coresight: configuring ETF in FIFO mode when acting as link
[linux/fpc-iii.git] / drivers / memory / emif.c
blob04644e7b42b123ca5407840d11a9e412a26dc6dd
1 /*
2 * EMIF driver
4 * Copyright (C) 2012 Texas Instruments, Inc.
6 * Aneesh V <aneesh@ti.com>
7 * Santosh Shilimkar <santosh.shilimkar@ti.com>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 #include <linux/err.h>
14 #include <linux/kernel.h>
15 #include <linux/reboot.h>
16 #include <linux/platform_data/emif_plat.h>
17 #include <linux/io.h>
18 #include <linux/device.h>
19 #include <linux/platform_device.h>
20 #include <linux/interrupt.h>
21 #include <linux/slab.h>
22 #include <linux/of.h>
23 #include <linux/debugfs.h>
24 #include <linux/seq_file.h>
25 #include <linux/module.h>
26 #include <linux/list.h>
27 #include <linux/spinlock.h>
28 #include <linux/pm.h>
29 #include <memory/jedec_ddr.h>
30 #include "emif.h"
31 #include "of_memory.h"
33 /**
34 * struct emif_data - Per device static data for driver's use
35 * @duplicate: Whether the DDR devices attached to this EMIF
36 * instance are exactly same as that on EMIF1. In
37 * this case we can save some memory and processing
38 * @temperature_level: Maximum temperature of LPDDR2 devices attached
39 * to this EMIF - read from MR4 register. If there
40 * are two devices attached to this EMIF, this
41 * value is the maximum of the two temperature
42 * levels.
43 * @node: node in the device list
44 * @base: base address of memory-mapped IO registers.
45 * @dev: device pointer.
46 * @addressing table with addressing information from the spec
47 * @regs_cache: An array of 'struct emif_regs' that stores
48 * calculated register values for different
49 * frequencies, to avoid re-calculating them on
50 * each DVFS transition.
51 * @curr_regs: The set of register values used in the last
52 * frequency change (i.e. corresponding to the
53 * frequency in effect at the moment)
54 * @plat_data: Pointer to saved platform data.
55 * @debugfs_root: dentry to the root folder for EMIF in debugfs
56 * @np_ddr: Pointer to ddr device tree node
58 struct emif_data {
59 u8 duplicate;
60 u8 temperature_level;
61 u8 lpmode;
62 struct list_head node;
63 unsigned long irq_state;
64 void __iomem *base;
65 struct device *dev;
66 const struct lpddr2_addressing *addressing;
67 struct emif_regs *regs_cache[EMIF_MAX_NUM_FREQUENCIES];
68 struct emif_regs *curr_regs;
69 struct emif_platform_data *plat_data;
70 struct dentry *debugfs_root;
71 struct device_node *np_ddr;
74 static struct emif_data *emif1;
75 static spinlock_t emif_lock;
76 static unsigned long irq_state;
77 static u32 t_ck; /* DDR clock period in ps */
78 static LIST_HEAD(device_list);
80 #ifdef CONFIG_DEBUG_FS
81 static void do_emif_regdump_show(struct seq_file *s, struct emif_data *emif,
82 struct emif_regs *regs)
84 u32 type = emif->plat_data->device_info->type;
85 u32 ip_rev = emif->plat_data->ip_rev;
87 seq_printf(s, "EMIF register cache dump for %dMHz\n",
88 regs->freq/1000000);
90 seq_printf(s, "ref_ctrl_shdw\t: 0x%08x\n", regs->ref_ctrl_shdw);
91 seq_printf(s, "sdram_tim1_shdw\t: 0x%08x\n", regs->sdram_tim1_shdw);
92 seq_printf(s, "sdram_tim2_shdw\t: 0x%08x\n", regs->sdram_tim2_shdw);
93 seq_printf(s, "sdram_tim3_shdw\t: 0x%08x\n", regs->sdram_tim3_shdw);
95 if (ip_rev == EMIF_4D) {
96 seq_printf(s, "read_idle_ctrl_shdw_normal\t: 0x%08x\n",
