USB: serial: option: support dynamic Quectel USB compositions
[linux/fpc-iii.git] / fs / afs / write.c
blob96b042af624850844f606b0d6d4c5ddb1194b1dc
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* handling of writes to regular files and writing back to the server
4 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
6 */
8 #include <linux/backing-dev.h>
9 #include <linux/slab.h>
10 #include <linux/fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include "internal.h"
17 * mark a page as having been made dirty and thus needing writeback
19 int afs_set_page_dirty(struct page *page)
21 _enter("");
22 return __set_page_dirty_nobuffers(page);
26 * partly or wholly fill a page that's under preparation for writing
28 static int afs_fill_page(struct afs_vnode *vnode, struct key *key,
29 loff_t pos, unsigned int len, struct page *page)
31 struct afs_read *req;
32 size_t p;
33 void *data;
34 int ret;
36 _enter(",,%llu", (unsigned long long)pos);
38 if (pos >= vnode->vfs_inode.i_size) {
39 p = pos & ~PAGE_MASK;
40 ASSERTCMP(p + len, <=, PAGE_SIZE);
41 data = kmap(page);
42 memset(data + p, 0, len);
43 kunmap(page);
44 return 0;
47 req = kzalloc(struct_size(req, array, 1), GFP_KERNEL);
48 if (!req)
49 return -ENOMEM;
51 refcount_set(&req->usage, 1);
52 req->pos = pos;
53 req->len = len;
54 req->nr_pages = 1;
55 req->pages = req->array;
56 req->pages[0] = page;
57 get_page(page);
59 ret = afs_fetch_data(vnode, key, req);
60 afs_put_read(req);
61 if (ret < 0) {
62 if (ret == -ENOENT) {
63 _debug("got NOENT from server"
64 " - marking file deleted and stale");
65 set_bit(AFS_VNODE_DELETED, &vnode->flags);
66 ret = -ESTALE;
70 _leave(" = %d", ret);
71 return ret;
75 * prepare to perform part of a write to a page
77 int afs_write_begin(struct file *file, struct address_space *mapping,
78 loff_t pos, unsigned len, unsigned flags,
79 struct page **pagep, void **fsdata)
81 struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
82 struct page *page;
83 struct key *key = afs_file_key(file);
84 unsigned long priv;
85 unsigned f, from = pos & (PAGE_SIZE - 1);
86 unsigned t, to = from + len;
87 pgoff_t index = pos >> PAGE_SHIFT;
88 int ret;
90 _enter("{%llx:%llu},{%lx},%u,%u",
91 vnode->fid.vid, vnode->fid.vnode, index, from, to);
93 /* We want to store information about how much of a page is altered in
94 * page->private.
96 BUILD_BUG_ON(PAGE_SIZE > 32768 && sizeof(page->private) < 8);
98 page = grab_cache_page_write_begin(mapping, index, flags);
99 if (!page)
100 return -ENOMEM;
102 if (!PageUptodate(page) && len != PAGE_SIZE) {
103 ret = afs_fill_page(vnode, key, pos & PAGE_MASK, PAGE_SIZE, page);
104 if (ret < 0) {
105 unlock_page(page);
106 put_page(page);
107 _leave(" = %d [prep]", ret);
108 return ret;
110 SetPageUptodate(page);
113 /* page won't leak in error case: it eventually gets cleaned off LRU */
114 *pagep = page;
116 try_again:
117 /* See if this page is already partially written in a way that we can
118 * merge the new write with.
120 t = f = 0;
121 if (PagePrivate(page)) {
122 priv = page_private(page);
123 f = priv & AFS_PRIV_MAX;
124 t = priv >> AFS_PRIV_SHIFT;
125 ASSERTCMP(f, <=, t);
128 if (f != t) {
129 if (PageWriteback(page)) {
130 trace_afs_page_dirty(vnode, tracepoint_string("alrdy"),
131 page->index, priv);
132 goto flush_conflicting_write;
134 /* If the file is being filled locally, allow inter-write
135 * spaces to be merged into writes. If it's not, only write
136 * back what the user gives us.
138 if (!test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags) &&
139 (to < f || from > t))
140 goto flush_conflicting_write;
141 if (from < f)
142 f = from;
143 if (to > t)
144 t = to;
145 } else {
146 f = from;
147 t = to;
150 priv = (unsigned long)t << AFS_PRIV_SHIFT;
151 priv |= f;
152 trace_afs_page_dirty(vnode, tracepoint_string("begin"),
153 page->index, priv);
154 SetPagePrivate(page);
155 set_page_private(page, priv);
156 _leave(" = 0");
157 return 0;
159 /* The previous write and this write aren't adjacent or overlapping, so
160 * flush the page out.
