xfs: remove block number from inode lookup code
[linux/fpc-iii.git] / fs / ext4 / inode.c
blob1b23f9d2ef5668a5d992b42fd77d38fda3e197bc
1 /*
2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
42 #include "ext4_jbd2.h"
43 #include "xattr.h"
44 #include "acl.h"
45 #include "ext4_extents.h"
47 #include <trace/events/ext4.h>
49 #define MPAGE_DA_EXTENT_TAIL 0x01
51 static inline int ext4_begin_ordered_truncate(struct inode *inode,
52 loff_t new_size)
54 return jbd2_journal_begin_ordered_truncate(
55 EXT4_SB(inode->i_sb)->s_journal,
56 &EXT4_I(inode)->jinode,
57 new_size);
60 static void ext4_invalidatepage(struct page *page, unsigned long offset);
63 * Test whether an inode is a fast symlink.
65 static int ext4_inode_is_fast_symlink(struct inode *inode)
67 int ea_blocks = EXT4_I(inode)->i_file_acl ?
68 (inode->i_sb->s_blocksize >> 9) : 0;
70 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
74 * The ext4 forget function must perform a revoke if we are freeing data
75 * which has been journaled. Metadata (eg. indirect blocks) must be
76 * revoked in all cases.
78 * "bh" may be NULL: a metadata block may have been freed from memory
79 * but there may still be a record of it in the journal, and that record
80 * still needs to be revoked.
82 * If the handle isn't valid we're not journaling, but we still need to
83 * call into ext4_journal_revoke() to put the buffer head.
85 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
86 struct buffer_head *bh, ext4_fsblk_t blocknr)
88 int err;
90 might_sleep();
92 BUFFER_TRACE(bh, "enter");
94 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
95 "data mode %x\n",
96 bh, is_metadata, inode->i_mode,
97 test_opt(inode->i_sb, DATA_FLAGS));
99 /* Never use the revoke function if we are doing full data
100 * journaling: there is no need to, and a V1 superblock won't
101 * support it. Otherwise, only skip the revoke on un-journaled
102 * data blocks. */
104 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
105 (!is_metadata && !ext4_should_journal_data(inode))) {
106 if (bh) {
107 BUFFER_TRACE(bh, "call jbd2_journal_forget");
108 return ext4_journal_forget(handle, bh);
110 return 0;
114 * data!=journal && (is_metadata || should_journal_data(inode))
116 BUFFER_TRACE(bh, "call ext4_journal_revoke");
117 err = ext4_journal_revoke(handle, blocknr, bh);
118 if (err)
119 ext4_abort(inode->i_sb, __func__,
120 "error %d when attempting revoke", err);
121 BUFFER_TRACE(bh, "exit");
122 return err;
126 * Work out how many blocks we need to proceed with the next chunk of a
127 * truncate transaction.
129 static unsigned long blocks_for_truncate(struct inode *inode)
131 ext4_lblk_t needed;
133 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
135 /* Give ourselves just enough room to cope with inodes in which
136 * i_blocks is corrupt: we've seen disk corruptions in the past
137 * which resulted in random data in an inode which looked enough
138 * like a regular file for ext4 to try to delete it. Things
139 * will go a bit crazy if that happens, but at least we should
140 * try not to panic the whole kernel. */
141 if (needed < 2)
142 needed = 2;
144 /* But we need to bound the transaction so we don't overflow the
145 * journal. */
146 if (needed > EXT4_MAX_TRANS_DATA)
147 needed = EXT4_MAX_TRANS_DATA;
149 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
153 * Truncate transactions can be complex and absolutely huge. So we need to
154 * be able to restart the transaction at a conventient checkpoint to make
155 * sure we don't overflow the journal.
157 * start_transaction gets us a new handle for a truncate transaction,
158 * and extend_transaction tries to extend the existing one a bit. If
159 * extend fails, we need to propagate the failure up and restart the
160 * transaction in the top-level truncate loop. --sct
162 static handle_t *start_transaction(struct inode *inode)
164 handle_t *result;
166 result = ext4_journal_start(inode, blocks_for_truncate(inode));
167 if (!IS_ERR(result))
168 return result;
170 ext4_std_error(inode->i_sb, PTR_ERR(result));
171 return result;
175 * Try to extend this transaction for the purposes of truncation.
177 * Returns 0 if we managed to create more room. If we can't create more
178 * room, and the transaction must be restarted we return 1.
180 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
182 if (!ext4_handle_valid(handle))
183 return 0;
184 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
185 return 0;
186 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
187 return 0;
188 return 1;
192 * Restart the transaction associated with *handle. This does a commit,
193 * so before we call here everything must be consistently dirtied against
194 * this transaction.
196 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
197 int nblocks)
199 int ret;
202 * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this
203 * moment, get_block can be called only for blocks inside i_size since
204 * page cache has been already dropped and writes are blocked by
205 * i_mutex. So we can safely drop the i_data_sem here.
207 BUG_ON(EXT4_JOURNAL(inode) == NULL);
208 jbd_debug(2, "restarting handle %p\n", handle);
209 up_write(&EXT4_I(inode)->i_data_sem);
210 ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
211 down_write(&EXT4_I(inode)->i_data_sem);
212 ext4_discard_preallocations(inode);
214 return ret;
218 * Called at the last iput() if i_nlink is zero.
220 void ext4_delete_inode(struct inode *inode)
222 handle_t *handle;
223 int err;
225 if (ext4_should_order_data(inode))
226 ext4_begin_ordered_truncate(inode, 0);
227 truncate_inode_pages(&inode->i_data, 0);
229 if (is_bad_inode(inode))
230 goto no_delete;
232 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
233 if (IS_ERR(handle)) {
234 ext4_std_error(inode->i_sb, PTR_ERR(handle));
236 * If we're going to skip the normal cleanup, we still need to
237 * make sure that the in-core orphan linked list is properly
238 * cleaned up.
240 ext4_orphan_del(NULL, inode);
241 goto no_delete;
244 if (IS_SYNC(inode))
245 ext4_handle_sync(handle);
246 inode->i_size = 0;
247 err = ext4_mark_inode_dirty(handle, inode);
248 if (err) {
249 ext4_warning(inode->i_sb, __func__,
250 "couldn't mark inode dirty (err %d)", err);
251 goto stop_handle;
253 if (inode->i_blocks)
254 ext4_truncate(inode);
257 * ext4_ext_truncate() doesn't reserve any slop when it
258 * restarts journal transactions; therefore there may not be
259 * enough credits left in the handle to remove the inode from
260 * the orphan list and set the dtime field.
262 if (!ext4_handle_has_enough_credits(handle, 3)) {
263 err = ext4_journal_extend(handle, 3);
264 if (err > 0)
265 err = ext4_journal_restart(handle, 3);
266 if (err != 0) {
267 ext4_warning(inode->i_sb, __func__,
268 "couldn't extend journal (err %d)", err);
269 stop_handle:
270 ext4_journal_stop(handle);
271 goto no_delete;
276 * Kill off the orphan record which ext4_truncate created.
277 * AKPM: I think this can be inside the above `if'.
278 * Note that ext4_orphan_del() has to be able to cope with the
279 * deletion of a non-existent orphan - this is because we don't
280 * know if ext4_truncate() actually created an orphan record.
281 * (Well, we could do this if we need to, but heck - it works)
283 ext4_orphan_del(handle, inode);
284 EXT4_I(inode)->i_dtime = get_seconds();
287 * One subtle ordering requirement: if anything has gone wrong
288 * (transaction abort, IO errors, whatever), then we can still
289 * do these next steps (the fs will already have been marked as
290 * having errors), but we can't free the inode if the mark_dirty
291 * fails.
293 if (ext4_mark_inode_dirty(handle, inode))
294 /* If that failed, just do the required in-core inode clear. */
295 clear_inode(inode);
296 else
297 ext4_free_inode(handle, inode);
298 ext4_journal_stop(handle);
299 return;
300 no_delete:
301 clear_inode(inode); /* We must guarantee clearing of inode... */
304 typedef struct {
305 __le32 *p;
306 __le32 key;
307 struct buffer_head *bh;
308 } Indirect;
310 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
312 p->key = *(p->p = v);
313 p->bh = bh;
317 * ext4_block_to_path - parse the block number into array of offsets
318 * @inode: inode in question (we are only interested in its superblock)
319 * @i_block: block number to be parsed
320 * @offsets: array to store the offsets in
321 * @boundary: set this non-zero if the referred-to block is likely to be
322 * followed (on disk) by an indirect block.
324 * To store the locations of file's data ext4 uses a data structure common
325 * for UNIX filesystems - tree of pointers anchored in the inode, with
326 * data blocks at leaves and indirect blocks in intermediate nodes.
327 * This function translates the block number into path in that tree -
328 * return value is the path length and @offsets[n] is the offset of
329 * pointer to (n+1)th node in the nth one. If @block is out of range
330 * (negative or too large) warning is printed and zero returned.
332 * Note: function doesn't find node addresses, so no IO is needed. All
333 * we need to know is the capacity of indirect blocks (taken from the
334 * inode->i_sb).
338 * Portability note: the last comparison (check that we fit into triple
339 * indirect block) is spelled differently, because otherwise on an
340 * architecture with 32-bit longs and 8Kb pages we might get into trouble
341 * if our filesystem had 8Kb blocks. We might use long long, but that would
342 * kill us on x86. Oh, well, at least the sign propagation does not matter -
343 * i_block would have to be negative in the very beginning, so we would not
344 * get there at all.
347 static int ext4_block_to_path(struct inode *inode,
348 ext4_lblk_t i_block,
349 ext4_lblk_t offsets[4], int *boundary)
351 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
352 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
353 const long direct_blocks = EXT4_NDIR_BLOCKS,
354 indirect_blocks = ptrs,
355 double_blocks = (1 << (ptrs_bits * 2));
356 int n = 0;
357 int final = 0;
359 if (i_block < direct_blocks) {
360 offsets[n++] = i_block;
361 final = direct_blocks;
362 } else if ((i_block -= direct_blocks) < indirect_blocks) {
363 offsets[n++] = EXT4_IND_BLOCK;
364 offsets[n++] = i_block;
365 final = ptrs;
366 } else if ((i_block -= indirect_blocks) < double_blocks) {
367 offsets[n++] = EXT4_DIND_BLOCK;
368 offsets[n++] = i_block >> ptrs_bits;
369 offsets[n++] = i_block & (ptrs - 1);
370 final = ptrs;
371 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
372 offsets[n++] = EXT4_TIND_BLOCK;
373 offsets[n++] = i_block >> (ptrs_bits * 2);
374 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
375 offsets[n++] = i_block & (ptrs - 1);
376 final = ptrs;
377 } else {
378 ext4_warning(inode->i_sb, "ext4_block_to_path",
379 "block %lu > max in inode %lu",
380 i_block + direct_blocks +
381 indirect_blocks + double_blocks, inode->i_ino);
383 if (boundary)
384 *boundary = final - 1 - (i_block & (ptrs - 1));
385 return n;
388 static int __ext4_check_blockref(const char *function, struct inode *inode,
389 __le32 *p, unsigned int max)
391 __le32 *bref = p;
392 unsigned int blk;
394 while (bref < p+max) {
395 blk = le32_to_cpu(*bref++);
396 if (blk &&
397 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
398 blk, 1))) {
399 ext4_error(inode->i_sb, function,
400 "invalid block reference %u "
401 "in inode #%lu", blk, inode->i_ino);
402 return -EIO;
405 return 0;
409 #define ext4_check_indirect_blockref(inode, bh) \
410 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
411 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
413 #define ext4_check_inode_blockref(inode) \
414 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
415 EXT4_NDIR_BLOCKS)
418 * ext4_get_branch - read the chain of indirect blocks leading to data
419 * @inode: inode in question
420 * @depth: depth of the chain (1 - direct pointer, etc.)
421 * @offsets: offsets of pointers in inode/indirect blocks
422 * @chain: place to store the result
423 * @err: here we store the error value
425 * Function fills the array of triples <key, p, bh> and returns %NULL
426 * if everything went OK or the pointer to the last filled triple
427 * (incomplete one) otherwise. Upon the return chain[i].key contains
428 * the number of (i+1)-th block in the chain (as it is stored in memory,
429 * i.e. little-endian 32-bit), chain[i].p contains the address of that
430 * number (it points into struct inode for i==0 and into the bh->b_data
431 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
432 * block for i>0 and NULL for i==0. In other words, it holds the block
433 * numbers of the chain, addresses they were taken from (and where we can
434 * verify that chain did not change) and buffer_heads hosting these
435 * numbers.
437 * Function stops when it stumbles upon zero pointer (absent block)
438 * (pointer to last triple returned, *@err == 0)
439 * or when it gets an IO error reading an indirect block
440 * (ditto, *@err == -EIO)
441 * or when it reads all @depth-1 indirect blocks successfully and finds
442 * the whole chain, all way to the data (returns %NULL, *err == 0).
444 * Need to be called with
445 * down_read(&EXT4_I(inode)->i_data_sem)
447 static Indirect *ext4_get_branch(struct inode *inode, int depth,
448 ext4_lblk_t *offsets,
449 Indirect chain[4], int *err)
451 struct super_block *sb = inode->i_sb;
452 Indirect *p = chain;
453 struct buffer_head *bh;
455 *err = 0;
456 /* i_data is not going away, no lock needed */
457 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
458 if (!p->key)
459 goto no_block;
460 while (--depth) {
461 bh = sb_getblk(sb, le32_to_cpu(p->key));
462 if (unlikely(!bh))
463 goto failure;
465 if (!bh_uptodate_or_lock(bh)) {
466 if (bh_submit_read(bh) < 0) {
467 put_bh(bh);
468 goto failure;
470 /* validate block references */
471 if (ext4_check_indirect_blockref(inode, bh)) {
472 put_bh(bh);
473 goto failure;
477 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
478 /* Reader: end */
479 if (!p->key)
480 goto no_block;
482 return NULL;
484 failure:
485 *err = -EIO;
486 no_block:
487 return p;
491 * ext4_find_near - find a place for allocation with sufficient locality
492 * @inode: owner
493 * @ind: descriptor of indirect block.
495 * This function returns the preferred place for block allocation.
496 * It is used when heuristic for sequential allocation fails.
497 * Rules are:
498 * + if there is a block to the left of our position - allocate near it.
499 * + if pointer will live in indirect block - allocate near that block.
500 * + if pointer will live in inode - allocate in the same
501 * cylinder group.
503 * In the latter case we colour the starting block by the callers PID to
504 * prevent it from clashing with concurrent allocations for a different inode
505 * in the same block group. The PID is used here so that functionally related
506 * files will be close-by on-disk.
508 * Caller must make sure that @ind is valid and will stay that way.
510 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
512 struct ext4_inode_info *ei = EXT4_I(inode);
513 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
514 __le32 *p;
515 ext4_fsblk_t bg_start;
516 ext4_fsblk_t last_block;
517 ext4_grpblk_t colour;
518 ext4_group_t block_group;
519 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
521 /* Try to find previous block */
522 for (p = ind->p - 1; p >= start; p--) {
523 if (*p)
524 return le32_to_cpu(*p);
527 /* No such thing, so let's try location of indirect block */
528 if (ind->bh)
529 return ind->bh->b_blocknr;
532 * It is going to be referred to from the inode itself? OK, just put it
533 * into the same cylinder group then.
535 block_group = ei->i_block_group;
536 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
537 block_group &= ~(flex_size-1);
538 if (S_ISREG(inode->i_mode))
539 block_group++;
541 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
542 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
545 * If we are doing delayed allocation, we don't need take
546 * colour into account.
548 if (test_opt(inode->i_sb, DELALLOC))
549 return bg_start;
551 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
552 colour = (current->pid % 16) *
553 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
554 else
555 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
556 return bg_start + colour;
560 * ext4_find_goal - find a preferred place for allocation.
561 * @inode: owner
562 * @block: block we want
563 * @partial: pointer to the last triple within a chain
565 * Normally this function find the preferred place for block allocation,
566 * returns it.
567 * Because this is only used for non-extent files, we limit the block nr
568 * to 32 bits.
570 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
571 Indirect *partial)
573 ext4_fsblk_t goal;
576 * XXX need to get goal block from mballoc's data structures
579 goal = ext4_find_near(inode, partial);
580 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
581 return goal;
585 * ext4_blks_to_allocate: Look up the block map and count the number
586 * of direct blocks need to be allocated for the given branch.
588 * @branch: chain of indirect blocks
589 * @k: number of blocks need for indirect blocks
590 * @blks: number of data blocks to be mapped.
591 * @blocks_to_boundary: the offset in the indirect block
593 * return the total number of blocks to be allocate, including the
594 * direct and indirect blocks.
596 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
597 int blocks_to_boundary)
599 unsigned int count = 0;
602 * Simple case, [t,d]Indirect block(s) has not allocated yet
603 * then it's clear blocks on that path have not allocated
605 if (k > 0) {
606 /* right now we don't handle cross boundary allocation */
607 if (blks < blocks_to_boundary + 1)
608 count += blks;
609 else
610 count += blocks_to_boundary + 1;
611 return count;
614 count++;
615 while (count < blks && count <= blocks_to_boundary &&
616 le32_to_cpu(*(branch[0].p + count)) == 0) {
617 count++;
619 return count;
623 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
624 * @indirect_blks: the number of blocks need to allocate for indirect
625 * blocks
627 * @new_blocks: on return it will store the new block numbers for
628 * the indirect blocks(if needed) and the first direct block,
629 * @blks: on return it will store the total number of allocated
630 * direct blocks
632 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
633 ext4_lblk_t iblock, ext4_fsblk_t goal,
634 int indirect_blks, int blks,
635 ext4_fsblk_t new_blocks[4], int *err)
637 struct ext4_allocation_request ar;
638 int target, i;
639 unsigned long count = 0, blk_allocated = 0;
640 int index = 0;
641 ext4_fsblk_t current_block = 0;
642 int ret = 0;
645 * Here we try to allocate the requested multiple blocks at once,
646 * on a best-effort basis.
647 * To build a branch, we should allocate blocks for
648 * the indirect blocks(if not allocated yet), and at least
649 * the first direct block of this branch. That's the
650 * minimum number of blocks need to allocate(required)
652 /* first we try to allocate the indirect blocks */
653 target = indirect_blks;
654 while (target > 0) {
655 count = target;
656 /* allocating blocks for indirect blocks and direct blocks */
657 current_block = ext4_new_meta_blocks(handle, inode,
658 goal, &count, err);
659 if (*err)
660 goto failed_out;
662 BUG_ON(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS);
664 target -= count;
665 /* allocate blocks for indirect blocks */
666 while (index < indirect_blks && count) {
667 new_blocks[index++] = current_block++;
668 count--;
670 if (count > 0) {
672 * save the new block number
673 * for the first direct block
675 new_blocks[index] = current_block;
676 printk(KERN_INFO "%s returned more blocks than "
677 "requested\n", __func__);
678 WARN_ON(1);
679 break;
683 target = blks - count ;
684 blk_allocated = count;
685 if (!target)
686 goto allocated;
687 /* Now allocate data blocks */
688 memset(&ar, 0, sizeof(ar));
689 ar.inode = inode;
690 ar.goal = goal;
691 ar.len = target;
692 ar.logical = iblock;
693 if (S_ISREG(inode->i_mode))
694 /* enable in-core preallocation only for regular files */
695 ar.flags = EXT4_MB_HINT_DATA;
697 current_block = ext4_mb_new_blocks(handle, &ar, err);
698 BUG_ON(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS);
700 if (*err && (target == blks)) {
702 * if the allocation failed and we didn't allocate
703 * any blocks before
705 goto failed_out;
707 if (!*err) {
708 if (target == blks) {
710 * save the new block number
711 * for the first direct block
713 new_blocks[index] = current_block;
715 blk_allocated += ar.len;
717 allocated:
718 /* total number of blocks allocated for direct blocks */
719 ret = blk_allocated;
720 *err = 0;
721 return ret;
722 failed_out:
723 for (i = 0; i < index; i++)
724 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
725 return ret;
729 * ext4_alloc_branch - allocate and set up a chain of blocks.
730 * @inode: owner
731 * @indirect_blks: number of allocated indirect blocks
732 * @blks: number of allocated direct blocks
733 * @offsets: offsets (in the blocks) to store the pointers to next.
734 * @branch: place to store the chain in.
736 * This function allocates blocks, zeroes out all but the last one,
737 * links them into chain and (if we are synchronous) writes them to disk.
738 * In other words, it prepares a branch that can be spliced onto the
739 * inode. It stores the information about that chain in the branch[], in
740 * the same format as ext4_get_branch() would do. We are calling it after
741 * we had read the existing part of chain and partial points to the last
742 * triple of that (one with zero ->key). Upon the exit we have the same
743 * picture as after the successful ext4_get_block(), except that in one
744 * place chain is disconnected - *branch->p is still zero (we did not
745 * set the last link), but branch->key contains the number that should
746 * be placed into *branch->p to fill that gap.
748 * If allocation fails we free all blocks we've allocated (and forget
749 * their buffer_heads) and return the error value the from failed
750 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
751 * as described above and return 0.
753 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
754 ext4_lblk_t iblock, int indirect_blks,
755 int *blks, ext4_fsblk_t goal,
756 ext4_lblk_t *offsets, Indirect *branch)
758 int blocksize = inode->i_sb->s_blocksize;
759 int i, n = 0;
760 int err = 0;
761 struct buffer_head *bh;
762 int num;
763 ext4_fsblk_t new_blocks[4];
764 ext4_fsblk_t current_block;
766 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
767 *blks, new_blocks, &err);
768 if (err)
769 return err;
771 branch[0].key = cpu_to_le32(new_blocks[0]);
773 * metadata blocks and data blocks are allocated.
775 for (n = 1; n <= indirect_blks; n++) {
777 * Get buffer_head for parent block, zero it out
778 * and set the pointer to new one, then send
779 * parent to disk.