97 regs->read_idle_ctrl_shdw_normal);
98 seq_printf(s, "read_idle_ctrl_shdw_volt_ramp\t: 0x%08x\n",
99 regs->read_idle_ctrl_shdw_volt_ramp);
100 } else if (ip_rev == EMIF_4D5) {
101 seq_printf(s, "dll_calib_ctrl_shdw_normal\t: 0x%08x\n",
102 regs->dll_calib_ctrl_shdw_normal);
103 seq_printf(s, "dll_calib_ctrl_shdw_volt_ramp\t: 0x%08x\n",
104 regs->dll_calib_ctrl_shdw_volt_ramp);
107 if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
108 seq_printf(s, "ref_ctrl_shdw_derated\t: 0x%08x\n",
109 regs->ref_ctrl_shdw_derated);
110 seq_printf(s, "sdram_tim1_shdw_derated\t: 0x%08x\n",
111 regs->sdram_tim1_shdw_derated);
112 seq_printf(s, "sdram_tim3_shdw_derated\t: 0x%08x\n",
113 regs->sdram_tim3_shdw_derated);
117 static int emif_regdump_show(struct seq_file *s, void *unused)
119 struct emif_data *emif = s->private;
120 struct emif_regs **regs_cache;
121 int i;
123 if (emif->duplicate)
124 regs_cache = emif1->regs_cache;
125 else
126 regs_cache = emif->regs_cache;
128 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
129 do_emif_regdump_show(s, emif, regs_cache[i]);
130 seq_printf(s, "\n");
133 return 0;
136 static int emif_regdump_open(struct inode *inode, struct file *file)
138 return single_open(file, emif_regdump_show, inode->i_private);
141 static const struct file_operations emif_regdump_fops = {
142 .open = emif_regdump_open,
143 .read = seq_read,
144 .release = single_release,
147 static int emif_mr4_show(struct seq_file *s, void *unused)
149 struct emif_data *emif = s->private;
151 seq_printf(s, "MR4=%d\n", emif->temperature_level);
152 return 0;
155 static int emif_mr4_open(struct inode *inode, struct file *file)
157 return single_open(file, emif_mr4_show, inode->i_private);
160 static const struct file_operations emif_mr4_fops = {
161 .open = emif_mr4_open,
162 .read = seq_read,
163 .release = single_release,
166 static int __init_or_module emif_debugfs_init(struct emif_data *emif)
168 struct dentry *dentry;
169 int ret;
171 dentry = debugfs_create_dir(dev_name(emif->dev), NULL);
172 if (!dentry) {
173 ret = -ENOMEM;
174 goto err0;
176 emif->debugfs_root = dentry;
178 dentry = debugfs_create_file("regcache_dump", S_IRUGO,
179 emif->debugfs_root, emif, &emif_regdump_fops);
180 if (!dentry) {
181 ret = -ENOMEM;
182 goto err1;
185 dentry = debugfs_create_file("mr4", S_IRUGO,
186 emif->debugfs_root, emif, &emif_mr4_fops);
187 if (!dentry) {
188 ret = -ENOMEM;
189 goto err1;
192 return 0;
193 err1:
194 debugfs_remove_recursive(emif->debugfs_root);
195 err0:
196 return ret;
199 static void __exit emif_debugfs_exit(struct emif_data *emif)
201 debugfs_remove_recursive(emif->debugfs_root);
202 emif->debugfs_root = NULL;
204 #else
205 static inline int __init_or_module emif_debugfs_init(struct emif_data *emif)
207 return 0;
210 static inline void __exit emif_debugfs_exit(struct emif_data *emif)
213 #endif
216 * Calculate the period of DDR clock from frequency value
218 static void set_ddr_clk_period(u32 freq)
220 /* Divide 10^12 by frequency to get period in ps */
221 t_ck = (u32)DIV_ROUND_UP_ULL(1000000000000ull, freq);
225 * Get bus width used by EMIF. Note that this may be different from the
226 * bus width of the DDR devices used. For instance two 16-bit DDR devices
227 * may be connected to a given CS of EMIF. In this case bus width as far
228 * as EMIF is concerned is 32, where as the DDR bus width is 16 bits.
