tcp: don't update snd_nxt, when a socket is switched from repair mode
[linux/fpc-iii.git] / mm / vmalloc.c
blob0fdf96803c5b59623792a24e57015fb0e25098bb
1 /*
2 * linux/mm/vmalloc.c
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
9 */
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/rbtree.h>
25 #include <linux/radix-tree.h>
26 #include <linux/rcupdate.h>
27 #include <linux/pfn.h>
28 #include <linux/kmemleak.h>
29 #include <linux/atomic.h>
30 #include <linux/llist.h>
31 #include <asm/uaccess.h>
32 #include <asm/tlbflush.h>
33 #include <asm/shmparam.h>
35 struct vfree_deferred {
36 struct llist_head list;
37 struct work_struct wq;
39 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
41 static void __vunmap(const void *, int);
43 static void free_work(struct work_struct *w)
45 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
46 struct llist_node *llnode = llist_del_all(&p->list);
47 while (llnode) {
48 void *p = llnode;
49 llnode = llist_next(llnode);
50 __vunmap(p, 1);
54 /*** Page table manipulation functions ***/
56 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
58 pte_t *pte;
60 pte = pte_offset_kernel(pmd, addr);
61 do {
62 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
63 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
64 } while (pte++, addr += PAGE_SIZE, addr != end);
67 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
69 pmd_t *pmd;
70 unsigned long next;
72 pmd = pmd_offset(pud, addr);
73 do {
74 next = pmd_addr_end(addr, end);
75 if (pmd_none_or_clear_bad(pmd))
76 continue;
77 vunmap_pte_range(pmd, addr, next);
78 } while (pmd++, addr = next, addr != end);
81 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
83 pud_t *pud;
84 unsigned long next;
86 pud = pud_offset(pgd, addr);
87 do {
88 next = pud_addr_end(addr, end);
89 if (pud_none_or_clear_bad(pud))
90 continue;
91 vunmap_pmd_range(pud, addr, next);
92 } while (pud++, addr = next, addr != end);
95 static void vunmap_page_range(unsigned long addr, unsigned long end)
97 pgd_t *pgd;
98 unsigned long next;
100 BUG_ON(addr >= end);
101 pgd = pgd_offset_k(addr);
102 do {
103 next = pgd_addr_end(addr, end);
104 if (pgd_none_or_clear_bad(pgd))
105 continue;
106 vunmap_pud_range(pgd, addr, next);
107 } while (pgd++, addr = next, addr != end);
110 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
111 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
113 pte_t *pte;
116 * nr is a running index into the array which helps higher level
117 * callers keep track of where we're up to.
120 pte = pte_alloc_kernel(pmd, addr);
121 if (!pte)
122 return -ENOMEM;
123 do {
124 struct page *page = pages[*nr];
126 if (WARN_ON(!pte_none(*pte)))
127 return -EBUSY;
128 if (WARN_ON(!page))
129 return -ENOMEM;
130 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
131 (*nr)++;
132 } while (pte++, addr += PAGE_SIZE, addr != end);
133 return 0;
136 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
137 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
139 pmd_t *pmd;
140 unsigned long next;
142 pmd = pmd_alloc(&init_mm, pud, addr);
143 if (!pmd)
144 return -ENOMEM;
145 do {
146 next = pmd_addr_end(addr, end);
147 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
148 return -ENOMEM;
149 } while (pmd++, addr = next, addr != end);
150 return 0;
153 static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
154 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
156 pud_t *pud;
157 unsigned long next;
159 pud = pud_alloc(&init_mm, pgd, addr);
160 if (!pud)
161 return -ENOMEM;
162 do {
163 next = pud_addr_end(addr, end);
164 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
165 return -ENOMEM;
166 } while (pud++, addr = next, addr != end);
167 return 0;
171 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
172 * will have pfns corresponding to the "pages" array.
174 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
176 static int vmap_page_range_noflush(unsigned long start, unsigned long end,
177 pgprot_t prot, struct page **pages)
179 pgd_t *pgd;
180 unsigned long next;
181 unsigned long addr = start;
182 int err = 0;
183 int nr = 0;
185 BUG_ON(addr >= end);
186 pgd = pgd_offset_k(addr);
187 do {
188 next = pgd_addr_end(addr, end);
189 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
190 if (err)
191 return err;
192 } while (pgd++, addr = next, addr != end);
194 return nr;
197 static int vmap_page_range(unsigned long start, unsigned long end,
198 pgprot_t prot, struct page **pages)
200 int ret;
202 ret = vmap_page_range_noflush(start, end, prot, pages);
203 flush_cache_vmap(start, end);
204 return ret;
207 int is_vmalloc_or_module_addr(const void *x)
210 * ARM, x86-64 and sparc64 put modules in a special place,
211 * and fall back on vmalloc() if that fails. Others
212 * just put it in the vmalloc space.
214 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
215 unsigned long addr = (unsigned long)x;
216 if (addr >= MODULES_VADDR && addr < MODULES_END)
217 return 1;
218 #endif
219 return is_vmalloc_addr(x);
223 * Walk a vmap address to the struct page it maps.
225 struct page *vmalloc_to_page(const void *vmalloc_addr)
227 unsigned long addr = (unsigned long) vmalloc_addr;
228 struct page *page = NULL;
229 pgd_t *pgd = pgd_offset_k(addr);
232 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
233 * architectures that do not vmalloc module space
235 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
237 if (!pgd_none(*pgd)) {
238 pud_t *pud = pud_offset(pgd, addr);
239 if (!pud_none(*pud)) {
240 pmd_t *pmd = pmd_offset(pud, addr);
241 if (!pmd_none(*pmd)) {
242 pte_t *ptep, pte;
244 ptep = pte_offset_map(pmd, addr);
245 pte = *ptep;
246 if (pte_present(pte))
247 page = pte_page(pte);
248 pte_unmap(ptep);
252 return page;
254 EXPORT_SYMBOL(vmalloc_to_page);
257 * Map a vmalloc()-space virtual address to the physical page frame number.
259 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
261 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
263 EXPORT_SYMBOL(vmalloc_to_pfn);
266 /*** Global kva allocator ***/
268 #define VM_LAZY_FREE 0x01
269 #define VM_LAZY_FREEING 0x02
270 #define VM_VM_AREA 0x04
272 static DEFINE_SPINLOCK(vmap_area_lock);
273 /* Export for kexec only */
274 LIST_HEAD(vmap_area_list);
275 static struct rb_root vmap_area_root = RB_ROOT;
277 /* The vmap cache globals are protected by vmap_area_lock */
278 static struct rb_node *free_vmap_cache;
279 static unsigned long cached_hole_size;
280 static unsigned long cached_vstart;
281 static unsigned long cached_align;
283 static unsigned long vmap_area_pcpu_hole;
285 static struct vmap_area *__find_vmap_area(unsigned long addr)
287 struct rb_node *n = vmap_area_root.rb_node;
289 while (n) {
290 struct vmap_area *va;
292 va = rb_entry(n, struct vmap_area, rb_node);
293 if (addr < va->va_start)
294 n = n->rb_left;
295 else if (addr >= va->va_end)
296 n = n->rb_right;
297 else
298 return va;
301 return NULL;
304 static void __insert_vmap_area(struct vmap_area *va)
306 struct rb_node **p = &vmap_area_root.rb_node;
307 struct rb_node *parent = NULL;
308 struct rb_node *tmp;
310 while (*p) {
311 struct vmap_area *tmp_va;
313 parent = *p;
314 tmp_va = rb_entry(parent, struct vmap_area, rb_node);
315 if (va->va_start < tmp_va->va_end)
316 p = &(*p)->rb_left;
317 else if (va->va_end > tmp_va->va_start)
318 p = &(*p)->rb_right;
319 else
320 BUG();
323 rb_link_node(&va->rb_node, parent, p);
324 rb_insert_color(&va->rb_node, &vmap_area_root);
326 /* address-sort this list */
327 tmp = rb_prev(&va->rb_node);
328 if (tmp) {
329 struct vmap_area *prev;
330 prev = rb_entry(tmp, struct vmap_area, rb_node);
331 list_add_rcu(&va->list, &prev->list);
332 } else
333 list_add_rcu(&va->list, &vmap_area_list);
336 static void purge_vmap_area_lazy(void);
339 * Allocate a region of KVA of the specified size and alignment, within the
340 * vstart and vend.
342 static struct vmap_area *alloc_vmap_area(unsigned long size,
343 unsigned long align,
344 unsigned long vstart, unsigned long vend,
345 int node, gfp_t gfp_mask)
347 struct vmap_area *va;
348 struct rb_node *n;
349 unsigned long addr;
350 int purged = 0;
351 struct vmap_area *first;
353 BUG_ON(!size);
354 BUG_ON(size & ~PAGE_MASK);
355 BUG_ON(!is_power_of_2(align));
357 va = kmalloc_node(sizeof(struct vmap_area),
358 gfp_mask & GFP_RECLAIM_MASK, node);
359 if (unlikely(!va))
360 return ERR_PTR(-ENOMEM);
363 * Only scan the relevant parts containing pointers to other objects
364 * to avoid false negatives.