781 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
782 branch[n].bh = bh;
783 lock_buffer(bh);
784 BUFFER_TRACE(bh, "call get_create_access");
785 err = ext4_journal_get_create_access(handle, bh);
786 if (err) {
787 /* Don't brelse(bh) here; it's done in
788 * ext4_journal_forget() below */
789 unlock_buffer(bh);
790 goto failed;
793 memset(bh->b_data, 0, blocksize);
794 branch[n].p = (__le32 *) bh->b_data + offsets[n];
795 branch[n].key = cpu_to_le32(new_blocks[n]);
796 *branch[n].p = branch[n].key;
797 if (n == indirect_blks) {
798 current_block = new_blocks[n];
800 * End of chain, update the last new metablock of
801 * the chain to point to the new allocated
802 * data blocks numbers
804 for (i = 1; i < num; i++)
805 *(branch[n].p + i) = cpu_to_le32(++current_block);
807 BUFFER_TRACE(bh, "marking uptodate");
808 set_buffer_uptodate(bh);
809 unlock_buffer(bh);
811 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
812 err = ext4_handle_dirty_metadata(handle, inode, bh);
813 if (err)
814 goto failed;
816 *blks = num;
817 return err;
818 failed:
819 /* Allocation failed, free what we already allocated */
820 for (i = 1; i <= n ; i++) {
821 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
822 ext4_journal_forget(handle, branch[i].bh);
824 for (i = 0; i < indirect_blks; i++)
825 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
827 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
829 return err;
833 * ext4_splice_branch - splice the allocated branch onto inode.
834 * @inode: owner
835 * @block: (logical) number of block we are adding
836 * @chain: chain of indirect blocks (with a missing link - see
837 * ext4_alloc_branch)
838 * @where: location of missing link
839 * @num: number of indirect blocks we are adding
840 * @blks: number of direct blocks we are adding
842 * This function fills the missing link and does all housekeeping needed in
843 * inode (->i_blocks, etc.). In case of success we end up with the full
844 * chain to new block and return 0.
846 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
847 ext4_lblk_t block, Indirect *where, int num,
848 int blks)
850 int i;
851 int err = 0;
852 ext4_fsblk_t current_block;
855 * If we're splicing into a [td]indirect block (as opposed to the
856 * inode) then we need to get write access to the [td]indirect block
857 * before the splice.
859 if (where->bh) {
860 BUFFER_TRACE(where->bh, "get_write_access");
861 err = ext4_journal_get_write_access(handle, where->bh);
862 if (err)
863 goto err_out;
865 /* That's it */
867 *where->p = where->key;
870 * Update the host buffer_head or inode to point to more just allocated
871 * direct blocks blocks
873 if (num == 0 && blks > 1) {
874 current_block = le32_to_cpu(where->key) + 1;
875 for (i = 1; i < blks; i++)
876 *(where->p + i) = cpu_to_le32(current_block++);
879 /* We are done with atomic stuff, now do the rest of housekeeping */
880 /* had we spliced it onto indirect block? */
881 if (where->bh) {
883 * If we spliced it onto an indirect block, we haven't
884 * altered the inode. Note however that if it is being spliced
885 * onto an indirect block at the very end of the file (the
886 * file is growing) then we *will* alter the inode to reflect
887 * the new i_size. But that is not done here - it is done in
888 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
890 jbd_debug(5, "splicing indirect only\n");
891 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
892 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
893 if (err)
894 goto err_out;
895 } else {
897 * OK, we spliced it into the inode itself on a direct block.
899 ext4_mark_inode_dirty(handle, inode);
900 jbd_debug(5, "splicing direct\n");
902 return err;
904 err_out:
905 for (i = 1; i <= num; i++) {
906 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
907 ext4_journal_forget(handle, where[i].bh);
908 ext4_free_blocks(handle, inode,
909 le32_to_cpu(where[i-1].key), 1, 0);
911 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
913 return err;
917 * The ext4_ind_get_blocks() function handles non-extents inodes
918 * (i.e., using the traditional indirect/double-indirect i_blocks
919 * scheme) for ext4_get_blocks().
921 * Allocation strategy is simple: if we have to allocate something, we will
922 * have to go the whole way to leaf. So let's do it before attaching anything
923 * to tree, set linkage between the newborn blocks, write them if sync is
924 * required, recheck the path, free and repeat if check fails, otherwise
925 * set the last missing link (that will protect us from any truncate-generated
926 * removals - all blocks on the path are immune now) and possibly force the
927 * write on the parent block.
928 * That has a nice additional property: no special recovery from the failed
929 * allocations is needed - we simply release blocks and do not touch anything
930 * reachable from inode.
932 * `handle' can be NULL if create == 0.
934 * return > 0, # of blocks mapped or allocated.
935 * return = 0, if plain lookup failed.
936 * return < 0, error case.
938 * The ext4_ind_get_blocks() function should be called with
939 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
940 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
941 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
942 * blocks.
944 static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
945 ext4_lblk_t iblock, unsigned int maxblocks,
946 struct buffer_head *bh_result,
947 int flags)
949 int err = -EIO;
950 ext4_lblk_t offsets[4];
951 Indirect chain[4];
952 Indirect *partial;
953 ext4_fsblk_t goal;
954 int indirect_blks;
955 int blocks_to_boundary = 0;
956 int depth;
957 int count = 0;
958 ext4_fsblk_t first_block = 0;
960 J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
961 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
962 depth = ext4_block_to_path(inode, iblock, offsets,
963 &blocks_to_boundary);
965 if (depth == 0)
966 goto out;
968 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
970 /* Simplest case - block found, no allocation needed */
971 if (!partial) {
972 first_block = le32_to_cpu(chain[depth - 1].key);
973 clear_buffer_new(bh_result);
974 count++;
975 /*map more blocks*/
976 while (count < maxblocks && count <= blocks_to_boundary) {
977 ext4_fsblk_t blk;
979 blk = le32_to_cpu(*(chain[depth-1].p + count));
981 if (blk == first_block + count)
982 count++;
983 else
984 break;
986 goto got_it;
989 /* Next simple case - plain lookup or failed read of indirect block */
990 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
991 goto cleanup;
994 * Okay, we need to do block allocation.
996 goal = ext4_find_goal(inode, iblock, partial);
998 /* the number of blocks need to allocate for [d,t]indirect blocks */
999 indirect_blks = (chain + depth) - partial - 1;
1002 * Next look up the indirect map to count the totoal number of
1003 * direct blocks to allocate for this branch.
1005 count = ext4_blks_to_allocate(partial, indirect_blks,
1006 maxblocks, blocks_to_boundary);
1008 * Block out ext4_truncate while we alter the tree
1010 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
1011 &count, goal,
1012 offsets + (partial - chain), partial);
1015 * The ext4_splice_branch call will free and forget any buffers
1016 * on the new chain if there is a failure, but that risks using
1017 * up transaction credits, especially for bitmaps where the
1018 * credits cannot be returned. Can we handle this somehow? We
1019 * may need to return -EAGAIN upwards in the worst case. --sct
1021 if (!err)
1022 err = ext4_splice_branch(handle, inode, iblock,
1023 partial, indirect_blks, count);
1024 if (err)
1025 goto cleanup;
1027 set_buffer_new(bh_result);
1029 ext4_update_inode_fsync_trans(handle, inode, 1);
1030 got_it:
1031 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1032 if (count > blocks_to_boundary)
1033 set_buffer_boundary(bh_result);
1034 err = count;
1035 /* Clean up and exit */
1036 partial = chain + depth - 1; /* the whole chain */
1037 cleanup:
1038 while (partial > chain) {
1039 BUFFER_TRACE(partial->bh, "call brelse");
1040 brelse(partial->bh);
1041 partial--;
1043 BUFFER_TRACE(bh_result, "returned");
1044 out:
1045 return err;
1048 #ifdef CONFIG_QUOTA
1049 qsize_t *ext4_get_reserved_space(struct inode *inode)
1051 return &EXT4_I(inode)->i_reserved_quota;
1053 #endif
1056 * Calculate the number of metadata blocks need to reserve
1057 * to allocate a new block at @lblocks for non extent file based file
1059 static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1060 sector_t lblock)
1062 struct ext4_inode_info *ei = EXT4_I(inode);
1063 sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
1064 int blk_bits;
1066 if (lblock < EXT4_NDIR_BLOCKS)
1067 return 0;
1069 lblock -= EXT4_NDIR_BLOCKS;
1071 if (ei->i_da_metadata_calc_len &&
1072 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1073 ei->i_da_metadata_calc_len++;
1074 return 0;
1076 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1077 ei->i_da_metadata_calc_len = 1;
1078 blk_bits = order_base_2(lblock);
1079 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1083 * Calculate the number of metadata blocks need to reserve
1084 * to allocate a block located at @lblock
1086 static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock)
1088 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1089 return ext4_ext_calc_metadata_amount(inode, lblock);
1091 return ext4_indirect_calc_metadata_amount(inode, lblock);
1095 * Called with i_data_sem down, which is important since we can call
1096 * ext4_discard_preallocations() from here.
1098 void ext4_da_update_reserve_space(struct inode *inode,
1099 int used, int quota_claim)
1101 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1102 struct ext4_inode_info *ei = EXT4_I(inode);
1103 int mdb_free = 0, allocated_meta_blocks = 0;
1105 spin_lock(&ei->i_block_reservation_lock);
1106 if (unlikely(used > ei->i_reserved_data_blocks)) {
1107 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1108 "with only %d reserved data blocks\n",
1109 __func__, inode->i_ino, used,
1110 ei->i_reserved_data_blocks);
1111 WARN_ON(1);
1112 used = ei->i_reserved_data_blocks;
1115 /* Update per-inode reservations */
1116 ei->i_reserved_data_blocks -= used;
1117 used += ei->i_allocated_meta_blocks;
1118 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1119 allocated_meta_blocks = ei->i_allocated_meta_blocks;
1120 ei->i_allocated_meta_blocks = 0;
1121 percpu_counter_sub(&sbi->s_dirtyblocks_counter, used);
1123 if (ei->i_reserved_data_blocks == 0) {
1125 * We can release all of the reserved metadata blocks
1126 * only when we have written all of the delayed
1127 * allocation blocks.
1129 mdb_free = ei->i_reserved_meta_blocks;
1130 ei->i_reserved_meta_blocks = 0;
1131 ei->i_da_metadata_calc_len = 0;
1132 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1134 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1136 /* Update quota subsystem */
1137 if (quota_claim) {
1138 vfs_dq_claim_block(inode, used);
1139 if (mdb_free)
1140 vfs_dq_release_reservation_block(inode, mdb_free);
1141 } else {
1143 * We did fallocate with an offset that is already delayed
1144 * allocated. So on delayed allocated writeback we should
1145 * not update the quota for allocated blocks. But then
1146 * converting an fallocate region to initialized region would
1147 * have caused a metadata allocation. So claim quota for
1148 * that
1150 if (allocated_meta_blocks)
1151 vfs_dq_claim_block(inode, allocated_meta_blocks);
1152 vfs_dq_release_reservation_block(inode, mdb_free + used -
1153 allocated_meta_blocks);
1157 * If we have done all the pending block allocations and if
1158 * there aren't any writers on the inode, we can discard the
1159 * inode's preallocations.
1161 if ((ei->i_reserved_data_blocks == 0) &&
1162 (atomic_read(&inode->i_writecount) == 0))
1163 ext4_discard_preallocations(inode);
1166 static int check_block_validity(struct inode *inode, const char *msg,
1167 sector_t logical, sector_t phys, int len)
1169 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
1170 ext4_error(inode->i_sb, msg,
1171 "inode #%lu logical block %llu mapped to %llu "
1172 "(size %d)", inode->i_ino,
1173 (unsigned long long) logical,
1174 (unsigned long long) phys, len);
1175 return -EIO;
1177 return 0;
1181 * Return the number of contiguous dirty pages in a given inode
1182 * starting at page frame idx.
1184 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1185 unsigned int max_pages)
1187 struct address_space *mapping = inode->i_mapping;
1188 pgoff_t index;
1189 struct pagevec pvec;
1190 pgoff_t num = 0;
1191 int i, nr_pages, done = 0;
1193 if (max_pages == 0)
1194 return 0;
1195 pagevec_init(&pvec, 0);
1196 while (!done) {
1197 index = idx;
1198 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1199 PAGECACHE_TAG_DIRTY,
1200 (pgoff_t)PAGEVEC_SIZE);
1201 if (nr_pages == 0)
1202 break;
1203 for (i = 0; i < nr_pages; i++) {
1204 struct page *page = pvec.pages[i];
1205 struct buffer_head *bh, *head;
1207 lock_page(page);
1208 if (unlikely(page->mapping != mapping) ||
1209 !PageDirty(page) ||
1210 PageWriteback(page) ||
1211 page->index != idx) {
1212 done = 1;
1213 unlock_page(page);
1214 break;
1216 if (page_has_buffers(page)) {
1217 bh = head = page_buffers(page);
1218 do {
1219 if (!buffer_delay(bh) &&
1220 !buffer_unwritten(bh))
1221 done = 1;
1222 bh = bh->b_this_page;
1223 } while (!done && (bh != head));
1225 unlock_page(page);
1226 if (done)
1227 break;
1228 idx++;
1229 num++;
1230 if (num >= max_pages)
1231 break;
1233 pagevec_release(&pvec);
1235 return num;
1239 * The ext4_get_blocks() function tries to look up the requested blocks,
1240 * and returns if the blocks are already mapped.
1242 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1243 * and store the allocated blocks in the result buffer head and mark it
1244 * mapped.
1246 * If file type is extents based, it will call ext4_ext_get_blocks(),
1247 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1248 * based files
1250 * On success, it returns the number of blocks being mapped or allocate.
1251 * if create==0 and the blocks are pre-allocated and uninitialized block,
1252 * the result buffer head is unmapped. If the create ==1, it will make sure
1253 * the buffer head is mapped.
1255 * It returns 0 if plain look up failed (blocks have not been allocated), in
1256 * that casem, buffer head is unmapped
1258 * It returns the error in case of allocation failure.
1260 int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1261 unsigned int max_blocks, struct buffer_head *bh,
1262 int flags)
1264 int retval;
1266 clear_buffer_mapped(bh);
1267 clear_buffer_unwritten(bh);
1269 ext_debug("ext4_get_blocks(): inode %lu, flag %d, max_blocks %u,"
1270 "logical block %lu\n", inode->i_ino, flags, max_blocks,
1271 (unsigned long)block);
1273 * Try to see if we can get the block without requesting a new
1274 * file system block.
1276 down_read((&EXT4_I(inode)->i_data_sem));
1277 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1278 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1279 bh, 0);
1280 } else {
1281 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1282 bh, 0);
1284 up_read((&EXT4_I(inode)->i_data_sem));
1286 if (retval > 0 && buffer_mapped(bh)) {
1287 int ret = check_block_validity(inode, "file system corruption",
1288 block, bh->b_blocknr, retval);
1289 if (ret != 0)
1290 return ret;
1293 /* If it is only a block(s) look up */
1294 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1295 return retval;
1298 * Returns if the blocks have already allocated
1300 * Note that if blocks have been preallocated
1301 * ext4_ext_get_block() returns th create = 0
1302 * with buffer head unmapped.
1304 if (retval > 0 && buffer_mapped(bh))
1305 return retval;
1308 * When we call get_blocks without the create flag, the
1309 * BH_Unwritten flag could have gotten set if the blocks
1310 * requested were part of a uninitialized extent. We need to
1311 * clear this flag now that we are committed to convert all or
1312 * part of the uninitialized extent to be an initialized
1313 * extent. This is because we need to avoid the combination
1314 * of BH_Unwritten and BH_Mapped flags being simultaneously
1315 * set on the buffer_head.
1317 clear_buffer_unwritten(bh);
1320 * New blocks allocate and/or writing to uninitialized extent
1321 * will possibly result in updating i_data, so we take
1322 * the write lock of i_data_sem, and call get_blocks()
1323 * with create == 1 flag.
1325 down_write((&EXT4_I(inode)->i_data_sem));
1328 * if the caller is from delayed allocation writeout path
1329 * we have already reserved fs blocks for allocation
1330 * let the underlying get_block() function know to
1331 * avoid double accounting
1333 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1334 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1336 * We need to check for EXT4 here because migrate
1337 * could have changed the inode type in between
1339 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1340 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1341 bh, flags);
1342 } else {
1343 retval = ext4_ind_get_blocks(handle, inode, block,
1344 max_blocks, bh, flags);
1346 if (retval > 0 && buffer_new(bh)) {
1348 * We allocated new blocks which will result in
1349 * i_data's format changing. Force the migrate
1350 * to fail by clearing migrate flags
1352 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
1356 * Update reserved blocks/metadata blocks after successful
1357 * block allocation which had been deferred till now. We don't
1358 * support fallocate for non extent files. So we can update
1359 * reserve space here.
1361 if ((retval > 0) &&
1362 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1363 ext4_da_update_reserve_space(inode, retval, 1);
1365 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1366 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1368 up_write((&EXT4_I(inode)->i_data_sem));
1369 if (retval > 0 && buffer_mapped(bh)) {
1370 int ret = check_block_validity(inode, "file system "
1371 "corruption after allocation",
1372 block, bh->b_blocknr, retval);
1373 if (ret != 0)
1374 return ret;
1376 return retval;
1379 /* Maximum number of blocks we map for direct IO at once. */
1380 #define DIO_MAX_BLOCKS 4096
1382 int ext4_get_block(struct inode *inode, sector_t iblock,
1383 struct buffer_head *bh_result, int create)
1385 handle_t *handle = ext4_journal_current_handle();
1386 int ret = 0, started = 0;
1387 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1388 int dio_credits;
1390 if (create && !handle) {
1391 /* Direct IO write... */
1392 if (max_blocks > DIO_MAX_BLOCKS)
1393 max_blocks = DIO_MAX_BLOCKS;
1394 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1395 handle = ext4_journal_start(inode, dio_credits);
1396 if (IS_ERR(handle)) {
1397 ret = PTR_ERR(handle);
1398 goto out;
1400 started = 1;
1403 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1404 create ? EXT4_GET_BLOCKS_CREATE : 0);
1405 if (ret > 0) {
1406 bh_result->b_size = (ret << inode->i_blkbits);
1407 ret = 0;
1409 if (started)
1410 ext4_journal_stop(handle);
1411 out:
1412 return ret;
1416 * `handle' can be NULL if create is zero
1418 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1419 ext4_lblk_t block, int create, int *errp)
1421 struct buffer_head dummy;
1422 int fatal = 0, err;
1423 int flags = 0;
1425 J_ASSERT(handle != NULL || create == 0);
1427 dummy.b_state = 0;
1428 dummy.b_blocknr = -1000;
1429 buffer_trace_init(&dummy.b_history);
1430 if (create)
1431 flags |= EXT4_GET_BLOCKS_CREATE;
1432 err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1434 * ext4_get_blocks() returns number of blocks mapped. 0 in
1435 * case of a HOLE.
1437 if (err > 0) {
1438 if (err > 1)
1439 WARN_ON(1);
1440 err = 0;
1442 *errp = err;
1443 if (!err && buffer_mapped(&dummy)) {
1444 struct buffer_head *bh;
1445 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1446 if (!bh) {
1447 *errp = -EIO;
1448 goto err;
1450 if (buffer_new(&dummy)) {
1451 J_ASSERT(create != 0);
1452 J_ASSERT(handle != NULL);
1455 * Now that we do not always journal data, we should
1456 * keep in mind whether this should always journal the
1457 * new buffer as metadata. For now, regular file
1458 * writes use ext4_get_block instead, so it's not a
1459 * problem.
1461 lock_buffer(bh);
1462 BUFFER_TRACE(bh, "call get_create_access");
1463 fatal = ext4_journal_get_create_access(handle, bh);
1464 if (!fatal && !buffer_uptodate(bh)) {
1465 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1466 set_buffer_uptodate(bh);
1468 unlock_buffer(bh);
1469 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1470 err = ext4_handle_dirty_metadata(handle, inode, bh);
1471 if (!fatal)
1472 fatal = err;
1473 } else {
1474 BUFFER_TRACE(bh, "not a new buffer");
1476 if (fatal) {
1477 *errp = fatal;
1478 brelse(bh);
1479 bh = NULL;
1481 return bh;
1483 err:
1484 return NULL;
1487 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1488 ext4_lblk_t block, int create, int *err)
1490 struct buffer_head *bh;
1492 bh = ext4_getblk(handle, inode, block, create, err);
1493 if (!bh)
1494 return bh;
1495 if (buffer_uptodate(bh))
1496 return bh;
1497 ll_rw_block(READ_META, 1, &bh);
1498 wait_on_buffer(bh);
1499 if (buffer_uptodate(bh))
1500 return bh;
1501 put_bh(bh);
1502 *err = -EIO;
1503 return NULL;
1506 static int walk_page_buffers(handle_t *handle,
1507 struct buffer_head *head,
1508 unsigned from,
1509 unsigned to,
1510 int *partial,
1511 int (*fn)(handle_t *handle,
1512 struct buffer_head *bh))
1514 struct buffer_head *bh;
1515 unsigned block_start, block_end;
1516 unsigned blocksize = head->b_size;
1517 int err, ret = 0;
1518 struct buffer_head *next;
1520 for (bh = head, block_start = 0;
1521 ret == 0 && (bh != head || !block_start);
1522 block_start = block_end, bh = next) {
1523 next = bh->b_this_page;
1524 block_end = block_start + blocksize;
1525 if (block_end <= from || block_start >= to) {
1526 if (partial && !buffer_uptodate(bh))
1527 *partial = 1;
1528 continue;
1530 err = (*fn)(handle, bh);
1531 if (!ret)
1532 ret = err;
1534 return ret;
1538 * To preserve ordering, it is essential that the hole instantiation and
1539 * the data write be encapsulated in a single transaction. We cannot
1540 * close off a transaction and start a new one between the ext4_get_block()
1541 * and the commit_write(). So doing the jbd2_journal_start at the start of
1542 * prepare_write() is the right place.