230 static u32 get_emif_bus_width(struct emif_data *emif)
232 u32 width;
233 void __iomem *base = emif->base;
235 width = (readl(base + EMIF_SDRAM_CONFIG) & NARROW_MODE_MASK)
236 >> NARROW_MODE_SHIFT;
237 width = width == 0 ? 32 : 16;
239 return width;
243 * Get the CL from SDRAM_CONFIG register
245 static u32 get_cl(struct emif_data *emif)
247 u32 cl;
248 void __iomem *base = emif->base;
250 cl = (readl(base + EMIF_SDRAM_CONFIG) & CL_MASK) >> CL_SHIFT;
252 return cl;
255 static void set_lpmode(struct emif_data *emif, u8 lpmode)
257 u32 temp;
258 void __iomem *base = emif->base;
261 * Workaround for errata i743 - LPDDR2 Power-Down State is Not
262 * Efficient
264 * i743 DESCRIPTION:
265 * The EMIF supports power-down state for low power. The EMIF
266 * automatically puts the SDRAM into power-down after the memory is
267 * not accessed for a defined number of cycles and the
268 * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set to 0x4.
269 * As the EMIF supports automatic output impedance calibration, a ZQ
270 * calibration long command is issued every time it exits active
271 * power-down and precharge power-down modes. The EMIF waits and
272 * blocks any other command during this calibration.
273 * The EMIF does not allow selective disabling of ZQ calibration upon
274 * exit of power-down mode. Due to very short periods of power-down
275 * cycles, ZQ calibration overhead creates bandwidth issues and
276 * increases overall system power consumption. On the other hand,
277 * issuing ZQ calibration long commands when exiting self-refresh is
278 * still required.
280 * WORKAROUND
281 * Because there is no power consumption benefit of the power-down due
282 * to the calibration and there is a performance risk, the guideline
283 * is to not allow power-down state and, therefore, to not have set
284 * the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field to 0x4.
286 if ((emif->plat_data->ip_rev == EMIF_4D) &&
287 (EMIF_LP_MODE_PWR_DN == lpmode)) {
288 WARN_ONCE(1,
289 "REG_LP_MODE = LP_MODE_PWR_DN(4) is prohibited by"
290 "erratum i743 switch to LP_MODE_SELF_REFRESH(2)\n");
291 /* rollback LP_MODE to Self-refresh mode */
292 lpmode = EMIF_LP_MODE_SELF_REFRESH;
295 temp = readl(base + EMIF_POWER_MANAGEMENT_CONTROL);
296 temp &= ~LP_MODE_MASK;
297 temp |= (lpmode << LP_MODE_SHIFT);
298 writel(temp, base + EMIF_POWER_MANAGEMENT_CONTROL);
301 static void do_freq_update(void)
303 struct emif_data *emif;
306 * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE
308 * i728 DESCRIPTION:
309 * The EMIF automatically puts the SDRAM into self-refresh mode
310 * after the EMIF has not performed accesses during
311 * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles
312 * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set
313 * to 0x2. If during a small window the following three events
314 * occur:
315 * - The SR_TIMING counter expires
316 * - And frequency change is requested
317 * - And OCP access is requested
318 * Then it causes instable clock on the DDR interface.