366 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
368 retry:
369 spin_lock(&vmap_area_lock);
371 * Invalidate cache if we have more permissive parameters.
372 * cached_hole_size notes the largest hole noticed _below_
373 * the vmap_area cached in free_vmap_cache: if size fits
374 * into that hole, we want to scan from vstart to reuse
375 * the hole instead of allocating above free_vmap_cache.
376 * Note that __free_vmap_area may update free_vmap_cache
377 * without updating cached_hole_size or cached_align.
379 if (!free_vmap_cache ||
380 size < cached_hole_size ||
381 vstart < cached_vstart ||
382 align < cached_align) {
383 nocache:
384 cached_hole_size = 0;
385 free_vmap_cache = NULL;
387 /* record if we encounter less permissive parameters */
388 cached_vstart = vstart;
389 cached_align = align;
391 /* find starting point for our search */
392 if (free_vmap_cache) {
393 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
394 addr = ALIGN(first->va_end, align);
395 if (addr < vstart)
396 goto nocache;
397 if (addr + size < addr)
398 goto overflow;
400 } else {
401 addr = ALIGN(vstart, align);
402 if (addr + size < addr)
403 goto overflow;
405 n = vmap_area_root.rb_node;
406 first = NULL;
408 while (n) {
409 struct vmap_area *tmp;
410 tmp = rb_entry(n, struct vmap_area, rb_node);
411 if (tmp->va_end >= addr) {
412 first = tmp;
413 if (tmp->va_start <= addr)
414 break;
415 n = n->rb_left;
416 } else
417 n = n->rb_right;
420 if (!first)
421 goto found;
424 /* from the starting point, walk areas until a suitable hole is found */
425 while (addr + size > first->va_start && addr + size <= vend) {
426 if (addr + cached_hole_size < first->va_start)
427 cached_hole_size = first->va_start - addr;
428 addr = ALIGN(first->va_end, align);
429 if (addr + size < addr)
430 goto overflow;
432 if (list_is_last(&first->list, &vmap_area_list))
433 goto found;
435 first = list_entry(first->list.next,
436 struct vmap_area, list);
439 found:
440 if (addr + size > vend)
441 goto overflow;
443 va->va_start = addr;
444 va->va_end = addr + size;
445 va->flags = 0;
446 __insert_vmap_area(va);
447 free_vmap_cache = &va->rb_node;
448 spin_unlock(&vmap_area_lock);
450 BUG_ON(va->va_start & (align-1));
451 BUG_ON(va->va_start < vstart);
452 BUG_ON(va->va_end > vend);
454 return va;
456 overflow:
457 spin_unlock(&vmap_area_lock);
458 if (!purged) {
459 purge_vmap_area_lazy();
460 purged = 1;
461 goto retry;
463 if (printk_ratelimit())
464 printk(KERN_WARNING
465 "vmap allocation for size %lu failed: "
466 "use vmalloc=<size> to increase size.\n", size);
467 kfree(va);
468 return ERR_PTR(-EBUSY);
471 static void __free_vmap_area(struct vmap_area *va)
473 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
475 if (free_vmap_cache) {
476 if (va->va_end < cached_vstart) {
477 free_vmap_cache = NULL;
478 } else {
479 struct vmap_area *cache;
480 cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
481 if (va->va_start <= cache->va_start) {
482 free_vmap_cache = rb_prev(&va->rb_node);
484 * We don't try to update cached_hole_size or
485 * cached_align, but it won't go very wrong.
490 rb_erase(&va->rb_node, &vmap_area_root);
491 RB_CLEAR_NODE(&va->rb_node);
492 list_del_rcu(&va->list);
495 * Track the highest possible candidate for pcpu area
496 * allocation. Areas outside of vmalloc area can be returned
497 * here too, consider only end addresses which fall inside
498 * vmalloc area proper.
500 if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
501 vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
503 kfree_rcu(va, rcu_head);
507 * Free a region of KVA allocated by alloc_vmap_area
509 static void free_vmap_area(struct vmap_area *va)
511 spin_lock(&vmap_area_lock);
512 __free_vmap_area(va);
513 spin_unlock(&vmap_area_lock);
517 * Clear the pagetable entries of a given vmap_area
519 static void unmap_vmap_area(struct vmap_area *va)
521 vunmap_page_range(va->va_start, va->va_end);
524 static void vmap_debug_free_range(unsigned long start, unsigned long end)
527 * Unmap page tables and force a TLB flush immediately if
528 * CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
529 * bugs similarly to those in linear kernel virtual address
530 * space after a page has been freed.
532 * All the lazy freeing logic is still retained, in order to
533 * minimise intrusiveness of this debugging feature.
535 * This is going to be *slow* (linear kernel virtual address
536 * debugging doesn't do a broadcast TLB flush so it is a lot
537 * faster).
539 #ifdef CONFIG_DEBUG_PAGEALLOC
540 vunmap_page_range(start, end);
541 flush_tlb_kernel_range(start, end);
542 #endif
546 * lazy_max_pages is the maximum amount of virtual address space we gather up
547 * before attempting to purge with a TLB flush.
549 * There is a tradeoff here: a larger number will cover more kernel page tables
550 * and take slightly longer to purge, but it will linearly reduce the number of
551 * global TLB flushes that must be performed. It would seem natural to scale
552 * this number up linearly with the number of CPUs (because vmapping activity
553 * could also scale linearly with the number of CPUs), however it is likely
554 * that in practice, workloads might be constrained in other ways that mean
555 * vmap activity will not scale linearly with CPUs. Also, I want to be
556 * conservative and not introduce a big latency on huge systems, so go with
557 * a less aggressive log scale. It will still be an improvement over the old
558 * code, and it will be simple to change the scale factor if we find that it
559 * becomes a problem on bigger systems.
561 static unsigned long lazy_max_pages(void)
563 unsigned int log;
565 log = fls(num_online_cpus());
567 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
570 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
572 /* for per-CPU blocks */
573 static void purge_fragmented_blocks_allcpus(void);
576 * called before a call to iounmap() if the caller wants vm_area_struct's
577 * immediately freed.
579 void set_iounmap_nonlazy(void)
581 atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
585 * Purges all lazily-freed vmap areas.
587 * If sync is 0 then don't purge if there is already a purge in progress.
588 * If force_flush is 1, then flush kernel TLBs between *start and *end even
589 * if we found no lazy vmap areas to unmap (callers can use this to optimise
590 * their own TLB flushing).
591 * Returns with *start = min(*start, lowest purged address)
592 * *end = max(*end, highest purged address)
594 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
595 int sync, int force_flush)
597 static DEFINE_SPINLOCK(purge_lock);
598 LIST_HEAD(valist);
599 struct vmap_area *va;
600 struct vmap_area *n_va;
601 int nr = 0;
604 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
605 * should not expect such behaviour. This just simplifies locking for
606 * the case that isn't actually used at the moment anyway.
608 if (!sync && !force_flush) {
609 if (!spin_trylock(&purge_lock))
610 return;
611 } else
612 spin_lock(&purge_lock);
614 if (sync)
615 purge_fragmented_blocks_allcpus();
617 rcu_read_lock();
618 list_for_each_entry_rcu(va, &vmap_area_list, list) {
619 if (va->flags & VM_LAZY_FREE) {
620 if (va->va_start < *start)
621 *start = va->va_start;
622 if (va->va_end > *end)
623 *end = va->va_end;
624 nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
625 list_add_tail(&va->purge_list, &valist);
626 va->flags |= VM_LAZY_FREEING;
627 va->flags &= ~VM_LAZY_FREE;
630 rcu_read_unlock();
632 if (nr)
633 atomic_sub(nr, &vmap_lazy_nr);
635 if (nr || force_flush)
636 flush_tlb_kernel_range(*start, *end);
638 if (nr) {
639 spin_lock(&vmap_area_lock);
640 list_for_each_entry_safe(va, n_va, &valist, purge_list)
641 __free_vmap_area(va);
642 spin_unlock(&vmap_area_lock);
644 spin_unlock(&purge_lock);
648 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
649 * is already purging.
651 static void try_purge_vmap_area_lazy(void)
653 unsigned long start = ULONG_MAX, end = 0;
655 __purge_vmap_area_lazy(&start, &end, 0, 0);
659 * Kick off a purge of the outstanding lazy areas.
661 static void purge_vmap_area_lazy(void)
663 unsigned long start = ULONG_MAX, end = 0;
665 __purge_vmap_area_lazy(&start, &end, 1, 0);
669 * Free a vmap area, caller ensuring that the area has been unmapped
670 * and flush_cache_vunmap had been called for the correct range
671 * previously.
673 static void free_vmap_area_noflush(struct vmap_area *va)
675 va->flags |= VM_LAZY_FREE;
676 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
677 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
678 try_purge_vmap_area_lazy();
682 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
683 * called for the correct range previously.
