fs/reiserfs/journal.c: change return type of dirty_one_transaction
[linux/fpc-iii.git] / arch / arm64 / kernel / fpsimd.c
blobeec4776ae5f01a81ebe4c0f57f5626c8866e4d42
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * FP/SIMD context switching and fault handling
5 * Copyright (C) 2012 ARM Ltd.
6 * Author: Catalin Marinas <catalin.marinas@arm.com>
7 */
9 #include <linux/bitmap.h>
10 #include <linux/bitops.h>
11 #include <linux/bottom_half.h>
12 #include <linux/bug.h>
13 #include <linux/cache.h>
14 #include <linux/compat.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/kernel.h>
18 #include <linux/linkage.h>
19 #include <linux/irqflags.h>
20 #include <linux/init.h>
21 #include <linux/percpu.h>
22 #include <linux/prctl.h>
23 #include <linux/preempt.h>
24 #include <linux/ptrace.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/task_stack.h>
27 #include <linux/signal.h>
28 #include <linux/slab.h>
29 #include <linux/stddef.h>
30 #include <linux/sysctl.h>
31 #include <linux/swab.h>
33 #include <asm/esr.h>
34 #include <asm/fpsimd.h>
35 #include <asm/cpufeature.h>
36 #include <asm/cputype.h>
37 #include <asm/processor.h>
38 #include <asm/simd.h>
39 #include <asm/sigcontext.h>
40 #include <asm/sysreg.h>
41 #include <asm/traps.h>
42 #include <asm/virt.h>
44 #define FPEXC_IOF (1 << 0)
45 #define FPEXC_DZF (1 << 1)
46 #define FPEXC_OFF (1 << 2)
47 #define FPEXC_UFF (1 << 3)
48 #define FPEXC_IXF (1 << 4)
49 #define FPEXC_IDF (1 << 7)
52 * (Note: in this discussion, statements about FPSIMD apply equally to SVE.)
54 * In order to reduce the number of times the FPSIMD state is needlessly saved
55 * and restored, we need to keep track of two things:
56 * (a) for each task, we need to remember which CPU was the last one to have
57 * the task's FPSIMD state loaded into its FPSIMD registers;
58 * (b) for each CPU, we need to remember which task's userland FPSIMD state has
59 * been loaded into its FPSIMD registers most recently, or whether it has
60 * been used to perform kernel mode NEON in the meantime.
62 * For (a), we add a fpsimd_cpu field to thread_struct, which gets updated to
63 * the id of the current CPU every time the state is loaded onto a CPU. For (b),
64 * we add the per-cpu variable 'fpsimd_last_state' (below), which contains the
65 * address of the userland FPSIMD state of the task that was loaded onto the CPU
66 * the most recently, or NULL if kernel mode NEON has been performed after that.
68 * With this in place, we no longer have to restore the next FPSIMD state right
69 * when switching between tasks. Instead, we can defer this check to userland
70 * resume, at which time we verify whether the CPU's fpsimd_last_state and the
71 * task's fpsimd_cpu are still mutually in sync. If this is the case, we
72 * can omit the FPSIMD restore.
74 * As an optimization, we use the thread_info flag TIF_FOREIGN_FPSTATE to
75 * indicate whether or not the userland FPSIMD state of the current task is
76 * present in the registers. The flag is set unless the FPSIMD registers of this
77 * CPU currently contain the most recent userland FPSIMD state of the current
78 * task.
80 * In order to allow softirq handlers to use FPSIMD, kernel_neon_begin() may
81 * save the task's FPSIMD context back to task_struct from softirq context.
82 * To prevent this from racing with the manipulation of the task's FPSIMD state
83 * from task context and thereby corrupting the state, it is necessary to
84 * protect any manipulation of a task's fpsimd_state or TIF_FOREIGN_FPSTATE
85 * flag with {, __}get_cpu_fpsimd_context(). This will still allow softirqs to
86 * run but prevent them to use FPSIMD.
88 * For a certain task, the sequence may look something like this:
89 * - the task gets scheduled in; if both the task's fpsimd_cpu field
90 * contains the id of the current CPU, and the CPU's fpsimd_last_state per-cpu
91 * variable points to the task's fpsimd_state, the TIF_FOREIGN_FPSTATE flag is
92 * cleared, otherwise it is set;
94 * - the task returns to userland; if TIF_FOREIGN_FPSTATE is set, the task's
95 * userland FPSIMD state is copied from memory to the registers, the task's
96 * fpsimd_cpu field is set to the id of the current CPU, the current
97 * CPU's fpsimd_last_state pointer is set to this task's fpsimd_state and the
98 * TIF_FOREIGN_FPSTATE flag is cleared;
100 * - the task executes an ordinary syscall; upon return to userland, the
101 * TIF_FOREIGN_FPSTATE flag will still be cleared, so no FPSIMD state is
102 * restored;
104 * - the task executes a syscall which executes some NEON instructions; this is
105 * preceded by a call to kernel_neon_begin(), which copies the task's FPSIMD
106 * register contents to memory, clears the fpsimd_last_state per-cpu variable
107 * and sets the TIF_FOREIGN_FPSTATE flag;
109 * - the task gets preempted after kernel_neon_end() is called; as we have not
110 * returned from the 2nd syscall yet, TIF_FOREIGN_FPSTATE is still set so
111 * whatever is in the FPSIMD registers is not saved to memory, but discarded.
