retval
> 0 && buffer_new(bh
)) {
1348 * We allocated new blocks which will result in
1349 * i_data's format changing. Force the migrate
1350 * to fail by clearing migrate flags
1352 ext4_clear_inode_state(inode
, EXT4_STATE_EXT_MIGRATE
);
1356 * Update reserved blocks/metadata blocks after successful
1357 * block allocation which had been deferred till now. We don't
1358 * support fallocate for non extent files. So we can update
1359 * reserve space here.
1362 (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
))
1363 ext4_da_update_reserve_space(inode
, retval
, 1);
1365 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
)
1366 EXT4_I(inode
)->i_delalloc_reserved_flag
= 0;
1368 up_write((&EXT4_I(inode
)->i_data_sem
));
1369 if (retval
> 0 && buffer_mapped(bh
)) {
1370 int ret
= check_block_validity(inode
, "file system "
1371 "corruption after allocation",
1372 block
, bh
->b_blocknr
, retval
);
1379 /* Maximum number of blocks we map for direct IO at once. */
1380 #define DIO_MAX_BLOCKS 4096
1382 int ext4_get_block(struct inode
*inode
, sector_t iblock
,
1383 struct buffer_head
*bh_result
, int create
)
1385 handle_t
*handle
= ext4_journal_current_handle();
1386 int ret
= 0, started
= 0;
1387 unsigned max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
1390 if (create
&& !handle
) {
1391 /* Direct IO write... */
1392 if (max_blocks
> DIO_MAX_BLOCKS
)
1393 max_blocks
= DIO_MAX_BLOCKS
;
1394 dio_credits
= ext4_chunk_trans_blocks(inode
, max_blocks
);
1395 handle
= ext4_journal_start(inode
, dio_credits
);
1396 if (IS_ERR(handle
)) {
1397 ret
= PTR_ERR(handle
);
1403 ret
= ext4_get_blocks(handle
, inode
, iblock
, max_blocks
, bh_result
,
1404 create
? EXT4_GET_BLOCKS_CREATE
: 0);
1406 bh_result
->b_size
= (ret
<< inode
->i_blkbits
);
1410 ext4_journal_stop(handle
);
1416 * `handle' can be NULL if create is zero
1418 struct buffer_head
*ext4_getblk(handle_t
*handle
, struct inode
*inode
,
1419 ext4_lblk_t block
, int create
, int *errp
)
1421 struct buffer_head dummy
;
1425 J_ASSERT(handle
!= NULL
|| create
== 0);
1428 dummy
.b_blocknr
= -1000;
1429 buffer_trace_init(&dummy
.b_history
);
1431 flags
|= EXT4_GET_BLOCKS_CREATE
;
1432 err
= ext4_get_blocks(handle
, inode
, block
, 1, &dummy
, flags
);
1434 * ext4_get_blocks() returns number of blocks mapped. 0 in
1443 if (!err
&& buffer_mapped(&dummy
)) {
1444 struct buffer_head
*bh
;
1445 bh
= sb_getblk(inode
->i_sb
, dummy
.b_blocknr
);
1450 if (buffer_new(&dummy
)) {
1451 J_ASSERT(create
!= 0);
1452 J_ASSERT(handle
!= NULL
);
1455 * Now that we do not always journal data, we should
1456 * keep in mind whether this should always journal the
1457 * new buffer as metadata. For now, regular file
1458 * writes use ext4_get_block instead, so it's not a
1462 BUFFER_TRACE(bh
, "call get_create_access");
1463 fatal
= ext4_journal_get_create_access(handle
, bh
);
1464 if (!fatal
&& !buffer_uptodate(bh
)) {
1465 memset(bh
->b_data
, 0, inode
->i_sb
->s_blocksize
);
1466 set_buffer_uptodate(bh
);
1469 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
1470 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
1474 BUFFER_TRACE(bh
, "not a new buffer");
1487 struct buffer_head
*ext4_bread(handle_t
*handle
, struct inode
*inode
,
1488 ext4_lblk_t block
, int create
, int *err
)
1490 struct buffer_head
*bh
;
1492 bh
= ext4_getblk(handle
, inode
, block
, create
, err
);
1495 if (buffer_uptodate(bh
))
1497 ll_rw_block(READ_META
, 1, &bh
);
1499 if (buffer_uptodate(bh
))
1506 static int walk_page_buffers(handle_t
*handle
,
1507 struct buffer_head
*head
,
1511 int (*fn
)(handle_t
*handle
,
1512 struct buffer_head
*bh
))
1514 struct buffer_head
*bh
;
1515 unsigned block_start
, block_end
;
1516 unsigned blocksize
= head
->b_size
;
1518 struct buffer_head
*next
;
1520 for (bh
= head
, block_start
= 0;
1521 ret
== 0 && (bh
!= head
|| !block_start
);
1522 block_start
= block_end
, bh
= next
) {
1523 next
= bh
->b_this_page
;
1524 block_end
= block_start
+ blocksize
;
1525 if (block_end
<= from
|| block_start
>= to
) {
1526 if (partial
&& !buffer_uptodate(bh
))
1530 err
= (*fn
)(handle
, bh
);
1538 * To preserve ordering, it is essential that the hole instantiation and
1539 * the data write be encapsulated in a single transaction. We cannot
1540 * close off a transaction and start a new one between the ext4_get_block()
1541 * and the commit_write(). So doing the jbd2_journal_start at the start of
1542 * prepare_write() is the right place.
1544 * Also, this function can nest inside ext4_writepage() ->
1545 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1546 * has generated enough buffer credits to do the whole page. So we won't
1547 * block on the journal in that case, which is good, because the caller may
1550 * By accident, ext4 can be reentered when a transaction is open via
1551 * quota file writes. If we were to commit the transaction while thus
1552 * reentered, there can be a deadlock - we would be holding a quota
1553 * lock, and the commit would never complete if another thread had a
1554 * transaction open and was blocking on the quota lock - a ranking
1557 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1558 * will _not_ run commit under these circumstances because handle->h_ref
1559 * is elevated. We'll still have enough credits for the tiny quotafile
1562 static int do_journal_get_write_access(handle_t
*handle
,
1563 struct buffer_head
*bh
)
1565 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1567 return ext4_journal_get_write_access(handle
, bh
);
1571 * Truncate blocks that were not used by write. We have to truncate the
1572 * pagecache as well so that corresponding buffers get properly unmapped.
1574 static void ext4_truncate_failed_write(struct inode
*inode
)
1576 truncate_inode_pages(inode
->i_mapping
, inode
->i_size
);
1577 ext4_truncate(inode
);
1580 static int ext4_write_begin(struct file
*file
, struct address_space
*mapping
,
1581 loff_t pos
, unsigned len
, unsigned flags
,
1582 struct page
**pagep
, void **fsdata
)
1584 struct inode
*inode
= mapping
->host
;
1585 int ret
, needed_blocks
;
1592 trace_ext4_write_begin(inode
, pos
, len
, flags
);
1594 * Reserve one block more for addition to orphan list in case
1595 * we allocate blocks but write fails for some reason
1597 needed_blocks
= ext4_writepage_trans_blocks(inode
) + 1;
1598 index
= pos
>> PAGE_CACHE_SHIFT
;
1599 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1603 handle
= ext4_journal_start(inode
, needed_blocks
);
1604 if (IS_ERR(handle
)) {
1605 ret
= PTR_ERR(handle
);
1609 /* We cannot recurse into the filesystem as the transaction is already
1611 flags
|= AOP_FLAG_NOFS
;
1613 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
1615 ext4_journal_stop(handle
);
1621 ret
= block_write_begin(file
, mapping
, pos
, len
, flags
, pagep
, fsdata
,
1624 if (!ret
&& ext4_should_journal_data(inode
)) {
1625 ret
= walk_page_buffers(handle
, page_buffers(page
),
1626 from
, to
, NULL
, do_journal_get_write_access
);
1631 page_cache_release(page
);
1633 * block_write_begin may have instantiated a few blocks
1634 * outside i_size. Trim these off again. Don't need
1635 * i_size_read because we hold i_mutex.
1637 * Add inode to orphan list in case we crash before
1640 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1641 ext4_orphan_add(handle
, inode
);
1643 ext4_journal_stop(handle
);
1644 if (pos
+ len
> inode
->i_size
) {
1645 ext4_truncate_failed_write(inode
);
1647 * If truncate failed early the inode might
1648 * still be on the orphan list; we need to
1649 * make sure the inode is removed from the
1650 * orphan list in that case.
1653 ext4_orphan_del(NULL
, inode
);
1657 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
1663 /* For write_end() in data=journal mode */
1664 static int write_end_fn(handle_t
*handle
, struct buffer_head
*bh
)
1666 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1668 set_buffer_uptodate(bh
);
1669 return ext4_handle_dirty_metadata(handle
, NULL
, bh
);
1672 static int ext4_generic_write_end(struct file
*file
,
1673 struct address_space
*mapping
,
1674 loff_t pos
, unsigned len
, unsigned copied
,
1675 struct page
*page
, void *fsdata
)
1677 int i_size_changed
= 0;
1678 struct inode
*inode
= mapping
->host
;
1679 handle_t
*handle
= ext4_journal_current_handle();
1681 copied
= block_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
1684 * No need to use i_size_read() here, the i_size
1685 * cannot change under us because we hold i_mutex.
1687 * But it's important to update i_size while still holding page lock:
1688 * page writeout could otherwise come in and zero beyond i_size.
1690 if (pos
+ copied
> inode
->i_size
) {
1691 i_size_write(inode
, pos
+ copied
);
1695 if (pos
+ copied
> EXT4_I(inode
)->i_disksize
) {
1696 /* We need to mark inode dirty even if
1697 * new_i_size is less that inode->i_size
1698 * bu greater than i_disksize.(hint delalloc)
1700 ext4_update_i_disksize(inode
, (pos
+ copied
));
1704 page_cache_release(page
);
1707 * Don't mark the inode dirty under page lock. First, it unnecessarily
1708 * makes the holding time of page lock longer. Second, it forces lock
1709 * ordering of page lock and transaction start for journaling
1713 ext4_mark_inode_dirty(handle
, inode
);
1719 * We need to pick up the new inode size which generic_commit_write gave us
1720 * `file' can be NULL - eg, when called from page_symlink().
1722 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1723 * buffers are managed internally.
1725 static int ext4_ordered_write_end(struct file
*file
,
1726 struct address_space
*mapping
,
1727 loff_t pos
, unsigned len
, unsigned copied
,
1728 struct page
*page
, void *fsdata
)
1730 handle_t
*handle
= ext4_journal_current_handle();
1731 struct inode
*inode
= mapping
->host
;
1734 trace_ext4_ordered_write_end(inode
, pos
, len
, copied
);
1735 ret
= ext4_jbd2_file_inode(handle
, inode
);
1738 ret2
= ext4_generic_write_end(file
, mapping
, pos
, len
, copied
,
1741 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1742 /* if we have allocated more blocks and copied
1743 * less. We will have blocks allocated outside
1744 * inode->i_size. So truncate them
1746 ext4_orphan_add(handle
, inode
);
1750 ret2
= ext4_journal_stop(handle
);
1754 if (pos
+ len
> inode
->i_size
) {
1755 ext4_truncate_failed_write(inode
);
1757 * If truncate failed early the inode might still be
1758 * on the orphan list; we need to make sure the inode
1759 * is removed from the orphan list in that case.
1762 ext4_orphan_del(NULL
, inode
);
1766 return ret
? ret
: copied
;
1769 static int ext4_writeback_write_end(struct file
*file
,
1770 struct address_space
*mapping
,
1771 loff_t pos
, unsigned len
, unsigned copied
,
1772 struct page
*page
, void *fsdata
)
1774 handle_t
*handle
= ext4_journal_current_handle();
1775 struct inode
*inode
= mapping
->host
;
1778 trace_ext4_writeback_write_end(inode
, pos
, len
, copied
);
1779 ret2
= ext4_generic_write_end(file
, mapping
, pos
, len
, copied
,
1782 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1783 /* if we have allocated more blocks and copied
1784 * less. We will have blocks allocated outside
1785 * inode->i_size. So truncate them
1787 ext4_orphan_add(handle
, inode
);
1792 ret2
= ext4_journal_stop(handle
);
1796 if (pos
+ len
> inode
->i_size
) {
1797 ext4_truncate_failed_write(inode
);
1799 * If truncate failed early the inode might still be
1800 * on the orphan list; we need to make sure the inode
1801 * is removed from the orphan list in that case.
1804 ext4_orphan_del(NULL
, inode
);
1807 return ret
? ret
: copied
;
1810 static int ext4_journalled_write_end(struct file
*file
,
1811 struct address_space
*mapping
,
1812 loff_t pos
, unsigned len
, unsigned copied
,
1813 struct page
*page
, void *fsdata
)
1815 handle_t
*handle
= ext4_journal_current_handle();
1816 struct inode
*inode
= mapping
->host
;
1822 trace_ext4_journalled_write_end(inode
, pos
, len
, copied
);
1823 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1827 if (!PageUptodate(page
))
1829 page_zero_new_buffers(page
, from
+copied
, to
);
1832 ret
= walk_page_buffers(handle
, page_buffers(page
), from
,
1833 to
, &partial
, write_end_fn
);
1835 SetPageUptodate(page
);
1836 new_i_size
= pos
+ copied
;
1837 if (new_i_size
> inode
->i_size
)
1838 i_size_write(inode
, pos
+copied
);
1839 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
1840 if (new_i_size
> EXT4_I(inode
)->i_disksize
) {
1841 ext4_update_i_disksize(inode
, new_i_size
);
1842 ret2
= ext4_mark_inode_dirty(handle
, inode
);
1848 page_cache_release(page
);
1849 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1850 /* if we have allocated more blocks and copied
1851 * less. We will have blocks allocated outside
1852 * inode->i_size. So truncate them
1854 ext4_orphan_add(handle
, inode
);
1856 ret2
= ext4_journal_stop(handle
);
1859 if (pos
+ len
> inode
->i_size
) {
1860 ext4_truncate_failed_write(inode
);
1862 * If truncate failed early the inode might still be
1863 * on the orphan list; we need to make sure the inode
1864 * is removed from the orphan list in that case.
1867 ext4_orphan_del(NULL
, inode
);
1870 return ret
? ret
: copied
;
1874 * Reserve a single block located at lblock
1876 static int ext4_da_reserve_space(struct inode
*inode
, sector_t lblock
)
1879 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1880 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1881 unsigned long md_needed
, md_reserved
;
1884 * recalculate the amount of metadata blocks to reserve
1885 * in order to allocate nrblocks
1886 * worse case is one extent per block
1889 spin_lock(&ei
->i_block_reservation_lock
);
1890 md_reserved
= ei
->i_reserved_meta_blocks
;
1891 md_needed
= ext4_calc_metadata_amount(inode
, lblock
);
1892 spin_unlock(&ei
->i_block_reservation_lock
);
1895 * Make quota reservation here to prevent quota overflow
1896 * later. Real quota accounting is done at pages writeout
1899 if (vfs_dq_reserve_block(inode
, md_needed
+ 1))
1902 if (ext4_claim_free_blocks(sbi
, md_needed
+ 1)) {
1903 vfs_dq_release_reservation_block(inode
, md_needed
+ 1);
1904 if (ext4_should_retry_alloc(inode
->i_sb
, &retries
)) {
1910 spin_lock(&ei
->i_block_reservation_lock
);
1911 ei
->i_reserved_data_blocks
++;
1912 ei
->i_reserved_meta_blocks
+= md_needed
;
1913 spin_unlock(&ei
->i_block_reservation_lock
);
1915 return 0; /* success */
1918 static void ext4_da_release_space(struct inode
*inode
, int to_free
)
1920 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1921 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1924 return; /* Nothing to release, exit */
1926 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
1928 if (unlikely(to_free
> ei
->i_reserved_data_blocks
)) {
1930 * if there aren't enough reserved blocks, then the
1931 * counter is messed up somewhere. Since this
1932 * function is called from invalidate page, it's
1933 * harmless to return without any action.
1935 ext4_msg(inode
->i_sb
, KERN_NOTICE
, "ext4_da_release_space: "
1936 "ino %lu, to_free %d with only %d reserved "
1937 "data blocks\n", inode
->i_ino
, to_free
,
1938 ei
->i_reserved_data_blocks
);
1940 to_free
= ei
->i_reserved_data_blocks
;
1942 ei
->i_reserved_data_blocks
-= to_free
;
1944 if (ei
->i_reserved_data_blocks
== 0) {
1946 * We can release all of the reserved metadata blocks
1947 * only when we have written all of the delayed
1948 * allocation blocks.
1950 to_free
+= ei
->i_reserved_meta_blocks
;
1951 ei
->i_reserved_meta_blocks
= 0;
1952 ei
->i_da_metadata_calc_len
= 0;
1955 /* update fs dirty blocks counter */
1956 percpu_counter_sub(&sbi
->s_dirtyblocks_counter
, to_free
);
1958 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1960 vfs_dq_release_reservation_block(inode
, to_free
);
1963 static void ext4_da_page_release_reservation(struct page
*page
,
1964 unsigned long offset
)
1967 struct buffer_head
*head
, *bh
;
1968 unsigned int curr_off
= 0;
1970 head
= page_buffers(page
);
1973 unsigned int next_off
= curr_off
+ bh
->b_size
;
1975 if ((offset
<= curr_off
) && (buffer_delay(bh
))) {
1977 clear_buffer_delay(bh
);
1979 curr_off
= next_off
;
1980 } while ((bh
= bh
->b_this_page
) != head
);
1981 ext4_da_release_space(page
->mapping
->host
, to_release
);
1985 * Delayed allocation stuff
1989 * mpage_da_submit_io - walks through extent of pages and try to write
1990 * them with writepage() call back
1992 * @mpd->inode: inode
1993 * @mpd->first_page: first page of the extent
1994 * @mpd->next_page: page after the last page of the extent
1996 * By the time mpage_da_submit_io() is called we expect all blocks
1997 * to be allocated. this may be wrong if allocation failed.
