fs/reiserfs/journal.c: change return type of dirty_one_transaction
[linux/fpc-iii.git] / arch / nds32 / mm / fault.c
blob064ae5d2159d076658e960a83df4574e2778ed48
1 // SPDX-License-Identifier: GPL-2.0
2 // Copyright (C) 2005-2017 Andes Technology Corporation
4 #include <linux/extable.h>
5 #include <linux/module.h>
6 #include <linux/signal.h>
7 #include <linux/ptrace.h>
8 #include <linux/mm.h>
9 #include <linux/init.h>
10 #include <linux/hardirq.h>
11 #include <linux/uaccess.h>
12 #include <linux/perf_event.h>
14 #include <asm/pgtable.h>
15 #include <asm/tlbflush.h>
17 extern void die(const char *str, struct pt_regs *regs, long err);
20 * This is useful to dump out the page tables associated with
21 * 'addr' in mm 'mm'.
23 void show_pte(struct mm_struct *mm, unsigned long addr)
25 pgd_t *pgd;
26 if (!mm)
27 mm = &init_mm;
29 pr_alert("pgd = %p\n", mm->pgd);
30 pgd = pgd_offset(mm, addr);
31 pr_alert("[%08lx] *pgd=%08lx", addr, pgd_val(*pgd));
33 do {
34 pmd_t *pmd;
36 if (pgd_none(*pgd))
37 break;
39 if (pgd_bad(*pgd)) {
40 pr_alert("(bad)");
41 break;
44 pmd = pmd_offset(pgd, addr);
45 #if PTRS_PER_PMD != 1
46 pr_alert(", *pmd=%08lx", pmd_val(*pmd));
47 #endif
49 if (pmd_none(*pmd))
50 break;
52 if (pmd_bad(*pmd)) {
53 pr_alert("(bad)");
54 break;
57 if (IS_ENABLED(CONFIG_HIGHMEM))
59 pte_t *pte;
60 /* We must not map this if we have highmem enabled */
61 pte = pte_offset_map(pmd, addr);
62 pr_alert(", *pte=%08lx", pte_val(*pte));
63 pte_unmap(pte);
65 } while (0);
67 pr_alert("\n");
70 void do_page_fault(unsigned long entry, unsigned long addr,
71 unsigned int error_code, struct pt_regs *regs)
73 struct task_struct *tsk;
74 struct mm_struct *mm;
75 struct vm_area_struct *vma;
76 int si_code;
77 vm_fault_t fault;
78 unsigned int mask = VM_READ | VM_WRITE | VM_EXEC;
79 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
81 error_code = error_code & (ITYPE_mskINST | ITYPE_mskETYPE);
82 tsk = current;
83 mm = tsk->mm;
84 si_code = SEGV_MAPERR;
86 * We fault-in kernel-space virtual memory on-demand. The
87 * 'reference' page table is init_mm.pgd.
89 * NOTE! We MUST NOT take any locks for this case. We may
90 * be in an interrupt or a critical region, and should
91 * only copy the information from the master page table,
92 * nothing more.
94 if (addr >= TASK_SIZE) {
95 if (user_mode(regs))
96 goto bad_area_nosemaphore;
98 if (addr >= TASK_SIZE && addr < VMALLOC_END
99 && (entry == ENTRY_PTE_NOT_PRESENT))
100 goto vmalloc_fault;
101 else
102 goto no_context;
105 /* Send a signal to the task for handling the unalignment access. */
106 if (entry == ENTRY_GENERAL_EXCPETION
107 && error_code == ETYPE_ALIGNMENT_CHECK) {
108 if (user_mode(regs))
109 goto bad_area_nosemaphore;
110 else
111 goto no_context;
115 * If we're in an interrupt or have no user
116 * context, we must not take the fault..