685 static void free_unmap_vmap_area_noflush(struct vmap_area *va)
687 unmap_vmap_area(va);
688 free_vmap_area_noflush(va);
692 * Free and unmap a vmap area
694 static void free_unmap_vmap_area(struct vmap_area *va)
696 flush_cache_vunmap(va->va_start, va->va_end);
697 free_unmap_vmap_area_noflush(va);
700 static struct vmap_area *find_vmap_area(unsigned long addr)
702 struct vmap_area *va;
704 spin_lock(&vmap_area_lock);
705 va = __find_vmap_area(addr);
706 spin_unlock(&vmap_area_lock);
708 return va;
711 static void free_unmap_vmap_area_addr(unsigned long addr)
713 struct vmap_area *va;
715 va = find_vmap_area(addr);
716 BUG_ON(!va);
717 free_unmap_vmap_area(va);
721 /*** Per cpu kva allocator ***/
724 * vmap space is limited especially on 32 bit architectures. Ensure there is
725 * room for at least 16 percpu vmap blocks per CPU.
728 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
729 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
730 * instead (we just need a rough idea)
732 #if BITS_PER_LONG == 32
733 #define VMALLOC_SPACE (128UL*1024*1024)
734 #else
735 #define VMALLOC_SPACE (128UL*1024*1024*1024)
736 #endif
738 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
739 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
740 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
741 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
742 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
743 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
744 #define VMAP_BBMAP_BITS \
745 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
746 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
747 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
749 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
751 static bool vmap_initialized __read_mostly = false;
753 struct vmap_block_queue {
754 spinlock_t lock;
755 struct list_head free;
758 struct vmap_block {
759 spinlock_t lock;
760 struct vmap_area *va;
761 unsigned long free, dirty;
762 DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
763 struct list_head free_list;
764 struct rcu_head rcu_head;
765 struct list_head purge;
768 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
769 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
772 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
773 * in the free path. Could get rid of this if we change the API to return a
774 * "cookie" from alloc, to be passed to free. But no big deal yet.
776 static DEFINE_SPINLOCK(vmap_block_tree_lock);
777 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
780 * We should probably have a fallback mechanism to allocate virtual memory
781 * out of partially filled vmap blocks. However vmap block sizing should be
782 * fairly reasonable according to the vmalloc size, so it shouldn't be a
783 * big problem.
786 static unsigned long addr_to_vb_idx(unsigned long addr)
788 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
789 addr /= VMAP_BLOCK_SIZE;
790 return addr;
793 static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
795 struct vmap_block_queue *vbq;
796 struct vmap_block *vb;
797 struct vmap_area *va;
798 unsigned long vb_idx;
799 int node, err;
801 node = numa_node_id();
803 vb = kmalloc_node(sizeof(struct vmap_block),
804 gfp_mask & GFP_RECLAIM_MASK, node);
805 if (unlikely(!vb))
806 return ERR_PTR(-ENOMEM);
808 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
809 VMALLOC_START, VMALLOC_END,
810 node, gfp_mask);
811 if (IS_ERR(va)) {
812 kfree(vb);
813 return ERR_CAST(va);
816 err = radix_tree_preload(gfp_mask);
817 if (unlikely(err)) {
818 kfree(vb);
819 free_vmap_area(va);
820 return ERR_PTR(err);
823 spin_lock_init(&vb->lock);
824 vb->va = va;
825 vb->free = VMAP_BBMAP_BITS;
826 vb->dirty = 0;
827 bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
828 INIT_LIST_HEAD(&vb->free_list);
830 vb_idx = addr_to_vb_idx(va->va_start);
831 spin_lock(&vmap_block_tree_lock);
832 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
833 spin_unlock(&vmap_block_tree_lock);
834 BUG_ON(err);
835 radix_tree_preload_end();
837 vbq = &get_cpu_var(vmap_block_queue);
838 spin_lock(&vbq->lock);
839 list_add_rcu(&vb->free_list, &vbq->free);
840 spin_unlock(&vbq->lock);
841 put_cpu_var(vmap_block_queue);
843 return vb;
846 static void free_vmap_block(struct vmap_block *vb)
848 struct vmap_block *tmp;
849 unsigned long vb_idx;
851 vb_idx = addr_to_vb_idx(vb->va->va_start);
852 spin_lock(&vmap_block_tree_lock);
853 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
854 spin_unlock(&vmap_block_tree_lock);
855 BUG_ON(tmp != vb);
857 free_vmap_area_noflush(vb->va);
858 kfree_rcu(vb, rcu_head);
861 static void purge_fragmented_blocks(int cpu)
863 LIST_HEAD(purge);
864 struct vmap_block *vb;
865 struct vmap_block *n_vb;
866 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
868 rcu_read_lock();
869 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
871 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
872 continue;
874 spin_lock(&vb->lock);
875 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
876 vb->free = 0; /* prevent further allocs after releasing lock */
877 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
878 bitmap_fill(vb->dirty_map, VMAP_BBMAP_BITS);
879 spin_lock(&vbq->lock);
880 list_del_rcu(&vb->free_list);
881 spin_unlock(&vbq->lock);
882 spin_unlock(&vb->lock);
883 list_add_tail(&vb->purge, &purge);
884 } else
885 spin_unlock(&vb->lock);
887 rcu_read_unlock();
889 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
890 list_del(&vb->purge);
891 free_vmap_block(vb);
895 static void purge_fragmented_blocks_allcpus(void)
897 int cpu;
899 for_each_possible_cpu(cpu)
900 purge_fragmented_blocks(cpu);
903 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
905 struct vmap_block_queue *vbq;
906 struct vmap_block *vb;
907 unsigned long addr = 0;
908 unsigned int order;
910 BUG_ON(size & ~PAGE_MASK);
911 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
912 if (WARN_ON(size == 0)) {
914 * Allocating 0 bytes isn't what caller wants since
915 * get_order(0) returns funny result. Just warn and terminate
916 * early.
918 return NULL;
920 order = get_order(size);
922 again:
923 rcu_read_lock();
924 vbq = &get_cpu_var(vmap_block_queue);
925 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
926 int i;
928 spin_lock(&vb->lock);
929 if (vb->free < 1UL << order)
930 goto next;
932 i = VMAP_BBMAP_BITS - vb->free;
933 addr = vb->va->va_start + (i << PAGE_SHIFT);
934 BUG_ON(addr_to_vb_idx(addr) !=
935 addr_to_vb_idx(vb->va->va_start));
936 vb->free -= 1UL << order;
937 if (vb->free == 0) {
938 spin_lock(&vbq->lock);
939 list_del_rcu(&vb->free_list);
940 spin_unlock(&vbq->lock);
942 spin_unlock(&vb->lock);
943 break;
944 next:
945 spin_unlock(&vb->lock);
948 put_cpu_var(vmap_block_queue);
949 rcu_read_unlock();
951 if (!addr) {
952 vb = new_vmap_block(gfp_mask);
953 if (IS_ERR(vb))
954 return vb;
955 goto again;
958 return (void *)addr;
961 static void vb_free(const void *addr, unsigned long size)
963 unsigned long offset;
964 unsigned long vb_idx;
965 unsigned int order;
966 struct vmap_block *vb;
968 BUG_ON(size & ~PAGE_MASK);
969 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
971 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
973 order = get_order(size);
975 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
977 vb_idx = addr_to_vb_idx((unsigned long)addr);
978 rcu_read_lock();
979 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
980 rcu_read_unlock();
981 BUG_ON(!vb);
983 vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
985 spin_lock(&vb->lock);
986 BUG_ON(bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order));
988 vb->dirty += 1UL << order;
989 if (vb->dirty == VMAP_BBMAP_BITS) {
990 BUG_ON(vb->free);
991 spin_unlock(&vb->lock);
992 free_vmap_block(vb);
993 } else
994 spin_unlock(&vb->lock);
998 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1000 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1001 * to amortize TLB flushing overheads. What this means is that any page you
1002 * have now, may, in a former life, have been mapped into kernel virtual
1003 * address by the vmap layer and so there might be some CPUs with TLB entries
1004 * still referencing that page (additional to the regular 1:1 kernel mapping).
1006 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1007 * be sure that none of the pages we have control over will have any aliases
1008 * from the vmap layer.