1999 * As pages are already locked by write_cache_pages(), we can't use it
2001 static int mpage_da_submit_io(struct mpage_da_data
*mpd
)
2004 struct pagevec pvec
;
2005 unsigned long index
, end
;
2006 int ret
= 0, err
, nr_pages
, i
;
2007 struct inode
*inode
= mpd
->inode
;
2008 struct address_space
*mapping
= inode
->i_mapping
;
2010 BUG_ON(mpd
->next_page
<= mpd
->first_page
);
2012 * We need to start from the first_page to the next_page - 1
2013 * to make sure we also write the mapped dirty buffer_heads.
2014 * If we look at mpd->b_blocknr we would only be looking
2015 * at the currently mapped buffer_heads.
2017 index
= mpd
->first_page
;
2018 end
= mpd
->next_page
- 1;
2020 pagevec_init(&pvec
, 0);
2021 while (index
<= end
) {
2022 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
2025 for (i
= 0; i
< nr_pages
; i
++) {
2026 struct page
*page
= pvec
.pages
[i
];
2028 index
= page
->index
;
2033 BUG_ON(!PageLocked(page
));
2034 BUG_ON(PageWriteback(page
));
2036 pages_skipped
= mpd
->wbc
->pages_skipped
;
2037 err
= mapping
->a_ops
->writepage(page
, mpd
->wbc
);
2038 if (!err
&& (pages_skipped
== mpd
->wbc
->pages_skipped
))
2040 * have successfully written the page
2041 * without skipping the same
2043 mpd
->pages_written
++;
2045 * In error case, we have to continue because
2046 * remaining pages are still locked
2047 * XXX: unlock and re-dirty them?
2052 pagevec_release(&pvec
);
2058 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
2060 * @mpd->inode - inode to walk through
2061 * @exbh->b_blocknr - first block on a disk
2062 * @exbh->b_size - amount of space in bytes
2063 * @logical - first logical block to start assignment with
2065 * the function goes through all passed space and put actual disk
2066 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
2068 static void mpage_put_bnr_to_bhs(struct mpage_da_data
*mpd
, sector_t logical
,
2069 struct buffer_head
*exbh
)
2071 struct inode
*inode
= mpd
->inode
;
2072 struct address_space
*mapping
= inode
->i_mapping
;
2073 int blocks
= exbh
->b_size
>> inode
->i_blkbits
;
2074 sector_t pblock
= exbh
->b_blocknr
, cur_logical
;
2075 struct buffer_head
*head
, *bh
;
2077 struct pagevec pvec
;
2080 index
= logical
>> (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2081 end
= (logical
+ blocks
- 1) >> (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2082 cur_logical
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2084 pagevec_init(&pvec
, 0);
2086 while (index
<= end
) {
2087 /* XXX: optimize tail */
2088 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
2091 for (i
= 0; i
< nr_pages
; i
++) {
2092 struct page
*page
= pvec
.pages
[i
];
2094 index
= page
->index
;
2099 BUG_ON(!PageLocked(page
));
2100 BUG_ON(PageWriteback(page
));
2101 BUG_ON(!page_has_buffers(page
));
2103 bh
= page_buffers(page
);
2106 /* skip blocks out of the range */
2108 if (cur_logical
>= logical
)
2111 } while ((bh
= bh
->b_this_page
) != head
);
2114 if (cur_logical
>= logical
+ blocks
)
2117 if (buffer_delay(bh
) ||
2118 buffer_unwritten(bh
)) {
2120 BUG_ON(bh
->b_bdev
!= inode
->i_sb
->s_bdev
);
2122 if (buffer_delay(bh
)) {
2123 clear_buffer_delay(bh
);
2124 bh
->b_blocknr
= pblock
;
2127 * unwritten already should have
2128 * blocknr assigned. Verify that
2130 clear_buffer_unwritten(bh
);
2131 BUG_ON(bh
->b_blocknr
!= pblock
);
2134 } else if (buffer_mapped(bh
))
2135 BUG_ON(bh
->b_blocknr
!= pblock
);
2139 } while ((bh
= bh
->b_this_page
) != head
);
2141 pagevec_release(&pvec
);
2147 * __unmap_underlying_blocks - just a helper function to unmap
2148 * set of blocks described by @bh
2150 static inline void __unmap_underlying_blocks(struct inode
*inode
,
2151 struct buffer_head
*bh
)
2153 struct block_device
*bdev
= inode
->i_sb
->s_bdev
;
2156 blocks
= bh
->b_size
>> inode
->i_blkbits
;
2157 for (i
= 0; i
< blocks
; i
++)
2158 unmap_underlying_metadata(bdev
, bh
->b_blocknr
+ i
);
2161 static void ext4_da_block_invalidatepages(struct mpage_da_data
*mpd
,
2162 sector_t logical
, long blk_cnt
)
2166 struct pagevec pvec
;
2167 struct inode
*inode
= mpd
->inode
;
2168 struct address_space
*mapping
= inode
->i_mapping
;
2170 index
= logical
>> (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2171 end
= (logical
+ blk_cnt
- 1) >>
2172 (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2173 while (index
<= end
) {
2174 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
2177 for (i
= 0; i
< nr_pages
; i
++) {
2178 struct page
*page
= pvec
.pages
[i
];
2179 index
= page
->index
;
2184 BUG_ON(!PageLocked(page
));
2185 BUG_ON(PageWriteback(page
));
2186 block_invalidatepage(page
, 0);
2187 ClearPageUptodate(page
);
2194 static void ext4_print_free_blocks(struct inode
*inode
)
2196 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
2197 printk(KERN_CRIT
"Total free blocks count %lld\n",
2198 ext4_count_free_blocks(inode
->i_sb
));
2199 printk(KERN_CRIT
"Free/Dirty block details\n");
2200 printk(KERN_CRIT
"free_blocks=%lld\n",
2201 (long long) percpu_counter_sum(&sbi
->s_freeblocks_counter
));
2202 printk(KERN_CRIT
"dirty_blocks=%lld\n",
2203 (long long) percpu_counter_sum(&sbi
->s_dirtyblocks_counter
));
2204 printk(KERN_CRIT
"Block reservation details\n");
2205 printk(KERN_CRIT
"i_reserved_data_blocks=%u\n",
2206 EXT4_I(inode
)->i_reserved_data_blocks
);
2207 printk(KERN_CRIT
"i_reserved_meta_blocks=%u\n",
2208 EXT4_I(inode
)->i_reserved_meta_blocks
);
2213 * mpage_da_map_blocks - go through given space
2215 * @mpd - bh describing space
2217 * The function skips space we know is already mapped to disk blocks.
2220 static int mpage_da_map_blocks(struct mpage_da_data
*mpd
)
2222 int err
, blks
, get_blocks_flags
;
2223 struct buffer_head
new;
2224 sector_t next
= mpd
->b_blocknr
;
2225 unsigned max_blocks
= mpd
->b_size
>> mpd
->inode
->i_blkbits
;
2226 loff_t disksize
= EXT4_I(mpd
->inode
)->i_disksize
;
2227 handle_t
*handle
= NULL
;
2230 * We consider only non-mapped and non-allocated blocks
2232 if ((mpd
->b_state
& (1 << BH_Mapped
)) &&
2233 !(mpd
->b_state
& (1 << BH_Delay
)) &&
2234 !(mpd
->b_state
& (1 << BH_Unwritten
)))
2238 * If we didn't accumulate anything to write simply return
2243 handle
= ext4_journal_current_handle();
2247 * Call ext4_get_blocks() to allocate any delayed allocation
2248 * blocks, or to convert an uninitialized extent to be
2249 * initialized (in the case where we have written into
2250 * one or more preallocated blocks).
2252 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2253 * indicate that we are on the delayed allocation path. This
2254 * affects functions in many different parts of the allocation
2255 * call path. This flag exists primarily because we don't
2256 * want to change *many* call functions, so ext4_get_blocks()
2257 * will set the magic i_delalloc_reserved_flag once the
2258 * inode's allocation semaphore is taken.
2260 * If the blocks in questions were delalloc blocks, set
2261 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2262 * variables are updated after the blocks have been allocated.
2265 get_blocks_flags
= EXT4_GET_BLOCKS_CREATE
;
2266 if (mpd
->b_state
& (1 << BH_Delay
))
2267 get_blocks_flags
|= EXT4_GET_BLOCKS_DELALLOC_RESERVE
;
2269 blks
= ext4_get_blocks(handle
, mpd
->inode
, next
, max_blocks
,
2270 &new, get_blocks_flags
);
2274 * If get block returns with error we simply
2275 * return. Later writepage will redirty the page and
2276 * writepages will find the dirty page again
2281 if (err
== -ENOSPC
&&
2282 ext4_count_free_blocks(mpd
->inode
->i_sb
)) {
2288 * get block failure will cause us to loop in
2289 * writepages, because a_ops->writepage won't be able
2290 * to make progress. The page will be redirtied by
2291 * writepage and writepages will again try to write
2294 ext4_msg(mpd
->inode
->i_sb
, KERN_CRIT
,
2295 "delayed block allocation failed for inode %lu at "
2296 "logical offset %llu with max blocks %zd with "
2297 "error %d", mpd
->inode
->i_ino
,
2298 (unsigned long long) next
,
2299 mpd
->b_size
>> mpd
->inode
->i_blkbits
, err
);
2300 printk(KERN_CRIT
"This should not happen!! "
2301 "Data will be lost\n");
2302 if (err
== -ENOSPC
) {
2303 ext4_print_free_blocks(mpd
->inode
);
2305 /* invalidate all the pages */
2306 ext4_da_block_invalidatepages(mpd
, next
,
2307 mpd
->b_size
>> mpd
->inode
->i_blkbits
);
2312 new.b_size
= (blks
<< mpd
->inode
->i_blkbits
);
2314 if (buffer_new(&new))
2315 __unmap_underlying_blocks(mpd
->inode
, &new);
2318 * If blocks are delayed marked, we need to
2319 * put actual blocknr and drop delayed bit
2321 if ((mpd
->b_state
& (1 << BH_Delay
)) ||
2322 (mpd
->b_state
& (1 << BH_Unwritten
)))
2323 mpage_put_bnr_to_bhs(mpd
, next
, &new);
2325 if (ext4_should_order_data(mpd
->inode
)) {
2326 err
= ext4_jbd2_file_inode(handle
, mpd
->inode
);
2332 * Update on-disk size along with block allocation.
2334 disksize
= ((loff_t
) next
+ blks
) << mpd
->inode
->i_blkbits
;
2335 if (disksize
> i_size_read(mpd
->inode
))
2336 disksize
= i_size_read(mpd
->inode
);
2337 if (disksize
> EXT4_I(mpd
->inode
)->i_disksize
) {
2338 ext4_update_i_disksize(mpd
->inode
, disksize
);
2339 return ext4_mark_inode_dirty(handle
, mpd
->inode
);
2345 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2346 (1 << BH_Delay) | (1 << BH_Unwritten))
2349 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2351 * @mpd->lbh - extent of blocks
2352 * @logical - logical number of the block in the file
2353 * @bh - bh of the block (used to access block's state)
2355 * the function is used to collect contig. blocks in same state
2357 static void mpage_add_bh_to_extent(struct mpage_da_data
*mpd
,
2358 sector_t logical
, size_t b_size
,
2359 unsigned long b_state
)
2362 int nrblocks
= mpd
->b_size
>> mpd
->inode
->i_blkbits
;
2365 * XXX Don't go larger than mballoc is willing to allocate
2366 * This is a stopgap solution. We eventually need to fold
2367 * mpage_da_submit_io() into this function and then call
2368 * ext4_get_blocks() multiple times in a loop
2370 if (nrblocks
>= 8*1024*1024/mpd
->inode
->i_sb
->s_blocksize
)
2373 /* check if thereserved journal credits might overflow */
2374 if (!(ext4_test_inode_flag(mpd
->inode
, EXT4_INODE_EXTENTS
))) {
2375 if (nrblocks
>= EXT4_MAX_TRANS_DATA
) {
2377 * With non-extent format we are limited by the journal
2378 * credit available. Total credit needed to insert
2379 * nrblocks contiguous blocks is dependent on the
2380 * nrblocks. So limit nrblocks.
2383 } else if ((nrblocks
+ (b_size
>> mpd
->inode
->i_blkbits
)) >
2384 EXT4_MAX_TRANS_DATA
) {
2386 * Adding the new buffer_head would make it cross the
2387 * allowed limit for which we have journal credit
2388 * reserved. So limit the new bh->b_size
2390 b_size
= (EXT4_MAX_TRANS_DATA
- nrblocks
) <<
2391 mpd
->inode
->i_blkbits
;
2392 /* we will do mpage_da_submit_io in the next loop */
2396 * First block in the extent
2398 if (mpd
->b_size
== 0) {
2399 mpd
->b_blocknr
= logical
;
2400 mpd
->b_size
= b_size
;
2401 mpd
->b_state
= b_state
& BH_FLAGS
;
2405 next
= mpd
->b_blocknr
+ nrblocks
;
2407 * Can we merge the block to our big extent?
2409 if (logical
== next
&& (b_state
& BH_FLAGS
) == mpd
->b_state
) {
2410 mpd
->b_size
+= b_size
;
2416 * We couldn't merge the block to our extent, so we
2417 * need to flush current extent and start new one
2419 if (mpage_da_map_blocks(mpd
) == 0)
2420 mpage_da_submit_io(mpd
);
2425 static int ext4_bh_delay_or_unwritten(handle_t
*handle
, struct buffer_head
*bh
)
2427 return (buffer_delay(bh
) || buffer_unwritten(bh
)) && buffer_dirty(bh
);
2431 * __mpage_da_writepage - finds extent of pages and blocks
2433 * @page: page to consider
2434 * @wbc: not used, we just follow rules
2437 * The function finds extents of pages and scan them for all blocks.
2439 static int __mpage_da_writepage(struct page
*page
,
2440 struct writeback_control
*wbc
, void *data
)
2442 struct mpage_da_data
*mpd
= data
;
2443 struct inode
*inode
= mpd
->inode
;
2444 struct buffer_head
*bh
, *head
;
2449 * Rest of the page in the page_vec
2450 * redirty then and skip then. We will
2451 * try to write them again after
2452 * starting a new transaction
2454 redirty_page_for_writepage(wbc
, page
);
2456 return MPAGE_DA_EXTENT_TAIL
;
2459 * Can we merge this page to current extent?
2461 if (mpd
->next_page
!= page
->index
) {
2463 * Nope, we can't. So, we map non-allocated blocks
2464 * and start IO on them using writepage()
2466 if (mpd
->next_page
!= mpd
->first_page
) {
2467 if (mpage_da_map_blocks(mpd
) == 0)
2468 mpage_da_submit_io(mpd
);
2470 * skip rest of the page in the page_vec
2473 redirty_page_for_writepage(wbc
, page
);
2475 return MPAGE_DA_EXTENT_TAIL
;
2479 * Start next extent of pages ...
2481 mpd
->first_page
= page
->index
;
2491 mpd
->next_page
= page
->index
+ 1;
2492 logical
= (sector_t
) page
->index
<<
2493 (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2495 if (!page_has_buffers(page
)) {
2496 mpage_add_bh_to_extent(mpd
, logical
, PAGE_CACHE_SIZE
,
2497 (1 << BH_Dirty
) | (1 << BH_Uptodate
));
2499 return MPAGE_DA_EXTENT_TAIL
;
2502 * Page with regular buffer heads, just add all dirty ones
2504 head
= page_buffers(page
);
2507 BUG_ON(buffer_locked(bh
));
2509 * We need to try to allocate
2510 * unmapped blocks in the same page.
2511 * Otherwise we won't make progress
2512 * with the page in ext4_writepage
2514 if (ext4_bh_delay_or_unwritten(NULL
, bh
)) {
2515 mpage_add_bh_to_extent(mpd
, logical
,
2519 return MPAGE_DA_EXTENT_TAIL
;
2520 } else if (buffer_dirty(bh
) && (buffer_mapped(bh
))) {
2522 * mapped dirty buffer. We need to update
2523 * the b_state because we look at
2524 * b_state in mpage_da_map_blocks. We don't
2525 * update b_size because if we find an
2526 * unmapped buffer_head later we need to
2527 * use the b_state flag of that buffer_head.
2529 if (mpd
->b_size
== 0)
2530 mpd
->b_state
= bh
->b_state
& BH_FLAGS
;
2533 } while ((bh
= bh
->b_this_page
) != head
);
2540 * This is a special get_blocks_t callback which is used by
2541 * ext4_da_write_begin(). It will either return mapped block or
2542 * reserve space for a single block.
2544 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2545 * We also have b_blocknr = -1 and b_bdev initialized properly
2547 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2548 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2549 * initialized properly.
2551 static int ext4_da_get_block_prep(struct inode
*inode
, sector_t iblock
,
2552 struct buffer_head
*bh_result
, int create
)
2555 sector_t invalid_block
= ~((sector_t
) 0xffff);
2557 if (invalid_block
< ext4_blocks_count(EXT4_SB(inode
->i_sb
)->s_es
))
2560 BUG_ON(create
== 0);
2561 BUG_ON(bh_result
->b_size
!= inode
->i_sb
->s_blocksize
);
2564 * first, we need to know whether the block is allocated already
2565 * preallocated blocks are unmapped but should treated
2566 * the same as allocated blocks.
2568 ret
= ext4_get_blocks(NULL
, inode
, iblock
, 1, bh_result
, 0);
2569 if ((ret
== 0) && !buffer_delay(bh_result
)) {
2570 /* the block isn't (pre)allocated yet, let's reserve space */
2572 * XXX: __block_prepare_write() unmaps passed block,
2575 ret
= ext4_da_reserve_space(inode
, iblock
);
2577 /* not enough space to reserve */
2580 map_bh(bh_result
, inode
->i_sb
, invalid_block
);
2581 set_buffer_new(bh_result
);
2582 set_buffer_delay(bh_result
);
2583 } else if (ret
> 0) {
2584 bh_result
->b_size
= (ret
<< inode
->i_blkbits
);
2585 if (buffer_unwritten(bh_result
)) {
2586 /* A delayed write to unwritten bh should
2587 * be marked new and mapped. Mapped ensures
2588 * that we don't do get_block multiple times
2589 * when we write to the same offset and new
2590 * ensures that we do proper zero out for
2593 set_buffer_new(bh_result
);
2594 set_buffer_mapped(bh_result
);
2603 * This function is used as a standard get_block_t calback function
2604 * when there is no desire to allocate any blocks. It is used as a
2605 * callback function for block_prepare_write(), nobh_writepage(), and
2606 * block_write_full_page(). These functions should only try to map a
2607 * single block at a time.