1544 * Also, this function can nest inside ext4_writepage() ->
1545 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1546 * has generated enough buffer credits to do the whole page. So we won't
1547 * block on the journal in that case, which is good, because the caller may
1548 * be PF_MEMALLOC.
1550 * By accident, ext4 can be reentered when a transaction is open via
1551 * quota file writes. If we were to commit the transaction while thus
1552 * reentered, there can be a deadlock - we would be holding a quota
1553 * lock, and the commit would never complete if another thread had a
1554 * transaction open and was blocking on the quota lock - a ranking
1555 * violation.
1557 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1558 * will _not_ run commit under these circumstances because handle->h_ref
1559 * is elevated. We'll still have enough credits for the tiny quotafile
1560 * write.
1562 static int do_journal_get_write_access(handle_t *handle,
1563 struct buffer_head *bh)
1565 if (!buffer_mapped(bh) || buffer_freed(bh))
1566 return 0;
1567 return ext4_journal_get_write_access(handle, bh);
1571 * Truncate blocks that were not used by write. We have to truncate the
1572 * pagecache as well so that corresponding buffers get properly unmapped.
1574 static void ext4_truncate_failed_write(struct inode *inode)
1576 truncate_inode_pages(inode->i_mapping, inode->i_size);
1577 ext4_truncate(inode);
1580 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1581 loff_t pos, unsigned len, unsigned flags,
1582 struct page **pagep, void **fsdata)
1584 struct inode *inode = mapping->host;
1585 int ret, needed_blocks;
1586 handle_t *handle;
1587 int retries = 0;
1588 struct page *page;
1589 pgoff_t index;
1590 unsigned from, to;
1592 trace_ext4_write_begin(inode, pos, len, flags);
1594 * Reserve one block more for addition to orphan list in case
1595 * we allocate blocks but write fails for some reason
1597 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1598 index = pos >> PAGE_CACHE_SHIFT;
1599 from = pos & (PAGE_CACHE_SIZE - 1);
1600 to = from + len;
1602 retry:
1603 handle = ext4_journal_start(inode, needed_blocks);
1604 if (IS_ERR(handle)) {
1605 ret = PTR_ERR(handle);
1606 goto out;
1609 /* We cannot recurse into the filesystem as the transaction is already
1610 * started */
1611 flags |= AOP_FLAG_NOFS;
1613 page = grab_cache_page_write_begin(mapping, index, flags);
1614 if (!page) {
1615 ext4_journal_stop(handle);
1616 ret = -ENOMEM;
1617 goto out;
1619 *pagep = page;
1621 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1622 ext4_get_block);
1624 if (!ret && ext4_should_journal_data(inode)) {
1625 ret = walk_page_buffers(handle, page_buffers(page),
1626 from, to, NULL, do_journal_get_write_access);
1629 if (ret) {
1630 unlock_page(page);
1631 page_cache_release(page);
1633 * block_write_begin may have instantiated a few blocks
1634 * outside i_size. Trim these off again. Don't need
1635 * i_size_read because we hold i_mutex.
1637 * Add inode to orphan list in case we crash before
1638 * truncate finishes
1640 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1641 ext4_orphan_add(handle, inode);
1643 ext4_journal_stop(handle);
1644 if (pos + len > inode->i_size) {
1645 ext4_truncate_failed_write(inode);
1647 * If truncate failed early the inode might
1648 * still be on the orphan list; we need to
1649 * make sure the inode is removed from the
1650 * orphan list in that case.
1652 if (inode->i_nlink)
1653 ext4_orphan_del(NULL, inode);
1657 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1658 goto retry;
1659 out:
1660 return ret;
1663 /* For write_end() in data=journal mode */
1664 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1666 if (!buffer_mapped(bh) || buffer_freed(bh))
1667 return 0;
1668 set_buffer_uptodate(bh);
1669 return ext4_handle_dirty_metadata(handle, NULL, bh);
1672 static int ext4_generic_write_end(struct file *file,
1673 struct address_space *mapping,
1674 loff_t pos, unsigned len, unsigned copied,
1675 struct page *page, void *fsdata)
1677 int i_size_changed = 0;
1678 struct inode *inode = mapping->host;
1679 handle_t *handle = ext4_journal_current_handle();
1681 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1684 * No need to use i_size_read() here, the i_size
1685 * cannot change under us because we hold i_mutex.
1687 * But it's important to update i_size while still holding page lock:
1688 * page writeout could otherwise come in and zero beyond i_size.
1690 if (pos + copied > inode->i_size) {
1691 i_size_write(inode, pos + copied);
1692 i_size_changed = 1;
1695 if (pos + copied > EXT4_I(inode)->i_disksize) {
1696 /* We need to mark inode dirty even if
1697 * new_i_size is less that inode->i_size
1698 * bu greater than i_disksize.(hint delalloc)
1700 ext4_update_i_disksize(inode, (pos + copied));
1701 i_size_changed = 1;
1703 unlock_page(page);
1704 page_cache_release(page);
1707 * Don't mark the inode dirty under page lock. First, it unnecessarily
1708 * makes the holding time of page lock longer. Second, it forces lock
1709 * ordering of page lock and transaction start for journaling
1710 * filesystems.
1712 if (i_size_changed)
1713 ext4_mark_inode_dirty(handle, inode);
1715 return copied;
1719 * We need to pick up the new inode size which generic_commit_write gave us
1720 * `file' can be NULL - eg, when called from page_symlink().
1722 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1723 * buffers are managed internally.
1725 static int ext4_ordered_write_end(struct file *file,
1726 struct address_space *mapping,
1727 loff_t pos, unsigned len, unsigned copied,
1728 struct page *page, void *fsdata)
1730 handle_t *handle = ext4_journal_current_handle();
1731 struct inode *inode = mapping->host;
1732 int ret = 0, ret2;
1734 trace_ext4_ordered_write_end(inode, pos, len, copied);
1735 ret = ext4_jbd2_file_inode(handle, inode);
1737 if (ret == 0) {
1738 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1739 page, fsdata);
1740 copied = ret2;
1741 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1742 /* if we have allocated more blocks and copied
1743 * less. We will have blocks allocated outside
1744 * inode->i_size. So truncate them
1746 ext4_orphan_add(handle, inode);
1747 if (ret2 < 0)
1748 ret = ret2;
1750 ret2 = ext4_journal_stop(handle);
1751 if (!ret)
1752 ret = ret2;
1754 if (pos + len > inode->i_size) {
1755 ext4_truncate_failed_write(inode);
1757 * If truncate failed early the inode might still be
1758 * on the orphan list; we need to make sure the inode
1759 * is removed from the orphan list in that case.
1761 if (inode->i_nlink)
1762 ext4_orphan_del(NULL, inode);
1766 return ret ? ret : copied;
1769 static int ext4_writeback_write_end(struct file *file,
1770 struct address_space *mapping,
1771 loff_t pos, unsigned len, unsigned copied,
1772 struct page *page, void *fsdata)
1774 handle_t *handle = ext4_journal_current_handle();
1775 struct inode *inode = mapping->host;
1776 int ret = 0, ret2;
1778 trace_ext4_writeback_write_end(inode, pos, len, copied);
1779 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1780 page, fsdata);
1781 copied = ret2;
1782 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1783 /* if we have allocated more blocks and copied
1784 * less. We will have blocks allocated outside
1785 * inode->i_size. So truncate them
1787 ext4_orphan_add(handle, inode);
1789 if (ret2 < 0)
1790 ret = ret2;
1792 ret2 = ext4_journal_stop(handle);
1793 if (!ret)
1794 ret = ret2;
1796 if (pos + len > inode->i_size) {
1797 ext4_truncate_failed_write(inode);
1799 * If truncate failed early the inode might still be
1800 * on the orphan list; we need to make sure the inode
1801 * is removed from the orphan list in that case.
1803 if (inode->i_nlink)
1804 ext4_orphan_del(NULL, inode);
1807 return ret ? ret : copied;
1810 static int ext4_journalled_write_end(struct file *file,
1811 struct address_space *mapping,
1812 loff_t pos, unsigned len, unsigned copied,
1813 struct page *page, void *fsdata)
1815 handle_t *handle = ext4_journal_current_handle();
1816 struct inode *inode = mapping->host;
1817 int ret = 0, ret2;
1818 int partial = 0;
1819 unsigned from, to;
1820 loff_t new_i_size;
1822 trace_ext4_journalled_write_end(inode, pos, len, copied);
1823 from = pos & (PAGE_CACHE_SIZE - 1);
1824 to = from + len;
1826 if (copied < len) {
1827 if (!PageUptodate(page))
1828 copied = 0;
1829 page_zero_new_buffers(page, from+copied, to);
1832 ret = walk_page_buffers(handle, page_buffers(page), from,
1833 to, &partial, write_end_fn);
1834 if (!partial)
1835 SetPageUptodate(page);
1836 new_i_size = pos + copied;
1837 if (new_i_size > inode->i_size)
1838 i_size_write(inode, pos+copied);
1839 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1840 if (new_i_size > EXT4_I(inode)->i_disksize) {
1841 ext4_update_i_disksize(inode, new_i_size);
1842 ret2 = ext4_mark_inode_dirty(handle, inode);
1843 if (!ret)
1844 ret = ret2;
1847 unlock_page(page);
1848 page_cache_release(page);
1849 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1850 /* if we have allocated more blocks and copied
1851 * less. We will have blocks allocated outside
1852 * inode->i_size. So truncate them
1854 ext4_orphan_add(handle, inode);
1856 ret2 = ext4_journal_stop(handle);
1857 if (!ret)
1858 ret = ret2;
1859 if (pos + len > inode->i_size) {
1860 ext4_truncate_failed_write(inode);
1862 * If truncate failed early the inode might still be
1863 * on the orphan list; we need to make sure the inode
1864 * is removed from the orphan list in that case.
1866 if (inode->i_nlink)
1867 ext4_orphan_del(NULL, inode);
1870 return ret ? ret : copied;
1874 * Reserve a single block located at lblock
1876 static int ext4_da_reserve_space(struct inode *inode, sector_t lblock)
1878 int retries = 0;
1879 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1880 struct ext4_inode_info *ei = EXT4_I(inode);
1881 unsigned long md_needed, md_reserved;
1884 * recalculate the amount of metadata blocks to reserve
1885 * in order to allocate nrblocks
1886 * worse case is one extent per block
1888 repeat:
1889 spin_lock(&ei->i_block_reservation_lock);
1890 md_reserved = ei->i_reserved_meta_blocks;
1891 md_needed = ext4_calc_metadata_amount(inode, lblock);
1892 spin_unlock(&ei->i_block_reservation_lock);
1895 * Make quota reservation here to prevent quota overflow
1896 * later. Real quota accounting is done at pages writeout
1897 * time.
1899 if (vfs_dq_reserve_block(inode, md_needed + 1))
1900 return -EDQUOT;
1902 if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
1903 vfs_dq_release_reservation_block(inode, md_needed + 1);
1904 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1905 yield();
1906 goto repeat;
1908 return -ENOSPC;
1910 spin_lock(&ei->i_block_reservation_lock);
1911 ei->i_reserved_data_blocks++;
1912 ei->i_reserved_meta_blocks += md_needed;
1913 spin_unlock(&ei->i_block_reservation_lock);
1915 return 0; /* success */
1918 static void ext4_da_release_space(struct inode *inode, int to_free)
1920 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1921 struct ext4_inode_info *ei = EXT4_I(inode);
1923 if (!to_free)
1924 return; /* Nothing to release, exit */
1926 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1928 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1930 * if there aren't enough reserved blocks, then the
1931 * counter is messed up somewhere. Since this
1932 * function is called from invalidate page, it's
1933 * harmless to return without any action.
1935 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1936 "ino %lu, to_free %d with only %d reserved "
1937 "data blocks\n", inode->i_ino, to_free,
1938 ei->i_reserved_data_blocks);
1939 WARN_ON(1);
1940 to_free = ei->i_reserved_data_blocks;
1942 ei->i_reserved_data_blocks -= to_free;
1944 if (ei->i_reserved_data_blocks == 0) {
1946 * We can release all of the reserved metadata blocks
1947 * only when we have written all of the delayed
1948 * allocation blocks.
1950 to_free += ei->i_reserved_meta_blocks;
1951 ei->i_reserved_meta_blocks = 0;
1952 ei->i_da_metadata_calc_len = 0;
1955 /* update fs dirty blocks counter */
1956 percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1958 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1960 vfs_dq_release_reservation_block(inode, to_free);
1963 static void ext4_da_page_release_reservation(struct page *page,
1964 unsigned long offset)
1966 int to_release = 0;
1967 struct buffer_head *head, *bh;
1968 unsigned int curr_off = 0;
1970 head = page_buffers(page);
1971 bh = head;
1972 do {
1973 unsigned int next_off = curr_off + bh->b_size;
1975 if ((offset <= curr_off) && (buffer_delay(bh))) {
1976 to_release++;
1977 clear_buffer_delay(bh);
1979 curr_off = next_off;
1980 } while ((bh = bh->b_this_page) != head);
1981 ext4_da_release_space(page->mapping->host, to_release);
1985 * Delayed allocation stuff
1989 * mpage_da_submit_io - walks through extent of pages and try to write
1990 * them with writepage() call back
1992 * @mpd->inode: inode
1993 * @mpd->first_page: first page of the extent
1994 * @mpd->next_page: page after the last page of the extent
1996 * By the time mpage_da_submit_io() is called we expect all blocks
1997 * to be allocated. this may be wrong if allocation failed.
1999 * As pages are already locked by write_cache_pages(), we can't use it
2001 static int mpage_da_submit_io(struct mpage_da_data *mpd)
2003 long pages_skipped;
2004 struct pagevec pvec;
2005 unsigned long index, end;
2006 int ret = 0, err, nr_pages, i;
2007 struct inode *inode = mpd->inode;
2008 struct address_space *mapping = inode->i_mapping;
2010 BUG_ON(mpd->next_page <= mpd->first_page);
2012 * We need to start from the first_page to the next_page - 1
2013 * to make sure we also write the mapped dirty buffer_heads.
2014 * If we look at mpd->b_blocknr we would only be looking
2015 * at the currently mapped buffer_heads.
2017 index = mpd->first_page;
2018 end = mpd->next_page - 1;
2020 pagevec_init(&pvec, 0);
2021 while (index <= end) {
2022 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2023 if (nr_pages == 0)
2024 break;
2025 for (i = 0; i < nr_pages; i++) {
2026 struct page *page = pvec.pages[i];
2028 index = page->index;
2029 if (index > end)
2030 break;
2031 index++;
2033 BUG_ON(!PageLocked(page));
2034 BUG_ON(PageWriteback(page));
2036 pages_skipped = mpd->wbc->pages_skipped;
2037 err = mapping->a_ops->writepage(page, mpd->wbc);
2038 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
2040 * have successfully written the page
2041 * without skipping the same
2043 mpd->pages_written++;
2045 * In error case, we have to continue because
2046 * remaining pages are still locked
2047 * XXX: unlock and re-dirty them?
2049 if (ret == 0)
2050 ret = err;
2052 pagevec_release(&pvec);
2054 return ret;
2058 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
2060 * @mpd->inode - inode to walk through
2061 * @exbh->b_blocknr - first block on a disk
2062 * @exbh->b_size - amount of space in bytes
2063 * @logical - first logical block to start assignment with
2065 * the function goes through all passed space and put actual disk
2066 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
2068 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
2069 struct buffer_head *exbh)
2071 struct inode *inode = mpd->inode;
2072 struct address_space *mapping = inode->i_mapping;
2073 int blocks = exbh->b_size >> inode->i_blkbits;
2074 sector_t pblock = exbh->b_blocknr, cur_logical;
2075 struct buffer_head *head, *bh;
2076 pgoff_t index, end;
2077 struct pagevec pvec;
2078 int nr_pages, i;
2080 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2081 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2082 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2084 pagevec_init(&pvec, 0);
2086 while (index <= end) {
2087 /* XXX: optimize tail */
2088 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2089 if (nr_pages == 0)
2090 break;
2091 for (i = 0; i < nr_pages; i++) {
2092 struct page *page = pvec.pages[i];
2094 index = page->index;
2095 if (index > end)
2096 break;
2097 index++;
2099 BUG_ON(!PageLocked(page));
2100 BUG_ON(PageWriteback(page));
2101 BUG_ON(!page_has_buffers(page));
2103 bh = page_buffers(page);
2104 head = bh;
2106 /* skip blocks out of the range */
2107 do {
2108 if (cur_logical >= logical)
2109 break;
2110 cur_logical++;
2111 } while ((bh = bh->b_this_page) != head);
2113 do {
2114 if (cur_logical >= logical + blocks)
2115 break;
2117 if (buffer_delay(bh) ||
2118 buffer_unwritten(bh)) {
2120 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2122 if (buffer_delay(bh)) {
2123 clear_buffer_delay(bh);
2124 bh->b_blocknr = pblock;
2125 } else {
2127 * unwritten already should have
2128 * blocknr assigned. Verify that
2130 clear_buffer_unwritten(bh);
2131 BUG_ON(bh->b_blocknr != pblock);
2134 } else if (buffer_mapped(bh))
2135 BUG_ON(bh->b_blocknr != pblock);
2137 cur_logical++;
2138 pblock++;
2139 } while ((bh = bh->b_this_page) != head);
2141 pagevec_release(&pvec);
2147 * __unmap_underlying_blocks - just a helper function to unmap
2148 * set of blocks described by @bh
2150 static inline void __unmap_underlying_blocks(struct inode *inode,
2151 struct buffer_head *bh)
2153 struct block_device *bdev = inode->i_sb->s_bdev;
2154 int blocks, i;
2156 blocks = bh->b_size >> inode->i_blkbits;
2157 for (i = 0; i < blocks; i++)
2158 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
2161 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2162 sector_t logical, long blk_cnt)
2164 int nr_pages, i;
2165 pgoff_t index, end;
2166 struct pagevec pvec;
2167 struct inode *inode = mpd->inode;
2168 struct address_space *mapping = inode->i_mapping;
2170 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2171 end = (logical + blk_cnt - 1) >>
2172 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2173 while (index <= end) {
2174 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2175 if (nr_pages == 0)
2176 break;
2177 for (i = 0; i < nr_pages; i++) {
2178 struct page *page = pvec.pages[i];
2179 index = page->index;
2180 if (index > end)
2181 break;
2182 index++;
2184 BUG_ON(!PageLocked(page));
2185 BUG_ON(PageWriteback(page));
2186 block_invalidatepage(page, 0);
2187 ClearPageUptodate(page);
2188 unlock_page(page);
2191 return;
2194 static void ext4_print_free_blocks(struct inode *inode)
2196 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2197 printk(KERN_CRIT "Total free blocks count %lld\n",
2198 ext4_count_free_blocks(inode->i_sb));
2199 printk(KERN_CRIT "Free/Dirty block details\n");
2200 printk(KERN_CRIT "free_blocks=%lld\n",
2201 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2202 printk(KERN_CRIT "dirty_blocks=%lld\n",
2203 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2204 printk(KERN_CRIT "Block reservation details\n");
2205 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2206 EXT4_I(inode)->i_reserved_data_blocks);
2207 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2208 EXT4_I(inode)->i_reserved_meta_blocks);
2209 return;
2213 * mpage_da_map_blocks - go through given space
2215 * @mpd - bh describing space
2217 * The function skips space we know is already mapped to disk blocks.
2220 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2222 int err, blks, get_blocks_flags;
2223 struct buffer_head new;
2224 sector_t next = mpd->b_blocknr;
2225 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2226 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2227 handle_t *handle = NULL;
2230 * We consider only non-mapped and non-allocated blocks
2232 if ((mpd->b_state & (1 << BH_Mapped)) &&
2233 !(mpd->b_state & (1 << BH_Delay)) &&
2234 !(mpd->b_state & (1 << BH_Unwritten)))
2235 return 0;
2238 * If we didn't accumulate anything to write simply return
2240 if (!mpd->b_size)
2241 return 0;
2243 handle = ext4_journal_current_handle();
2244 BUG_ON(!handle);
2247 * Call ext4_get_blocks() to allocate any delayed allocation
2248 * blocks, or to convert an uninitialized extent to be
2249 * initialized (in the case where we have written into
2250 * one or more preallocated blocks).
2252 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2253 * indicate that we are on the delayed allocation path. This
2254 * affects functions in many different parts of the allocation
2255 * call path. This flag exists primarily because we don't
2256 * want to change *many* call functions, so ext4_get_blocks()
2257 * will set the magic i_delalloc_reserved_flag once the
2258 * inode's allocation semaphore is taken.
2260 * If the blocks in questions were delalloc blocks, set
2261 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2262 * variables are updated after the blocks have been allocated.
2264 new.b_state = 0;
2265 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2266 if (mpd->b_state & (1 << BH_Delay))
2267 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2269 blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2270 &new, get_blocks_flags);
2271 if (blks < 0) {
2272 err = blks;
2274 * If get block returns with error we simply
2275 * return. Later writepage will redirty the page and
2276 * writepages will find the dirty page again
2278 if (err == -EAGAIN)
2279 return 0;
2281 if (err == -ENOSPC &&
2282 ext4_count_free_blocks(mpd->inode->i_sb)) {
2283 mpd->retval = err;
2284 return 0;
2288 * get block failure will cause us to loop in
2289 * writepages, because a_ops->writepage won't be able
2290 * to make progress. The page will be redirtied by
2291 * writepage and writepages will again try to write
2292 * the same.