113 struct fpsimd_last_state_struct {
114 struct user_fpsimd_state *st;
115 void *sve_state;
116 unsigned int sve_vl;
119 static DEFINE_PER_CPU(struct fpsimd_last_state_struct, fpsimd_last_state);
121 /* Default VL for tasks that don't set it explicitly: */
122 static int sve_default_vl = -1;
124 #ifdef CONFIG_ARM64_SVE
126 /* Maximum supported vector length across all CPUs (initially poisoned) */
127 int __ro_after_init sve_max_vl = SVE_VL_MIN;
128 int __ro_after_init sve_max_virtualisable_vl = SVE_VL_MIN;
131 * Set of available vector lengths,
132 * where length vq encoded as bit __vq_to_bit(vq):
134 __ro_after_init DECLARE_BITMAP(sve_vq_map, SVE_VQ_MAX);
135 /* Set of vector lengths present on at least one cpu: */
136 static __ro_after_init DECLARE_BITMAP(sve_vq_partial_map, SVE_VQ_MAX);
138 static void __percpu *efi_sve_state;
140 #else /* ! CONFIG_ARM64_SVE */
142 /* Dummy declaration for code that will be optimised out: */
143 extern __ro_after_init DECLARE_BITMAP(sve_vq_map, SVE_VQ_MAX);
144 extern __ro_after_init DECLARE_BITMAP(sve_vq_partial_map, SVE_VQ_MAX);
145 extern void __percpu *efi_sve_state;
147 #endif /* ! CONFIG_ARM64_SVE */
149 DEFINE_PER_CPU(bool, fpsimd_context_busy);
150 EXPORT_PER_CPU_SYMBOL(fpsimd_context_busy);
152 static void __get_cpu_fpsimd_context(void)
154 bool busy = __this_cpu_xchg(fpsimd_context_busy, true);
156 WARN_ON(busy);
160 * Claim ownership of the CPU FPSIMD context for use by the calling context.
162 * The caller may freely manipulate the FPSIMD context metadata until
163 * put_cpu_fpsimd_context() is called.
165 * The double-underscore version must only be called if you know the task
166 * can't be preempted.
168 static void get_cpu_fpsimd_context(void)
170 preempt_disable();
171 __get_cpu_fpsimd_context();
174 static void __put_cpu_fpsimd_context(void)
176 bool busy = __this_cpu_xchg(fpsimd_context_busy, false);
178 WARN_ON(!busy); /* No matching get_cpu_fpsimd_context()? */
182 * Release the CPU FPSIMD context.
184 * Must be called from a context in which get_cpu_fpsimd_context() was
185 * previously called, with no call to put_cpu_fpsimd_context() in the
186 * meantime.
188 static void put_cpu_fpsimd_context(void)
190 __put_cpu_fpsimd_context();
191 preempt_enable();
194 static bool have_cpu_fpsimd_context(void)
196 return !preemptible() && __this_cpu_read(fpsimd_context_busy);
200 * Call __sve_free() directly only if you know task can't be scheduled
201 * or preempted.
203 static void __sve_free(struct task_struct *task)
205 kfree(task->thread.sve_state);
206 task->thread.sve_state = NULL;
209 static void sve_free(struct task_struct *task)
211 WARN_ON(test_tsk_thread_flag(task, TIF_SVE));
213 __sve_free(task);
217 * TIF_SVE controls whether a task can use SVE without trapping while
218 * in userspace, and also the way a task's FPSIMD/SVE state is stored
219 * in thread_struct.
221 * The kernel uses this flag to track whether a user task is actively
222 * using SVE, and therefore whether full SVE register state needs to
223 * be tracked. If not, the cheaper FPSIMD context handling code can
224 * be used instead of the more costly SVE equivalents.
226 * * TIF_SVE set:
228 * The task can execute SVE instructions while in userspace without
229 * trapping to the kernel.
231 * When stored, Z0-Z31 (incorporating Vn in bits[127:0] or the
232 * corresponding Zn), P0-P15 and FFR are encoded in in
233 * task->thread.sve_state, formatted appropriately for vector
234 * length task->thread.sve_vl.
236 * task->thread.sve_state must point to a valid buffer at least
237 * sve_state_size(task) bytes in size.
239 * During any syscall, the kernel may optionally clear TIF_SVE and
240 * discard the vector state except for the FPSIMD subset.
242 * * TIF_SVE clear:
244 * An attempt by the user task to execute an SVE instruction causes
245 * do_sve_acc() to be called, which does some preparation and then
246 * sets TIF_SVE.
248 * When stored, FPSIMD registers V0-V31 are encoded in
249 * task->thread.uw.fpsimd_state; bits [max : 128] for each of Z0-Z31 are
250 * logically zero but not stored anywhere; P0-P15 and FFR are not
251 * stored and have unspecified values from userspace's point of
252 * view. For hygiene purposes, the kernel zeroes them on next use,
253 * but userspace is discouraged from relying on this.
255 * task->thread.sve_state does not need to be non-NULL, valid or any
256 * particular size: it must not be dereferenced.
258 * * FPSR and FPCR are always stored in task->thread.uw.fpsimd_state
259 * irrespective of whether TIF_SVE is clear or set, since these are
260 * not vector length dependent.
264 * Update current's FPSIMD/SVE registers from thread_struct.
266 * This function should be called only when the FPSIMD/SVE state in
267 * thread_struct is known to be up to date, when preparing to enter
268 * userspace.
270 static void task_fpsimd_load(void)
272 WARN_ON(!have_cpu_fpsimd_context());
274 if (system_supports_sve() && test_thread_flag(TIF_SVE))
275 sve_load_state(sve_pffr(&current->thread),
276 &current->thread.uw.fpsimd_state.fpsr,
277 sve_vq_from_vl(current->thread.sve_vl) - 1);
278 else
279 fpsimd_load_state(&current->thread.uw.fpsimd_state);
283 * Ensure FPSIMD/SVE storage in memory for the loaded context is up to
284 * date with respect to the CPU registers.
286 static void fpsimd_save(void)
288 struct fpsimd_last_state_struct const *last =
289 this_cpu_ptr(&fpsimd_last_state);
290 /* set by fpsimd_bind_task_to_cpu() or fpsimd_bind_state_to_cpu() */
292 WARN_ON(!have_cpu_fpsimd_context());
294 if (!test_thread_flag(TIF_FOREIGN_FPSTATE)) {
295 if (system_supports_sve() && test_thread_flag(TIF_SVE)) {
296 if (WARN_ON(sve_get_vl() != last->sve_vl)) {
298 * Can't save the user regs, so current would
299 * re-enter user with corrupt state.