162 flush_conflicting_write:
163 _debug("flush conflict");
164 ret = write_one_page(page);
165 if (ret < 0) {
166 _leave(" = %d", ret);
167 return ret;
170 ret = lock_page_killable(page);
171 if (ret < 0) {
172 _leave(" = %d", ret);
173 return ret;
175 goto try_again;
179 * finalise part of a write to a page
181 int afs_write_end(struct file *file, struct address_space *mapping,
182 loff_t pos, unsigned len, unsigned copied,
183 struct page *page, void *fsdata)
185 struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
186 struct key *key = afs_file_key(file);
187 loff_t i_size, maybe_i_size;
188 int ret;
190 _enter("{%llx:%llu},{%lx}",
191 vnode->fid.vid, vnode->fid.vnode, page->index);
193 maybe_i_size = pos + copied;
195 i_size = i_size_read(&vnode->vfs_inode);
196 if (maybe_i_size > i_size) {
197 write_seqlock(&vnode->cb_lock);
198 i_size = i_size_read(&vnode->vfs_inode);
199 if (maybe_i_size > i_size)
200 i_size_write(&vnode->vfs_inode, maybe_i_size);
201 write_sequnlock(&vnode->cb_lock);
204 if (!PageUptodate(page)) {
205 if (copied < len) {
206 /* Try and load any missing data from the server. The
207 * unmarshalling routine will take care of clearing any
208 * bits that are beyond the EOF.
210 ret = afs_fill_page(vnode, key, pos + copied,
211 len - copied, page);
212 if (ret < 0)
213 goto out;
215 SetPageUptodate(page);
218 set_page_dirty(page);
219 if (PageDirty(page))
220 _debug("dirtied");
221 ret = copied;
223 out:
224 unlock_page(page);
225 put_page(page);
226 return ret;
230 * kill all the pages in the given range
232 static void afs_kill_pages(struct address_space *mapping,
233 pgoff_t first, pgoff_t last)
235 struct afs_vnode *vnode = AFS_FS_I(mapping->host);
236 struct pagevec pv;
237 unsigned count, loop;
239 _enter("{%llx:%llu},%lx-%lx",
240 vnode->fid.vid, vnode->fid.vnode, first, last);
242 pagevec_init(&pv);
244 do {
245 _debug("kill %lx-%lx", first, last);
247 count = last - first + 1;
248 if (count > PAGEVEC_SIZE)
249 count = PAGEVEC_SIZE;
250 pv.nr = find_get_pages_contig(mapping, first, count, pv.pages);
251 ASSERTCMP(pv.nr, ==, count);
253 for (loop = 0; loop < count; loop++) {
254 struct page *page = pv.pages[loop];
255 ClearPageUptodate(page);
256 SetPageError(page);
257 end_page_writeback(page);
258 if (page->index >= first)
259 first = page->index + 1;
260 lock_page(page);
261 generic_error_remove_page(mapping, page);
262 unlock_page(page);
265 __pagevec_release(&pv);
266 } while (first <= last);
268 _leave("");
272 * Redirty all the pages in a given range.