1010 void vm_unmap_aliases(void)
1012 unsigned long start = ULONG_MAX, end = 0;
1013 int cpu;
1014 int flush = 0;
1016 if (unlikely(!vmap_initialized))
1017 return;
1019 for_each_possible_cpu(cpu) {
1020 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1021 struct vmap_block *vb;
1023 rcu_read_lock();
1024 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1025 int i, j;
1027 spin_lock(&vb->lock);
1028 i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
1029 if (i < VMAP_BBMAP_BITS) {
1030 unsigned long s, e;
1032 j = find_last_bit(vb->dirty_map,
1033 VMAP_BBMAP_BITS);
1034 j = j + 1; /* need exclusive index */
1036 s = vb->va->va_start + (i << PAGE_SHIFT);
1037 e = vb->va->va_start + (j << PAGE_SHIFT);
1038 flush = 1;
1040 if (s < start)
1041 start = s;
1042 if (e > end)
1043 end = e;
1045 spin_unlock(&vb->lock);
1047 rcu_read_unlock();
1050 __purge_vmap_area_lazy(&start, &end, 1, flush);
1052 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1055 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1056 * @mem: the pointer returned by vm_map_ram
1057 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1059 void vm_unmap_ram(const void *mem, unsigned int count)
1061 unsigned long size = count << PAGE_SHIFT;
1062 unsigned long addr = (unsigned long)mem;
1064 BUG_ON(!addr);
1065 BUG_ON(addr < VMALLOC_START);
1066 BUG_ON(addr > VMALLOC_END);
1067 BUG_ON(addr & (PAGE_SIZE-1));
1069 debug_check_no_locks_freed(mem, size);
1070 vmap_debug_free_range(addr, addr+size);
1072 if (likely(count <= VMAP_MAX_ALLOC))
1073 vb_free(mem, size);
1074 else
1075 free_unmap_vmap_area_addr(addr);
1077 EXPORT_SYMBOL(vm_unmap_ram);
1080 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1081 * @pages: an array of pointers to the pages to be mapped
1082 * @count: number of pages
1083 * @node: prefer to allocate data structures on this node
1084 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1086 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1088 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1090 unsigned long size = count << PAGE_SHIFT;
1091 unsigned long addr;
1092 void *mem;
1094 if (likely(count <= VMAP_MAX_ALLOC)) {
1095 mem = vb_alloc(size, GFP_KERNEL);
1096 if (IS_ERR(mem))
1097 return NULL;
1098 addr = (unsigned long)mem;
1099 } else {
1100 struct vmap_area *va;
1101 va = alloc_vmap_area(size, PAGE_SIZE,
1102 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1103 if (IS_ERR(va))
1104 return NULL;
1106 addr = va->va_start;
1107 mem = (void *)addr;
1109 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1110 vm_unmap_ram(mem, count);
1111 return NULL;
1113 return mem;
1115 EXPORT_SYMBOL(vm_map_ram);
1117 static struct vm_struct *vmlist __initdata;
1119 * vm_area_add_early - add vmap area early during boot
1120 * @vm: vm_struct to add
1122 * This function is used to add fixed kernel vm area to vmlist before
1123 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1124 * should contain proper values and the other fields should be zero.
1126 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1128 void __init vm_area_add_early(struct vm_struct *vm)
1130 struct vm_struct *tmp, **p;
1132 BUG_ON(vmap_initialized);
1133 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1134 if (tmp->addr >= vm->addr) {
1135 BUG_ON(tmp->addr < vm->addr + vm->size);
1136 break;
1137 } else
1138 BUG_ON(tmp->addr + tmp->size > vm->addr);
1140 vm->next = *p;
1141 *p = vm;
1145 * vm_area_register_early - register vmap area early during boot
1146 * @vm: vm_struct to register
1147 * @align: requested alignment
1149 * This function is used to register kernel vm area before
1150 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1151 * proper values on entry and other fields should be zero. On return,
1152 * vm->addr contains the allocated address.
1154 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1156 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1158 static size_t vm_init_off __initdata;
1159 unsigned long addr;
1161 addr = ALIGN(VMALLOC_START + vm_init_off, align);
1162 vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1164 vm->addr = (void *)addr;
1166 vm_area_add_early(vm);
1169 void __init vmalloc_init(void)
1171 struct vmap_area *va;
1172 struct vm_struct *tmp;
1173 int i;
1175 for_each_possible_cpu(i) {
1176 struct vmap_block_queue *vbq;
1177 struct vfree_deferred *p;
1179 vbq = &per_cpu(vmap_block_queue, i);
1180 spin_lock_init(&vbq->lock);
1181 INIT_LIST_HEAD(&vbq->free);
1182 p = &per_cpu(vfree_deferred, i);
1183 init_llist_head(&p->list);
1184 INIT_WORK(&p->wq, free_work);
1187 /* Import existing vmlist entries. */
1188 for (tmp = vmlist; tmp; tmp = tmp->next) {
1189 va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1190 va->flags = VM_VM_AREA;
1191 va->va_start = (unsigned long)tmp->addr;
1192 va->va_end = va->va_start + tmp->size;
1193 va->vm = tmp;
1194 __insert_vmap_area(va);
1197 vmap_area_pcpu_hole = VMALLOC_END;
1199 vmap_initialized = true;
1203 * map_kernel_range_noflush - map kernel VM area with the specified pages
1204 * @addr: start of the VM area to map
1205 * @size: size of the VM area to map
1206 * @prot: page protection flags to use
1207 * @pages: pages to map
1209 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1210 * specify should have been allocated using get_vm_area() and its
1211 * friends.
1213 * NOTE:
1214 * This function does NOT do any cache flushing. The caller is
1215 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1216 * before calling this function.
1218 * RETURNS:
1219 * The number of pages mapped on success, -errno on failure.
1221 int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1222 pgprot_t prot, struct page **pages)
1224 return vmap_page_range_noflush(addr, addr + size, prot, pages);
1228 * unmap_kernel_range_noflush - unmap kernel VM area
1229 * @addr: start of the VM area to unmap
1230 * @size: size of the VM area to unmap
1232 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1233 * specify should have been allocated using get_vm_area() and its
1234 * friends.
1236 * NOTE:
1237 * This function does NOT do any cache flushing. The caller is
1238 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1239 * before calling this function and flush_tlb_kernel_range() after.
1241 void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1243 vunmap_page_range(addr, addr + size);
1245 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1248 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1249 * @addr: start of the VM area to unmap
1250 * @size: size of the VM area to unmap
1252 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1253 * the unmapping and tlb after.
1255 void unmap_kernel_range(unsigned long addr, unsigned long size)
1257 unsigned long end = addr + size;
1259 flush_cache_vunmap(addr, end);
1260 vunmap_page_range(addr, end);
1261 flush_tlb_kernel_range(addr, end);
1264 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
1266 unsigned long addr = (unsigned long)area->addr;
1267 unsigned long end = addr + get_vm_area_size(area);
1268 int err;
1270 err = vmap_page_range(addr, end, prot, *pages);
1271 if (err > 0) {
1272 *pages += err;
1273 err = 0;
1276 return err;
1278 EXPORT_SYMBOL_GPL(map_vm_area);
1280 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1281 unsigned long flags, const void *caller)
1283 spin_lock(&vmap_area_lock);
1284 vm->flags = flags;
1285 vm->addr = (void *)va->va_start;
1286 vm->size = va->va_end - va->va_start;
1287 vm->caller = caller;
1288 va->vm = vm;
1289 va->flags |= VM_VM_AREA;
1290 spin_unlock(&vmap_area_lock);
1293 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
1296 * Before removing VM_UNINITIALIZED,
1297 * we should make sure that vm has proper values.
1298 * Pair with smp_rmb() in show_numa_info().
1300 smp_wmb();
1301 vm->flags &= ~VM_UNINITIALIZED;
1304 static struct vm_struct *__get_vm_area_node(unsigned long size,
1305 unsigned long align, unsigned long flags, unsigned long start,
1306 unsigned long end, int node, gfp_t gfp_mask, const void *caller)
1308 struct vmap_area *va;
1309 struct vm_struct *area;
1311 BUG_ON(in_interrupt());
1312 if (flags & VM_IOREMAP)
1313 align = 1ul << clamp(fls(size), PAGE_SHIFT, IOREMAP_MAX_ORDER);
1315 size = PAGE_ALIGN(size);
1316 if (unlikely(!size))
1317 return NULL;
1319 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1320 if (unlikely(!area))
1321 return NULL;
1324 * We always allocate a guard page.
1326 size += PAGE_SIZE;
1328 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1329 if (IS_ERR(va)) {
1330 kfree(area);
1331 return NULL;
1334 setup_vmalloc_vm(area, va, flags, caller);
1336 return area;
1339 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1340 unsigned long start, unsigned long end)
1342 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1343 GFP_KERNEL, __builtin_return_address(0));
1345 EXPORT_SYMBOL_GPL(__get_vm_area);
1347 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1348 unsigned long start, unsigned long end,
1349 const void *caller)
1351 return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1352 GFP_KERNEL, caller);
1356 * get_vm_area - reserve a contiguous kernel virtual area
1357 * @size: size of the area
1358 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1360 * Search an area of @size in the kernel virtual mapping area,
1361 * and reserved it for out purposes. Returns the area descriptor
1362 * on success or %NULL on failure.
1364 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1366 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1367 NUMA_NO_NODE, GFP_KERNEL,
1368 __builtin_return_address(0));
1371 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1372 const void *caller)
1374 return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1375 NUMA_NO_NODE, GFP_KERNEL, caller);
1379 * find_vm_area - find a continuous kernel virtual area
1380 * @addr: base address
1382 * Search for the kernel VM area starting at @addr, and return it.
1383 * It is up to the caller to do all required locking to keep the returned
1384 * pointer valid.
1386 struct vm_struct *find_vm_area(const void *addr)
1388 struct vmap_area *va;
1390 va = find_vmap_area((unsigned long)addr);
1391 if (va && va->flags & VM_VM_AREA)
1392 return va->vm;
1394 return NULL;
1398 * remove_vm_area - find and remove a continuous kernel virtual area
1399 * @addr: base address
1401 * Search for the kernel VM area starting at @addr, and remove it.
