2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public Licens
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
21 * mballoc.c contains the multiblocks allocation routines
25 #include <linux/debugfs.h>
26 #include <trace/events/ext4.h>
30 * - test ext4_ext_search_left() and ext4_ext_search_right()
31 * - search for metadata in few groups
34 * - normalization should take into account whether file is still open
35 * - discard preallocations if no free space left (policy?)
36 * - don't normalize tails
38 * - reservation for superuser
41 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
42 * - track min/max extents in each group for better group selection
43 * - mb_mark_used() may allocate chunk right after splitting buddy
44 * - tree of groups sorted by number of free blocks
49 * The allocation request involve request for multiple number of blocks
50 * near to the goal(block) value specified.
52 * During initialization phase of the allocator we decide to use the
53 * group preallocation or inode preallocation depending on the size of
54 * the file. The size of the file could be the resulting file size we
55 * would have after allocation, or the current file size, which ever
56 * is larger. If the size is less than sbi->s_mb_stream_request we
57 * select to use the group preallocation. The default value of
58 * s_mb_stream_request is 16 blocks. This can also be tuned via
59 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
60 * terms of number of blocks.
62 * The main motivation for having small file use group preallocation is to
63 * ensure that we have small files closer together on the disk.
65 * First stage the allocator looks at the inode prealloc list,
66 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
67 * spaces for this particular inode. The inode prealloc space is
70 * pa_lstart -> the logical start block for this prealloc space
71 * pa_pstart -> the physical start block for this prealloc space
72 * pa_len -> lenght for this prealloc space
73 * pa_free -> free space available in this prealloc space
75 * The inode preallocation space is used looking at the _logical_ start
76 * block. If only the logical file block falls within the range of prealloc
77 * space we will consume the particular prealloc space. This make sure that
78 * that the we have contiguous physical blocks representing the file blocks
80 * The important thing to be noted in case of inode prealloc space is that
81 * we don't modify the values associated to inode prealloc space except
84 * If we are not able to find blocks in the inode prealloc space and if we
85 * have the group allocation flag set then we look at the locality group
86 * prealloc space. These are per CPU prealloc list repreasented as
88 * ext4_sb_info.s_locality_groups[smp_processor_id()]
90 * The reason for having a per cpu locality group is to reduce the contention
91 * between CPUs. It is possible to get scheduled at this point.
93 * The locality group prealloc space is used looking at whether we have
94 * enough free space (pa_free) withing the prealloc space.
96 * If we can't allocate blocks via inode prealloc or/and locality group
97 * prealloc then we look at the buddy cache. The buddy cache is represented
98 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
99 * mapped to the buddy and bitmap information regarding different
100 * groups. The buddy information is attached to buddy cache inode so that
101 * we can access them through the page cache. The information regarding
102 * each group is loaded via ext4_mb_load_buddy. The information involve
103 * block bitmap and buddy information. The information are stored in the
107 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
110 * one block each for bitmap and buddy information. So for each group we
111 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
112 * blocksize) blocks. So it can have information regarding groups_per_page
113 * which is blocks_per_page/2
115 * The buddy cache inode is not stored on disk. The inode is thrown
116 * away when the filesystem is unmounted.
118 * We look for count number of blocks in the buddy cache. If we were able
119 * to locate that many free blocks we return with additional information
120 * regarding rest of the contiguous physical block available
122 * Before allocating blocks via buddy cache we normalize the request
123 * blocks. This ensure we ask for more blocks that we needed. The extra
124 * blocks that we get after allocation is added to the respective prealloc
125 * list. In case of inode preallocation we follow a list of heuristics
126 * based on file size. This can be found in ext4_mb_normalize_request. If
127 * we are doing a group prealloc we try to normalize the request to
128 * sbi->s_mb_group_prealloc. Default value of s_mb_group_prealloc is
129 * 512 blocks. This can be tuned via
130 * /sys/fs/ext4/<partition/mb_group_prealloc. The value is represented in
131 * terms of number of blocks. If we have mounted the file system with -O
132 * stripe=<value> option the group prealloc request is normalized to the
133 * stripe value (sbi->s_stripe)
135 * The regular allocator(using the buddy cache) supports few tunables.
137 * /sys/fs/ext4/<partition>/mb_min_to_scan
138 * /sys/fs/ext4/<partition>/mb_max_to_scan
139 * /sys/fs/ext4/<partition>/mb_order2_req
141 * The regular allocator uses buddy scan only if the request len is power of
142 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
143 * value of s_mb_order2_reqs can be tuned via
144 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
145 * stripe size (sbi->s_stripe), we try to search for contigous block in
146 * stripe size. This should result in better allocation on RAID setups. If
147 * not, we search in the specific group using bitmap for best extents. The
148 * tunable min_to_scan and max_to_scan control the behaviour here.
149 * min_to_scan indicate how long the mballoc __must__ look for a best
150 * extent and max_to_scan indicates how long the mballoc __can__ look for a
151 * best extent in the found extents. Searching for the blocks starts with
152 * the group specified as the goal value in allocation context via
153 * ac_g_ex. Each group is first checked based on the criteria whether it
154 * can used for allocation. ext4_mb_good_group explains how the groups are
157 * Both the prealloc space are getting populated as above. So for the first
158 * request we will hit the buddy cache which will result in this prealloc
159 * space getting filled. The prealloc space is then later used for the
160 * subsequent request.
164 * mballoc operates on the following data:
166 * - in-core buddy (actually includes buddy and bitmap)
167 * - preallocation descriptors (PAs)
169 * there are two types of preallocations:
171 * assiged to specific inode and can be used for this inode only.
172 * it describes part of inode's space preallocated to specific
173 * physical blocks. any block from that preallocated can be used
174 * independent. the descriptor just tracks number of blocks left
175 * unused. so, before taking some block from descriptor, one must
176 * make sure corresponded logical block isn't allocated yet. this
177 * also means that freeing any block within descriptor's range
178 * must discard all preallocated blocks.
180 * assigned to specific locality group which does not translate to
181 * permanent set of inodes: inode can join and leave group. space
182 * from this type of preallocation can be used for any inode. thus
183 * it's consumed from the beginning to the end.
185 * relation between them can be expressed as:
186 * in-core buddy = on-disk bitmap + preallocation descriptors
188 * this mean blocks mballoc considers used are:
189 * - allocated blocks (persistent)
190 * - preallocated blocks (non-persistent)
192 * consistency in mballoc world means that at any time a block is either
193 * free or used in ALL structures. notice: "any time" should not be read
194 * literally -- time is discrete and delimited by locks.
196 * to keep it simple, we don't use block numbers, instead we count number of
197 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
199 * all operations can be expressed as:
200 * - init buddy: buddy = on-disk + PAs
201 * - new PA: buddy += N; PA = N
202 * - use inode PA: on-disk += N; PA -= N
203 * - discard inode PA buddy -= on-disk - PA; PA = 0
204 * - use locality group PA on-disk += N; PA -= N
205 * - discard locality group PA buddy -= PA; PA = 0
206 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
207 * is used in real operation because we can't know actual used
208 * bits from PA, only from on-disk bitmap
210 * if we follow this strict logic, then all operations above should be atomic.
211 * given some of them can block, we'd have to use something like semaphores
212 * killing performance on high-end SMP hardware. let's try to relax it using
213 * the following knowledge:
214 * 1) if buddy is referenced, it's already initialized
215 * 2) while block is used in buddy and the buddy is referenced,
216 * nobody can re-allocate that block
217 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
218 * bit set and PA claims same block, it's OK. IOW, one can set bit in
219 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
222 * so, now we're building a concurrency table:
225 * blocks for PA are allocated in the buddy, buddy must be referenced
226 * until PA is linked to allocation group to avoid concurrent buddy init
228 * we need to make sure that either on-disk bitmap or PA has uptodate data
229 * given (3) we care that PA-=N operation doesn't interfere with init
231 * the simplest way would be to have buddy initialized by the discard
232 * - use locality group PA
233 * again PA-=N must be serialized with init
234 * - discard locality group PA
235 * the simplest way would be to have buddy initialized by the discard
238 * i_data_sem serializes them
240 * discard process must wait until PA isn't used by another process
241 * - use locality group PA
242 * some mutex should serialize them
243 * - discard locality group PA
244 * discard process must wait until PA isn't used by another process
247 * i_data_sem or another mutex should serializes them
249 * discard process must wait until PA isn't used by another process
250 * - use locality group PA
251 * nothing wrong here -- they're different PAs covering different blocks
252 * - discard locality group PA
253 * discard process must wait until PA isn't used by another process
255 * now we're ready to make few consequences:
256 * - PA is referenced and while it is no discard is possible
257 * - PA is referenced until block isn't marked in on-disk bitmap
258 * - PA changes only after on-disk bitmap
259 * - discard must not compete with init. either init is done before
260 * any discard or they're serialized somehow
261 * - buddy init as sum of on-disk bitmap and PAs is done atomically
263 * a special case when we've used PA to emptiness. no need to modify buddy
264 * in this case, but we should care about concurrent init
269 * Logic in few words:
274 * mark bits in on-disk bitmap
277 * - use preallocation:
278 * find proper PA (per-inode or group)
280 * mark bits in on-disk bitmap
286 * mark bits in on-disk bitmap
289 * - discard preallocations in group:
291 * move them onto local list
292 * load on-disk bitmap
294 * remove PA from object (inode or locality group)
295 * mark free blocks in-core
297 * - discard inode's preallocations:
304 * - bitlock on a group (group)
305 * - object (inode/locality) (object)
316 * - release consumed pa:
321 * - generate in-core bitmap:
325 * - discard all for given object (inode, locality group):
330 * - discard all for given group:
337 static struct kmem_cache
*ext4_pspace_cachep
;
338 static struct kmem_cache
*ext4_ac_cachep
;
339 static struct kmem_cache
*ext4_free_ext_cachep
;
340 static void ext4_mb_generate_from_pa(struct super_block
*sb
, void *bitmap
,
342 static void ext4_mb_generate_from_freelist(struct super_block
*sb
, void *bitmap
,
344 static void release_blocks_on_commit(journal_t
*journal
, transaction_t
*txn
);
346 static inline void *mb_correct_addr_and_bit(int *bit
, void *addr
)
348 #if BITS_PER_LONG == 64
349 *bit
+= ((unsigned long) addr
& 7UL) << 3;
350 addr
= (void *) ((unsigned long) addr
& ~7UL);
351 #elif BITS_PER_LONG == 32
352 *bit
+= ((unsigned long) addr
& 3UL) << 3;
353 addr
= (void *) ((unsigned long) addr
& ~3UL);
355 #error "how many bits you are?!"
360 static inline int mb_test_bit(int bit
, void *addr
)
363 * ext4_test_bit on architecture like powerpc
364 * needs unsigned long aligned address
366 addr
= mb_correct_addr_and_bit(&bit
, addr
);
367 return ext4_test_bit(bit
, addr
);
370 static inline void mb_set_bit(int bit
, void *addr
)
372 addr
= mb_correct_addr_and_bit(&bit
, addr
);
373 ext4_set_bit(bit
, addr
);
376 static inline void mb_clear_bit(int bit
, void *addr
)
378 addr
= mb_correct_addr_and_bit(&bit
, addr
);
379 ext4_clear_bit(bit
, addr
);
382 static inline int mb_find_next_zero_bit(void *addr
, int max
, int start
)
384 int fix
= 0, ret
, tmpmax
;
385 addr
= mb_correct_addr_and_bit(&fix
, addr
);
389 ret
= ext4_find_next_zero_bit(addr
, tmpmax
, start
) - fix
;
395 static inline int mb_find_next_bit(void *addr
, int max
, int start
)
397 int fix
= 0, ret
, tmpmax
;
398 addr
= mb_correct_addr_and_bit(&fix
, addr
);
402 ret
= ext4_find_next_bit(addr
, tmpmax
, start
) - fix
;
408 static void *mb_find_buddy(struct ext4_buddy
*e4b
, int order
, int *max
)
412 BUG_ON(EXT4_MB_BITMAP(e4b
) == EXT4_MB_BUDDY(e4b
));
415 if (order
> e4b
->bd_blkbits
+ 1) {
420 /* at order 0 we see each particular block */
421 *max
= 1 << (e4b
->bd_blkbits
+ 3);
423 return EXT4_MB_BITMAP(e4b
);
425 bb
= EXT4_MB_BUDDY(e4b
) + EXT4_SB(e4b
->bd_sb
)->s_mb_offsets
[order
];
426 *max
= EXT4_SB(e4b
->bd_sb
)->s_mb_maxs
[order
];
432 static void mb_free_blocks_double(struct inode
*inode
, struct ext4_buddy
*e4b
,
433 int first
, int count
)
436 struct super_block
*sb
= e4b
->bd_sb
;
438 if (unlikely(e4b
->bd_info
->bb_bitmap
== NULL
))
440 assert_spin_locked(ext4_group_lock_ptr(sb
, e4b
->bd_group
));
441 for (i
= 0; i
< count
; i
++) {
442 if (!mb_test_bit(first
+ i
, e4b
->bd_info
->bb_bitmap
)) {
443 ext4_fsblk_t blocknr
;
444 blocknr
= e4b
->bd_group
* EXT4_BLOCKS_PER_GROUP(sb
);
445 blocknr
+= first
+ i
;
447 le32_to_cpu(EXT4_SB(sb
)->s_es
->s_first_data_block
);
448 ext4_grp_locked_error(sb
, e4b
->bd_group
,
449 __func__
, "double-free of inode"
450 " %lu's block %llu(bit %u in group %u)",
451 inode
? inode
->i_ino
: 0, blocknr
,
452 first
+ i
, e4b
->bd_group
);
454 mb_clear_bit(first
+ i
, e4b
->bd_info
->bb_bitmap
);
458 static void mb_mark_used_double(struct ext4_buddy
*e4b
, int first
, int count
)
462 if (unlikely(e4b
->bd_info
->bb_bitmap
== NULL
))
464 assert_spin_locked(ext4_group_lock_ptr(e4b
->bd_sb
, e4b
->bd_group
));
465 for (i
= 0; i
< count
; i
++) {
466 BUG_ON(mb_test_bit(first
+ i
, e4b
->bd_info
->bb_bitmap
));
467 mb_set_bit(first
+ i
, e4b
->bd_info
->bb_bitmap
);
471 static void mb_cmp_bitmaps(struct ext4_buddy
*e4b
, void *bitmap
)
473 if (memcmp(e4b
->bd_info
->bb_bitmap
, bitmap
, e4b
->bd_sb
->s_blocksize
)) {
474 unsigned char *b1
, *b2
;
476 b1
= (unsigned char *) e4b
->bd_info
->bb_bitmap
;
477 b2
= (unsigned char *) bitmap
;
478 for (i
= 0; i
< e4b
->bd_sb
->s_blocksize
; i
++) {
479 if (b1
[i
] != b2
[i
]) {
480 printk(KERN_ERR
"corruption in group %u "
481 "at byte %u(%u): %x in copy != %x "
482 "on disk/prealloc\n",
483 e4b
->bd_group
, i
, i
* 8, b1
[i
], b2
[i
]);
491 static inline void mb_free_blocks_double(struct inode
*inode
,
492 struct ext4_buddy
*e4b
, int first
, int count
)
496 static inline void mb_mark_used_double(struct ext4_buddy
*e4b
,
497 int first
, int count
)
501 static inline void mb_cmp_bitmaps(struct ext4_buddy
*e4b
, void *bitmap
)
507 #ifdef AGGRESSIVE_CHECK
509 #define MB_CHECK_ASSERT(assert) \
513 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
514 function, file, line, # assert); \
519 static int __mb_check_buddy(struct ext4_buddy
*e4b
, char *file
,
520 const char *function
, int line
)
522 struct super_block
*sb
= e4b
->bd_sb
;
523 int order
= e4b
->bd_blkbits
+ 1;
530 struct ext4_group_info
*grp
;
533 struct list_head
*cur
;
538 static int mb_check_counter
;
539 if (mb_check_counter
++ % 100 != 0)
544 buddy
= mb_find_buddy(e4b
, order
, &max
);
545 MB_CHECK_ASSERT(buddy
);
546 buddy2
= mb_find_buddy(e4b
, order
- 1, &max2
);
547 MB_CHECK_ASSERT(buddy2
);
548 MB_CHECK_ASSERT(buddy
!= buddy2
);
549 MB_CHECK_ASSERT(max
* 2 == max2
);
552 for (i
= 0; i
< max
; i
++) {
554 if (mb_test_bit(i
, buddy
)) {
555 /* only single bit in buddy2 may be 1 */
556 if (!mb_test_bit(i
<< 1, buddy2
)) {
558 mb_test_bit((i
<<1)+1, buddy2
));
559 } else if (!mb_test_bit((i
<< 1) + 1, buddy2
)) {
561 mb_test_bit(i
<< 1, buddy2
));
566 /* both bits in buddy2 must be 0 */
567 MB_CHECK_ASSERT(mb_test_bit(i
<< 1, buddy2
));
568 MB_CHECK_ASSERT(mb_test_bit((i
<< 1) + 1, buddy2
));
570 for (j
= 0; j
< (1 << order
); j
++) {
571 k
= (i
* (1 << order
)) + j
;
573 !mb_test_bit(k
, EXT4_MB_BITMAP(e4b
)));
577 MB_CHECK_ASSERT(e4b
->bd_info
->bb_counters
[order
] == count
);
582 buddy
= mb_find_buddy(e4b
, 0, &max
);
583 for (i
= 0; i
< max
; i
++) {
584 if (!mb_test_bit(i
, buddy
)) {
585 MB_CHECK_ASSERT(i
>= e4b
->bd_info
->bb_first_free
);
593 /* check used bits only */
594 for (j
= 0; j
< e4b
->bd_blkbits
+ 1; j
++) {
595 buddy2
= mb_find_buddy(e4b
, j
, &max2
);
597 MB_CHECK_ASSERT(k
< max2
);
598 MB_CHECK_ASSERT(mb_test_bit(k
, buddy2
));
601 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b
->bd_info
));
602 MB_CHECK_ASSERT(e4b
->bd_info
->bb_fragments
== fragments
);
604 grp
= ext4_get_group_info(sb
, e4b
->bd_group
);
605 buddy
= mb_find_buddy(e4b
, 0, &max
);
606 list_for_each(cur
, &grp
->bb_prealloc_list
) {
607 ext4_group_t groupnr
;
608 struct ext4_prealloc_space
*pa
;
609 pa
= list_entry(cur
, struct ext4_prealloc_space
, pa_group_list
);
610 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
, &groupnr
, &k
);
611 MB_CHECK_ASSERT(groupnr
== e4b
->bd_group
);
612 for (i
= 0; i
< pa
->pa_len
; i
++)
613 MB_CHECK_ASSERT(mb_test_bit(k
+ i
, buddy
));
617 #undef MB_CHECK_ASSERT
618 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
619 __FILE__, __func__, __LINE__)
621 #define mb_check_buddy(e4b)
624 /* FIXME!! need more doc */
625 static void ext4_mb_mark_free_simple(struct super_block
*sb
,
626 void *buddy
, ext4_grpblk_t first
, ext4_grpblk_t len
,
627 struct ext4_group_info
*grp
)
629 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
633 unsigned short border
;
635 BUG_ON(len
> EXT4_BLOCKS_PER_GROUP(sb
));
637 border
= 2 << sb
->s_blocksize_bits
;
640 /* find how many blocks can be covered since this position */
641 max
= ffs(first
| border
) - 1;
643 /* find how many blocks of power 2 we need to mark */
650 /* mark multiblock chunks only */
651 grp
->bb_counters
[min
]++;
653 mb_clear_bit(first
>> min
,
654 buddy
+ sbi
->s_mb_offsets
[min
]);
662 * Cache the order of the largest free extent we have available in this block
666 mb_set_largest_free_order(struct super_block
*sb
, struct ext4_group_info
*grp
)
671 grp
->bb_largest_free_order
= -1; /* uninit */
673 bits
= sb
->s_blocksize_bits
+ 1;
674 for (i
= bits
; i
>= 0; i
--) {
675 if (grp
->bb_counters
[i
] > 0) {
676 grp
->bb_largest_free_order
= i
;
682 static noinline_for_stack
683 void ext4_mb_generate_buddy(struct super_block
*sb
,
684 void *buddy
, void *bitmap
, ext4_group_t group
)
686 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, group
);
687 ext4_grpblk_t max
= EXT4_BLOCKS_PER_GROUP(sb
);
692 unsigned fragments
= 0;
693 unsigned long long period
= get_cycles();
695 /* initialize buddy from bitmap which is aggregation
696 * of on-disk bitmap and preallocations */
697 i
= mb_find_next_zero_bit(bitmap
, max
, 0);
698 grp
->bb_first_free
= i
;
702 i
= mb_find_next_bit(bitmap
, max
, i
);
706 ext4_mb_mark_free_simple(sb
, buddy
, first
, len
, grp
);
708 grp
->bb_counters
[0]++;
710 i
= mb_find_next_zero_bit(bitmap
, max
, i
);
712 grp
->bb_fragments
= fragments
;
714 if (free
!= grp
->bb_free
) {
715 ext4_grp_locked_error(sb
, group
, __func__
,
716 "EXT4-fs: group %u: %u blocks in bitmap, %u in gd",
717 group
, free
, grp
->bb_free
);
719 * If we intent to continue, we consider group descritor
720 * corrupt and update bb_free using bitmap value
724 mb_set_largest_free_order(sb
, grp
);
726 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT
, &(grp
->bb_state
));
728 period
= get_cycles() - period
;
729 spin_lock(&EXT4_SB(sb
)->s_bal_lock
);
730 EXT4_SB(sb
)->s_mb_buddies_generated
++;
731 EXT4_SB(sb
)->s_mb_generation_time
+= period
;
732 spin_unlock(&EXT4_SB(sb
)->s_bal_lock
);
735 /* The buddy information is attached the buddy cache inode
736 * for convenience. The information regarding each group
737 * is loaded via ext4_mb_load_buddy. The information involve
738 * block bitmap and buddy information. The information are
739 * stored in the inode as
742 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
745 * one block each for bitmap and buddy information.