274 static void afs_redirty_pages(struct writeback_control *wbc,
275 struct address_space *mapping,
276 pgoff_t first, pgoff_t last)
278 struct afs_vnode *vnode = AFS_FS_I(mapping->host);
279 struct pagevec pv;
280 unsigned count, loop;
282 _enter("{%llx:%llu},%lx-%lx",
283 vnode->fid.vid, vnode->fid.vnode, first, last);
285 pagevec_init(&pv);
287 do {
288 _debug("redirty %lx-%lx", first, last);
290 count = last - first + 1;
291 if (count > PAGEVEC_SIZE)
292 count = PAGEVEC_SIZE;
293 pv.nr = find_get_pages_contig(mapping, first, count, pv.pages);
294 ASSERTCMP(pv.nr, ==, count);
296 for (loop = 0; loop < count; loop++) {
297 struct page *page = pv.pages[loop];
299 redirty_page_for_writepage(wbc, page);
300 end_page_writeback(page);
301 if (page->index >= first)
302 first = page->index + 1;
305 __pagevec_release(&pv);
306 } while (first <= last);
308 _leave("");
312 * completion of write to server
314 static void afs_pages_written_back(struct afs_vnode *vnode,
315 pgoff_t first, pgoff_t last)
317 struct pagevec pv;
318 unsigned long priv;
319 unsigned count, loop;
321 _enter("{%llx:%llu},{%lx-%lx}",
322 vnode->fid.vid, vnode->fid.vnode, first, last);
324 pagevec_init(&pv);
326 do {
327 _debug("done %lx-%lx", first, last);
329 count = last - first + 1;
330 if (count > PAGEVEC_SIZE)
331 count = PAGEVEC_SIZE;
332 pv.nr = find_get_pages_contig(vnode->vfs_inode.i_mapping,
333 first, count, pv.pages);
334 ASSERTCMP(pv.nr, ==, count);
336 for (loop = 0; loop < count; loop++) {
337 priv = page_private(pv.pages[loop]);
338 trace_afs_page_dirty(vnode, tracepoint_string("clear"),
339 pv.pages[loop]->index, priv);
340 set_page_private(pv.pages[loop], 0);
341 end_page_writeback(pv.pages[loop]);
343 first += count;
344 __pagevec_release(&pv);
345 } while (first <= last);
347 afs_prune_wb_keys(vnode);
348 _leave("");
352 * write to a file
354 static int afs_store_data(struct address_space *mapping,
355 pgoff_t first, pgoff_t last,
356 unsigned offset, unsigned to)
358 struct afs_vnode *vnode = AFS_FS_I(mapping->host);
359 struct afs_fs_cursor fc;
360 struct afs_status_cb *scb;
361 struct afs_wb_key *wbk = NULL;
362 struct list_head *p;
363 int ret = -ENOKEY, ret2;
365 _enter("%s{%llx:%llu.%u},%lx,%lx,%x,%x",
366 vnode->volume->name,
367 vnode->fid.vid,
368 vnode->fid.vnode,
369 vnode->fid.unique,
370 first, last, offset, to);
372 scb = kzalloc(sizeof(struct afs_status_cb), GFP_NOFS);
373 if (!scb)
374 return -ENOMEM;
376 spin_lock(&vnode->wb_lock);
377 p = vnode->wb_keys.next;
379 /* Iterate through the list looking for a valid key to use. */
380 try_next_key:
381 while (p != &vnode->wb_keys) {
382 wbk = list_entry(p, struct afs_wb_key, vnode_link);
383 _debug("wbk %u", key_serial(wbk->key));
384 ret2 = key_validate(wbk->key);
385 if (ret2 == 0)
386 goto found_key;
387 if (ret == -ENOKEY)
388 ret = ret2;
389 p = p->next;
392 spin_unlock(&vnode->wb_lock);
393 afs_put_wb_key(wbk);
394 kfree(scb);
395 _leave(" = %d [no keys]", ret);
396 return ret;
398 found_key:
399 refcount_inc(&wbk->usage);
400 spin_unlock(&vnode->wb_lock);
402 _debug("USE WB KEY %u", key_serial(wbk->key));
404 ret = -ERESTARTSYS;
405 if (afs_begin_vnode_operation(&fc, vnode, wbk->key, false)) {
406 afs_dataversion_t data_version = vnode->status.data_version + 1;
408 while (afs_select_fileserver(&fc)) {
409 fc.cb_break = afs_calc_vnode_cb_break(vnode);
410 afs_fs_store_data(&fc, mapping, first, last, offset, to, scb);
413 afs_check_for_remote_deletion(&fc, vnode);
414 afs_vnode_commit_status(&fc, vnode, fc.cb_break,
415 &data_version, scb);
416 if (fc.ac.error == 0)
417 afs_pages_written_back(vnode, first, last);
418 ret = afs_end_vnode_operation(&fc);
421 switch (ret) {
422 case 0:
423 afs_stat_v(vnode, n_stores);
424 atomic_long_add((last * PAGE_SIZE + to) -
425 (first * PAGE_SIZE + offset),
426 &afs_v2net(vnode)->n_store_bytes);
427 break;
428 case -EACCES:
429 case -EPERM:
430 case -ENOKEY:
431 case -EKEYEXPIRED:
432 case -EKEYREJECTED:
433 case -EKEYREVOKED:
434 _debug("next");
435 spin_lock(&vnode->wb_lock);
436 p = wbk->vnode_link.next;
437 afs_put_wb_key(wbk);
438 goto try_next_key;
441 afs_put_wb_key(wbk);
442 kfree(scb);
443 _leave(" = %d", ret);
444 return ret;
448 * Synchronously write back the locked page and any subsequent non-locked dirty
449 * pages.
