Merge tag 'for-linus-20131212' of git://git.infradead.org/linux-mtd
[linux/fpc-iii.git] / lib / swiotlb.c
blobe4399fa65ad6b921aa88ed2a881d27118dda2dbb
1 /*
2 * Dynamic DMA mapping support.
4 * This implementation is a fallback for platforms that do not support
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
15 * 05/09/10 linville Add support for syncing ranges, support syncing for
16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
17 * 08/12/11 beckyb Add highmem support
20 #include <linux/cache.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/mm.h>
23 #include <linux/export.h>
24 #include <linux/spinlock.h>
25 #include <linux/string.h>
26 #include <linux/swiotlb.h>
27 #include <linux/pfn.h>
28 #include <linux/types.h>
29 #include <linux/ctype.h>
30 #include <linux/highmem.h>
31 #include <linux/gfp.h>
33 #include <asm/io.h>
34 #include <asm/dma.h>
35 #include <asm/scatterlist.h>
37 #include <linux/init.h>
38 #include <linux/bootmem.h>
39 #include <linux/iommu-helper.h>
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/swiotlb.h>
44 #define OFFSET(val,align) ((unsigned long) \
45 ( (val) & ( (align) - 1)))
47 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
50 * Minimum IO TLB size to bother booting with. Systems with mainly
51 * 64bit capable cards will only lightly use the swiotlb. If we can't
52 * allocate a contiguous 1MB, we're probably in trouble anyway.
54 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
56 int swiotlb_force;
59 * Used to do a quick range check in swiotlb_tbl_unmap_single and
60 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
61 * API.
63 static phys_addr_t io_tlb_start, io_tlb_end;
66 * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
67 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
69 static unsigned long io_tlb_nslabs;
72 * When the IOMMU overflows we return a fallback buffer. This sets the size.
74 static unsigned long io_tlb_overflow = 32*1024;
76 static phys_addr_t io_tlb_overflow_buffer;
79 * This is a free list describing the number of free entries available from
80 * each index
82 static unsigned int *io_tlb_list;
83 static unsigned int io_tlb_index;
86 * We need to save away the original address corresponding to a mapped entry
87 * for the sync operations.
89 static phys_addr_t *io_tlb_orig_addr;
92 * Protect the above data structures in the map and unmap calls
94 static DEFINE_SPINLOCK(io_tlb_lock);
96 static int late_alloc;
98 static int __init
99 setup_io_tlb_npages(char *str)
101 if (isdigit(*str)) {
102 io_tlb_nslabs = simple_strtoul(str, &str, 0);
103 /* avoid tail segment of size < IO_TLB_SEGSIZE */
104 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
106 if (*str == ',')
107 ++str;
108 if (!strcmp(str, "force"))
109 swiotlb_force = 1;
111 return 0;
113 early_param("swiotlb", setup_io_tlb_npages);
114 /* make io_tlb_overflow tunable too? */
116 unsigned long swiotlb_nr_tbl(void)
118 return io_tlb_nslabs;
120 EXPORT_SYMBOL_GPL(swiotlb_nr_tbl);
122 /* default to 64MB */
123 #define IO_TLB_DEFAULT_SIZE (64UL<<20)
124 unsigned long swiotlb_size_or_default(void)
126 unsigned long size;
128 size = io_tlb_nslabs << IO_TLB_SHIFT;
130 return size ? size : (IO_TLB_DEFAULT_SIZE);
133 /* Note that this doesn't work with highmem page */
134 static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
135 volatile void *address)
137 return phys_to_dma(hwdev, virt_to_phys(address));
140 static bool no_iotlb_memory;
142 void swiotlb_print_info(void)
144 unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
145 unsigned char *vstart, *vend;
147 if (no_iotlb_memory) {
148 pr_warn("software IO TLB: No low mem\n");
149 return;
152 vstart = phys_to_virt(io_tlb_start);
153 vend = phys_to_virt(io_tlb_end);
155 printk(KERN_INFO "software IO TLB [mem %#010llx-%#010llx] (%luMB) mapped at [%p-%p]\n",
156 (unsigned long long)io_tlb_start,
157 (unsigned long long)io_tlb_end,
158 bytes >> 20, vstart, vend - 1);
161 int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
163 void *v_overflow_buffer;
164 unsigned long i, bytes;
166 bytes = nslabs << IO_TLB_SHIFT;
168 io_tlb_nslabs = nslabs;
169 io_tlb_start = __pa(tlb);
170 io_tlb_end = io_tlb_start + bytes;
173 * Get the overflow emergency buffer
175 v_overflow_buffer = alloc_bootmem_low_pages_nopanic(
176 PAGE_ALIGN(io_tlb_overflow));
177 if (!v_overflow_buffer)
178 return -ENOMEM;
180 io_tlb_overflow_buffer = __pa(v_overflow_buffer);
183 * Allocate and initialize the free list array. This array is used
184 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
185 * between io_tlb_start and io_tlb_end.