1402 * This function returns the found VM area, but using it is NOT safe
1403 * on SMP machines, except for its size or flags.
1405 struct vm_struct *remove_vm_area(const void *addr)
1407 struct vmap_area *va;
1409 va = find_vmap_area((unsigned long)addr);
1410 if (va && va->flags & VM_VM_AREA) {
1411 struct vm_struct *vm = va->vm;
1413 spin_lock(&vmap_area_lock);
1414 va->vm = NULL;
1415 va->flags &= ~VM_VM_AREA;
1416 spin_unlock(&vmap_area_lock);
1418 vmap_debug_free_range(va->va_start, va->va_end);
1419 free_unmap_vmap_area(va);
1420 vm->size -= PAGE_SIZE;
1422 return vm;
1424 return NULL;
1427 static void __vunmap(const void *addr, int deallocate_pages)
1429 struct vm_struct *area;
1431 if (!addr)
1432 return;
1434 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
1435 addr))
1436 return;
1438 area = remove_vm_area(addr);
1439 if (unlikely(!area)) {
1440 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1441 addr);
1442 return;
1445 debug_check_no_locks_freed(addr, area->size);
1446 debug_check_no_obj_freed(addr, area->size);
1448 if (deallocate_pages) {
1449 int i;
1451 for (i = 0; i < area->nr_pages; i++) {
1452 struct page *page = area->pages[i];
1454 BUG_ON(!page);
1455 __free_page(page);
1458 if (area->flags & VM_VPAGES)
1459 vfree(area->pages);
1460 else
1461 kfree(area->pages);
1464 kfree(area);
1465 return;
1469 * vfree - release memory allocated by vmalloc()
1470 * @addr: memory base address
1472 * Free the virtually continuous memory area starting at @addr, as
1473 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1474 * NULL, no operation is performed.
1476 * Must not be called in NMI context (strictly speaking, only if we don't
1477 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1478 * conventions for vfree() arch-depenedent would be a really bad idea)
1480 * NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
1482 void vfree(const void *addr)
1484 BUG_ON(in_nmi());
1486 kmemleak_free(addr);
1488 if (!addr)
1489 return;
1490 if (unlikely(in_interrupt())) {
1491 struct vfree_deferred *p = &__get_cpu_var(vfree_deferred);
1492 if (llist_add((struct llist_node *)addr, &p->list))
1493 schedule_work(&p->wq);
1494 } else
1495 __vunmap(addr, 1);
1497 EXPORT_SYMBOL(vfree);
1500 * vunmap - release virtual mapping obtained by vmap()
1501 * @addr: memory base address
1503 * Free the virtually contiguous memory area starting at @addr,
1504 * which was created from the page array passed to vmap().
1506 * Must not be called in interrupt context.
1508 void vunmap(const void *addr)
1510 BUG_ON(in_interrupt());
1511 might_sleep();
1512 if (addr)
1513 __vunmap(addr, 0);
1515 EXPORT_SYMBOL(vunmap);
1518 * vmap - map an array of pages into virtually contiguous space
1519 * @pages: array of page pointers
1520 * @count: number of pages to map
1521 * @flags: vm_area->flags
1522 * @prot: page protection for the mapping
1524 * Maps @count pages from @pages into contiguous kernel virtual
1525 * space.
1527 void *vmap(struct page **pages, unsigned int count,
1528 unsigned long flags, pgprot_t prot)
1530 struct vm_struct *area;
1532 might_sleep();
1534 if (count > totalram_pages)
1535 return NULL;
1537 area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1538 __builtin_return_address(0));
1539 if (!area)
1540 return NULL;
1542 if (map_vm_area(area, prot, &pages)) {
1543 vunmap(area->addr);
1544 return NULL;
1547 return area->addr;
1549 EXPORT_SYMBOL(vmap);
1551 static void *__vmalloc_node(unsigned long size, unsigned long align,
1552 gfp_t gfp_mask, pgprot_t prot,
1553 int node, const void *caller);
1554 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1555 pgprot_t prot, int node)
1557 const int order = 0;
1558 struct page **pages;
1559 unsigned int nr_pages, array_size, i;
1560 gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1562 nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1563 array_size = (nr_pages * sizeof(struct page *));
1565 area->nr_pages = nr_pages;
1566 /* Please note that the recursion is strictly bounded. */
1567 if (array_size > PAGE_SIZE) {
1568 pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM,
1569 PAGE_KERNEL, node, area->caller);
1570 area->flags |= VM_VPAGES;
1571 } else {
1572 pages = kmalloc_node(array_size, nested_gfp, node);
1574 area->pages = pages;
1575 if (!area->pages) {
1576 remove_vm_area(area->addr);
1577 kfree(area);
1578 return NULL;
1581 for (i = 0; i < area->nr_pages; i++) {
1582 struct page *page;
1583 gfp_t tmp_mask = gfp_mask | __GFP_NOWARN;
1585 if (node == NUMA_NO_NODE)
1586 page = alloc_page(tmp_mask);
1587 else
1588 page = alloc_pages_node(node, tmp_mask, order);
1590 if (unlikely(!page)) {
1591 /* Successfully allocated i pages, free them in __vunmap() */
1592 area->nr_pages = i;
1593 goto fail;
1595 area->pages[i] = page;
1598 if (map_vm_area(area, prot, &pages))
1599 goto fail;
1600 return area->addr;
1602 fail:
1603 warn_alloc_failed(gfp_mask, order,
1604 "vmalloc: allocation failure, allocated %ld of %ld bytes\n",
1605 (area->nr_pages*PAGE_SIZE), area->size);
1606 vfree(area->addr);
1607 return NULL;
1611 * __vmalloc_node_range - allocate virtually contiguous memory
1612 * @size: allocation size
1613 * @align: desired alignment
1614 * @start: vm area range start
1615 * @end: vm area range end
1616 * @gfp_mask: flags for the page level allocator
1617 * @prot: protection mask for the allocated pages
1618 * @node: node to use for allocation or NUMA_NO_NODE
1619 * @caller: caller's return address
1621 * Allocate enough pages to cover @size from the page level
1622 * allocator with @gfp_mask flags. Map them into contiguous
1623 * kernel virtual space, using a pagetable protection of @prot.
1625 void *__vmalloc_node_range(unsigned long size, unsigned long align,
1626 unsigned long start, unsigned long end, gfp_t gfp_mask,
1627 pgprot_t prot, int node, const void *caller)
1629 struct vm_struct *area;
1630 void *addr;
1631 unsigned long real_size = size;
1633 size = PAGE_ALIGN(size);
1634 if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1635 goto fail;
1637 area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED,
1638 start, end, node, gfp_mask, caller);
1639 if (!area)
1640 goto fail;
1642 addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1643 if (!addr)
1644 return NULL;
1647 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1648 * flag. It means that vm_struct is not fully initialized.
1649 * Now, it is fully initialized, so remove this flag here.
1651 clear_vm_uninitialized_flag(area);
1654 * A ref_count = 2 is needed because vm_struct allocated in
1655 * __get_vm_area_node() contains a reference to the virtual address of
1656 * the vmalloc'ed block.
1658 kmemleak_alloc(addr, real_size, 2, gfp_mask);
1660 return addr;
1662 fail:
1663 warn_alloc_failed(gfp_mask, 0,
1664 "vmalloc: allocation failure: %lu bytes\n",
1665 real_size);
1666 return NULL;
1670 * __vmalloc_node - allocate virtually contiguous memory
1671 * @size: allocation size
1672 * @align: desired alignment
1673 * @gfp_mask: flags for the page level allocator
1674 * @prot: protection mask for the allocated pages
1675 * @node: node to use for allocation or NUMA_NO_NODE
1676 * @caller: caller's return address
1678 * Allocate enough pages to cover @size from the page level
1679 * allocator with @gfp_mask flags. Map them into contiguous
1680 * kernel virtual space, using a pagetable protection of @prot.
1682 static void *__vmalloc_node(unsigned long size, unsigned long align,
1683 gfp_t gfp_mask, pgprot_t prot,
1684 int node, const void *caller)
1686 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1687 gfp_mask, prot, node, caller);
1690 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1692 return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
1693 __builtin_return_address(0));
1695 EXPORT_SYMBOL(__vmalloc);
1697 static inline void *__vmalloc_node_flags(unsigned long size,
1698 int node, gfp_t flags)
1700 return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1701 node, __builtin_return_address(0));
1705 * vmalloc - allocate virtually contiguous memory
1706 * @size: allocation size
1707 * Allocate enough pages to cover @size from the page level
1708 * allocator and map them into contiguous kernel virtual space.
1710 * For tight control over page level allocator and protection flags
1711 * use __vmalloc() instead.
1713 void *vmalloc(unsigned long size)
1715 return __vmalloc_node_flags(size, NUMA_NO_NODE,
1716 GFP_KERNEL | __GFP_HIGHMEM);
1718 EXPORT_SYMBOL(vmalloc);
1721 * vzalloc - allocate virtually contiguous memory with zero fill
1722 * @size: allocation size
1723 * Allocate enough pages to cover @size from the page level
1724 * allocator and map them into contiguous kernel virtual space.