746 * So for each group we take up 2 blocks. A page can
747 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks.
748 * So it can have information regarding groups_per_page which
749 * is blocks_per_page/2
751 * Locking note: This routine takes the block group lock of all groups
752 * for this page; do not hold this lock when calling this routine!
755 static int ext4_mb_init_cache(struct page
*page
, char *incore
)
757 ext4_group_t ngroups
;
763 ext4_group_t first_group
;
765 struct super_block
*sb
;
766 struct buffer_head
*bhs
;
767 struct buffer_head
**bh
;
772 mb_debug(1, "init page %lu\n", page
->index
);
774 inode
= page
->mapping
->host
;
776 ngroups
= ext4_get_groups_count(sb
);
777 blocksize
= 1 << inode
->i_blkbits
;
778 blocks_per_page
= PAGE_CACHE_SIZE
/ blocksize
;
780 groups_per_page
= blocks_per_page
>> 1;
781 if (groups_per_page
== 0)
784 /* allocate buffer_heads to read bitmaps */
785 if (groups_per_page
> 1) {
787 i
= sizeof(struct buffer_head
*) * groups_per_page
;
788 bh
= kzalloc(i
, GFP_NOFS
);
794 first_group
= page
->index
* blocks_per_page
/ 2;
796 /* read all groups the page covers into the cache */
797 for (i
= 0; i
< groups_per_page
; i
++) {
798 struct ext4_group_desc
*desc
;
800 if (first_group
+ i
>= ngroups
)
804 desc
= ext4_get_group_desc(sb
, first_group
+ i
, NULL
);
809 bh
[i
] = sb_getblk(sb
, ext4_block_bitmap(sb
, desc
));
813 if (bitmap_uptodate(bh
[i
]))
817 if (bitmap_uptodate(bh
[i
])) {
818 unlock_buffer(bh
[i
]);
821 ext4_lock_group(sb
, first_group
+ i
);
822 if (desc
->bg_flags
& cpu_to_le16(EXT4_BG_BLOCK_UNINIT
)) {
823 ext4_init_block_bitmap(sb
, bh
[i
],
824 first_group
+ i
, desc
);
825 set_bitmap_uptodate(bh
[i
]);
826 set_buffer_uptodate(bh
[i
]);
827 ext4_unlock_group(sb
, first_group
+ i
);
828 unlock_buffer(bh
[i
]);
831 ext4_unlock_group(sb
, first_group
+ i
);
832 if (buffer_uptodate(bh
[i
])) {
834 * if not uninit if bh is uptodate,
835 * bitmap is also uptodate
837 set_bitmap_uptodate(bh
[i
]);
838 unlock_buffer(bh
[i
]);
843 * submit the buffer_head for read. We can
844 * safely mark the bitmap as uptodate now.
845 * We do it here so the bitmap uptodate bit
846 * get set with buffer lock held.
848 set_bitmap_uptodate(bh
[i
]);
849 bh
[i
]->b_end_io
= end_buffer_read_sync
;
850 submit_bh(READ
, bh
[i
]);
851 mb_debug(1, "read bitmap for group %u\n", first_group
+ i
);
854 /* wait for I/O completion */
855 for (i
= 0; i
< groups_per_page
&& bh
[i
]; i
++)
856 wait_on_buffer(bh
[i
]);
859 for (i
= 0; i
< groups_per_page
&& bh
[i
]; i
++)
860 if (!buffer_uptodate(bh
[i
]))
864 first_block
= page
->index
* blocks_per_page
;
866 memset(page_address(page
), 0xff, PAGE_CACHE_SIZE
);
867 for (i
= 0; i
< blocks_per_page
; i
++) {
869 struct ext4_group_info
*grinfo
;
871 group
= (first_block
+ i
) >> 1;
872 if (group
>= ngroups
)
876 * data carry information regarding this
877 * particular group in the format specified
881 data
= page_address(page
) + (i
* blocksize
);
882 bitmap
= bh
[group
- first_group
]->b_data
;
885 * We place the buddy block and bitmap block
888 if ((first_block
+ i
) & 1) {
889 /* this is block of buddy */
890 BUG_ON(incore
== NULL
);
891 mb_debug(1, "put buddy for group %u in page %lu/%x\n",
892 group
, page
->index
, i
* blocksize
);
893 grinfo
= ext4_get_group_info(sb
, group
);
894 grinfo
->bb_fragments
= 0;
895 memset(grinfo
->bb_counters
, 0,
896 sizeof(*grinfo
->bb_counters
) *
897 (sb
->s_blocksize_bits
+2));
899 * incore got set to the group block bitmap below
901 ext4_lock_group(sb
, group
);
902 ext4_mb_generate_buddy(sb
, data
, incore
, group
);
903 ext4_unlock_group(sb
, group
);
906 /* this is block of bitmap */
907 BUG_ON(incore
!= NULL
);
908 mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
909 group
, page
->index
, i
* blocksize
);
911 /* see comments in ext4_mb_put_pa() */
912 ext4_lock_group(sb
, group
);
913 memcpy(data
, bitmap
, blocksize
);
915 /* mark all preallocated blks used in in-core bitmap */
916 ext4_mb_generate_from_pa(sb
, data
, group
);
917 ext4_mb_generate_from_freelist(sb
, data
, group
);
918 ext4_unlock_group(sb
, group
);
920 /* set incore so that the buddy information can be
921 * generated using this
926 SetPageUptodate(page
);
930 for (i
= 0; i
< groups_per_page
&& bh
[i
]; i
++)
939 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
940 * block group lock of all groups for this page; do not hold the BG lock when
941 * calling this routine!
943 static noinline_for_stack
944 int ext4_mb_init_group(struct super_block
*sb
, ext4_group_t group
)
950 int block
, pnum
, poff
;
951 int num_grp_locked
= 0;
952 struct ext4_group_info
*this_grp
;
953 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
954 struct inode
*inode
= sbi
->s_buddy_cache
;
955 struct page
*page
= NULL
, *bitmap_page
= NULL
;
957 mb_debug(1, "init group %u\n", group
);
958 blocks_per_page
= PAGE_CACHE_SIZE
/ sb
->s_blocksize
;
959 this_grp
= ext4_get_group_info(sb
, group
);
961 * This ensures that we don't reinit the buddy cache
962 * page which map to the group from which we are already
963 * allocating. If we are looking at the buddy cache we would
964 * have taken a reference using ext4_mb_load_buddy and that
965 * would have taken the alloc_sem lock.
967 num_grp_locked
= ext4_mb_get_buddy_cache_lock(sb
, group
);
968 if (!EXT4_MB_GRP_NEED_INIT(this_grp
)) {
970 * somebody initialized the group
971 * return without doing anything
977 * the buddy cache inode stores the block bitmap
978 * and buddy information in consecutive blocks.
979 * So for each group we need two blocks.
982 pnum
= block
/ blocks_per_page
;
983 poff
= block
% blocks_per_page
;
984 page
= find_or_create_page(inode
->i_mapping
, pnum
, GFP_NOFS
);
986 BUG_ON(page
->mapping
!= inode
->i_mapping
);
987 ret
= ext4_mb_init_cache(page
, NULL
);
994 if (page
== NULL
|| !PageUptodate(page
)) {
998 mark_page_accessed(page
);
1000 bitmap
= page_address(page
) + (poff
* sb
->s_blocksize
);
1002 /* init buddy cache */
1004 pnum
= block
/ blocks_per_page
;
1005 poff
= block
% blocks_per_page
;
1006 page
= find_or_create_page(inode
->i_mapping
, pnum
, GFP_NOFS
);
1007 if (page
== bitmap_page
) {
1009 * If both the bitmap and buddy are in
1010 * the same page we don't need to force
1015 BUG_ON(page
->mapping
!= inode
->i_mapping
);
1016 ret
= ext4_mb_init_cache(page
, bitmap
);
1023 if (page
== NULL
|| !PageUptodate(page
)) {
1027 mark_page_accessed(page
);
1029 ext4_mb_put_buddy_cache_lock(sb
, group
, num_grp_locked
);
1031 page_cache_release(bitmap_page
);
1033 page_cache_release(page
);
1038 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1039 * block group lock of all groups for this page; do not hold the BG lock when
1040 * calling this routine!
1042 static noinline_for_stack
int
1043 ext4_mb_load_buddy(struct super_block
*sb
, ext4_group_t group
,
1044 struct ext4_buddy
*e4b
)
1046 int blocks_per_page
;
1052 struct ext4_group_info
*grp
;
1053 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
1054 struct inode
*inode
= sbi
->s_buddy_cache
;
1056 mb_debug(1, "load group %u\n", group
);
1058 blocks_per_page
= PAGE_CACHE_SIZE
/ sb
->s_blocksize
;
1059 grp
= ext4_get_group_info(sb
, group
);
1061 e4b
->bd_blkbits
= sb
->s_blocksize_bits
;
1062 e4b
->bd_info
= ext4_get_group_info(sb
, group
);
1064 e4b
->bd_group
= group
;
1065 e4b
->bd_buddy_page
= NULL
;
1066 e4b
->bd_bitmap_page
= NULL
;
1067 e4b
->alloc_semp
= &grp
->alloc_sem
;
1069 /* Take the read lock on the group alloc
1070 * sem. This would make sure a parallel
1071 * ext4_mb_init_group happening on other
1072 * groups mapped by the page is blocked
1073 * till we are done with allocation
1076 down_read(e4b
->alloc_semp
);
1078 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp
))) {
1079 /* we need to check for group need init flag
1080 * with alloc_semp held so that we can be sure
1081 * that new blocks didn't get added to the group
1082 * when we are loading the buddy cache
1084 up_read(e4b
->alloc_semp
);
1086 * we need full data about the group
1087 * to make a good selection
1089 ret
= ext4_mb_init_group(sb
, group
);
1092 goto repeat_load_buddy
;
1096 * the buddy cache inode stores the block bitmap
1097 * and buddy information in consecutive blocks.
1098 * So for each group we need two blocks.
1101 pnum
= block
/ blocks_per_page
;
1102 poff
= block
% blocks_per_page
;
1104 /* we could use find_or_create_page(), but it locks page
1105 * what we'd like to avoid in fast path ... */
1106 page
= find_get_page(inode
->i_mapping
, pnum
);
1107 if (page
== NULL
|| !PageUptodate(page
)) {
1110 * drop the page reference and try
1111 * to get the page with lock. If we
1112 * are not uptodate that implies
1113 * somebody just created the page but
1114 * is yet to initialize the same. So
1115 * wait for it to initialize.
1117 page_cache_release(page
);
1118 page
= find_or_create_page(inode
->i_mapping
, pnum
, GFP_NOFS
);
1120 BUG_ON(page
->mapping
!= inode
->i_mapping
);
1121 if (!PageUptodate(page
)) {
1122 ret
= ext4_mb_init_cache(page
, NULL
);
1127 mb_cmp_bitmaps(e4b
, page_address(page
) +
1128 (poff
* sb
->s_blocksize
));
1133 if (page
== NULL
|| !PageUptodate(page
)) {
1137 e4b
->bd_bitmap_page
= page
;
1138 e4b
->bd_bitmap
= page_address(page
) + (poff
* sb
->s_blocksize
);
1139 mark_page_accessed(page
);
1142 pnum
= block
/ blocks_per_page
;
1143 poff
= block
% blocks_per_page
;
1145 page
= find_get_page(inode
->i_mapping
, pnum
);
1146 if (page
== NULL
|| !PageUptodate(page
)) {
1148 page_cache_release(page
);
1149 page
= find_or_create_page(inode
->i_mapping
, pnum
, GFP_NOFS
);
1151 BUG_ON(page
->mapping
!= inode
->i_mapping
);
1152 if (!PageUptodate(page
)) {
1153 ret
= ext4_mb_init_cache(page
, e4b
->bd_bitmap
);
1162 if (page
== NULL
|| !PageUptodate(page
)) {
1166 e4b
->bd_buddy_page
= page
;
1167 e4b
->bd_buddy
= page_address(page
) + (poff
* sb
->s_blocksize
);
1168 mark_page_accessed(page
);
1170 BUG_ON(e4b
->bd_bitmap_page
== NULL
);
1171 BUG_ON(e4b
->bd_buddy_page
== NULL
);
1176 if (e4b
->bd_bitmap_page
)
1177 page_cache_release(e4b
->bd_bitmap_page
);
1178 if (e4b
->bd_buddy_page
)
1179 page_cache_release(e4b
->bd_buddy_page
);
1180 e4b
->bd_buddy
= NULL
;
1181 e4b
->bd_bitmap
= NULL
;
1183 /* Done with the buddy cache */
1184 up_read(e4b
->alloc_semp
);
1188 static void ext4_mb_unload_buddy(struct ext4_buddy
*e4b
)
1190 if (e4b
->bd_bitmap_page
)
1191 page_cache_release(e4b
->bd_bitmap_page
);
1192 if (e4b
->bd_buddy_page
)
1193 page_cache_release(e4b
->bd_buddy_page
);
1194 /* Done with the buddy cache */
1195 if (e4b
->alloc_semp
)
1196 up_read(e4b
->alloc_semp
);
1200 static int mb_find_order_for_block(struct ext4_buddy
*e4b
, int block
)
1205 BUG_ON(EXT4_MB_BITMAP(e4b
) == EXT4_MB_BUDDY(e4b
));
1206 BUG_ON(block
>= (1 << (e4b
->bd_blkbits
+ 3)));
1208 bb
= EXT4_MB_BUDDY(e4b
);
1209 while (order
<= e4b
->bd_blkbits
+ 1) {
1211 if (!mb_test_bit(block
, bb
)) {
1212 /* this block is part of buddy of order 'order' */
1215 bb
+= 1 << (e4b
->bd_blkbits
- order
);
1221 static void mb_clear_bits(void *bm
, int cur
, int len
)
1227 if ((cur
& 31) == 0 && (len
- cur
) >= 32) {
1228 /* fast path: clear whole word at once */
1229 addr
= bm
+ (cur
>> 3);
1234 mb_clear_bit(cur
, bm
);
1239 static void mb_set_bits(void *bm
, int cur
, int len
)
1245 if ((cur
& 31) == 0 && (len
- cur
) >= 32) {
1246 /* fast path: set whole word at once */
1247 addr
= bm
+ (cur
>> 3);
1252 mb_set_bit(cur
, bm
);
1257 static void mb_free_blocks(struct inode
*inode
, struct ext4_buddy
*e4b
,
1258 int first
, int count
)
1265 struct super_block
*sb
= e4b
->bd_sb
;
1267 BUG_ON(first
+ count
> (sb
->s_blocksize
<< 3));
1268 assert_spin_locked(ext4_group_lock_ptr(sb
, e4b
->bd_group
));
1269 mb_check_buddy(e4b
);
1270 mb_free_blocks_double(inode
, e4b
, first
, count
);
1272 e4b
->bd_info
->bb_free
+= count
;
1273 if (first
< e4b
->bd_info
->bb_first_free
)
1274 e4b
->bd_info
->bb_first_free
= first
;
1276 /* let's maintain fragments counter */
1278 block
= !mb_test_bit(first
- 1, EXT4_MB_BITMAP(e4b
));
1279 if (first
+ count
< EXT4_SB(sb
)->s_mb_maxs
[0])
1280 max
= !mb_test_bit(first
+ count
, EXT4_MB_BITMAP(e4b
));
1282 e4b
->bd_info
->bb_fragments
--;
1283 else if (!block
&& !max
)
1284 e4b
->bd_info
->bb_fragments
++;
1286 /* let's maintain buddy itself */
1287 while (count
-- > 0) {
1291 if (!mb_test_bit(block
, EXT4_MB_BITMAP(e4b
))) {
1292 ext4_fsblk_t blocknr
;
1293 blocknr
= e4b
->bd_group
* EXT4_BLOCKS_PER_GROUP(sb
);
1296 le32_to_cpu(EXT4_SB(sb
)->s_es
->s_first_data_block
);
1297 ext4_grp_locked_error(sb
, e4b
->bd_group
,
1298 __func__
, "double-free of inode"
1299 " %lu's block %llu(bit %u in group %u)",
1300 inode
? inode
->i_ino
: 0, blocknr
, block
,
1303 mb_clear_bit(block
, EXT4_MB_BITMAP(e4b
));
1304 e4b
->bd_info
->bb_counters
[order
]++;
1306 /* start of the buddy */
1307 buddy
= mb_find_buddy(e4b
, order
, &max
);
1311 if (mb_test_bit(block
, buddy
) ||
1312 mb_test_bit(block
+ 1, buddy
))
1315 /* both the buddies are free, try to coalesce them */
1316 buddy2
= mb_find_buddy(e4b
, order
+ 1, &max
);
1322 /* for special purposes, we don't set
1323 * free bits in bitmap */
1324 mb_set_bit(block
, buddy
);
1325 mb_set_bit(block
+ 1, buddy
);
1327 e4b
->bd_info
->bb_counters
[order
]--;
1328 e4b
->bd_info
->bb_counters
[order
]--;
1332 e4b
->bd_info
->bb_counters
[order
]++;
1334 mb_clear_bit(block
, buddy2
);
1338 mb_set_largest_free_order(sb
, e4b
->bd_info
);
1339 mb_check_buddy(e4b
);
1342 static int mb_find_extent(struct ext4_buddy
*e4b
, int order
, int block
,
1343 int needed
, struct ext4_free_extent
*ex
)
1350 assert_spin_locked(ext4_group_lock_ptr(e4b
->bd_sb
, e4b
->bd_group
));
1353 buddy
= mb_find_buddy(e4b
, order
, &max
);
1354 BUG_ON(buddy
== NULL
);
1355 BUG_ON(block
>= max
);
1356 if (mb_test_bit(block
, buddy
)) {
1363 /* FIXME dorp order completely ? */
1364 if (likely(order
== 0)) {
1365 /* find actual order */
1366 order
= mb_find_order_for_block(e4b
, block
);
1367 block
= block
>> order
;
1370 ex
->fe_len
= 1 << order
;
1371 ex
->fe_start
= block
<< order
;
1372 ex
->fe_group
= e4b
->bd_group
;
1374 /* calc difference from given start */
1375 next
= next
- ex
->fe_start
;
1377 ex
->fe_start
+= next
;
1379 while (needed
> ex
->fe_len
&&
1380 (buddy
= mb_find_buddy(e4b
, order
, &max
))) {
1382 if (block
+ 1 >= max
)
1385 next
= (block
+ 1) * (1 << order
);
1386 if (mb_test_bit(next
, EXT4_MB_BITMAP(e4b
)))
1389 ord
= mb_find_order_for_block(e4b
, next
);
1392 block
= next
>> order
;
1393 ex
->fe_len
+= 1 << order
;
1396 BUG_ON(ex
->fe_start
+ ex
->fe_len
> (1 << (e4b
->bd_blkbits
+ 3)));
1400 static int mb_mark_used(struct ext4_buddy
*e4b
, struct ext4_free_extent
*ex
)
1406 int start
= ex
->fe_start
;
1407 int len
= ex
->fe_len
;
1412 BUG_ON(start
+ len
> (e4b
->bd_sb
->s_blocksize
<< 3));
1413 BUG_ON(e4b
->bd_group
!= ex
->fe_group
);
1414 assert_spin_locked(ext4_group_lock_ptr(e4b
->bd_sb
, e4b
->bd_group
));
1415 mb_check_buddy(e4b
);
1416 mb_mark_used_double(e4b
, start
, len
);
1418 e4b
->bd_info
->bb_free
-= len
;
1419 if (e4b
->bd_info
->bb_first_free
== start
)
1420 e4b
->bd_info
->bb_first_free
+= len
;
1422 /* let's maintain fragments counter */
1424 mlen
= !mb_test_bit(start
- 1, EXT4_MB_BITMAP(e4b
));
1425 if (start
+ len
< EXT4_SB(e4b
->bd_sb
)->s_mb_maxs
[0])
1426 max
= !mb_test_bit(start
+ len
, EXT4_MB_BITMAP(e4b
));
1428 e4b
->bd_info
->bb_fragments
++;
1429 else if (!mlen
&& !max
)
1430 e4b
->bd_info
->bb_fragments
--;
1432 /* let's maintain buddy itself */
1434 ord
= mb_find_order_for_block(e4b
, start
);
1436 if (((start
>> ord
) << ord
) == start
&& len
>= (1 << ord
)) {
1437 /* the whole chunk may be allocated at once! */
1439 buddy
= mb_find_buddy(e4b
, ord
, &max
);
1440 BUG_ON((start
>> ord
) >= max
);
1441 mb_set_bit(start
>> ord
, buddy
);
1442 e4b
->bd_info
->bb_counters
[ord
]--;
1449 /* store for history */
1451 ret
= len
| (ord
<< 16);
1453 /* we have to split large buddy */
1455 buddy
= mb_find_buddy(e4b
, ord
, &max
);
1456 mb_set_bit(start
>> ord
, buddy
);
1457 e4b
->bd_info
->bb_counters
[ord
]--;
1460 cur
= (start
>> ord
) & ~1U;
1461 buddy
= mb_find_buddy(e4b
, ord
, &max
);
1462 mb_clear_bit(cur
, buddy
);
1463 mb_clear_bit(cur
+ 1, buddy
);
1464 e4b
->bd_info
->bb_counters
[ord
]++;
1465 e4b
->bd_info
->bb_counters
[ord
]++;
1467 mb_set_largest_free_order(e4b
->bd_sb
, e4b
->bd_info
);
1469 mb_set_bits(EXT4_MB_BITMAP(e4b
), ex
->fe_start
, len0
);
1470 mb_check_buddy(e4b
);
1476 * Must be called under group lock!