2294 ext4_msg(mpd->inode->i_sb, KERN_CRIT,
2295 "delayed block allocation failed for inode %lu at "
2296 "logical offset %llu with max blocks %zd with "
2297 "error %d", mpd->inode->i_ino,
2298 (unsigned long long) next,
2299 mpd->b_size >> mpd->inode->i_blkbits, err);
2300 printk(KERN_CRIT "This should not happen!! "
2301 "Data will be lost\n");
2302 if (err == -ENOSPC) {
2303 ext4_print_free_blocks(mpd->inode);
2305 /* invalidate all the pages */
2306 ext4_da_block_invalidatepages(mpd, next,
2307 mpd->b_size >> mpd->inode->i_blkbits);
2308 return err;
2310 BUG_ON(blks == 0);
2312 new.b_size = (blks << mpd->inode->i_blkbits);
2314 if (buffer_new(&new))
2315 __unmap_underlying_blocks(mpd->inode, &new);
2318 * If blocks are delayed marked, we need to
2319 * put actual blocknr and drop delayed bit
2321 if ((mpd->b_state & (1 << BH_Delay)) ||
2322 (mpd->b_state & (1 << BH_Unwritten)))
2323 mpage_put_bnr_to_bhs(mpd, next, &new);
2325 if (ext4_should_order_data(mpd->inode)) {
2326 err = ext4_jbd2_file_inode(handle, mpd->inode);
2327 if (err)
2328 return err;
2332 * Update on-disk size along with block allocation.
2334 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2335 if (disksize > i_size_read(mpd->inode))
2336 disksize = i_size_read(mpd->inode);
2337 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2338 ext4_update_i_disksize(mpd->inode, disksize);
2339 return ext4_mark_inode_dirty(handle, mpd->inode);
2342 return 0;
2345 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2346 (1 << BH_Delay) | (1 << BH_Unwritten))
2349 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2351 * @mpd->lbh - extent of blocks
2352 * @logical - logical number of the block in the file
2353 * @bh - bh of the block (used to access block's state)
2355 * the function is used to collect contig. blocks in same state
2357 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2358 sector_t logical, size_t b_size,
2359 unsigned long b_state)
2361 sector_t next;
2362 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2365 * XXX Don't go larger than mballoc is willing to allocate
2366 * This is a stopgap solution. We eventually need to fold
2367 * mpage_da_submit_io() into this function and then call
2368 * ext4_get_blocks() multiple times in a loop
2370 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
2371 goto flush_it;
2373 /* check if thereserved journal credits might overflow */
2374 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
2375 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2377 * With non-extent format we are limited by the journal
2378 * credit available. Total credit needed to insert
2379 * nrblocks contiguous blocks is dependent on the
2380 * nrblocks. So limit nrblocks.
2382 goto flush_it;
2383 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2384 EXT4_MAX_TRANS_DATA) {
2386 * Adding the new buffer_head would make it cross the
2387 * allowed limit for which we have journal credit
2388 * reserved. So limit the new bh->b_size
2390 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2391 mpd->inode->i_blkbits;
2392 /* we will do mpage_da_submit_io in the next loop */
2396 * First block in the extent
2398 if (mpd->b_size == 0) {
2399 mpd->b_blocknr = logical;
2400 mpd->b_size = b_size;
2401 mpd->b_state = b_state & BH_FLAGS;
2402 return;
2405 next = mpd->b_blocknr + nrblocks;
2407 * Can we merge the block to our big extent?
2409 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2410 mpd->b_size += b_size;
2411 return;
2414 flush_it:
2416 * We couldn't merge the block to our extent, so we
2417 * need to flush current extent and start new one
2419 if (mpage_da_map_blocks(mpd) == 0)
2420 mpage_da_submit_io(mpd);
2421 mpd->io_done = 1;
2422 return;
2425 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2427 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2431 * __mpage_da_writepage - finds extent of pages and blocks
2433 * @page: page to consider
2434 * @wbc: not used, we just follow rules
2435 * @data: context
2437 * The function finds extents of pages and scan them for all blocks.
2439 static int __mpage_da_writepage(struct page *page,
2440 struct writeback_control *wbc, void *data)
2442 struct mpage_da_data *mpd = data;
2443 struct inode *inode = mpd->inode;
2444 struct buffer_head *bh, *head;
2445 sector_t logical;
2447 if (mpd->io_done) {
2449 * Rest of the page in the page_vec
2450 * redirty then and skip then. We will
2451 * try to write them again after
2452 * starting a new transaction
2454 redirty_page_for_writepage(wbc, page);
2455 unlock_page(page);
2456 return MPAGE_DA_EXTENT_TAIL;
2459 * Can we merge this page to current extent?
2461 if (mpd->next_page != page->index) {
2463 * Nope, we can't. So, we map non-allocated blocks
2464 * and start IO on them using writepage()
2466 if (mpd->next_page != mpd->first_page) {
2467 if (mpage_da_map_blocks(mpd) == 0)
2468 mpage_da_submit_io(mpd);
2470 * skip rest of the page in the page_vec
2472 mpd->io_done = 1;
2473 redirty_page_for_writepage(wbc, page);
2474 unlock_page(page);
2475 return MPAGE_DA_EXTENT_TAIL;
2479 * Start next extent of pages ...
2481 mpd->first_page = page->index;
2484 * ... and blocks
2486 mpd->b_size = 0;
2487 mpd->b_state = 0;
2488 mpd->b_blocknr = 0;
2491 mpd->next_page = page->index + 1;
2492 logical = (sector_t) page->index <<
2493 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2495 if (!page_has_buffers(page)) {
2496 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2497 (1 << BH_Dirty) | (1 << BH_Uptodate));
2498 if (mpd->io_done)
2499 return MPAGE_DA_EXTENT_TAIL;
2500 } else {
2502 * Page with regular buffer heads, just add all dirty ones
2504 head = page_buffers(page);
2505 bh = head;
2506 do {
2507 BUG_ON(buffer_locked(bh));
2509 * We need to try to allocate
2510 * unmapped blocks in the same page.
2511 * Otherwise we won't make progress
2512 * with the page in ext4_writepage
2514 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2515 mpage_add_bh_to_extent(mpd, logical,
2516 bh->b_size,
2517 bh->b_state);
2518 if (mpd->io_done)
2519 return MPAGE_DA_EXTENT_TAIL;
2520 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2522 * mapped dirty buffer. We need to update
2523 * the b_state because we look at
2524 * b_state in mpage_da_map_blocks. We don't
2525 * update b_size because if we find an
2526 * unmapped buffer_head later we need to
2527 * use the b_state flag of that buffer_head.
2529 if (mpd->b_size == 0)
2530 mpd->b_state = bh->b_state & BH_FLAGS;
2532 logical++;
2533 } while ((bh = bh->b_this_page) != head);
2536 return 0;
2540 * This is a special get_blocks_t callback which is used by
2541 * ext4_da_write_begin(). It will either return mapped block or
2542 * reserve space for a single block.
2544 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2545 * We also have b_blocknr = -1 and b_bdev initialized properly
2547 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2548 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2549 * initialized properly.
2551 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2552 struct buffer_head *bh_result, int create)
2554 int ret = 0;
2555 sector_t invalid_block = ~((sector_t) 0xffff);
2557 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2558 invalid_block = ~0;
2560 BUG_ON(create == 0);
2561 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2564 * first, we need to know whether the block is allocated already
2565 * preallocated blocks are unmapped but should treated
2566 * the same as allocated blocks.
2568 ret = ext4_get_blocks(NULL, inode, iblock, 1, bh_result, 0);
2569 if ((ret == 0) && !buffer_delay(bh_result)) {
2570 /* the block isn't (pre)allocated yet, let's reserve space */
2572 * XXX: __block_prepare_write() unmaps passed block,
2573 * is it OK?
2575 ret = ext4_da_reserve_space(inode, iblock);
2576 if (ret)
2577 /* not enough space to reserve */
2578 return ret;
2580 map_bh(bh_result, inode->i_sb, invalid_block);
2581 set_buffer_new(bh_result);
2582 set_buffer_delay(bh_result);
2583 } else if (ret > 0) {
2584 bh_result->b_size = (ret << inode->i_blkbits);
2585 if (buffer_unwritten(bh_result)) {
2586 /* A delayed write to unwritten bh should
2587 * be marked new and mapped. Mapped ensures
2588 * that we don't do get_block multiple times
2589 * when we write to the same offset and new
2590 * ensures that we do proper zero out for
2591 * partial write.
2593 set_buffer_new(bh_result);
2594 set_buffer_mapped(bh_result);
2596 ret = 0;
2599 return ret;
2603 * This function is used as a standard get_block_t calback function
2604 * when there is no desire to allocate any blocks. It is used as a
2605 * callback function for block_prepare_write(), nobh_writepage(), and
2606 * block_write_full_page(). These functions should only try to map a
2607 * single block at a time.
2609 * Since this function doesn't do block allocations even if the caller
2610 * requests it by passing in create=1, it is critically important that
2611 * any caller checks to make sure that any buffer heads are returned
2612 * by this function are either all already mapped or marked for
2613 * delayed allocation before calling nobh_writepage() or
2614 * block_write_full_page(). Otherwise, b_blocknr could be left
2615 * unitialized, and the page write functions will be taken by
2616 * surprise.
2618 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2619 struct buffer_head *bh_result, int create)
2621 int ret = 0;
2622 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2624 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2627 * we don't want to do block allocation in writepage
2628 * so call get_block_wrap with create = 0
2630 ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2631 if (ret > 0) {
2632 bh_result->b_size = (ret << inode->i_blkbits);
2633 ret = 0;
2635 return ret;
2638 static int bget_one(handle_t *handle, struct buffer_head *bh)
2640 get_bh(bh);
2641 return 0;
2644 static int bput_one(handle_t *handle, struct buffer_head *bh)
2646 put_bh(bh);
2647 return 0;
2650 static int __ext4_journalled_writepage(struct page *page,
2651 struct writeback_control *wbc,
2652 unsigned int len)
2654 struct address_space *mapping = page->mapping;
2655 struct inode *inode = mapping->host;
2656 struct buffer_head *page_bufs;
2657 handle_t *handle = NULL;
2658 int ret = 0;
2659 int err;
2661 page_bufs = page_buffers(page);
2662 BUG_ON(!page_bufs);
2663 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2664 /* As soon as we unlock the page, it can go away, but we have
2665 * references to buffers so we are safe */
2666 unlock_page(page);
2668 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2669 if (IS_ERR(handle)) {
2670 ret = PTR_ERR(handle);
2671 goto out;
2674 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2675 do_journal_get_write_access);
2677 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2678 write_end_fn);
2679 if (ret == 0)
2680 ret = err;
2681 err = ext4_journal_stop(handle);
2682 if (!ret)
2683 ret = err;
2685 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2686 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2687 out:
2688 return ret;
2692 * Note that we don't need to start a transaction unless we're journaling data
2693 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2694 * need to file the inode to the transaction's list in ordered mode because if
2695 * we are writing back data added by write(), the inode is already there and if
2696 * we are writing back data modified via mmap(), noone guarantees in which
2697 * transaction the data will hit the disk. In case we are journaling data, we
2698 * cannot start transaction directly because transaction start ranks above page
2699 * lock so we have to do some magic.
2701 * This function can get called via...
2702 * - ext4_da_writepages after taking page lock (have journal handle)
2703 * - journal_submit_inode_data_buffers (no journal handle)
2704 * - shrink_page_list via pdflush (no journal handle)
2705 * - grab_page_cache when doing write_begin (have journal handle)
2707 * We don't do any block allocation in this function. If we have page with
2708 * multiple blocks we need to write those buffer_heads that are mapped. This
2709 * is important for mmaped based write. So if we do with blocksize 1K
2710 * truncate(f, 1024);
2711 * a = mmap(f, 0, 4096);
2712 * a[0] = 'a';
2713 * truncate(f, 4096);
2714 * we have in the page first buffer_head mapped via page_mkwrite call back
2715 * but other bufer_heads would be unmapped but dirty(dirty done via the
2716 * do_wp_page). So writepage should write the first block. If we modify
2717 * the mmap area beyond 1024 we will again get a page_fault and the
2718 * page_mkwrite callback will do the block allocation and mark the
2719 * buffer_heads mapped.
2721 * We redirty the page if we have any buffer_heads that is either delay or
2722 * unwritten in the page.
2724 * We can get recursively called as show below.
2726 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2727 * ext4_writepage()
2729 * But since we don't do any block allocation we should not deadlock.
2730 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2732 static int ext4_writepage(struct page *page,
2733 struct writeback_control *wbc)
2735 int ret = 0;
2736 loff_t size;
2737 unsigned int len;
2738 struct buffer_head *page_bufs;
2739 struct inode *inode = page->mapping->host;
2741 trace_ext4_writepage(inode, page);
2742 size = i_size_read(inode);
2743 if (page->index == size >> PAGE_CACHE_SHIFT)
2744 len = size & ~PAGE_CACHE_MASK;
2745 else
2746 len = PAGE_CACHE_SIZE;
2748 if (page_has_buffers(page)) {
2749 page_bufs = page_buffers(page);
2750 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2751 ext4_bh_delay_or_unwritten)) {
2753 * We don't want to do block allocation
2754 * So redirty the page and return
2755 * We may reach here when we do a journal commit
2756 * via journal_submit_inode_data_buffers.
2757 * If we don't have mapping block we just ignore
2758 * them. We can also reach here via shrink_page_list
2760 redirty_page_for_writepage(wbc, page);
2761 unlock_page(page);
2762 return 0;
2764 } else {
2766 * The test for page_has_buffers() is subtle:
2767 * We know the page is dirty but it lost buffers. That means
2768 * that at some moment in time after write_begin()/write_end()
2769 * has been called all buffers have been clean and thus they
2770 * must have been written at least once. So they are all
2771 * mapped and we can happily proceed with mapping them
2772 * and writing the page.
2774 * Try to initialize the buffer_heads and check whether
2775 * all are mapped and non delay. We don't want to
2776 * do block allocation here.
2778 ret = block_prepare_write(page, 0, len,
2779 noalloc_get_block_write);
2780 if (!ret) {
2781 page_bufs = page_buffers(page);
2782 /* check whether all are mapped and non delay */
2783 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2784 ext4_bh_delay_or_unwritten)) {
2785 redirty_page_for_writepage(wbc, page);
2786 unlock_page(page);
2787 return 0;
2789 } else {
2791 * We can't do block allocation here
2792 * so just redity the page and unlock
2793 * and return
2795 redirty_page_for_writepage(wbc, page);
2796 unlock_page(page);
2797 return 0;
2799 /* now mark the buffer_heads as dirty and uptodate */
2800 block_commit_write(page, 0, len);
2803 if (PageChecked(page) && ext4_should_journal_data(inode)) {
2805 * It's mmapped pagecache. Add buffers and journal it. There
2806 * doesn't seem much point in redirtying the page here.
2808 ClearPageChecked(page);
2809 return __ext4_journalled_writepage(page, wbc, len);
2812 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2813 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2814 else
2815 ret = block_write_full_page(page, noalloc_get_block_write,
2816 wbc);
2818 return ret;
2822 * This is called via ext4_da_writepages() to
2823 * calulate the total number of credits to reserve to fit
2824 * a single extent allocation into a single transaction,
2825 * ext4_da_writpeages() will loop calling this before
2826 * the block allocation.
2829 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2831 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2834 * With non-extent format the journal credit needed to
2835 * insert nrblocks contiguous block is dependent on
2836 * number of contiguous block. So we will limit
2837 * number of contiguous block to a sane value
2839 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2840 (max_blocks > EXT4_MAX_TRANS_DATA))
2841 max_blocks = EXT4_MAX_TRANS_DATA;
2843 return ext4_chunk_trans_blocks(inode, max_blocks);
2846 static int ext4_da_writepages(struct address_space *mapping,
2847 struct writeback_control *wbc)
2849 pgoff_t index;
2850 int range_whole = 0;
2851 handle_t *handle = NULL;
2852 struct mpage_da_data mpd;
2853 struct inode *inode = mapping->host;
2854 int no_nrwrite_index_update;
2855 int pages_written = 0;
2856 long pages_skipped;
2857 unsigned int max_pages;
2858 int range_cyclic, cycled = 1, io_done = 0;
2859 int needed_blocks, ret = 0;
2860 long desired_nr_to_write, nr_to_writebump = 0;
2861 loff_t range_start = wbc->range_start;
2862 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2864 trace_ext4_da_writepages(inode, wbc);
2867 * No pages to write? This is mainly a kludge to avoid starting
2868 * a transaction for special inodes like journal inode on last iput()
2869 * because that could violate lock ordering on umount
2871 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2872 return 0;
2875 * If the filesystem has aborted, it is read-only, so return
2876 * right away instead of dumping stack traces later on that
2877 * will obscure the real source of the problem. We test
2878 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2879 * the latter could be true if the filesystem is mounted
2880 * read-only, and in that case, ext4_da_writepages should
2881 * *never* be called, so if that ever happens, we would want
2882 * the stack trace.
2884 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2885 return -EROFS;
2887 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2888 range_whole = 1;
2890 range_cyclic = wbc->range_cyclic;
2891 if (wbc->range_cyclic) {
2892 index = mapping->writeback_index;
2893 if (index)
2894 cycled = 0;
2895 wbc->range_start = index << PAGE_CACHE_SHIFT;
2896 wbc->range_end = LLONG_MAX;
2897 wbc->range_cyclic = 0;
2898 } else
2899 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2902 * This works around two forms of stupidity. The first is in
2903 * the writeback code, which caps the maximum number of pages
2904 * written to be 1024 pages. This is wrong on multiple
2905 * levels; different architectues have a different page size,
2906 * which changes the maximum amount of data which gets
2907 * written. Secondly, 4 megabytes is way too small. XFS
2908 * forces this value to be 16 megabytes by multiplying
2909 * nr_to_write parameter by four, and then relies on its
2910 * allocator to allocate larger extents to make them
2911 * contiguous. Unfortunately this brings us to the second
2912 * stupidity, which is that ext4's mballoc code only allocates
2913 * at most 2048 blocks. So we force contiguous writes up to
2914 * the number of dirty blocks in the inode, or
2915 * sbi->max_writeback_mb_bump whichever is smaller.
2917 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2918 if (!range_cyclic && range_whole)
2919 desired_nr_to_write = wbc->nr_to_write * 8;
2920 else
2921 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2922 max_pages);
2923 if (desired_nr_to_write > max_pages)
2924 desired_nr_to_write = max_pages;
2926 if (wbc->nr_to_write < desired_nr_to_write) {
2927 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2928 wbc->nr_to_write = desired_nr_to_write;
2931 mpd.wbc = wbc;
2932 mpd.inode = mapping->host;
2935 * we don't want write_cache_pages to update
2936 * nr_to_write and writeback_index
2938 no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2939 wbc->no_nrwrite_index_update = 1;
2940 pages_skipped = wbc->pages_skipped;
2942 retry:
2943 while (!ret && wbc->nr_to_write > 0) {
2946 * we insert one extent at a time. So we need
2947 * credit needed for single extent allocation.
2948 * journalled mode is currently not supported
2949 * by delalloc
2951 BUG_ON(ext4_should_journal_data(inode));
2952 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2954 /* start a new transaction*/
2955 handle = ext4_journal_start(inode, needed_blocks);
2956 if (IS_ERR(handle)) {
2957 ret = PTR_ERR(handle);
2958 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2959 "%ld pages, ino %lu; err %d", __func__,
2960 wbc->nr_to_write, inode->i_ino, ret);
2961 goto out_writepages;
2965 * Now call __mpage_da_writepage to find the next
2966 * contiguous region of logical blocks that need
2967 * blocks to be allocated by ext4. We don't actually
2968 * submit the blocks for I/O here, even though
2969 * write_cache_pages thinks it will, and will set the
2970 * pages as clean for write before calling
2971 * __mpage_da_writepage().
2973 mpd.b_size = 0;
2974 mpd.b_state = 0;
2975 mpd.b_blocknr = 0;
2976 mpd.first_page = 0;
2977 mpd.next_page = 0;
2978 mpd.io_done = 0;
2979 mpd.pages_written = 0;
2980 mpd.retval = 0;
2981 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2982 &mpd);
2984 * If we have a contigous extent of pages and we
2985 * haven't done the I/O yet, map the blocks and submit
2986 * them for I/O.
2988 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2989 if (mpage_da_map_blocks(&mpd) == 0)
2990 mpage_da_submit_io(&mpd);
2991 mpd.io_done = 1;
2992 ret = MPAGE_DA_EXTENT_TAIL;
2994 trace_ext4_da_write_pages(inode, &mpd);
2995 wbc->nr_to_write -= mpd.pages_written;
2997 ext4_journal_stop(handle);
2999 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
3000 /* commit the transaction which would
3001 * free blocks released in the transaction
3002 * and try again
3004 jbd2_journal_force_commit_nested(sbi->s_journal);
3005 wbc->pages_skipped = pages_skipped;
3006 ret = 0;
3007 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
3009 * got one extent now try with
3010 * rest of the pages
3012 pages_written += mpd.pages_written;
3013 wbc->pages_skipped = pages_skipped;
3014 ret = 0;
3015 io_done = 1;
3016 } else if (wbc->nr_to_write)
3018 * There is no more writeout needed
3019 * or we requested for a noblocking writeout
3020 * and we found the device congested
3022 break;
3024 if (!io_done && !cycled) {
3025 cycled = 1;
3026 index = 0;
3027 wbc->range_start = index << PAGE_CACHE_SHIFT;
3028 wbc->range_end = mapping->writeback_index - 1;
3029 goto retry;
3031 if (pages_skipped != wbc->pages_skipped)
3032 ext4_msg(inode->i_sb, KERN_CRIT,
3033 "This should not happen leaving %s "
3034 "with nr_to_write = %ld ret = %d",
3035 __func__, wbc->nr_to_write, ret);
3037 /* Update index */
3038 index += pages_written;
3039 wbc->range_cyclic = range_cyclic;
3040 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3042 * set the writeback_index so that range_cyclic
3043 * mode will write it back later
3045 mapping->writeback_index = index;
3047 out_writepages:
3048 if (!no_nrwrite_index_update)
3049 wbc->no_nrwrite_index_update = 0;
3050 wbc->nr_to_write -= nr_to_writebump;
3051 wbc->range_start = range_start;
3052 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3053 return ret;
3056 #define FALL_BACK_TO_NONDELALLOC 1
3057 static int ext4_nonda_switch(struct super_block *sb)
3059 s64 free_blocks, dirty_blocks;
3060 struct ext4_sb_info *sbi = EXT4_SB(sb);
3063 * switch to non delalloc mode if we are running low
3064 * on free block. The free block accounting via percpu
3065 * counters can get slightly wrong with percpu_counter_batch getting
3066 * accumulated on each CPU without updating global counters
3067 * Delalloc need an accurate free block accounting. So switch
3068 * to non delalloc when we are near to error range.