187 io_tlb_list = alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
188 for (i = 0; i < io_tlb_nslabs; i++)
189 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
190 io_tlb_index = 0;
191 io_tlb_orig_addr = alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
193 if (verbose)
194 swiotlb_print_info();
196 return 0;
200 * Statically reserve bounce buffer space and initialize bounce buffer data
201 * structures for the software IO TLB used to implement the DMA API.
203 void __init
204 swiotlb_init(int verbose)
206 size_t default_size = IO_TLB_DEFAULT_SIZE;
207 unsigned char *vstart;
208 unsigned long bytes;
210 if (!io_tlb_nslabs) {
211 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
212 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
215 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
217 /* Get IO TLB memory from the low pages */
218 vstart = alloc_bootmem_low_pages_nopanic(PAGE_ALIGN(bytes));
219 if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose))
220 return;
222 if (io_tlb_start)
223 free_bootmem(io_tlb_start,
224 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
225 pr_warn("Cannot allocate SWIOTLB buffer");
226 no_iotlb_memory = true;
230 * Systems with larger DMA zones (those that don't support ISA) can
231 * initialize the swiotlb later using the slab allocator if needed.
232 * This should be just like above, but with some error catching.
235 swiotlb_late_init_with_default_size(size_t default_size)
237 unsigned long bytes, req_nslabs = io_tlb_nslabs;
238 unsigned char *vstart = NULL;
239 unsigned int order;
240 int rc = 0;
242 if (!io_tlb_nslabs) {
243 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
244 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
248 * Get IO TLB memory from the low pages
250 order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
251 io_tlb_nslabs = SLABS_PER_PAGE << order;
252 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
254 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
255 vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
256 order);
257 if (vstart)
258 break;
259 order--;
262 if (!vstart) {
263 io_tlb_nslabs = req_nslabs;
264 return -ENOMEM;
266 if (order != get_order(bytes)) {
267 printk(KERN_WARNING "Warning: only able to allocate %ld MB "
268 "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
269 io_tlb_nslabs = SLABS_PER_PAGE << order;
271 rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs);
272 if (rc)
273 free_pages((unsigned long)vstart, order);
274 return rc;
278 swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
280 unsigned long i, bytes;
281 unsigned char *v_overflow_buffer;
283 bytes = nslabs << IO_TLB_SHIFT;
285 io_tlb_nslabs = nslabs;
286 io_tlb_start = virt_to_phys(tlb);
287 io_tlb_end = io_tlb_start + bytes;
289 memset(tlb, 0, bytes);
292 * Get the overflow emergency buffer
294 v_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
295 get_order(io_tlb_overflow));
296 if (!v_overflow_buffer)
297 goto cleanup2;
299 io_tlb_overflow_buffer = virt_to_phys(v_overflow_buffer);
302 * Allocate and initialize the free list array. This array is used
303 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
304 * between io_tlb_start and io_tlb_end.