1478 static void ext4_mb_use_best_found(struct ext4_allocation_context
*ac
,
1479 struct ext4_buddy
*e4b
)
1481 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
1484 BUG_ON(ac
->ac_b_ex
.fe_group
!= e4b
->bd_group
);
1485 BUG_ON(ac
->ac_status
== AC_STATUS_FOUND
);
1487 ac
->ac_b_ex
.fe_len
= min(ac
->ac_b_ex
.fe_len
, ac
->ac_g_ex
.fe_len
);
1488 ac
->ac_b_ex
.fe_logical
= ac
->ac_g_ex
.fe_logical
;
1489 ret
= mb_mark_used(e4b
, &ac
->ac_b_ex
);
1491 /* preallocation can change ac_b_ex, thus we store actually
1492 * allocated blocks for history */
1493 ac
->ac_f_ex
= ac
->ac_b_ex
;
1495 ac
->ac_status
= AC_STATUS_FOUND
;
1496 ac
->ac_tail
= ret
& 0xffff;
1497 ac
->ac_buddy
= ret
>> 16;
1500 * take the page reference. We want the page to be pinned
1501 * so that we don't get a ext4_mb_init_cache_call for this
1502 * group until we update the bitmap. That would mean we
1503 * double allocate blocks. The reference is dropped
1504 * in ext4_mb_release_context
1506 ac
->ac_bitmap_page
= e4b
->bd_bitmap_page
;
1507 get_page(ac
->ac_bitmap_page
);
1508 ac
->ac_buddy_page
= e4b
->bd_buddy_page
;
1509 get_page(ac
->ac_buddy_page
);
1510 /* on allocation we use ac to track the held semaphore */
1511 ac
->alloc_semp
= e4b
->alloc_semp
;
1512 e4b
->alloc_semp
= NULL
;
1513 /* store last allocated for subsequent stream allocation */
1514 if (ac
->ac_flags
& EXT4_MB_STREAM_ALLOC
) {
1515 spin_lock(&sbi
->s_md_lock
);
1516 sbi
->s_mb_last_group
= ac
->ac_f_ex
.fe_group
;
1517 sbi
->s_mb_last_start
= ac
->ac_f_ex
.fe_start
;
1518 spin_unlock(&sbi
->s_md_lock
);
1523 * regular allocator, for general purposes allocation
1526 static void ext4_mb_check_limits(struct ext4_allocation_context
*ac
,
1527 struct ext4_buddy
*e4b
,
1530 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
1531 struct ext4_free_extent
*bex
= &ac
->ac_b_ex
;
1532 struct ext4_free_extent
*gex
= &ac
->ac_g_ex
;
1533 struct ext4_free_extent ex
;
1536 if (ac
->ac_status
== AC_STATUS_FOUND
)
1539 * We don't want to scan for a whole year
1541 if (ac
->ac_found
> sbi
->s_mb_max_to_scan
&&
1542 !(ac
->ac_flags
& EXT4_MB_HINT_FIRST
)) {
1543 ac
->ac_status
= AC_STATUS_BREAK
;
1548 * Haven't found good chunk so far, let's continue
1550 if (bex
->fe_len
< gex
->fe_len
)
1553 if ((finish_group
|| ac
->ac_found
> sbi
->s_mb_min_to_scan
)
1554 && bex
->fe_group
== e4b
->bd_group
) {
1555 /* recheck chunk's availability - we don't know
1556 * when it was found (within this lock-unlock
1558 max
= mb_find_extent(e4b
, 0, bex
->fe_start
, gex
->fe_len
, &ex
);
1559 if (max
>= gex
->fe_len
) {
1560 ext4_mb_use_best_found(ac
, e4b
);
1567 * The routine checks whether found extent is good enough. If it is,
1568 * then the extent gets marked used and flag is set to the context
1569 * to stop scanning. Otherwise, the extent is compared with the
1570 * previous found extent and if new one is better, then it's stored
1571 * in the context. Later, the best found extent will be used, if
1572 * mballoc can't find good enough extent.
1574 * FIXME: real allocation policy is to be designed yet!
1576 static void ext4_mb_measure_extent(struct ext4_allocation_context
*ac
,
1577 struct ext4_free_extent
*ex
,
1578 struct ext4_buddy
*e4b
)
1580 struct ext4_free_extent
*bex
= &ac
->ac_b_ex
;
1581 struct ext4_free_extent
*gex
= &ac
->ac_g_ex
;
1583 BUG_ON(ex
->fe_len
<= 0);
1584 BUG_ON(ex
->fe_len
> EXT4_BLOCKS_PER_GROUP(ac
->ac_sb
));
1585 BUG_ON(ex
->fe_start
>= EXT4_BLOCKS_PER_GROUP(ac
->ac_sb
));
1586 BUG_ON(ac
->ac_status
!= AC_STATUS_CONTINUE
);
1591 * The special case - take what you catch first
1593 if (unlikely(ac
->ac_flags
& EXT4_MB_HINT_FIRST
)) {
1595 ext4_mb_use_best_found(ac
, e4b
);
1600 * Let's check whether the chuck is good enough
1602 if (ex
->fe_len
== gex
->fe_len
) {
1604 ext4_mb_use_best_found(ac
, e4b
);
1609 * If this is first found extent, just store it in the context
1611 if (bex
->fe_len
== 0) {
1617 * If new found extent is better, store it in the context
1619 if (bex
->fe_len
< gex
->fe_len
) {
1620 /* if the request isn't satisfied, any found extent
1621 * larger than previous best one is better */
1622 if (ex
->fe_len
> bex
->fe_len
)
1624 } else if (ex
->fe_len
> gex
->fe_len
) {
1625 /* if the request is satisfied, then we try to find
1626 * an extent that still satisfy the request, but is
1627 * smaller than previous one */
1628 if (ex
->fe_len
< bex
->fe_len
)
1632 ext4_mb_check_limits(ac
, e4b
, 0);
1635 static noinline_for_stack
1636 int ext4_mb_try_best_found(struct ext4_allocation_context
*ac
,
1637 struct ext4_buddy
*e4b
)
1639 struct ext4_free_extent ex
= ac
->ac_b_ex
;
1640 ext4_group_t group
= ex
.fe_group
;
1644 BUG_ON(ex
.fe_len
<= 0);
1645 err
= ext4_mb_load_buddy(ac
->ac_sb
, group
, e4b
);
1649 ext4_lock_group(ac
->ac_sb
, group
);
1650 max
= mb_find_extent(e4b
, 0, ex
.fe_start
, ex
.fe_len
, &ex
);
1654 ext4_mb_use_best_found(ac
, e4b
);
1657 ext4_unlock_group(ac
->ac_sb
, group
);
1658 ext4_mb_unload_buddy(e4b
);
1663 static noinline_for_stack
1664 int ext4_mb_find_by_goal(struct ext4_allocation_context
*ac
,
1665 struct ext4_buddy
*e4b
)
1667 ext4_group_t group
= ac
->ac_g_ex
.fe_group
;
1670 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
1671 struct ext4_super_block
*es
= sbi
->s_es
;
1672 struct ext4_free_extent ex
;
1674 if (!(ac
->ac_flags
& EXT4_MB_HINT_TRY_GOAL
))
1677 err
= ext4_mb_load_buddy(ac
->ac_sb
, group
, e4b
);
1681 ext4_lock_group(ac
->ac_sb
, group
);
1682 max
= mb_find_extent(e4b
, 0, ac
->ac_g_ex
.fe_start
,
1683 ac
->ac_g_ex
.fe_len
, &ex
);
1685 if (max
>= ac
->ac_g_ex
.fe_len
&& ac
->ac_g_ex
.fe_len
== sbi
->s_stripe
) {
1688 start
= (e4b
->bd_group
* EXT4_BLOCKS_PER_GROUP(ac
->ac_sb
)) +
1689 ex
.fe_start
+ le32_to_cpu(es
->s_first_data_block
);
1690 /* use do_div to get remainder (would be 64-bit modulo) */
1691 if (do_div(start
, sbi
->s_stripe
) == 0) {
1694 ext4_mb_use_best_found(ac
, e4b
);
1696 } else if (max
>= ac
->ac_g_ex
.fe_len
) {
1697 BUG_ON(ex
.fe_len
<= 0);
1698 BUG_ON(ex
.fe_group
!= ac
->ac_g_ex
.fe_group
);
1699 BUG_ON(ex
.fe_start
!= ac
->ac_g_ex
.fe_start
);
1702 ext4_mb_use_best_found(ac
, e4b
);
1703 } else if (max
> 0 && (ac
->ac_flags
& EXT4_MB_HINT_MERGE
)) {
1704 /* Sometimes, caller may want to merge even small
1705 * number of blocks to an existing extent */
1706 BUG_ON(ex
.fe_len
<= 0);
1707 BUG_ON(ex
.fe_group
!= ac
->ac_g_ex
.fe_group
);
1708 BUG_ON(ex
.fe_start
!= ac
->ac_g_ex
.fe_start
);
1711 ext4_mb_use_best_found(ac
, e4b
);
1713 ext4_unlock_group(ac
->ac_sb
, group
);
1714 ext4_mb_unload_buddy(e4b
);
1720 * The routine scans buddy structures (not bitmap!) from given order
1721 * to max order and tries to find big enough chunk to satisfy the req
1723 static noinline_for_stack
1724 void ext4_mb_simple_scan_group(struct ext4_allocation_context
*ac
,
1725 struct ext4_buddy
*e4b
)
1727 struct super_block
*sb
= ac
->ac_sb
;
1728 struct ext4_group_info
*grp
= e4b
->bd_info
;
1734 BUG_ON(ac
->ac_2order
<= 0);
1735 for (i
= ac
->ac_2order
; i
<= sb
->s_blocksize_bits
+ 1; i
++) {
1736 if (grp
->bb_counters
[i
] == 0)
1739 buddy
= mb_find_buddy(e4b
, i
, &max
);
1740 BUG_ON(buddy
== NULL
);
1742 k
= mb_find_next_zero_bit(buddy
, max
, 0);
1747 ac
->ac_b_ex
.fe_len
= 1 << i
;
1748 ac
->ac_b_ex
.fe_start
= k
<< i
;
1749 ac
->ac_b_ex
.fe_group
= e4b
->bd_group
;
1751 ext4_mb_use_best_found(ac
, e4b
);
1753 BUG_ON(ac
->ac_b_ex
.fe_len
!= ac
->ac_g_ex
.fe_len
);
1755 if (EXT4_SB(sb
)->s_mb_stats
)
1756 atomic_inc(&EXT4_SB(sb
)->s_bal_2orders
);
1763 * The routine scans the group and measures all found extents.
1764 * In order to optimize scanning, caller must pass number of
1765 * free blocks in the group, so the routine can know upper limit.
1767 static noinline_for_stack
1768 void ext4_mb_complex_scan_group(struct ext4_allocation_context
*ac
,
1769 struct ext4_buddy
*e4b
)
1771 struct super_block
*sb
= ac
->ac_sb
;
1772 void *bitmap
= EXT4_MB_BITMAP(e4b
);
1773 struct ext4_free_extent ex
;
1777 free
= e4b
->bd_info
->bb_free
;
1780 i
= e4b
->bd_info
->bb_first_free
;
1782 while (free
&& ac
->ac_status
== AC_STATUS_CONTINUE
) {
1783 i
= mb_find_next_zero_bit(bitmap
,
1784 EXT4_BLOCKS_PER_GROUP(sb
), i
);
1785 if (i
>= EXT4_BLOCKS_PER_GROUP(sb
)) {
1787 * IF we have corrupt bitmap, we won't find any
1788 * free blocks even though group info says we
1789 * we have free blocks
1791 ext4_grp_locked_error(sb
, e4b
->bd_group
,
1792 __func__
, "%d free blocks as per "
1793 "group info. But bitmap says 0",
1798 mb_find_extent(e4b
, 0, i
, ac
->ac_g_ex
.fe_len
, &ex
);
1799 BUG_ON(ex
.fe_len
<= 0);
1800 if (free
< ex
.fe_len
) {
1801 ext4_grp_locked_error(sb
, e4b
->bd_group
,
1802 __func__
, "%d free blocks as per "
1803 "group info. But got %d blocks",
1806 * The number of free blocks differs. This mostly
1807 * indicate that the bitmap is corrupt. So exit
1808 * without claiming the space.
1813 ext4_mb_measure_extent(ac
, &ex
, e4b
);
1819 ext4_mb_check_limits(ac
, e4b
, 1);
1823 * This is a special case for storages like raid5
1824 * we try to find stripe-aligned chunks for stripe-size requests
1825 * XXX should do so at least for multiples of stripe size as well
1827 static noinline_for_stack
1828 void ext4_mb_scan_aligned(struct ext4_allocation_context
*ac
,
1829 struct ext4_buddy
*e4b
)
1831 struct super_block
*sb
= ac
->ac_sb
;
1832 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
1833 void *bitmap
= EXT4_MB_BITMAP(e4b
);
1834 struct ext4_free_extent ex
;
1835 ext4_fsblk_t first_group_block
;
1840 BUG_ON(sbi
->s_stripe
== 0);
1842 /* find first stripe-aligned block in group */
1843 first_group_block
= e4b
->bd_group
* EXT4_BLOCKS_PER_GROUP(sb
)
1844 + le32_to_cpu(sbi
->s_es
->s_first_data_block
);
1845 a
= first_group_block
+ sbi
->s_stripe
- 1;
1846 do_div(a
, sbi
->s_stripe
);
1847 i
= (a
* sbi
->s_stripe
) - first_group_block
;
1849 while (i
< EXT4_BLOCKS_PER_GROUP(sb
)) {
1850 if (!mb_test_bit(i
, bitmap
)) {
1851 max
= mb_find_extent(e4b
, 0, i
, sbi
->s_stripe
, &ex
);
1852 if (max
>= sbi
->s_stripe
) {
1855 ext4_mb_use_best_found(ac
, e4b
);
1863 /* This is now called BEFORE we load the buddy bitmap. */
1864 static int ext4_mb_good_group(struct ext4_allocation_context
*ac
,
1865 ext4_group_t group
, int cr
)
1867 unsigned free
, fragments
;
1868 int flex_size
= ext4_flex_bg_size(EXT4_SB(ac
->ac_sb
));
1869 struct ext4_group_info
*grp
= ext4_get_group_info(ac
->ac_sb
, group
);
1871 BUG_ON(cr
< 0 || cr
>= 4);
1873 /* We only do this if the grp has never been initialized */
1874 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp
))) {
1875 int ret
= ext4_mb_init_group(ac
->ac_sb
, group
);
1880 free
= grp
->bb_free
;
1881 fragments
= grp
->bb_fragments
;
1889 BUG_ON(ac
->ac_2order
== 0);
1891 if (grp
->bb_largest_free_order
< ac
->ac_2order
)
1894 /* Avoid using the first bg of a flexgroup for data files */
1895 if ((ac
->ac_flags
& EXT4_MB_HINT_DATA
) &&
1896 (flex_size
>= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME
) &&
1897 ((group
% flex_size
) == 0))
1902 if ((free
/ fragments
) >= ac
->ac_g_ex
.fe_len
)
1906 if (free
>= ac
->ac_g_ex
.fe_len
)
1919 * lock the group_info alloc_sem of all the groups
1920 * belonging to the same buddy cache page. This
1921 * make sure other parallel operation on the buddy
1922 * cache doesn't happen whild holding the buddy cache
1925 int ext4_mb_get_buddy_cache_lock(struct super_block
*sb
, ext4_group_t group
)
1929 int blocks_per_page
;
1930 int groups_per_page
;
1931 ext4_group_t ngroups
= ext4_get_groups_count(sb
);
1932 ext4_group_t first_group
;
1933 struct ext4_group_info
*grp
;
1935 blocks_per_page
= PAGE_CACHE_SIZE
/ sb
->s_blocksize
;
1937 * the buddy cache inode stores the block bitmap
1938 * and buddy information in consecutive blocks.
1939 * So for each group we need two blocks.