2609 * Since this function doesn't do block allocations even if the caller
2610 * requests it by passing in create=1, it is critically important that
2611 * any caller checks to make sure that any buffer heads are returned
2612 * by this function are either all already mapped or marked for
2613 * delayed allocation before calling nobh_writepage() or
2614 * block_write_full_page(). Otherwise, b_blocknr could be left
2615 * unitialized, and the page write functions will be taken by
2618 static int noalloc_get_block_write(struct inode
*inode
, sector_t iblock
,
2619 struct buffer_head
*bh_result
, int create
)
2622 unsigned max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
2624 BUG_ON(bh_result
->b_size
!= inode
->i_sb
->s_blocksize
);
2627 * we don't want to do block allocation in writepage
2628 * so call get_block_wrap with create = 0
2630 ret
= ext4_get_blocks(NULL
, inode
, iblock
, max_blocks
, bh_result
, 0);
2632 bh_result
->b_size
= (ret
<< inode
->i_blkbits
);
2638 static int bget_one(handle_t
*handle
, struct buffer_head
*bh
)
2644 static int bput_one(handle_t
*handle
, struct buffer_head
*bh
)
2650 static int __ext4_journalled_writepage(struct page
*page
,
2651 struct writeback_control
*wbc
,
2654 struct address_space
*mapping
= page
->mapping
;
2655 struct inode
*inode
= mapping
->host
;
2656 struct buffer_head
*page_bufs
;
2657 handle_t
*handle
= NULL
;
2661 page_bufs
= page_buffers(page
);
2663 walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
, bget_one
);
2664 /* As soon as we unlock the page, it can go away, but we have
2665 * references to buffers so we are safe */
2668 handle
= ext4_journal_start(inode
, ext4_writepage_trans_blocks(inode
));
2669 if (IS_ERR(handle
)) {
2670 ret
= PTR_ERR(handle
);
2674 ret
= walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
2675 do_journal_get_write_access
);
2677 err
= walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
2681 err
= ext4_journal_stop(handle
);
2685 walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
, bput_one
);
2686 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
2692 * Note that we don't need to start a transaction unless we're journaling data
2693 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2694 * need to file the inode to the transaction's list in ordered mode because if
2695 * we are writing back data added by write(), the inode is already there and if
2696 * we are writing back data modified via mmap(), noone guarantees in which
2697 * transaction the data will hit the disk. In case we are journaling data, we
2698 * cannot start transaction directly because transaction start ranks above page
2699 * lock so we have to do some magic.
2701 * This function can get called via...
2702 * - ext4_da_writepages after taking page lock (have journal handle)
2703 * - journal_submit_inode_data_buffers (no journal handle)
2704 * - shrink_page_list via pdflush (no journal handle)
2705 * - grab_page_cache when doing write_begin (have journal handle)
2707 * We don't do any block allocation in this function. If we have page with
2708 * multiple blocks we need to write those buffer_heads that are mapped. This
2709 * is important for mmaped based write. So if we do with blocksize 1K
2710 * truncate(f, 1024);
2711 * a = mmap(f, 0, 4096);
2713 * truncate(f, 4096);
2714 * we have in the page first buffer_head mapped via page_mkwrite call back
2715 * but other bufer_heads would be unmapped but dirty(dirty done via the
2716 * do_wp_page). So writepage should write the first block. If we modify
2717 * the mmap area beyond 1024 we will again get a page_fault and the
2718 * page_mkwrite callback will do the block allocation and mark the
2719 * buffer_heads mapped.
2721 * We redirty the page if we have any buffer_heads that is either delay or
2722 * unwritten in the page.
2724 * We can get recursively called as show below.
2726 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2729 * But since we don't do any block allocation we should not deadlock.
2730 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2732 static int ext4_writepage(struct page
*page
,
2733 struct writeback_control
*wbc
)
2738 struct buffer_head
*page_bufs
;
2739 struct inode
*inode
= page
->mapping
->host
;
2741 trace_ext4_writepage(inode
, page
);
2742 size
= i_size_read(inode
);
2743 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
2744 len
= size
& ~PAGE_CACHE_MASK
;
2746 len
= PAGE_CACHE_SIZE
;
2748 if (page_has_buffers(page
)) {
2749 page_bufs
= page_buffers(page
);
2750 if (walk_page_buffers(NULL
, page_bufs
, 0, len
, NULL
,
2751 ext4_bh_delay_or_unwritten
)) {
2753 * We don't want to do block allocation
2754 * So redirty the page and return
2755 * We may reach here when we do a journal commit
2756 * via journal_submit_inode_data_buffers.
2757 * If we don't have mapping block we just ignore
2758 * them. We can also reach here via shrink_page_list
2760 redirty_page_for_writepage(wbc
, page
);
2766 * The test for page_has_buffers() is subtle:
2767 * We know the page is dirty but it lost buffers. That means
2768 * that at some moment in time after write_begin()/write_end()
2769 * has been called all buffers have been clean and thus they
2770 * must have been written at least once. So they are all
2771 * mapped and we can happily proceed with mapping them
2772 * and writing the page.
2774 * Try to initialize the buffer_heads and check whether
2775 * all are mapped and non delay. We don't want to
2776 * do block allocation here.
2778 ret
= block_prepare_write(page
, 0, len
,
2779 noalloc_get_block_write
);
2781 page_bufs
= page_buffers(page
);
2782 /* check whether all are mapped and non delay */
2783 if (walk_page_buffers(NULL
, page_bufs
, 0, len
, NULL
,
2784 ext4_bh_delay_or_unwritten
)) {
2785 redirty_page_for_writepage(wbc
, page
);
2791 * We can't do block allocation here
2792 * so just redity the page and unlock
2795 redirty_page_for_writepage(wbc
, page
);
2799 /* now mark the buffer_heads as dirty and uptodate */
2800 block_commit_write(page
, 0, len
);
2803 if (PageChecked(page
) && ext4_should_journal_data(inode
)) {
2805 * It's mmapped pagecache. Add buffers and journal it. There
2806 * doesn't seem much point in redirtying the page here.
2808 ClearPageChecked(page
);
2809 return __ext4_journalled_writepage(page
, wbc
, len
);
2812 if (test_opt(inode
->i_sb
, NOBH
) && ext4_should_writeback_data(inode
))
2813 ret
= nobh_writepage(page
, noalloc_get_block_write
, wbc
);
2815 ret
= block_write_full_page(page
, noalloc_get_block_write
,
2822 * This is called via ext4_da_writepages() to
2823 * calulate the total number of credits to reserve to fit
2824 * a single extent allocation into a single transaction,
2825 * ext4_da_writpeages() will loop calling this before
2826 * the block allocation.
2829 static int ext4_da_writepages_trans_blocks(struct inode
*inode
)
2831 int max_blocks
= EXT4_I(inode
)->i_reserved_data_blocks
;
2834 * With non-extent format the journal credit needed to
2835 * insert nrblocks contiguous block is dependent on
2836 * number of contiguous block. So we will limit
2837 * number of contiguous block to a sane value
2839 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) &&
2840 (max_blocks
> EXT4_MAX_TRANS_DATA
))
2841 max_blocks
= EXT4_MAX_TRANS_DATA
;
2843 return ext4_chunk_trans_blocks(inode
, max_blocks
);
2846 static int ext4_da_writepages(struct address_space
*mapping
,
2847 struct writeback_control
*wbc
)
2850 int range_whole
= 0;
2851 handle_t
*handle
= NULL
;
2852 struct mpage_da_data mpd
;
2853 struct inode
*inode
= mapping
->host
;
2854 int no_nrwrite_index_update
;
2855 int pages_written
= 0;
2857 unsigned int max_pages
;
2858 int range_cyclic
, cycled
= 1, io_done
= 0;
2859 int needed_blocks
, ret
= 0;
2860 long desired_nr_to_write
, nr_to_writebump
= 0;
2861 loff_t range_start
= wbc
->range_start
;
2862 struct ext4_sb_info
*sbi
= EXT4_SB(mapping
->host
->i_sb
);
2864 trace_ext4_da_writepages(inode
, wbc
);
2867 * No pages to write? This is mainly a kludge to avoid starting
2868 * a transaction for special inodes like journal inode on last iput()
2869 * because that could violate lock ordering on umount
2871 if (!mapping
->nrpages
|| !mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
))
2875 * If the filesystem has aborted, it is read-only, so return
2876 * right away instead of dumping stack traces later on that
2877 * will obscure the real source of the problem. We test
2878 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2879 * the latter could be true if the filesystem is mounted
2880 * read-only, and in that case, ext4_da_writepages should
2881 * *never* be called, so if that ever happens, we would want
2884 if (unlikely(sbi
->s_mount_flags
& EXT4_MF_FS_ABORTED
))
2887 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
2890 range_cyclic
= wbc
->range_cyclic
;
2891 if (wbc
->range_cyclic
) {
2892 index
= mapping
->writeback_index
;
2895 wbc
->range_start
= index
<< PAGE_CACHE_SHIFT
;
2896 wbc
->range_end
= LLONG_MAX
;
2897 wbc
->range_cyclic
= 0;
2899 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
2902 * This works around two forms of stupidity. The first is in
2903 * the writeback code, which caps the maximum number of pages
2904 * written to be 1024 pages. This is wrong on multiple
2905 * levels; different architectues have a different page size,
2906 * which changes the maximum amount of data which gets
2907 * written. Secondly, 4 megabytes is way too small. XFS
2908 * forces this value to be 16 megabytes by multiplying
2909 * nr_to_write parameter by four, and then relies on its
2910 * allocator to allocate larger extents to make them
2911 * contiguous. Unfortunately this brings us to the second
2912 * stupidity, which is that ext4's mballoc code only allocates
2913 * at most 2048 blocks. So we force contiguous writes up to
2914 * the number of dirty blocks in the inode, or
2915 * sbi->max_writeback_mb_bump whichever is smaller.
2917 max_pages
= sbi
->s_max_writeback_mb_bump
<< (20 - PAGE_CACHE_SHIFT
);
2918 if (!range_cyclic
&& range_whole
)
2919 desired_nr_to_write
= wbc
->nr_to_write
* 8;
2921 desired_nr_to_write
= ext4_num_dirty_pages(inode
, index
,
2923 if (desired_nr_to_write
> max_pages
)
2924 desired_nr_to_write
= max_pages
;
2926 if (wbc
->nr_to_write
< desired_nr_to_write
) {
2927 nr_to_writebump
= desired_nr_to_write
- wbc
->nr_to_write
;
2928 wbc
->nr_to_write
= desired_nr_to_write
;
2932 mpd
.inode
= mapping
->host
;
2935 * we don't want write_cache_pages to update
2936 * nr_to_write and writeback_index
2938 no_nrwrite_index_update
= wbc
->no_nrwrite_index_update
;
2939 wbc
->no_nrwrite_index_update
= 1;
2940 pages_skipped
= wbc
->pages_skipped
;
2943 while (!ret
&& wbc
->nr_to_write
> 0) {
2946 * we insert one extent at a time. So we need
2947 * credit needed for single extent allocation.
2948 * journalled mode is currently not supported
2951 BUG_ON(ext4_should_journal_data(inode
));
2952 needed_blocks
= ext4_da_writepages_trans_blocks(inode
);
2954 /* start a new transaction*/
2955 handle
= ext4_journal_start(inode
, needed_blocks
);
2956 if (IS_ERR(handle
)) {
2957 ret
= PTR_ERR(handle
);
2958 ext4_msg(inode
->i_sb
, KERN_CRIT
, "%s: jbd2_start: "
2959 "%ld pages, ino %lu; err %d", __func__
,
2960 wbc
->nr_to_write
, inode
->i_ino
, ret
);
2961 goto out_writepages
;
2965 * Now call __mpage_da_writepage to find the next
2966 * contiguous region of logical blocks that need
2967 * blocks to be allocated by ext4. We don't actually
2968 * submit the blocks for I/O here, even though
2969 * write_cache_pages thinks it will, and will set the
2970 * pages as clean for write before calling
2971 * __mpage_da_writepage().
2979 mpd
.pages_written
= 0;
2981 ret
= write_cache_pages(mapping
, wbc
, __mpage_da_writepage
,
2984 * If we have a contigous extent of pages and we
2985 * haven't done the I/O yet, map the blocks and submit
2988 if (!mpd
.io_done
&& mpd
.next_page
!= mpd
.first_page
) {
2989 if (mpage_da_map_blocks(&mpd
) == 0)
2990 mpage_da_submit_io(&mpd
);
2992 ret
= MPAGE_DA_EXTENT_TAIL
;
2994 trace_ext4_da_write_pages(inode
, &mpd
);
2995 wbc
->nr_to_write
-= mpd
.pages_written
;
2997 ext4_journal_stop(handle
);
2999 if ((mpd
.retval
== -ENOSPC
) && sbi
->s_journal
) {
3000 /* commit the transaction which would
3001 * free blocks released in the transaction
3004 jbd2_journal_force_commit_nested(sbi
->s_journal
);
3005 wbc
->pages_skipped
= pages_skipped
;
3007 } else if (ret
== MPAGE_DA_EXTENT_TAIL
) {
3009 * got one extent now try with
3012 pages_written
+= mpd
.pages_written
;
3013 wbc
->pages_skipped
= pages_skipped
;
3016 } else if (wbc
->nr_to_write
)
3018 * There is no more writeout needed
3019 * or we requested for a noblocking writeout
3020 * and we found the device congested
3024 if (!io_done
&& !cycled
) {
3027 wbc
->range_start
= index
<< PAGE_CACHE_SHIFT
;
3028 wbc
->range_end
= mapping
->writeback_index
- 1;
3031 if (pages_skipped
!= wbc
->pages_skipped
)
3032 ext4_msg(inode
->i_sb
, KERN_CRIT
,
3033 "This should not happen leaving %s "
3034 "with nr_to_write = %ld ret = %d",
3035 __func__
, wbc
->nr_to_write
, ret
);
3038 index
+= pages_written
;
3039 wbc
->range_cyclic
= range_cyclic
;
3040 if (wbc
->range_cyclic
|| (range_whole
&& wbc
->nr_to_write
> 0))
3042 * set the writeback_index so that range_cyclic
3043 * mode will write it back later
3045 mapping
->writeback_index
= index
;
3048 if (!no_nrwrite_index_update
)
3049 wbc
->no_nrwrite_index_update
= 0;
3050 wbc
->nr_to_write
-= nr_to_writebump
;
3051 wbc
->range_start
= range_start
;
3052 trace_ext4_da_writepages_result(inode
, wbc
, ret
, pages_written
);
3056 #define FALL_BACK_TO_NONDELALLOC 1
3057 static int ext4_nonda_switch(struct super_block
*sb
)
3059 s64 free_blocks
, dirty_blocks
;
3060 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
3063 * switch to non delalloc mode if we are running low
3064 * on free block. The free block accounting via percpu
3065 * counters can get slightly wrong with percpu_counter_batch getting
3066 * accumulated on each CPU without updating global counters
3067 * Delalloc need an accurate free block accounting. So switch
3068 * to non delalloc when we are near to error range.
3070 free_blocks
= percpu_counter_read_positive(&sbi
->s_freeblocks_counter
);
3071 dirty_blocks
= percpu_counter_read_positive(&sbi
->s_dirtyblocks_counter
);
3072 if (2 * free_blocks
< 3 * dirty_blocks
||
3073 free_blocks
< (dirty_blocks
+ EXT4_FREEBLOCKS_WATERMARK
)) {
3075 * free block count is less than 150% of dirty blocks
3076 * or free blocks is less than watermark
3081 * Even if we don't switch but are nearing capacity,
3082 * start pushing delalloc when 1/2 of free blocks are dirty.
3084 if (free_blocks
< 2 * dirty_blocks
)
3085 writeback_inodes_sb_if_idle(sb
);
3090 static int ext4_da_write_begin(struct file
*file
, struct address_space
*mapping
,
3091 loff_t pos
, unsigned len
, unsigned flags
,
3092 struct page
**pagep
, void **fsdata
)
3094 int ret
, retries
= 0, quota_retries
= 0;
3098 struct inode
*inode
= mapping
->host
;
3101 index
= pos
>> PAGE_CACHE_SHIFT
;
3102 from
= pos
& (PAGE_CACHE_SIZE
- 1);
3105 if (ext4_nonda_switch(inode
->i_sb
)) {
3106 *fsdata
= (void *)FALL_BACK_TO_NONDELALLOC
;
3107 return ext4_write_begin(file
, mapping
, pos
,
3108 len
, flags
, pagep
, fsdata
);
3110 *fsdata
= (void *)0;
3111 trace_ext4_da_write_begin(inode
, pos
, len
, flags
);
3114 * With delayed allocation, we don't log the i_disksize update
3115 * if there is delayed block allocation. But we still need
3116 * to journalling the i_disksize update if writes to the end
3117 * of file which has an already mapped buffer.
3119 handle
= ext4_journal_start(inode
, 1);
3120 if (IS_ERR(handle
)) {
3121 ret
= PTR_ERR(handle
);
3124 /* We cannot recurse into the filesystem as the transaction is already
3126 flags
|= AOP_FLAG_NOFS
;
3128 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
3130 ext4_journal_stop(handle
);
3136 ret
= block_write_begin(file
, mapping
, pos
, len
, flags
, pagep
, fsdata
,
3137 ext4_da_get_block_prep
);
3140 ext4_journal_stop(handle
);
3141 page_cache_release(page
);
3143 * block_write_begin may have instantiated a few blocks
3144 * outside i_size. Trim these off again. Don't need
3145 * i_size_read because we hold i_mutex.
