1 // SPDX-License-Identifier: GPL-2.0+
3 * Kernel Probes (KProbes)
5 * Copyright IBM Corp. 2002, 2006
7 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
10 #include <linux/kprobes.h>
11 #include <linux/ptrace.h>
12 #include <linux/preempt.h>
13 #include <linux/stop_machine.h>
14 #include <linux/kdebug.h>
15 #include <linux/uaccess.h>
16 #include <linux/extable.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/hardirq.h>
20 #include <linux/ftrace.h>
21 #include <asm/set_memory.h>
22 #include <asm/sections.h>
25 DEFINE_PER_CPU(struct kprobe
*, current_kprobe
);
26 DEFINE_PER_CPU(struct kprobe_ctlblk
, kprobe_ctlblk
);
28 struct kretprobe_blackpoint kretprobe_blacklist
[] = { };
30 DEFINE_INSN_CACHE_OPS(s390_insn
);
32 static int insn_page_in_use
;
33 static char insn_page
[PAGE_SIZE
] __aligned(PAGE_SIZE
);
35 static void *alloc_s390_insn_page(void)
37 if (xchg(&insn_page_in_use
, 1) == 1)
39 set_memory_x((unsigned long) &insn_page
, 1);
43 static void free_s390_insn_page(void *page
)
45 set_memory_nx((unsigned long) page
, 1);
46 xchg(&insn_page_in_use
, 0);
49 struct kprobe_insn_cache kprobe_s390_insn_slots
= {
50 .mutex
= __MUTEX_INITIALIZER(kprobe_s390_insn_slots
.mutex
),
51 .alloc
= alloc_s390_insn_page
,
52 .free
= free_s390_insn_page
,
53 .pages
= LIST_HEAD_INIT(kprobe_s390_insn_slots
.pages
),
54 .insn_size
= MAX_INSN_SIZE
,
57 static void copy_instruction(struct kprobe
*p
)
59 unsigned long ip
= (unsigned long) p
->addr
;
63 if (ftrace_location(ip
) == ip
) {
65 * If kprobes patches the instruction that is morphed by
66 * ftrace make sure that kprobes always sees the branch
67 * "jg .+24" that skips the mcount block or the "brcl 0,0"
68 * in case of hotpatch.
70 ftrace_generate_nop_insn((struct ftrace_insn
*)p
->ainsn
.insn
);
71 p
->ainsn
.is_ftrace_insn
= 1;
73 memcpy(p
->ainsn
.insn
, p
->addr
, insn_length(*p
->addr
>> 8));
74 p
->opcode
= p
->ainsn
.insn
[0];
75 if (!probe_is_insn_relative_long(p
->ainsn
.insn
))
78 * For pc-relative instructions in RIL-b or RIL-c format patch the
79 * RI2 displacement field. We have already made sure that the insn
80 * slot for the patched instruction is within the same 2GB area
81 * as the original instruction (either kernel image or module area).
82 * Therefore the new displacement will always fit.
84 disp
= *(s32
*)&p
->ainsn
.insn
[1];
85 addr
= (u64
)(unsigned long)p
->addr
;
86 new_addr
= (u64
)(unsigned long)p
->ainsn
.insn
;
87 new_disp
= ((addr
+ (disp
* 2)) - new_addr
) / 2;
88 *(s32
*)&p
->ainsn
.insn
[1] = new_disp
;
90 NOKPROBE_SYMBOL(copy_instruction
);
92 static inline int is_kernel_addr(void *addr
)
94 return addr
< (void *)_end
;
97 static int s390_get_insn_slot(struct kprobe
*p
)
100 * Get an insn slot that is within the same 2GB area like the original
101 * instruction. That way instructions with a 32bit signed displacement
102 * field can be patched and executed within the insn slot.