306 io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
307 get_order(io_tlb_nslabs * sizeof(int)));
308 if (!io_tlb_list)
309 goto cleanup3;
311 for (i = 0; i < io_tlb_nslabs; i++)
312 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
313 io_tlb_index = 0;
315 io_tlb_orig_addr = (phys_addr_t *)
316 __get_free_pages(GFP_KERNEL,
317 get_order(io_tlb_nslabs *
318 sizeof(phys_addr_t)));
319 if (!io_tlb_orig_addr)
320 goto cleanup4;
322 memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(phys_addr_t));
324 swiotlb_print_info();
326 late_alloc = 1;
328 return 0;
330 cleanup4:
331 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
332 sizeof(int)));
333 io_tlb_list = NULL;
334 cleanup3:
335 free_pages((unsigned long)v_overflow_buffer,
336 get_order(io_tlb_overflow));
337 io_tlb_overflow_buffer = 0;
338 cleanup2:
339 io_tlb_end = 0;
340 io_tlb_start = 0;
341 io_tlb_nslabs = 0;
342 return -ENOMEM;
345 void __init swiotlb_free(void)
347 if (!io_tlb_orig_addr)
348 return;
350 if (late_alloc) {
351 free_pages((unsigned long)phys_to_virt(io_tlb_overflow_buffer),
352 get_order(io_tlb_overflow));
353 free_pages((unsigned long)io_tlb_orig_addr,
354 get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
355 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
356 sizeof(int)));
357 free_pages((unsigned long)phys_to_virt(io_tlb_start),
358 get_order(io_tlb_nslabs << IO_TLB_SHIFT));
359 } else {
360 free_bootmem_late(io_tlb_overflow_buffer,
361 PAGE_ALIGN(io_tlb_overflow));
362 free_bootmem_late(__pa(io_tlb_orig_addr),
363 PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
364 free_bootmem_late(__pa(io_tlb_list),
365 PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
366 free_bootmem_late(io_tlb_start,
367 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
369 io_tlb_nslabs = 0;
372 static int is_swiotlb_buffer(phys_addr_t paddr)
374 return paddr >= io_tlb_start && paddr < io_tlb_end;
378 * Bounce: copy the swiotlb buffer back to the original dma location
380 static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr,
381 size_t size, enum dma_data_direction dir)
383 unsigned long pfn = PFN_DOWN(orig_addr);
384 unsigned char *vaddr = phys_to_virt(tlb_addr);
386 if (PageHighMem(pfn_to_page(pfn))) {
387 /* The buffer does not have a mapping. Map it in and copy */
388 unsigned int offset = orig_addr & ~PAGE_MASK;
389 char *buffer;
390 unsigned int sz = 0;
391 unsigned long flags;
393 while (size) {
394 sz = min_t(size_t, PAGE_SIZE - offset, size);
396 local_irq_save(flags);
397 buffer = kmap_atomic(pfn_to_page(pfn));
398 if (dir == DMA_TO_DEVICE)
399 memcpy(vaddr, buffer + offset, sz);
400 else
401 memcpy(buffer + offset, vaddr, sz);
402 kunmap_atomic(buffer);
403 local_irq_restore(flags);
405 size -= sz;
406 pfn++;
407 vaddr += sz;
408 offset = 0;
410 } else if (dir == DMA_TO_DEVICE) {
411 memcpy(vaddr, phys_to_virt(orig_addr), size);
412 } else {
413 memcpy(phys_to_virt(orig_addr), vaddr, size);
417 phys_addr_t swiotlb_tbl_map_single(struct device *hwdev,
418 dma_addr_t tbl_dma_addr,
419 phys_addr_t orig_addr, size_t size,
420 enum dma_data_direction dir)
422 unsigned long flags;
423 phys_addr_t tlb_addr;
424 unsigned int nslots, stride, index, wrap;
425 int i;
426 unsigned long mask;
427 unsigned long offset_slots;
428 unsigned long max_slots;
430 if (no_iotlb_memory)
431 panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
433 mask = dma_get_seg_boundary(hwdev);
435 tbl_dma_addr &= mask;
437 offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
440 * Carefully handle integer overflow which can occur when mask == ~0UL.
442 max_slots = mask + 1
443 ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
444 : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
447 * For mappings greater than a page, we limit the stride (and
448 * hence alignment) to a page size.
450 nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
451 if (size > PAGE_SIZE)
452 stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
453 else
454 stride = 1;
456 BUG_ON(!nslots);
459 * Find suitable number of IO TLB entries size that will fit this
460 * request and allocate a buffer from that IO TLB pool.
462 spin_lock_irqsave(&io_tlb_lock, flags);
463 index = ALIGN(io_tlb_index, stride);
464 if (index >= io_tlb_nslabs)
465 index = 0;
466 wrap = index;
468 do {
469 while (iommu_is_span_boundary(index, nslots, offset_slots,
470 max_slots)) {
471 index += stride;
472 if (index >= io_tlb_nslabs)
473 index = 0;
474 if (index == wrap)
475 goto not_found;
479 * If we find a slot that indicates we have 'nslots' number of
480 * contiguous buffers, we allocate the buffers from that slot
481 * and mark the entries as '0' indicating unavailable.
483 if (io_tlb_list[index] >= nslots) {
484 int count = 0;
486 for (i = index; i < (int) (index + nslots); i++)
487 io_tlb_list[i] = 0;
488 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
489 io_tlb_list[i] = ++count;
490 tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT);
493 * Update the indices to avoid searching in the next
494 * round.