1942 pnum
= block
/ blocks_per_page
;
1943 first_group
= pnum
* blocks_per_page
/ 2;
1945 groups_per_page
= blocks_per_page
>> 1;
1946 if (groups_per_page
== 0)
1947 groups_per_page
= 1;
1948 /* read all groups the page covers into the cache */
1949 for (i
= 0; i
< groups_per_page
; i
++) {
1951 if ((first_group
+ i
) >= ngroups
)
1953 grp
= ext4_get_group_info(sb
, first_group
+ i
);
1954 /* take all groups write allocation
1955 * semaphore. This make sure there is
1956 * no block allocation going on in any
1959 down_write_nested(&grp
->alloc_sem
, i
);
1964 void ext4_mb_put_buddy_cache_lock(struct super_block
*sb
,
1965 ext4_group_t group
, int locked_group
)
1969 int blocks_per_page
;
1970 ext4_group_t first_group
;
1971 struct ext4_group_info
*grp
;
1973 blocks_per_page
= PAGE_CACHE_SIZE
/ sb
->s_blocksize
;
1975 * the buddy cache inode stores the block bitmap
1976 * and buddy information in consecutive blocks.
1977 * So for each group we need two blocks.
1980 pnum
= block
/ blocks_per_page
;
1981 first_group
= pnum
* blocks_per_page
/ 2;
1982 /* release locks on all the groups */
1983 for (i
= 0; i
< locked_group
; i
++) {
1985 grp
= ext4_get_group_info(sb
, first_group
+ i
);
1986 /* take all groups write allocation
1987 * semaphore. This make sure there is
1988 * no block allocation going on in any
1991 up_write(&grp
->alloc_sem
);
1996 static noinline_for_stack
int
1997 ext4_mb_regular_allocator(struct ext4_allocation_context
*ac
)
1999 ext4_group_t ngroups
, group
, i
;
2003 struct ext4_sb_info
*sbi
;
2004 struct super_block
*sb
;
2005 struct ext4_buddy e4b
;
2009 ngroups
= ext4_get_groups_count(sb
);
2010 /* non-extent files are limited to low blocks/groups */
2011 if (!(ext4_test_inode_flag(ac
->ac_inode
, EXT4_INODE_EXTENTS
)))
2012 ngroups
= sbi
->s_blockfile_groups
;
2014 BUG_ON(ac
->ac_status
== AC_STATUS_FOUND
);
2016 /* first, try the goal */
2017 err
= ext4_mb_find_by_goal(ac
, &e4b
);
2018 if (err
|| ac
->ac_status
== AC_STATUS_FOUND
)
2021 if (unlikely(ac
->ac_flags
& EXT4_MB_HINT_GOAL_ONLY
))
2025 * ac->ac2_order is set only if the fe_len is a power of 2
2026 * if ac2_order is set we also set criteria to 0 so that we
2027 * try exact allocation using buddy.
2029 i
= fls(ac
->ac_g_ex
.fe_len
);
2032 * We search using buddy data only if the order of the request
2033 * is greater than equal to the sbi_s_mb_order2_reqs
2034 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2036 if (i
>= sbi
->s_mb_order2_reqs
) {
2038 * This should tell if fe_len is exactly power of 2
2040 if ((ac
->ac_g_ex
.fe_len
& (~(1 << (i
- 1)))) == 0)
2041 ac
->ac_2order
= i
- 1;
2044 bsbits
= ac
->ac_sb
->s_blocksize_bits
;
2046 /* if stream allocation is enabled, use global goal */
2047 if (ac
->ac_flags
& EXT4_MB_STREAM_ALLOC
) {
2048 /* TBD: may be hot point */
2049 spin_lock(&sbi
->s_md_lock
);
2050 ac
->ac_g_ex
.fe_group
= sbi
->s_mb_last_group
;
2051 ac
->ac_g_ex
.fe_start
= sbi
->s_mb_last_start
;
2052 spin_unlock(&sbi
->s_md_lock
);
2055 /* Let's just scan groups to find more-less suitable blocks */
2056 cr
= ac
->ac_2order
? 0 : 1;
2058 * cr == 0 try to get exact allocation,
2059 * cr == 3 try to get anything
2062 for (; cr
< 4 && ac
->ac_status
== AC_STATUS_CONTINUE
; cr
++) {
2063 ac
->ac_criteria
= cr
;
2065 * searching for the right group start
2066 * from the goal value specified
2068 group
= ac
->ac_g_ex
.fe_group
;
2070 for (i
= 0; i
< ngroups
; group
++, i
++) {
2071 if (group
== ngroups
)
2074 /* This now checks without needing the buddy page */
2075 if (!ext4_mb_good_group(ac
, group
, cr
))
2078 err
= ext4_mb_load_buddy(sb
, group
, &e4b
);
2082 ext4_lock_group(sb
, group
);
2085 * We need to check again after locking the
2088 if (!ext4_mb_good_group(ac
, group
, cr
)) {
2089 ext4_unlock_group(sb
, group
);
2090 ext4_mb_unload_buddy(&e4b
);
2094 ac
->ac_groups_scanned
++;
2096 ext4_mb_simple_scan_group(ac
, &e4b
);
2098 ac
->ac_g_ex
.fe_len
== sbi
->s_stripe
)
2099 ext4_mb_scan_aligned(ac
, &e4b
);
2101 ext4_mb_complex_scan_group(ac
, &e4b
);
2103 ext4_unlock_group(sb
, group
);
2104 ext4_mb_unload_buddy(&e4b
);
2106 if (ac
->ac_status
!= AC_STATUS_CONTINUE
)
2111 if (ac
->ac_b_ex
.fe_len
> 0 && ac
->ac_status
!= AC_STATUS_FOUND
&&
2112 !(ac
->ac_flags
& EXT4_MB_HINT_FIRST
)) {
2114 * We've been searching too long. Let's try to allocate
2115 * the best chunk we've found so far
2118 ext4_mb_try_best_found(ac
, &e4b
);
2119 if (ac
->ac_status
!= AC_STATUS_FOUND
) {
2121 * Someone more lucky has already allocated it.
2122 * The only thing we can do is just take first
2124 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2126 ac
->ac_b_ex
.fe_group
= 0;
2127 ac
->ac_b_ex
.fe_start
= 0;
2128 ac
->ac_b_ex
.fe_len
= 0;
2129 ac
->ac_status
= AC_STATUS_CONTINUE
;
2130 ac
->ac_flags
|= EXT4_MB_HINT_FIRST
;
2132 atomic_inc(&sbi
->s_mb_lost_chunks
);
2140 static void *ext4_mb_seq_groups_start(struct seq_file
*seq
, loff_t
*pos
)
2142 struct super_block
*sb
= seq
->private;
2145 if (*pos
< 0 || *pos
>= ext4_get_groups_count(sb
))
2148 return (void *) ((unsigned long) group
);
2151 static void *ext4_mb_seq_groups_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2153 struct super_block
*sb
= seq
->private;
2157 if (*pos
< 0 || *pos
>= ext4_get_groups_count(sb
))
2160 return (void *) ((unsigned long) group
);
2163 static int ext4_mb_seq_groups_show(struct seq_file
*seq
, void *v
)
2165 struct super_block
*sb
= seq
->private;
2166 ext4_group_t group
= (ext4_group_t
) ((unsigned long) v
);
2169 struct ext4_buddy e4b
;
2171 struct ext4_group_info info
;
2172 ext4_grpblk_t counters
[16];
2177 seq_printf(seq
, "#%-5s: %-5s %-5s %-5s "
2178 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2179 "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2180 "group", "free", "frags", "first",
2181 "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2182 "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2184 i
= (sb
->s_blocksize_bits
+ 2) * sizeof(sg
.info
.bb_counters
[0]) +
2185 sizeof(struct ext4_group_info
);
2186 err
= ext4_mb_load_buddy(sb
, group
, &e4b
);
2188 seq_printf(seq
, "#%-5u: I/O error\n", group
);
2191 ext4_lock_group(sb
, group
);
2192 memcpy(&sg
, ext4_get_group_info(sb
, group
), i
);
2193 ext4_unlock_group(sb
, group
);
2194 ext4_mb_unload_buddy(&e4b
);
2196 seq_printf(seq
, "#%-5u: %-5u %-5u %-5u [", group
, sg
.info
.bb_free
,
2197 sg
.info
.bb_fragments
, sg
.info
.bb_first_free
);
2198 for (i
= 0; i
<= 13; i
++)
2199 seq_printf(seq
, " %-5u", i
<= sb
->s_blocksize_bits
+ 1 ?
2200 sg
.info
.bb_counters
[i
] : 0);
2201 seq_printf(seq
, " ]\n");
2206 static void ext4_mb_seq_groups_stop(struct seq_file
*seq
, void *v
)
2210 static const struct seq_operations ext4_mb_seq_groups_ops
= {
2211 .start
= ext4_mb_seq_groups_start
,
2212 .next
= ext4_mb_seq_groups_next
,
2213 .stop
= ext4_mb_seq_groups_stop
,
2214 .show
= ext4_mb_seq_groups_show
,
2217 static int ext4_mb_seq_groups_open(struct inode
*inode
, struct file
*file
)
2219 struct super_block
*sb
= PDE(inode
)->data
;
2222 rc
= seq_open(file
, &ext4_mb_seq_groups_ops
);
2224 struct seq_file
*m
= (struct seq_file
*)file
->private_data
;
2231 static const struct file_operations ext4_mb_seq_groups_fops
= {
2232 .owner
= THIS_MODULE
,
2233 .open
= ext4_mb_seq_groups_open
,
2235 .llseek
= seq_lseek
,
2236 .release
= seq_release
,
2240 /* Create and initialize ext4_group_info data for the given group. */
2241 int ext4_mb_add_groupinfo(struct super_block
*sb
, ext4_group_t group
,
2242 struct ext4_group_desc
*desc
)
2246 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2247 struct ext4_group_info
**meta_group_info
;
2250 * First check if this group is the first of a reserved block.
2251 * If it's true, we have to allocate a new table of pointers
2252 * to ext4_group_info structures
2254 if (group
% EXT4_DESC_PER_BLOCK(sb
) == 0) {
2255 metalen
= sizeof(*meta_group_info
) <<
2256 EXT4_DESC_PER_BLOCK_BITS(sb
);
2257 meta_group_info
= kmalloc(metalen
, GFP_KERNEL
);
2258 if (meta_group_info
== NULL
) {
2259 printk(KERN_ERR
"EXT4-fs: can't allocate mem for a "
2261 goto exit_meta_group_info
;
2263 sbi
->s_group_info
[group
>> EXT4_DESC_PER_BLOCK_BITS(sb
)] =
2268 * calculate needed size. if change bb_counters size,
2269 * don't forget about ext4_mb_generate_buddy()
2271 len
= offsetof(typeof(**meta_group_info
),
2272 bb_counters
[sb
->s_blocksize_bits
+ 2]);
2275 sbi
->s_group_info
[group
>> EXT4_DESC_PER_BLOCK_BITS(sb
)];
2276 i
= group
& (EXT4_DESC_PER_BLOCK(sb
) - 1);
2278 meta_group_info
[i
] = kzalloc(len
, GFP_KERNEL
);
2279 if (meta_group_info
[i
] == NULL
) {
2280 printk(KERN_ERR
"EXT4-fs: can't allocate buddy mem\n");
2281 goto exit_group_info
;
2283 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT
,
2284 &(meta_group_info
[i
]->bb_state
));
2287 * initialize bb_free to be able to skip
2288 * empty groups without initialization
2290 if (desc
->bg_flags
& cpu_to_le16(EXT4_BG_BLOCK_UNINIT
)) {
2291 meta_group_info
[i
]->bb_free
=
2292 ext4_free_blocks_after_init(sb
, group
, desc
);
2294 meta_group_info
[i
]->bb_free
=
2295 ext4_free_blks_count(sb
, desc
);
2298 INIT_LIST_HEAD(&meta_group_info
[i
]->bb_prealloc_list
);
2299 init_rwsem(&meta_group_info
[i
]->alloc_sem
);
2300 meta_group_info
[i
]->bb_free_root
.rb_node
= NULL
;
2301 meta_group_info
[i
]->bb_largest_free_order
= -1; /* uninit */
2305 struct buffer_head
*bh
;
2306 meta_group_info
[i
]->bb_bitmap
=
2307 kmalloc(sb
->s_blocksize
, GFP_KERNEL
);
2308 BUG_ON(meta_group_info
[i
]->bb_bitmap
== NULL
);
2309 bh
= ext4_read_block_bitmap(sb
, group
);
2311 memcpy(meta_group_info
[i
]->bb_bitmap
, bh
->b_data
,
2320 /* If a meta_group_info table has been allocated, release it now */
2321 if (group
% EXT4_DESC_PER_BLOCK(sb
) == 0)
2322 kfree(sbi
->s_group_info
[group
>> EXT4_DESC_PER_BLOCK_BITS(sb
)]);
2323 exit_meta_group_info
:
2325 } /* ext4_mb_add_groupinfo */
2327 static int ext4_mb_init_backend(struct super_block
*sb
)
2329 ext4_group_t ngroups
= ext4_get_groups_count(sb
);
2331 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2332 struct ext4_super_block
*es
= sbi
->s_es
;
2333 int num_meta_group_infos
;
2334 int num_meta_group_infos_max
;
2336 struct ext4_group_desc
*desc
;
2338 /* This is the number of blocks used by GDT */
2339 num_meta_group_infos
= (ngroups
+ EXT4_DESC_PER_BLOCK(sb
) -
2340 1) >> EXT4_DESC_PER_BLOCK_BITS(sb
);
2343 * This is the total number of blocks used by GDT including
2344 * the number of reserved blocks for GDT.
2345 * The s_group_info array is allocated with this value
2346 * to allow a clean online resize without a complex
2347 * manipulation of pointer.
2348 * The drawback is the unused memory when no resize
2349 * occurs but it's very low in terms of pages
2350 * (see comments below)
2351 * Need to handle this properly when META_BG resizing is allowed
2353 num_meta_group_infos_max
= num_meta_group_infos
+
2354 le16_to_cpu(es
->s_reserved_gdt_blocks
);
2357 * array_size is the size of s_group_info array. We round it
2358 * to the next power of two because this approximation is done
2359 * internally by kmalloc so we can have some more memory
2360 * for free here (e.g. may be used for META_BG resize).
2363 while (array_size
< sizeof(*sbi
->s_group_info
) *
2364 num_meta_group_infos_max
)
2365 array_size
= array_size
<< 1;
2366 /* An 8TB filesystem with 64-bit pointers requires a 4096 byte
2367 * kmalloc. A 128kb malloc should suffice for a 256TB filesystem.
2368 * So a two level scheme suffices for now. */
2369 sbi
->s_group_info
= kmalloc(array_size
, GFP_KERNEL
);
2370 if (sbi
->s_group_info
== NULL
) {
2371 printk(KERN_ERR
"EXT4-fs: can't allocate buddy meta group\n");
2374 sbi
->s_buddy_cache
= new_inode(sb
);
2375 if (sbi
->s_buddy_cache
== NULL
) {
2376 printk(KERN_ERR
"EXT4-fs: can't get new inode\n");
2379 EXT4_I(sbi
->s_buddy_cache
)->i_disksize
= 0;
2380 for (i
= 0; i
< ngroups
; i
++) {
2381 desc
= ext4_get_group_desc(sb
, i
, NULL
);
2384 "EXT4-fs: can't read descriptor %u\n", i
);
2387 if (ext4_mb_add_groupinfo(sb
, i
, desc
) != 0)
2395 kfree(ext4_get_group_info(sb
, i
));
2396 i
= num_meta_group_infos
;
2398 kfree(sbi
->s_group_info
[i
]);
2399 iput(sbi
->s_buddy_cache
);
2401 kfree(sbi
->s_group_info
);
2405 int ext4_mb_init(struct super_block
*sb
, int needs_recovery
)
2407 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2413 i
= (sb
->s_blocksize_bits
+ 2) * sizeof(*sbi
->s_mb_offsets
);
2415 sbi
->s_mb_offsets
= kmalloc(i
, GFP_KERNEL
);
2416 if (sbi
->s_mb_offsets
== NULL
) {
2420 i
= (sb
->s_blocksize_bits
+ 2) * sizeof(*sbi
->s_mb_maxs
);
2421 sbi
->s_mb_maxs
= kmalloc(i
, GFP_KERNEL
);
2422 if (sbi
->s_mb_maxs
== NULL
) {
2423 kfree(sbi
->s_mb_offsets
);
2427 /* order 0 is regular bitmap */
2428 sbi
->s_mb_maxs
[0] = sb
->s_blocksize
<< 3;
2429 sbi
->s_mb_offsets
[0] = 0;
2433 max
= sb
->s_blocksize
<< 2;
2435 sbi
->s_mb_offsets
[i
] = offset
;
2436 sbi
->s_mb_maxs
[i
] = max
;
2437 offset
+= 1 << (sb
->s_blocksize_bits
- i
);
2440 } while (i
<= sb
->s_blocksize_bits
+ 1);
2442 /* init file for buddy data */
2443 ret
= ext4_mb_init_backend(sb
);
2445 kfree(sbi
->s_mb_offsets
);
2446 kfree(sbi
->s_mb_maxs
);
2450 spin_lock_init(&sbi
->s_md_lock
);
2451 spin_lock_init(&sbi
->s_bal_lock
);
2453 sbi
->s_mb_max_to_scan
= MB_DEFAULT_MAX_TO_SCAN
;
2454 sbi
->s_mb_min_to_scan
= MB_DEFAULT_MIN_TO_SCAN
;
2455 sbi
->s_mb_stats
= MB_DEFAULT_STATS
;
2456 sbi
->s_mb_stream_request
= MB_DEFAULT_STREAM_THRESHOLD
;
2457 sbi
->s_mb_order2_reqs
= MB_DEFAULT_ORDER2_REQS
;
2458 sbi
->s_mb_group_prealloc
= MB_DEFAULT_GROUP_PREALLOC
;
2460 sbi
->s_locality_groups
= alloc_percpu(struct ext4_locality_group
);
2461 if (sbi
->s_locality_groups
== NULL
) {
2462 kfree(sbi
->s_mb_offsets
);
2463 kfree(sbi
->s_mb_maxs
);
2466 for_each_possible_cpu(i
) {
2467 struct ext4_locality_group
*lg
;
2468 lg
= per_cpu_ptr(sbi
->s_locality_groups
, i
);
2469 mutex_init(&lg
->lg_mutex
);
2470 for (j
= 0; j
< PREALLOC_TB_SIZE
; j
++)
2471 INIT_LIST_HEAD(&lg
->lg_prealloc_list
[j
]);
2472 spin_lock_init(&lg
->lg_prealloc_lock
);
2476 proc_create_data("mb_groups", S_IRUGO
, sbi
->s_proc
,
2477 &ext4_mb_seq_groups_fops
, sb
);
2480 sbi
->s_journal
->j_commit_callback
= release_blocks_on_commit
;
2484 /* need to called with the ext4 group lock held */
2485 static void ext4_mb_cleanup_pa(struct ext4_group_info
*grp
)
2487 struct ext4_prealloc_space
*pa
;
2488 struct list_head
*cur
, *tmp
;
2491 list_for_each_safe(cur
, tmp
, &grp
->bb_prealloc_list
) {
2492 pa
= list_entry(cur
, struct ext4_prealloc_space
, pa_group_list
);
2493 list_del(&pa
->pa_group_list
);
2495 kmem_cache_free(ext4_pspace_cachep
, pa
);
2498 mb_debug(1, "mballoc: %u PAs left\n", count
);
2502 int ext4_mb_release(struct super_block
*sb
)
2504 ext4_group_t ngroups
= ext4_get_groups_count(sb
);
2506 int num_meta_group_infos
;
2507 struct ext4_group_info
*grinfo
;
2508 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2510 if (sbi
->s_group_info
) {
2511 for (i
= 0; i
< ngroups
; i
++) {
2512 grinfo
= ext4_get_group_info(sb
, i
);
2514 kfree(grinfo
->bb_bitmap
);
2516 ext4_lock_group(sb
, i
);
2517 ext4_mb_cleanup_pa(grinfo
);
2518 ext4_unlock_group(sb
, i
);
2521 num_meta_group_infos
= (ngroups
+
2522 EXT4_DESC_PER_BLOCK(sb
) - 1) >>
2523 EXT4_DESC_PER_BLOCK_BITS(sb
);
2524 for (i
= 0; i
< num_meta_group_infos
; i
++)
2525 kfree(sbi
->s_group_info
[i
]);
2526 kfree(sbi
->s_group_info
);
2528 kfree(sbi
->s_mb_offsets
);
2529 kfree(sbi
->s_mb_maxs
);
2530 if (sbi
->s_buddy_cache
)
2531 iput(sbi
->s_buddy_cache
);
2532 if (sbi
->s_mb_stats
) {
2534 "EXT4-fs: mballoc: %u blocks %u reqs (%u success)\n",
2535 atomic_read(&sbi
->s_bal_allocated
),
2536 atomic_read(&sbi
->s_bal_reqs
),
2537 atomic_read(&sbi
->s_bal_success
));
2539 "EXT4-fs: mballoc: %u extents scanned, %u goal hits, "
2540 "%u 2^N hits, %u breaks, %u lost\n",
2541 atomic_read(&sbi
->s_bal_ex_scanned
),
2542 atomic_read(&sbi
->s_bal_goals
),
2543 atomic_read(&sbi
->s_bal_2orders
),
2544 atomic_read(&sbi
->s_bal_breaks
),
2545 atomic_read(&sbi
->s_mb_lost_chunks
));
2547 "EXT4-fs: mballoc: %lu generated and it took %Lu\n",
2548 sbi
->s_mb_buddies_generated
++,
2549 sbi
->s_mb_generation_time
);
2551 "EXT4-fs: mballoc: %u preallocated, %u discarded\n",
2552 atomic_read(&sbi
->s_mb_preallocated
),
2553 atomic_read(&sbi
->s_mb_discarded
));
2556 free_percpu(sbi
->s_locality_groups
);
2558 remove_proc_entry("mb_groups", sbi
->s_proc
);
2564 * This function is called by the jbd2 layer once the commit has finished,
2565 * so we know we can free the blocks that were released with that commit.