451 static int afs_write_back_from_locked_page(struct address_space *mapping,
452 struct writeback_control *wbc,
453 struct page *primary_page,
454 pgoff_t final_page)
456 struct afs_vnode *vnode = AFS_FS_I(mapping->host);
457 struct page *pages[8], *page;
458 unsigned long count, priv;
459 unsigned n, offset, to, f, t;
460 pgoff_t start, first, last;
461 int loop, ret;
463 _enter(",%lx", primary_page->index);
465 count = 1;
466 if (test_set_page_writeback(primary_page))
467 BUG();
469 /* Find all consecutive lockable dirty pages that have contiguous
470 * written regions, stopping when we find a page that is not
471 * immediately lockable, is not dirty or is missing, or we reach the
472 * end of the range.
474 start = primary_page->index;
475 priv = page_private(primary_page);
476 offset = priv & AFS_PRIV_MAX;
477 to = priv >> AFS_PRIV_SHIFT;
478 trace_afs_page_dirty(vnode, tracepoint_string("store"),
479 primary_page->index, priv);
481 WARN_ON(offset == to);
482 if (offset == to)
483 trace_afs_page_dirty(vnode, tracepoint_string("WARN"),
484 primary_page->index, priv);
486 if (start >= final_page ||
487 (to < PAGE_SIZE && !test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags)))
488 goto no_more;
490 start++;
491 do {
492 _debug("more %lx [%lx]", start, count);
493 n = final_page - start + 1;
494 if (n > ARRAY_SIZE(pages))
495 n = ARRAY_SIZE(pages);
496 n = find_get_pages_contig(mapping, start, ARRAY_SIZE(pages), pages);
497 _debug("fgpc %u", n);
498 if (n == 0)
499 goto no_more;
500 if (pages[0]->index != start) {
501 do {
502 put_page(pages[--n]);
503 } while (n > 0);
504 goto no_more;
507 for (loop = 0; loop < n; loop++) {
508 page = pages[loop];
509 if (to != PAGE_SIZE &&
510 !test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags))
511 break;
512 if (page->index > final_page)
513 break;
514 if (!trylock_page(page))
515 break;
516 if (!PageDirty(page) || PageWriteback(page)) {
517 unlock_page(page);
518 break;
521 priv = page_private(page);
522 f = priv & AFS_PRIV_MAX;
523 t = priv >> AFS_PRIV_SHIFT;
524 if (f != 0 &&
525 !test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags)) {
526 unlock_page(page);
527 break;
529 to = t;
531 trace_afs_page_dirty(vnode, tracepoint_string("store+"),
532 page->index, priv);
534 if (!clear_page_dirty_for_io(page))
535 BUG();
536 if (test_set_page_writeback(page))
537 BUG();
538 unlock_page(page);
539 put_page(page);
541 count += loop;
542 if (loop < n) {
543 for (; loop < n; loop++)
544 put_page(pages[loop]);
545 goto no_more;
548 start += loop;
549 } while (start <= final_page && count < 65536);
551 no_more:
552 /* We now have a contiguous set of dirty pages, each with writeback
553 * set; the first page is still locked at this point, but all the rest
554 * have been unlocked.