3070 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3071 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3072 if (2 * free_blocks < 3 * dirty_blocks ||
3073 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3075 * free block count is less than 150% of dirty blocks
3076 * or free blocks is less than watermark
3078 return 1;
3081 * Even if we don't switch but are nearing capacity,
3082 * start pushing delalloc when 1/2 of free blocks are dirty.
3084 if (free_blocks < 2 * dirty_blocks)
3085 writeback_inodes_sb_if_idle(sb);
3087 return 0;
3090 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3091 loff_t pos, unsigned len, unsigned flags,
3092 struct page **pagep, void **fsdata)
3094 int ret, retries = 0, quota_retries = 0;
3095 struct page *page;
3096 pgoff_t index;
3097 unsigned from, to;
3098 struct inode *inode = mapping->host;
3099 handle_t *handle;
3101 index = pos >> PAGE_CACHE_SHIFT;
3102 from = pos & (PAGE_CACHE_SIZE - 1);
3103 to = from + len;
3105 if (ext4_nonda_switch(inode->i_sb)) {
3106 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3107 return ext4_write_begin(file, mapping, pos,
3108 len, flags, pagep, fsdata);
3110 *fsdata = (void *)0;
3111 trace_ext4_da_write_begin(inode, pos, len, flags);
3112 retry:
3114 * With delayed allocation, we don't log the i_disksize update
3115 * if there is delayed block allocation. But we still need
3116 * to journalling the i_disksize update if writes to the end
3117 * of file which has an already mapped buffer.
3119 handle = ext4_journal_start(inode, 1);
3120 if (IS_ERR(handle)) {
3121 ret = PTR_ERR(handle);
3122 goto out;
3124 /* We cannot recurse into the filesystem as the transaction is already
3125 * started */
3126 flags |= AOP_FLAG_NOFS;
3128 page = grab_cache_page_write_begin(mapping, index, flags);
3129 if (!page) {
3130 ext4_journal_stop(handle);
3131 ret = -ENOMEM;
3132 goto out;
3134 *pagep = page;
3136 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
3137 ext4_da_get_block_prep);
3138 if (ret < 0) {
3139 unlock_page(page);
3140 ext4_journal_stop(handle);
3141 page_cache_release(page);
3143 * block_write_begin may have instantiated a few blocks
3144 * outside i_size. Trim these off again. Don't need
3145 * i_size_read because we hold i_mutex.
3147 if (pos + len > inode->i_size)
3148 ext4_truncate_failed_write(inode);
3151 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3152 goto retry;
3154 if ((ret == -EDQUOT) &&
3155 EXT4_I(inode)->i_reserved_meta_blocks &&
3156 (quota_retries++ < 3)) {
3158 * Since we often over-estimate the number of meta
3159 * data blocks required, we may sometimes get a
3160 * spurios out of quota error even though there would
3161 * be enough space once we write the data blocks and
3162 * find out how many meta data blocks were _really_
3163 * required. So try forcing the inode write to see if
3164 * that helps.
3166 write_inode_now(inode, (quota_retries == 3));
3167 goto retry;
3169 out:
3170 return ret;
3174 * Check if we should update i_disksize
3175 * when write to the end of file but not require block allocation
3177 static int ext4_da_should_update_i_disksize(struct page *page,
3178 unsigned long offset)
3180 struct buffer_head *bh;
3181 struct inode *inode = page->mapping->host;
3182 unsigned int idx;
3183 int i;
3185 bh = page_buffers(page);
3186 idx = offset >> inode->i_blkbits;
3188 for (i = 0; i < idx; i++)
3189 bh = bh->b_this_page;
3191 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3192 return 0;
3193 return 1;
3196 static int ext4_da_write_end(struct file *file,
3197 struct address_space *mapping,
3198 loff_t pos, unsigned len, unsigned copied,
3199 struct page *page, void *fsdata)
3201 struct inode *inode = mapping->host;
3202 int ret = 0, ret2;
3203 handle_t *handle = ext4_journal_current_handle();
3204 loff_t new_i_size;
3205 unsigned long start, end;
3206 int write_mode = (int)(unsigned long)fsdata;
3208 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3209 if (ext4_should_order_data(inode)) {
3210 return ext4_ordered_write_end(file, mapping, pos,
3211 len, copied, page, fsdata);
3212 } else if (ext4_should_writeback_data(inode)) {
3213 return ext4_writeback_write_end(file, mapping, pos,
3214 len, copied, page, fsdata);
3215 } else {
3216 BUG();
3220 trace_ext4_da_write_end(inode, pos, len, copied);
3221 start = pos & (PAGE_CACHE_SIZE - 1);
3222 end = start + copied - 1;
3225 * generic_write_end() will run mark_inode_dirty() if i_size
3226 * changes. So let's piggyback the i_disksize mark_inode_dirty
3227 * into that.
3230 new_i_size = pos + copied;
3231 if (new_i_size > EXT4_I(inode)->i_disksize) {
3232 if (ext4_da_should_update_i_disksize(page, end)) {
3233 down_write(&EXT4_I(inode)->i_data_sem);
3234 if (new_i_size > EXT4_I(inode)->i_disksize) {
3236 * Updating i_disksize when extending file
3237 * without needing block allocation
3239 if (ext4_should_order_data(inode))
3240 ret = ext4_jbd2_file_inode(handle,
3241 inode);
3243 EXT4_I(inode)->i_disksize = new_i_size;
3245 up_write(&EXT4_I(inode)->i_data_sem);
3246 /* We need to mark inode dirty even if
3247 * new_i_size is less that inode->i_size
3248 * bu greater than i_disksize.(hint delalloc)
3250 ext4_mark_inode_dirty(handle, inode);
3253 ret2 = generic_write_end(file, mapping, pos, len, copied,
3254 page, fsdata);
3255 copied = ret2;
3256 if (ret2 < 0)
3257 ret = ret2;
3258 ret2 = ext4_journal_stop(handle);
3259 if (!ret)
3260 ret = ret2;
3262 return ret ? ret : copied;
3265 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3268 * Drop reserved blocks
3270 BUG_ON(!PageLocked(page));
3271 if (!page_has_buffers(page))
3272 goto out;
3274 ext4_da_page_release_reservation(page, offset);
3276 out:
3277 ext4_invalidatepage(page, offset);
3279 return;
3283 * Force all delayed allocation blocks to be allocated for a given inode.
3285 int ext4_alloc_da_blocks(struct inode *inode)
3287 trace_ext4_alloc_da_blocks(inode);
3289 if (!EXT4_I(inode)->i_reserved_data_blocks &&
3290 !EXT4_I(inode)->i_reserved_meta_blocks)
3291 return 0;
3294 * We do something simple for now. The filemap_flush() will
3295 * also start triggering a write of the data blocks, which is
3296 * not strictly speaking necessary (and for users of
3297 * laptop_mode, not even desirable). However, to do otherwise
3298 * would require replicating code paths in:
3300 * ext4_da_writepages() ->
3301 * write_cache_pages() ---> (via passed in callback function)
3302 * __mpage_da_writepage() -->
3303 * mpage_add_bh_to_extent()
3304 * mpage_da_map_blocks()
3306 * The problem is that write_cache_pages(), located in
3307 * mm/page-writeback.c, marks pages clean in preparation for
3308 * doing I/O, which is not desirable if we're not planning on
3309 * doing I/O at all.
3311 * We could call write_cache_pages(), and then redirty all of
3312 * the pages by calling redirty_page_for_writeback() but that
3313 * would be ugly in the extreme. So instead we would need to
3314 * replicate parts of the code in the above functions,
3315 * simplifying them becuase we wouldn't actually intend to
3316 * write out the pages, but rather only collect contiguous
3317 * logical block extents, call the multi-block allocator, and
3318 * then update the buffer heads with the block allocations.
3320 * For now, though, we'll cheat by calling filemap_flush(),
3321 * which will map the blocks, and start the I/O, but not
3322 * actually wait for the I/O to complete.
3324 return filemap_flush(inode->i_mapping);
3328 * bmap() is special. It gets used by applications such as lilo and by
3329 * the swapper to find the on-disk block of a specific piece of data.
3331 * Naturally, this is dangerous if the block concerned is still in the
3332 * journal. If somebody makes a swapfile on an ext4 data-journaling
3333 * filesystem and enables swap, then they may get a nasty shock when the
3334 * data getting swapped to that swapfile suddenly gets overwritten by
3335 * the original zero's written out previously to the journal and
3336 * awaiting writeback in the kernel's buffer cache.
3338 * So, if we see any bmap calls here on a modified, data-journaled file,
3339 * take extra steps to flush any blocks which might be in the cache.
3341 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3343 struct inode *inode = mapping->host;
3344 journal_t *journal;
3345 int err;
3347 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3348 test_opt(inode->i_sb, DELALLOC)) {
3350 * With delalloc we want to sync the file
3351 * so that we can make sure we allocate
3352 * blocks for file
3354 filemap_write_and_wait(mapping);
3357 if (EXT4_JOURNAL(inode) &&
3358 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3360 * This is a REALLY heavyweight approach, but the use of
3361 * bmap on dirty files is expected to be extremely rare:
3362 * only if we run lilo or swapon on a freshly made file
3363 * do we expect this to happen.
3365 * (bmap requires CAP_SYS_RAWIO so this does not
3366 * represent an unprivileged user DOS attack --- we'd be
3367 * in trouble if mortal users could trigger this path at
3368 * will.)
3370 * NB. EXT4_STATE_JDATA is not set on files other than
3371 * regular files. If somebody wants to bmap a directory
3372 * or symlink and gets confused because the buffer
3373 * hasn't yet been flushed to disk, they deserve
3374 * everything they get.
3377 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3378 journal = EXT4_JOURNAL(inode);
3379 jbd2_journal_lock_updates(journal);
3380 err = jbd2_journal_flush(journal);
3381 jbd2_journal_unlock_updates(journal);
3383 if (err)
3384 return 0;
3387 return generic_block_bmap(mapping, block, ext4_get_block);
3390 static int ext4_readpage(struct file *file, struct page *page)
3392 return mpage_readpage(page, ext4_get_block);
3395 static int
3396 ext4_readpages(struct file *file, struct address_space *mapping,
3397 struct list_head *pages, unsigned nr_pages)
3399 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3402 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3404 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3407 * If it's a full truncate we just forget about the pending dirtying
3409 if (offset == 0)
3410 ClearPageChecked(page);
3412 if (journal)
3413 jbd2_journal_invalidatepage(journal, page, offset);
3414 else
3415 block_invalidatepage(page, offset);
3418 static int ext4_releasepage(struct page *page, gfp_t wait)
3420 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3422 WARN_ON(PageChecked(page));
3423 if (!page_has_buffers(page))
3424 return 0;
3425 if (journal)
3426 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3427 else
3428 return try_to_free_buffers(page);
3432 * O_DIRECT for ext3 (or indirect map) based files
3434 * If the O_DIRECT write will extend the file then add this inode to the
3435 * orphan list. So recovery will truncate it back to the original size
3436 * if the machine crashes during the write.
3438 * If the O_DIRECT write is intantiating holes inside i_size and the machine
3439 * crashes then stale disk data _may_ be exposed inside the file. But current
3440 * VFS code falls back into buffered path in that case so we are safe.
3442 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3443 const struct iovec *iov, loff_t offset,
3444 unsigned long nr_segs)
3446 struct file *file = iocb->ki_filp;
3447 struct inode *inode = file->f_mapping->host;
3448 struct ext4_inode_info *ei = EXT4_I(inode);
3449 handle_t *handle;
3450 ssize_t ret;
3451 int orphan = 0;
3452 size_t count = iov_length(iov, nr_segs);
3453 int retries = 0;
3455 if (rw == WRITE) {
3456 loff_t final_size = offset + count;
3458 if (final_size > inode->i_size) {
3459 /* Credits for sb + inode write */
3460 handle = ext4_journal_start(inode, 2);
3461 if (IS_ERR(handle)) {
3462 ret = PTR_ERR(handle);
3463 goto out;
3465 ret = ext4_orphan_add(handle, inode);
3466 if (ret) {
3467 ext4_journal_stop(handle);
3468 goto out;
3470 orphan = 1;
3471 ei->i_disksize = inode->i_size;
3472 ext4_journal_stop(handle);
3476 retry:
3477 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3478 offset, nr_segs,
3479 ext4_get_block, NULL);
3480 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3481 goto retry;
3483 if (orphan) {
3484 int err;
3486 /* Credits for sb + inode write */
3487 handle = ext4_journal_start(inode, 2);
3488 if (IS_ERR(handle)) {
3489 /* This is really bad luck. We've written the data
3490 * but cannot extend i_size. Bail out and pretend
3491 * the write failed... */
3492 ret = PTR_ERR(handle);
3493 if (inode->i_nlink)
3494 ext4_orphan_del(NULL, inode);
3496 goto out;
3498 if (inode->i_nlink)
3499 ext4_orphan_del(handle, inode);
3500 if (ret > 0) {
3501 loff_t end = offset + ret;
3502 if (end > inode->i_size) {
3503 ei->i_disksize = end;
3504 i_size_write(inode, end);
3506 * We're going to return a positive `ret'
3507 * here due to non-zero-length I/O, so there's
3508 * no way of reporting error returns from
3509 * ext4_mark_inode_dirty() to userspace. So
3510 * ignore it.
3512 ext4_mark_inode_dirty(handle, inode);
3515 err = ext4_journal_stop(handle);
3516 if (ret == 0)
3517 ret = err;
3519 out:
3520 return ret;
3523 static int ext4_get_block_dio_write(struct inode *inode, sector_t iblock,
3524 struct buffer_head *bh_result, int create)
3526 handle_t *handle = NULL;
3527 int ret = 0;
3528 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
3529 int dio_credits;
3531 ext4_debug("ext4_get_block_dio_write: inode %lu, create flag %d\n",
3532 inode->i_ino, create);
3534 * DIO VFS code passes create = 0 flag for write to
3535 * the middle of file. It does this to avoid block
3536 * allocation for holes, to prevent expose stale data
3537 * out when there is parallel buffered read (which does
3538 * not hold the i_mutex lock) while direct IO write has
3539 * not completed. DIO request on holes finally falls back
3540 * to buffered IO for this reason.
3542 * For ext4 extent based file, since we support fallocate,
3543 * new allocated extent as uninitialized, for holes, we
3544 * could fallocate blocks for holes, thus parallel
3545 * buffered IO read will zero out the page when read on
3546 * a hole while parallel DIO write to the hole has not completed.
3548 * when we come here, we know it's a direct IO write to
3549 * to the middle of file (<i_size)
3550 * so it's safe to override the create flag from VFS.
3552 create = EXT4_GET_BLOCKS_DIO_CREATE_EXT;
3554 if (max_blocks > DIO_MAX_BLOCKS)
3555 max_blocks = DIO_MAX_BLOCKS;
3556 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
3557 handle = ext4_journal_start(inode, dio_credits);
3558 if (IS_ERR(handle)) {
3559 ret = PTR_ERR(handle);
3560 goto out;
3562 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
3563 create);
3564 if (ret > 0) {
3565 bh_result->b_size = (ret << inode->i_blkbits);
3566 ret = 0;
3568 ext4_journal_stop(handle);
3569 out:
3570 return ret;
3573 static void ext4_free_io_end(ext4_io_end_t *io)
3575 BUG_ON(!io);
3576 iput(io->inode);
3577 kfree(io);
3579 static void dump_aio_dio_list(struct inode * inode)
3581 #ifdef EXT4_DEBUG
3582 struct list_head *cur, *before, *after;
3583 ext4_io_end_t *io, *io0, *io1;
3585 if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
3586 ext4_debug("inode %lu aio dio list is empty\n", inode->i_ino);
3587 return;
3590 ext4_debug("Dump inode %lu aio_dio_completed_IO list \n", inode->i_ino);
3591 list_for_each_entry(io, &EXT4_I(inode)->i_aio_dio_complete_list, list){
3592 cur = &io->list;
3593 before = cur->prev;
3594 io0 = container_of(before, ext4_io_end_t, list);
3595 after = cur->next;
3596 io1 = container_of(after, ext4_io_end_t, list);
3598 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3599 io, inode->i_ino, io0, io1);
3601 #endif
3605 * check a range of space and convert unwritten extents to written.
3607 static int ext4_end_aio_dio_nolock(ext4_io_end_t *io)
3609 struct inode *inode = io->inode;
3610 loff_t offset = io->offset;
3611 ssize_t size = io->size;
3612 int ret = 0;
3614 ext4_debug("end_aio_dio_onlock: io 0x%p from inode %lu,list->next 0x%p,"
3615 "list->prev 0x%p\n",
3616 io, inode->i_ino, io->list.next, io->list.prev);
3618 if (list_empty(&io->list))
3619 return ret;
3621 if (io->flag != DIO_AIO_UNWRITTEN)
3622 return ret;
3624 if (offset + size <= i_size_read(inode))
3625 ret = ext4_convert_unwritten_extents(inode, offset, size);
3627 if (ret < 0) {
3628 printk(KERN_EMERG "%s: failed to convert unwritten"
3629 "extents to written extents, error is %d"
3630 " io is still on inode %lu aio dio list\n",
3631 __func__, ret, inode->i_ino);
3632 return ret;
3635 /* clear the DIO AIO unwritten flag */
3636 io->flag = 0;
3637 return ret;
3640 * work on completed aio dio IO, to convert unwritten extents to extents
3642 static void ext4_end_aio_dio_work(struct work_struct *work)
3644 ext4_io_end_t *io = container_of(work, ext4_io_end_t, work);
3645 struct inode *inode = io->inode;
3646 int ret = 0;
3648 mutex_lock(&inode->i_mutex);
3649 ret = ext4_end_aio_dio_nolock(io);
3650 if (ret >= 0) {
3651 if (!list_empty(&io->list))
3652 list_del_init(&io->list);
3653 ext4_free_io_end(io);
3655 mutex_unlock(&inode->i_mutex);
3658 * This function is called from ext4_sync_file().
3660 * When AIO DIO IO is completed, the work to convert unwritten
3661 * extents to written is queued on workqueue but may not get immediately
3662 * scheduled. When fsync is called, we need to ensure the
3663 * conversion is complete before fsync returns.
3664 * The inode keeps track of a list of completed AIO from DIO path
3665 * that might needs to do the conversion. This function walks through
3666 * the list and convert the related unwritten extents to written.
3668 int flush_aio_dio_completed_IO(struct inode *inode)
3670 ext4_io_end_t *io;
3671 int ret = 0;
3672 int ret2 = 0;
3674 if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list))
3675 return ret;
3677 dump_aio_dio_list(inode);
3678 while (!list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
3679 io = list_entry(EXT4_I(inode)->i_aio_dio_complete_list.next,
3680 ext4_io_end_t, list);
3682 * Calling ext4_end_aio_dio_nolock() to convert completed
3683 * IO to written.
3685 * When ext4_sync_file() is called, run_queue() may already
3686 * about to flush the work corresponding to this io structure.
3687 * It will be upset if it founds the io structure related
3688 * to the work-to-be schedule is freed.
3690 * Thus we need to keep the io structure still valid here after
3691 * convertion finished. The io structure has a flag to
3692 * avoid double converting from both fsync and background work
3693 * queue work.
3695 ret = ext4_end_aio_dio_nolock(io);
3696 if (ret < 0)
3697 ret2 = ret;
3698 else
3699 list_del_init(&io->list);
3701 return (ret2 < 0) ? ret2 : 0;
3704 static ext4_io_end_t *ext4_init_io_end (struct inode *inode)
3706 ext4_io_end_t *io = NULL;
3708 io = kmalloc(sizeof(*io), GFP_NOFS);
3710 if (io) {
3711 igrab(inode);
3712 io->inode = inode;
3713 io->flag = 0;
3714 io->offset = 0;
3715 io->size = 0;
3716 io->error = 0;
3717 INIT_WORK(&io->work, ext4_end_aio_dio_work);
3718 INIT_LIST_HEAD(&io->list);
3721 return io;
3724 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3725 ssize_t size, void *private)
3727 ext4_io_end_t *io_end = iocb->private;
3728 struct workqueue_struct *wq;
3730 /* if not async direct IO or dio with 0 bytes write, just return */
3731 if (!io_end || !size)
3732 return;
3734 ext_debug("ext4_end_io_dio(): io_end 0x%p"
3735 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3736 iocb->private, io_end->inode->i_ino, iocb, offset,
3737 size);
3739 /* if not aio dio with unwritten extents, just free io and return */
3740 if (io_end->flag != DIO_AIO_UNWRITTEN){
3741 ext4_free_io_end(io_end);
3742 iocb->private = NULL;
3743 return;
3746 io_end->offset = offset;
3747 io_end->size = size;
3748 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3750 /* queue the work to convert unwritten extents to written */
3751 queue_work(wq, &io_end->work);
3753 /* Add the io_end to per-inode completed aio dio list*/
3754 list_add_tail(&io_end->list,
3755 &EXT4_I(io_end->inode)->i_aio_dio_complete_list);
3756 iocb->private = NULL;
3759 * For ext4 extent files, ext4 will do direct-io write to holes,
3760 * preallocated extents, and those write extend the file, no need to
3761 * fall back to buffered IO.