2567 static void release_blocks_on_commit(journal_t
*journal
, transaction_t
*txn
)
2569 struct super_block
*sb
= journal
->j_private
;
2570 struct ext4_buddy e4b
;
2571 struct ext4_group_info
*db
;
2572 int err
, count
= 0, count2
= 0;
2573 struct ext4_free_data
*entry
;
2574 struct list_head
*l
, *ltmp
;
2576 list_for_each_safe(l
, ltmp
, &txn
->t_private_list
) {
2577 entry
= list_entry(l
, struct ext4_free_data
, list
);
2579 mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2580 entry
->count
, entry
->group
, entry
);
2582 if (test_opt(sb
, DISCARD
)) {
2584 ext4_fsblk_t discard_block
;
2586 discard_block
= entry
->start_blk
+
2587 ext4_group_first_block_no(sb
, entry
->group
);
2588 trace_ext4_discard_blocks(sb
,
2589 (unsigned long long)discard_block
,
2591 ret
= sb_issue_discard(sb
, discard_block
, entry
->count
);
2592 if (ret
== EOPNOTSUPP
) {
2593 ext4_warning(sb
, __func__
,
2594 "discard not supported, disabling");
2595 clear_opt(EXT4_SB(sb
)->s_mount_opt
, DISCARD
);
2599 err
= ext4_mb_load_buddy(sb
, entry
->group
, &e4b
);
2600 /* we expect to find existing buddy because it's pinned */
2604 /* there are blocks to put in buddy to make them really free */
2605 count
+= entry
->count
;
2607 ext4_lock_group(sb
, entry
->group
);
2608 /* Take it out of per group rb tree */
2609 rb_erase(&entry
->node
, &(db
->bb_free_root
));
2610 mb_free_blocks(NULL
, &e4b
, entry
->start_blk
, entry
->count
);
2612 if (!db
->bb_free_root
.rb_node
) {
2613 /* No more items in the per group rb tree
2614 * balance refcounts from ext4_mb_free_metadata()
2616 page_cache_release(e4b
.bd_buddy_page
);
2617 page_cache_release(e4b
.bd_bitmap_page
);
2619 ext4_unlock_group(sb
, entry
->group
);
2620 kmem_cache_free(ext4_free_ext_cachep
, entry
);
2621 ext4_mb_unload_buddy(&e4b
);
2624 mb_debug(1, "freed %u blocks in %u structures\n", count
, count2
);
2627 #ifdef CONFIG_EXT4_DEBUG
2628 u8 mb_enable_debug __read_mostly
;
2630 static struct dentry
*debugfs_dir
;
2631 static struct dentry
*debugfs_debug
;
2633 static void __init
ext4_create_debugfs_entry(void)
2635 debugfs_dir
= debugfs_create_dir("ext4", NULL
);
2637 debugfs_debug
= debugfs_create_u8("mballoc-debug",
2643 static void ext4_remove_debugfs_entry(void)
2645 debugfs_remove(debugfs_debug
);
2646 debugfs_remove(debugfs_dir
);
2651 static void __init
ext4_create_debugfs_entry(void)
2655 static void ext4_remove_debugfs_entry(void)
2661 int __init
init_ext4_mballoc(void)
2663 ext4_pspace_cachep
=
2664 kmem_cache_create("ext4_prealloc_space",
2665 sizeof(struct ext4_prealloc_space
),
2666 0, SLAB_RECLAIM_ACCOUNT
, NULL
);
2667 if (ext4_pspace_cachep
== NULL
)
2671 kmem_cache_create("ext4_alloc_context",
2672 sizeof(struct ext4_allocation_context
),
2673 0, SLAB_RECLAIM_ACCOUNT
, NULL
);
2674 if (ext4_ac_cachep
== NULL
) {
2675 kmem_cache_destroy(ext4_pspace_cachep
);
2679 ext4_free_ext_cachep
=
2680 kmem_cache_create("ext4_free_block_extents",
2681 sizeof(struct ext4_free_data
),
2682 0, SLAB_RECLAIM_ACCOUNT
, NULL
);
2683 if (ext4_free_ext_cachep
== NULL
) {
2684 kmem_cache_destroy(ext4_pspace_cachep
);
2685 kmem_cache_destroy(ext4_ac_cachep
);
2688 ext4_create_debugfs_entry();
2692 void exit_ext4_mballoc(void)
2695 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2696 * before destroying the slab cache.
2699 kmem_cache_destroy(ext4_pspace_cachep
);
2700 kmem_cache_destroy(ext4_ac_cachep
);
2701 kmem_cache_destroy(ext4_free_ext_cachep
);
2702 ext4_remove_debugfs_entry();
2707 * Check quota and mark choosed space (ac->ac_b_ex) non-free in bitmaps
2708 * Returns 0 if success or error code
2710 static noinline_for_stack
int
2711 ext4_mb_mark_diskspace_used(struct ext4_allocation_context
*ac
,
2712 handle_t
*handle
, unsigned int reserv_blks
)
2714 struct buffer_head
*bitmap_bh
= NULL
;
2715 struct ext4_super_block
*es
;
2716 struct ext4_group_desc
*gdp
;
2717 struct buffer_head
*gdp_bh
;
2718 struct ext4_sb_info
*sbi
;
2719 struct super_block
*sb
;
2723 BUG_ON(ac
->ac_status
!= AC_STATUS_FOUND
);
2724 BUG_ON(ac
->ac_b_ex
.fe_len
<= 0);
2732 bitmap_bh
= ext4_read_block_bitmap(sb
, ac
->ac_b_ex
.fe_group
);
2736 err
= ext4_journal_get_write_access(handle
, bitmap_bh
);
2741 gdp
= ext4_get_group_desc(sb
, ac
->ac_b_ex
.fe_group
, &gdp_bh
);
2745 ext4_debug("using block group %u(%d)\n", ac
->ac_b_ex
.fe_group
,
2746 ext4_free_blks_count(sb
, gdp
));
2748 err
= ext4_journal_get_write_access(handle
, gdp_bh
);
2752 block
= ac
->ac_b_ex
.fe_group
* EXT4_BLOCKS_PER_GROUP(sb
)
2753 + ac
->ac_b_ex
.fe_start
2754 + le32_to_cpu(es
->s_first_data_block
);
2756 len
= ac
->ac_b_ex
.fe_len
;
2757 if (!ext4_data_block_valid(sbi
, block
, len
)) {
2758 ext4_error(sb
, __func__
,
2759 "Allocating blocks %llu-%llu which overlap "
2760 "fs metadata\n", block
, block
+len
);
2761 /* File system mounted not to panic on error
2762 * Fix the bitmap and repeat the block allocation
2763 * We leak some of the blocks here.
2765 ext4_lock_group(sb
, ac
->ac_b_ex
.fe_group
);
2766 mb_set_bits(bitmap_bh
->b_data
, ac
->ac_b_ex
.fe_start
,
2767 ac
->ac_b_ex
.fe_len
);
2768 ext4_unlock_group(sb
, ac
->ac_b_ex
.fe_group
);
2769 err
= ext4_handle_dirty_metadata(handle
, NULL
, bitmap_bh
);
2775 ext4_lock_group(sb
, ac
->ac_b_ex
.fe_group
);
2776 #ifdef AGGRESSIVE_CHECK
2779 for (i
= 0; i
< ac
->ac_b_ex
.fe_len
; i
++) {
2780 BUG_ON(mb_test_bit(ac
->ac_b_ex
.fe_start
+ i
,
2781 bitmap_bh
->b_data
));
2785 mb_set_bits(bitmap_bh
->b_data
, ac
->ac_b_ex
.fe_start
,ac
->ac_b_ex
.fe_len
);
2786 if (gdp
->bg_flags
& cpu_to_le16(EXT4_BG_BLOCK_UNINIT
)) {
2787 gdp
->bg_flags
&= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT
);
2788 ext4_free_blks_set(sb
, gdp
,
2789 ext4_free_blocks_after_init(sb
,
2790 ac
->ac_b_ex
.fe_group
, gdp
));
2792 len
= ext4_free_blks_count(sb
, gdp
) - ac
->ac_b_ex
.fe_len
;
2793 ext4_free_blks_set(sb
, gdp
, len
);
2794 gdp
->bg_checksum
= ext4_group_desc_csum(sbi
, ac
->ac_b_ex
.fe_group
, gdp
);
2796 ext4_unlock_group(sb
, ac
->ac_b_ex
.fe_group
);
2797 percpu_counter_sub(&sbi
->s_freeblocks_counter
, ac
->ac_b_ex
.fe_len
);
2799 * Now reduce the dirty block count also. Should not go negative
2801 if (!(ac
->ac_flags
& EXT4_MB_DELALLOC_RESERVED
))
2802 /* release all the reserved blocks if non delalloc */
2803 percpu_counter_sub(&sbi
->s_dirtyblocks_counter
, reserv_blks
);
2805 if (sbi
->s_log_groups_per_flex
) {
2806 ext4_group_t flex_group
= ext4_flex_group(sbi
,
2807 ac
->ac_b_ex
.fe_group
);
2808 atomic_sub(ac
->ac_b_ex
.fe_len
,
2809 &sbi
->s_flex_groups
[flex_group
].free_blocks
);
2812 err
= ext4_handle_dirty_metadata(handle
, NULL
, bitmap_bh
);
2815 err
= ext4_handle_dirty_metadata(handle
, NULL
, gdp_bh
);
2824 * here we normalize request for locality group
2825 * Group request are normalized to s_strip size if we set the same via mount
2826 * option. If not we set it to s_mb_group_prealloc which can be configured via
2827 * /sys/fs/ext4/<partition>/mb_group_prealloc
2829 * XXX: should we try to preallocate more than the group has now?
2831 static void ext4_mb_normalize_group_request(struct ext4_allocation_context
*ac
)
2833 struct super_block
*sb
= ac
->ac_sb
;
2834 struct ext4_locality_group
*lg
= ac
->ac_lg
;
2837 if (EXT4_SB(sb
)->s_stripe
)
2838 ac
->ac_g_ex
.fe_len
= EXT4_SB(sb
)->s_stripe
;
2840 ac
->ac_g_ex
.fe_len
= EXT4_SB(sb
)->s_mb_group_prealloc
;
2841 mb_debug(1, "#%u: goal %u blocks for locality group\n",
2842 current
->pid
, ac
->ac_g_ex
.fe_len
);
2846 * Normalization means making request better in terms of
2847 * size and alignment
2849 static noinline_for_stack
void
2850 ext4_mb_normalize_request(struct ext4_allocation_context
*ac
,
2851 struct ext4_allocation_request
*ar
)
2855 loff_t size
, orig_size
, start_off
;
2856 ext4_lblk_t start
, orig_start
;
2857 struct ext4_inode_info
*ei
= EXT4_I(ac
->ac_inode
);
2858 struct ext4_prealloc_space
*pa
;
2860 /* do normalize only data requests, metadata requests
2861 do not need preallocation */
2862 if (!(ac
->ac_flags
& EXT4_MB_HINT_DATA
))
2865 /* sometime caller may want exact blocks */
2866 if (unlikely(ac
->ac_flags
& EXT4_MB_HINT_GOAL_ONLY
))
2869 /* caller may indicate that preallocation isn't
2870 * required (it's a tail, for example) */
2871 if (ac
->ac_flags
& EXT4_MB_HINT_NOPREALLOC
)
2874 if (ac
->ac_flags
& EXT4_MB_HINT_GROUP_ALLOC
) {
2875 ext4_mb_normalize_group_request(ac
);
2879 bsbits
= ac
->ac_sb
->s_blocksize_bits
;
2881 /* first, let's learn actual file size
2882 * given current request is allocated */
2883 size
= ac
->ac_o_ex
.fe_logical
+ ac
->ac_o_ex
.fe_len
;
2884 size
= size
<< bsbits
;
2885 if (size
< i_size_read(ac
->ac_inode
))
2886 size
= i_size_read(ac
->ac_inode
);
2888 /* max size of free chunks */
2891 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
2892 (req <= (size) || max <= (chunk_size))
2894 /* first, try to predict filesize */
2895 /* XXX: should this table be tunable? */
2897 if (size
<= 16 * 1024) {
2899 } else if (size
<= 32 * 1024) {
2901 } else if (size
<= 64 * 1024) {
2903 } else if (size
<= 128 * 1024) {
2905 } else if (size
<= 256 * 1024) {
2907 } else if (size
<= 512 * 1024) {
2909 } else if (size
<= 1024 * 1024) {
2911 } else if (NRL_CHECK_SIZE(size
, 4 * 1024 * 1024, max
, 2 * 1024)) {
2912 start_off
= ((loff_t
)ac
->ac_o_ex
.fe_logical
>>
2913 (21 - bsbits
)) << 21;
2914 size
= 2 * 1024 * 1024;
2915 } else if (NRL_CHECK_SIZE(size
, 8 * 1024 * 1024, max
, 4 * 1024)) {
2916 start_off
= ((loff_t
)ac
->ac_o_ex
.fe_logical
>>
2917 (22 - bsbits
)) << 22;
2918 size
= 4 * 1024 * 1024;
2919 } else if (NRL_CHECK_SIZE(ac
->ac_o_ex
.fe_len
,
2920 (8<<20)>>bsbits
, max
, 8 * 1024)) {
2921 start_off
= ((loff_t
)ac
->ac_o_ex
.fe_logical
>>
2922 (23 - bsbits
)) << 23;
2923 size
= 8 * 1024 * 1024;
2925 start_off
= (loff_t
)ac
->ac_o_ex
.fe_logical
<< bsbits
;
2926 size
= ac
->ac_o_ex
.fe_len
<< bsbits
;
2928 orig_size
= size
= size
>> bsbits
;
2929 orig_start
= start
= start_off
>> bsbits
;
2931 /* don't cover already allocated blocks in selected range */
2932 if (ar
->pleft
&& start
<= ar
->lleft
) {
2933 size
-= ar
->lleft
+ 1 - start
;
2934 start
= ar
->lleft
+ 1;
2936 if (ar
->pright
&& start
+ size
- 1 >= ar
->lright
)
2937 size
-= start
+ size
- ar
->lright
;
2941 /* check we don't cross already preallocated blocks */
2943 list_for_each_entry_rcu(pa
, &ei
->i_prealloc_list
, pa_inode_list
) {
2948 spin_lock(&pa
->pa_lock
);
2949 if (pa
->pa_deleted
) {
2950 spin_unlock(&pa
->pa_lock
);
2954 pa_end
= pa
->pa_lstart
+ pa
->pa_len
;
2956 /* PA must not overlap original request */
2957 BUG_ON(!(ac
->ac_o_ex
.fe_logical
>= pa_end
||
2958 ac
->ac_o_ex
.fe_logical
< pa
->pa_lstart
));
2960 /* skip PAs this normalized request doesn't overlap with */
2961 if (pa
->pa_lstart
>= end
|| pa_end
<= start
) {
2962 spin_unlock(&pa
->pa_lock
);
2965 BUG_ON(pa
->pa_lstart
<= start
&& pa_end
>= end
);
2967 /* adjust start or end to be adjacent to this pa */
2968 if (pa_end
<= ac
->ac_o_ex
.fe_logical
) {
2969 BUG_ON(pa_end
< start
);
2971 } else if (pa
->pa_lstart
> ac
->ac_o_ex
.fe_logical
) {
2972 BUG_ON(pa
->pa_lstart
> end
);
2973 end
= pa
->pa_lstart
;
2975 spin_unlock(&pa
->pa_lock
);
2980 /* XXX: extra loop to check we really don't overlap preallocations */
2982 list_for_each_entry_rcu(pa
, &ei
->i_prealloc_list
, pa_inode_list
) {
2984 spin_lock(&pa
->pa_lock
);
2985 if (pa
->pa_deleted
== 0) {
2986 pa_end
= pa
->pa_lstart
+ pa
->pa_len
;
2987 BUG_ON(!(start
>= pa_end
|| end
<= pa
->pa_lstart
));
2989 spin_unlock(&pa
->pa_lock
);
2993 if (start
+ size
<= ac
->ac_o_ex
.fe_logical
&&
2994 start
> ac
->ac_o_ex
.fe_logical
) {
2995 printk(KERN_ERR
"start %lu, size %lu, fe_logical %lu\n",
2996 (unsigned long) start
, (unsigned long) size
,
2997 (unsigned long) ac
->ac_o_ex
.fe_logical
);
2999 BUG_ON(start
+ size
<= ac
->ac_o_ex
.fe_logical
&&
3000 start
> ac
->ac_o_ex
.fe_logical
);
3001 BUG_ON(size
<= 0 || size
> EXT4_BLOCKS_PER_GROUP(ac
->ac_sb
));
3003 /* now prepare goal request */
3005 /* XXX: is it better to align blocks WRT to logical
3006 * placement or satisfy big request as is */
3007 ac
->ac_g_ex
.fe_logical
= start
;
3008 ac
->ac_g_ex
.fe_len
= size
;
3010 /* define goal start in order to merge */
3011 if (ar
->pright
&& (ar
->lright
== (start
+ size
))) {
3012 /* merge to the right */
3013 ext4_get_group_no_and_offset(ac
->ac_sb
, ar
->pright
- size
,
3014 &ac
->ac_f_ex
.fe_group
,
3015 &ac
->ac_f_ex
.fe_start
);
3016 ac
->ac_flags
|= EXT4_MB_HINT_TRY_GOAL
;
3018 if (ar
->pleft
&& (ar
->lleft
+ 1 == start
)) {
3019 /* merge to the left */
3020 ext4_get_group_no_and_offset(ac
->ac_sb
, ar
->pleft
+ 1,
3021 &ac
->ac_f_ex
.fe_group
,
3022 &ac
->ac_f_ex
.fe_start
);
3023 ac
->ac_flags
|= EXT4_MB_HINT_TRY_GOAL
;
3026 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size
,
3027 (unsigned) orig_size
, (unsigned) start
);
3030 static void ext4_mb_collect_stats(struct ext4_allocation_context
*ac
)
3032 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
3034 if (sbi
->s_mb_stats
&& ac
->ac_g_ex
.fe_len
> 1) {
3035 atomic_inc(&sbi
->s_bal_reqs
);
3036 atomic_add(ac
->ac_b_ex
.fe_len
, &sbi
->s_bal_allocated
);
3037 if (ac
->ac_o_ex
.fe_len
>= ac
->ac_g_ex
.fe_len
)
3038 atomic_inc(&sbi
->s_bal_success
);
3039 atomic_add(ac
->ac_found
, &sbi
->s_bal_ex_scanned
);
3040 if (ac
->ac_g_ex
.fe_start
== ac
->ac_b_ex
.fe_start
&&
3041 ac
->ac_g_ex
.fe_group
== ac
->ac_b_ex
.fe_group
)
3042 atomic_inc(&sbi
->s_bal_goals
);
3043 if (ac
->ac_found
> sbi
->s_mb_max_to_scan
)
3044 atomic_inc(&sbi
->s_bal_breaks
);
3047 if (ac
->ac_op
== EXT4_MB_HISTORY_ALLOC
)
3048 trace_ext4_mballoc_alloc(ac
);
3050 trace_ext4_mballoc_prealloc(ac
);
3054 * Called on failure; free up any blocks from the inode PA for this
3055 * context. We don't need this for MB_GROUP_PA because we only change
3056 * pa_free in ext4_mb_release_context(), but on failure, we've already
3057 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3059 static void ext4_discard_allocated_blocks(struct ext4_allocation_context
*ac
)
3061 struct ext4_prealloc_space
*pa
= ac
->ac_pa
;
3064 if (pa
&& pa
->pa_type
== MB_INODE_PA
) {
3065 len
= ac
->ac_b_ex
.fe_len
;
3072 * use blocks preallocated to inode
3074 static void ext4_mb_use_inode_pa(struct ext4_allocation_context
*ac
,
3075 struct ext4_prealloc_space
*pa
)
3081 /* found preallocated blocks, use them */
3082 start
= pa
->pa_pstart
+ (ac
->ac_o_ex
.fe_logical
- pa
->pa_lstart
);
3083 end
= min(pa
->pa_pstart
+ pa
->pa_len
, start
+ ac
->ac_o_ex
.fe_len
);
3085 ext4_get_group_no_and_offset(ac
->ac_sb
, start
, &ac
->ac_b_ex
.fe_group
,
3086 &ac
->ac_b_ex
.fe_start
);
3087 ac
->ac_b_ex
.fe_len
= len
;
3088 ac
->ac_status
= AC_STATUS_FOUND
;
3091 BUG_ON(start
< pa
->pa_pstart
);
3092 BUG_ON(start
+ len
> pa
->pa_pstart
+ pa
->pa_len
);
3093 BUG_ON(pa
->pa_free
< len
);
3096 mb_debug(1, "use %llu/%u from inode pa %p\n", start
, len
, pa
);
3100 * use blocks preallocated to locality group
3102 static void ext4_mb_use_group_pa(struct ext4_allocation_context
*ac
,
3103 struct ext4_prealloc_space
*pa
)
3105 unsigned int len
= ac
->ac_o_ex
.fe_len
;
3107 ext4_get_group_no_and_offset(ac
->ac_sb
, pa
->pa_pstart
,
3108 &ac
->ac_b_ex
.fe_group
,
3109 &ac
->ac_b_ex
.fe_start
);
3110 ac
->ac_b_ex
.fe_len
= len
;
3111 ac
->ac_status
= AC_STATUS_FOUND
;
3114 /* we don't correct pa_pstart or pa_plen here to avoid
3115 * possible race when the group is being loaded concurrently
3116 * instead we correct pa later, after blocks are marked
3117 * in on-disk bitmap -- see ext4_mb_release_context()
3118 * Other CPUs are prevented from allocating from this pa by lg_mutex
3120 mb_debug(1, "use %u/%u from group pa %p\n", pa
->pa_lstart
-len
, len
, pa
);
3124 * Return the prealloc space that have minimal distance
3125 * from the goal block. @cpa is the prealloc
3126 * space that is having currently known minimal distance
3127 * from the goal block.