300 * There's no way to recover, so kill it:
302 force_signal_inject(SIGKILL, SI_KERNEL, 0);
303 return;
306 sve_save_state((char *)last->sve_state +
307 sve_ffr_offset(last->sve_vl),
308 &last->st->fpsr);
309 } else
310 fpsimd_save_state(last->st);
315 * All vector length selection from userspace comes through here.
316 * We're on a slow path, so some sanity-checks are included.
317 * If things go wrong there's a bug somewhere, but try to fall back to a
318 * safe choice.
320 static unsigned int find_supported_vector_length(unsigned int vl)
322 int bit;
323 int max_vl = sve_max_vl;
325 if (WARN_ON(!sve_vl_valid(vl)))
326 vl = SVE_VL_MIN;
328 if (WARN_ON(!sve_vl_valid(max_vl)))
329 max_vl = SVE_VL_MIN;
331 if (vl > max_vl)
332 vl = max_vl;
334 bit = find_next_bit(sve_vq_map, SVE_VQ_MAX,
335 __vq_to_bit(sve_vq_from_vl(vl)));
336 return sve_vl_from_vq(__bit_to_vq(bit));
339 #ifdef CONFIG_SYSCTL
341 static int sve_proc_do_default_vl(struct ctl_table *table, int write,
342 void __user *buffer, size_t *lenp,
343 loff_t *ppos)
345 int ret;
346 int vl = sve_default_vl;
347 struct ctl_table tmp_table = {
348 .data = &vl,
349 .maxlen = sizeof(vl),
352 ret = proc_dointvec(&tmp_table, write, buffer, lenp, ppos);
353 if (ret || !write)
354 return ret;
356 /* Writing -1 has the special meaning "set to max": */
357 if (vl == -1)
358 vl = sve_max_vl;
360 if (!sve_vl_valid(vl))
361 return -EINVAL;
363 sve_default_vl = find_supported_vector_length(vl);
364 return 0;
367 static struct ctl_table sve_default_vl_table[] = {
369 .procname = "sve_default_vector_length",
370 .mode = 0644,
371 .proc_handler = sve_proc_do_default_vl,
376 static int __init sve_sysctl_init(void)
378 if (system_supports_sve())
379 if (!register_sysctl("abi", sve_default_vl_table))
380 return -EINVAL;
382 return 0;
385 #else /* ! CONFIG_SYSCTL */
386 static int __init sve_sysctl_init(void) { return 0; }
387 #endif /* ! CONFIG_SYSCTL */
389 #define ZREG(sve_state, vq, n) ((char *)(sve_state) + \
390 (SVE_SIG_ZREG_OFFSET(vq, n) - SVE_SIG_REGS_OFFSET))
392 #ifdef CONFIG_CPU_BIG_ENDIAN
393 static __uint128_t arm64_cpu_to_le128(__uint128_t x)
395 u64 a = swab64(x);
396 u64 b = swab64(x >> 64);
398 return ((__uint128_t)a << 64) | b;
400 #else
401 static __uint128_t arm64_cpu_to_le128(__uint128_t x)
403 return x;
405 #endif
407 #define arm64_le128_to_cpu(x) arm64_cpu_to_le128(x)
410 * Transfer the FPSIMD state in task->thread.uw.fpsimd_state to
411 * task->thread.sve_state.
413 * Task can be a non-runnable task, or current. In the latter case,
414 * the caller must have ownership of the cpu FPSIMD context before calling
415 * this function.
416 * task->thread.sve_state must point to at least sve_state_size(task)
417 * bytes of allocated kernel memory.
418 * task->thread.uw.fpsimd_state must be up to date before calling this
419 * function.
421 static void fpsimd_to_sve(struct task_struct *task)
423 unsigned int vq;
424 void *sst = task->thread.sve_state;
425 struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
426 unsigned int i;
427 __uint128_t *p;
429 if (!system_supports_sve())
430 return;
432 vq = sve_vq_from_vl(task->thread.sve_vl);
433 for (i = 0; i < 32; ++i) {
434 p = (__uint128_t *)ZREG(sst, vq, i);
435 *p = arm64_cpu_to_le128(fst->vregs[i]);
440 * Transfer the SVE state in task->thread.sve_state to
441 * task->thread.uw.fpsimd_state.
443 * Task can be a non-runnable task, or current. In the latter case,
444 * the caller must have ownership of the cpu FPSIMD context before calling
445 * this function.
446 * task->thread.sve_state must point to at least sve_state_size(task)
447 * bytes of allocated kernel memory.
448 * task->thread.sve_state must be up to date before calling this function.
450 static void sve_to_fpsimd(struct task_struct *task)
452 unsigned int vq;
453 void const *sst = task->thread.sve_state;
454 struct user_fpsimd_state *fst = &task->thread.uw.fpsimd_state;
455 unsigned int i;
456 __uint128_t const *p;
458 if (!system_supports_sve())
459 return;
461 vq = sve_vq_from_vl(task->thread.sve_vl);
462 for (i = 0; i < 32; ++i) {
463 p = (__uint128_t const *)ZREG(sst, vq, i);
464 fst->vregs[i] = arm64_le128_to_cpu(*p);
468 #ifdef CONFIG_ARM64_SVE
471 * Return how many bytes of memory are required to store the full SVE
472 * state for task, given task's currently configured vector length.
474 size_t sve_state_size(struct task_struct const *task)
476 return SVE_SIG_REGS_SIZE(sve_vq_from_vl(task->thread.sve_vl));
480 * Ensure that task->thread.sve_state is allocated and sufficiently large.
482 * This function should be used only in preparation for replacing
483 * task->thread.sve_state with new data. The memory is always zeroed
484 * here to prevent stale data from showing through: this is done in
485 * the interest of testability and predictability: except in the
486 * do_sve_acc() case, there is no ABI requirement to hide stale data
487 * written previously be task.