3147 if (pos
+ len
> inode
->i_size
)
3148 ext4_truncate_failed_write(inode
);
3151 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
3154 if ((ret
== -EDQUOT
) &&
3155 EXT4_I(inode
)->i_reserved_meta_blocks
&&
3156 (quota_retries
++ < 3)) {
3158 * Since we often over-estimate the number of meta
3159 * data blocks required, we may sometimes get a
3160 * spurios out of quota error even though there would
3161 * be enough space once we write the data blocks and
3162 * find out how many meta data blocks were _really_
3163 * required. So try forcing the inode write to see if
3166 write_inode_now(inode
, (quota_retries
== 3));
3174 * Check if we should update i_disksize
3175 * when write to the end of file but not require block allocation
3177 static int ext4_da_should_update_i_disksize(struct page
*page
,
3178 unsigned long offset
)
3180 struct buffer_head
*bh
;
3181 struct inode
*inode
= page
->mapping
->host
;
3185 bh
= page_buffers(page
);
3186 idx
= offset
>> inode
->i_blkbits
;
3188 for (i
= 0; i
< idx
; i
++)
3189 bh
= bh
->b_this_page
;
3191 if (!buffer_mapped(bh
) || (buffer_delay(bh
)) || buffer_unwritten(bh
))
3196 static int ext4_da_write_end(struct file
*file
,
3197 struct address_space
*mapping
,
3198 loff_t pos
, unsigned len
, unsigned copied
,
3199 struct page
*page
, void *fsdata
)
3201 struct inode
*inode
= mapping
->host
;
3203 handle_t
*handle
= ext4_journal_current_handle();
3205 unsigned long start
, end
;
3206 int write_mode
= (int)(unsigned long)fsdata
;
3208 if (write_mode
== FALL_BACK_TO_NONDELALLOC
) {
3209 if (ext4_should_order_data(inode
)) {
3210 return ext4_ordered_write_end(file
, mapping
, pos
,
3211 len
, copied
, page
, fsdata
);
3212 } else if (ext4_should_writeback_data(inode
)) {
3213 return ext4_writeback_write_end(file
, mapping
, pos
,
3214 len
, copied
, page
, fsdata
);
3220 trace_ext4_da_write_end(inode
, pos
, len
, copied
);
3221 start
= pos
& (PAGE_CACHE_SIZE
- 1);
3222 end
= start
+ copied
- 1;
3225 * generic_write_end() will run mark_inode_dirty() if i_size
3226 * changes. So let's piggyback the i_disksize mark_inode_dirty
3230 new_i_size
= pos
+ copied
;
3231 if (new_i_size
> EXT4_I(inode
)->i_disksize
) {
3232 if (ext4_da_should_update_i_disksize(page
, end
)) {
3233 down_write(&EXT4_I(inode
)->i_data_sem
);
3234 if (new_i_size
> EXT4_I(inode
)->i_disksize
) {
3236 * Updating i_disksize when extending file
3237 * without needing block allocation
3239 if (ext4_should_order_data(inode
))
3240 ret
= ext4_jbd2_file_inode(handle
,
3243 EXT4_I(inode
)->i_disksize
= new_i_size
;
3245 up_write(&EXT4_I(inode
)->i_data_sem
);
3246 /* We need to mark inode dirty even if
3247 * new_i_size is less that inode->i_size
3248 * bu greater than i_disksize.(hint delalloc)
3250 ext4_mark_inode_dirty(handle
, inode
);
3253 ret2
= generic_write_end(file
, mapping
, pos
, len
, copied
,
3258 ret2
= ext4_journal_stop(handle
);
3262 return ret
? ret
: copied
;
3265 static void ext4_da_invalidatepage(struct page
*page
, unsigned long offset
)
3268 * Drop reserved blocks
3270 BUG_ON(!PageLocked(page
));
3271 if (!page_has_buffers(page
))
3274 ext4_da_page_release_reservation(page
, offset
);
3277 ext4_invalidatepage(page
, offset
);
3283 * Force all delayed allocation blocks to be allocated for a given inode.
3285 int ext4_alloc_da_blocks(struct inode
*inode
)
3287 trace_ext4_alloc_da_blocks(inode
);
3289 if (!EXT4_I(inode
)->i_reserved_data_blocks
&&
3290 !EXT4_I(inode
)->i_reserved_meta_blocks
)
3294 * We do something simple for now. The filemap_flush() will
3295 * also start triggering a write of the data blocks, which is
3296 * not strictly speaking necessary (and for users of
3297 * laptop_mode, not even desirable). However, to do otherwise
3298 * would require replicating code paths in:
3300 * ext4_da_writepages() ->
3301 * write_cache_pages() ---> (via passed in callback function)
3302 * __mpage_da_writepage() -->
3303 * mpage_add_bh_to_extent()
3304 * mpage_da_map_blocks()
3306 * The problem is that write_cache_pages(), located in
3307 * mm/page-writeback.c, marks pages clean in preparation for
3308 * doing I/O, which is not desirable if we're not planning on
3311 * We could call write_cache_pages(), and then redirty all of
3312 * the pages by calling redirty_page_for_writeback() but that
3313 * would be ugly in the extreme. So instead we would need to
3314 * replicate parts of the code in the above functions,
3315 * simplifying them becuase we wouldn't actually intend to
3316 * write out the pages, but rather only collect contiguous
3317 * logical block extents, call the multi-block allocator, and
3318 * then update the buffer heads with the block allocations.
3320 * For now, though, we'll cheat by calling filemap_flush(),
3321 * which will map the blocks, and start the I/O, but not
3322 * actually wait for the I/O to complete.
3324 return filemap_flush(inode
->i_mapping
);
3328 * bmap() is special. It gets used by applications such as lilo and by
3329 * the swapper to find the on-disk block of a specific piece of data.
3331 * Naturally, this is dangerous if the block concerned is still in the
3332 * journal. If somebody makes a swapfile on an ext4 data-journaling
3333 * filesystem and enables swap, then they may get a nasty shock when the
3334 * data getting swapped to that swapfile suddenly gets overwritten by
3335 * the original zero's written out previously to the journal and
3336 * awaiting writeback in the kernel's buffer cache.
3338 * So, if we see any bmap calls here on a modified, data-journaled file,
3339 * take extra steps to flush any blocks which might be in the cache.
3341 static sector_t
ext4_bmap(struct address_space
*mapping
, sector_t block
)
3343 struct inode
*inode
= mapping
->host
;
3347 if (mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
) &&
3348 test_opt(inode
->i_sb
, DELALLOC
)) {
3350 * With delalloc we want to sync the file
3351 * so that we can make sure we allocate
3354 filemap_write_and_wait(mapping
);
3357 if (EXT4_JOURNAL(inode
) &&
3358 ext4_test_inode_state(inode
, EXT4_STATE_JDATA
)) {
3360 * This is a REALLY heavyweight approach, but the use of
3361 * bmap on dirty files is expected to be extremely rare:
3362 * only if we run lilo or swapon on a freshly made file
3363 * do we expect this to happen.
3365 * (bmap requires CAP_SYS_RAWIO so this does not
3366 * represent an unprivileged user DOS attack --- we'd be
3367 * in trouble if mortal users could trigger this path at
3370 * NB. EXT4_STATE_JDATA is not set on files other than
3371 * regular files. If somebody wants to bmap a directory
3372 * or symlink and gets confused because the buffer
3373 * hasn't yet been flushed to disk, they deserve
3374 * everything they get.
3377 ext4_clear_inode_state(inode
, EXT4_STATE_JDATA
);
3378 journal
= EXT4_JOURNAL(inode
);
3379 jbd2_journal_lock_updates(journal
);
3380 err
= jbd2_journal_flush(journal
);
3381 jbd2_journal_unlock_updates(journal
);
3387 return generic_block_bmap(mapping
, block
, ext4_get_block
);
3390 static int ext4_readpage(struct file
*file
, struct page
*page
)
3392 return mpage_readpage(page
, ext4_get_block
);
3396 ext4_readpages(struct file
*file
, struct address_space
*mapping
,
3397 struct list_head
*pages
, unsigned nr_pages
)
3399 return mpage_readpages(mapping
, pages
, nr_pages
, ext4_get_block
);
3402 static void ext4_invalidatepage(struct page
*page
, unsigned long offset
)
3404 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
3407 * If it's a full truncate we just forget about the pending dirtying
3410 ClearPageChecked(page
);
3413 jbd2_journal_invalidatepage(journal
, page
, offset
);
3415 block_invalidatepage(page
, offset
);
3418 static int ext4_releasepage(struct page
*page
, gfp_t wait
)
3420 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
3422 WARN_ON(PageChecked(page
));
3423 if (!page_has_buffers(page
))
3426 return jbd2_journal_try_to_free_buffers(journal
, page
, wait
);
3428 return try_to_free_buffers(page
);
3432 * O_DIRECT for ext3 (or indirect map) based files
3434 * If the O_DIRECT write will extend the file then add this inode to the
3435 * orphan list. So recovery will truncate it back to the original size
3436 * if the machine crashes during the write.
3438 * If the O_DIRECT write is intantiating holes inside i_size and the machine
3439 * crashes then stale disk data _may_ be exposed inside the file. But current
3440 * VFS code falls back into buffered path in that case so we are safe.
3442 static ssize_t
ext4_ind_direct_IO(int rw
, struct kiocb
*iocb
,
3443 const struct iovec
*iov
, loff_t offset
,
3444 unsigned long nr_segs
)
3446 struct file
*file
= iocb
->ki_filp
;
3447 struct inode
*inode
= file
->f_mapping
->host
;
3448 struct ext4_inode_info
*ei
= EXT4_I(inode
);
3452 size_t count
= iov_length(iov
, nr_segs
);
3456 loff_t final_size
= offset
+ count
;
3458 if (final_size
> inode
->i_size
) {
3459 /* Credits for sb + inode write */
3460 handle
= ext4_journal_start(inode
, 2);
3461 if (IS_ERR(handle
)) {
3462 ret
= PTR_ERR(handle
);
3465 ret
= ext4_orphan_add(handle
, inode
);
3467 ext4_journal_stop(handle
);
3471 ei
->i_disksize
= inode
->i_size
;
3472 ext4_journal_stop(handle
);
3477 ret
= blockdev_direct_IO(rw
, iocb
, inode
, inode
->i_sb
->s_bdev
, iov
,
3479 ext4_get_block
, NULL
);
3480 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
3486 /* Credits for sb + inode write */
3487 handle
= ext4_journal_start(inode
, 2);
3488 if (IS_ERR(handle
)) {
3489 /* This is really bad luck. We've written the data
3490 * but cannot extend i_size. Bail out and pretend
3491 * the write failed... */
3492 ret
= PTR_ERR(handle
);
3494 ext4_orphan_del(NULL
, inode
);
3499 ext4_orphan_del(handle
, inode
);
3501 loff_t end
= offset
+ ret
;
3502 if (end
> inode
->i_size
) {
3503 ei
->i_disksize
= end
;
3504 i_size_write(inode
, end
);
3506 * We're going to return a positive `ret'
3507 * here due to non-zero-length I/O, so there's
3508 * no way of reporting error returns from
3509 * ext4_mark_inode_dirty() to userspace. So
3512 ext4_mark_inode_dirty(handle
, inode
);
3515 err
= ext4_journal_stop(handle
);
3523 static int ext4_get_block_dio_write(struct inode
*inode
, sector_t iblock
,
3524 struct buffer_head
*bh_result
, int create
)
3526 handle_t
*handle
= NULL
;
3528 unsigned max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
3531 ext4_debug("ext4_get_block_dio_write: inode %lu, create flag %d\n",
3532 inode
->i_ino
, create
);
3534 * DIO VFS code passes create = 0 flag for write to
3535 * the middle of file. It does this to avoid block
3536 * allocation for holes, to prevent expose stale data
3537 * out when there is parallel buffered read (which does
3538 * not hold the i_mutex lock) while direct IO write has
3539 * not completed. DIO request on holes finally falls back
3540 * to buffered IO for this reason.
3542 * For ext4 extent based file, since we support fallocate,
3543 * new allocated extent as uninitialized, for holes, we
3544 * could fallocate blocks for holes, thus parallel
3545 * buffered IO read will zero out the page when read on
3546 * a hole while parallel DIO write to the hole has not completed.
3548 * when we come here, we know it's a direct IO write to
3549 * to the middle of file (<i_size)
3550 * so it's safe to override the create flag from VFS.
3552 create
= EXT4_GET_BLOCKS_DIO_CREATE_EXT
;
3554 if (max_blocks
> DIO_MAX_BLOCKS
)
3555 max_blocks
= DIO_MAX_BLOCKS
;
3556 dio_credits
= ext4_chunk_trans_blocks(inode
, max_blocks
);
3557 handle
= ext4_journal_start(inode
, dio_credits
);
3558 if (IS_ERR(handle
)) {
3559 ret
= PTR_ERR(handle
);
3562 ret
= ext4_get_blocks(handle
, inode
, iblock
, max_blocks
, bh_result
,
3565 bh_result
->b_size
= (ret
<< inode
->i_blkbits
);
3568 ext4_journal_stop(handle
);
3573 static void ext4_free_io_end(ext4_io_end_t
*io
)
3579 static void dump_aio_dio_list(struct inode
* inode
)
3582 struct list_head
*cur
, *before
, *after
;
3583 ext4_io_end_t
*io
, *io0
, *io1
;
3585 if (list_empty(&EXT4_I(inode
)->i_aio_dio_complete_list
)){
3586 ext4_debug("inode %lu aio dio list is empty\n", inode
->i_ino
);
3590 ext4_debug("Dump inode %lu aio_dio_completed_IO list \n", inode
->i_ino
);
3591 list_for_each_entry(io
, &EXT4_I(inode
)->i_aio_dio_complete_list
, list
){
3594 io0
= container_of(before
, ext4_io_end_t
, list
);
3596 io1
= container_of(after
, ext4_io_end_t
, list
);
3598 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3599 io
, inode
->i_ino
, io0
, io1
);
3605 * check a range of space and convert unwritten extents to written.
3607 static int ext4_end_aio_dio_nolock(ext4_io_end_t
*io
)
3609 struct inode
*inode
= io
->inode
;
3610 loff_t offset
= io
->offset
;
3611 ssize_t size
= io
->size
;
3614 ext4_debug("end_aio_dio_onlock: io 0x%p from inode %lu,list->next 0x%p,"
3615 "list->prev 0x%p\n",
3616 io
, inode
->i_ino
, io
->list
.next
, io
->list
.prev
);
3618 if (list_empty(&io
->list
))
3621 if (io
->flag
!= DIO_AIO_UNWRITTEN
)
3624 if (offset
+ size
<= i_size_read(inode
))
3625 ret
= ext4_convert_unwritten_extents(inode
, offset
, size
);
3628 printk(KERN_EMERG
"%s: failed to convert unwritten"
3629 "extents to written extents, error is %d"
3630 " io is still on inode %lu aio dio list\n",
3631 __func__
, ret
, inode
->i_ino
);
3635 /* clear the DIO AIO unwritten flag */
3640 * work on completed aio dio IO, to convert unwritten extents to extents
3642 static void ext4_end_aio_dio_work(struct work_struct
*work
)
3644 ext4_io_end_t
*io
= container_of(work
, ext4_io_end_t
, work
);
3645 struct inode
*inode
= io
->inode
;
3648 mutex_lock(&inode
->i_mutex
);
3649 ret
= ext4_end_aio_dio_nolock(io
);
3651 if (!list_empty(&io
->list
))
3652 list_del_init(&io
->list
);
3653 ext4_free_io_end(io
);
3655 mutex_unlock(&inode
->i_mutex
);
3658 * This function is called from ext4_sync_file().
3660 * When AIO DIO IO is completed, the work to convert unwritten
3661 * extents to written is queued on workqueue but may not get immediately
3662 * scheduled. When fsync is called, we need to ensure the
3663 * conversion is complete before fsync returns.
3664 * The inode keeps track of a list of completed AIO from DIO path
3665 * that might needs to do the conversion. This function walks through
3666 * the list and convert the related unwritten extents to written.
3668 int flush_aio_dio_completed_IO(struct inode
*inode
)
3674 if (list_empty(&EXT4_I(inode
)->i_aio_dio_complete_list
))
3677 dump_aio_dio_list(inode
);
3678 while (!list_empty(&EXT4_I(inode
)->i_aio_dio_complete_list
)){
3679 io
= list_entry(EXT4_I(inode
)->i_aio_dio_complete_list
.next
,
3680 ext4_io_end_t
, list
);
3682 * Calling ext4_end_aio_dio_nolock() to convert completed
3685 * When ext4_sync_file() is called, run_queue() may already
3686 * about to flush the work corresponding to this io structure.
3687 * It will be upset if it founds the io structure related
3688 * to the work-to-be schedule is freed.
3690 * Thus we need to keep the io structure still valid here after
3691 * convertion finished. The io structure has a flag to
3692 * avoid double converting from both fsync and background work
3695 ret
= ext4_end_aio_dio_nolock(io
);
3699 list_del_init(&io
->list
);
3701 return (ret2
< 0) ? ret2
: 0;
3704 static ext4_io_end_t
*ext4_init_io_end (struct inode
*inode
)
3706 ext4_io_end_t
*io
= NULL
;
3708 io
= kmalloc(sizeof(*io
), GFP_NOFS
);
3717 INIT_WORK(&io
->work
, ext4_end_aio_dio_work
);
3718 INIT_LIST_HEAD(&io
->list
);
3724 static void ext4_end_io_dio(struct kiocb
*iocb
, loff_t offset
,
3725 ssize_t size
, void *private)
3727 ext4_io_end_t
*io_end
= iocb
->private;
3728 struct workqueue_struct
*wq
;
3730 /* if not async direct IO or dio with 0 bytes write, just return */
3731 if (!io_end
|| !size
)
3734 ext_debug("ext4_end_io_dio(): io_end 0x%p"
3735 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3736 iocb
->private, io_end
->inode
->i_ino
, iocb
, offset
,
3739 /* if not aio dio with unwritten extents, just free io and return */
3740 if (io_end
->flag
!= DIO_AIO_UNWRITTEN
){
3741 ext4_free_io_end(io_end
);
3742 iocb
->private = NULL
;
3746 io_end
->offset
= offset
;
3747 io_end
->size
= size
;
3748 wq
= EXT4_SB(io_end
->inode
->i_sb
)->dio_unwritten_wq
;
3750 /* queue the work to convert unwritten extents to written */
3751 queue_work(wq
, &io_end
->work
);
3753 /* Add the io_end to per-inode completed aio dio list*/
3754 list_add_tail(&io_end
->list
,
3755 &EXT4_I(io_end
->inode
)->i_aio_dio_complete_list
);
3756 iocb
->private = NULL
;
3759 * For ext4 extent files, ext4 will do direct-io write to holes,
3760 * preallocated extents, and those write extend the file, no need to
3761 * fall back to buffered IO.