104 p
->ainsn
.insn
= NULL
;
105 if (is_kernel_addr(p
->addr
))
106 p
->ainsn
.insn
= get_s390_insn_slot();
107 else if (is_module_addr(p
->addr
))
108 p
->ainsn
.insn
= get_insn_slot();
109 return p
->ainsn
.insn
? 0 : -ENOMEM
;
111 NOKPROBE_SYMBOL(s390_get_insn_slot
);
113 static void s390_free_insn_slot(struct kprobe
*p
)
117 if (is_kernel_addr(p
->addr
))
118 free_s390_insn_slot(p
->ainsn
.insn
, 0);
120 free_insn_slot(p
->ainsn
.insn
, 0);
121 p
->ainsn
.insn
= NULL
;
123 NOKPROBE_SYMBOL(s390_free_insn_slot
);
125 int arch_prepare_kprobe(struct kprobe
*p
)
127 if ((unsigned long) p
->addr
& 0x01)
129 /* Make sure the probe isn't going on a difficult instruction */
130 if (probe_is_prohibited_opcode(p
->addr
))
132 if (s390_get_insn_slot(p
))
137 NOKPROBE_SYMBOL(arch_prepare_kprobe
);
139 int arch_check_ftrace_location(struct kprobe
*p
)
144 struct swap_insn_args
{
146 unsigned int arm_kprobe
: 1;
149 static int swap_instruction(void *data
)
151 struct swap_insn_args
*args
= data
;
152 struct ftrace_insn new_insn
, *insn
;
153 struct kprobe
*p
= args
->p
;
156 new_insn
.opc
= args
->arm_kprobe
? BREAKPOINT_INSTRUCTION
: p
->opcode
;
157 len
= sizeof(new_insn
.opc
);
158 if (!p
->ainsn
.is_ftrace_insn
)
160 len
= sizeof(new_insn
);
161 insn
= (struct ftrace_insn
*) p
->addr
;
162 if (args
->arm_kprobe
) {
163 if (is_ftrace_nop(insn
))
164 new_insn
.disp
= KPROBE_ON_FTRACE_NOP
;
166 new_insn
.disp
= KPROBE_ON_FTRACE_CALL
;
168 ftrace_generate_call_insn(&new_insn
, (unsigned long)p
->addr
);
169 if (insn
->disp
== KPROBE_ON_FTRACE_NOP
)
170 ftrace_generate_nop_insn(&new_insn
);
173 s390_kernel_write(p
->addr
, &new_insn
, len
);
176 NOKPROBE_SYMBOL(swap_instruction
);
178 void arch_arm_kprobe(struct kprobe
*p
)
180 struct swap_insn_args args
= {.p
= p
, .arm_kprobe
= 1};
182 stop_machine_cpuslocked(swap_instruction
, &args
, NULL
);
184 NOKPROBE_SYMBOL(arch_arm_kprobe
);
186 void arch_disarm_kprobe(struct kprobe
*p
)
188 struct swap_insn_args args
= {.p
= p
, .arm_kprobe
= 0};
190 stop_machine_cpuslocked(swap_instruction
, &args
, NULL
);
192 NOKPROBE_SYMBOL(arch_disarm_kprobe
);
194 void arch_remove_kprobe(struct kprobe
*p
)
196 s390_free_insn_slot(p
);
198 NOKPROBE_SYMBOL(arch_remove_kprobe
);
200 static void enable_singlestep(struct kprobe_ctlblk
*kcb
,
201 struct pt_regs
*regs
,
204 struct per_regs per_kprobe
;
206 /* Set up the PER control registers %cr9-%cr11 */
207 per_kprobe
.control
= PER_EVENT_IFETCH
;
208 per_kprobe
.start
= ip
;
211 /* Save control regs and psw mask */
212 __ctl_store(kcb
->kprobe_saved_ctl
, 9, 11);
213 kcb
->kprobe_saved_imask
= regs
->psw
.mask
&
214 (PSW_MASK_PER
| PSW_MASK_IO
| PSW_MASK_EXT
);
216 /* Set PER control regs, turns on single step for the given address */
217 __ctl_load(per_kprobe
, 9, 11);
218 regs
->psw
.mask
|= PSW_MASK_PER
;
219 regs
->psw
.mask
&= ~(PSW_MASK_IO
| PSW_MASK_EXT
);
222 NOKPROBE_SYMBOL(enable_singlestep
);
224 static void disable_singlestep(struct kprobe_ctlblk
*kcb
,
225 struct pt_regs
*regs
,
228 /* Restore control regs and psw mask, set new psw address */
229 __ctl_load(kcb
->kprobe_saved_ctl
, 9, 11);
230 regs
->psw
.mask
&= ~PSW_MASK_PER
;
231 regs
->psw
.mask
|= kcb
->kprobe_saved_imask
;
234 NOKPROBE_SYMBOL(disable_singlestep
);
237 * Activate a kprobe by storing its pointer to current_kprobe. The
238 * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
239 * two kprobes can be active, see KPROBE_REENTER.