496 io_tlb_index = ((index + nslots) < io_tlb_nslabs
497 ? (index + nslots) : 0);
499 goto found;
501 index += stride;
502 if (index >= io_tlb_nslabs)
503 index = 0;
504 } while (index != wrap);
506 not_found:
507 spin_unlock_irqrestore(&io_tlb_lock, flags);
508 dev_warn(hwdev, "swiotlb buffer is full\n");
509 return SWIOTLB_MAP_ERROR;
510 found:
511 spin_unlock_irqrestore(&io_tlb_lock, flags);
514 * Save away the mapping from the original address to the DMA address.
515 * This is needed when we sync the memory. Then we sync the buffer if
516 * needed.
518 for (i = 0; i < nslots; i++)
519 io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT);
520 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
521 swiotlb_bounce(orig_addr, tlb_addr, size, DMA_TO_DEVICE);
523 return tlb_addr;
525 EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single);
528 * Allocates bounce buffer and returns its kernel virtual address.
531 phys_addr_t map_single(struct device *hwdev, phys_addr_t phys, size_t size,
532 enum dma_data_direction dir)
534 dma_addr_t start_dma_addr = phys_to_dma(hwdev, io_tlb_start);
536 return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size, dir);
540 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
542 void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr,
543 size_t size, enum dma_data_direction dir)
545 unsigned long flags;
546 int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
547 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
548 phys_addr_t orig_addr = io_tlb_orig_addr[index];
551 * First, sync the memory before unmapping the entry
553 if (orig_addr && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
554 swiotlb_bounce(orig_addr, tlb_addr, size, DMA_FROM_DEVICE);
557 * Return the buffer to the free list by setting the corresponding
558 * entries to indicate the number of contiguous entries available.
559 * While returning the entries to the free list, we merge the entries
560 * with slots below and above the pool being returned.
562 spin_lock_irqsave(&io_tlb_lock, flags);
564 count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
565 io_tlb_list[index + nslots] : 0);
567 * Step 1: return the slots to the free list, merging the
568 * slots with superceeding slots
570 for (i = index + nslots - 1; i >= index; i--)
571 io_tlb_list[i] = ++count;
573 * Step 2: merge the returned slots with the preceding slots,
574 * if available (non zero)
576 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
577 io_tlb_list[i] = ++count;
579 spin_unlock_irqrestore(&io_tlb_lock, flags);
581 EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single);
583 void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr,
584 size_t size, enum dma_data_direction dir,
585 enum dma_sync_target target)
587 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
588 phys_addr_t orig_addr = io_tlb_orig_addr[index];
590 orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1);
592 switch (target) {
593 case SYNC_FOR_CPU:
594 if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
595 swiotlb_bounce(orig_addr, tlb_addr,
596 size, DMA_FROM_DEVICE);
597 else
598 BUG_ON(dir != DMA_TO_DEVICE);
599 break;
600 case SYNC_FOR_DEVICE:
601 if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
602 swiotlb_bounce(orig_addr, tlb_addr,
603 size, DMA_TO_DEVICE);
604 else
605 BUG_ON(dir != DMA_FROM_DEVICE);
606 break;
607 default:
608 BUG();
611 EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single);
613 void *
614 swiotlb_alloc_coherent(struct device *hwdev, size_t size,
615 dma_addr_t *dma_handle, gfp_t flags)
617 dma_addr_t dev_addr;
618 void *ret;
619 int order = get_order(size);
620 u64 dma_mask = DMA_BIT_MASK(32);
622 if (hwdev && hwdev->coherent_dma_mask)
623 dma_mask = hwdev->coherent_dma_mask;
625 ret = (void *)__get_free_pages(flags, order);
626 if (ret) {
627 dev_addr = swiotlb_virt_to_bus(hwdev, ret);
628 if (dev_addr + size - 1 > dma_mask) {
630 * The allocated memory isn't reachable by the device.
632 free_pages((unsigned long) ret, order);
633 ret = NULL;
636 if (!ret) {
638 * We are either out of memory or the device can't DMA to
639 * GFP_DMA memory; fall back on map_single(), which
640 * will grab memory from the lowest available address range.