3763 * For holes, we fallocate those blocks, mark them as unintialized
3764 * If those blocks were preallocated, we mark sure they are splited, but
3765 * still keep the range to write as unintialized.
3767 * The unwrritten extents will be converted to written when DIO is completed.
3768 * For async direct IO, since the IO may still pending when return, we
3769 * set up an end_io call back function, which will do the convertion
3770 * when async direct IO completed.
3772 * If the O_DIRECT write will extend the file then add this inode to the
3773 * orphan list. So recovery will truncate it back to the original size
3774 * if the machine crashes during the write.
3777 static ssize_t
ext4_ext_direct_IO(int rw
, struct kiocb
*iocb
,
3778 const struct iovec
*iov
, loff_t offset
,
3779 unsigned long nr_segs
)
3781 struct file
*file
= iocb
->ki_filp
;
3782 struct inode
*inode
= file
->f_mapping
->host
;
3784 size_t count
= iov_length(iov
, nr_segs
);
3786 loff_t final_size
= offset
+ count
;
3787 if (rw
== WRITE
&& final_size
<= inode
->i_size
) {
3789 * We could direct write to holes and fallocate.
3791 * Allocated blocks to fill the hole are marked as uninitialized
3792 * to prevent paralel buffered read to expose the stale data
3793 * before DIO complete the data IO.
3795 * As to previously fallocated extents, ext4 get_block
3796 * will just simply mark the buffer mapped but still
3797 * keep the extents uninitialized.
3799 * for non AIO case, we will convert those unwritten extents
3800 * to written after return back from blockdev_direct_IO.
3802 * for async DIO, the conversion needs to be defered when
3803 * the IO is completed. The ext4 end_io callback function
3804 * will be called to take care of the conversion work.
3805 * Here for async case, we allocate an io_end structure to
3808 iocb
->private = NULL
;
3809 EXT4_I(inode
)->cur_aio_dio
= NULL
;
3810 if (!is_sync_kiocb(iocb
)) {
3811 iocb
->private = ext4_init_io_end(inode
);
3815 * we save the io structure for current async
3816 * direct IO, so that later ext4_get_blocks()
3817 * could flag the io structure whether there
3818 * is a unwritten extents needs to be converted
3819 * when IO is completed.
3821 EXT4_I(inode
)->cur_aio_dio
= iocb
->private;
3824 ret
= blockdev_direct_IO(rw
, iocb
, inode
,
3825 inode
->i_sb
->s_bdev
, iov
,
3827 ext4_get_block_dio_write
,
3830 EXT4_I(inode
)->cur_aio_dio
= NULL
;
3832 * The io_end structure takes a reference to the inode,
3833 * that structure needs to be destroyed and the
3834 * reference to the inode need to be dropped, when IO is
3835 * complete, even with 0 byte write, or failed.
3837 * In the successful AIO DIO case, the io_end structure will be
3838 * desctroyed and the reference to the inode will be dropped
3839 * after the end_io call back function is called.
3841 * In the case there is 0 byte write, or error case, since
3842 * VFS direct IO won't invoke the end_io call back function,
3843 * we need to free the end_io structure here.
3845 if (ret
!= -EIOCBQUEUED
&& ret
<= 0 && iocb
->private) {
3846 ext4_free_io_end(iocb
->private);
3847 iocb
->private = NULL
;
3848 } else if (ret
> 0 && ext4_test_inode_state(inode
,
3849 EXT4_STATE_DIO_UNWRITTEN
)) {
3852 * for non AIO case, since the IO is already
3853 * completed, we could do the convertion right here
3855 err
= ext4_convert_unwritten_extents(inode
,
3859 ext4_clear_inode_state(inode
, EXT4_STATE_DIO_UNWRITTEN
);
3864 /* for write the the end of file case, we fall back to old way */
3865 return ext4_ind_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
3868 static ssize_t
ext4_direct_IO(int rw
, struct kiocb
*iocb
,
3869 const struct iovec
*iov
, loff_t offset
,
3870 unsigned long nr_segs
)
3872 struct file
*file
= iocb
->ki_filp
;
3873 struct inode
*inode
= file
->f_mapping
->host
;
3875 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
3876 return ext4_ext_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
3878 return ext4_ind_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
3882 * Pages can be marked dirty completely asynchronously from ext4's journalling
3883 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3884 * much here because ->set_page_dirty is called under VFS locks. The page is
3885 * not necessarily locked.
3887 * We cannot just dirty the page and leave attached buffers clean, because the
3888 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3889 * or jbddirty because all the journalling code will explode.
3891 * So what we do is to mark the page "pending dirty" and next time writepage
3892 * is called, propagate that into the buffers appropriately.
3894 static int ext4_journalled_set_page_dirty(struct page
*page
)
3896 SetPageChecked(page
);
3897 return __set_page_dirty_nobuffers(page
);
3900 static const struct address_space_operations ext4_ordered_aops
= {
3901 .readpage
= ext4_readpage
,
3902 .readpages
= ext4_readpages
,
3903 .writepage
= ext4_writepage
,
3904 .sync_page
= block_sync_page
,
3905 .write_begin
= ext4_write_begin
,
3906 .write_end
= ext4_ordered_write_end
,
3908 .invalidatepage
= ext4_invalidatepage
,
3909 .releasepage
= ext4_releasepage
,
3910 .direct_IO
= ext4_direct_IO
,
3911 .migratepage
= buffer_migrate_page
,
3912 .is_partially_uptodate
= block_is_partially_uptodate
,
3913 .error_remove_page
= generic_error_remove_page
,
3916 static const struct address_space_operations ext4_writeback_aops
= {
3917 .readpage
= ext4_readpage
,
3918 .readpages
= ext4_readpages
,
3919 .writepage
= ext4_writepage
,
3920 .sync_page
= block_sync_page
,
3921 .write_begin
= ext4_write_begin
,
3922 .write_end
= ext4_writeback_write_end
,
3924 .invalidatepage
= ext4_invalidatepage
,
3925 .releasepage
= ext4_releasepage
,
3926 .direct_IO
= ext4_direct_IO
,
3927 .migratepage
= buffer_migrate_page
,
3928 .is_partially_uptodate
= block_is_partially_uptodate
,
3929 .error_remove_page
= generic_error_remove_page
,
3932 static const struct address_space_operations ext4_journalled_aops
= {
3933 .readpage
= ext4_readpage
,
3934 .readpages
= ext4_readpages
,
3935 .writepage
= ext4_writepage
,
3936 .sync_page
= block_sync_page
,
3937 .write_begin
= ext4_write_begin
,
3938 .write_end
= ext4_journalled_write_end
,
3939 .set_page_dirty
= ext4_journalled_set_page_dirty
,
3941 .invalidatepage
= ext4_invalidatepage
,
3942 .releasepage
= ext4_releasepage
,
3943 .is_partially_uptodate
= block_is_partially_uptodate
,
3944 .error_remove_page
= generic_error_remove_page
,
3947 static const struct address_space_operations ext4_da_aops
= {
3948 .readpage
= ext4_readpage
,
3949 .readpages
= ext4_readpages
,
3950 .writepage
= ext4_writepage
,
3951 .writepages
= ext4_da_writepages
,
3952 .sync_page
= block_sync_page
,
3953 .write_begin
= ext4_da_write_begin
,
3954 .write_end
= ext4_da_write_end
,
3956 .invalidatepage
= ext4_da_invalidatepage
,
3957 .releasepage
= ext4_releasepage
,
3958 .direct_IO
= ext4_direct_IO
,
3959 .migratepage
= buffer_migrate_page
,
3960 .is_partially_uptodate
= block_is_partially_uptodate
,
3961 .error_remove_page
= generic_error_remove_page
,
3964 void ext4_set_aops(struct inode
*inode
)
3966 if (ext4_should_order_data(inode
) &&
3967 test_opt(inode
->i_sb
, DELALLOC
))
3968 inode
->i_mapping
->a_ops
= &ext4_da_aops
;
3969 else if (ext4_should_order_data(inode
))
3970 inode
->i_mapping
->a_ops
= &ext4_ordered_aops
;
3971 else if (ext4_should_writeback_data(inode
) &&
3972 test_opt(inode
->i_sb
, DELALLOC
))
3973 inode
->i_mapping
->a_ops
= &ext4_da_aops
;
3974 else if (ext4_should_writeback_data(inode
))
3975 inode
->i_mapping
->a_ops
= &ext4_writeback_aops
;
3977 inode
->i_mapping
->a_ops
= &ext4_journalled_aops
;
3981 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3982 * up to the end of the block which corresponds to `from'.
3983 * This required during truncate. We need to physically zero the tail end
3984 * of that block so it doesn't yield old data if the file is later grown.
3986 int ext4_block_truncate_page(handle_t
*handle
,
3987 struct address_space
*mapping
, loff_t from
)
3989 ext4_fsblk_t index
= from
>> PAGE_CACHE_SHIFT
;
3990 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
3991 unsigned blocksize
, length
, pos
;
3993 struct inode
*inode
= mapping
->host
;
3994 struct buffer_head
*bh
;
3998 page
= find_or_create_page(mapping
, from
>> PAGE_CACHE_SHIFT
,
3999 mapping_gfp_mask(mapping
) & ~__GFP_FS
);
4003 blocksize
= inode
->i_sb
->s_blocksize
;
4004 length
= blocksize
- (offset
& (blocksize
- 1));
4005 iblock
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
4008 * For "nobh" option, we can only work if we don't need to
4009 * read-in the page - otherwise we create buffers to do the IO.
4011 if (!page_has_buffers(page
) && test_opt(inode
->i_sb
, NOBH
) &&
4012 ext4_should_writeback_data(inode
) && PageUptodate(page
)) {
4013 zero_user(page
, offset
, length
);
4014 set_page_dirty(page
);
4018 if (!page_has_buffers(page
))
4019 create_empty_buffers(page
, blocksize
, 0);
4021 /* Find the buffer that contains "offset" */
4022 bh
= page_buffers(page
);
4024 while (offset
>= pos
) {
4025 bh
= bh
->b_this_page
;
4031 if (buffer_freed(bh
)) {
4032 BUFFER_TRACE(bh
, "freed: skip");
4036 if (!buffer_mapped(bh
)) {
4037 BUFFER_TRACE(bh
, "unmapped");
4038 ext4_get_block(inode
, iblock
, bh
, 0);
4039 /* unmapped? It's a hole - nothing to do */
4040 if (!buffer_mapped(bh
)) {
4041 BUFFER_TRACE(bh
, "still unmapped");
4046 /* Ok, it's mapped. Make sure it's up-to-date */
4047 if (PageUptodate(page
))
4048 set_buffer_uptodate(bh
);
4050 if (!buffer_uptodate(bh
)) {
4052 ll_rw_block(READ
, 1, &bh
);
4054 /* Uhhuh. Read error. Complain and punt. */
4055 if (!buffer_uptodate(bh
))
4059 if (ext4_should_journal_data(inode
)) {
4060 BUFFER_TRACE(bh
, "get write access");
4061 err
= ext4_journal_get_write_access(handle
, bh
);
4066 zero_user(page
, offset
, length
);
4068 BUFFER_TRACE(bh
, "zeroed end of block");
4071 if (ext4_should_journal_data(inode
)) {
4072 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
4074 if (ext4_should_order_data(inode
))
4075 err
= ext4_jbd2_file_inode(handle
, inode
);
4076 mark_buffer_dirty(bh
);
4081 page_cache_release(page
);
4086 * Probably it should be a library function... search for first non-zero word
4087 * or memcmp with zero_page, whatever is better for particular architecture.
4090 static inline int all_zeroes(__le32
*p
, __le32
*q
)
4099 * ext4_find_shared - find the indirect blocks for partial truncation.
4100 * @inode: inode in question
4101 * @depth: depth of the affected branch
4102 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
4103 * @chain: place to store the pointers to partial indirect blocks
4104 * @top: place to the (detached) top of branch
4106 * This is a helper function used by ext4_truncate().
4108 * When we do truncate() we may have to clean the ends of several
4109 * indirect blocks but leave the blocks themselves alive. Block is
4110 * partially truncated if some data below the new i_size is refered
4111 * from it (and it is on the path to the first completely truncated
4112 * data block, indeed). We have to free the top of that path along
4113 * with everything to the right of the path. Since no allocation
4114 * past the truncation point is possible until ext4_truncate()
4115 * finishes, we may safely do the latter, but top of branch may
4116 * require special attention - pageout below the truncation point
4117 * might try to populate it.
4119 * We atomically detach the top of branch from the tree, store the
4120 * block number of its root in *@top, pointers to buffer_heads of
4121 * partially truncated blocks - in @chain[].bh and pointers to
4122 * their last elements that should not be removed - in
4123 * @chain[].p. Return value is the pointer to last filled element
4126 * The work left to caller to do the actual freeing of subtrees:
4127 * a) free the subtree starting from *@top
4128 * b) free the subtrees whose roots are stored in
4129 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4130 * c) free the subtrees growing from the inode past the @chain[0].
4131 * (no partially truncated stuff there). */
4133 static Indirect
*ext4_find_shared(struct inode
*inode
, int depth
,
4134 ext4_lblk_t offsets
[4], Indirect chain
[4],
4137 Indirect
*partial
, *p
;
4141 /* Make k index the deepest non-null offest + 1 */
4142 for (k
= depth
; k
> 1 && !offsets
[k
-1]; k
--)
4144 partial
= ext4_get_branch(inode
, k
, offsets
, chain
, &err
);
4145 /* Writer: pointers */
4147 partial
= chain
+ k
-1;
4149 * If the branch acquired continuation since we've looked at it -
4150 * fine, it should all survive and (new) top doesn't belong to us.
4152 if (!partial
->key
&& *partial
->p
)
4155 for (p
= partial
; (p
> chain
) && all_zeroes((__le32
*) p
->bh
->b_data
, p
->p
); p
--)
4158 * OK, we've found the last block that must survive. The rest of our
4159 * branch should be detached before unlocking. However, if that rest
4160 * of branch is all ours and does not grow immediately from the inode
4161 * it's easier to cheat and just decrement partial->p.
4163 if (p
== chain
+ k
- 1 && p
> chain
) {
4167 /* Nope, don't do this in ext4. Must leave the tree intact */
4174 while (partial
> p
) {
4175 brelse(partial
->bh
);
4183 * Zero a number of block pointers in either an inode or an indirect block.
4184 * If we restart the transaction we must again get write access to the
4185 * indirect block for further modification.
4187 * We release `count' blocks on disk, but (last - first) may be greater
4188 * than `count' because there can be holes in there.
4190 static void ext4_clear_blocks(handle_t
*handle
, struct inode
*inode
,
4191 struct buffer_head
*bh
,
4192 ext4_fsblk_t block_to_free
,
4193 unsigned long count
, __le32
*first
,
4197 int is_metadata
= S_ISDIR(inode
->i_mode
) || S_ISLNK(inode
->i_mode
);
4199 if (try_to_extend_transaction(handle
, inode
)) {
4201 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
4202 ext4_handle_dirty_metadata(handle
, inode
, bh
);
4204 ext4_mark_inode_dirty(handle
, inode
);
4205 ext4_truncate_restart_trans(handle
, inode
,
4206 blocks_for_truncate(inode
));
4208 BUFFER_TRACE(bh
, "retaking write access");
4209 ext4_journal_get_write_access(handle
, bh
);
4214 * Any buffers which are on the journal will be in memory. We
4215 * find them on the hash table so jbd2_journal_revoke() will
4216 * run jbd2_journal_forget() on them. We've already detached
4217 * each block from the file, so bforget() in
4218 * jbd2_journal_forget() should be safe.
4220 * AKPM: turn on bforget in jbd2_journal_forget()!!!
4222 for (p
= first
; p
< last
; p
++) {
4223 u32 nr
= le32_to_cpu(*p
);
4225 struct buffer_head
*tbh
;
4228 tbh
= sb_find_get_block(inode
->i_sb
, nr
);
4229 ext4_forget(handle
, is_metadata
, inode
, tbh
, nr
);
4233 ext4_free_blocks(handle
, inode
, block_to_free
, count
, is_metadata
);
4237 * ext4_free_data - free a list of data blocks
4238 * @handle: handle for this transaction
4239 * @inode: inode we are dealing with
4240 * @this_bh: indirect buffer_head which contains *@first and *@last
4241 * @first: array of block numbers
4242 * @last: points immediately past the end of array
4244 * We are freeing all blocks refered from that array (numbers are stored as
4245 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4247 * We accumulate contiguous runs of blocks to free. Conveniently, if these
4248 * blocks are contiguous then releasing them at one time will only affect one
4249 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4250 * actually use a lot of journal space.