489 void sve_alloc(struct task_struct *task)
491 if (task->thread.sve_state) {
492 memset(task->thread.sve_state, 0, sve_state_size(current));
493 return;
496 /* This is a small allocation (maximum ~8KB) and Should Not Fail. */
497 task->thread.sve_state =
498 kzalloc(sve_state_size(task), GFP_KERNEL);
501 * If future SVE revisions can have larger vectors though,
502 * this may cease to be true:
504 BUG_ON(!task->thread.sve_state);
509 * Ensure that task->thread.sve_state is up to date with respect to
510 * the user task, irrespective of when SVE is in use or not.
512 * This should only be called by ptrace. task must be non-runnable.
513 * task->thread.sve_state must point to at least sve_state_size(task)
514 * bytes of allocated kernel memory.
516 void fpsimd_sync_to_sve(struct task_struct *task)
518 if (!test_tsk_thread_flag(task, TIF_SVE))
519 fpsimd_to_sve(task);
523 * Ensure that task->thread.uw.fpsimd_state is up to date with respect to
524 * the user task, irrespective of whether SVE is in use or not.
526 * This should only be called by ptrace. task must be non-runnable.
527 * task->thread.sve_state must point to at least sve_state_size(task)
528 * bytes of allocated kernel memory.
530 void sve_sync_to_fpsimd(struct task_struct *task)
532 if (test_tsk_thread_flag(task, TIF_SVE))
533 sve_to_fpsimd(task);
537 * Ensure that task->thread.sve_state is up to date with respect to
538 * the task->thread.uw.fpsimd_state.
540 * This should only be called by ptrace to merge new FPSIMD register
541 * values into a task for which SVE is currently active.
542 * task must be non-runnable.
543 * task->thread.sve_state must point to at least sve_state_size(task)
544 * bytes of allocated kernel memory.
545 * task->thread.uw.fpsimd_state must already have been initialised with
546 * the new FPSIMD register values to be merged in.
548 void sve_sync_from_fpsimd_zeropad(struct task_struct *task)
550 unsigned int vq;
551 void *sst = task->thread.sve_state;
552 struct user_fpsimd_state const *fst = &task->thread.uw.fpsimd_state;
553 unsigned int i;
554 __uint128_t *p;
556 if (!test_tsk_thread_flag(task, TIF_SVE))
557 return;
559 vq = sve_vq_from_vl(task->thread.sve_vl);
561 memset(sst, 0, SVE_SIG_REGS_SIZE(vq));
563 for (i = 0; i < 32; ++i) {
564 p = (__uint128_t *)ZREG(sst, vq, i);
565 *p = arm64_cpu_to_le128(fst->vregs[i]);
569 int sve_set_vector_length(struct task_struct *task,
570 unsigned long vl, unsigned long flags)
572 if (flags & ~(unsigned long)(PR_SVE_VL_INHERIT |
573 PR_SVE_SET_VL_ONEXEC))
574 return -EINVAL;
576 if (!sve_vl_valid(vl))
577 return -EINVAL;
580 * Clamp to the maximum vector length that VL-agnostic SVE code can
581 * work with. A flag may be assigned in the future to allow setting
582 * of larger vector lengths without confusing older software.
584 if (vl > SVE_VL_ARCH_MAX)
585 vl = SVE_VL_ARCH_MAX;
587 vl = find_supported_vector_length(vl);
589 if (flags & (PR_SVE_VL_INHERIT |
590 PR_SVE_SET_VL_ONEXEC))
591 task->thread.sve_vl_onexec = vl;
592 else
593 /* Reset VL to system default on next exec: */
594 task->thread.sve_vl_onexec = 0;
596 /* Only actually set the VL if not deferred: */
597 if (flags & PR_SVE_SET_VL_ONEXEC)
598 goto out;
600 if (vl == task->thread.sve_vl)
601 goto out;
604 * To ensure the FPSIMD bits of the SVE vector registers are preserved,
605 * write any live register state back to task_struct, and convert to a
606 * non-SVE thread.
608 if (task == current) {
609 get_cpu_fpsimd_context();
611 fpsimd_save();
614 fpsimd_flush_task_state(task);
615 if (test_and_clear_tsk_thread_flag(task, TIF_SVE))
616 sve_to_fpsimd(task);
618 if (task == current)
619 put_cpu_fpsimd_context();
622 * Force reallocation of task SVE state to the correct size
623 * on next use:
625 sve_free(task);
627 task->thread.sve_vl = vl;
629 out:
630 update_tsk_thread_flag(task, TIF_SVE_VL_INHERIT,
631 flags & PR_SVE_VL_INHERIT);
633 return 0;
637 * Encode the current vector length and flags for return.
638 * This is only required for prctl(): ptrace has separate fields
640 * flags are as for sve_set_vector_length().
642 static int sve_prctl_status(unsigned long flags)
644 int ret;
646 if (flags & PR_SVE_SET_VL_ONEXEC)
647 ret = current->thread.sve_vl_onexec;
648 else
649 ret = current->thread.sve_vl;
651 if (test_thread_flag(TIF_SVE_VL_INHERIT))
652 ret |= PR_SVE_VL_INHERIT;
654 return ret;
657 /* PR_SVE_SET_VL */
658 int sve_set_current_vl(unsigned long arg)
660 unsigned long vl, flags;
661 int ret;
663 vl = arg & PR_SVE_VL_LEN_MASK;
664 flags = arg & ~vl;
666 if (!system_supports_sve())
667 return -EINVAL;
669 ret = sve_set_vector_length(current, vl, flags);
670 if (ret)
671 return ret;
673 return sve_prctl_status(flags);
676 /* PR_SVE_GET_VL */
677 int sve_get_current_vl(void)
679 if (!system_supports_sve())
680 return -EINVAL;
682 return sve_prctl_status(0);
685 static void sve_probe_vqs(DECLARE_BITMAP(map, SVE_VQ_MAX))
687 unsigned int vq, vl;
688 unsigned long zcr;
690 bitmap_zero(map, SVE_VQ_MAX);
692 zcr = ZCR_ELx_LEN_MASK;
693 zcr = read_sysreg_s(SYS_ZCR_EL1) & ~zcr;
695 for (vq = SVE_VQ_MAX; vq >= SVE_VQ_MIN; --vq) {
696 write_sysreg_s(zcr | (vq - 1), SYS_ZCR_EL1); /* self-syncing */
697 vl = sve_get_vl();
698 vq = sve_vq_from_vl(vl); /* skip intervening lengths */
699 set_bit(__vq_to_bit(vq), map);
704 * Initialise the set of known supported VQs for the boot CPU.