3763 * For holes, we fallocate those blocks, mark them as unintialized
3764 * If those blocks were preallocated, we mark sure they are splited, but
3765 * still keep the range to write as unintialized.
3767 * The unwrritten extents will be converted to written when DIO is completed.
3768 * For async direct IO, since the IO may still pending when return, we
3769 * set up an end_io call back function, which will do the convertion
3770 * when async direct IO completed.
3772 * If the O_DIRECT write will extend the file then add this inode to the
3773 * orphan list. So recovery will truncate it back to the original size
3774 * if the machine crashes during the write.
3777 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3778 const struct iovec *iov, loff_t offset,
3779 unsigned long nr_segs)
3781 struct file *file = iocb->ki_filp;
3782 struct inode *inode = file->f_mapping->host;
3783 ssize_t ret;
3784 size_t count = iov_length(iov, nr_segs);
3786 loff_t final_size = offset + count;
3787 if (rw == WRITE && final_size <= inode->i_size) {
3789 * We could direct write to holes and fallocate.
3791 * Allocated blocks to fill the hole are marked as uninitialized
3792 * to prevent paralel buffered read to expose the stale data
3793 * before DIO complete the data IO.
3795 * As to previously fallocated extents, ext4 get_block
3796 * will just simply mark the buffer mapped but still
3797 * keep the extents uninitialized.
3799 * for non AIO case, we will convert those unwritten extents
3800 * to written after return back from blockdev_direct_IO.
3802 * for async DIO, the conversion needs to be defered when
3803 * the IO is completed. The ext4 end_io callback function
3804 * will be called to take care of the conversion work.
3805 * Here for async case, we allocate an io_end structure to
3806 * hook to the iocb.
3808 iocb->private = NULL;
3809 EXT4_I(inode)->cur_aio_dio = NULL;
3810 if (!is_sync_kiocb(iocb)) {
3811 iocb->private = ext4_init_io_end(inode);
3812 if (!iocb->private)
3813 return -ENOMEM;
3815 * we save the io structure for current async
3816 * direct IO, so that later ext4_get_blocks()
3817 * could flag the io structure whether there
3818 * is a unwritten extents needs to be converted
3819 * when IO is completed.
3821 EXT4_I(inode)->cur_aio_dio = iocb->private;
3824 ret = blockdev_direct_IO(rw, iocb, inode,
3825 inode->i_sb->s_bdev, iov,
3826 offset, nr_segs,
3827 ext4_get_block_dio_write,
3828 ext4_end_io_dio);
3829 if (iocb->private)
3830 EXT4_I(inode)->cur_aio_dio = NULL;
3832 * The io_end structure takes a reference to the inode,
3833 * that structure needs to be destroyed and the
3834 * reference to the inode need to be dropped, when IO is
3835 * complete, even with 0 byte write, or failed.
3837 * In the successful AIO DIO case, the io_end structure will be
3838 * desctroyed and the reference to the inode will be dropped
3839 * after the end_io call back function is called.
3841 * In the case there is 0 byte write, or error case, since
3842 * VFS direct IO won't invoke the end_io call back function,
3843 * we need to free the end_io structure here.
3845 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3846 ext4_free_io_end(iocb->private);
3847 iocb->private = NULL;
3848 } else if (ret > 0 && ext4_test_inode_state(inode,
3849 EXT4_STATE_DIO_UNWRITTEN)) {
3850 int err;
3852 * for non AIO case, since the IO is already
3853 * completed, we could do the convertion right here
3855 err = ext4_convert_unwritten_extents(inode,
3856 offset, ret);
3857 if (err < 0)
3858 ret = err;
3859 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3861 return ret;
3864 /* for write the the end of file case, we fall back to old way */
3865 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3868 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3869 const struct iovec *iov, loff_t offset,
3870 unsigned long nr_segs)
3872 struct file *file = iocb->ki_filp;
3873 struct inode *inode = file->f_mapping->host;
3875 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3876 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3878 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3882 * Pages can be marked dirty completely asynchronously from ext4's journalling
3883 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3884 * much here because ->set_page_dirty is called under VFS locks. The page is
3885 * not necessarily locked.
3887 * We cannot just dirty the page and leave attached buffers clean, because the
3888 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3889 * or jbddirty because all the journalling code will explode.
3891 * So what we do is to mark the page "pending dirty" and next time writepage
3892 * is called, propagate that into the buffers appropriately.
3894 static int ext4_journalled_set_page_dirty(struct page *page)
3896 SetPageChecked(page);
3897 return __set_page_dirty_nobuffers(page);
3900 static const struct address_space_operations ext4_ordered_aops = {
3901 .readpage = ext4_readpage,
3902 .readpages = ext4_readpages,
3903 .writepage = ext4_writepage,
3904 .sync_page = block_sync_page,
3905 .write_begin = ext4_write_begin,
3906 .write_end = ext4_ordered_write_end,
3907 .bmap = ext4_bmap,
3908 .invalidatepage = ext4_invalidatepage,
3909 .releasepage = ext4_releasepage,
3910 .direct_IO = ext4_direct_IO,
3911 .migratepage = buffer_migrate_page,
3912 .is_partially_uptodate = block_is_partially_uptodate,
3913 .error_remove_page = generic_error_remove_page,
3916 static const struct address_space_operations ext4_writeback_aops = {
3917 .readpage = ext4_readpage,
3918 .readpages = ext4_readpages,
3919 .writepage = ext4_writepage,
3920 .sync_page = block_sync_page,
3921 .write_begin = ext4_write_begin,
3922 .write_end = ext4_writeback_write_end,
3923 .bmap = ext4_bmap,
3924 .invalidatepage = ext4_invalidatepage,
3925 .releasepage = ext4_releasepage,
3926 .direct_IO = ext4_direct_IO,
3927 .migratepage = buffer_migrate_page,
3928 .is_partially_uptodate = block_is_partially_uptodate,
3929 .error_remove_page = generic_error_remove_page,
3932 static const struct address_space_operations ext4_journalled_aops = {
3933 .readpage = ext4_readpage,
3934 .readpages = ext4_readpages,
3935 .writepage = ext4_writepage,
3936 .sync_page = block_sync_page,
3937 .write_begin = ext4_write_begin,
3938 .write_end = ext4_journalled_write_end,
3939 .set_page_dirty = ext4_journalled_set_page_dirty,
3940 .bmap = ext4_bmap,
3941 .invalidatepage = ext4_invalidatepage,
3942 .releasepage = ext4_releasepage,
3943 .is_partially_uptodate = block_is_partially_uptodate,
3944 .error_remove_page = generic_error_remove_page,
3947 static const struct address_space_operations ext4_da_aops = {
3948 .readpage = ext4_readpage,
3949 .readpages = ext4_readpages,
3950 .writepage = ext4_writepage,
3951 .writepages = ext4_da_writepages,
3952 .sync_page = block_sync_page,
3953 .write_begin = ext4_da_write_begin,
3954 .write_end = ext4_da_write_end,
3955 .bmap = ext4_bmap,
3956 .invalidatepage = ext4_da_invalidatepage,
3957 .releasepage = ext4_releasepage,
3958 .direct_IO = ext4_direct_IO,
3959 .migratepage = buffer_migrate_page,
3960 .is_partially_uptodate = block_is_partially_uptodate,
3961 .error_remove_page = generic_error_remove_page,
3964 void ext4_set_aops(struct inode *inode)
3966 if (ext4_should_order_data(inode) &&
3967 test_opt(inode->i_sb, DELALLOC))
3968 inode->i_mapping->a_ops = &ext4_da_aops;
3969 else if (ext4_should_order_data(inode))
3970 inode->i_mapping->a_ops = &ext4_ordered_aops;
3971 else if (ext4_should_writeback_data(inode) &&
3972 test_opt(inode->i_sb, DELALLOC))
3973 inode->i_mapping->a_ops = &ext4_da_aops;
3974 else if (ext4_should_writeback_data(inode))
3975 inode->i_mapping->a_ops = &ext4_writeback_aops;
3976 else
3977 inode->i_mapping->a_ops = &ext4_journalled_aops;
3981 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3982 * up to the end of the block which corresponds to `from'.
3983 * This required during truncate. We need to physically zero the tail end
3984 * of that block so it doesn't yield old data if the file is later grown.
3986 int ext4_block_truncate_page(handle_t *handle,
3987 struct address_space *mapping, loff_t from)
3989 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3990 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3991 unsigned blocksize, length, pos;
3992 ext4_lblk_t iblock;
3993 struct inode *inode = mapping->host;
3994 struct buffer_head *bh;
3995 struct page *page;
3996 int err = 0;
3998 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3999 mapping_gfp_mask(mapping) & ~__GFP_FS);
4000 if (!page)
4001 return -EINVAL;
4003 blocksize = inode->i_sb->s_blocksize;
4004 length = blocksize - (offset & (blocksize - 1));
4005 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
4008 * For "nobh" option, we can only work if we don't need to
4009 * read-in the page - otherwise we create buffers to do the IO.
4011 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
4012 ext4_should_writeback_data(inode) && PageUptodate(page)) {
4013 zero_user(page, offset, length);
4014 set_page_dirty(page);
4015 goto unlock;
4018 if (!page_has_buffers(page))
4019 create_empty_buffers(page, blocksize, 0);
4021 /* Find the buffer that contains "offset" */
4022 bh = page_buffers(page);
4023 pos = blocksize;
4024 while (offset >= pos) {
4025 bh = bh->b_this_page;
4026 iblock++;
4027 pos += blocksize;
4030 err = 0;
4031 if (buffer_freed(bh)) {
4032 BUFFER_TRACE(bh, "freed: skip");
4033 goto unlock;
4036 if (!buffer_mapped(bh)) {
4037 BUFFER_TRACE(bh, "unmapped");
4038 ext4_get_block(inode, iblock, bh, 0);
4039 /* unmapped? It's a hole - nothing to do */
4040 if (!buffer_mapped(bh)) {
4041 BUFFER_TRACE(bh, "still unmapped");
4042 goto unlock;
4046 /* Ok, it's mapped. Make sure it's up-to-date */
4047 if (PageUptodate(page))
4048 set_buffer_uptodate(bh);
4050 if (!buffer_uptodate(bh)) {
4051 err = -EIO;
4052 ll_rw_block(READ, 1, &bh);
4053 wait_on_buffer(bh);
4054 /* Uhhuh. Read error. Complain and punt. */
4055 if (!buffer_uptodate(bh))
4056 goto unlock;
4059 if (ext4_should_journal_data(inode)) {
4060 BUFFER_TRACE(bh, "get write access");
4061 err = ext4_journal_get_write_access(handle, bh);
4062 if (err)
4063 goto unlock;
4066 zero_user(page, offset, length);
4068 BUFFER_TRACE(bh, "zeroed end of block");
4070 err = 0;
4071 if (ext4_should_journal_data(inode)) {
4072 err = ext4_handle_dirty_metadata(handle, inode, bh);
4073 } else {
4074 if (ext4_should_order_data(inode))
4075 err = ext4_jbd2_file_inode(handle, inode);
4076 mark_buffer_dirty(bh);
4079 unlock:
4080 unlock_page(page);
4081 page_cache_release(page);
4082 return err;
4086 * Probably it should be a library function... search for first non-zero word
4087 * or memcmp with zero_page, whatever is better for particular architecture.
4088 * Linus?
4090 static inline int all_zeroes(__le32 *p, __le32 *q)
4092 while (p < q)
4093 if (*p++)
4094 return 0;
4095 return 1;
4099 * ext4_find_shared - find the indirect blocks for partial truncation.
4100 * @inode: inode in question
4101 * @depth: depth of the affected branch
4102 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
4103 * @chain: place to store the pointers to partial indirect blocks
4104 * @top: place to the (detached) top of branch
4106 * This is a helper function used by ext4_truncate().
4108 * When we do truncate() we may have to clean the ends of several
4109 * indirect blocks but leave the blocks themselves alive. Block is
4110 * partially truncated if some data below the new i_size is refered
4111 * from it (and it is on the path to the first completely truncated
4112 * data block, indeed). We have to free the top of that path along
4113 * with everything to the right of the path. Since no allocation
4114 * past the truncation point is possible until ext4_truncate()
4115 * finishes, we may safely do the latter, but top of branch may
4116 * require special attention - pageout below the truncation point
4117 * might try to populate it.
4119 * We atomically detach the top of branch from the tree, store the
4120 * block number of its root in *@top, pointers to buffer_heads of
4121 * partially truncated blocks - in @chain[].bh and pointers to
4122 * their last elements that should not be removed - in
4123 * @chain[].p. Return value is the pointer to last filled element
4124 * of @chain.
4126 * The work left to caller to do the actual freeing of subtrees:
4127 * a) free the subtree starting from *@top
4128 * b) free the subtrees whose roots are stored in
4129 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4130 * c) free the subtrees growing from the inode past the @chain[0].
4131 * (no partially truncated stuff there). */
4133 static Indirect *ext4_find_shared(struct inode *inode, int depth,
4134 ext4_lblk_t offsets[4], Indirect chain[4],
4135 __le32 *top)
4137 Indirect *partial, *p;
4138 int k, err;
4140 *top = 0;
4141 /* Make k index the deepest non-null offest + 1 */
4142 for (k = depth; k > 1 && !offsets[k-1]; k--)
4144 partial = ext4_get_branch(inode, k, offsets, chain, &err);
4145 /* Writer: pointers */
4146 if (!partial)
4147 partial = chain + k-1;
4149 * If the branch acquired continuation since we've looked at it -
4150 * fine, it should all survive and (new) top doesn't belong to us.
4152 if (!partial->key && *partial->p)
4153 /* Writer: end */
4154 goto no_top;
4155 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4158 * OK, we've found the last block that must survive. The rest of our
4159 * branch should be detached before unlocking. However, if that rest
4160 * of branch is all ours and does not grow immediately from the inode
4161 * it's easier to cheat and just decrement partial->p.
4163 if (p == chain + k - 1 && p > chain) {
4164 p->p--;
4165 } else {
4166 *top = *p->p;
4167 /* Nope, don't do this in ext4. Must leave the tree intact */
4168 #if 0
4169 *p->p = 0;
4170 #endif
4172 /* Writer: end */
4174 while (partial > p) {
4175 brelse(partial->bh);
4176 partial--;
4178 no_top:
4179 return partial;
4183 * Zero a number of block pointers in either an inode or an indirect block.
4184 * If we restart the transaction we must again get write access to the
4185 * indirect block for further modification.
4187 * We release `count' blocks on disk, but (last - first) may be greater
4188 * than `count' because there can be holes in there.
4190 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
4191 struct buffer_head *bh,
4192 ext4_fsblk_t block_to_free,
4193 unsigned long count, __le32 *first,
4194 __le32 *last)
4196 __le32 *p;
4197 int is_metadata = S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode);
4199 if (try_to_extend_transaction(handle, inode)) {
4200 if (bh) {
4201 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4202 ext4_handle_dirty_metadata(handle, inode, bh);
4204 ext4_mark_inode_dirty(handle, inode);
4205 ext4_truncate_restart_trans(handle, inode,
4206 blocks_for_truncate(inode));
4207 if (bh) {
4208 BUFFER_TRACE(bh, "retaking write access");
4209 ext4_journal_get_write_access(handle, bh);
4214 * Any buffers which are on the journal will be in memory. We
4215 * find them on the hash table so jbd2_journal_revoke() will
4216 * run jbd2_journal_forget() on them. We've already detached
4217 * each block from the file, so bforget() in
4218 * jbd2_journal_forget() should be safe.
4220 * AKPM: turn on bforget in jbd2_journal_forget()!!!
4222 for (p = first; p < last; p++) {
4223 u32 nr = le32_to_cpu(*p);
4224 if (nr) {
4225 struct buffer_head *tbh;
4227 *p = 0;
4228 tbh = sb_find_get_block(inode->i_sb, nr);
4229 ext4_forget(handle, is_metadata, inode, tbh, nr);
4233 ext4_free_blocks(handle, inode, block_to_free, count, is_metadata);
4237 * ext4_free_data - free a list of data blocks
4238 * @handle: handle for this transaction
4239 * @inode: inode we are dealing with
4240 * @this_bh: indirect buffer_head which contains *@first and *@last
4241 * @first: array of block numbers
4242 * @last: points immediately past the end of array
4244 * We are freeing all blocks refered from that array (numbers are stored as
4245 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4247 * We accumulate contiguous runs of blocks to free. Conveniently, if these
4248 * blocks are contiguous then releasing them at one time will only affect one
4249 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4250 * actually use a lot of journal space.
4252 * @this_bh will be %NULL if @first and @last point into the inode's direct
4253 * block pointers.
4255 static void ext4_free_data(handle_t *handle, struct inode *inode,
4256 struct buffer_head *this_bh,
4257 __le32 *first, __le32 *last)
4259 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
4260 unsigned long count = 0; /* Number of blocks in the run */
4261 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
4262 corresponding to
4263 block_to_free */
4264 ext4_fsblk_t nr; /* Current block # */
4265 __le32 *p; /* Pointer into inode/ind
4266 for current block */
4267 int err;
4269 if (this_bh) { /* For indirect block */
4270 BUFFER_TRACE(this_bh, "get_write_access");
4271 err = ext4_journal_get_write_access(handle, this_bh);
4272 /* Important: if we can't update the indirect pointers
4273 * to the blocks, we can't free them. */
4274 if (err)
4275 return;
4278 for (p = first; p < last; p++) {
4279 nr = le32_to_cpu(*p);
4280 if (nr) {
4281 /* accumulate blocks to free if they're contiguous */
4282 if (count == 0) {
4283 block_to_free = nr;
4284 block_to_free_p = p;
4285 count = 1;
4286 } else if (nr == block_to_free + count) {
4287 count++;
4288 } else {
4289 ext4_clear_blocks(handle, inode, this_bh,
4290 block_to_free,
4291 count, block_to_free_p, p);
4292 block_to_free = nr;
4293 block_to_free_p = p;
4294 count = 1;
4299 if (count > 0)
4300 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4301 count, block_to_free_p, p);
4303 if (this_bh) {
4304 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4307 * The buffer head should have an attached journal head at this
4308 * point. However, if the data is corrupted and an indirect
4309 * block pointed to itself, it would have been detached when
4310 * the block was cleared. Check for this instead of OOPSing.
4312 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4313 ext4_handle_dirty_metadata(handle, inode, this_bh);
4314 else
4315 ext4_error(inode->i_sb, __func__,
4316 "circular indirect block detected, "
4317 "inode=%lu, block=%llu",
4318 inode->i_ino,
4319 (unsigned long long) this_bh->b_blocknr);
4324 * ext4_free_branches - free an array of branches
4325 * @handle: JBD handle for this transaction
4326 * @inode: inode we are dealing with
4327 * @parent_bh: the buffer_head which contains *@first and *@last
4328 * @first: array of block numbers
4329 * @last: pointer immediately past the end of array
4330 * @depth: depth of the branches to free
4332 * We are freeing all blocks refered from these branches (numbers are
4333 * stored as little-endian 32-bit) and updating @inode->i_blocks
4334 * appropriately.
4336 static void ext4_free_branches(handle_t *handle, struct inode *inode,
4337 struct buffer_head *parent_bh,
4338 __le32 *first, __le32 *last, int depth)
4340 ext4_fsblk_t nr;
4341 __le32 *p;
4343 if (ext4_handle_is_aborted(handle))
4344 return;
4346 if (depth--) {
4347 struct buffer_head *bh;
4348 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4349 p = last;
4350 while (--p >= first) {
4351 nr = le32_to_cpu(*p);
4352 if (!nr)
4353 continue; /* A hole */
4355 /* Go read the buffer for the next level down */
4356 bh = sb_bread(inode->i_sb, nr);
4359 * A read failure? Report error and clear slot
4360 * (should be rare).
4362 if (!bh) {
4363 ext4_error(inode->i_sb, "ext4_free_branches",
4364 "Read failure, inode=%lu, block=%llu",
4365 inode->i_ino, nr);
4366 continue;
4369 /* This zaps the entire block. Bottom up. */
4370 BUFFER_TRACE(bh, "free child branches");
4371 ext4_free_branches(handle, inode, bh,
4372 (__le32 *) bh->b_data,
4373 (__le32 *) bh->b_data + addr_per_block,
4374 depth);
4377 * We've probably journalled the indirect block several
4378 * times during the truncate. But it's no longer
4379 * needed and we now drop it from the transaction via
4380 * jbd2_journal_revoke().
4382 * That's easy if it's exclusively part of this
4383 * transaction. But if it's part of the committing
4384 * transaction then jbd2_journal_forget() will simply
4385 * brelse() it. That means that if the underlying
4386 * block is reallocated in ext4_get_block(),
4387 * unmap_underlying_metadata() will find this block
4388 * and will try to get rid of it. damn, damn.
4390 * If this block has already been committed to the
4391 * journal, a revoke record will be written. And
4392 * revoke records must be emitted *before* clearing
4393 * this block's bit in the bitmaps.
4395 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
4398 * Everything below this this pointer has been
4399 * released. Now let this top-of-subtree go.
4401 * We want the freeing of this indirect block to be
4402 * atomic in the journal with the updating of the
4403 * bitmap block which owns it. So make some room in
4404 * the journal.
4406 * We zero the parent pointer *after* freeing its
4407 * pointee in the bitmaps, so if extend_transaction()
4408 * for some reason fails to put the bitmap changes and
4409 * the release into the same transaction, recovery
4410 * will merely complain about releasing a free block,
4411 * rather than leaking blocks.