642 phys_addr_t paddr = map_single(hwdev, 0, size, DMA_FROM_DEVICE);
643 if (paddr == SWIOTLB_MAP_ERROR)
644 return NULL;
646 ret = phys_to_virt(paddr);
647 dev_addr = phys_to_dma(hwdev, paddr);
649 /* Confirm address can be DMA'd by device */
650 if (dev_addr + size - 1 > dma_mask) {
651 printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
652 (unsigned long long)dma_mask,
653 (unsigned long long)dev_addr);
655 /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
656 swiotlb_tbl_unmap_single(hwdev, paddr,
657 size, DMA_TO_DEVICE);
658 return NULL;
662 *dma_handle = dev_addr;
663 memset(ret, 0, size);
665 return ret;
667 EXPORT_SYMBOL(swiotlb_alloc_coherent);
669 void
670 swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
671 dma_addr_t dev_addr)
673 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
675 WARN_ON(irqs_disabled());
676 if (!is_swiotlb_buffer(paddr))
677 free_pages((unsigned long)vaddr, get_order(size));
678 else
679 /* DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single */
680 swiotlb_tbl_unmap_single(hwdev, paddr, size, DMA_TO_DEVICE);
682 EXPORT_SYMBOL(swiotlb_free_coherent);
684 static void
685 swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir,
686 int do_panic)
689 * Ran out of IOMMU space for this operation. This is very bad.
690 * Unfortunately the drivers cannot handle this operation properly.
691 * unless they check for dma_mapping_error (most don't)
692 * When the mapping is small enough return a static buffer to limit
693 * the damage, or panic when the transfer is too big.
695 printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at "
696 "device %s\n", size, dev ? dev_name(dev) : "?");
698 if (size <= io_tlb_overflow || !do_panic)
699 return;
701 if (dir == DMA_BIDIRECTIONAL)
702 panic("DMA: Random memory could be DMA accessed\n");
703 if (dir == DMA_FROM_DEVICE)
704 panic("DMA: Random memory could be DMA written\n");
705 if (dir == DMA_TO_DEVICE)
706 panic("DMA: Random memory could be DMA read\n");
710 * Map a single buffer of the indicated size for DMA in streaming mode. The
711 * physical address to use is returned.
713 * Once the device is given the dma address, the device owns this memory until
714 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
716 dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
717 unsigned long offset, size_t size,
718 enum dma_data_direction dir,
719 struct dma_attrs *attrs)
721 phys_addr_t map, phys = page_to_phys(page) + offset;
722 dma_addr_t dev_addr = phys_to_dma(dev, phys);
724 BUG_ON(dir == DMA_NONE);
726 * If the address happens to be in the device's DMA window,
727 * we can safely return the device addr and not worry about bounce
728 * buffering it.
730 if (dma_capable(dev, dev_addr, size) && !swiotlb_force)
731 return dev_addr;
733 trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
735 /* Oh well, have to allocate and map a bounce buffer. */
736 map = map_single(dev, phys, size, dir);
737 if (map == SWIOTLB_MAP_ERROR) {
738 swiotlb_full(dev, size, dir, 1);
739 return phys_to_dma(dev, io_tlb_overflow_buffer);
742 dev_addr = phys_to_dma(dev, map);
744 /* Ensure that the address returned is DMA'ble */
745 if (!dma_capable(dev, dev_addr, size)) {
746 swiotlb_tbl_unmap_single(dev, map, size, dir);
747 return phys_to_dma(dev, io_tlb_overflow_buffer);
750 return dev_addr;
752 EXPORT_SYMBOL_GPL(swiotlb_map_page);
755 * Unmap a single streaming mode DMA translation. The dma_addr and size must
756 * match what was provided for in a previous swiotlb_map_page call. All
757 * other usages are undefined.
759 * After this call, reads by the cpu to the buffer are guaranteed to see
760 * whatever the device wrote there.
762 static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
763 size_t size, enum dma_data_direction dir)
765 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
767 BUG_ON(dir == DMA_NONE);
769 if (is_swiotlb_buffer(paddr)) {
770 swiotlb_tbl_unmap_single(hwdev, paddr, size, dir);
771 return;
774 if (dir != DMA_FROM_DEVICE)
775 return;
778 * phys_to_virt doesn't work with hihgmem page but we could
779 * call dma_mark_clean() with hihgmem page here. However, we
780 * are fine since dma_mark_clean() is null on POWERPC. We can
781 * make dma_mark_clean() take a physical address if necessary.
783 dma_mark_clean(phys_to_virt(paddr), size);
786 void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
787 size_t size, enum dma_data_direction dir,
788 struct dma_attrs *attrs)
790 unmap_single(hwdev, dev_addr, size, dir);
792 EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
795 * Make physical memory consistent for a single streaming mode DMA translation
796 * after a transfer.