705 * This is called during kernel boot, before secondary CPUs are brought up.
707 void __init sve_init_vq_map(void)
709 sve_probe_vqs(sve_vq_map);
710 bitmap_copy(sve_vq_partial_map, sve_vq_map, SVE_VQ_MAX);
714 * If we haven't committed to the set of supported VQs yet, filter out
715 * those not supported by the current CPU.
716 * This function is called during the bring-up of early secondary CPUs only.
718 void sve_update_vq_map(void)
720 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
722 sve_probe_vqs(tmp_map);
723 bitmap_and(sve_vq_map, sve_vq_map, tmp_map, SVE_VQ_MAX);
724 bitmap_or(sve_vq_partial_map, sve_vq_partial_map, tmp_map, SVE_VQ_MAX);
728 * Check whether the current CPU supports all VQs in the committed set.
729 * This function is called during the bring-up of late secondary CPUs only.
731 int sve_verify_vq_map(void)
733 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
734 unsigned long b;
736 sve_probe_vqs(tmp_map);
738 bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
739 if (bitmap_intersects(tmp_map, sve_vq_map, SVE_VQ_MAX)) {
740 pr_warn("SVE: cpu%d: Required vector length(s) missing\n",
741 smp_processor_id());
742 return -EINVAL;
745 if (!IS_ENABLED(CONFIG_KVM) || !is_hyp_mode_available())
746 return 0;
749 * For KVM, it is necessary to ensure that this CPU doesn't
750 * support any vector length that guests may have probed as
751 * unsupported.
754 /* Recover the set of supported VQs: */
755 bitmap_complement(tmp_map, tmp_map, SVE_VQ_MAX);
756 /* Find VQs supported that are not globally supported: */
757 bitmap_andnot(tmp_map, tmp_map, sve_vq_map, SVE_VQ_MAX);
759 /* Find the lowest such VQ, if any: */
760 b = find_last_bit(tmp_map, SVE_VQ_MAX);
761 if (b >= SVE_VQ_MAX)
762 return 0; /* no mismatches */
765 * Mismatches above sve_max_virtualisable_vl are fine, since
766 * no guest is allowed to configure ZCR_EL2.LEN to exceed this:
768 if (sve_vl_from_vq(__bit_to_vq(b)) <= sve_max_virtualisable_vl) {
769 pr_warn("SVE: cpu%d: Unsupported vector length(s) present\n",
770 smp_processor_id());
771 return -EINVAL;
774 return 0;
777 static void __init sve_efi_setup(void)
779 if (!IS_ENABLED(CONFIG_EFI))
780 return;
783 * alloc_percpu() warns and prints a backtrace if this goes wrong.
784 * This is evidence of a crippled system and we are returning void,
785 * so no attempt is made to handle this situation here.
787 if (!sve_vl_valid(sve_max_vl))
788 goto fail;
790 efi_sve_state = __alloc_percpu(
791 SVE_SIG_REGS_SIZE(sve_vq_from_vl(sve_max_vl)), SVE_VQ_BYTES);
792 if (!efi_sve_state)
793 goto fail;
795 return;
797 fail:
798 panic("Cannot allocate percpu memory for EFI SVE save/restore");
802 * Enable SVE for EL1.
803 * Intended for use by the cpufeatures code during CPU boot.
805 void sve_kernel_enable(const struct arm64_cpu_capabilities *__always_unused p)
807 write_sysreg(read_sysreg(CPACR_EL1) | CPACR_EL1_ZEN_EL1EN, CPACR_EL1);
808 isb();
812 * Read the pseudo-ZCR used by cpufeatures to identify the supported SVE
813 * vector length.
815 * Use only if SVE is present.
816 * This function clobbers the SVE vector length.
818 u64 read_zcr_features(void)
820 u64 zcr;
821 unsigned int vq_max;
824 * Set the maximum possible VL, and write zeroes to all other
825 * bits to see if they stick.
827 sve_kernel_enable(NULL);
828 write_sysreg_s(ZCR_ELx_LEN_MASK, SYS_ZCR_EL1);
830 zcr = read_sysreg_s(SYS_ZCR_EL1);
831 zcr &= ~(u64)ZCR_ELx_LEN_MASK; /* find sticky 1s outside LEN field */
832 vq_max = sve_vq_from_vl(sve_get_vl());
833 zcr |= vq_max - 1; /* set LEN field to maximum effective value */
835 return zcr;
838 void __init sve_setup(void)
840 u64 zcr;
841 DECLARE_BITMAP(tmp_map, SVE_VQ_MAX);
842 unsigned long b;
844 if (!system_supports_sve())
845 return;
848 * The SVE architecture mandates support for 128-bit vectors,
849 * so sve_vq_map must have at least SVE_VQ_MIN set.
850 * If something went wrong, at least try to patch it up:
852 if (WARN_ON(!test_bit(__vq_to_bit(SVE_VQ_MIN), sve_vq_map)))
853 set_bit(__vq_to_bit(SVE_VQ_MIN), sve_vq_map);
855 zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
856 sve_max_vl = sve_vl_from_vq((zcr & ZCR_ELx_LEN_MASK) + 1);
859 * Sanity-check that the max VL we determined through CPU features
860 * corresponds properly to sve_vq_map. If not, do our best:
862 if (WARN_ON(sve_max_vl != find_supported_vector_length(sve_max_vl)))
863 sve_max_vl = find_supported_vector_length(sve_max_vl);
866 * For the default VL, pick the maximum supported value <= 64.