118 if (unlikely(faulthandler_disabled() || !mm))
119 goto no_context;
122 * As per x86, we may deadlock here. However, since the kernel only
123 * validly references user space from well defined areas of the code,
124 * we can bug out early if this is from code which shouldn't.
126 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
127 if (!user_mode(regs) &&
128 !search_exception_tables(instruction_pointer(regs)))
129 goto no_context;
130 retry:
131 down_read(&mm->mmap_sem);
132 } else {
134 * The above down_read_trylock() might have succeeded in which
135 * case, we'll have missed the might_sleep() from down_read().
137 might_sleep();
138 if (IS_ENABLED(CONFIG_DEBUG_VM)) {
139 if (!user_mode(regs) &&
140 !search_exception_tables(instruction_pointer(regs)))
141 goto no_context;
145 vma = find_vma(mm, addr);
147 if (unlikely(!vma))
148 goto bad_area;
150 if (vma->vm_start <= addr)
151 goto good_area;
153 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
154 goto bad_area;
156 if (unlikely(expand_stack(vma, addr)))
157 goto bad_area;
160 * Ok, we have a good vm_area for this memory access, so
161 * we can handle it..
164 good_area:
165 si_code = SEGV_ACCERR;
167 /* first do some preliminary protection checks */
168 if (entry == ENTRY_PTE_NOT_PRESENT) {
169 if (error_code & ITYPE_mskINST)
170 mask = VM_EXEC;
171 else {
172 mask = VM_READ | VM_WRITE;
174 } else if (entry == ENTRY_TLB_MISC) {
175 switch (error_code & ITYPE_mskETYPE) {
176 case RD_PROT:
177 mask = VM_READ;
178 break;
179 case WRT_PROT:
180 mask = VM_WRITE;
181 flags |= FAULT_FLAG_WRITE;
182 break;
183 case NOEXEC:
184 mask = VM_EXEC;
185 break;
186 case PAGE_MODIFY:
187 mask = VM_WRITE;
188 flags |= FAULT_FLAG_WRITE;
189 break;
190 case ACC_BIT:
191 BUG();
192 default:
193 break;
197 if (!(vma->vm_flags & mask))
198 goto bad_area;
201 * If for any reason at all we couldn't handle the fault,
202 * make sure we exit gracefully rather than endlessly redo
203 * the fault.
206 fault = handle_mm_fault(vma, addr, flags);
209 * If we need to retry but a fatal signal is pending, handle the
210 * signal first. We do not need to release the mmap_sem because it
211 * would already be released in __lock_page_or_retry in mm/filemap.c.
213 if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)) {
214 if (!user_mode(regs))
215 goto no_context;
216 return;
219 if (unlikely(fault & VM_FAULT_ERROR)) {
220 if (fault & VM_FAULT_OOM)
221 goto out_of_memory;
222 else if (fault & VM_FAULT_SIGBUS)
223 goto do_sigbus;
224 else
225 goto bad_area;
229 * Major/minor page fault accounting is only done on the initial
230 * attempt. If we go through a retry, it is extremely likely that the
231 * page will be found in page cache at that point.
233 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
234 if (flags & FAULT_FLAG_ALLOW_RETRY) {
235 if (fault & VM_FAULT_MAJOR) {
236 tsk->maj_flt++;
237 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ,
238 1, regs, addr);
239 } else {
240 tsk->min_flt++;
241 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN,
242 1, regs, addr);
244 if (fault & VM_FAULT_RETRY) {
245 flags &= ~FAULT_FLAG_ALLOW_RETRY;
246 flags |= FAULT_FLAG_TRIED;
248 /* No need to up_read(&mm->mmap_sem) as we would
249 * have already released it in __lock_page_or_retry
250 * in mm/filemap.c.
252 goto retry;
256 up_read(&mm->mmap_sem);
257 return;
260 * Something tried to access memory that isn't in our memory map..
261 * Fix it, but check if it's kernel or user first..