4252 * @this_bh will be %NULL if @first and @last point into the inode's direct
4255 static void ext4_free_data(handle_t
*handle
, struct inode
*inode
,
4256 struct buffer_head
*this_bh
,
4257 __le32
*first
, __le32
*last
)
4259 ext4_fsblk_t block_to_free
= 0; /* Starting block # of a run */
4260 unsigned long count
= 0; /* Number of blocks in the run */
4261 __le32
*block_to_free_p
= NULL
; /* Pointer into inode/ind
4264 ext4_fsblk_t nr
; /* Current block # */
4265 __le32
*p
; /* Pointer into inode/ind
4266 for current block */
4269 if (this_bh
) { /* For indirect block */
4270 BUFFER_TRACE(this_bh
, "get_write_access");
4271 err
= ext4_journal_get_write_access(handle
, this_bh
);
4272 /* Important: if we can't update the indirect pointers
4273 * to the blocks, we can't free them. */
4278 for (p
= first
; p
< last
; p
++) {
4279 nr
= le32_to_cpu(*p
);
4281 /* accumulate blocks to free if they're contiguous */
4284 block_to_free_p
= p
;
4286 } else if (nr
== block_to_free
+ count
) {
4289 ext4_clear_blocks(handle
, inode
, this_bh
,
4291 count
, block_to_free_p
, p
);
4293 block_to_free_p
= p
;
4300 ext4_clear_blocks(handle
, inode
, this_bh
, block_to_free
,
4301 count
, block_to_free_p
, p
);
4304 BUFFER_TRACE(this_bh
, "call ext4_handle_dirty_metadata");
4307 * The buffer head should have an attached journal head at this
4308 * point. However, if the data is corrupted and an indirect
4309 * block pointed to itself, it would have been detached when
4310 * the block was cleared. Check for this instead of OOPSing.
4312 if ((EXT4_JOURNAL(inode
) == NULL
) || bh2jh(this_bh
))
4313 ext4_handle_dirty_metadata(handle
, inode
, this_bh
);
4315 ext4_error(inode
->i_sb
, __func__
,
4316 "circular indirect block detected, "
4317 "inode=%lu, block=%llu",
4319 (unsigned long long) this_bh
->b_blocknr
);
4324 * ext4_free_branches - free an array of branches
4325 * @handle: JBD handle for this transaction
4326 * @inode: inode we are dealing with
4327 * @parent_bh: the buffer_head which contains *@first and *@last
4328 * @first: array of block numbers
4329 * @last: pointer immediately past the end of array
4330 * @depth: depth of the branches to free
4332 * We are freeing all blocks refered from these branches (numbers are
4333 * stored as little-endian 32-bit) and updating @inode->i_blocks
4336 static void ext4_free_branches(handle_t
*handle
, struct inode
*inode
,
4337 struct buffer_head
*parent_bh
,
4338 __le32
*first
, __le32
*last
, int depth
)
4343 if (ext4_handle_is_aborted(handle
))
4347 struct buffer_head
*bh
;
4348 int addr_per_block
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
4350 while (--p
>= first
) {
4351 nr
= le32_to_cpu(*p
);
4353 continue; /* A hole */
4355 /* Go read the buffer for the next level down */
4356 bh
= sb_bread(inode
->i_sb
, nr
);
4359 * A read failure? Report error and clear slot
4363 ext4_error(inode
->i_sb
, "ext4_free_branches",
4364 "Read failure, inode=%lu, block=%llu",
4369 /* This zaps the entire block. Bottom up. */
4370 BUFFER_TRACE(bh
, "free child branches");
4371 ext4_free_branches(handle
, inode
, bh
,
4372 (__le32
*) bh
->b_data
,
4373 (__le32
*) bh
->b_data
+ addr_per_block
,
4377 * We've probably journalled the indirect block several
4378 * times during the truncate. But it's no longer
4379 * needed and we now drop it from the transaction via
4380 * jbd2_journal_revoke().
4382 * That's easy if it's exclusively part of this
4383 * transaction. But if it's part of the committing
4384 * transaction then jbd2_journal_forget() will simply
4385 * brelse() it. That means that if the underlying
4386 * block is reallocated in ext4_get_block(),
4387 * unmap_underlying_metadata() will find this block
4388 * and will try to get rid of it. damn, damn.
4390 * If this block has already been committed to the
4391 * journal, a revoke record will be written. And
4392 * revoke records must be emitted *before* clearing
4393 * this block's bit in the bitmaps.
4395 ext4_forget(handle
, 1, inode
, bh
, bh
->b_blocknr
);
4398 * Everything below this this pointer has been
4399 * released. Now let this top-of-subtree go.
4401 * We want the freeing of this indirect block to be
4402 * atomic in the journal with the updating of the
4403 * bitmap block which owns it. So make some room in
4406 * We zero the parent pointer *after* freeing its
4407 * pointee in the bitmaps, so if extend_transaction()
4408 * for some reason fails to put the bitmap changes and
4409 * the release into the same transaction, recovery
4410 * will merely complain about releasing a free block,
4411 * rather than leaking blocks.
4413 if (ext4_handle_is_aborted(handle
))
4415 if (try_to_extend_transaction(handle
, inode
)) {
4416 ext4_mark_inode_dirty(handle
, inode
);
4417 ext4_truncate_restart_trans(handle
, inode
,
4418 blocks_for_truncate(inode
));
4421 ext4_free_blocks(handle
, inode
, nr
, 1, 1);
4425 * The block which we have just freed is
4426 * pointed to by an indirect block: journal it
4428 BUFFER_TRACE(parent_bh
, "get_write_access");
4429 if (!ext4_journal_get_write_access(handle
,
4432 BUFFER_TRACE(parent_bh
,
4433 "call ext4_handle_dirty_metadata");
4434 ext4_handle_dirty_metadata(handle
,
4441 /* We have reached the bottom of the tree. */
4442 BUFFER_TRACE(parent_bh
, "free data blocks");
4443 ext4_free_data(handle
, inode
, parent_bh
, first
, last
);
4447 int ext4_can_truncate(struct inode
*inode
)
4449 if (IS_APPEND(inode
) || IS_IMMUTABLE(inode
))
4451 if (S_ISREG(inode
->i_mode
))
4453 if (S_ISDIR(inode
->i_mode
))
4455 if (S_ISLNK(inode
->i_mode
))
4456 return !ext4_inode_is_fast_symlink(inode
);
4463 * We block out ext4_get_block() block instantiations across the entire
4464 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4465 * simultaneously on behalf of the same inode.
4467 * As we work through the truncate and commmit bits of it to the journal there
4468 * is one core, guiding principle: the file's tree must always be consistent on
4469 * disk. We must be able to restart the truncate after a crash.
4471 * The file's tree may be transiently inconsistent in memory (although it
4472 * probably isn't), but whenever we close off and commit a journal transaction,
4473 * the contents of (the filesystem + the journal) must be consistent and
4474 * restartable. It's pretty simple, really: bottom up, right to left (although
4475 * left-to-right works OK too).
4477 * Note that at recovery time, journal replay occurs *before* the restart of
4478 * truncate against the orphan inode list.
4480 * The committed inode has the new, desired i_size (which is the same as
4481 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4482 * that this inode's truncate did not complete and it will again call
4483 * ext4_truncate() to have another go. So there will be instantiated blocks
4484 * to the right of the truncation point in a crashed ext4 filesystem. But
4485 * that's fine - as long as they are linked from the inode, the post-crash
4486 * ext4_truncate() run will find them and release them.
4488 void ext4_truncate(struct inode
*inode
)
4491 struct ext4_inode_info
*ei
= EXT4_I(inode
);
4492 __le32
*i_data
= ei
->i_data
;
4493 int addr_per_block
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
4494 struct address_space
*mapping
= inode
->i_mapping
;
4495 ext4_lblk_t offsets
[4];
4500 ext4_lblk_t last_block
;
4501 unsigned blocksize
= inode
->i_sb
->s_blocksize
;
4503 if (!ext4_can_truncate(inode
))
4506 ext4_clear_inode_flag(inode
, EXT4_INODE_EOFBLOCKS
);
4508 if (inode
->i_size
== 0 && !test_opt(inode
->i_sb
, NO_AUTO_DA_ALLOC
))
4509 ext4_set_inode_state(inode
, EXT4_STATE_DA_ALLOC_CLOSE
);
4511 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
4512 ext4_ext_truncate(inode
);
4516 handle
= start_transaction(inode
);
4518 return; /* AKPM: return what? */
4520 last_block
= (inode
->i_size
+ blocksize
-1)
4521 >> EXT4_BLOCK_SIZE_BITS(inode
->i_sb
);
4523 if (inode
->i_size
& (blocksize
- 1))
4524 if (ext4_block_truncate_page(handle
, mapping
, inode
->i_size
))
4527 n
= ext4_block_to_path(inode
, last_block
, offsets
, NULL
);
4529 goto out_stop
; /* error */
4532 * OK. This truncate is going to happen. We add the inode to the
4533 * orphan list, so that if this truncate spans multiple transactions,
4534 * and we crash, we will resume the truncate when the filesystem
4535 * recovers. It also marks the inode dirty, to catch the new size.
4537 * Implication: the file must always be in a sane, consistent
4538 * truncatable state while each transaction commits.
4540 if (ext4_orphan_add(handle
, inode
))
4544 * From here we block out all ext4_get_block() callers who want to
4545 * modify the block allocation tree.
4547 down_write(&ei
->i_data_sem
);
4549 ext4_discard_preallocations(inode
);
4552 * The orphan list entry will now protect us from any crash which
4553 * occurs before the truncate completes, so it is now safe to propagate
4554 * the new, shorter inode size (held for now in i_size) into the
4555 * on-disk inode. We do this via i_disksize, which is the value which
4556 * ext4 *really* writes onto the disk inode.
4558 ei
->i_disksize
= inode
->i_size
;
4560 if (n
== 1) { /* direct blocks */
4561 ext4_free_data(handle
, inode
, NULL
, i_data
+offsets
[0],
4562 i_data
+ EXT4_NDIR_BLOCKS
);
4566 partial
= ext4_find_shared(inode
, n
, offsets
, chain
, &nr
);
4567 /* Kill the top of shared branch (not detached) */
4569 if (partial
== chain
) {
4570 /* Shared branch grows from the inode */
4571 ext4_free_branches(handle
, inode
, NULL
,
4572 &nr
, &nr
+1, (chain
+n
-1) - partial
);
4575 * We mark the inode dirty prior to restart,
4576 * and prior to stop. No need for it here.
4579 /* Shared branch grows from an indirect block */
4580 BUFFER_TRACE(partial
->bh
, "get_write_access");
4581 ext4_free_branches(handle
, inode
, partial
->bh
,
4583 partial
->p
+1, (chain
+n
-1) - partial
);
4586 /* Clear the ends of indirect blocks on the shared branch */
4587 while (partial
> chain
) {
4588 ext4_free_branches(handle
, inode
, partial
->bh
, partial
->p
+ 1,
4589 (__le32
*)partial
->bh
->b_data
+addr_per_block
,
4590 (chain
+n
-1) - partial
);
4591 BUFFER_TRACE(partial
->bh
, "call brelse");
4592 brelse(partial
->bh
);
4596 /* Kill the remaining (whole) subtrees */
4597 switch (offsets
[0]) {
4599 nr
= i_data
[EXT4_IND_BLOCK
];
4601 ext4_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 1);
4602 i_data
[EXT4_IND_BLOCK
] = 0;
4604 case EXT4_IND_BLOCK
:
4605 nr
= i_data
[EXT4_DIND_BLOCK
];
4607 ext4_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 2);
4608 i_data
[EXT4_DIND_BLOCK
] = 0;
4610 case EXT4_DIND_BLOCK
:
4611 nr
= i_data
[EXT4_TIND_BLOCK
];
4613 ext4_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 3);
4614 i_data
[EXT4_TIND_BLOCK
] = 0;
4616 case EXT4_TIND_BLOCK
:
4620 up_write(&ei
->i_data_sem
);
4621 inode
->i_mtime
= inode
->i_ctime
= ext4_current_time(inode
);
4622 ext4_mark_inode_dirty(handle
, inode
);
4625 * In a multi-transaction truncate, we only make the final transaction
4629 ext4_handle_sync(handle
);
4632 * If this was a simple ftruncate(), and the file will remain alive
4633 * then we need to clear up the orphan record which we created above.
4634 * However, if this was a real unlink then we were called by
4635 * ext4_delete_inode(), and we allow that function to clean up the
4636 * orphan info for us.
4639 ext4_orphan_del(handle
, inode
);
4641 ext4_journal_stop(handle
);
4645 * ext4_get_inode_loc returns with an extra refcount against the inode's
4646 * underlying buffer_head on success. If 'in_mem' is true, we have all
4647 * data in memory that is needed to recreate the on-disk version of this
4650 static int __ext4_get_inode_loc(struct inode
*inode
,
4651 struct ext4_iloc
*iloc
, int in_mem
)
4653 struct ext4_group_desc
*gdp
;
4654 struct buffer_head
*bh
;
4655 struct super_block
*sb
= inode
->i_sb
;
4657 int inodes_per_block
, inode_offset
;
4660 if (!ext4_valid_inum(sb
, inode
->i_ino
))
4663 iloc
->block_group
= (inode
->i_ino
- 1) / EXT4_INODES_PER_GROUP(sb
);
4664 gdp
= ext4_get_group_desc(sb
, iloc
->block_group
, NULL
);
4669 * Figure out the offset within the block group inode table
4671 inodes_per_block
= (EXT4_BLOCK_SIZE(sb
) / EXT4_INODE_SIZE(sb
));
4672 inode_offset
= ((inode
->i_ino
- 1) %
4673 EXT4_INODES_PER_GROUP(sb
));
4674 block
= ext4_inode_table(sb
, gdp
) + (inode_offset
/ inodes_per_block
);
4675 iloc
->offset
= (inode_offset
% inodes_per_block
) * EXT4_INODE_SIZE(sb
);
4677 bh
= sb_getblk(sb
, block
);
4679 ext4_error(sb
, "ext4_get_inode_loc", "unable to read "
4680 "inode block - inode=%lu, block=%llu",
4681 inode
->i_ino
, block
);
4684 if (!buffer_uptodate(bh
)) {
4688 * If the buffer has the write error flag, we have failed
4689 * to write out another inode in the same block. In this
4690 * case, we don't have to read the block because we may
4691 * read the old inode data successfully.
4693 if (buffer_write_io_error(bh
) && !buffer_uptodate(bh
))
4694 set_buffer_uptodate(bh
);
4696 if (buffer_uptodate(bh
)) {
4697 /* someone brought it uptodate while we waited */
4703 * If we have all information of the inode in memory and this
4704 * is the only valid inode in the block, we need not read the
4708 struct buffer_head
*bitmap_bh
;
4711 start
= inode_offset
& ~(inodes_per_block
- 1);
4713 /* Is the inode bitmap in cache? */
4714 bitmap_bh
= sb_getblk(sb
, ext4_inode_bitmap(sb
, gdp
));
4719 * If the inode bitmap isn't in cache then the
4720 * optimisation may end up performing two reads instead
4721 * of one, so skip it.
4723 if (!buffer_uptodate(bitmap_bh
)) {
4727 for (i
= start
; i
< start
+ inodes_per_block
; i
++) {
4728 if (i
== inode_offset
)
4730 if (ext4_test_bit(i
, bitmap_bh
->b_data
))
4734 if (i
== start
+ inodes_per_block
) {
4735 /* all other inodes are free, so skip I/O */
4736 memset(bh
->b_data
, 0, bh
->b_size
);
4737 set_buffer_uptodate(bh
);
4745 * If we need to do any I/O, try to pre-readahead extra
4746 * blocks from the inode table.
4748 if (EXT4_SB(sb
)->s_inode_readahead_blks
) {
4749 ext4_fsblk_t b
, end
, table
;
4752 table
= ext4_inode_table(sb
, gdp
);
4753 /* s_inode_readahead_blks is always a power of 2 */
4754 b
= block
& ~(EXT4_SB(sb
)->s_inode_readahead_blks
-1);
4757 end
= b
+ EXT4_SB(sb
)->s_inode_readahead_blks
;
4758 num
= EXT4_INODES_PER_GROUP(sb
);
4759 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
4760 EXT4_FEATURE_RO_COMPAT_GDT_CSUM
))
4761 num
-= ext4_itable_unused_count(sb
, gdp
);
4762 table
+= num
/ inodes_per_block
;
4766 sb_breadahead(sb
, b
++);
4770 * There are other valid inodes in the buffer, this inode
4771 * has in-inode xattrs, or we don't have this inode in memory.
4772 * Read the block from disk.