4413 if (ext4_handle_is_aborted(handle))
4414 return;
4415 if (try_to_extend_transaction(handle, inode)) {
4416 ext4_mark_inode_dirty(handle, inode);
4417 ext4_truncate_restart_trans(handle, inode,
4418 blocks_for_truncate(inode));
4421 ext4_free_blocks(handle, inode, nr, 1, 1);
4423 if (parent_bh) {
4425 * The block which we have just freed is
4426 * pointed to by an indirect block: journal it
4428 BUFFER_TRACE(parent_bh, "get_write_access");
4429 if (!ext4_journal_get_write_access(handle,
4430 parent_bh)){
4431 *p = 0;
4432 BUFFER_TRACE(parent_bh,
4433 "call ext4_handle_dirty_metadata");
4434 ext4_handle_dirty_metadata(handle,
4435 inode,
4436 parent_bh);
4440 } else {
4441 /* We have reached the bottom of the tree. */
4442 BUFFER_TRACE(parent_bh, "free data blocks");
4443 ext4_free_data(handle, inode, parent_bh, first, last);
4447 int ext4_can_truncate(struct inode *inode)
4449 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4450 return 0;
4451 if (S_ISREG(inode->i_mode))
4452 return 1;
4453 if (S_ISDIR(inode->i_mode))
4454 return 1;
4455 if (S_ISLNK(inode->i_mode))
4456 return !ext4_inode_is_fast_symlink(inode);
4457 return 0;
4461 * ext4_truncate()
4463 * We block out ext4_get_block() block instantiations across the entire
4464 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4465 * simultaneously on behalf of the same inode.
4467 * As we work through the truncate and commmit bits of it to the journal there
4468 * is one core, guiding principle: the file's tree must always be consistent on
4469 * disk. We must be able to restart the truncate after a crash.
4471 * The file's tree may be transiently inconsistent in memory (although it
4472 * probably isn't), but whenever we close off and commit a journal transaction,
4473 * the contents of (the filesystem + the journal) must be consistent and
4474 * restartable. It's pretty simple, really: bottom up, right to left (although
4475 * left-to-right works OK too).
4477 * Note that at recovery time, journal replay occurs *before* the restart of
4478 * truncate against the orphan inode list.
4480 * The committed inode has the new, desired i_size (which is the same as
4481 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4482 * that this inode's truncate did not complete and it will again call
4483 * ext4_truncate() to have another go. So there will be instantiated blocks
4484 * to the right of the truncation point in a crashed ext4 filesystem. But
4485 * that's fine - as long as they are linked from the inode, the post-crash
4486 * ext4_truncate() run will find them and release them.
4488 void ext4_truncate(struct inode *inode)
4490 handle_t *handle;
4491 struct ext4_inode_info *ei = EXT4_I(inode);
4492 __le32 *i_data = ei->i_data;
4493 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4494 struct address_space *mapping = inode->i_mapping;
4495 ext4_lblk_t offsets[4];
4496 Indirect chain[4];
4497 Indirect *partial;
4498 __le32 nr = 0;
4499 int n;
4500 ext4_lblk_t last_block;
4501 unsigned blocksize = inode->i_sb->s_blocksize;
4503 if (!ext4_can_truncate(inode))
4504 return;
4506 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4508 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4509 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4511 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4512 ext4_ext_truncate(inode);
4513 return;
4516 handle = start_transaction(inode);
4517 if (IS_ERR(handle))
4518 return; /* AKPM: return what? */
4520 last_block = (inode->i_size + blocksize-1)
4521 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4523 if (inode->i_size & (blocksize - 1))
4524 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4525 goto out_stop;
4527 n = ext4_block_to_path(inode, last_block, offsets, NULL);
4528 if (n == 0)
4529 goto out_stop; /* error */
4532 * OK. This truncate is going to happen. We add the inode to the
4533 * orphan list, so that if this truncate spans multiple transactions,
4534 * and we crash, we will resume the truncate when the filesystem
4535 * recovers. It also marks the inode dirty, to catch the new size.
4537 * Implication: the file must always be in a sane, consistent
4538 * truncatable state while each transaction commits.
4540 if (ext4_orphan_add(handle, inode))
4541 goto out_stop;
4544 * From here we block out all ext4_get_block() callers who want to
4545 * modify the block allocation tree.
4547 down_write(&ei->i_data_sem);
4549 ext4_discard_preallocations(inode);
4552 * The orphan list entry will now protect us from any crash which
4553 * occurs before the truncate completes, so it is now safe to propagate
4554 * the new, shorter inode size (held for now in i_size) into the
4555 * on-disk inode. We do this via i_disksize, which is the value which
4556 * ext4 *really* writes onto the disk inode.
4558 ei->i_disksize = inode->i_size;
4560 if (n == 1) { /* direct blocks */
4561 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4562 i_data + EXT4_NDIR_BLOCKS);
4563 goto do_indirects;
4566 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4567 /* Kill the top of shared branch (not detached) */
4568 if (nr) {
4569 if (partial == chain) {
4570 /* Shared branch grows from the inode */
4571 ext4_free_branches(handle, inode, NULL,
4572 &nr, &nr+1, (chain+n-1) - partial);
4573 *partial->p = 0;
4575 * We mark the inode dirty prior to restart,
4576 * and prior to stop. No need for it here.
4578 } else {
4579 /* Shared branch grows from an indirect block */
4580 BUFFER_TRACE(partial->bh, "get_write_access");
4581 ext4_free_branches(handle, inode, partial->bh,
4582 partial->p,
4583 partial->p+1, (chain+n-1) - partial);
4586 /* Clear the ends of indirect blocks on the shared branch */
4587 while (partial > chain) {
4588 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4589 (__le32*)partial->bh->b_data+addr_per_block,
4590 (chain+n-1) - partial);
4591 BUFFER_TRACE(partial->bh, "call brelse");
4592 brelse(partial->bh);
4593 partial--;
4595 do_indirects:
4596 /* Kill the remaining (whole) subtrees */
4597 switch (offsets[0]) {
4598 default:
4599 nr = i_data[EXT4_IND_BLOCK];
4600 if (nr) {
4601 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4602 i_data[EXT4_IND_BLOCK] = 0;
4604 case EXT4_IND_BLOCK:
4605 nr = i_data[EXT4_DIND_BLOCK];
4606 if (nr) {
4607 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4608 i_data[EXT4_DIND_BLOCK] = 0;
4610 case EXT4_DIND_BLOCK:
4611 nr = i_data[EXT4_TIND_BLOCK];
4612 if (nr) {
4613 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4614 i_data[EXT4_TIND_BLOCK] = 0;
4616 case EXT4_TIND_BLOCK:
4620 up_write(&ei->i_data_sem);
4621 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4622 ext4_mark_inode_dirty(handle, inode);
4625 * In a multi-transaction truncate, we only make the final transaction
4626 * synchronous
4628 if (IS_SYNC(inode))
4629 ext4_handle_sync(handle);
4630 out_stop:
4632 * If this was a simple ftruncate(), and the file will remain alive
4633 * then we need to clear up the orphan record which we created above.
4634 * However, if this was a real unlink then we were called by
4635 * ext4_delete_inode(), and we allow that function to clean up the
4636 * orphan info for us.
4638 if (inode->i_nlink)
4639 ext4_orphan_del(handle, inode);
4641 ext4_journal_stop(handle);
4645 * ext4_get_inode_loc returns with an extra refcount against the inode's
4646 * underlying buffer_head on success. If 'in_mem' is true, we have all
4647 * data in memory that is needed to recreate the on-disk version of this
4648 * inode.
4650 static int __ext4_get_inode_loc(struct inode *inode,
4651 struct ext4_iloc *iloc, int in_mem)
4653 struct ext4_group_desc *gdp;
4654 struct buffer_head *bh;
4655 struct super_block *sb = inode->i_sb;
4656 ext4_fsblk_t block;
4657 int inodes_per_block, inode_offset;
4659 iloc->bh = NULL;
4660 if (!ext4_valid_inum(sb, inode->i_ino))
4661 return -EIO;
4663 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4664 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4665 if (!gdp)
4666 return -EIO;
4669 * Figure out the offset within the block group inode table
4671 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4672 inode_offset = ((inode->i_ino - 1) %
4673 EXT4_INODES_PER_GROUP(sb));
4674 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4675 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4677 bh = sb_getblk(sb, block);
4678 if (!bh) {
4679 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4680 "inode block - inode=%lu, block=%llu",
4681 inode->i_ino, block);
4682 return -EIO;
4684 if (!buffer_uptodate(bh)) {
4685 lock_buffer(bh);
4688 * If the buffer has the write error flag, we have failed
4689 * to write out another inode in the same block. In this
4690 * case, we don't have to read the block because we may
4691 * read the old inode data successfully.
4693 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4694 set_buffer_uptodate(bh);
4696 if (buffer_uptodate(bh)) {
4697 /* someone brought it uptodate while we waited */
4698 unlock_buffer(bh);
4699 goto has_buffer;
4703 * If we have all information of the inode in memory and this
4704 * is the only valid inode in the block, we need not read the
4705 * block.
4707 if (in_mem) {
4708 struct buffer_head *bitmap_bh;
4709 int i, start;
4711 start = inode_offset & ~(inodes_per_block - 1);
4713 /* Is the inode bitmap in cache? */
4714 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4715 if (!bitmap_bh)
4716 goto make_io;
4719 * If the inode bitmap isn't in cache then the
4720 * optimisation may end up performing two reads instead
4721 * of one, so skip it.
4723 if (!buffer_uptodate(bitmap_bh)) {
4724 brelse(bitmap_bh);
4725 goto make_io;
4727 for (i = start; i < start + inodes_per_block; i++) {
4728 if (i == inode_offset)
4729 continue;
4730 if (ext4_test_bit(i, bitmap_bh->b_data))
4731 break;
4733 brelse(bitmap_bh);
4734 if (i == start + inodes_per_block) {
4735 /* all other inodes are free, so skip I/O */
4736 memset(bh->b_data, 0, bh->b_size);
4737 set_buffer_uptodate(bh);
4738 unlock_buffer(bh);
4739 goto has_buffer;
4743 make_io:
4745 * If we need to do any I/O, try to pre-readahead extra
4746 * blocks from the inode table.
4748 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4749 ext4_fsblk_t b, end, table;
4750 unsigned num;
4752 table = ext4_inode_table(sb, gdp);
4753 /* s_inode_readahead_blks is always a power of 2 */
4754 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4755 if (table > b)
4756 b = table;
4757 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4758 num = EXT4_INODES_PER_GROUP(sb);
4759 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4760 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4761 num -= ext4_itable_unused_count(sb, gdp);
4762 table += num / inodes_per_block;
4763 if (end > table)
4764 end = table;
4765 while (b <= end)
4766 sb_breadahead(sb, b++);
4770 * There are other valid inodes in the buffer, this inode
4771 * has in-inode xattrs, or we don't have this inode in memory.
4772 * Read the block from disk.
4774 get_bh(bh);
4775 bh->b_end_io = end_buffer_read_sync;
4776 submit_bh(READ_META, bh);
4777 wait_on_buffer(bh);
4778 if (!buffer_uptodate(bh)) {
4779 ext4_error(sb, __func__,
4780 "unable to read inode block - inode=%lu, "
4781 "block=%llu", inode->i_ino, block);
4782 brelse(bh);
4783 return -EIO;
4786 has_buffer:
4787 iloc->bh = bh;
4788 return 0;
4791 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4793 /* We have all inode data except xattrs in memory here. */
4794 return __ext4_get_inode_loc(inode, iloc,
4795 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4798 void ext4_set_inode_flags(struct inode *inode)
4800 unsigned int flags = EXT4_I(inode)->i_flags;
4802 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4803 if (flags & EXT4_SYNC_FL)
4804 inode->i_flags |= S_SYNC;
4805 if (flags & EXT4_APPEND_FL)
4806 inode->i_flags |= S_APPEND;
4807 if (flags & EXT4_IMMUTABLE_FL)
4808 inode->i_flags |= S_IMMUTABLE;
4809 if (flags & EXT4_NOATIME_FL)
4810 inode->i_flags |= S_NOATIME;
4811 if (flags & EXT4_DIRSYNC_FL)
4812 inode->i_flags |= S_DIRSYNC;
4815 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4816 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4818 unsigned int vfs_fl;
4819 unsigned long old_fl, new_fl;
4821 do {
4822 vfs_fl = ei->vfs_inode.i_flags;
4823 old_fl = ei->i_flags;
4824 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4825 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4826 EXT4_DIRSYNC_FL);
4827 if (vfs_fl & S_SYNC)
4828 new_fl |= EXT4_SYNC_FL;
4829 if (vfs_fl & S_APPEND)
4830 new_fl |= EXT4_APPEND_FL;
4831 if (vfs_fl & S_IMMUTABLE)
4832 new_fl |= EXT4_IMMUTABLE_FL;
4833 if (vfs_fl & S_NOATIME)
4834 new_fl |= EXT4_NOATIME_FL;
4835 if (vfs_fl & S_DIRSYNC)
4836 new_fl |= EXT4_DIRSYNC_FL;
4837 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4840 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4841 struct ext4_inode_info *ei)
4843 blkcnt_t i_blocks ;
4844 struct inode *inode = &(ei->vfs_inode);
4845 struct super_block *sb = inode->i_sb;
4847 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4848 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4849 /* we are using combined 48 bit field */
4850 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4851 le32_to_cpu(raw_inode->i_blocks_lo);
4852 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4853 /* i_blocks represent file system block size */
4854 return i_blocks << (inode->i_blkbits - 9);
4855 } else {
4856 return i_blocks;
4858 } else {
4859 return le32_to_cpu(raw_inode->i_blocks_lo);
4863 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4865 struct ext4_iloc iloc;
4866 struct ext4_inode *raw_inode;
4867 struct ext4_inode_info *ei;
4868 struct inode *inode;
4869 journal_t *journal = EXT4_SB(sb)->s_journal;
4870 long ret;
4871 int block;
4873 inode = iget_locked(sb, ino);
4874 if (!inode)
4875 return ERR_PTR(-ENOMEM);
4876 if (!(inode->i_state & I_NEW))
4877 return inode;
4879 ei = EXT4_I(inode);
4880 iloc.bh = 0;
4882 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4883 if (ret < 0)
4884 goto bad_inode;
4885 raw_inode = ext4_raw_inode(&iloc);
4886 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4887 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4888 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4889 if (!(test_opt(inode->i_sb, NO_UID32))) {
4890 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4891 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4893 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4895 ei->i_state_flags = 0;
4896 ei->i_dir_start_lookup = 0;
4897 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4898 /* We now have enough fields to check if the inode was active or not.
4899 * This is needed because nfsd might try to access dead inodes
4900 * the test is that same one that e2fsck uses
4901 * NeilBrown 1999oct15
4903 if (inode->i_nlink == 0) {
4904 if (inode->i_mode == 0 ||
4905 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4906 /* this inode is deleted */
4907 ret = -ESTALE;
4908 goto bad_inode;
4910 /* The only unlinked inodes we let through here have
4911 * valid i_mode and are being read by the orphan
4912 * recovery code: that's fine, we're about to complete
4913 * the process of deleting those. */
4915 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4916 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4917 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4918 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4919 ei->i_file_acl |=
4920 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4921 inode->i_size = ext4_isize(raw_inode);
4922 ei->i_disksize = inode->i_size;
4923 #ifdef CONFIG_QUOTA
4924 ei->i_reserved_quota = 0;
4925 #endif
4926 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4927 ei->i_block_group = iloc.block_group;
4928 ei->i_last_alloc_group = ~0;
4930 * NOTE! The in-memory inode i_data array is in little-endian order
4931 * even on big-endian machines: we do NOT byteswap the block numbers!
4933 for (block = 0; block < EXT4_N_BLOCKS; block++)
4934 ei->i_data[block] = raw_inode->i_block[block];
4935 INIT_LIST_HEAD(&ei->i_orphan);
4938 * Set transaction id's of transactions that have to be committed
4939 * to finish f[data]sync. We set them to currently running transaction
4940 * as we cannot be sure that the inode or some of its metadata isn't
4941 * part of the transaction - the inode could have been reclaimed and
4942 * now it is reread from disk.
4944 if (journal) {
4945 transaction_t *transaction;
4946 tid_t tid;
4948 spin_lock(&journal->j_state_lock);
4949 if (journal->j_running_transaction)
4950 transaction = journal->j_running_transaction;
4951 else
4952 transaction = journal->j_committing_transaction;
4953 if (transaction)
4954 tid = transaction->t_tid;
4955 else
4956 tid = journal->j_commit_sequence;
4957 spin_unlock(&journal->j_state_lock);
4958 ei->i_sync_tid = tid;
4959 ei->i_datasync_tid = tid;
4962 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4963 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4964 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4965 EXT4_INODE_SIZE(inode->i_sb)) {
4966 ret = -EIO;
4967 goto bad_inode;
4969 if (ei->i_extra_isize == 0) {
4970 /* The extra space is currently unused. Use it. */
4971 ei->i_extra_isize = sizeof(struct ext4_inode) -
4972 EXT4_GOOD_OLD_INODE_SIZE;
4973 } else {
4974 __le32 *magic = (void *)raw_inode +
4975 EXT4_GOOD_OLD_INODE_SIZE +
4976 ei->i_extra_isize;
4977 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4978 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4980 } else
4981 ei->i_extra_isize = 0;
4983 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4984 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4985 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4986 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4988 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4989 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4990 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4991 inode->i_version |=
4992 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4995 ret = 0;
4996 if (ei->i_file_acl &&
4997 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4998 ext4_error(sb, __func__,
4999 "bad extended attribute block %llu in inode #%lu",
5000 ei->i_file_acl, inode->i_ino);
5001 ret = -EIO;
5002 goto bad_inode;
5003 } else if (ei->i_flags & EXT4_EXTENTS_FL) {
5004 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5005 (S_ISLNK(inode->i_mode) &&
5006 !ext4_inode_is_fast_symlink(inode)))
5007 /* Validate extent which is part of inode */
5008 ret = ext4_ext_check_inode(inode);
5009 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5010 (S_ISLNK(inode->i_mode) &&
5011 !ext4_inode_is_fast_symlink(inode))) {
5012 /* Validate block references which are part of inode */
5013 ret = ext4_check_inode_blockref(inode);
5015 if (ret)
5016 goto bad_inode;
5018 if (S_ISREG(inode->i_mode)) {
5019 inode->i_op = &ext4_file_inode_operations;
5020 inode->i_fop = &ext4_file_operations;
5021 ext4_set_aops(inode);
5022 } else if (S_ISDIR(inode->i_mode)) {
5023 inode->i_op = &ext4_dir_inode_operations;
5024 inode->i_fop = &ext4_dir_operations;
5025 } else if (S_ISLNK(inode->i_mode)) {
5026 if (ext4_inode_is_fast_symlink(inode)) {
5027 inode->i_op = &ext4_fast_symlink_inode_operations;
5028 nd_terminate_link(ei->i_data, inode->i_size,
5029 sizeof(ei->i_data) - 1);
5030 } else {
5031 inode->i_op = &ext4_symlink_inode_operations;
5032 ext4_set_aops(inode);
5034 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5035 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5036 inode->i_op = &ext4_special_inode_operations;
5037 if (raw_inode->i_block[0])
5038 init_special_inode(inode, inode->i_mode,
5039 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5040 else
5041 init_special_inode(inode, inode->i_mode,
5042 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5043 } else {
5044 ret = -EIO;
5045 ext4_error(inode->i_sb, __func__,
5046 "bogus i_mode (%o) for inode=%lu",
5047 inode->i_mode, inode->i_ino);
5048 goto bad_inode;
5050 brelse(iloc.bh);
5051 ext4_set_inode_flags(inode);
5052 unlock_new_inode(inode);
5053 return inode;
5055 bad_inode:
5056 brelse(iloc.bh);
5057 iget_failed(inode);
5058 return ERR_PTR(ret);
5061 static int ext4_inode_blocks_set(handle_t *handle,
5062 struct ext4_inode *raw_inode,
5063 struct ext4_inode_info *ei)
5065 struct inode *inode = &(ei->vfs_inode);
5066 u64 i_blocks = inode->i_blocks;
5067 struct super_block *sb = inode->i_sb;
5069 if (i_blocks <= ~0U) {
5071 * i_blocks can be represnted in a 32 bit variable
5072 * as multiple of 512 bytes
5074 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5075 raw_inode->i_blocks_high = 0;
5076 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5077 return 0;
5079 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5080 return -EFBIG;
5082 if (i_blocks <= 0xffffffffffffULL) {
5084 * i_blocks can be represented in a 48 bit variable
5085 * as multiple of 512 bytes
5087 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5088 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5089 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5090 } else {
5091 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5092 /* i_block is stored in file system block size */
5093 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5094 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5095 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5097 return 0;
5101 * Post the struct inode info into an on-disk inode location in the
5102 * buffer-cache. This gobbles the caller's reference to the
5103 * buffer_head in the inode location struct.
5105 * The caller must have write access to iloc->bh.