867 * VL == 64 is guaranteed not to grow the signal frame.
869 sve_default_vl = find_supported_vector_length(64);
871 bitmap_andnot(tmp_map, sve_vq_partial_map, sve_vq_map,
872 SVE_VQ_MAX);
874 b = find_last_bit(tmp_map, SVE_VQ_MAX);
875 if (b >= SVE_VQ_MAX)
876 /* No non-virtualisable VLs found */
877 sve_max_virtualisable_vl = SVE_VQ_MAX;
878 else if (WARN_ON(b == SVE_VQ_MAX - 1))
879 /* No virtualisable VLs? This is architecturally forbidden. */
880 sve_max_virtualisable_vl = SVE_VQ_MIN;
881 else /* b + 1 < SVE_VQ_MAX */
882 sve_max_virtualisable_vl = sve_vl_from_vq(__bit_to_vq(b + 1));
884 if (sve_max_virtualisable_vl > sve_max_vl)
885 sve_max_virtualisable_vl = sve_max_vl;
887 pr_info("SVE: maximum available vector length %u bytes per vector\n",
888 sve_max_vl);
889 pr_info("SVE: default vector length %u bytes per vector\n",
890 sve_default_vl);
892 /* KVM decides whether to support mismatched systems. Just warn here: */
893 if (sve_max_virtualisable_vl < sve_max_vl)
894 pr_warn("SVE: unvirtualisable vector lengths present\n");
896 sve_efi_setup();
900 * Called from the put_task_struct() path, which cannot get here
901 * unless dead_task is really dead and not schedulable.
903 void fpsimd_release_task(struct task_struct *dead_task)
905 __sve_free(dead_task);
908 #endif /* CONFIG_ARM64_SVE */
911 * Trapped SVE access
913 * Storage is allocated for the full SVE state, the current FPSIMD
914 * register contents are migrated across, and TIF_SVE is set so that
915 * the SVE access trap will be disabled the next time this task
916 * reaches ret_to_user.
918 * TIF_SVE should be clear on entry: otherwise, task_fpsimd_load()
919 * would have disabled the SVE access trap for userspace during
920 * ret_to_user, making an SVE access trap impossible in that case.
922 asmlinkage void do_sve_acc(unsigned int esr, struct pt_regs *regs)
924 /* Even if we chose not to use SVE, the hardware could still trap: */
925 if (unlikely(!system_supports_sve()) || WARN_ON(is_compat_task())) {
926 force_signal_inject(SIGILL, ILL_ILLOPC, regs->pc);
927 return;
930 sve_alloc(current);
932 get_cpu_fpsimd_context();
934 fpsimd_save();
936 /* Force ret_to_user to reload the registers: */
937 fpsimd_flush_task_state(current);
939 fpsimd_to_sve(current);
940 if (test_and_set_thread_flag(TIF_SVE))
941 WARN_ON(1); /* SVE access shouldn't have trapped */
943 put_cpu_fpsimd_context();
947 * Trapped FP/ASIMD access.
949 asmlinkage void do_fpsimd_acc(unsigned int esr, struct pt_regs *regs)
951 /* TODO: implement lazy context saving/restoring */
952 WARN_ON(1);
956 * Raise a SIGFPE for the current process.
958 asmlinkage void do_fpsimd_exc(unsigned int esr, struct pt_regs *regs)
960 unsigned int si_code = FPE_FLTUNK;
962 if (esr & ESR_ELx_FP_EXC_TFV) {
963 if (esr & FPEXC_IOF)
964 si_code = FPE_FLTINV;
965 else if (esr & FPEXC_DZF)
966 si_code = FPE_FLTDIV;
967 else if (esr & FPEXC_OFF)
968 si_code = FPE_FLTOVF;
969 else if (esr & FPEXC_UFF)
970 si_code = FPE_FLTUND;
971 else if (esr & FPEXC_IXF)
972 si_code = FPE_FLTRES;
975 send_sig_fault(SIGFPE, si_code,
976 (void __user *)instruction_pointer(regs),
977 current);
980 void fpsimd_thread_switch(struct task_struct *next)
982 bool wrong_task, wrong_cpu;
984 if (!system_supports_fpsimd())
985 return;
987 __get_cpu_fpsimd_context();
989 /* Save unsaved fpsimd state, if any: */
990 fpsimd_save();
993 * Fix up TIF_FOREIGN_FPSTATE to correctly describe next's
994 * state. For kernel threads, FPSIMD registers are never loaded
995 * and wrong_task and wrong_cpu will always be true.
997 wrong_task = __this_cpu_read(fpsimd_last_state.st) !=
998 &next->thread.uw.fpsimd_state;
999 wrong_cpu = next->thread.fpsimd_cpu != smp_processor_id();
1001 update_tsk_thread_flag(next, TIF_FOREIGN_FPSTATE,
1002 wrong_task || wrong_cpu);
1004 __put_cpu_fpsimd_context();
1007 void fpsimd_flush_thread(void)
1009 int vl, supported_vl;
1011 if (!system_supports_fpsimd())
1012 return;
1014 get_cpu_fpsimd_context();
1016 fpsimd_flush_task_state(current);
1017 memset(&current->thread.uw.fpsimd_state, 0,
1018 sizeof(current->thread.uw.fpsimd_state));
1020 if (system_supports_sve()) {
1021 clear_thread_flag(TIF_SVE);
1022 sve_free(current);
1025 * Reset the task vector length as required.
1026 * This is where we ensure that all user tasks have a valid
1027 * vector length configured: no kernel task can become a user
1028 * task without an exec and hence a call to this function.
1029 * By the time the first call to this function is made, all
1030 * early hardware probing is complete, so sve_default_vl
1031 * should be valid.
1032 * If a bug causes this to go wrong, we make some noise and
1033 * try to fudge thread.sve_vl to a safe value here.
1035 vl = current->thread.sve_vl_onexec ?