4775 bh
->b_end_io
= end_buffer_read_sync
;
4776 submit_bh(READ_META
, bh
);
4778 if (!buffer_uptodate(bh
)) {
4779 ext4_error(sb
, __func__
,
4780 "unable to read inode block - inode=%lu, "
4781 "block=%llu", inode
->i_ino
, block
);
4791 int ext4_get_inode_loc(struct inode
*inode
, struct ext4_iloc
*iloc
)
4793 /* We have all inode data except xattrs in memory here. */
4794 return __ext4_get_inode_loc(inode
, iloc
,
4795 !ext4_test_inode_state(inode
, EXT4_STATE_XATTR
));
4798 void ext4_set_inode_flags(struct inode
*inode
)
4800 unsigned int flags
= EXT4_I(inode
)->i_flags
;
4802 inode
->i_flags
&= ~(S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
);
4803 if (flags
& EXT4_SYNC_FL
)
4804 inode
->i_flags
|= S_SYNC
;
4805 if (flags
& EXT4_APPEND_FL
)
4806 inode
->i_flags
|= S_APPEND
;
4807 if (flags
& EXT4_IMMUTABLE_FL
)
4808 inode
->i_flags
|= S_IMMUTABLE
;
4809 if (flags
& EXT4_NOATIME_FL
)
4810 inode
->i_flags
|= S_NOATIME
;
4811 if (flags
& EXT4_DIRSYNC_FL
)
4812 inode
->i_flags
|= S_DIRSYNC
;
4815 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4816 void ext4_get_inode_flags(struct ext4_inode_info
*ei
)
4818 unsigned int vfs_fl
;
4819 unsigned long old_fl
, new_fl
;
4822 vfs_fl
= ei
->vfs_inode
.i_flags
;
4823 old_fl
= ei
->i_flags
;
4824 new_fl
= old_fl
& ~(EXT4_SYNC_FL
|EXT4_APPEND_FL
|
4825 EXT4_IMMUTABLE_FL
|EXT4_NOATIME_FL
|
4827 if (vfs_fl
& S_SYNC
)
4828 new_fl
|= EXT4_SYNC_FL
;
4829 if (vfs_fl
& S_APPEND
)
4830 new_fl
|= EXT4_APPEND_FL
;
4831 if (vfs_fl
& S_IMMUTABLE
)
4832 new_fl
|= EXT4_IMMUTABLE_FL
;
4833 if (vfs_fl
& S_NOATIME
)
4834 new_fl
|= EXT4_NOATIME_FL
;
4835 if (vfs_fl
& S_DIRSYNC
)
4836 new_fl
|= EXT4_DIRSYNC_FL
;
4837 } while (cmpxchg(&ei
->i_flags
, old_fl
, new_fl
) != old_fl
);
4840 static blkcnt_t
ext4_inode_blocks(struct ext4_inode
*raw_inode
,
4841 struct ext4_inode_info
*ei
)
4844 struct inode
*inode
= &(ei
->vfs_inode
);
4845 struct super_block
*sb
= inode
->i_sb
;
4847 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
4848 EXT4_FEATURE_RO_COMPAT_HUGE_FILE
)) {
4849 /* we are using combined 48 bit field */
4850 i_blocks
= ((u64
)le16_to_cpu(raw_inode
->i_blocks_high
)) << 32 |
4851 le32_to_cpu(raw_inode
->i_blocks_lo
);
4852 if (ei
->i_flags
& EXT4_HUGE_FILE_FL
) {
4853 /* i_blocks represent file system block size */
4854 return i_blocks
<< (inode
->i_blkbits
- 9);
4859 return le32_to_cpu(raw_inode
->i_blocks_lo
);
4863 struct inode
*ext4_iget(struct super_block
*sb
, unsigned long ino
)
4865 struct ext4_iloc iloc
;
4866 struct ext4_inode
*raw_inode
;
4867 struct ext4_inode_info
*ei
;
4868 struct inode
*inode
;
4869 journal_t
*journal
= EXT4_SB(sb
)->s_journal
;
4873 inode
= iget_locked(sb
, ino
);
4875 return ERR_PTR(-ENOMEM
);
4876 if (!(inode
->i_state
& I_NEW
))
4882 ret
= __ext4_get_inode_loc(inode
, &iloc
, 0);
4885 raw_inode
= ext4_raw_inode(&iloc
);
4886 inode
->i_mode
= le16_to_cpu(raw_inode
->i_mode
);
4887 inode
->i_uid
= (uid_t
)le16_to_cpu(raw_inode
->i_uid_low
);
4888 inode
->i_gid
= (gid_t
)le16_to_cpu(raw_inode
->i_gid_low
);
4889 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
4890 inode
->i_uid
|= le16_to_cpu(raw_inode
->i_uid_high
) << 16;
4891 inode
->i_gid
|= le16_to_cpu(raw_inode
->i_gid_high
) << 16;
4893 inode
->i_nlink
= le16_to_cpu(raw_inode
->i_links_count
);
4895 ei
->i_state_flags
= 0;
4896 ei
->i_dir_start_lookup
= 0;
4897 ei
->i_dtime
= le32_to_cpu(raw_inode
->i_dtime
);
4898 /* We now have enough fields to check if the inode was active or not.
4899 * This is needed because nfsd might try to access dead inodes
4900 * the test is that same one that e2fsck uses
4901 * NeilBrown 1999oct15
4903 if (inode
->i_nlink
== 0) {
4904 if (inode
->i_mode
== 0 ||
4905 !(EXT4_SB(inode
->i_sb
)->s_mount_state
& EXT4_ORPHAN_FS
)) {
4906 /* this inode is deleted */
4910 /* The only unlinked inodes we let through here have
4911 * valid i_mode and are being read by the orphan
4912 * recovery code: that's fine, we're about to complete
4913 * the process of deleting those. */
4915 ei
->i_flags
= le32_to_cpu(raw_inode
->i_flags
);
4916 inode
->i_blocks
= ext4_inode_blocks(raw_inode
, ei
);
4917 ei
->i_file_acl
= le32_to_cpu(raw_inode
->i_file_acl_lo
);
4918 if (EXT4_HAS_INCOMPAT_FEATURE(sb
, EXT4_FEATURE_INCOMPAT_64BIT
))
4920 ((__u64
)le16_to_cpu(raw_inode
->i_file_acl_high
)) << 32;
4921 inode
->i_size
= ext4_isize(raw_inode
);
4922 ei
->i_disksize
= inode
->i_size
;
4924 ei
->i_reserved_quota
= 0;
4926 inode
->i_generation
= le32_to_cpu(raw_inode
->i_generation
);
4927 ei
->i_block_group
= iloc
.block_group
;
4928 ei
->i_last_alloc_group
= ~0;
4930 * NOTE! The in-memory inode i_data array is in little-endian order
4931 * even on big-endian machines: we do NOT byteswap the block numbers!
4933 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
4934 ei
->i_data
[block
] = raw_inode
->i_block
[block
];
4935 INIT_LIST_HEAD(&ei
->i_orphan
);
4938 * Set transaction id's of transactions that have to be committed
4939 * to finish f[data]sync. We set them to currently running transaction
4940 * as we cannot be sure that the inode or some of its metadata isn't
4941 * part of the transaction - the inode could have been reclaimed and
4942 * now it is reread from disk.
4945 transaction_t
*transaction
;
4948 spin_lock(&journal
->j_state_lock
);
4949 if (journal
->j_running_transaction
)
4950 transaction
= journal
->j_running_transaction
;
4952 transaction
= journal
->j_committing_transaction
;
4954 tid
= transaction
->t_tid
;
4956 tid
= journal
->j_commit_sequence
;
4957 spin_unlock(&journal
->j_state_lock
);
4958 ei
->i_sync_tid
= tid
;
4959 ei
->i_datasync_tid
= tid
;
4962 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
4963 ei
->i_extra_isize
= le16_to_cpu(raw_inode
->i_extra_isize
);
4964 if (EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
>
4965 EXT4_INODE_SIZE(inode
->i_sb
)) {
4969 if (ei
->i_extra_isize
== 0) {
4970 /* The extra space is currently unused. Use it. */
4971 ei
->i_extra_isize
= sizeof(struct ext4_inode
) -
4972 EXT4_GOOD_OLD_INODE_SIZE
;
4974 __le32
*magic
= (void *)raw_inode
+
4975 EXT4_GOOD_OLD_INODE_SIZE
+
4977 if (*magic
== cpu_to_le32(EXT4_XATTR_MAGIC
))
4978 ext4_set_inode_state(inode
, EXT4_STATE_XATTR
);
4981 ei
->i_extra_isize
= 0;
4983 EXT4_INODE_GET_XTIME(i_ctime
, inode
, raw_inode
);
4984 EXT4_INODE_GET_XTIME(i_mtime
, inode
, raw_inode
);
4985 EXT4_INODE_GET_XTIME(i_atime
, inode
, raw_inode
);
4986 EXT4_EINODE_GET_XTIME(i_crtime
, ei
, raw_inode
);
4988 inode
->i_version
= le32_to_cpu(raw_inode
->i_disk_version
);
4989 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
4990 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
4992 (__u64
)(le32_to_cpu(raw_inode
->i_version_hi
)) << 32;
4996 if (ei
->i_file_acl
&&
4997 !ext4_data_block_valid(EXT4_SB(sb
), ei
->i_file_acl
, 1)) {
4998 ext4_error(sb
, __func__
,
4999 "bad extended attribute block %llu in inode #%lu",
5000 ei
->i_file_acl
, inode
->i_ino
);
5003 } else if (ei
->i_flags
& EXT4_EXTENTS_FL
) {
5004 if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
5005 (S_ISLNK(inode
->i_mode
) &&
5006 !ext4_inode_is_fast_symlink(inode
)))
5007 /* Validate extent which is part of inode */
5008 ret
= ext4_ext_check_inode(inode
);
5009 } else if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
5010 (S_ISLNK(inode
->i_mode
) &&
5011 !ext4_inode_is_fast_symlink(inode
))) {
5012 /* Validate block references which are part of inode */
5013 ret
= ext4_check_inode_blockref(inode
);
5018 if (S_ISREG(inode
->i_mode
)) {
5019 inode
->i_op
= &ext4_file_inode_operations
;
5020 inode
->i_fop
= &ext4_file_operations
;
5021 ext4_set_aops(inode
);
5022 } else if (S_ISDIR(inode
->i_mode
)) {
5023 inode
->i_op
= &ext4_dir_inode_operations
;
5024 inode
->i_fop
= &ext4_dir_operations
;
5025 } else if (S_ISLNK(inode
->i_mode
)) {
5026 if (ext4_inode_is_fast_symlink(inode
)) {
5027 inode
->i_op
= &ext4_fast_symlink_inode_operations
;
5028 nd_terminate_link(ei
->i_data
, inode
->i_size
,
5029 sizeof(ei
->i_data
) - 1);
5031 inode
->i_op
= &ext4_symlink_inode_operations
;
5032 ext4_set_aops(inode
);
5034 } else if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
) ||
5035 S_ISFIFO(inode
->i_mode
) || S_ISSOCK(inode
->i_mode
)) {
5036 inode
->i_op
= &ext4_special_inode_operations
;
5037 if (raw_inode
->i_block
[0])
5038 init_special_inode(inode
, inode
->i_mode
,
5039 old_decode_dev(le32_to_cpu(raw_inode
->i_block
[0])));
5041 init_special_inode(inode
, inode
->i_mode
,
5042 new_decode_dev(le32_to_cpu(raw_inode
->i_block
[1])));
5045 ext4_error(inode
->i_sb
, __func__
,
5046 "bogus i_mode (%o) for inode=%lu",
5047 inode
->i_mode
, inode
->i_ino
);
5051 ext4_set_inode_flags(inode
);
5052 unlock_new_inode(inode
);
5058 return ERR_PTR(ret
);
5061 static int ext4_inode_blocks_set(handle_t
*handle
,
5062 struct ext4_inode
*raw_inode
,
5063 struct ext4_inode_info
*ei
)
5065 struct inode
*inode
= &(ei
->vfs_inode
);
5066 u64 i_blocks
= inode
->i_blocks
;
5067 struct super_block
*sb
= inode
->i_sb
;
5069 if (i_blocks
<= ~0U) {
5071 * i_blocks can be represnted in a 32 bit variable
5072 * as multiple of 512 bytes
5074 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
5075 raw_inode
->i_blocks_high
= 0;
5076 ext4_clear_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
5079 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb
, EXT4_FEATURE_RO_COMPAT_HUGE_FILE
))
5082 if (i_blocks
<= 0xffffffffffffULL
) {
5084 * i_blocks can be represented in a 48 bit variable
5085 * as multiple of 512 bytes
5087 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
5088 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
5089 ext4_clear_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
5091 ext4_set_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
5092 /* i_block is stored in file system block size */
5093 i_blocks
= i_blocks
>> (inode
->i_blkbits
- 9);
5094 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
5095 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
5101 * Post the struct inode info into an on-disk inode location in the
5102 * buffer-cache. This gobbles the caller's reference to the
5103 * buffer_head in the inode location struct.
5105 * The caller must have write access to iloc->bh.
5107 static int ext4_do_update_inode(handle_t
*handle
,
5108 struct inode
*inode
,
5109 struct ext4_iloc
*iloc
)
5111 struct ext4_inode
*raw_inode
= ext4_raw_inode(iloc
);
5112 struct ext4_inode_info
*ei
= EXT4_I(inode
);
5113 struct buffer_head
*bh
= iloc
->bh
;
5114 int err
= 0, rc
, block
;
5116 /* For fields not not tracking in the in-memory inode,
5117 * initialise them to zero for new inodes. */
5118 if (ext4_test_inode_state(inode
, EXT4_STATE_NEW
))
5119 memset(raw_inode
, 0, EXT4_SB(inode
->i_sb
)->s_inode_size
);
5121 ext4_get_inode_flags(ei
);
5122 raw_inode
->i_mode
= cpu_to_le16(inode
->i_mode
);
5123 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
5124 raw_inode
->i_uid_low
= cpu_to_le16(low_16_bits(inode
->i_uid
));
5125 raw_inode
->i_gid_low
= cpu_to_le16(low_16_bits(inode
->i_gid
));
5127 * Fix up interoperability with old kernels. Otherwise, old inodes get
5128 * re-used with the upper 16 bits of the uid/gid intact
5131 raw_inode
->i_uid_high
=
5132 cpu_to_le16(high_16_bits(inode
->i_uid
));
5133 raw_inode
->i_gid_high
=
5134 cpu_to_le16(high_16_bits(inode
->i_gid
));
5136 raw_inode
->i_uid_high
= 0;
5137 raw_inode
->i_gid_high
= 0;
5140 raw_inode
->i_uid_low
=
5141 cpu_to_le16(fs_high2lowuid(inode
->i_uid
));
5142 raw_inode
->i_gid_low
=
5143 cpu_to_le16(fs_high2lowgid(inode
->i_gid
));
5144 raw_inode
->i_uid_high
= 0;
5145 raw_inode
->i_gid_high
= 0;
5147 raw_inode
->i_links_count
= cpu_to_le16(inode
->i_nlink
);
5149 EXT4_INODE_SET_XTIME(i_ctime
, inode
, raw_inode
);
5150 EXT4_INODE_SET_XTIME(i_mtime
, inode
, raw_inode
);
5151 EXT4_INODE_SET_XTIME(i_atime
, inode
, raw_inode
);
5152 EXT4_EINODE_SET_XTIME(i_crtime
, ei
, raw_inode
);
5154 if (ext4_inode_blocks_set(handle
, raw_inode
, ei
))
5156 raw_inode
->i_dtime
= cpu_to_le32(ei
->i_dtime
);
5157 raw_inode
->i_flags
= cpu_to_le32(ei
->i_flags
);
5158 if (EXT4_SB(inode
->i_sb
)->s_es
->s_creator_os
!=
5159 cpu_to_le32(EXT4_OS_HURD
))
5160 raw_inode
->i_file_acl_high
=
5161 cpu_to_le16(ei
->i_file_acl
>> 32);
5162 raw_inode
->i_file_acl_lo
= cpu_to_le32(ei
->i_file_acl
);
5163 ext4_isize_set(raw_inode
, ei
->i_disksize
);
5164 if (ei
->i_disksize
> 0x7fffffffULL
) {
5165 struct super_block
*sb
= inode
->i_sb
;
5166 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb
,
5167 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
) ||
5168 EXT4_SB(sb
)->s_es
->s_rev_level
==
5169 cpu_to_le32(EXT4_GOOD_OLD_REV
)) {
5170 /* If this is the first large file
5171 * created, add a flag to the superblock.
5173 err
= ext4_journal_get_write_access(handle
,
5174 EXT4_SB(sb
)->s_sbh
);
5177 ext4_update_dynamic_rev(sb
);
5178 EXT4_SET_RO_COMPAT_FEATURE(sb
,
5179 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
);
5181 ext4_handle_sync(handle
);
5182 err
= ext4_handle_dirty_metadata(handle
, NULL
,
5183 EXT4_SB(sb
)->s_sbh
);
5186 raw_inode
->i_generation
= cpu_to_le32(inode
->i_generation
);
5187 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
5188 if (old_valid_dev(inode
->i_rdev
)) {
5189 raw_inode
->i_block
[0] =
5190 cpu_to_le32(old_encode_dev(inode
->i_rdev
));
5191 raw_inode
->i_block
[1] = 0;
5193 raw_inode
->i_block
[0] = 0;
5194 raw_inode
->i_block
[1] =
5195 cpu_to_le32(new_encode_dev(inode
->i_rdev
));
5196 raw_inode
->i_block
[2] = 0;
5199 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
5200 raw_inode
->i_block
[block
] = ei
->i_data
[block
];
5202 raw_inode
->i_disk_version
= cpu_to_le32(inode
->i_version
);
5203 if (ei
->i_extra_isize
) {
5204 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
5205 raw_inode
->i_version_hi
=
5206 cpu_to_le32(inode
->i_version
>> 32);
5207 raw_inode
->i_extra_isize
= cpu_to_le16(ei
->i_extra_isize
);
5210 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
5211 rc
= ext4_handle_dirty_metadata(handle
, NULL
, bh
);
5214 ext4_clear_inode_state(inode
, EXT4_STATE_NEW
);
5216 ext4_update_inode_fsync_trans(handle
, inode
, 0);
5219 ext4_std_error(inode
->i_sb
, err
);
5224 * ext4_write_inode()
5226 * We are called from a few places:
5228 * - Within generic_file_write() for O_SYNC files.
5229 * Here, there will be no transaction running. We wait for any running
5230 * trasnaction to commit.
5232 * - Within sys_sync(), kupdate and such.
5233 * We wait on commit, if tol to.
5235 * - Within prune_icache() (PF_MEMALLOC == true)
5236 * Here we simply return. We can't afford to block kswapd on the
5239 * In all cases it is actually safe for us to return without doing anything,
5240 * because the inode has been copied into a raw inode buffer in
5241 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
5244 * Note that we are absolutely dependent upon all inode dirtiers doing the
5245 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5246 * which we are interested.
5248 * It would be a bug for them to not do this. The code:
5250 * mark_inode_dirty(inode)
5252 * inode->i_size = expr;
5254 * is in error because a kswapd-driven write_inode() could occur while
5255 * `stuff()' is running, and the new i_size will be lost. Plus the inode
5256 * will no longer be on the superblock's dirty inode list.
5258 int ext4_write_inode(struct inode
*inode
, int wait
)
5262 if (current
->flags
& PF_MEMALLOC
)
5265 if (EXT4_SB(inode
->i_sb
)->s_journal
) {
5266 if (ext4_journal_current_handle()) {
5267 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5275 err
= ext4_force_commit(inode
->i_sb
);
5277 struct ext4_iloc iloc
;
5279 err
= __ext4_get_inode_loc(inode
, &iloc
, 0);
5283 sync_dirty_buffer(iloc
.bh
);
5284 if (buffer_req(iloc
.bh
) && !buffer_uptodate(iloc
.bh
)) {
5285 ext4_error(inode
->i_sb
, __func__
,
5286 "IO error syncing inode, "
5287 "inode=%lu, block=%llu",
5289 (unsigned long long)iloc
.bh
->b_blocknr
);
5300 * Called from notify_change.