320 * WORKAROUND
321 * To avoid the occurrence of the three events, the workaround
322 * is to disable the self-refresh when requesting a frequency
323 * change. Before requesting a frequency change the software must
324 * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the
325 * frequency change has been done, the software can reprogram
326 * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2
328 list_for_each_entry(emif, &device_list, node) {
329 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
330 set_lpmode(emif, EMIF_LP_MODE_DISABLE);
334 * TODO: Do FREQ_UPDATE here when an API
335 * is available for this as part of the new
336 * clock framework
339 list_for_each_entry(emif, &device_list, node) {
340 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
341 set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
345 /* Find addressing table entry based on the device's type and density */
346 static const struct lpddr2_addressing *get_addressing_table(
347 const struct ddr_device_info *device_info)
349 u32 index, type, density;
351 type = device_info->type;
352 density = device_info->density;
354 switch (type) {
355 case DDR_TYPE_LPDDR2_S4:
356 index = density - 1;
357 break;
358 case DDR_TYPE_LPDDR2_S2:
359 switch (density) {
360 case DDR_DENSITY_1Gb:
361 case DDR_DENSITY_2Gb:
362 index = density + 3;
363 break;
364 default:
365 index = density - 1;
367 break;
368 default:
369 return NULL;
372 return &lpddr2_jedec_addressing_table[index];
376 * Find the the right timing table from the array of timing
377 * tables of the device using DDR clock frequency
379 static const struct lpddr2_timings *get_timings_table(struct emif_data *emif,
380 u32 freq)
382 u32 i, min, max, freq_nearest;
383 const struct lpddr2_timings *timings = NULL;
384 const struct lpddr2_timings *timings_arr = emif->plat_data->timings;
385 struct device *dev = emif->dev;
387 /* Start with a very high frequency - 1GHz */
388 freq_nearest = 1000000000;
391 * Find the timings table such that:
392 * 1. the frequency range covers the required frequency(safe) AND
393 * 2. the max_freq is closest to the required frequency(optimal)
395 for (i = 0; i < emif->plat_data->timings_arr_size; i++) {
396 max = timings_arr[i].max_freq;
397 min = timings_arr[i].min_freq;
398 if ((freq >= min) && (freq <= max) && (max < freq_nearest)) {
399 freq_nearest = max;
400 timings = &timings_arr[i];
404 if (!timings)
405 dev_err(dev, "%s: couldn't find timings for - %dHz\n",
406 __func__, freq);
408 dev_dbg(dev, "%s: timings table: freq %d, speed bin freq %d\n",
409 __func__, freq, freq_nearest);
411 return timings;
414 static u32 get_sdram_ref_ctrl_shdw(u32 freq,
415 const struct lpddr2_addressing *addressing)
417 u32 ref_ctrl_shdw = 0, val = 0, freq_khz, t_refi;
419 /* Scale down frequency and t_refi to avoid overflow */
420 freq_khz = freq / 1000;
421 t_refi = addressing->tREFI_ns / 100;
424 * refresh rate to be set is 'tREFI(in us) * freq in MHz
425 * division by 10000 to account for change in units
427 val = t_refi * freq_khz / 10000;
428 ref_ctrl_shdw |= val << REFRESH_RATE_SHIFT;
430 return ref_ctrl_shdw;
433 static u32 get_sdram_tim_1_shdw(const struct lpddr2_timings *timings,
434 const struct lpddr2_min_tck *min_tck,
435 const struct lpddr2_addressing *addressing)