1725 * The memory allocated is set to zero.
1727 * For tight control over page level allocator and protection flags
1728 * use __vmalloc() instead.
1730 void *vzalloc(unsigned long size)
1732 return __vmalloc_node_flags(size, NUMA_NO_NODE,
1733 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1735 EXPORT_SYMBOL(vzalloc);
1738 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1739 * @size: allocation size
1741 * The resulting memory area is zeroed so it can be mapped to userspace
1742 * without leaking data.
1744 void *vmalloc_user(unsigned long size)
1746 struct vm_struct *area;
1747 void *ret;
1749 ret = __vmalloc_node(size, SHMLBA,
1750 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
1751 PAGE_KERNEL, NUMA_NO_NODE,
1752 __builtin_return_address(0));
1753 if (ret) {
1754 area = find_vm_area(ret);
1755 area->flags |= VM_USERMAP;
1757 return ret;
1759 EXPORT_SYMBOL(vmalloc_user);
1762 * vmalloc_node - allocate memory on a specific node
1763 * @size: allocation size
1764 * @node: numa node
1766 * Allocate enough pages to cover @size from the page level
1767 * allocator and map them into contiguous kernel virtual space.
1769 * For tight control over page level allocator and protection flags
1770 * use __vmalloc() instead.
1772 void *vmalloc_node(unsigned long size, int node)
1774 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1775 node, __builtin_return_address(0));
1777 EXPORT_SYMBOL(vmalloc_node);
1780 * vzalloc_node - allocate memory on a specific node with zero fill
1781 * @size: allocation size
1782 * @node: numa node
1784 * Allocate enough pages to cover @size from the page level
1785 * allocator and map them into contiguous kernel virtual space.
1786 * The memory allocated is set to zero.
1788 * For tight control over page level allocator and protection flags
1789 * use __vmalloc_node() instead.
1791 void *vzalloc_node(unsigned long size, int node)
1793 return __vmalloc_node_flags(size, node,
1794 GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
1796 EXPORT_SYMBOL(vzalloc_node);
1798 #ifndef PAGE_KERNEL_EXEC
1799 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1800 #endif
1803 * vmalloc_exec - allocate virtually contiguous, executable memory
1804 * @size: allocation size
1806 * Kernel-internal function to allocate enough pages to cover @size
1807 * the page level allocator and map them into contiguous and
1808 * executable kernel virtual space.
1810 * For tight control over page level allocator and protection flags
1811 * use __vmalloc() instead.
1814 void *vmalloc_exec(unsigned long size)
1816 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
1817 NUMA_NO_NODE, __builtin_return_address(0));
1820 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1821 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1822 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1823 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1824 #else
1825 #define GFP_VMALLOC32 GFP_KERNEL
1826 #endif
1829 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1830 * @size: allocation size
1832 * Allocate enough 32bit PA addressable pages to cover @size from the
1833 * page level allocator and map them into contiguous kernel virtual space.
1835 void *vmalloc_32(unsigned long size)
1837 return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1838 NUMA_NO_NODE, __builtin_return_address(0));
1840 EXPORT_SYMBOL(vmalloc_32);
1843 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1844 * @size: allocation size
1846 * The resulting memory area is 32bit addressable and zeroed so it can be
1847 * mapped to userspace without leaking data.
1849 void *vmalloc_32_user(unsigned long size)
1851 struct vm_struct *area;
1852 void *ret;
1854 ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1855 NUMA_NO_NODE, __builtin_return_address(0));
1856 if (ret) {
1857 area = find_vm_area(ret);
1858 area->flags |= VM_USERMAP;
1860 return ret;
1862 EXPORT_SYMBOL(vmalloc_32_user);
1865 * small helper routine , copy contents to buf from addr.
1866 * If the page is not present, fill zero.
1869 static int aligned_vread(char *buf, char *addr, unsigned long count)
1871 struct page *p;
1872 int copied = 0;
1874 while (count) {
1875 unsigned long offset, length;
1877 offset = (unsigned long)addr & ~PAGE_MASK;
1878 length = PAGE_SIZE - offset;
1879 if (length > count)
1880 length = count;
1881 p = vmalloc_to_page(addr);
1883 * To do safe access to this _mapped_ area, we need
1884 * lock. But adding lock here means that we need to add
1885 * overhead of vmalloc()/vfree() calles for this _debug_
1886 * interface, rarely used. Instead of that, we'll use
1887 * kmap() and get small overhead in this access function.
1889 if (p) {
1891 * we can expect USER0 is not used (see vread/vwrite's
1892 * function description)
1894 void *map = kmap_atomic(p);
1895 memcpy(buf, map + offset, length);
1896 kunmap_atomic(map);
1897 } else
1898 memset(buf, 0, length);
1900 addr += length;
1901 buf += length;
1902 copied += length;
1903 count -= length;
1905 return copied;
1908 static int aligned_vwrite(char *buf, char *addr, unsigned long count)
1910 struct page *p;
1911 int copied = 0;
1913 while (count) {
1914 unsigned long offset, length;
1916 offset = (unsigned long)addr & ~PAGE_MASK;
1917 length = PAGE_SIZE - offset;
1918 if (length > count)
1919 length = count;
1920 p = vmalloc_to_page(addr);
1922 * To do safe access to this _mapped_ area, we need
1923 * lock. But adding lock here means that we need to add
1924 * overhead of vmalloc()/vfree() calles for this _debug_
1925 * interface, rarely used. Instead of that, we'll use
1926 * kmap() and get small overhead in this access function.
1928 if (p) {
1930 * we can expect USER0 is not used (see vread/vwrite's
1931 * function description)
1933 void *map = kmap_atomic(p);
1934 memcpy(map + offset, buf, length);
1935 kunmap_atomic(map);
1937 addr += length;
1938 buf += length;
1939 copied += length;
1940 count -= length;
1942 return copied;
1946 * vread() - read vmalloc area in a safe way.
1947 * @buf: buffer for reading data
1948 * @addr: vm address.
1949 * @count: number of bytes to be read.
1951 * Returns # of bytes which addr and buf should be increased.
1952 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
1953 * includes any intersect with alive vmalloc area.
1955 * This function checks that addr is a valid vmalloc'ed area, and
1956 * copy data from that area to a given buffer. If the given memory range
1957 * of [addr...addr+count) includes some valid address, data is copied to
1958 * proper area of @buf. If there are memory holes, they'll be zero-filled.
1959 * IOREMAP area is treated as memory hole and no copy is done.
1961 * If [addr...addr+count) doesn't includes any intersects with alive
1962 * vm_struct area, returns 0. @buf should be kernel's buffer.
1964 * Note: In usual ops, vread() is never necessary because the caller
1965 * should know vmalloc() area is valid and can use memcpy().
1966 * This is for routines which have to access vmalloc area without
1967 * any informaion, as /dev/kmem.
1971 long vread(char *buf, char *addr, unsigned long count)
1973 struct vmap_area *va;
1974 struct vm_struct *vm;
1975 char *vaddr, *buf_start = buf;
1976 unsigned long buflen = count;
1977 unsigned long n;
1979 /* Don't allow overflow */
1980 if ((unsigned long) addr + count < count)
1981 count = -(unsigned long) addr;
1983 spin_lock(&vmap_area_lock);
1984 list_for_each_entry(va, &vmap_area_list, list) {
1985 if (!count)
1986 break;
1988 if (!(va->flags & VM_VM_AREA))
1989 continue;
1991 vm = va->vm;
1992 vaddr = (char *) vm->addr;
1993 if (addr >= vaddr + get_vm_area_size(vm))
1994 continue;
1995 while (addr < vaddr) {
1996 if (count == 0)
1997 goto finished;
1998 *buf = '\0';
1999 buf++;
2000 addr++;
2001 count--;
2003 n = vaddr + get_vm_area_size(vm) - addr;
2004 if (n > count)
2005 n = count;
2006 if (!(vm->flags & VM_IOREMAP))
2007 aligned_vread(buf, addr, n);
2008 else /* IOREMAP area is treated as memory hole */
2009 memset(buf, 0, n);
2010 buf += n;
2011 addr += n;
2012 count -= n;
2014 finished:
2015 spin_unlock(&vmap_area_lock);
2017 if (buf == buf_start)
2018 return 0;
2019 /* zero-fill memory holes */
2020 if (buf != buf_start + buflen)
2021 memset(buf, 0, buflen - (buf - buf_start));
2023 return buflen;
2027 * vwrite() - write vmalloc area in a safe way.
2028 * @buf: buffer for source data
2029 * @addr: vm address.
2030 * @count: number of bytes to be read.
2032 * Returns # of bytes which addr and buf should be incresed.
2033 * (same number to @count).
2034 * If [addr...addr+count) doesn't includes any intersect with valid
2035 * vmalloc area, returns 0.
2037 * This function checks that addr is a valid vmalloc'ed area, and
2038 * copy data from a buffer to the given addr. If specified range of
2039 * [addr...addr+count) includes some valid address, data is copied from
2040 * proper area of @buf. If there are memory holes, no copy to hole.
2041 * IOREMAP area is treated as memory hole and no copy is done.