3129 static struct ext4_prealloc_space
*
3130 ext4_mb_check_group_pa(ext4_fsblk_t goal_block
,
3131 struct ext4_prealloc_space
*pa
,
3132 struct ext4_prealloc_space
*cpa
)
3134 ext4_fsblk_t cur_distance
, new_distance
;
3137 atomic_inc(&pa
->pa_count
);
3140 cur_distance
= abs(goal_block
- cpa
->pa_pstart
);
3141 new_distance
= abs(goal_block
- pa
->pa_pstart
);
3143 if (cur_distance
< new_distance
)
3146 /* drop the previous reference */
3147 atomic_dec(&cpa
->pa_count
);
3148 atomic_inc(&pa
->pa_count
);
3153 * search goal blocks in preallocated space
3155 static noinline_for_stack
int
3156 ext4_mb_use_preallocated(struct ext4_allocation_context
*ac
)
3159 struct ext4_inode_info
*ei
= EXT4_I(ac
->ac_inode
);
3160 struct ext4_locality_group
*lg
;
3161 struct ext4_prealloc_space
*pa
, *cpa
= NULL
;
3162 ext4_fsblk_t goal_block
;
3164 /* only data can be preallocated */
3165 if (!(ac
->ac_flags
& EXT4_MB_HINT_DATA
))
3168 /* first, try per-file preallocation */
3170 list_for_each_entry_rcu(pa
, &ei
->i_prealloc_list
, pa_inode_list
) {
3172 /* all fields in this condition don't change,
3173 * so we can skip locking for them */
3174 if (ac
->ac_o_ex
.fe_logical
< pa
->pa_lstart
||
3175 ac
->ac_o_ex
.fe_logical
>= pa
->pa_lstart
+ pa
->pa_len
)
3178 /* non-extent files can't have physical blocks past 2^32 */
3179 if (!(ext4_test_inode_flag(ac
->ac_inode
, EXT4_INODE_EXTENTS
)) &&
3180 pa
->pa_pstart
+ pa
->pa_len
> EXT4_MAX_BLOCK_FILE_PHYS
)
3183 /* found preallocated blocks, use them */
3184 spin_lock(&pa
->pa_lock
);
3185 if (pa
->pa_deleted
== 0 && pa
->pa_free
) {
3186 atomic_inc(&pa
->pa_count
);
3187 ext4_mb_use_inode_pa(ac
, pa
);
3188 spin_unlock(&pa
->pa_lock
);
3189 ac
->ac_criteria
= 10;
3193 spin_unlock(&pa
->pa_lock
);
3197 /* can we use group allocation? */
3198 if (!(ac
->ac_flags
& EXT4_MB_HINT_GROUP_ALLOC
))
3201 /* inode may have no locality group for some reason */
3205 order
= fls(ac
->ac_o_ex
.fe_len
) - 1;
3206 if (order
> PREALLOC_TB_SIZE
- 1)
3207 /* The max size of hash table is PREALLOC_TB_SIZE */
3208 order
= PREALLOC_TB_SIZE
- 1;
3210 goal_block
= ac
->ac_g_ex
.fe_group
* EXT4_BLOCKS_PER_GROUP(ac
->ac_sb
) +
3211 ac
->ac_g_ex
.fe_start
+
3212 le32_to_cpu(EXT4_SB(ac
->ac_sb
)->s_es
->s_first_data_block
);
3214 * search for the prealloc space that is having
3215 * minimal distance from the goal block.
3217 for (i
= order
; i
< PREALLOC_TB_SIZE
; i
++) {
3219 list_for_each_entry_rcu(pa
, &lg
->lg_prealloc_list
[i
],
3221 spin_lock(&pa
->pa_lock
);
3222 if (pa
->pa_deleted
== 0 &&
3223 pa
->pa_free
>= ac
->ac_o_ex
.fe_len
) {
3225 cpa
= ext4_mb_check_group_pa(goal_block
,
3228 spin_unlock(&pa
->pa_lock
);
3233 ext4_mb_use_group_pa(ac
, cpa
);
3234 ac
->ac_criteria
= 20;
3241 * the function goes through all block freed in the group
3242 * but not yet committed and marks them used in in-core bitmap.
3243 * buddy must be generated from this bitmap
3244 * Need to be called with the ext4 group lock held
3246 static void ext4_mb_generate_from_freelist(struct super_block
*sb
, void *bitmap
,
3250 struct ext4_group_info
*grp
;
3251 struct ext4_free_data
*entry
;
3253 grp
= ext4_get_group_info(sb
, group
);
3254 n
= rb_first(&(grp
->bb_free_root
));
3257 entry
= rb_entry(n
, struct ext4_free_data
, node
);
3258 mb_set_bits(bitmap
, entry
->start_blk
, entry
->count
);
3265 * the function goes through all preallocation in this group and marks them
3266 * used in in-core bitmap. buddy must be generated from this bitmap
3267 * Need to be called with ext4 group lock held
3269 static noinline_for_stack
3270 void ext4_mb_generate_from_pa(struct super_block
*sb
, void *bitmap
,
3273 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, group
);
3274 struct ext4_prealloc_space
*pa
;
3275 struct list_head
*cur
;
3276 ext4_group_t groupnr
;
3277 ext4_grpblk_t start
;
3278 int preallocated
= 0;
3282 /* all form of preallocation discards first load group,
3283 * so the only competing code is preallocation use.
3284 * we don't need any locking here
3285 * notice we do NOT ignore preallocations with pa_deleted
3286 * otherwise we could leave used blocks available for
3287 * allocation in buddy when concurrent ext4_mb_put_pa()
3288 * is dropping preallocation
3290 list_for_each(cur
, &grp
->bb_prealloc_list
) {
3291 pa
= list_entry(cur
, struct ext4_prealloc_space
, pa_group_list
);
3292 spin_lock(&pa
->pa_lock
);
3293 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
,
3296 spin_unlock(&pa
->pa_lock
);
3297 if (unlikely(len
== 0))
3299 BUG_ON(groupnr
!= group
);
3300 mb_set_bits(bitmap
, start
, len
);
3301 preallocated
+= len
;
3304 mb_debug(1, "prellocated %u for group %u\n", preallocated
, group
);
3307 static void ext4_mb_pa_callback(struct rcu_head
*head
)
3309 struct ext4_prealloc_space
*pa
;
3310 pa
= container_of(head
, struct ext4_prealloc_space
, u
.pa_rcu
);
3311 kmem_cache_free(ext4_pspace_cachep
, pa
);
3315 * drops a reference to preallocated space descriptor
3316 * if this was the last reference and the space is consumed
3318 static void ext4_mb_put_pa(struct ext4_allocation_context
*ac
,
3319 struct super_block
*sb
, struct ext4_prealloc_space
*pa
)
3322 ext4_fsblk_t grp_blk
;
3324 if (!atomic_dec_and_test(&pa
->pa_count
) || pa
->pa_free
!= 0)
3327 /* in this short window concurrent discard can set pa_deleted */
3328 spin_lock(&pa
->pa_lock
);
3329 if (pa
->pa_deleted
== 1) {
3330 spin_unlock(&pa
->pa_lock
);
3335 spin_unlock(&pa
->pa_lock
);
3337 grp_blk
= pa
->pa_pstart
;
3339 * If doing group-based preallocation, pa_pstart may be in the
3340 * next group when pa is used up
3342 if (pa
->pa_type
== MB_GROUP_PA
)
3345 ext4_get_group_no_and_offset(sb
, grp_blk
, &grp
, NULL
);
3350 * P1 (buddy init) P2 (regular allocation)
3351 * find block B in PA
3352 * copy on-disk bitmap to buddy
3353 * mark B in on-disk bitmap
3354 * drop PA from group
3355 * mark all PAs in buddy
3357 * thus, P1 initializes buddy with B available. to prevent this
3358 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3361 ext4_lock_group(sb
, grp
);
3362 list_del(&pa
->pa_group_list
);
3363 ext4_unlock_group(sb
, grp
);
3365 spin_lock(pa
->pa_obj_lock
);
3366 list_del_rcu(&pa
->pa_inode_list
);
3367 spin_unlock(pa
->pa_obj_lock
);
3369 call_rcu(&(pa
)->u
.pa_rcu
, ext4_mb_pa_callback
);
3373 * creates new preallocated space for given inode
3375 static noinline_for_stack
int
3376 ext4_mb_new_inode_pa(struct ext4_allocation_context
*ac
)
3378 struct super_block
*sb
= ac
->ac_sb
;
3379 struct ext4_prealloc_space
*pa
;
3380 struct ext4_group_info
*grp
;
3381 struct ext4_inode_info
*ei
;
3383 /* preallocate only when found space is larger then requested */
3384 BUG_ON(ac
->ac_o_ex
.fe_len
>= ac
->ac_b_ex
.fe_len
);
3385 BUG_ON(ac
->ac_status
!= AC_STATUS_FOUND
);
3386 BUG_ON(!S_ISREG(ac
->ac_inode
->i_mode
));
3388 pa
= kmem_cache_alloc(ext4_pspace_cachep
, GFP_NOFS
);
3392 if (ac
->ac_b_ex
.fe_len
< ac
->ac_g_ex
.fe_len
) {
3398 /* we can't allocate as much as normalizer wants.
3399 * so, found space must get proper lstart
3400 * to cover original request */
3401 BUG_ON(ac
->ac_g_ex
.fe_logical
> ac
->ac_o_ex
.fe_logical
);
3402 BUG_ON(ac
->ac_g_ex
.fe_len
< ac
->ac_o_ex
.fe_len
);
3404 /* we're limited by original request in that
3405 * logical block must be covered any way
3406 * winl is window we can move our chunk within */
3407 winl
= ac
->ac_o_ex
.fe_logical
- ac
->ac_g_ex
.fe_logical
;
3409 /* also, we should cover whole original request */
3410 wins
= ac
->ac_b_ex
.fe_len
- ac
->ac_o_ex
.fe_len
;
3412 /* the smallest one defines real window */
3413 win
= min(winl
, wins
);
3415 offs
= ac
->ac_o_ex
.fe_logical
% ac
->ac_b_ex
.fe_len
;
3416 if (offs
&& offs
< win
)
3419 ac
->ac_b_ex
.fe_logical
= ac
->ac_o_ex
.fe_logical
- win
;
3420 BUG_ON(ac
->ac_o_ex
.fe_logical
< ac
->ac_b_ex
.fe_logical
);
3421 BUG_ON(ac
->ac_o_ex
.fe_len
> ac
->ac_b_ex
.fe_len
);
3424 /* preallocation can change ac_b_ex, thus we store actually
3425 * allocated blocks for history */
3426 ac
->ac_f_ex
= ac
->ac_b_ex
;
3428 pa
->pa_lstart
= ac
->ac_b_ex
.fe_logical
;
3429 pa
->pa_pstart
= ext4_grp_offs_to_block(sb
, &ac
->ac_b_ex
);
3430 pa
->pa_len
= ac
->ac_b_ex
.fe_len
;
3431 pa
->pa_free
= pa
->pa_len
;
3432 atomic_set(&pa
->pa_count
, 1);
3433 spin_lock_init(&pa
->pa_lock
);
3434 INIT_LIST_HEAD(&pa
->pa_inode_list
);
3435 INIT_LIST_HEAD(&pa
->pa_group_list
);
3437 pa
->pa_type
= MB_INODE_PA
;
3439 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa
,
3440 pa
->pa_pstart
, pa
->pa_len
, pa
->pa_lstart
);
3441 trace_ext4_mb_new_inode_pa(ac
, pa
);
3443 ext4_mb_use_inode_pa(ac
, pa
);
3444 atomic_add(pa
->pa_free
, &EXT4_SB(sb
)->s_mb_preallocated
);
3446 ei
= EXT4_I(ac
->ac_inode
);
3447 grp
= ext4_get_group_info(sb
, ac
->ac_b_ex
.fe_group
);
3449 pa
->pa_obj_lock
= &ei
->i_prealloc_lock
;
3450 pa
->pa_inode
= ac
->ac_inode
;
3452 ext4_lock_group(sb
, ac
->ac_b_ex
.fe_group
);
3453 list_add(&pa
->pa_group_list
, &grp
->bb_prealloc_list
);
3454 ext4_unlock_group(sb
, ac
->ac_b_ex
.fe_group
);
3456 spin_lock(pa
->pa_obj_lock
);
3457 list_add_rcu(&pa
->pa_inode_list
, &ei
->i_prealloc_list
);
3458 spin_unlock(pa
->pa_obj_lock
);
3464 * creates new preallocated space for locality group inodes belongs to
3466 static noinline_for_stack
int
3467 ext4_mb_new_group_pa(struct ext4_allocation_context
*ac
)
3469 struct super_block
*sb
= ac
->ac_sb
;
3470 struct ext4_locality_group
*lg
;
3471 struct ext4_prealloc_space
*pa
;
3472 struct ext4_group_info
*grp
;
3474 /* preallocate only when found space is larger then requested */
3475 BUG_ON(ac
->ac_o_ex
.fe_len
>= ac
->ac_b_ex
.fe_len
);
3476 BUG_ON(ac
->ac_status
!= AC_STATUS_FOUND
);
3477 BUG_ON(!S_ISREG(ac
->ac_inode
->i_mode
));
3479 BUG_ON(ext4_pspace_cachep
== NULL
);
3480 pa
= kmem_cache_alloc(ext4_pspace_cachep
, GFP_NOFS
);
3484 /* preallocation can change ac_b_ex, thus we store actually
3485 * allocated blocks for history */
3486 ac
->ac_f_ex
= ac
->ac_b_ex
;
3488 pa
->pa_pstart
= ext4_grp_offs_to_block(sb
, &ac
->ac_b_ex
);
3489 pa
->pa_lstart
= pa
->pa_pstart
;
3490 pa
->pa_len
= ac
->ac_b_ex
.fe_len
;
3491 pa
->pa_free
= pa
->pa_len
;
3492 atomic_set(&pa
->pa_count
, 1);
3493 spin_lock_init(&pa
->pa_lock
);
3494 INIT_LIST_HEAD(&pa
->pa_inode_list
);
3495 INIT_LIST_HEAD(&pa
->pa_group_list
);
3497 pa
->pa_type
= MB_GROUP_PA
;
3499 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa
,
3500 pa
->pa_pstart
, pa
->pa_len
, pa
->pa_lstart
);
3501 trace_ext4_mb_new_group_pa(ac
, pa
);
3503 ext4_mb_use_group_pa(ac
, pa
);
3504 atomic_add(pa
->pa_free
, &EXT4_SB(sb
)->s_mb_preallocated
);
3506 grp
= ext4_get_group_info(sb
, ac
->ac_b_ex
.fe_group
);
3510 pa
->pa_obj_lock
= &lg
->lg_prealloc_lock
;
3511 pa
->pa_inode
= NULL
;
3513 ext4_lock_group(sb
, ac
->ac_b_ex
.fe_group
);
3514 list_add(&pa
->pa_group_list
, &grp
->bb_prealloc_list
);
3515 ext4_unlock_group(sb
, ac
->ac_b_ex
.fe_group
);
3518 * We will later add the new pa to the right bucket
3519 * after updating the pa_free in ext4_mb_release_context
3524 static int ext4_mb_new_preallocation(struct ext4_allocation_context
*ac
)
3528 if (ac
->ac_flags
& EXT4_MB_HINT_GROUP_ALLOC
)
3529 err
= ext4_mb_new_group_pa(ac
);
3531 err
= ext4_mb_new_inode_pa(ac
);
3536 * finds all unused blocks in on-disk bitmap, frees them in
3537 * in-core bitmap and buddy.
3538 * @pa must be unlinked from inode and group lists, so that
3539 * nobody else can find/use it.
3540 * the caller MUST hold group/inode locks.