437 u32 tim1 = 0, val = 0;
439 val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
440 tim1 |= val << T_WTR_SHIFT;
442 if (addressing->num_banks == B8)
443 val = DIV_ROUND_UP(timings->tFAW, t_ck*4);
444 else
445 val = max(min_tck->tRRD, DIV_ROUND_UP(timings->tRRD, t_ck));
446 tim1 |= (val - 1) << T_RRD_SHIFT;
448 val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab, t_ck) - 1;
449 tim1 |= val << T_RC_SHIFT;
451 val = max(min_tck->tRASmin, DIV_ROUND_UP(timings->tRAS_min, t_ck));
452 tim1 |= (val - 1) << T_RAS_SHIFT;
454 val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
455 tim1 |= val << T_WR_SHIFT;
457 val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD, t_ck)) - 1;
458 tim1 |= val << T_RCD_SHIFT;
460 val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab, t_ck)) - 1;
461 tim1 |= val << T_RP_SHIFT;
463 return tim1;
466 static u32 get_sdram_tim_1_shdw_derated(const struct lpddr2_timings *timings,
467 const struct lpddr2_min_tck *min_tck,
468 const struct lpddr2_addressing *addressing)
470 u32 tim1 = 0, val = 0;
472 val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
473 tim1 = val << T_WTR_SHIFT;
476 * tFAW is approximately 4 times tRRD. So add 1875*4 = 7500ps
477 * to tFAW for de-rating
479 if (addressing->num_banks == B8) {
480 val = DIV_ROUND_UP(timings->tFAW + 7500, 4 * t_ck) - 1;
481 } else {
482 val = DIV_ROUND_UP(timings->tRRD + 1875, t_ck);
483 val = max(min_tck->tRRD, val) - 1;
485 tim1 |= val << T_RRD_SHIFT;
487 val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab + 1875, t_ck);
488 tim1 |= (val - 1) << T_RC_SHIFT;
490 val = DIV_ROUND_UP(timings->tRAS_min + 1875, t_ck);
491 val = max(min_tck->tRASmin, val) - 1;
492 tim1 |= val << T_RAS_SHIFT;
494 val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
495 tim1 |= val << T_WR_SHIFT;
497 val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD + 1875, t_ck));
498 tim1 |= (val - 1) << T_RCD_SHIFT;
500 val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab + 1875, t_ck));
501 tim1 |= (val - 1) << T_RP_SHIFT;
503 return tim1;
506 static u32 get_sdram_tim_2_shdw(const struct lpddr2_timings *timings,
507 const struct lpddr2_min_tck *min_tck,
508 const struct lpddr2_addressing *addressing,
509 u32 type)
511 u32 tim2 = 0, val = 0;
513 val = min_tck->tCKE - 1;
514 tim2 |= val << T_CKE_SHIFT;
516 val = max(min_tck->tRTP, DIV_ROUND_UP(timings->tRTP, t_ck)) - 1;
517 tim2 |= val << T_RTP_SHIFT;
519 /* tXSNR = tRFCab_ps + 10 ns(tRFCab_ps for LPDDR2). */
520 val = DIV_ROUND_UP(addressing->tRFCab_ps + 10000, t_ck) - 1;
521 tim2 |= val << T_XSNR_SHIFT;
523 /* XSRD same as XSNR for LPDDR2 */
524 tim2 |= val << T_XSRD_SHIFT;
526 val = max(min_tck->tXP, DIV_ROUND_UP(timings->tXP, t_ck)) - 1;
527 tim2 |= val << T_XP_SHIFT;
529 return tim2;
532 static u32 get_sdram_tim_3_shdw(const struct lpddr2_timings *timings,
533 const struct lpddr2_min_tck *min_tck,
534 const struct lpddr2_addressing *addressing,
535 u32 type, u32 ip_rev, u32 derated)
537 u32 tim3 = 0, val = 0, t_dqsck;
539 val = timings->tRAS_max_ns / addressing->tREFI_ns - 1;
540 val = val > 0xF ? 0xF : val;
541 tim3 |= val << T_RAS_MAX_SHIFT;
543 val = DIV_ROUND_UP(addressing->tRFCab_ps, t_ck) - 1;
544 tim3 |= val << T_RFC_SHIFT;
546 t_dqsck = (derated == EMIF_DERATED_TIMINGS) ?