241 static void push_kprobe(struct kprobe_ctlblk
*kcb
, struct kprobe
*p
)
243 kcb
->prev_kprobe
.kp
= __this_cpu_read(current_kprobe
);
244 kcb
->prev_kprobe
.status
= kcb
->kprobe_status
;
245 __this_cpu_write(current_kprobe
, p
);
247 NOKPROBE_SYMBOL(push_kprobe
);
250 * Deactivate a kprobe by backing up to the previous state. If the
251 * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
252 * for any other state prev_kprobe.kp will be NULL.
254 static void pop_kprobe(struct kprobe_ctlblk
*kcb
)
256 __this_cpu_write(current_kprobe
, kcb
->prev_kprobe
.kp
);
257 kcb
->kprobe_status
= kcb
->prev_kprobe
.status
;
259 NOKPROBE_SYMBOL(pop_kprobe
);
261 void arch_prepare_kretprobe(struct kretprobe_instance
*ri
, struct pt_regs
*regs
)
263 ri
->ret_addr
= (kprobe_opcode_t
*) regs
->gprs
[14];
265 /* Replace the return addr with trampoline addr */
266 regs
->gprs
[14] = (unsigned long) &kretprobe_trampoline
;
268 NOKPROBE_SYMBOL(arch_prepare_kretprobe
);
270 static void kprobe_reenter_check(struct kprobe_ctlblk
*kcb
, struct kprobe
*p
)
272 switch (kcb
->kprobe_status
) {
273 case KPROBE_HIT_SSDONE
:
274 case KPROBE_HIT_ACTIVE
:
275 kprobes_inc_nmissed_count(p
);
281 * A kprobe on the code path to single step an instruction
282 * is a BUG. The code path resides in the .kprobes.text
283 * section and is executed with interrupts disabled.
285 pr_err("Invalid kprobe detected.\n");
290 NOKPROBE_SYMBOL(kprobe_reenter_check
);
292 static int kprobe_handler(struct pt_regs
*regs
)
294 struct kprobe_ctlblk
*kcb
;
298 * We want to disable preemption for the entire duration of kprobe
299 * processing. That includes the calls to the pre/post handlers
300 * and single stepping the kprobe instruction.
303 kcb
= get_kprobe_ctlblk();
304 p
= get_kprobe((void *)(regs
->psw
.addr
- 2));
307 if (kprobe_running()) {
309 * We have hit a kprobe while another is still
310 * active. This can happen in the pre and post
311 * handler. Single step the instruction of the
312 * new probe but do not call any handler function
313 * of this secondary kprobe.
314 * push_kprobe and pop_kprobe saves and restores
315 * the currently active kprobe.
317 kprobe_reenter_check(kcb
, p
);
319 kcb
->kprobe_status
= KPROBE_REENTER
;
322 * If we have no pre-handler or it returned 0, we
323 * continue with single stepping. If we have a
324 * pre-handler and it returned non-zero, it prepped
325 * for changing execution path, so get out doing
329 kcb
->kprobe_status
= KPROBE_HIT_ACTIVE
;
330 if (p
->pre_handler
&& p
->pre_handler(p
, regs
)) {
332 preempt_enable_no_resched();
335 kcb
->kprobe_status
= KPROBE_HIT_SS
;
337 enable_singlestep(kcb
, regs
, (unsigned long) p
->ainsn
.insn
);
340 * No kprobe at this address and no active kprobe. The trap has
341 * not been caused by a kprobe breakpoint. The race of breakpoint
342 * vs. kprobe remove does not exist because on s390 as we use
343 * stop_machine to arm/disarm the breakpoints.
345 preempt_enable_no_resched();
348 NOKPROBE_SYMBOL(kprobe_handler
);
351 * Function return probe trampoline:
352 * - init_kprobes() establishes a probepoint here
353 * - When the probed function returns, this probe
354 * causes the handlers to fire
356 static void __used
kretprobe_trampoline_holder(void)
358 asm volatile(".global kretprobe_trampoline\n"
359 "kretprobe_trampoline: bcr 0,0\n");
363 * Called when the probe at kretprobe trampoline is hit
365 static int trampoline_probe_handler(struct kprobe
*p
, struct pt_regs
*regs
)
367 struct kretprobe_instance
*ri
;
368 struct hlist_head
*head
, empty_rp
;
369 struct hlist_node
*tmp
;
370 unsigned long flags
, orig_ret_address
;
371 unsigned long trampoline_address
;
372 kprobe_opcode_t
*correct_ret_addr
;
374 INIT_HLIST_HEAD(&empty_rp
);
375 kretprobe_hash_lock(current
, &head
, &flags
);
378 * It is possible to have multiple instances associated with a given
379 * task either because an multiple functions in the call path
380 * have a return probe installed on them, and/or more than one return
381 * return probe was registered for a target function.