3541 * TODO: optimize the case when there are no in-core structures yet
3543 static noinline_for_stack
int
3544 ext4_mb_release_inode_pa(struct ext4_buddy
*e4b
, struct buffer_head
*bitmap_bh
,
3545 struct ext4_prealloc_space
*pa
,
3546 struct ext4_allocation_context
*ac
)
3548 struct super_block
*sb
= e4b
->bd_sb
;
3549 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
3554 unsigned long long grp_blk_start
;
3559 BUG_ON(pa
->pa_deleted
== 0);
3560 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
, &group
, &bit
);
3561 grp_blk_start
= pa
->pa_pstart
- bit
;
3562 BUG_ON(group
!= e4b
->bd_group
&& pa
->pa_len
!= 0);
3563 end
= bit
+ pa
->pa_len
;
3567 ac
->ac_inode
= pa
->pa_inode
;
3571 bit
= mb_find_next_zero_bit(bitmap_bh
->b_data
, end
, bit
);
3574 next
= mb_find_next_bit(bitmap_bh
->b_data
, end
, bit
);
3575 start
= group
* EXT4_BLOCKS_PER_GROUP(sb
) + bit
+
3576 le32_to_cpu(sbi
->s_es
->s_first_data_block
);
3577 mb_debug(1, " free preallocated %u/%u in group %u\n",
3578 (unsigned) start
, (unsigned) next
- bit
,
3583 ac
->ac_b_ex
.fe_group
= group
;
3584 ac
->ac_b_ex
.fe_start
= bit
;
3585 ac
->ac_b_ex
.fe_len
= next
- bit
;
3586 ac
->ac_b_ex
.fe_logical
= 0;
3587 trace_ext4_mballoc_discard(ac
);
3590 trace_ext4_mb_release_inode_pa(ac
, pa
, grp_blk_start
+ bit
,
3592 mb_free_blocks(pa
->pa_inode
, e4b
, bit
, next
- bit
);
3595 if (free
!= pa
->pa_free
) {
3596 printk(KERN_CRIT
"pa %p: logic %lu, phys. %lu, len %lu\n",
3597 pa
, (unsigned long) pa
->pa_lstart
,
3598 (unsigned long) pa
->pa_pstart
,
3599 (unsigned long) pa
->pa_len
);
3600 ext4_grp_locked_error(sb
, group
,
3601 __func__
, "free %u, pa_free %u",
3604 * pa is already deleted so we use the value obtained
3605 * from the bitmap and continue.
3608 atomic_add(free
, &sbi
->s_mb_discarded
);
3613 static noinline_for_stack
int
3614 ext4_mb_release_group_pa(struct ext4_buddy
*e4b
,
3615 struct ext4_prealloc_space
*pa
,
3616 struct ext4_allocation_context
*ac
)
3618 struct super_block
*sb
= e4b
->bd_sb
;
3622 trace_ext4_mb_release_group_pa(ac
, pa
);
3623 BUG_ON(pa
->pa_deleted
== 0);
3624 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
, &group
, &bit
);
3625 BUG_ON(group
!= e4b
->bd_group
&& pa
->pa_len
!= 0);
3626 mb_free_blocks(pa
->pa_inode
, e4b
, bit
, pa
->pa_len
);
3627 atomic_add(pa
->pa_len
, &EXT4_SB(sb
)->s_mb_discarded
);
3631 ac
->ac_inode
= NULL
;
3632 ac
->ac_b_ex
.fe_group
= group
;
3633 ac
->ac_b_ex
.fe_start
= bit
;
3634 ac
->ac_b_ex
.fe_len
= pa
->pa_len
;
3635 ac
->ac_b_ex
.fe_logical
= 0;
3636 trace_ext4_mballoc_discard(ac
);
3643 * releases all preallocations in given group
3645 * first, we need to decide discard policy:
3646 * - when do we discard
3648 * - how many do we discard
3649 * 1) how many requested
3651 static noinline_for_stack
int
3652 ext4_mb_discard_group_preallocations(struct super_block
*sb
,
3653 ext4_group_t group
, int needed
)
3655 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, group
);
3656 struct buffer_head
*bitmap_bh
= NULL
;
3657 struct ext4_prealloc_space
*pa
, *tmp
;
3658 struct ext4_allocation_context
*ac
;
3659 struct list_head list
;
3660 struct ext4_buddy e4b
;
3665 mb_debug(1, "discard preallocation for group %u\n", group
);
3667 if (list_empty(&grp
->bb_prealloc_list
))
3670 bitmap_bh
= ext4_read_block_bitmap(sb
, group
);
3671 if (bitmap_bh
== NULL
) {
3672 ext4_error(sb
, __func__
, "Error in reading block "
3673 "bitmap for %u", group
);
3677 err
= ext4_mb_load_buddy(sb
, group
, &e4b
);
3679 ext4_error(sb
, __func__
, "Error in loading buddy "
3680 "information for %u", group
);
3686 needed
= EXT4_BLOCKS_PER_GROUP(sb
) + 1;
3688 INIT_LIST_HEAD(&list
);
3689 ac
= kmem_cache_alloc(ext4_ac_cachep
, GFP_NOFS
);
3693 ext4_lock_group(sb
, group
);
3694 list_for_each_entry_safe(pa
, tmp
,
3695 &grp
->bb_prealloc_list
, pa_group_list
) {
3696 spin_lock(&pa
->pa_lock
);
3697 if (atomic_read(&pa
->pa_count
)) {
3698 spin_unlock(&pa
->pa_lock
);
3702 if (pa
->pa_deleted
) {
3703 spin_unlock(&pa
->pa_lock
);
3707 /* seems this one can be freed ... */
3710 /* we can trust pa_free ... */
3711 free
+= pa
->pa_free
;
3713 spin_unlock(&pa
->pa_lock
);
3715 list_del(&pa
->pa_group_list
);
3716 list_add(&pa
->u
.pa_tmp_list
, &list
);
3719 /* if we still need more blocks and some PAs were used, try again */
3720 if (free
< needed
&& busy
) {
3722 ext4_unlock_group(sb
, group
);
3724 * Yield the CPU here so that we don't get soft lockup
3725 * in non preempt case.
3731 /* found anything to free? */
3732 if (list_empty(&list
)) {
3737 /* now free all selected PAs */
3738 list_for_each_entry_safe(pa
, tmp
, &list
, u
.pa_tmp_list
) {
3740 /* remove from object (inode or locality group) */
3741 spin_lock(pa
->pa_obj_lock
);
3742 list_del_rcu(&pa
->pa_inode_list
);
3743 spin_unlock(pa
->pa_obj_lock
);
3745 if (pa
->pa_type
== MB_GROUP_PA
)
3746 ext4_mb_release_group_pa(&e4b
, pa
, ac
);
3748 ext4_mb_release_inode_pa(&e4b
, bitmap_bh
, pa
, ac
);
3750 list_del(&pa
->u
.pa_tmp_list
);
3751 call_rcu(&(pa
)->u
.pa_rcu
, ext4_mb_pa_callback
);
3755 ext4_unlock_group(sb
, group
);
3757 kmem_cache_free(ext4_ac_cachep
, ac
);
3758 ext4_mb_unload_buddy(&e4b
);
3764 * releases all non-used preallocated blocks for given inode
3766 * It's important to discard preallocations under i_data_sem
3767 * We don't want another block to be served from the prealloc
3768 * space when we are discarding the inode prealloc space.
3770 * FIXME!! Make sure it is valid at all the call sites
3772 void ext4_discard_preallocations(struct inode
*inode
)
3774 struct ext4_inode_info
*ei
= EXT4_I(inode
);
3775 struct super_block
*sb
= inode
->i_sb
;
3776 struct buffer_head
*bitmap_bh
= NULL
;
3777 struct ext4_prealloc_space
*pa
, *tmp
;
3778 struct ext4_allocation_context
*ac
;
3779 ext4_group_t group
= 0;
3780 struct list_head list
;
3781 struct ext4_buddy e4b
;
3784 if (!S_ISREG(inode
->i_mode
)) {
3785 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3789 mb_debug(1, "discard preallocation for inode %lu\n", inode
->i_ino
);
3790 trace_ext4_discard_preallocations(inode
);
3792 INIT_LIST_HEAD(&list
);
3794 ac
= kmem_cache_alloc(ext4_ac_cachep
, GFP_NOFS
);
3797 ac
->ac_inode
= inode
;
3800 /* first, collect all pa's in the inode */
3801 spin_lock(&ei
->i_prealloc_lock
);
3802 while (!list_empty(&ei
->i_prealloc_list
)) {
3803 pa
= list_entry(ei
->i_prealloc_list
.next
,
3804 struct ext4_prealloc_space
, pa_inode_list
);
3805 BUG_ON(pa
->pa_obj_lock
!= &ei
->i_prealloc_lock
);
3806 spin_lock(&pa
->pa_lock
);
3807 if (atomic_read(&pa
->pa_count
)) {
3808 /* this shouldn't happen often - nobody should
3809 * use preallocation while we're discarding it */
3810 spin_unlock(&pa
->pa_lock
);
3811 spin_unlock(&ei
->i_prealloc_lock
);
3812 printk(KERN_ERR
"uh-oh! used pa while discarding\n");
3814 schedule_timeout_uninterruptible(HZ
);
3818 if (pa
->pa_deleted
== 0) {
3820 spin_unlock(&pa
->pa_lock
);
3821 list_del_rcu(&pa
->pa_inode_list
);
3822 list_add(&pa
->u
.pa_tmp_list
, &list
);
3826 /* someone is deleting pa right now */
3827 spin_unlock(&pa
->pa_lock
);
3828 spin_unlock(&ei
->i_prealloc_lock
);
3830 /* we have to wait here because pa_deleted
3831 * doesn't mean pa is already unlinked from
3832 * the list. as we might be called from
3833 * ->clear_inode() the inode will get freed
3834 * and concurrent thread which is unlinking
3835 * pa from inode's list may access already
3836 * freed memory, bad-bad-bad */
3838 /* XXX: if this happens too often, we can
3839 * add a flag to force wait only in case
3840 * of ->clear_inode(), but not in case of
3841 * regular truncate */
3842 schedule_timeout_uninterruptible(HZ
);
3845 spin_unlock(&ei
->i_prealloc_lock
);
3847 list_for_each_entry_safe(pa
, tmp
, &list
, u
.pa_tmp_list
) {
3848 BUG_ON(pa
->pa_type
!= MB_INODE_PA
);
3849 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
, &group
, NULL
);
3851 err
= ext4_mb_load_buddy(sb
, group
, &e4b
);
3853 ext4_error(sb
, __func__
, "Error in loading buddy "
3854 "information for %u", group
);
3858 bitmap_bh
= ext4_read_block_bitmap(sb
, group
);
3859 if (bitmap_bh
== NULL
) {
3860 ext4_error(sb
, __func__
, "Error in reading block "
3861 "bitmap for %u", group
);
3862 ext4_mb_unload_buddy(&e4b
);
3866 ext4_lock_group(sb
, group
);
3867 list_del(&pa
->pa_group_list
);
3868 ext4_mb_release_inode_pa(&e4b
, bitmap_bh
, pa
, ac
);
3869 ext4_unlock_group(sb
, group
);
3871 ext4_mb_unload_buddy(&e4b
);
3874 list_del(&pa
->u
.pa_tmp_list
);
3875 call_rcu(&(pa
)->u
.pa_rcu
, ext4_mb_pa_callback
);
3878 kmem_cache_free(ext4_ac_cachep
, ac
);
3882 * finds all preallocated spaces and return blocks being freed to them
3883 * if preallocated space becomes full (no block is used from the space)
3884 * then the function frees space in buddy
3885 * XXX: at the moment, truncate (which is the only way to free blocks)
3886 * discards all preallocations
3888 static void ext4_mb_return_to_preallocation(struct inode
*inode
,
3889 struct ext4_buddy
*e4b
,
3890 sector_t block
, int count
)
3892 BUG_ON(!list_empty(&EXT4_I(inode
)->i_prealloc_list
));
3894 #ifdef CONFIG_EXT4_DEBUG
3895 static void ext4_mb_show_ac(struct ext4_allocation_context
*ac
)
3897 struct super_block
*sb
= ac
->ac_sb
;
3898 ext4_group_t ngroups
, i
;
3900 printk(KERN_ERR
"EXT4-fs: Can't allocate:"
3901 " Allocation context details:\n");
3902 printk(KERN_ERR
"EXT4-fs: status %d flags %d\n",
3903 ac
->ac_status
, ac
->ac_flags
);
3904 printk(KERN_ERR
"EXT4-fs: orig %lu/%lu/%lu@%lu, goal %lu/%lu/%lu@%lu, "
3905 "best %lu/%lu/%lu@%lu cr %d\n",
3906 (unsigned long)ac
->ac_o_ex
.fe_group
,
3907 (unsigned long)ac
->ac_o_ex
.fe_start
,
3908 (unsigned long)ac
->ac_o_ex
.fe_len
,
3909 (unsigned long)ac
->ac_o_ex
.fe_logical
,
3910 (unsigned long)ac
->ac_g_ex
.fe_group
,
3911 (unsigned long)ac
->ac_g_ex
.fe_start
,
3912 (unsigned long)ac
->ac_g_ex
.fe_len
,
3913 (unsigned long)ac
->ac_g_ex
.fe_logical
,
3914 (unsigned long)ac
->ac_b_ex
.fe_group
,
3915 (unsigned long)ac
->ac_b_ex
.fe_start
,
3916 (unsigned long)ac
->ac_b_ex
.fe_len
,
3917 (unsigned long)ac
->ac_b_ex
.fe_logical
,
3918 (int)ac
->ac_criteria
);
3919 printk(KERN_ERR
"EXT4-fs: %lu scanned, %d found\n", ac
->ac_ex_scanned
,
3921 printk(KERN_ERR
"EXT4-fs: groups: \n");
3922 ngroups
= ext4_get_groups_count(sb
);
3923 for (i
= 0; i
< ngroups
; i
++) {
3924 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, i
);
3925 struct ext4_prealloc_space
*pa
;
3926 ext4_grpblk_t start
;
3927 struct list_head
*cur
;
3928 ext4_lock_group(sb
, i
);
3929 list_for_each(cur
, &grp
->bb_prealloc_list
) {
3930 pa
= list_entry(cur
, struct ext4_prealloc_space
,
3932 spin_lock(&pa
->pa_lock
);
3933 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
,
3935 spin_unlock(&pa
->pa_lock
);
3936 printk(KERN_ERR
"PA:%u:%d:%u \n", i
,
3939 ext4_unlock_group(sb
, i
);
3941 if (grp
->bb_free
== 0)
3943 printk(KERN_ERR
"%u: %d/%d \n",
3944 i
, grp
->bb_free
, grp
->bb_fragments
);
3946 printk(KERN_ERR
"\n");
3949 static inline void ext4_mb_show_ac(struct ext4_allocation_context
*ac
)
3956 * We use locality group preallocation for small size file. The size of the
3957 * file is determined by the current size or the resulting size after
3958 * allocation which ever is larger
3960 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
3962 static void ext4_mb_group_or_file(struct ext4_allocation_context
*ac
)
3964 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
3965 int bsbits
= ac
->ac_sb
->s_blocksize_bits
;
3968 if (!(ac
->ac_flags
& EXT4_MB_HINT_DATA
))
3971 if (unlikely(ac
->ac_flags
& EXT4_MB_HINT_GOAL_ONLY
))
3974 size
= ac
->ac_o_ex
.fe_logical
+ ac
->ac_o_ex
.fe_len
;
3975 isize
= (i_size_read(ac
->ac_inode
) + ac
->ac_sb
->s_blocksize
- 1)
3978 if ((size
== isize
) &&
3979 !ext4_fs_is_busy(sbi
) &&
3980 (atomic_read(&ac
->ac_inode
->i_writecount
) == 0)) {
3981 ac
->ac_flags
|= EXT4_MB_HINT_NOPREALLOC
;
3985 /* don't use group allocation for large files */
3986 size
= max(size
, isize
);
3987 if (size
> sbi
->s_mb_stream_request
) {
3988 ac
->ac_flags
|= EXT4_MB_STREAM_ALLOC
;
3992 BUG_ON(ac
->ac_lg
!= NULL
);
3994 * locality group prealloc space are per cpu. The reason for having
3995 * per cpu locality group is to reduce the contention between block
3996 * request from multiple CPUs.
3998 ac
->ac_lg
= per_cpu_ptr(sbi
->s_locality_groups
, raw_smp_processor_id());
4000 /* we're going to use group allocation */
4001 ac
->ac_flags
|= EXT4_MB_HINT_GROUP_ALLOC
;
4003 /* serialize all allocations in the group */
4004 mutex_lock(&ac
->ac_lg
->lg_mutex
);
4007 static noinline_for_stack
int
4008 ext4_mb_initialize_context(struct ext4_allocation_context
*ac
,
4009 struct ext4_allocation_request
*ar
)
4011 struct super_block
*sb
= ar
->inode
->i_sb
;
4012 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
4013 struct ext4_super_block
*es
= sbi
->s_es
;
4017 ext4_grpblk_t block
;
4019 /* we can't allocate > group size */
4022 /* just a dirty hack to filter too big requests */
4023 if (len
>= EXT4_BLOCKS_PER_GROUP(sb
) - 10)
4024 len
= EXT4_BLOCKS_PER_GROUP(sb
) - 10;
4026 /* start searching from the goal */
4028 if (goal
< le32_to_cpu(es
->s_first_data_block
) ||
4029 goal
>= ext4_blocks_count(es
))
4030 goal
= le32_to_cpu(es
->s_first_data_block
);
4031 ext4_get_group_no_and_offset(sb
, goal
, &group
, &block
);
4033 /* set up allocation goals */
4034 memset(ac
, 0, sizeof(struct ext4_allocation_context
));
4035 ac
->ac_b_ex
.fe_logical
= ar
->logical
;
4036 ac
->ac_status
= AC_STATUS_CONTINUE
;
4038 ac
->ac_inode
= ar
->inode
;
4039 ac
->ac_o_ex
.fe_logical
= ar
->logical
;
4040 ac
->ac_o_ex
.fe_group
= group
;
4041 ac
->ac_o_ex
.fe_start
= block
;
4042 ac
->ac_o_ex
.fe_len
= len
;
4043 ac
->ac_g_ex
.fe_logical
= ar
->logical
;
4044 ac
->ac_g_ex
.fe_group
= group
;
4045 ac
->ac_g_ex
.fe_start
= block
;
4046 ac
->ac_g_ex
.fe_len
= len
;
4047 ac
->ac_flags
= ar
->flags
;
4049 /* we have to define context: we'll we work with a file or
4050 * locality group. this is a policy, actually */
4051 ext4_mb_group_or_file(ac
);
4053 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4054 "left: %u/%u, right %u/%u to %swritable\n",
4055 (unsigned) ar
->len
, (unsigned) ar
->logical
,
4056 (unsigned) ar
->goal
, ac
->ac_flags
, ac
->ac_2order
,
4057 (unsigned) ar
->lleft
, (unsigned) ar
->pleft
,
4058 (unsigned) ar
->lright
, (unsigned) ar
->pright
,
4059 atomic_read(&ar
->inode
->i_writecount
) ? "" : "non-");
4064 static noinline_for_stack
void
4065 ext4_mb_discard_lg_preallocations(struct super_block
*sb
,
4066 struct ext4_locality_group
*lg
,
4067 int order
, int total_entries
)
4069 ext4_group_t group
= 0;
4070 struct ext4_buddy e4b
;
4071 struct list_head discard_list
;
4072 struct ext4_prealloc_space
*pa
, *tmp
;
4073 struct ext4_allocation_context
*ac
;
4075 mb_debug(1, "discard locality group preallocation\n");
4077 INIT_LIST_HEAD(&discard_list
);
4078 ac
= kmem_cache_alloc(ext4_ac_cachep
, GFP_NOFS
);
4082 spin_lock(&lg
->lg_prealloc_lock
);
4083 list_for_each_entry_rcu(pa
, &lg
->lg_prealloc_list
[order
],
4085 spin_lock(&pa
->pa_lock
);
4086 if (atomic_read(&pa
->pa_count
)) {
4088 * This is the pa that we just used
4089 * for block allocation. So don't
4092 spin_unlock(&pa
->pa_lock
);
4095 if (pa
->pa_deleted
) {
4096 spin_unlock(&pa
->pa_lock
);
4099 /* only lg prealloc space */
4100 BUG_ON(pa
->pa_type
!= MB_GROUP_PA
);
4102 /* seems this one can be freed ... */
4104 spin_unlock(&pa
->pa_lock
);
4106 list_del_rcu(&pa
->pa_inode_list
);
4107 list_add(&pa
->u
.pa_tmp_list
, &discard_list
);
4110 if (total_entries
<= 5) {
4112 * we want to keep only 5 entries
4113 * allowing it to grow to 8. This
4114 * mak sure we don't call discard
4115 * soon for this list.