547 timings->tDQSCK_max_derated : timings->tDQSCK_max;
548 if (ip_rev == EMIF_4D5)
549 val = DIV_ROUND_UP(t_dqsck + 1000, t_ck) - 1;
550 else
551 val = DIV_ROUND_UP(t_dqsck, t_ck) - 1;
553 tim3 |= val << T_TDQSCKMAX_SHIFT;
555 val = DIV_ROUND_UP(timings->tZQCS, t_ck) - 1;
556 tim3 |= val << ZQ_ZQCS_SHIFT;
558 val = DIV_ROUND_UP(timings->tCKESR, t_ck);
559 val = max(min_tck->tCKESR, val) - 1;
560 tim3 |= val << T_CKESR_SHIFT;
562 if (ip_rev == EMIF_4D5) {
563 tim3 |= (EMIF_T_CSTA - 1) << T_CSTA_SHIFT;
565 val = DIV_ROUND_UP(EMIF_T_PDLL_UL, 128) - 1;
566 tim3 |= val << T_PDLL_UL_SHIFT;
569 return tim3;
572 static u32 get_zq_config_reg(const struct lpddr2_addressing *addressing,
573 bool cs1_used, bool cal_resistors_per_cs)
575 u32 zq = 0, val = 0;
577 val = EMIF_ZQCS_INTERVAL_US * 1000 / addressing->tREFI_ns;
578 zq |= val << ZQ_REFINTERVAL_SHIFT;
580 val = DIV_ROUND_UP(T_ZQCL_DEFAULT_NS, T_ZQCS_DEFAULT_NS) - 1;
581 zq |= val << ZQ_ZQCL_MULT_SHIFT;
583 val = DIV_ROUND_UP(T_ZQINIT_DEFAULT_NS, T_ZQCL_DEFAULT_NS) - 1;
584 zq |= val << ZQ_ZQINIT_MULT_SHIFT;
586 zq |= ZQ_SFEXITEN_ENABLE << ZQ_SFEXITEN_SHIFT;
588 if (cal_resistors_per_cs)
589 zq |= ZQ_DUALCALEN_ENABLE << ZQ_DUALCALEN_SHIFT;
590 else
591 zq |= ZQ_DUALCALEN_DISABLE << ZQ_DUALCALEN_SHIFT;
593 zq |= ZQ_CS0EN_MASK; /* CS0 is used for sure */
595 val = cs1_used ? 1 : 0;
596 zq |= val << ZQ_CS1EN_SHIFT;
598 return zq;
601 static u32 get_temp_alert_config(const struct lpddr2_addressing *addressing,
602 const struct emif_custom_configs *custom_configs, bool cs1_used,
603 u32 sdram_io_width, u32 emif_bus_width)
605 u32 alert = 0, interval, devcnt;
607 if (custom_configs && (custom_configs->mask &
608 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL))
609 interval = custom_configs->temp_alert_poll_interval_ms;
610 else
611 interval = TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS;
613 interval *= 1000000; /* Convert to ns */
614 interval /= addressing->tREFI_ns; /* Convert to refresh cycles */
615 alert |= (interval << TA_REFINTERVAL_SHIFT);
618 * sdram_io_width is in 'log2(x) - 1' form. Convert emif_bus_width
619 * also to this form and subtract to get TA_DEVCNT, which is
620 * in log2(x) form.
622 emif_bus_width = __fls(emif_bus_width) - 1;
623 devcnt = emif_bus_width - sdram_io_width;
624 alert |= devcnt << TA_DEVCNT_SHIFT;
626 /* DEVWDT is in 'log2(x) - 3' form */
627 alert |= (sdram_io_width - 2) << TA_DEVWDT_SHIFT;
629 alert |= 1 << TA_SFEXITEN_SHIFT;
630 alert |= 1 << TA_CS0EN_SHIFT;
631 alert |= (cs1_used ? 1 : 0) << TA_CS1EN_SHIFT;
633 return alert;
636 static u32 get_read_idle_ctrl_shdw(u8 volt_ramp)
638 u32 idle = 0, val = 0;
641 * Maximum value in normal conditions and increased frequency
642 * when voltage is ramping
644 if (volt_ramp)
645 val = READ_IDLE_INTERVAL_DVFS / t_ck / 64 - 1;
646 else
647 val = 0x1FF;
650 * READ_IDLE_CTRL register in EMIF4D has same offset and fields
651 * as DLL_CALIB_CTRL in EMIF4D5, so use the same shifts
653 idle |= val << DLL_CALIB_INTERVAL_SHIFT;
654 idle |= EMIF_READ_IDLE_LEN_VAL << ACK_WAIT_SHIFT;
656 return idle;
659 static u32 get_dll_calib_ctrl_shdw(u8 volt_ramp)
661 u32 calib = 0, val = 0;
663 if (volt_ramp == DDR_VOLTAGE_RAMPING)
664 val = DLL_CALIB_INTERVAL_DVFS / t_ck / 16 - 1;
665 else
666 val = 0; /* Disabled when voltage is stable */