1036 current->thread.sve_vl_onexec : sve_default_vl;
1038 if (WARN_ON(!sve_vl_valid(vl)))
1039 vl = SVE_VL_MIN;
1041 supported_vl = find_supported_vector_length(vl);
1042 if (WARN_ON(supported_vl != vl))
1043 vl = supported_vl;
1045 current->thread.sve_vl = vl;
1048 * If the task is not set to inherit, ensure that the vector
1049 * length will be reset by a subsequent exec:
1051 if (!test_thread_flag(TIF_SVE_VL_INHERIT))
1052 current->thread.sve_vl_onexec = 0;
1055 put_cpu_fpsimd_context();
1059 * Save the userland FPSIMD state of 'current' to memory, but only if the state
1060 * currently held in the registers does in fact belong to 'current'
1062 void fpsimd_preserve_current_state(void)
1064 if (!system_supports_fpsimd())
1065 return;
1067 get_cpu_fpsimd_context();
1068 fpsimd_save();
1069 put_cpu_fpsimd_context();
1073 * Like fpsimd_preserve_current_state(), but ensure that
1074 * current->thread.uw.fpsimd_state is updated so that it can be copied to
1075 * the signal frame.
1077 void fpsimd_signal_preserve_current_state(void)
1079 fpsimd_preserve_current_state();
1080 if (system_supports_sve() && test_thread_flag(TIF_SVE))
1081 sve_to_fpsimd(current);
1085 * Associate current's FPSIMD context with this cpu
1086 * The caller must have ownership of the cpu FPSIMD context before calling
1087 * this function.
1089 void fpsimd_bind_task_to_cpu(void)
1091 struct fpsimd_last_state_struct *last =
1092 this_cpu_ptr(&fpsimd_last_state);
1094 last->st = &current->thread.uw.fpsimd_state;
1095 last->sve_state = current->thread.sve_state;
1096 last->sve_vl = current->thread.sve_vl;
1097 current->thread.fpsimd_cpu = smp_processor_id();
1099 if (system_supports_sve()) {
1100 /* Toggle SVE trapping for userspace if needed */
1101 if (test_thread_flag(TIF_SVE))
1102 sve_user_enable();
1103 else
1104 sve_user_disable();
1106 /* Serialised by exception return to user */
1110 void fpsimd_bind_state_to_cpu(struct user_fpsimd_state *st, void *sve_state,
1111 unsigned int sve_vl)
1113 struct fpsimd_last_state_struct *last =
1114 this_cpu_ptr(&fpsimd_last_state);
1116 WARN_ON(!in_softirq() && !irqs_disabled());
1118 last->st = st;
1119 last->sve_state = sve_state;
1120 last->sve_vl = sve_vl;
1124 * Load the userland FPSIMD state of 'current' from memory, but only if the
1125 * FPSIMD state already held in the registers is /not/ the most recent FPSIMD
1126 * state of 'current'
1128 void fpsimd_restore_current_state(void)
1130 if (!system_supports_fpsimd())
1131 return;
1133 get_cpu_fpsimd_context();
1135 if (test_and_clear_thread_flag(TIF_FOREIGN_FPSTATE)) {
1136 task_fpsimd_load();
1137 fpsimd_bind_task_to_cpu();
1140 put_cpu_fpsimd_context();
1144 * Load an updated userland FPSIMD state for 'current' from memory and set the
1145 * flag that indicates that the FPSIMD register contents are the most recent
1146 * FPSIMD state of 'current'
1148 void fpsimd_update_current_state(struct user_fpsimd_state const *state)
1150 if (!system_supports_fpsimd())
1151 return;
1153 get_cpu_fpsimd_context();
1155 current->thread.uw.fpsimd_state = *state;
1156 if (system_supports_sve() && test_thread_flag(TIF_SVE))
1157 fpsimd_to_sve(current);
1159 task_fpsimd_load();
1160 fpsimd_bind_task_to_cpu();
1162 clear_thread_flag(TIF_FOREIGN_FPSTATE);
1164 put_cpu_fpsimd_context();
1168 * Invalidate live CPU copies of task t's FPSIMD state
1170 * This function may be called with preemption enabled. The barrier()
1171 * ensures that the assignment to fpsimd_cpu is visible to any
1172 * preemption/softirq that could race with set_tsk_thread_flag(), so
1173 * that TIF_FOREIGN_FPSTATE cannot be spuriously re-cleared.
1175 * The final barrier ensures that TIF_FOREIGN_FPSTATE is seen set by any
1176 * subsequent code.
1178 void fpsimd_flush_task_state(struct task_struct *t)
1180 t->thread.fpsimd_cpu = NR_CPUS;
1182 barrier();
1183 set_tsk_thread_flag(t, TIF_FOREIGN_FPSTATE);
1185 barrier();
1189 * Invalidate any task's FPSIMD state that is present on this cpu.
1190 * The FPSIMD context should be acquired with get_cpu_fpsimd_context()
1191 * before calling this function.
1193 static void fpsimd_flush_cpu_state(void)
1195 __this_cpu_write(fpsimd_last_state.st, NULL);
1196 set_thread_flag(TIF_FOREIGN_FPSTATE);
1200 * Save the FPSIMD state to memory and invalidate cpu view.
1201 * This function must be called with preemption disabled.
1203 void fpsimd_save_and_flush_cpu_state(void)
1205 WARN_ON(preemptible());
1206 __get_cpu_fpsimd_context();
1207 fpsimd_save();
1208 fpsimd_flush_cpu_state();
1209 __put_cpu_fpsimd_context();
1212 #ifdef CONFIG_KERNEL_MODE_NEON
1215 * Kernel-side NEON support functions
1219 * kernel_neon_begin(): obtain the CPU FPSIMD registers for use by the calling
1220 * context
1222 * Must not be called unless may_use_simd() returns true.
1223 * Task context in the FPSIMD registers is saved back to memory as necessary.
1225 * A matching call to kernel_neon_end() must be made before returning from the
1226 * calling context.