263 bad_area:
264 up_read(&mm->mmap_sem);
266 bad_area_nosemaphore:
268 /* User mode accesses just cause a SIGSEGV */
270 if (user_mode(regs)) {
271 tsk->thread.address = addr;
272 tsk->thread.error_code = error_code;
273 tsk->thread.trap_no = entry;
274 force_sig_fault(SIGSEGV, si_code, (void __user *)addr);
275 return;
278 no_context:
280 /* Are we prepared to handle this kernel fault?
282 * (The kernel has valid exception-points in the source
283 * when it acesses user-memory. When it fails in one
284 * of those points, we find it in a table and do a jump
285 * to some fixup code that loads an appropriate error
286 * code)
290 const struct exception_table_entry *entry;
292 if ((entry =
293 search_exception_tables(instruction_pointer(regs))) !=
294 NULL) {
295 /* Adjust the instruction pointer in the stackframe */
296 instruction_pointer(regs) = entry->fixup;
297 return;
302 * Oops. The kernel tried to access some bad page. We'll have to
303 * terminate things with extreme prejudice.
306 bust_spinlocks(1);
307 pr_alert("Unable to handle kernel %s at virtual address %08lx\n",
308 (addr < PAGE_SIZE) ? "NULL pointer dereference" :
309 "paging request", addr);
311 show_pte(mm, addr);
312 die("Oops", regs, error_code);
313 bust_spinlocks(0);
314 do_exit(SIGKILL);
316 return;
319 * We ran out of memory, or some other thing happened to us that made
320 * us unable to handle the page fault gracefully.
323 out_of_memory:
324 up_read(&mm->mmap_sem);
325 if (!user_mode(regs))
326 goto no_context;
327 pagefault_out_of_memory();
328 return;
330 do_sigbus:
331 up_read(&mm->mmap_sem);
333 /* Kernel mode? Handle exceptions or die */
334 if (!user_mode(regs))
335 goto no_context;
338 * Send a sigbus
340 tsk->thread.address = addr;
341 tsk->thread.error_code = error_code;
342 tsk->thread.trap_no = entry;
343 force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)addr);
345 return;
347 vmalloc_fault:
350 * Synchronize this task's top level page-table
351 * with the 'reference' page table.
353 * Use current_pgd instead of tsk->active_mm->pgd
354 * since the latter might be unavailable if this
355 * code is executed in a misfortunately run irq
356 * (like inside schedule() between switch_mm and
357 * switch_to...).
360 unsigned int index = pgd_index(addr);
361 pgd_t *pgd, *pgd_k;
362 pud_t *pud, *pud_k;
363 pmd_t *pmd, *pmd_k;
364 pte_t *pte_k;
366 pgd = (pgd_t *) __va(__nds32__mfsr(NDS32_SR_L1_PPTB)) + index;
367 pgd_k = init_mm.pgd + index;
369 if (!pgd_present(*pgd_k))
370 goto no_context;
372 pud = pud_offset(pgd, addr);
373 pud_k = pud_offset(pgd_k, addr);
374 if (!pud_present(*pud_k))
375 goto no_context;
377 pmd = pmd_offset(pud, addr);
378 pmd_k = pmd_offset(pud_k, addr);
379 if (!pmd_present(*pmd_k))
380 goto no_context;
382 if (!pmd_present(*pmd))
383 set_pmd(pmd, *pmd_k);
384 else
385 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
388 * Since the vmalloc area is global, we don't
389 * need to copy individual PTE's, it is enough to
390 * copy the pgd pointer into the pte page of the
391 * root task. If that is there, we'll find our pte if
392 * it exists.
395 /* Make sure the actual PTE exists as well to
396 * catch kernel vmalloc-area accesses to non-mapped
397 * addres. If we don't do this, this will just
398 * silently loop forever.
401 pte_k = pte_offset_kernel(pmd_k, addr);
402 if (!pte_present(*pte_k))
403 goto no_context;
405 return;