2043 * If [addr...addr+count) doesn't includes any intersects with alive
2044 * vm_struct area, returns 0. @buf should be kernel's buffer.
2046 * Note: In usual ops, vwrite() is never necessary because the caller
2047 * should know vmalloc() area is valid and can use memcpy().
2048 * This is for routines which have to access vmalloc area without
2049 * any informaion, as /dev/kmem.
2052 long vwrite(char *buf, char *addr, unsigned long count)
2054 struct vmap_area *va;
2055 struct vm_struct *vm;
2056 char *vaddr;
2057 unsigned long n, buflen;
2058 int copied = 0;
2060 /* Don't allow overflow */
2061 if ((unsigned long) addr + count < count)
2062 count = -(unsigned long) addr;
2063 buflen = count;
2065 spin_lock(&vmap_area_lock);
2066 list_for_each_entry(va, &vmap_area_list, list) {
2067 if (!count)
2068 break;
2070 if (!(va->flags & VM_VM_AREA))
2071 continue;
2073 vm = va->vm;
2074 vaddr = (char *) vm->addr;
2075 if (addr >= vaddr + get_vm_area_size(vm))
2076 continue;
2077 while (addr < vaddr) {
2078 if (count == 0)
2079 goto finished;
2080 buf++;
2081 addr++;
2082 count--;
2084 n = vaddr + get_vm_area_size(vm) - addr;
2085 if (n > count)
2086 n = count;
2087 if (!(vm->flags & VM_IOREMAP)) {
2088 aligned_vwrite(buf, addr, n);
2089 copied++;
2091 buf += n;
2092 addr += n;
2093 count -= n;
2095 finished:
2096 spin_unlock(&vmap_area_lock);
2097 if (!copied)
2098 return 0;
2099 return buflen;
2103 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2104 * @vma: vma to cover
2105 * @uaddr: target user address to start at
2106 * @kaddr: virtual address of vmalloc kernel memory
2107 * @size: size of map area
2109 * Returns: 0 for success, -Exxx on failure
2111 * This function checks that @kaddr is a valid vmalloc'ed area,
2112 * and that it is big enough to cover the range starting at
2113 * @uaddr in @vma. Will return failure if that criteria isn't
2114 * met.
2116 * Similar to remap_pfn_range() (see mm/memory.c)
2118 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2119 void *kaddr, unsigned long size)
2121 struct vm_struct *area;
2123 size = PAGE_ALIGN(size);
2125 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2126 return -EINVAL;
2128 area = find_vm_area(kaddr);
2129 if (!area)
2130 return -EINVAL;
2132 if (!(area->flags & VM_USERMAP))
2133 return -EINVAL;
2135 if (kaddr + size > area->addr + area->size)
2136 return -EINVAL;
2138 do {
2139 struct page *page = vmalloc_to_page(kaddr);
2140 int ret;
2142 ret = vm_insert_page(vma, uaddr, page);
2143 if (ret)
2144 return ret;
2146 uaddr += PAGE_SIZE;
2147 kaddr += PAGE_SIZE;
2148 size -= PAGE_SIZE;
2149 } while (size > 0);
2151 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2153 return 0;
2155 EXPORT_SYMBOL(remap_vmalloc_range_partial);
2158 * remap_vmalloc_range - map vmalloc pages to userspace
2159 * @vma: vma to cover (map full range of vma)
2160 * @addr: vmalloc memory
2161 * @pgoff: number of pages into addr before first page to map
2163 * Returns: 0 for success, -Exxx on failure
2165 * This function checks that addr is a valid vmalloc'ed area, and
2166 * that it is big enough to cover the vma. Will return failure if
2167 * that criteria isn't met.
2169 * Similar to remap_pfn_range() (see mm/memory.c)
2171 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2172 unsigned long pgoff)
2174 return remap_vmalloc_range_partial(vma, vma->vm_start,
2175 addr + (pgoff << PAGE_SHIFT),
2176 vma->vm_end - vma->vm_start);
2178 EXPORT_SYMBOL(remap_vmalloc_range);
2181 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2182 * have one.
2184 void __attribute__((weak)) vmalloc_sync_all(void)
2189 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2191 pte_t ***p = data;
2193 if (p) {
2194 *(*p) = pte;
2195 (*p)++;
2197 return 0;
2201 * alloc_vm_area - allocate a range of kernel address space
2202 * @size: size of the area
2203 * @ptes: returns the PTEs for the address space
2205 * Returns: NULL on failure, vm_struct on success
2207 * This function reserves a range of kernel address space, and
2208 * allocates pagetables to map that range. No actual mappings
2209 * are created.
2211 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2212 * allocated for the VM area are returned.
2214 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2216 struct vm_struct *area;
2218 area = get_vm_area_caller(size, VM_IOREMAP,
2219 __builtin_return_address(0));
2220 if (area == NULL)
2221 return NULL;
2224 * This ensures that page tables are constructed for this region
2225 * of kernel virtual address space and mapped into init_mm.
2227 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2228 size, f, ptes ? &ptes : NULL)) {
2229 free_vm_area(area);
2230 return NULL;
2233 return area;
2235 EXPORT_SYMBOL_GPL(alloc_vm_area);
2237 void free_vm_area(struct vm_struct *area)
2239 struct vm_struct *ret;
2240 ret = remove_vm_area(area->addr);
2241 BUG_ON(ret != area);
2242 kfree(area);
2244 EXPORT_SYMBOL_GPL(free_vm_area);
2246 #ifdef CONFIG_SMP
2247 static struct vmap_area *node_to_va(struct rb_node *n)
2249 return n ? rb_entry(n, struct vmap_area, rb_node) : NULL;
2253 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2254 * @end: target address
2255 * @pnext: out arg for the next vmap_area
2256 * @pprev: out arg for the previous vmap_area
2258 * Returns: %true if either or both of next and prev are found,
2259 * %false if no vmap_area exists
2261 * Find vmap_areas end addresses of which enclose @end. ie. if not
2262 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2264 static bool pvm_find_next_prev(unsigned long end,
2265 struct vmap_area **pnext,
2266 struct vmap_area **pprev)
2268 struct rb_node *n = vmap_area_root.rb_node;
2269 struct vmap_area *va = NULL;
2271 while (n) {
2272 va = rb_entry(n, struct vmap_area, rb_node);
2273 if (end < va->va_end)
2274 n = n->rb_left;
2275 else if (end > va->va_end)
2276 n = n->rb_right;
2277 else
2278 break;
2281 if (!va)
2282 return false;
2284 if (va->va_end > end) {
2285 *pnext = va;
2286 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2287 } else {
2288 *pprev = va;
2289 *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2291 return true;
2295 * pvm_determine_end - find the highest aligned address between two vmap_areas
2296 * @pnext: in/out arg for the next vmap_area
2297 * @pprev: in/out arg for the previous vmap_area
2298 * @align: alignment
2300 * Returns: determined end address
2302 * Find the highest aligned address between *@pnext and *@pprev below
2303 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2304 * down address is between the end addresses of the two vmap_areas.
2306 * Please note that the address returned by this function may fall
2307 * inside *@pnext vmap_area. The caller is responsible for checking
2308 * that.
2310 static unsigned long pvm_determine_end(struct vmap_area **pnext,
2311 struct vmap_area **pprev,
2312 unsigned long align)
2314 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2315 unsigned long addr;
2317 if (*pnext)
2318 addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2319 else
2320 addr = vmalloc_end;
2322 while (*pprev && (*pprev)->va_end > addr) {
2323 *pnext = *pprev;
2324 *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2327 return addr;
2331 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2332 * @offsets: array containing offset of each area
2333 * @sizes: array containing size of each area
2334 * @nr_vms: the number of areas to allocate
2335 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2337 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2338 * vm_structs on success, %NULL on failure
2340 * Percpu allocator wants to use congruent vm areas so that it can
2341 * maintain the offsets among percpu areas. This function allocates
2342 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
2343 * be scattered pretty far, distance between two areas easily going up
2344 * to gigabytes. To avoid interacting with regular vmallocs, these
2345 * areas are allocated from top.
2347 * Despite its complicated look, this allocator is rather simple. It
2348 * does everything top-down and scans areas from the end looking for
2349 * matching slot. While scanning, if any of the areas overlaps with
2350 * existing vmap_area, the base address is pulled down to fit the
2351 * area. Scanning is repeated till all the areas fit and then all
2352 * necessary data structres are inserted and the result is returned.