668 calib |= val << DLL_CALIB_INTERVAL_SHIFT;
669 calib |= DLL_CALIB_ACK_WAIT_VAL << ACK_WAIT_SHIFT;
671 return calib;
674 static u32 get_ddr_phy_ctrl_1_attilaphy_4d(const struct lpddr2_timings *timings,
675 u32 freq, u8 RL)
677 u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_ATTILAPHY, val = 0;
679 val = RL + DIV_ROUND_UP(timings->tDQSCK_max, t_ck) - 1;
680 phy |= val << READ_LATENCY_SHIFT_4D;
682 if (freq <= 100000000)
683 val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS_ATTILAPHY;
684 else if (freq <= 200000000)
685 val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ_ATTILAPHY;
686 else
687 val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ_ATTILAPHY;
689 phy |= val << DLL_SLAVE_DLY_CTRL_SHIFT_4D;
691 return phy;
694 static u32 get_phy_ctrl_1_intelliphy_4d5(u32 freq, u8 cl)
696 u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_INTELLIPHY, half_delay;
699 * DLL operates at 266 MHz. If DDR frequency is near 266 MHz,
700 * half-delay is not needed else set half-delay
702 if (freq >= 265000000 && freq < 267000000)
703 half_delay = 0;
704 else
705 half_delay = 1;
707 phy |= half_delay << DLL_HALF_DELAY_SHIFT_4D5;
708 phy |= ((cl + DIV_ROUND_UP(EMIF_PHY_TOTAL_READ_LATENCY_INTELLIPHY_PS,
709 t_ck) - 1) << READ_LATENCY_SHIFT_4D5);
711 return phy;
714 static u32 get_ext_phy_ctrl_2_intelliphy_4d5(void)
716 u32 fifo_we_slave_ratio;
718 fifo_we_slave_ratio = DIV_ROUND_CLOSEST(
719 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
721 return fifo_we_slave_ratio | fifo_we_slave_ratio << 11 |
722 fifo_we_slave_ratio << 22;
725 static u32 get_ext_phy_ctrl_3_intelliphy_4d5(void)
727 u32 fifo_we_slave_ratio;
729 fifo_we_slave_ratio = DIV_ROUND_CLOSEST(
730 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
732 return fifo_we_slave_ratio >> 10 | fifo_we_slave_ratio << 1 |
733 fifo_we_slave_ratio << 12 | fifo_we_slave_ratio << 23;
736 static u32 get_ext_phy_ctrl_4_intelliphy_4d5(void)
738 u32 fifo_we_slave_ratio;
740 fifo_we_slave_ratio = DIV_ROUND_CLOSEST(
741 EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256 , t_ck);
743 return fifo_we_slave_ratio >> 9 | fifo_we_slave_ratio << 2 |
744 fifo_we_slave_ratio << 13;
747 static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev)
749 u32 pwr_mgmt_ctrl = 0, timeout;
750 u32 lpmode = EMIF_LP_MODE_SELF_REFRESH;
751 u32 timeout_perf = EMIF_LP_MODE_TIMEOUT_PERFORMANCE;
752 u32 timeout_pwr = EMIF_LP_MODE_TIMEOUT_POWER;
753 u32 freq_threshold = EMIF_LP_MODE_FREQ_THRESHOLD;
754 u32 mask;
755 u8 shift;
757 struct emif_custom_configs *cust_cfgs = emif->plat_data->custom_configs;
759 if (cust_cfgs && (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE)) {
760 lpmode = cust_cfgs->lpmode;
761 timeout_perf = cust_cfgs->lpmode_timeout_performance;
762 timeout_pwr = cust_cfgs->lpmode_timeout_power;
763 freq_threshold = cust_cfgs->lpmode_freq_threshold;
766 /* Timeout based on DDR frequency */
767 timeout = freq >= freq_threshold ? timeout_perf : timeout_pwr;
770 * The value to be set in register is "log2(timeout) - 3"
771 * if timeout < 16 load 0 in register
772 * if timeout is not a power of 2, round to next highest power of 2
774 if (timeout < 16) {
775 timeout = 0;
776 } else {
777 if (timeout & (timeout - 1))
778 timeout <<= 1;
779 timeout = __fls(timeout) - 3;