1228 * The caller may freely use the FPSIMD registers until kernel_neon_end() is
1229 * called.
1231 void kernel_neon_begin(void)
1233 if (WARN_ON(!system_supports_fpsimd()))
1234 return;
1236 BUG_ON(!may_use_simd());
1238 get_cpu_fpsimd_context();
1240 /* Save unsaved fpsimd state, if any: */
1241 fpsimd_save();
1243 /* Invalidate any task state remaining in the fpsimd regs: */
1244 fpsimd_flush_cpu_state();
1246 EXPORT_SYMBOL(kernel_neon_begin);
1249 * kernel_neon_end(): give the CPU FPSIMD registers back to the current task
1251 * Must be called from a context in which kernel_neon_begin() was previously
1252 * called, with no call to kernel_neon_end() in the meantime.
1254 * The caller must not use the FPSIMD registers after this function is called,
1255 * unless kernel_neon_begin() is called again in the meantime.
1257 void kernel_neon_end(void)
1259 if (!system_supports_fpsimd())
1260 return;
1262 put_cpu_fpsimd_context();
1264 EXPORT_SYMBOL(kernel_neon_end);
1266 #ifdef CONFIG_EFI
1268 static DEFINE_PER_CPU(struct user_fpsimd_state, efi_fpsimd_state);
1269 static DEFINE_PER_CPU(bool, efi_fpsimd_state_used);
1270 static DEFINE_PER_CPU(bool, efi_sve_state_used);
1273 * EFI runtime services support functions
1275 * The ABI for EFI runtime services allows EFI to use FPSIMD during the call.
1276 * This means that for EFI (and only for EFI), we have to assume that FPSIMD
1277 * is always used rather than being an optional accelerator.
1279 * These functions provide the necessary support for ensuring FPSIMD
1280 * save/restore in the contexts from which EFI is used.
1282 * Do not use them for any other purpose -- if tempted to do so, you are
1283 * either doing something wrong or you need to propose some refactoring.
1287 * __efi_fpsimd_begin(): prepare FPSIMD for making an EFI runtime services call
1289 void __efi_fpsimd_begin(void)
1291 if (!system_supports_fpsimd())
1292 return;
1294 WARN_ON(preemptible());
1296 if (may_use_simd()) {
1297 kernel_neon_begin();
1298 } else {
1300 * If !efi_sve_state, SVE can't be in use yet and doesn't need
1301 * preserving:
1303 if (system_supports_sve() && likely(efi_sve_state)) {
1304 char *sve_state = this_cpu_ptr(efi_sve_state);
1306 __this_cpu_write(efi_sve_state_used, true);
1308 sve_save_state(sve_state + sve_ffr_offset(sve_max_vl),
1309 &this_cpu_ptr(&efi_fpsimd_state)->fpsr);
1310 } else {
1311 fpsimd_save_state(this_cpu_ptr(&efi_fpsimd_state));
1314 __this_cpu_write(efi_fpsimd_state_used, true);
1319 * __efi_fpsimd_end(): clean up FPSIMD after an EFI runtime services call
1321 void __efi_fpsimd_end(void)
1323 if (!system_supports_fpsimd())
1324 return;
1326 if (!__this_cpu_xchg(efi_fpsimd_state_used, false)) {
1327 kernel_neon_end();
1328 } else {
1329 if (system_supports_sve() &&
1330 likely(__this_cpu_read(efi_sve_state_used))) {
1331 char const *sve_state = this_cpu_ptr(efi_sve_state);
1333 sve_load_state(sve_state + sve_ffr_offset(sve_max_vl),
1334 &this_cpu_ptr(&efi_fpsimd_state)->fpsr,
1335 sve_vq_from_vl(sve_get_vl()) - 1);
1337 __this_cpu_write(efi_sve_state_used, false);
1338 } else {
1339 fpsimd_load_state(this_cpu_ptr(&efi_fpsimd_state));
1344 #endif /* CONFIG_EFI */
1346 #endif /* CONFIG_KERNEL_MODE_NEON */
1348 #ifdef CONFIG_CPU_PM
1349 static int fpsimd_cpu_pm_notifier(struct notifier_block *self,
1350 unsigned long cmd, void *v)
1352 switch (cmd) {
1353 case CPU_PM_ENTER:
1354 fpsimd_save_and_flush_cpu_state();
1355 break;
1356 case CPU_PM_EXIT:
1357 break;
1358 case CPU_PM_ENTER_FAILED:
1359 default:
1360 return NOTIFY_DONE;
1362 return NOTIFY_OK;
1365 static struct notifier_block fpsimd_cpu_pm_notifier_block = {
1366 .notifier_call = fpsimd_cpu_pm_notifier,
1369 static void __init fpsimd_pm_init(void)
1371 cpu_pm_register_notifier(&fpsimd_cpu_pm_notifier_block);
1374 #else
1375 static inline void fpsimd_pm_init(void) { }
1376 #endif /* CONFIG_CPU_PM */
1378 #ifdef CONFIG_HOTPLUG_CPU
1379 static int fpsimd_cpu_dead(unsigned int cpu)
1381 per_cpu(fpsimd_last_state.st, cpu) = NULL;
1382 return 0;
1385 static inline void fpsimd_hotplug_init(void)
1387 cpuhp_setup_state_nocalls(CPUHP_ARM64_FPSIMD_DEAD, "arm64/fpsimd:dead",
1388 NULL, fpsimd_cpu_dead);
1391 #else
1392 static inline void fpsimd_hotplug_init(void) { }
1393 #endif
1396 * FP/SIMD support code initialisation.
1398 static int __init fpsimd_init(void)
1400 if (cpu_have_named_feature(FP)) {
1401 fpsimd_pm_init();
1402 fpsimd_hotplug_init();
1403 } else {
1404 pr_notice("Floating-point is not implemented\n");
1407 if (!cpu_have_named_feature(ASIMD))
1408 pr_notice("Advanced SIMD is not implemented\n");
1410 return sve_sysctl_init();
1412 core_initcall(fpsimd_init);