4120 spin_unlock(&lg
->lg_prealloc_lock
);
4122 list_for_each_entry_safe(pa
, tmp
, &discard_list
, u
.pa_tmp_list
) {
4124 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
, &group
, NULL
);
4125 if (ext4_mb_load_buddy(sb
, group
, &e4b
)) {
4126 ext4_error(sb
, __func__
, "Error in loading buddy "
4127 "information for %u", group
);
4130 ext4_lock_group(sb
, group
);
4131 list_del(&pa
->pa_group_list
);
4132 ext4_mb_release_group_pa(&e4b
, pa
, ac
);
4133 ext4_unlock_group(sb
, group
);
4135 ext4_mb_unload_buddy(&e4b
);
4136 list_del(&pa
->u
.pa_tmp_list
);
4137 call_rcu(&(pa
)->u
.pa_rcu
, ext4_mb_pa_callback
);
4140 kmem_cache_free(ext4_ac_cachep
, ac
);
4144 * We have incremented pa_count. So it cannot be freed at this
4145 * point. Also we hold lg_mutex. So no parallel allocation is
4146 * possible from this lg. That means pa_free cannot be updated.
4148 * A parallel ext4_mb_discard_group_preallocations is possible.
4149 * which can cause the lg_prealloc_list to be updated.
4152 static void ext4_mb_add_n_trim(struct ext4_allocation_context
*ac
)
4154 int order
, added
= 0, lg_prealloc_count
= 1;
4155 struct super_block
*sb
= ac
->ac_sb
;
4156 struct ext4_locality_group
*lg
= ac
->ac_lg
;
4157 struct ext4_prealloc_space
*tmp_pa
, *pa
= ac
->ac_pa
;
4159 order
= fls(pa
->pa_free
) - 1;
4160 if (order
> PREALLOC_TB_SIZE
- 1)
4161 /* The max size of hash table is PREALLOC_TB_SIZE */
4162 order
= PREALLOC_TB_SIZE
- 1;
4163 /* Add the prealloc space to lg */
4165 list_for_each_entry_rcu(tmp_pa
, &lg
->lg_prealloc_list
[order
],
4167 spin_lock(&tmp_pa
->pa_lock
);
4168 if (tmp_pa
->pa_deleted
) {
4169 spin_unlock(&tmp_pa
->pa_lock
);
4172 if (!added
&& pa
->pa_free
< tmp_pa
->pa_free
) {
4173 /* Add to the tail of the previous entry */
4174 list_add_tail_rcu(&pa
->pa_inode_list
,
4175 &tmp_pa
->pa_inode_list
);
4178 * we want to count the total
4179 * number of entries in the list
4182 spin_unlock(&tmp_pa
->pa_lock
);
4183 lg_prealloc_count
++;
4186 list_add_tail_rcu(&pa
->pa_inode_list
,
4187 &lg
->lg_prealloc_list
[order
]);
4190 /* Now trim the list to be not more than 8 elements */
4191 if (lg_prealloc_count
> 8) {
4192 ext4_mb_discard_lg_preallocations(sb
, lg
,
4193 order
, lg_prealloc_count
);
4200 * release all resource we used in allocation
4202 static int ext4_mb_release_context(struct ext4_allocation_context
*ac
)
4204 struct ext4_prealloc_space
*pa
= ac
->ac_pa
;
4206 if (pa
->pa_type
== MB_GROUP_PA
) {
4207 /* see comment in ext4_mb_use_group_pa() */
4208 spin_lock(&pa
->pa_lock
);
4209 pa
->pa_pstart
+= ac
->ac_b_ex
.fe_len
;
4210 pa
->pa_lstart
+= ac
->ac_b_ex
.fe_len
;
4211 pa
->pa_free
-= ac
->ac_b_ex
.fe_len
;
4212 pa
->pa_len
-= ac
->ac_b_ex
.fe_len
;
4213 spin_unlock(&pa
->pa_lock
);
4217 up_read(ac
->alloc_semp
);
4220 * We want to add the pa to the right bucket.
4221 * Remove it from the list and while adding
4222 * make sure the list to which we are adding
4223 * doesn't grow big. We need to release
4224 * alloc_semp before calling ext4_mb_add_n_trim()
4226 if ((pa
->pa_type
== MB_GROUP_PA
) && likely(pa
->pa_free
)) {
4227 spin_lock(pa
->pa_obj_lock
);
4228 list_del_rcu(&pa
->pa_inode_list
);
4229 spin_unlock(pa
->pa_obj_lock
);
4230 ext4_mb_add_n_trim(ac
);
4232 ext4_mb_put_pa(ac
, ac
->ac_sb
, pa
);
4234 if (ac
->ac_bitmap_page
)
4235 page_cache_release(ac
->ac_bitmap_page
);
4236 if (ac
->ac_buddy_page
)
4237 page_cache_release(ac
->ac_buddy_page
);
4238 if (ac
->ac_flags
& EXT4_MB_HINT_GROUP_ALLOC
)
4239 mutex_unlock(&ac
->ac_lg
->lg_mutex
);
4240 ext4_mb_collect_stats(ac
);
4244 static int ext4_mb_discard_preallocations(struct super_block
*sb
, int needed
)
4246 ext4_group_t i
, ngroups
= ext4_get_groups_count(sb
);
4250 trace_ext4_mb_discard_preallocations(sb
, needed
);
4251 for (i
= 0; i
< ngroups
&& needed
> 0; i
++) {
4252 ret
= ext4_mb_discard_group_preallocations(sb
, i
, needed
);
4261 * Main entry point into mballoc to allocate blocks
4262 * it tries to use preallocation first, then falls back
4263 * to usual allocation
4265 ext4_fsblk_t
ext4_mb_new_blocks(handle_t
*handle
,
4266 struct ext4_allocation_request
*ar
, int *errp
)
4269 struct ext4_allocation_context
*ac
= NULL
;
4270 struct ext4_sb_info
*sbi
;
4271 struct super_block
*sb
;
4272 ext4_fsblk_t block
= 0;
4273 unsigned int inquota
= 0;
4274 unsigned int reserv_blks
= 0;
4276 sb
= ar
->inode
->i_sb
;
4279 trace_ext4_request_blocks(ar
);
4282 * For delayed allocation, we could skip the ENOSPC and
4283 * EDQUOT check, as blocks and quotas have been already
4284 * reserved when data being copied into pagecache.
4286 if (EXT4_I(ar
->inode
)->i_delalloc_reserved_flag
)
4287 ar
->flags
|= EXT4_MB_DELALLOC_RESERVED
;
4289 /* Without delayed allocation we need to verify
4290 * there is enough free blocks to do block allocation
4291 * and verify allocation doesn't exceed the quota limits.
4293 while (ar
->len
&& ext4_claim_free_blocks(sbi
, ar
->len
)) {
4294 /* let others to free the space */
4296 ar
->len
= ar
->len
>> 1;
4302 reserv_blks
= ar
->len
;
4303 while (ar
->len
&& vfs_dq_alloc_block(ar
->inode
, ar
->len
)) {
4304 ar
->flags
|= EXT4_MB_HINT_NOPREALLOC
;
4314 ac
= kmem_cache_alloc(ext4_ac_cachep
, GFP_NOFS
);
4321 *errp
= ext4_mb_initialize_context(ac
, ar
);
4327 ac
->ac_op
= EXT4_MB_HISTORY_PREALLOC
;
4328 if (!ext4_mb_use_preallocated(ac
)) {
4329 ac
->ac_op
= EXT4_MB_HISTORY_ALLOC
;
4330 ext4_mb_normalize_request(ac
, ar
);
4332 /* allocate space in core */
4333 ext4_mb_regular_allocator(ac
);
4335 /* as we've just preallocated more space than
4336 * user requested orinally, we store allocated
4337 * space in a special descriptor */
4338 if (ac
->ac_status
== AC_STATUS_FOUND
&&
4339 ac
->ac_o_ex
.fe_len
< ac
->ac_b_ex
.fe_len
)
4340 ext4_mb_new_preallocation(ac
);
4342 if (likely(ac
->ac_status
== AC_STATUS_FOUND
)) {
4343 *errp
= ext4_mb_mark_diskspace_used(ac
, handle
, reserv_blks
);
4344 if (*errp
== -EAGAIN
) {
4346 * drop the reference that we took
4347 * in ext4_mb_use_best_found
4349 ext4_mb_release_context(ac
);
4350 ac
->ac_b_ex
.fe_group
= 0;
4351 ac
->ac_b_ex
.fe_start
= 0;
4352 ac
->ac_b_ex
.fe_len
= 0;
4353 ac
->ac_status
= AC_STATUS_CONTINUE
;
4356 ext4_discard_allocated_blocks(ac
);
4357 ac
->ac_b_ex
.fe_len
= 0;
4359 ext4_mb_show_ac(ac
);
4361 block
= ext4_grp_offs_to_block(sb
, &ac
->ac_b_ex
);
4362 ar
->len
= ac
->ac_b_ex
.fe_len
;
4365 freed
= ext4_mb_discard_preallocations(sb
, ac
->ac_o_ex
.fe_len
);
4369 ac
->ac_b_ex
.fe_len
= 0;
4371 ext4_mb_show_ac(ac
);
4374 ext4_mb_release_context(ac
);
4377 kmem_cache_free(ext4_ac_cachep
, ac
);
4379 if (inquota
&& ar
->len
< inquota
)
4380 vfs_dq_free_block(ar
->inode
, inquota
- ar
->len
);
4383 if (!EXT4_I(ar
->inode
)->i_delalloc_reserved_flag
)
4384 /* release all the reserved blocks if non delalloc */
4385 percpu_counter_sub(&sbi
->s_dirtyblocks_counter
,
4389 trace_ext4_allocate_blocks(ar
, (unsigned long long)block
);
4395 * We can merge two free data extents only if the physical blocks
4396 * are contiguous, AND the extents were freed by the same transaction,
4397 * AND the blocks are associated with the same group.
4399 static int can_merge(struct ext4_free_data
*entry1
,
4400 struct ext4_free_data
*entry2
)
4402 if ((entry1
->t_tid
== entry2
->t_tid
) &&
4403 (entry1
->group
== entry2
->group
) &&
4404 ((entry1
->start_blk
+ entry1
->count
) == entry2
->start_blk
))
4409 static noinline_for_stack
int
4410 ext4_mb_free_metadata(handle_t
*handle
, struct ext4_buddy
*e4b
,
4411 struct ext4_free_data
*new_entry
)
4413 ext4_grpblk_t block
;
4414 struct ext4_free_data
*entry
;
4415 struct ext4_group_info
*db
= e4b
->bd_info
;
4416 struct super_block
*sb
= e4b
->bd_sb
;
4417 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
4418 struct rb_node
**n
= &db
->bb_free_root
.rb_node
, *node
;
4419 struct rb_node
*parent
= NULL
, *new_node
;
4421 BUG_ON(!ext4_handle_valid(handle
));
4422 BUG_ON(e4b
->bd_bitmap_page
== NULL
);
4423 BUG_ON(e4b
->bd_buddy_page
== NULL
);
4425 new_node
= &new_entry
->node
;
4426 block
= new_entry
->start_blk
;
4429 /* first free block exent. We need to
4430 protect buddy cache from being freed,
4431 * otherwise we'll refresh it from
4432 * on-disk bitmap and lose not-yet-available
4434 page_cache_get(e4b
->bd_buddy_page
);
4435 page_cache_get(e4b
->bd_bitmap_page
);
4439 entry
= rb_entry(parent
, struct ext4_free_data
, node
);
4440 if (block
< entry
->start_blk
)
4442 else if (block
>= (entry
->start_blk
+ entry
->count
))
4443 n
= &(*n
)->rb_right
;
4445 ext4_grp_locked_error(sb
, e4b
->bd_group
, __func__
,
4446 "Double free of blocks %d (%d %d)",
4447 block
, entry
->start_blk
, entry
->count
);
4452 rb_link_node(new_node
, parent
, n
);
4453 rb_insert_color(new_node
, &db
->bb_free_root
);
4455 /* Now try to see the extent can be merged to left and right */
4456 node
= rb_prev(new_node
);
4458 entry
= rb_entry(node
, struct ext4_free_data
, node
);
4459 if (can_merge(entry
, new_entry
)) {
4460 new_entry
->start_blk
= entry
->start_blk
;
4461 new_entry
->count
+= entry
->count
;
4462 rb_erase(node
, &(db
->bb_free_root
));
4463 spin_lock(&sbi
->s_md_lock
);
4464 list_del(&entry
->list
);
4465 spin_unlock(&sbi
->s_md_lock
);
4466 kmem_cache_free(ext4_free_ext_cachep
, entry
);
4470 node
= rb_next(new_node
);
4472 entry
= rb_entry(node
, struct ext4_free_data
, node
);
4473 if (can_merge(new_entry
, entry
)) {
4474 new_entry
->count
+= entry
->count
;
4475 rb_erase(node
, &(db
->bb_free_root
));
4476 spin_lock(&sbi
->s_md_lock
);
4477 list_del(&entry
->list
);
4478 spin_unlock(&sbi
->s_md_lock
);
4479 kmem_cache_free(ext4_free_ext_cachep
, entry
);
4482 /* Add the extent to transaction's private list */
4483 spin_lock(&sbi
->s_md_lock
);
4484 list_add(&new_entry
->list
, &handle
->h_transaction
->t_private_list
);
4485 spin_unlock(&sbi
->s_md_lock
);
4490 * Main entry point into mballoc to free blocks
4492 void ext4_mb_free_blocks(handle_t
*handle
, struct inode
*inode
,
4493 ext4_fsblk_t block
, unsigned long count
,
4494 int metadata
, unsigned long *freed
)
4496 struct buffer_head
*bitmap_bh
= NULL
;
4497 struct super_block
*sb
= inode
->i_sb
;
4498 struct ext4_allocation_context
*ac
= NULL
;
4499 struct ext4_group_desc
*gdp
;
4500 struct ext4_super_block
*es
;
4501 unsigned int overflow
;
4503 struct buffer_head
*gd_bh
;
4504 ext4_group_t block_group
;
4505 struct ext4_sb_info
*sbi
;
4506 struct ext4_buddy e4b
;
4513 es
= EXT4_SB(sb
)->s_es
;
4514 if (block
< le32_to_cpu(es
->s_first_data_block
) ||
4515 block
+ count
< block
||
4516 block
+ count
> ext4_blocks_count(es
)) {
4517 ext4_error(sb
, __func__
,
4518 "Freeing blocks not in datazone - "
4519 "block = %llu, count = %lu", block
, count
);
4523 ext4_debug("freeing block %llu\n", block
);
4524 trace_ext4_free_blocks(inode
, block
, count
, metadata
);
4526 ac
= kmem_cache_alloc(ext4_ac_cachep
, GFP_NOFS
);
4528 ac
->ac_inode
= inode
;
4534 ext4_get_group_no_and_offset(sb
, block
, &block_group
, &bit
);
4537 * Check to see if we are freeing blocks across a group
4540 if (bit
+ count
> EXT4_BLOCKS_PER_GROUP(sb
)) {
4541 overflow
= bit
+ count
- EXT4_BLOCKS_PER_GROUP(sb
);
4544 bitmap_bh
= ext4_read_block_bitmap(sb
, block_group
);
4549 gdp
= ext4_get_group_desc(sb
, block_group
, &gd_bh
);
4555 if (in_range(ext4_block_bitmap(sb
, gdp
), block
, count
) ||
4556 in_range(ext4_inode_bitmap(sb
, gdp
), block
, count
) ||
4557 in_range(block
, ext4_inode_table(sb
, gdp
),
4558 EXT4_SB(sb
)->s_itb_per_group
) ||
4559 in_range(block
+ count
- 1, ext4_inode_table(sb
, gdp
),
4560 EXT4_SB(sb
)->s_itb_per_group
)) {
4562 ext4_error(sb
, __func__
,
4563 "Freeing blocks in system zone - "
4564 "Block = %llu, count = %lu", block
, count
);
4565 /* err = 0. ext4_std_error should be a no op */
4569 BUFFER_TRACE(bitmap_bh
, "getting write access");
4570 err
= ext4_journal_get_write_access(handle
, bitmap_bh
);
4575 * We are about to modify some metadata. Call the journal APIs
4576 * to unshare ->b_data if a currently-committing transaction is
4579 BUFFER_TRACE(gd_bh
, "get_write_access");
4580 err
= ext4_journal_get_write_access(handle
, gd_bh
);
4583 #ifdef AGGRESSIVE_CHECK
4586 for (i
= 0; i
< count
; i
++)
4587 BUG_ON(!mb_test_bit(bit
+ i
, bitmap_bh
->b_data
));
4591 ac
->ac_b_ex
.fe_group
= block_group
;
4592 ac
->ac_b_ex
.fe_start
= bit
;
4593 ac
->ac_b_ex
.fe_len
= count
;
4594 trace_ext4_mballoc_free(ac
);
4597 err
= ext4_mb_load_buddy(sb
, block_group
, &e4b
);
4600 if (metadata
&& ext4_handle_valid(handle
)) {
4601 struct ext4_free_data
*new_entry
;
4603 * blocks being freed are metadata. these blocks shouldn't
4604 * be used until this transaction is committed
4606 new_entry
= kmem_cache_alloc(ext4_free_ext_cachep
, GFP_NOFS
);
4607 new_entry
->start_blk
= bit
;
4608 new_entry
->group
= block_group
;
4609 new_entry
->count
= count
;
4610 new_entry
->t_tid
= handle
->h_transaction
->t_tid
;
4612 ext4_lock_group(sb
, block_group
);
4613 mb_clear_bits(bitmap_bh
->b_data
, bit
, count
);
4614 ext4_mb_free_metadata(handle
, &e4b
, new_entry
);
4616 /* need to update group_info->bb_free and bitmap
4617 * with group lock held. generate_buddy look at
4618 * them with group lock_held
4620 ext4_lock_group(sb
, block_group
);
4621 mb_clear_bits(bitmap_bh
->b_data
, bit
, count
);
4622 mb_free_blocks(inode
, &e4b
, bit
, count
);
4623 ext4_mb_return_to_preallocation(inode
, &e4b
, block
, count
);
4626 ret
= ext4_free_blks_count(sb
, gdp
) + count
;
4627 ext4_free_blks_set(sb
, gdp
, ret
);
4628 gdp
->bg_checksum
= ext4_group_desc_csum(sbi
, block_group
, gdp
);
4629 ext4_unlock_group(sb
, block_group
);
4630 percpu_counter_add(&sbi
->s_freeblocks_counter
, count
);
4632 if (sbi
->s_log_groups_per_flex
) {
4633 ext4_group_t flex_group
= ext4_flex_group(sbi
, block_group
);
4634 atomic_add(count
, &sbi
->s_flex_groups
[flex_group
].free_blocks
);
4637 ext4_mb_unload_buddy(&e4b
);
4641 /* We dirtied the bitmap block */
4642 BUFFER_TRACE(bitmap_bh
, "dirtied bitmap block");
4643 err
= ext4_handle_dirty_metadata(handle
, NULL
, bitmap_bh
);
4645 /* And the group descriptor block */
4646 BUFFER_TRACE(gd_bh
, "dirtied group descriptor block");
4647 ret
= ext4_handle_dirty_metadata(handle
, NULL
, gd_bh
);
4651 if (overflow
&& !err
) {
4660 ext4_std_error(sb
, err
);
4662 kmem_cache_free(ext4_ac_cachep
, ac
);