556 unlock_page(primary_page);
558 first = primary_page->index;
559 last = first + count - 1;
561 _debug("write back %lx[%u..] to %lx[..%u]", first, offset, last, to);
563 ret = afs_store_data(mapping, first, last, offset, to);
564 switch (ret) {
565 case 0:
566 ret = count;
567 break;
569 default:
570 pr_notice("kAFS: Unexpected error from FS.StoreData %d\n", ret);
571 /* Fall through */
572 case -EACCES:
573 case -EPERM:
574 case -ENOKEY:
575 case -EKEYEXPIRED:
576 case -EKEYREJECTED:
577 case -EKEYREVOKED:
578 afs_redirty_pages(wbc, mapping, first, last);
579 mapping_set_error(mapping, ret);
580 break;
582 case -EDQUOT:
583 case -ENOSPC:
584 afs_redirty_pages(wbc, mapping, first, last);
585 mapping_set_error(mapping, -ENOSPC);
586 break;
588 case -EROFS:
589 case -EIO:
590 case -EREMOTEIO:
591 case -EFBIG:
592 case -ENOENT:
593 case -ENOMEDIUM:
594 case -ENXIO:
595 trace_afs_file_error(vnode, ret, afs_file_error_writeback_fail);
596 afs_kill_pages(mapping, first, last);
597 mapping_set_error(mapping, ret);
598 break;
601 _leave(" = %d", ret);
602 return ret;
606 * write a page back to the server
607 * - the caller locked the page for us
609 int afs_writepage(struct page *page, struct writeback_control *wbc)
611 int ret;
613 _enter("{%lx},", page->index);
615 ret = afs_write_back_from_locked_page(page->mapping, wbc, page,
616 wbc->range_end >> PAGE_SHIFT);
617 if (ret < 0) {
618 _leave(" = %d", ret);
619 return 0;
622 wbc->nr_to_write -= ret;
624 _leave(" = 0");
625 return 0;
629 * write a region of pages back to the server
631 static int afs_writepages_region(struct address_space *mapping,
632 struct writeback_control *wbc,
633 pgoff_t index, pgoff_t end, pgoff_t *_next)
635 struct page *page;
636 int ret, n;
638 _enter(",,%lx,%lx,", index, end);
640 do {
641 n = find_get_pages_range_tag(mapping, &index, end,
642 PAGECACHE_TAG_DIRTY, 1, &page);
643 if (!n)
644 break;
646 _debug("wback %lx", page->index);
649 * at this point we hold neither the i_pages lock nor the
650 * page lock: the page may be truncated or invalidated
651 * (changing page->mapping to NULL), or even swizzled
652 * back from swapper_space to tmpfs file mapping
654 ret = lock_page_killable(page);
655 if (ret < 0) {
656 put_page(page);
657 _leave(" = %d", ret);
658 return ret;
661 if (page->mapping != mapping || !PageDirty(page)) {
662 unlock_page(page);
663 put_page(page);
664 continue;
667 if (PageWriteback(page)) {
668 unlock_page(page);
669 if (wbc->sync_mode != WB_SYNC_NONE)
670 wait_on_page_writeback(page);
671 put_page(page);
672 continue;
675 if (!clear_page_dirty_for_io(page))
676 BUG();
677 ret = afs_write_back_from_locked_page(mapping, wbc, page, end);
678 put_page(page);
679 if (ret < 0) {
680 _leave(" = %d", ret);
681 return ret;
684 wbc->nr_to_write -= ret;
686 cond_resched();
687 } while (index < end && wbc->nr_to_write > 0);
689 *_next = index;
690 _leave(" = 0 [%lx]", *_next);
691 return 0;
695 * write some of the pending data back to the server
697 int afs_writepages(struct address_space *mapping,
698 struct writeback_control *wbc)
700 pgoff_t start, end, next;
701 int ret;
703 _enter("");
705 if (wbc->range_cyclic) {
706 start = mapping->writeback_index;
707 end = -1;
708 ret = afs_writepages_region(mapping, wbc, start, end, &next);
709 if (start > 0 && wbc->nr_to_write > 0 && ret == 0)
710 ret = afs_writepages_region(mapping, wbc, 0, start,
711 &next);
712 mapping->writeback_index = next;
713 } else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) {
714 end = (pgoff_t)(LLONG_MAX >> PAGE_SHIFT);
715 ret = afs_writepages_region(mapping, wbc, 0, end, &next);
716 if (wbc->nr_to_write > 0)
717 mapping->writeback_index = next;
718 } else {
719 start = wbc->range_start >> PAGE_SHIFT;
720 end = wbc->range_end >> PAGE_SHIFT;
721 ret = afs_writepages_region(mapping, wbc, start, end, &next);
724 _leave(" = %d", ret);
725 return ret;
729 * write to an AFS file
731 ssize_t afs_file_write(struct kiocb *iocb, struct iov_iter *from)
733 struct afs_vnode *vnode = AFS_FS_I(file_inode(iocb->ki_filp));
734 ssize_t result;
735 size_t count = iov_iter_count(from);
737 _enter("{%llx:%llu},{%zu},",
738 vnode->fid.vid, vnode->fid.vnode, count);
740 if (IS_SWAPFILE(&vnode->vfs_inode)) {
741 printk(KERN_INFO
742 "AFS: Attempt to write to active swap file!\n");
743 return -EBUSY;
746 if (!count)
747 return 0;
749 result = generic_file_write_iter(iocb, from);
751 _leave(" = %zd", result);
752 return result;
756 * flush any dirty pages for this process, and check for write errors.