5302 * We want to trap VFS attempts to truncate the file as soon as
5303 * possible. In particular, we want to make sure that when the VFS
5304 * shrinks i_size, we put the inode on the orphan list and modify
5305 * i_disksize immediately, so that during the subsequent flushing of
5306 * dirty pages and freeing of disk blocks, we can guarantee that any
5307 * commit will leave the blocks being flushed in an unused state on
5308 * disk. (On recovery, the inode will get truncated and the blocks will
5309 * be freed, so we have a strong guarantee that no future commit will
5310 * leave these blocks visible to the user.)
5312 * Another thing we have to assure is that if we are in ordered mode
5313 * and inode is still attached to the committing transaction, we must
5314 * we start writeout of all the dirty pages which are being truncated.
5315 * This way we are sure that all the data written in the previous
5316 * transaction are already on disk (truncate waits for pages under
5319 * Called with inode->i_mutex down.
5321 int ext4_setattr(struct dentry
*dentry
, struct iattr
*attr
)
5323 struct inode
*inode
= dentry
->d_inode
;
5325 const unsigned int ia_valid
= attr
->ia_valid
;
5327 error
= inode_change_ok(inode
, attr
);
5331 if ((ia_valid
& ATTR_UID
&& attr
->ia_uid
!= inode
->i_uid
) ||
5332 (ia_valid
& ATTR_GID
&& attr
->ia_gid
!= inode
->i_gid
)) {
5335 /* (user+group)*(old+new) structure, inode write (sb,
5336 * inode block, ? - but truncate inode update has it) */
5337 handle
= ext4_journal_start(inode
, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode
->i_sb
)+
5338 EXT4_MAXQUOTAS_DEL_BLOCKS(inode
->i_sb
))+3);
5339 if (IS_ERR(handle
)) {
5340 error
= PTR_ERR(handle
);
5343 error
= vfs_dq_transfer(inode
, attr
) ? -EDQUOT
: 0;
5345 ext4_journal_stop(handle
);
5348 /* Update corresponding info in inode so that everything is in
5349 * one transaction */
5350 if (attr
->ia_valid
& ATTR_UID
)
5351 inode
->i_uid
= attr
->ia_uid
;
5352 if (attr
->ia_valid
& ATTR_GID
)
5353 inode
->i_gid
= attr
->ia_gid
;
5354 error
= ext4_mark_inode_dirty(handle
, inode
);
5355 ext4_journal_stop(handle
);
5358 if (attr
->ia_valid
& ATTR_SIZE
) {
5359 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))) {
5360 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
5362 if (attr
->ia_size
> sbi
->s_bitmap_maxbytes
) {
5369 if (S_ISREG(inode
->i_mode
) &&
5370 attr
->ia_valid
& ATTR_SIZE
&&
5371 (attr
->ia_size
< inode
->i_size
||
5372 (ext4_test_inode_flag(inode
, EXT4_INODE_EOFBLOCKS
)))) {
5375 handle
= ext4_journal_start(inode
, 3);
5376 if (IS_ERR(handle
)) {
5377 error
= PTR_ERR(handle
);
5381 error
= ext4_orphan_add(handle
, inode
);
5382 EXT4_I(inode
)->i_disksize
= attr
->ia_size
;
5383 rc
= ext4_mark_inode_dirty(handle
, inode
);
5386 ext4_journal_stop(handle
);
5388 if (ext4_should_order_data(inode
)) {
5389 error
= ext4_begin_ordered_truncate(inode
,
5392 /* Do as much error cleanup as possible */
5393 handle
= ext4_journal_start(inode
, 3);
5394 if (IS_ERR(handle
)) {
5395 ext4_orphan_del(NULL
, inode
);
5398 ext4_orphan_del(handle
, inode
);
5399 ext4_journal_stop(handle
);
5403 /* ext4_truncate will clear the flag */
5404 if ((ext4_test_inode_flag(inode
, EXT4_INODE_EOFBLOCKS
)))
5405 ext4_truncate(inode
);
5408 rc
= inode_setattr(inode
, attr
);
5410 /* If inode_setattr's call to ext4_truncate failed to get a
5411 * transaction handle at all, we need to clean up the in-core
5412 * orphan list manually. */
5414 ext4_orphan_del(NULL
, inode
);
5416 if (!rc
&& (ia_valid
& ATTR_MODE
))
5417 rc
= ext4_acl_chmod(inode
);
5420 ext4_std_error(inode
->i_sb
, error
);
5426 int ext4_getattr(struct vfsmount
*mnt
, struct dentry
*dentry
,
5429 struct inode
*inode
;
5430 unsigned long delalloc_blocks
;
5432 inode
= dentry
->d_inode
;
5433 generic_fillattr(inode
, stat
);
5436 * We can't update i_blocks if the block allocation is delayed
5437 * otherwise in the case of system crash before the real block
5438 * allocation is done, we will have i_blocks inconsistent with
5439 * on-disk file blocks.
5440 * We always keep i_blocks updated together with real
5441 * allocation. But to not confuse with user, stat
5442 * will return the blocks that include the delayed allocation
5443 * blocks for this file.
5445 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
5446 delalloc_blocks
= EXT4_I(inode
)->i_reserved_data_blocks
;
5447 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
5449 stat
->blocks
+= (delalloc_blocks
<< inode
->i_sb
->s_blocksize_bits
)>>9;
5453 static int ext4_indirect_trans_blocks(struct inode
*inode
, int nrblocks
,
5458 /* if nrblocks are contiguous */
5461 * With N contiguous data blocks, it need at most
5462 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5463 * 2 dindirect blocks
5466 indirects
= nrblocks
/ EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
5467 return indirects
+ 3;
5470 * if nrblocks are not contiguous, worse case, each block touch
5471 * a indirect block, and each indirect block touch a double indirect
5472 * block, plus a triple indirect block
5474 indirects
= nrblocks
* 2 + 1;
5478 static int ext4_index_trans_blocks(struct inode
*inode
, int nrblocks
, int chunk
)
5480 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)))
5481 return ext4_indirect_trans_blocks(inode
, nrblocks
, chunk
);
5482 return ext4_ext_index_trans_blocks(inode
, nrblocks
, chunk
);
5486 * Account for index blocks, block groups bitmaps and block group
5487 * descriptor blocks if modify datablocks and index blocks
5488 * worse case, the indexs blocks spread over different block groups
5490 * If datablocks are discontiguous, they are possible to spread over
5491 * different block groups too. If they are contiugous, with flexbg,
5492 * they could still across block group boundary.
5494 * Also account for superblock, inode, quota and xattr blocks
5496 int ext4_meta_trans_blocks(struct inode
*inode
, int nrblocks
, int chunk
)
5498 ext4_group_t groups
, ngroups
= ext4_get_groups_count(inode
->i_sb
);
5504 * How many index blocks need to touch to modify nrblocks?
5505 * The "Chunk" flag indicating whether the nrblocks is
5506 * physically contiguous on disk
5508 * For Direct IO and fallocate, they calls get_block to allocate
5509 * one single extent at a time, so they could set the "Chunk" flag
5511 idxblocks
= ext4_index_trans_blocks(inode
, nrblocks
, chunk
);
5516 * Now let's see how many group bitmaps and group descriptors need
5526 if (groups
> ngroups
)
5528 if (groups
> EXT4_SB(inode
->i_sb
)->s_gdb_count
)
5529 gdpblocks
= EXT4_SB(inode
->i_sb
)->s_gdb_count
;
5531 /* bitmaps and block group descriptor blocks */
5532 ret
+= groups
+ gdpblocks
;
5534 /* Blocks for super block, inode, quota and xattr blocks */
5535 ret
+= EXT4_META_TRANS_BLOCKS(inode
->i_sb
);
5541 * Calulate the total number of credits to reserve to fit
5542 * the modification of a single pages into a single transaction,
5543 * which may include multiple chunks of block allocations.
5545 * This could be called via ext4_write_begin()
5547 * We need to consider the worse case, when
5548 * one new block per extent.
5550 int ext4_writepage_trans_blocks(struct inode
*inode
)
5552 int bpp
= ext4_journal_blocks_per_page(inode
);
5555 ret
= ext4_meta_trans_blocks(inode
, bpp
, 0);
5557 /* Account for data blocks for journalled mode */
5558 if (ext4_should_journal_data(inode
))
5564 * Calculate the journal credits for a chunk of data modification.
5566 * This is called from DIO, fallocate or whoever calling
5567 * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
5569 * journal buffers for data blocks are not included here, as DIO
5570 * and fallocate do no need to journal data buffers.
5572 int ext4_chunk_trans_blocks(struct inode
*inode
, int nrblocks
)
5574 return ext4_meta_trans_blocks(inode
, nrblocks
, 1);
5578 * The caller must have previously called ext4_reserve_inode_write().
5579 * Give this, we know that the caller already has write access to iloc->bh.
5581 int ext4_mark_iloc_dirty(handle_t
*handle
,
5582 struct inode
*inode
, struct ext4_iloc
*iloc
)
5586 if (test_opt(inode
->i_sb
, I_VERSION
))
5587 inode_inc_iversion(inode
);
5589 /* the do_update_inode consumes one bh->b_count */
5592 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5593 err
= ext4_do_update_inode(handle
, inode
, iloc
);
5599 * On success, We end up with an outstanding reference count against
5600 * iloc->bh. This _must_ be cleaned up later.
5604 ext4_reserve_inode_write(handle_t
*handle
, struct inode
*inode
,
5605 struct ext4_iloc
*iloc
)
5609 err
= ext4_get_inode_loc(inode
, iloc
);
5611 BUFFER_TRACE(iloc
->bh
, "get_write_access");
5612 err
= ext4_journal_get_write_access(handle
, iloc
->bh
);
5618 ext4_std_error(inode
->i_sb
, err
);
5623 * Expand an inode by new_extra_isize bytes.
5624 * Returns 0 on success or negative error number on failure.
5626 static int ext4_expand_extra_isize(struct inode
*inode
,
5627 unsigned int new_extra_isize
,
5628 struct ext4_iloc iloc
,
5631 struct ext4_inode
*raw_inode
;
5632 struct ext4_xattr_ibody_header
*header
;
5633 struct ext4_xattr_entry
*entry
;
5635 if (EXT4_I(inode
)->i_extra_isize
>= new_extra_isize
)
5638 raw_inode
= ext4_raw_inode(&iloc
);
5640 header
= IHDR(inode
, raw_inode
);
5641 entry
= IFIRST(header
);
5643 /* No extended attributes present */
5644 if (!ext4_test_inode_state(inode
, EXT4_STATE_XATTR
) ||
5645 header
->h_magic
!= cpu_to_le32(EXT4_XATTR_MAGIC
)) {
5646 memset((void *)raw_inode
+ EXT4_GOOD_OLD_INODE_SIZE
, 0,
5648 EXT4_I(inode
)->i_extra_isize
= new_extra_isize
;
5652 /* try to expand with EAs present */
5653 return ext4_expand_extra_isize_ea(inode
, new_extra_isize
,
5658 * What we do here is to mark the in-core inode as clean with respect to inode
5659 * dirtiness (it may still be data-dirty).
5660 * This means that the in-core inode may be reaped by prune_icache
5661 * without having to perform any I/O. This is a very good thing,
5662 * because *any* task may call prune_icache - even ones which
5663 * have a transaction open against a different journal.
5665 * Is this cheating? Not really. Sure, we haven't written the
5666 * inode out, but prune_icache isn't a user-visible syncing function.
5667 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5668 * we start and wait on commits.
5670 * Is this efficient/effective? Well, we're being nice to the system
5671 * by cleaning up our inodes proactively so they can be reaped
5672 * without I/O. But we are potentially leaving up to five seconds'
5673 * worth of inodes floating about which prune_icache wants us to
5674 * write out. One way to fix that would be to get prune_icache()
5675 * to do a write_super() to free up some memory. It has the desired
5678 int ext4_mark_inode_dirty(handle_t
*handle
, struct inode
*inode
)
5680 struct ext4_iloc iloc
;
5681 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
5682 static unsigned int mnt_count
;
5686 err
= ext4_reserve_inode_write(handle
, inode
, &iloc
);
5687 if (ext4_handle_valid(handle
) &&
5688 EXT4_I(inode
)->i_extra_isize
< sbi
->s_want_extra_isize
&&
5689 !ext4_test_inode_state(inode
, EXT4_STATE_NO_EXPAND
)) {
5691 * We need extra buffer credits since we may write into EA block
5692 * with this same handle. If journal_extend fails, then it will
5693 * only result in a minor loss of functionality for that inode.
5694 * If this is felt to be critical, then e2fsck should be run to
5695 * force a large enough s_min_extra_isize.
5697 if ((jbd2_journal_extend(handle
,
5698 EXT4_DATA_TRANS_BLOCKS(inode
->i_sb
))) == 0) {
5699 ret
= ext4_expand_extra_isize(inode
,
5700 sbi
->s_want_extra_isize
,
5703 ext4_set_inode_state(inode
,
5704 EXT4_STATE_NO_EXPAND
);
5706 le16_to_cpu(sbi
->s_es
->s_mnt_count
)) {
5707 ext4_warning(inode
->i_sb
, __func__
,
5708 "Unable to expand inode %lu. Delete"
5709 " some EAs or run e2fsck.",
5712 le16_to_cpu(sbi
->s_es
->s_mnt_count
);
5718 err
= ext4_mark_iloc_dirty(handle
, inode
, &iloc
);
5723 * ext4_dirty_inode() is called from __mark_inode_dirty()
5725 * We're really interested in the case where a file is being extended.
5726 * i_size has been changed by generic_commit_write() and we thus need
5727 * to include the updated inode in the current transaction.
5729 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5730 * are allocated to the file.
5732 * If the inode is marked synchronous, we don't honour that here - doing
5733 * so would cause a commit on atime updates, which we don't bother doing.
5734 * We handle synchronous inodes at the highest possible level.
5736 void ext4_dirty_inode(struct inode
*inode
)
5740 handle
= ext4_journal_start(inode
, 2);
5744 ext4_mark_inode_dirty(handle
, inode
);
5746 ext4_journal_stop(handle
);
5753 * Bind an inode's backing buffer_head into this transaction, to prevent
5754 * it from being flushed to disk early. Unlike
5755 * ext4_reserve_inode_write, this leaves behind no bh reference and
5756 * returns no iloc structure, so the caller needs to repeat the iloc
5757 * lookup to mark the inode dirty later.
5759 static int ext4_pin_inode(handle_t
*handle
, struct inode
*inode
)
5761 struct ext4_iloc iloc
;
5765 err
= ext4_get_inode_loc(inode
, &iloc
);
5767 BUFFER_TRACE(iloc
.bh
, "get_write_access");
5768 err
= jbd2_journal_get_write_access(handle
, iloc
.bh
);
5770 err
= ext4_handle_dirty_metadata(handle
,
5776 ext4_std_error(inode
->i_sb
, err
);
5781 int ext4_change_inode_journal_flag(struct inode
*inode
, int val
)
5788 * We have to be very careful here: changing a data block's
5789 * journaling status dynamically is dangerous. If we write a
5790 * data block to the journal, change the status and then delete
5791 * that block, we risk forgetting to revoke the old log record
5792 * from the journal and so a subsequent replay can corrupt data.
5793 * So, first we make sure that the journal is empty and that
5794 * nobody is changing anything.
5797 journal
= EXT4_JOURNAL(inode
);
5800 if (is_journal_aborted(journal
))
5803 jbd2_journal_lock_updates(journal
);
5804 jbd2_journal_flush(journal
);
5807 * OK, there are no updates running now, and all cached data is
5808 * synced to disk. We are now in a completely consistent state
5809 * which doesn't have anything in the journal, and we know that
5810 * no filesystem updates are running, so it is safe to modify
5811 * the inode's in-core data-journaling state flag now.
5815 ext4_set_inode_flag(inode
, EXT4_INODE_JOURNAL_DATA
);
5817 ext4_clear_inode_flag(inode
, EXT4_INODE_JOURNAL_DATA
);
5818 ext4_set_aops(inode
);
5820 jbd2_journal_unlock_updates(journal
);
5822 /* Finally we can mark the inode as dirty. */
5824 handle
= ext4_journal_start(inode
, 1);
5826 return PTR_ERR(handle
);
5828 err
= ext4_mark_inode_dirty(handle
, inode
);
5829 ext4_handle_sync(handle
);
5830 ext4_journal_stop(handle
);
5831 ext4_std_error(inode
->i_sb
, err
);
5836 static int ext4_bh_unmapped(handle_t
*handle
, struct buffer_head
*bh
)
5838 return !buffer_mapped(bh
);
5841 int ext4_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
5843 struct page
*page
= vmf
->page
;
5848 struct file
*file
= vma
->vm_file
;
5849 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
5850 struct address_space
*mapping
= inode
->i_mapping
;
5853 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5854 * get i_mutex because we are already holding mmap_sem.
5856 down_read(&inode
->i_alloc_sem
);
5857 size
= i_size_read(inode
);
5858 if (page
->mapping
!= mapping
|| size
<= page_offset(page
)
5859 || !PageUptodate(page
)) {
5860 /* page got truncated from under us? */
5864 if (PageMappedToDisk(page
))
5867 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
5868 len
= size
& ~PAGE_CACHE_MASK
;
5870 len
= PAGE_CACHE_SIZE
;
5874 * return if we have all the buffers mapped. This avoid
5875 * the need to call write_begin/write_end which does a
5876 * journal_start/journal_stop which can block and take
5879 if (page_has_buffers(page
)) {
5880 if (!walk_page_buffers(NULL
, page_buffers(page
), 0, len
, NULL
,
5881 ext4_bh_unmapped
)) {
5888 * OK, we need to fill the hole... Do write_begin write_end
5889 * to do block allocation/reservation.We are not holding
5890 * inode.i__mutex here. That allow * parallel write_begin,
5891 * write_end call. lock_page prevent this from happening
5892 * on the same page though
5894 ret
= mapping
->a_ops
->write_begin(file
, mapping
, page_offset(page
),
5895 len
, AOP_FLAG_UNINTERRUPTIBLE
, &page
, &fsdata
);
5898 ret
= mapping
->a_ops
->write_end(file
, mapping
, page_offset(page
),
5899 len
, len
, page
, fsdata
);
5905 ret
= VM_FAULT_SIGBUS
;
5906 up_read(&inode
->i_alloc_sem
);