2354 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2355 const size_t *sizes, int nr_vms,
2356 size_t align)
2358 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2359 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2360 struct vmap_area **vas, *prev, *next;
2361 struct vm_struct **vms;
2362 int area, area2, last_area, term_area;
2363 unsigned long base, start, end, last_end;
2364 bool purged = false;
2366 /* verify parameters and allocate data structures */
2367 BUG_ON(align & ~PAGE_MASK || !is_power_of_2(align));
2368 for (last_area = 0, area = 0; area < nr_vms; area++) {
2369 start = offsets[area];
2370 end = start + sizes[area];
2372 /* is everything aligned properly? */
2373 BUG_ON(!IS_ALIGNED(offsets[area], align));
2374 BUG_ON(!IS_ALIGNED(sizes[area], align));
2376 /* detect the area with the highest address */
2377 if (start > offsets[last_area])
2378 last_area = area;
2380 for (area2 = 0; area2 < nr_vms; area2++) {
2381 unsigned long start2 = offsets[area2];
2382 unsigned long end2 = start2 + sizes[area2];
2384 if (area2 == area)
2385 continue;
2387 BUG_ON(start2 >= start && start2 < end);
2388 BUG_ON(end2 <= end && end2 > start);
2391 last_end = offsets[last_area] + sizes[last_area];
2393 if (vmalloc_end - vmalloc_start < last_end) {
2394 WARN_ON(true);
2395 return NULL;
2398 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2399 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
2400 if (!vas || !vms)
2401 goto err_free2;
2403 for (area = 0; area < nr_vms; area++) {
2404 vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2405 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2406 if (!vas[area] || !vms[area])
2407 goto err_free;
2409 retry:
2410 spin_lock(&vmap_area_lock);
2412 /* start scanning - we scan from the top, begin with the last area */
2413 area = term_area = last_area;
2414 start = offsets[area];
2415 end = start + sizes[area];
2417 if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2418 base = vmalloc_end - last_end;
2419 goto found;
2421 base = pvm_determine_end(&next, &prev, align) - end;
2423 while (true) {
2424 BUG_ON(next && next->va_end <= base + end);
2425 BUG_ON(prev && prev->va_end > base + end);
2428 * base might have underflowed, add last_end before
2429 * comparing.
2431 if (base + last_end < vmalloc_start + last_end) {
2432 spin_unlock(&vmap_area_lock);
2433 if (!purged) {
2434 purge_vmap_area_lazy();
2435 purged = true;
2436 goto retry;
2438 goto err_free;
2442 * If next overlaps, move base downwards so that it's
2443 * right below next and then recheck.
2445 if (next && next->va_start < base + end) {
2446 base = pvm_determine_end(&next, &prev, align) - end;
2447 term_area = area;
2448 continue;
2452 * If prev overlaps, shift down next and prev and move
2453 * base so that it's right below new next and then
2454 * recheck.
2456 if (prev && prev->va_end > base + start) {
2457 next = prev;
2458 prev = node_to_va(rb_prev(&next->rb_node));
2459 base = pvm_determine_end(&next, &prev, align) - end;
2460 term_area = area;
2461 continue;
2465 * This area fits, move on to the previous one. If
2466 * the previous one is the terminal one, we're done.
2468 area = (area + nr_vms - 1) % nr_vms;
2469 if (area == term_area)
2470 break;
2471 start = offsets[area];
2472 end = start + sizes[area];
2473 pvm_find_next_prev(base + end, &next, &prev);
2475 found:
2476 /* we've found a fitting base, insert all va's */
2477 for (area = 0; area < nr_vms; area++) {
2478 struct vmap_area *va = vas[area];
2480 va->va_start = base + offsets[area];
2481 va->va_end = va->va_start + sizes[area];
2482 __insert_vmap_area(va);
2485 vmap_area_pcpu_hole = base + offsets[last_area];
2487 spin_unlock(&vmap_area_lock);
2489 /* insert all vm's */
2490 for (area = 0; area < nr_vms; area++)
2491 setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2492 pcpu_get_vm_areas);
2494 kfree(vas);
2495 return vms;
2497 err_free:
2498 for (area = 0; area < nr_vms; area++) {
2499 kfree(vas[area]);
2500 kfree(vms[area]);
2502 err_free2:
2503 kfree(vas);
2504 kfree(vms);
2505 return NULL;
2509 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2510 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2511 * @nr_vms: the number of allocated areas
2513 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2515 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2517 int i;
2519 for (i = 0; i < nr_vms; i++)
2520 free_vm_area(vms[i]);
2521 kfree(vms);
2523 #endif /* CONFIG_SMP */
2525 #ifdef CONFIG_PROC_FS
2526 static void *s_start(struct seq_file *m, loff_t *pos)
2527 __acquires(&vmap_area_lock)
2529 loff_t n = *pos;
2530 struct vmap_area *va;
2532 spin_lock(&vmap_area_lock);
2533 va = list_entry((&vmap_area_list)->next, typeof(*va), list);
2534 while (n > 0 && &va->list != &vmap_area_list) {
2535 n--;
2536 va = list_entry(va->list.next, typeof(*va), list);
2538 if (!n && &va->list != &vmap_area_list)
2539 return va;
2541 return NULL;
2545 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2547 struct vmap_area *va = p, *next;
2549 ++*pos;
2550 next = list_entry(va->list.next, typeof(*va), list);
2551 if (&next->list != &vmap_area_list)
2552 return next;
2554 return NULL;
2557 static void s_stop(struct seq_file *m, void *p)
2558 __releases(&vmap_area_lock)
2560 spin_unlock(&vmap_area_lock);
2563 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2565 if (IS_ENABLED(CONFIG_NUMA)) {
2566 unsigned int nr, *counters = m->private;
2568 if (!counters)
2569 return;
2571 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2572 smp_rmb();
2573 if (v->flags & VM_UNINITIALIZED)
2574 return;
2576 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2578 for (nr = 0; nr < v->nr_pages; nr++)
2579 counters[page_to_nid(v->pages[nr])]++;
2581 for_each_node_state(nr, N_HIGH_MEMORY)
2582 if (counters[nr])
2583 seq_printf(m, " N%u=%u", nr, counters[nr]);
2587 static int s_show(struct seq_file *m, void *p)
2589 struct vmap_area *va = p;
2590 struct vm_struct *v;
2593 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2594 * behalf of vmap area is being tear down or vm_map_ram allocation.
2596 if (!(va->flags & VM_VM_AREA))
2597 return 0;
2599 v = va->vm;
2601 seq_printf(m, "0x%pK-0x%pK %7ld",
2602 v->addr, v->addr + v->size, v->size);
2604 if (v->caller)
2605 seq_printf(m, " %pS", v->caller);
2607 if (v->nr_pages)
2608 seq_printf(m, " pages=%d", v->nr_pages);
2610 if (v->phys_addr)
2611 seq_printf(m, " phys=%llx", (unsigned long long)v->phys_addr);
2613 if (v->flags & VM_IOREMAP)
2614 seq_printf(m, " ioremap");
2616 if (v->flags & VM_ALLOC)
2617 seq_printf(m, " vmalloc");
2619 if (v->flags & VM_MAP)
2620 seq_printf(m, " vmap");
2622 if (v->flags & VM_USERMAP)
2623 seq_printf(m, " user");
2625 if (v->flags & VM_VPAGES)
2626 seq_printf(m, " vpages");
2628 show_numa_info(m, v);
2629 seq_putc(m, '\n');
2630 return 0;
2633 static const struct seq_operations vmalloc_op = {
2634 .start = s_start,
2635 .next = s_next,
2636 .stop = s_stop,
2637 .show = s_show,
2640 static int vmalloc_open(struct inode *inode, struct file *file)
2642 unsigned int *ptr = NULL;
2643 int ret;
2645 if (IS_ENABLED(CONFIG_NUMA)) {
2646 ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
2647 if (ptr == NULL)
2648 return -ENOMEM;
2650 ret = seq_open(file, &vmalloc_op);
2651 if (!ret) {
2652 struct seq_file *m = file->private_data;
2653 m->private = ptr;
2654 } else
2655 kfree(ptr);
2656 return ret;
2659 static const struct file_operations proc_vmalloc_operations = {
2660 .open = vmalloc_open,
2661 .read = seq_read,
2662 .llseek = seq_lseek,
2663 .release = seq_release_private,
2666 static int __init proc_vmalloc_init(void)
2668 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
2669 return 0;
2671 module_init(proc_vmalloc_init);
2673 void get_vmalloc_info(struct vmalloc_info *vmi)
2675 struct vmap_area *va;
2676 unsigned long free_area_size;
2677 unsigned long prev_end;
2679 vmi->used = 0;
2680 vmi->largest_chunk = 0;
2682 prev_end = VMALLOC_START;
2684 spin_lock(&vmap_area_lock);
2686 if (list_empty(&vmap_area_list)) {
2687 vmi->largest_chunk = VMALLOC_TOTAL;
2688 goto out;
2691 list_for_each_entry(va, &vmap_area_list, list) {
2692 unsigned long addr = va->va_start;
2695 * Some archs keep another range for modules in vmalloc space
2697 if (addr < VMALLOC_START)
2698 continue;
2699 if (addr >= VMALLOC_END)
2700 break;
2702 if (va->flags & (VM_LAZY_FREE | VM_LAZY_FREEING))
2703 continue;
2705 vmi->used += (va->va_end - va->va_start);
2707 free_area_size = addr - prev_end;
2708 if (vmi->largest_chunk < free_area_size)
2709 vmi->largest_chunk = free_area_size;
2711 prev_end = va->va_end;
2714 if (VMALLOC_END - prev_end > vmi->largest_chunk)
2715 vmi->largest_chunk = VMALLOC_END - prev_end;
2717 out:
2718 spin_unlock(&vmap_area_lock);
2720 #endif