383 * We can handle this because:
384 * - instances are always inserted at the head of the list
385 * - when multiple return probes are registered for the same
386 * function, the first instance's ret_addr will point to the
387 * real return address, and all the rest will point to
388 * kretprobe_trampoline
391 orig_ret_address
= 0;
392 correct_ret_addr
= NULL
;
393 trampoline_address
= (unsigned long) &kretprobe_trampoline
;
394 hlist_for_each_entry_safe(ri
, tmp
, head
, hlist
) {
395 if (ri
->task
!= current
)
396 /* another task is sharing our hash bucket */
399 orig_ret_address
= (unsigned long) ri
->ret_addr
;
401 if (orig_ret_address
!= trampoline_address
)
403 * This is the real return address. Any other
404 * instances associated with this task are for
405 * other calls deeper on the call stack
410 kretprobe_assert(ri
, orig_ret_address
, trampoline_address
);
412 correct_ret_addr
= ri
->ret_addr
;
413 hlist_for_each_entry_safe(ri
, tmp
, head
, hlist
) {
414 if (ri
->task
!= current
)
415 /* another task is sharing our hash bucket */
418 orig_ret_address
= (unsigned long) ri
->ret_addr
;
420 if (ri
->rp
&& ri
->rp
->handler
) {
421 ri
->ret_addr
= correct_ret_addr
;
422 ri
->rp
->handler(ri
, regs
);
425 recycle_rp_inst(ri
, &empty_rp
);
427 if (orig_ret_address
!= trampoline_address
)
429 * This is the real return address. Any other
430 * instances associated with this task are for
431 * other calls deeper on the call stack
436 regs
->psw
.addr
= orig_ret_address
;
438 kretprobe_hash_unlock(current
, &flags
);
440 hlist_for_each_entry_safe(ri
, tmp
, &empty_rp
, hlist
) {
441 hlist_del(&ri
->hlist
);
445 * By returning a non-zero value, we are telling
446 * kprobe_handler() that we don't want the post_handler
447 * to run (and have re-enabled preemption)
451 NOKPROBE_SYMBOL(trampoline_probe_handler
);
454 * Called after single-stepping. p->addr is the address of the
455 * instruction whose first byte has been replaced by the "breakpoint"
456 * instruction. To avoid the SMP problems that can occur when we
457 * temporarily put back the original opcode to single-step, we
458 * single-stepped a copy of the instruction. The address of this
459 * copy is p->ainsn.insn.
461 static void resume_execution(struct kprobe
*p
, struct pt_regs
*regs
)
463 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
464 unsigned long ip
= regs
->psw
.addr
;
465 int fixup
= probe_get_fixup_type(p
->ainsn
.insn
);
467 /* Check if the kprobes location is an enabled ftrace caller */
468 if (p
->ainsn
.is_ftrace_insn
) {
469 struct ftrace_insn
*insn
= (struct ftrace_insn
*) p
->addr
;
470 struct ftrace_insn call_insn
;
472 ftrace_generate_call_insn(&call_insn
, (unsigned long) p
->addr
);
474 * A kprobe on an enabled ftrace call site actually single
475 * stepped an unconditional branch (ftrace nop equivalent).
476 * Now we need to fixup things and pretend that a brasl r0,...
477 * was executed instead.
479 if (insn
->disp
== KPROBE_ON_FTRACE_CALL
) {
480 ip
+= call_insn
.disp
* 2 - MCOUNT_INSN_SIZE
;
481 regs
->gprs
[0] = (unsigned long)p
->addr
+ sizeof(*insn
);
485 if (fixup
& FIXUP_PSW_NORMAL
)
486 ip
+= (unsigned long) p
->addr
- (unsigned long) p
->ainsn
.insn
;
488 if (fixup
& FIXUP_BRANCH_NOT_TAKEN
) {
489 int ilen
= insn_length(p
->ainsn
.insn
[0] >> 8);
490 if (ip
- (unsigned long) p
->ainsn
.insn
== ilen
)
491 ip
= (unsigned long) p
->addr
+ ilen
;
494 if (fixup
& FIXUP_RETURN_REGISTER
) {
495 int reg
= (p
->ainsn
.insn
[0] & 0xf0) >> 4;
496 regs
->gprs
[reg
] += (unsigned long) p
->addr
-
497 (unsigned long) p
->ainsn
.insn
;
500 disable_singlestep(kcb
, regs
, ip
);
502 NOKPROBE_SYMBOL(resume_execution
);
504 static int post_kprobe_handler(struct pt_regs
*regs
)
506 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
507 struct kprobe
*p
= kprobe_running();
512 if (kcb
->kprobe_status
!= KPROBE_REENTER
&& p
->post_handler
) {
513 kcb
->kprobe_status
= KPROBE_HIT_SSDONE
;
514 p
->post_handler(p
, regs
, 0);
517 resume_execution(p
, regs
);
519 preempt_enable_no_resched();
522 * if somebody else is singlestepping across a probe point, psw mask
523 * will have PER set, in which case, continue the remaining processing
524 * of do_single_step, as if this is not a probe hit.