798 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
799 * using the cpu, yet do not wish to teardown the dma mapping, you must
800 * call this function before doing so. At the next point you give the dma
801 * address back to the card, you must first perform a
802 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
804 static void
805 swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
806 size_t size, enum dma_data_direction dir,
807 enum dma_sync_target target)
809 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
811 BUG_ON(dir == DMA_NONE);
813 if (is_swiotlb_buffer(paddr)) {
814 swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
815 return;
818 if (dir != DMA_FROM_DEVICE)
819 return;
821 dma_mark_clean(phys_to_virt(paddr), size);
824 void
825 swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
826 size_t size, enum dma_data_direction dir)
828 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
830 EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
832 void
833 swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
834 size_t size, enum dma_data_direction dir)
836 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
838 EXPORT_SYMBOL(swiotlb_sync_single_for_device);
841 * Map a set of buffers described by scatterlist in streaming mode for DMA.
842 * This is the scatter-gather version of the above swiotlb_map_page
843 * interface. Here the scatter gather list elements are each tagged with the
844 * appropriate dma address and length. They are obtained via
845 * sg_dma_{address,length}(SG).
847 * NOTE: An implementation may be able to use a smaller number of
848 * DMA address/length pairs than there are SG table elements.
849 * (for example via virtual mapping capabilities)
850 * The routine returns the number of addr/length pairs actually
851 * used, at most nents.
853 * Device ownership issues as mentioned above for swiotlb_map_page are the
854 * same here.
857 swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
858 enum dma_data_direction dir, struct dma_attrs *attrs)
860 struct scatterlist *sg;
861 int i;
863 BUG_ON(dir == DMA_NONE);
865 for_each_sg(sgl, sg, nelems, i) {
866 phys_addr_t paddr = sg_phys(sg);
867 dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
869 if (swiotlb_force ||
870 !dma_capable(hwdev, dev_addr, sg->length)) {
871 phys_addr_t map = map_single(hwdev, sg_phys(sg),
872 sg->length, dir);
873 if (map == SWIOTLB_MAP_ERROR) {
874 /* Don't panic here, we expect map_sg users
875 to do proper error handling. */
876 swiotlb_full(hwdev, sg->length, dir, 0);
877 swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
878 attrs);
879 sg_dma_len(sgl) = 0;
880 return 0;
882 sg->dma_address = phys_to_dma(hwdev, map);
883 } else
884 sg->dma_address = dev_addr;
885 sg_dma_len(sg) = sg->length;
887 return nelems;
889 EXPORT_SYMBOL(swiotlb_map_sg_attrs);
892 swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
893 enum dma_data_direction dir)
895 return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
897 EXPORT_SYMBOL(swiotlb_map_sg);
900 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
901 * concerning calls here are the same as for swiotlb_unmap_page() above.
903 void
904 swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
905 int nelems, enum dma_data_direction dir, struct dma_attrs *attrs)
907 struct scatterlist *sg;
908 int i;
910 BUG_ON(dir == DMA_NONE);
912 for_each_sg(sgl, sg, nelems, i)
913 unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir);
916 EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
918 void
919 swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
920 enum dma_data_direction dir)
922 return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
924 EXPORT_SYMBOL(swiotlb_unmap_sg);
927 * Make physical memory consistent for a set of streaming mode DMA translations
928 * after a transfer.
930 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
931 * and usage.
933 static void
934 swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
935 int nelems, enum dma_data_direction dir,
936 enum dma_sync_target target)
938 struct scatterlist *sg;
939 int i;
941 for_each_sg(sgl, sg, nelems, i)
942 swiotlb_sync_single(hwdev, sg->dma_address,
943 sg_dma_len(sg), dir, target);
946 void
947 swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
948 int nelems, enum dma_data_direction dir)
950 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
952 EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
954 void
955 swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
956 int nelems, enum dma_data_direction dir)
958 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
960 EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
963 swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
965 return (dma_addr == phys_to_dma(hwdev, io_tlb_overflow_buffer));
967 EXPORT_SYMBOL(swiotlb_dma_mapping_error);
970 * Return whether the given device DMA address mask can be supported
971 * properly. For example, if your device can only drive the low 24-bits
972 * during bus mastering, then you would pass 0x00ffffff as the mask to
973 * this function.
976 swiotlb_dma_supported(struct device *hwdev, u64 mask)
978 return phys_to_dma(hwdev, io_tlb_end - 1) <= mask;
980 EXPORT_SYMBOL(swiotlb_dma_supported);