757 * - the return status from this call provides a reliable indication of
758 * whether any write errors occurred for this process.
760 int afs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
762 struct inode *inode = file_inode(file);
763 struct afs_vnode *vnode = AFS_FS_I(inode);
765 _enter("{%llx:%llu},{n=%pD},%d",
766 vnode->fid.vid, vnode->fid.vnode, file,
767 datasync);
769 return file_write_and_wait_range(file, start, end);
773 * notification that a previously read-only page is about to become writable
774 * - if it returns an error, the caller will deliver a bus error signal
776 vm_fault_t afs_page_mkwrite(struct vm_fault *vmf)
778 struct file *file = vmf->vma->vm_file;
779 struct inode *inode = file_inode(file);
780 struct afs_vnode *vnode = AFS_FS_I(inode);
781 unsigned long priv;
783 _enter("{{%llx:%llu}},{%lx}",
784 vnode->fid.vid, vnode->fid.vnode, vmf->page->index);
786 sb_start_pagefault(inode->i_sb);
788 /* Wait for the page to be written to the cache before we allow it to
789 * be modified. We then assume the entire page will need writing back.
791 #ifdef CONFIG_AFS_FSCACHE
792 fscache_wait_on_page_write(vnode->cache, vmf->page);
793 #endif
795 if (PageWriteback(vmf->page) &&
796 wait_on_page_bit_killable(vmf->page, PG_writeback) < 0)
797 return VM_FAULT_RETRY;
799 if (lock_page_killable(vmf->page) < 0)
800 return VM_FAULT_RETRY;
802 /* We mustn't change page->private until writeback is complete as that
803 * details the portion of the page we need to write back and we might
804 * need to redirty the page if there's a problem.
806 wait_on_page_writeback(vmf->page);
808 priv = (unsigned long)PAGE_SIZE << AFS_PRIV_SHIFT; /* To */
809 priv |= 0; /* From */
810 trace_afs_page_dirty(vnode, tracepoint_string("mkwrite"),
811 vmf->page->index, priv);
812 SetPagePrivate(vmf->page);
813 set_page_private(vmf->page, priv);
814 file_update_time(file);
816 sb_end_pagefault(inode->i_sb);
817 return VM_FAULT_LOCKED;
821 * Prune the keys cached for writeback. The caller must hold vnode->wb_lock.
823 void afs_prune_wb_keys(struct afs_vnode *vnode)
825 LIST_HEAD(graveyard);
826 struct afs_wb_key *wbk, *tmp;
828 /* Discard unused keys */
829 spin_lock(&vnode->wb_lock);
831 if (!mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_WRITEBACK) &&
832 !mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_DIRTY)) {
833 list_for_each_entry_safe(wbk, tmp, &vnode->wb_keys, vnode_link) {
834 if (refcount_read(&wbk->usage) == 1)
835 list_move(&wbk->vnode_link, &graveyard);
839 spin_unlock(&vnode->wb_lock);
841 while (!list_empty(&graveyard)) {
842 wbk = list_entry(graveyard.next, struct afs_wb_key, vnode_link);
843 list_del(&wbk->vnode_link);
844 afs_put_wb_key(wbk);
849 * Clean up a page during invalidation.
851 int afs_launder_page(struct page *page)
853 struct address_space *mapping = page->mapping;
854 struct afs_vnode *vnode = AFS_FS_I(mapping->host);
855 unsigned long priv;
856 unsigned int f, t;
857 int ret = 0;
859 _enter("{%lx}", page->index);
861 priv = page_private(page);
862 if (clear_page_dirty_for_io(page)) {
863 f = 0;
864 t = PAGE_SIZE;
865 if (PagePrivate(page)) {
866 f = priv & AFS_PRIV_MAX;
867 t = priv >> AFS_PRIV_SHIFT;
870 trace_afs_page_dirty(vnode, tracepoint_string("launder"),
871 page->index, priv);
872 ret = afs_store_data(mapping, page->index, page->index, t, f);
875 trace_afs_page_dirty(vnode, tracepoint_string("laundered"),
876 page->index, priv);
877 set_page_private(page, 0);
878 ClearPagePrivate(page);
880 #ifdef CONFIG_AFS_FSCACHE
881 if (PageFsCache(page)) {
882 fscache_wait_on_page_write(vnode->cache, page);
883 fscache_uncache_page(vnode->cache, page);
885 #endif
886 return ret;