5107 static int ext4_do_update_inode(handle_t *handle,
5108 struct inode *inode,
5109 struct ext4_iloc *iloc)
5111 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5112 struct ext4_inode_info *ei = EXT4_I(inode);
5113 struct buffer_head *bh = iloc->bh;
5114 int err = 0, rc, block;
5116 /* For fields not not tracking in the in-memory inode,
5117 * initialise them to zero for new inodes. */
5118 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5119 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5121 ext4_get_inode_flags(ei);
5122 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5123 if (!(test_opt(inode->i_sb, NO_UID32))) {
5124 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5125 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5127 * Fix up interoperability with old kernels. Otherwise, old inodes get
5128 * re-used with the upper 16 bits of the uid/gid intact
5130 if (!ei->i_dtime) {
5131 raw_inode->i_uid_high =
5132 cpu_to_le16(high_16_bits(inode->i_uid));
5133 raw_inode->i_gid_high =
5134 cpu_to_le16(high_16_bits(inode->i_gid));
5135 } else {
5136 raw_inode->i_uid_high = 0;
5137 raw_inode->i_gid_high = 0;
5139 } else {
5140 raw_inode->i_uid_low =
5141 cpu_to_le16(fs_high2lowuid(inode->i_uid));
5142 raw_inode->i_gid_low =
5143 cpu_to_le16(fs_high2lowgid(inode->i_gid));
5144 raw_inode->i_uid_high = 0;
5145 raw_inode->i_gid_high = 0;
5147 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5149 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5150 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5151 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5152 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5154 if (ext4_inode_blocks_set(handle, raw_inode, ei))
5155 goto out_brelse;
5156 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5157 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
5158 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5159 cpu_to_le32(EXT4_OS_HURD))
5160 raw_inode->i_file_acl_high =
5161 cpu_to_le16(ei->i_file_acl >> 32);
5162 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5163 ext4_isize_set(raw_inode, ei->i_disksize);
5164 if (ei->i_disksize > 0x7fffffffULL) {
5165 struct super_block *sb = inode->i_sb;
5166 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5167 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5168 EXT4_SB(sb)->s_es->s_rev_level ==
5169 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5170 /* If this is the first large file
5171 * created, add a flag to the superblock.
5173 err = ext4_journal_get_write_access(handle,
5174 EXT4_SB(sb)->s_sbh);
5175 if (err)
5176 goto out_brelse;
5177 ext4_update_dynamic_rev(sb);
5178 EXT4_SET_RO_COMPAT_FEATURE(sb,
5179 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5180 sb->s_dirt = 1;
5181 ext4_handle_sync(handle);
5182 err = ext4_handle_dirty_metadata(handle, NULL,
5183 EXT4_SB(sb)->s_sbh);
5186 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5187 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5188 if (old_valid_dev(inode->i_rdev)) {
5189 raw_inode->i_block[0] =
5190 cpu_to_le32(old_encode_dev(inode->i_rdev));
5191 raw_inode->i_block[1] = 0;
5192 } else {
5193 raw_inode->i_block[0] = 0;
5194 raw_inode->i_block[1] =
5195 cpu_to_le32(new_encode_dev(inode->i_rdev));
5196 raw_inode->i_block[2] = 0;
5198 } else
5199 for (block = 0; block < EXT4_N_BLOCKS; block++)
5200 raw_inode->i_block[block] = ei->i_data[block];
5202 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5203 if (ei->i_extra_isize) {
5204 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5205 raw_inode->i_version_hi =
5206 cpu_to_le32(inode->i_version >> 32);
5207 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5210 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5211 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5212 if (!err)
5213 err = rc;
5214 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5216 ext4_update_inode_fsync_trans(handle, inode, 0);
5217 out_brelse:
5218 brelse(bh);
5219 ext4_std_error(inode->i_sb, err);
5220 return err;
5224 * ext4_write_inode()
5226 * We are called from a few places:
5228 * - Within generic_file_write() for O_SYNC files.
5229 * Here, there will be no transaction running. We wait for any running
5230 * trasnaction to commit.
5232 * - Within sys_sync(), kupdate and such.
5233 * We wait on commit, if tol to.
5235 * - Within prune_icache() (PF_MEMALLOC == true)
5236 * Here we simply return. We can't afford to block kswapd on the
5237 * journal commit.
5239 * In all cases it is actually safe for us to return without doing anything,
5240 * because the inode has been copied into a raw inode buffer in
5241 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
5242 * knfsd.
5244 * Note that we are absolutely dependent upon all inode dirtiers doing the
5245 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5246 * which we are interested.
5248 * It would be a bug for them to not do this. The code:
5250 * mark_inode_dirty(inode)
5251 * stuff();
5252 * inode->i_size = expr;
5254 * is in error because a kswapd-driven write_inode() could occur while
5255 * `stuff()' is running, and the new i_size will be lost. Plus the inode
5256 * will no longer be on the superblock's dirty inode list.
5258 int ext4_write_inode(struct inode *inode, int wait)
5260 int err;
5262 if (current->flags & PF_MEMALLOC)
5263 return 0;
5265 if (EXT4_SB(inode->i_sb)->s_journal) {
5266 if (ext4_journal_current_handle()) {
5267 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5268 dump_stack();
5269 return -EIO;
5272 if (!wait)
5273 return 0;
5275 err = ext4_force_commit(inode->i_sb);
5276 } else {
5277 struct ext4_iloc iloc;
5279 err = __ext4_get_inode_loc(inode, &iloc, 0);
5280 if (err)
5281 return err;
5282 if (wait)
5283 sync_dirty_buffer(iloc.bh);
5284 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5285 ext4_error(inode->i_sb, __func__,
5286 "IO error syncing inode, "
5287 "inode=%lu, block=%llu",
5288 inode->i_ino,
5289 (unsigned long long)iloc.bh->b_blocknr);
5290 err = -EIO;
5292 brelse(iloc.bh);
5294 return err;
5298 * ext4_setattr()
5300 * Called from notify_change.
5302 * We want to trap VFS attempts to truncate the file as soon as
5303 * possible. In particular, we want to make sure that when the VFS
5304 * shrinks i_size, we put the inode on the orphan list and modify
5305 * i_disksize immediately, so that during the subsequent flushing of
5306 * dirty pages and freeing of disk blocks, we can guarantee that any
5307 * commit will leave the blocks being flushed in an unused state on
5308 * disk. (On recovery, the inode will get truncated and the blocks will
5309 * be freed, so we have a strong guarantee that no future commit will
5310 * leave these blocks visible to the user.)
5312 * Another thing we have to assure is that if we are in ordered mode
5313 * and inode is still attached to the committing transaction, we must
5314 * we start writeout of all the dirty pages which are being truncated.
5315 * This way we are sure that all the data written in the previous
5316 * transaction are already on disk (truncate waits for pages under
5317 * writeback).
5319 * Called with inode->i_mutex down.
5321 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5323 struct inode *inode = dentry->d_inode;
5324 int error, rc = 0;
5325 const unsigned int ia_valid = attr->ia_valid;
5327 error = inode_change_ok(inode, attr);
5328 if (error)
5329 return error;
5331 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5332 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5333 handle_t *handle;
5335 /* (user+group)*(old+new) structure, inode write (sb,
5336 * inode block, ? - but truncate inode update has it) */
5337 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5338 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5339 if (IS_ERR(handle)) {
5340 error = PTR_ERR(handle);
5341 goto err_out;
5343 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
5344 if (error) {
5345 ext4_journal_stop(handle);
5346 return error;
5348 /* Update corresponding info in inode so that everything is in
5349 * one transaction */
5350 if (attr->ia_valid & ATTR_UID)
5351 inode->i_uid = attr->ia_uid;
5352 if (attr->ia_valid & ATTR_GID)
5353 inode->i_gid = attr->ia_gid;
5354 error = ext4_mark_inode_dirty(handle, inode);
5355 ext4_journal_stop(handle);
5358 if (attr->ia_valid & ATTR_SIZE) {
5359 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5360 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5362 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5363 error = -EFBIG;
5364 goto err_out;
5369 if (S_ISREG(inode->i_mode) &&
5370 attr->ia_valid & ATTR_SIZE &&
5371 (attr->ia_size < inode->i_size ||
5372 (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))) {
5373 handle_t *handle;
5375 handle = ext4_journal_start(inode, 3);
5376 if (IS_ERR(handle)) {
5377 error = PTR_ERR(handle);
5378 goto err_out;
5381 error = ext4_orphan_add(handle, inode);
5382 EXT4_I(inode)->i_disksize = attr->ia_size;
5383 rc = ext4_mark_inode_dirty(handle, inode);
5384 if (!error)
5385 error = rc;
5386 ext4_journal_stop(handle);
5388 if (ext4_should_order_data(inode)) {
5389 error = ext4_begin_ordered_truncate(inode,
5390 attr->ia_size);
5391 if (error) {
5392 /* Do as much error cleanup as possible */
5393 handle = ext4_journal_start(inode, 3);
5394 if (IS_ERR(handle)) {
5395 ext4_orphan_del(NULL, inode);
5396 goto err_out;
5398 ext4_orphan_del(handle, inode);
5399 ext4_journal_stop(handle);
5400 goto err_out;
5403 /* ext4_truncate will clear the flag */
5404 if ((ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))
5405 ext4_truncate(inode);
5408 rc = inode_setattr(inode, attr);
5410 /* If inode_setattr's call to ext4_truncate failed to get a
5411 * transaction handle at all, we need to clean up the in-core
5412 * orphan list manually. */
5413 if (inode->i_nlink)
5414 ext4_orphan_del(NULL, inode);
5416 if (!rc && (ia_valid & ATTR_MODE))
5417 rc = ext4_acl_chmod(inode);
5419 err_out:
5420 ext4_std_error(inode->i_sb, error);
5421 if (!error)
5422 error = rc;
5423 return error;
5426 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5427 struct kstat *stat)
5429 struct inode *inode;
5430 unsigned long delalloc_blocks;
5432 inode = dentry->d_inode;
5433 generic_fillattr(inode, stat);
5436 * We can't update i_blocks if the block allocation is delayed
5437 * otherwise in the case of system crash before the real block
5438 * allocation is done, we will have i_blocks inconsistent with
5439 * on-disk file blocks.
5440 * We always keep i_blocks updated together with real
5441 * allocation. But to not confuse with user, stat
5442 * will return the blocks that include the delayed allocation
5443 * blocks for this file.
5445 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5446 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5447 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5449 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5450 return 0;
5453 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5454 int chunk)
5456 int indirects;
5458 /* if nrblocks are contiguous */
5459 if (chunk) {
5461 * With N contiguous data blocks, it need at most
5462 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5463 * 2 dindirect blocks
5464 * 1 tindirect block
5466 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5467 return indirects + 3;
5470 * if nrblocks are not contiguous, worse case, each block touch
5471 * a indirect block, and each indirect block touch a double indirect
5472 * block, plus a triple indirect block
5474 indirects = nrblocks * 2 + 1;
5475 return indirects;
5478 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5480 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5481 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5482 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5486 * Account for index blocks, block groups bitmaps and block group
5487 * descriptor blocks if modify datablocks and index blocks
5488 * worse case, the indexs blocks spread over different block groups
5490 * If datablocks are discontiguous, they are possible to spread over
5491 * different block groups too. If they are contiugous, with flexbg,
5492 * they could still across block group boundary.
5494 * Also account for superblock, inode, quota and xattr blocks
5496 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5498 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5499 int gdpblocks;
5500 int idxblocks;
5501 int ret = 0;
5504 * How many index blocks need to touch to modify nrblocks?
5505 * The "Chunk" flag indicating whether the nrblocks is
5506 * physically contiguous on disk
5508 * For Direct IO and fallocate, they calls get_block to allocate
5509 * one single extent at a time, so they could set the "Chunk" flag
5511 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5513 ret = idxblocks;
5516 * Now let's see how many group bitmaps and group descriptors need
5517 * to account
5519 groups = idxblocks;
5520 if (chunk)
5521 groups += 1;
5522 else
5523 groups += nrblocks;
5525 gdpblocks = groups;
5526 if (groups > ngroups)
5527 groups = ngroups;
5528 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5529 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5531 /* bitmaps and block group descriptor blocks */
5532 ret += groups + gdpblocks;
5534 /* Blocks for super block, inode, quota and xattr blocks */
5535 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5537 return ret;
5541 * Calulate the total number of credits to reserve to fit
5542 * the modification of a single pages into a single transaction,
5543 * which may include multiple chunks of block allocations.
5545 * This could be called via ext4_write_begin()
5547 * We need to consider the worse case, when
5548 * one new block per extent.
5550 int ext4_writepage_trans_blocks(struct inode *inode)
5552 int bpp = ext4_journal_blocks_per_page(inode);
5553 int ret;
5555 ret = ext4_meta_trans_blocks(inode, bpp, 0);
5557 /* Account for data blocks for journalled mode */
5558 if (ext4_should_journal_data(inode))
5559 ret += bpp;
5560 return ret;
5564 * Calculate the journal credits for a chunk of data modification.
5566 * This is called from DIO, fallocate or whoever calling
5567 * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
5569 * journal buffers for data blocks are not included here, as DIO
5570 * and fallocate do no need to journal data buffers.
5572 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5574 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5578 * The caller must have previously called ext4_reserve_inode_write().
5579 * Give this, we know that the caller already has write access to iloc->bh.
5581 int ext4_mark_iloc_dirty(handle_t *handle,
5582 struct inode *inode, struct ext4_iloc *iloc)
5584 int err = 0;
5586 if (test_opt(inode->i_sb, I_VERSION))
5587 inode_inc_iversion(inode);
5589 /* the do_update_inode consumes one bh->b_count */
5590 get_bh(iloc->bh);
5592 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5593 err = ext4_do_update_inode(handle, inode, iloc);
5594 put_bh(iloc->bh);
5595 return err;
5599 * On success, We end up with an outstanding reference count against
5600 * iloc->bh. This _must_ be cleaned up later.
5604 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5605 struct ext4_iloc *iloc)
5607 int err;
5609 err = ext4_get_inode_loc(inode, iloc);
5610 if (!err) {
5611 BUFFER_TRACE(iloc->bh, "get_write_access");
5612 err = ext4_journal_get_write_access(handle, iloc->bh);
5613 if (err) {
5614 brelse(iloc->bh);
5615 iloc->bh = NULL;
5618 ext4_std_error(inode->i_sb, err);
5619 return err;
5623 * Expand an inode by new_extra_isize bytes.
5624 * Returns 0 on success or negative error number on failure.
5626 static int ext4_expand_extra_isize(struct inode *inode,
5627 unsigned int new_extra_isize,
5628 struct ext4_iloc iloc,
5629 handle_t *handle)
5631 struct ext4_inode *raw_inode;
5632 struct ext4_xattr_ibody_header *header;
5633 struct ext4_xattr_entry *entry;
5635 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5636 return 0;
5638 raw_inode = ext4_raw_inode(&iloc);
5640 header = IHDR(inode, raw_inode);
5641 entry = IFIRST(header);
5643 /* No extended attributes present */
5644 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5645 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5646 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5647 new_extra_isize);
5648 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5649 return 0;
5652 /* try to expand with EAs present */
5653 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5654 raw_inode, handle);
5658 * What we do here is to mark the in-core inode as clean with respect to inode
5659 * dirtiness (it may still be data-dirty).
5660 * This means that the in-core inode may be reaped by prune_icache
5661 * without having to perform any I/O. This is a very good thing,
5662 * because *any* task may call prune_icache - even ones which
5663 * have a transaction open against a different journal.
5665 * Is this cheating? Not really. Sure, we haven't written the
5666 * inode out, but prune_icache isn't a user-visible syncing function.
5667 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5668 * we start and wait on commits.
5670 * Is this efficient/effective? Well, we're being nice to the system
5671 * by cleaning up our inodes proactively so they can be reaped
5672 * without I/O. But we are potentially leaving up to five seconds'
5673 * worth of inodes floating about which prune_icache wants us to
5674 * write out. One way to fix that would be to get prune_icache()
5675 * to do a write_super() to free up some memory. It has the desired
5676 * effect.
5678 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5680 struct ext4_iloc iloc;
5681 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5682 static unsigned int mnt_count;
5683 int err, ret;
5685 might_sleep();
5686 err = ext4_reserve_inode_write(handle, inode, &iloc);
5687 if (ext4_handle_valid(handle) &&
5688 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5689 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5691 * We need extra buffer credits since we may write into EA block
5692 * with this same handle. If journal_extend fails, then it will
5693 * only result in a minor loss of functionality for that inode.
5694 * If this is felt to be critical, then e2fsck should be run to
5695 * force a large enough s_min_extra_isize.
5697 if ((jbd2_journal_extend(handle,
5698 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5699 ret = ext4_expand_extra_isize(inode,
5700 sbi->s_want_extra_isize,
5701 iloc, handle);
5702 if (ret) {
5703 ext4_set_inode_state(inode,
5704 EXT4_STATE_NO_EXPAND);
5705 if (mnt_count !=
5706 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5707 ext4_warning(inode->i_sb, __func__,
5708 "Unable to expand inode %lu. Delete"
5709 " some EAs or run e2fsck.",
5710 inode->i_ino);
5711 mnt_count =
5712 le16_to_cpu(sbi->s_es->s_mnt_count);
5717 if (!err)
5718 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5719 return err;
5723 * ext4_dirty_inode() is called from __mark_inode_dirty()
5725 * We're really interested in the case where a file is being extended.
5726 * i_size has been changed by generic_commit_write() and we thus need
5727 * to include the updated inode in the current transaction.
5729 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5730 * are allocated to the file.
5732 * If the inode is marked synchronous, we don't honour that here - doing
5733 * so would cause a commit on atime updates, which we don't bother doing.
5734 * We handle synchronous inodes at the highest possible level.
5736 void ext4_dirty_inode(struct inode *inode)
5738 handle_t *handle;
5740 handle = ext4_journal_start(inode, 2);
5741 if (IS_ERR(handle))
5742 goto out;
5744 ext4_mark_inode_dirty(handle, inode);
5746 ext4_journal_stop(handle);
5747 out:
5748 return;
5751 #if 0
5753 * Bind an inode's backing buffer_head into this transaction, to prevent
5754 * it from being flushed to disk early. Unlike
5755 * ext4_reserve_inode_write, this leaves behind no bh reference and
5756 * returns no iloc structure, so the caller needs to repeat the iloc
5757 * lookup to mark the inode dirty later.
5759 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5761 struct ext4_iloc iloc;
5763 int err = 0;
5764 if (handle) {
5765 err = ext4_get_inode_loc(inode, &iloc);
5766 if (!err) {
5767 BUFFER_TRACE(iloc.bh, "get_write_access");
5768 err = jbd2_journal_get_write_access(handle, iloc.bh);
5769 if (!err)
5770 err = ext4_handle_dirty_metadata(handle,
5771 NULL,
5772 iloc.bh);
5773 brelse(iloc.bh);
5776 ext4_std_error(inode->i_sb, err);
5777 return err;
5779 #endif
5781 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5783 journal_t *journal;
5784 handle_t *handle;
5785 int err;
5788 * We have to be very careful here: changing a data block's
5789 * journaling status dynamically is dangerous. If we write a
5790 * data block to the journal, change the status and then delete
5791 * that block, we risk forgetting to revoke the old log record
5792 * from the journal and so a subsequent replay can corrupt data.
5793 * So, first we make sure that the journal is empty and that
5794 * nobody is changing anything.
5797 journal = EXT4_JOURNAL(inode);
5798 if (!journal)
5799 return 0;
5800 if (is_journal_aborted(journal))
5801 return -EROFS;
5803 jbd2_journal_lock_updates(journal);
5804 jbd2_journal_flush(journal);
5807 * OK, there are no updates running now, and all cached data is
5808 * synced to disk. We are now in a completely consistent state
5809 * which doesn't have anything in the journal, and we know that
5810 * no filesystem updates are running, so it is safe to modify
5811 * the inode's in-core data-journaling state flag now.
5814 if (val)
5815 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5816 else
5817 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5818 ext4_set_aops(inode);
5820 jbd2_journal_unlock_updates(journal);
5822 /* Finally we can mark the inode as dirty. */
5824 handle = ext4_journal_start(inode, 1);
5825 if (IS_ERR(handle))
5826 return PTR_ERR(handle);
5828 err = ext4_mark_inode_dirty(handle, inode);
5829 ext4_handle_sync(handle);
5830 ext4_journal_stop(handle);
5831 ext4_std_error(inode->i_sb, err);
5833 return err;
5836 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5838 return !buffer_mapped(bh);
5841 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5843 struct page *page = vmf->page;
5844 loff_t size;
5845 unsigned long len;
5846 int ret = -EINVAL;
5847 void *fsdata;
5848 struct file *file = vma->vm_file;
5849 struct inode *inode = file->f_path.dentry->d_inode;
5850 struct address_space *mapping = inode->i_mapping;
5853 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5854 * get i_mutex because we are already holding mmap_sem.
5856 down_read(&inode->i_alloc_sem);
5857 size = i_size_read(inode);
5858 if (page->mapping != mapping || size <= page_offset(page)
5859 || !PageUptodate(page)) {
5860 /* page got truncated from under us? */
5861 goto out_unlock;
5863 ret = 0;
5864 if (PageMappedToDisk(page))
5865 goto out_unlock;
5867 if (page->index == size >> PAGE_CACHE_SHIFT)
5868 len = size & ~PAGE_CACHE_MASK;
5869 else
5870 len = PAGE_CACHE_SIZE;
5872 lock_page(page);
5874 * return if we have all the buffers mapped. This avoid
5875 * the need to call write_begin/write_end which does a
5876 * journal_start/journal_stop which can block and take
5877 * long time
5879 if (page_has_buffers(page)) {
5880 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5881 ext4_bh_unmapped)) {
5882 unlock_page(page);
5883 goto out_unlock;
5886 unlock_page(page);
5888 * OK, we need to fill the hole... Do write_begin write_end
5889 * to do block allocation/reservation.We are not holding
5890 * inode.i__mutex here. That allow * parallel write_begin,
5891 * write_end call. lock_page prevent this from happening
5892 * on the same page though
5894 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5895 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5896 if (ret < 0)
5897 goto out_unlock;
5898 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5899 len, len, page, fsdata);
5900 if (ret < 0)
5901 goto out_unlock;
5902 ret = 0;
5903 out_unlock:
5904 if (ret)
5905 ret = VM_FAULT_SIGBUS;
5906 up_read(&inode->i_alloc_sem);
5907 return ret;