526 if (regs
->psw
.mask
& PSW_MASK_PER
)
531 NOKPROBE_SYMBOL(post_kprobe_handler
);
533 static int kprobe_trap_handler(struct pt_regs
*regs
, int trapnr
)
535 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
536 struct kprobe
*p
= kprobe_running();
537 const struct exception_table_entry
*entry
;
539 switch(kcb
->kprobe_status
) {
543 * We are here because the instruction being single
544 * stepped caused a page fault. We reset the current
545 * kprobe and the nip points back to the probe address
546 * and allow the page fault handler to continue as a
549 disable_singlestep(kcb
, regs
, (unsigned long) p
->addr
);
551 preempt_enable_no_resched();
553 case KPROBE_HIT_ACTIVE
:
554 case KPROBE_HIT_SSDONE
:
556 * We increment the nmissed count for accounting,
557 * we can also use npre/npostfault count for accounting
558 * these specific fault cases.
560 kprobes_inc_nmissed_count(p
);
563 * We come here because instructions in the pre/post
564 * handler caused the page_fault, this could happen
565 * if handler tries to access user space by
566 * copy_from_user(), get_user() etc. Let the
567 * user-specified handler try to fix it first.
569 if (p
->fault_handler
&& p
->fault_handler(p
, regs
, trapnr
))
573 * In case the user-specified fault handler returned
574 * zero, try to fix up.
576 entry
= s390_search_extables(regs
->psw
.addr
);
578 regs
->psw
.addr
= extable_fixup(entry
);
583 * fixup_exception() could not handle it,
584 * Let do_page_fault() fix it.
592 NOKPROBE_SYMBOL(kprobe_trap_handler
);
594 int kprobe_fault_handler(struct pt_regs
*regs
, int trapnr
)
598 if (regs
->psw
.mask
& (PSW_MASK_IO
| PSW_MASK_EXT
))
600 ret
= kprobe_trap_handler(regs
, trapnr
);
601 if (regs
->psw
.mask
& (PSW_MASK_IO
| PSW_MASK_EXT
))
602 local_irq_restore(regs
->psw
.mask
& ~PSW_MASK_PER
);
605 NOKPROBE_SYMBOL(kprobe_fault_handler
);
608 * Wrapper routine to for handling exceptions.
610 int kprobe_exceptions_notify(struct notifier_block
*self
,
611 unsigned long val
, void *data
)
613 struct die_args
*args
= (struct die_args
*) data
;
614 struct pt_regs
*regs
= args
->regs
;
615 int ret
= NOTIFY_DONE
;
617 if (regs
->psw
.mask
& (PSW_MASK_IO
| PSW_MASK_EXT
))
622 if (kprobe_handler(regs
))
626 if (post_kprobe_handler(regs
))
630 if (!preemptible() && kprobe_running() &&
631 kprobe_trap_handler(regs
, args
->trapnr
))
638 if (regs
->psw
.mask
& (PSW_MASK_IO
| PSW_MASK_EXT
))
639 local_irq_restore(regs
->psw
.mask
& ~PSW_MASK_PER
);
643 NOKPROBE_SYMBOL(kprobe_exceptions_notify
);
645 static struct kprobe trampoline
= {
646 .addr
= (kprobe_opcode_t
*) &kretprobe_trampoline
,
647 .pre_handler
= trampoline_probe_handler
650 int __init
arch_init_kprobes(void)
652 return register_kprobe(&trampoline
);
655 int arch_trampoline_kprobe(struct kprobe
*p
)
657 return p
->addr
== (kprobe_opcode_t
*) &kretprobe_trampoline
;
659 NOKPROBE_SYMBOL(arch_trampoline_kprobe
);