782 switch (lpmode) {
783 case EMIF_LP_MODE_CLOCK_STOP:
784 shift = CS_TIM_SHIFT;
785 mask = CS_TIM_MASK;
786 break;
787 case EMIF_LP_MODE_SELF_REFRESH:
788 /* Workaround for errata i735 */
789 if (timeout < 6)
790 timeout = 6;
792 shift = SR_TIM_SHIFT;
793 mask = SR_TIM_MASK;
794 break;
795 case EMIF_LP_MODE_PWR_DN:
796 shift = PD_TIM_SHIFT;
797 mask = PD_TIM_MASK;
798 break;
799 case EMIF_LP_MODE_DISABLE:
800 default:
801 mask = 0;
802 shift = 0;
803 break;
805 /* Round to maximum in case of overflow, BUT warn! */
806 if (lpmode != EMIF_LP_MODE_DISABLE && timeout > mask >> shift) {
807 pr_err("TIMEOUT Overflow - lpmode=%d perf=%d pwr=%d freq=%d\n",
808 lpmode,
809 timeout_perf,
810 timeout_pwr,
811 freq_threshold);
812 WARN(1, "timeout=0x%02x greater than 0x%02x. Using max\n",
813 timeout, mask >> shift);
814 timeout = mask >> shift;
817 /* Setup required timing */
818 pwr_mgmt_ctrl = (timeout << shift) & mask;
819 /* setup a default mask for rest of the modes */
820 pwr_mgmt_ctrl |= (SR_TIM_MASK | CS_TIM_MASK | PD_TIM_MASK) &
821 ~mask;
823 /* No CS_TIM in EMIF_4D5 */
824 if (ip_rev == EMIF_4D5)
825 pwr_mgmt_ctrl &= ~CS_TIM_MASK;
827 pwr_mgmt_ctrl |= lpmode << LP_MODE_SHIFT;
829 return pwr_mgmt_ctrl;
833 * Get the temperature level of the EMIF instance:
834 * Reads the MR4 register of attached SDRAM parts to find out the temperature
835 * level. If there are two parts attached(one on each CS), then the temperature
836 * level for the EMIF instance is the higher of the two temperatures.
838 static void get_temperature_level(struct emif_data *emif)
840 u32 temp, temperature_level;
841 void __iomem *base;
843 base = emif->base;
845 /* Read mode register 4 */
846 writel(DDR_MR4, base + EMIF_LPDDR2_MODE_REG_CONFIG);
847 temperature_level = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
848 temperature_level = (temperature_level & MR4_SDRAM_REF_RATE_MASK) >>
849 MR4_SDRAM_REF_RATE_SHIFT;
851 if (emif->plat_data->device_info->cs1_used) {
852 writel(DDR_MR4 | CS_MASK, base + EMIF_LPDDR2_MODE_REG_CONFIG);
853 temp = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
854 temp = (temp & MR4_SDRAM_REF_RATE_MASK)
855 >> MR4_SDRAM_REF_RATE_SHIFT;
856 temperature_level = max(temp, temperature_level);
859 /* treat everything less than nominal(3) in MR4 as nominal */
860 if (unlikely(temperature_level < SDRAM_TEMP_NOMINAL))
861 temperature_level = SDRAM_TEMP_NOMINAL;
863 /* if we get reserved value in MR4 persist with the existing value */
864 if (likely(temperature_level != SDRAM_TEMP_RESERVED_4))
865 emif->temperature_level = temperature_level;
869 * Program EMIF shadow registers that are not dependent on temperature
870 * or voltage
872 static void setup_registers(struct emif_data *emif, struct emif_regs *regs)
874 void __iomem *base = emif->base;
876 writel(regs->sdram_tim2_shdw, base + EMIF_SDRAM_TIMING_2_SHDW);
877 writel(regs->phy_ctrl_1_shdw, base + EMIF_DDR_PHY_CTRL_1_SHDW);
878 writel(regs->pwr_mgmt_ctrl_shdw,
879 base + EMIF_POWER_MANAGEMENT_CTRL_SHDW);
881 /* Settings specific for EMIF4D5 */
882 if (emif->plat_data->ip_rev != EMIF_4D5)
883 return;
884 writel(regs->ext_phy_ctrl_2_shdw, base + EMIF_EXT_PHY_CTRL_2_SHDW);
885 writel(regs->ext_phy_ctrl_3_shdw, base + EMIF_EXT_PHY_CTRL_3_SHDW);
886 writel(regs->ext_phy_ctrl_4_shdw, base + EMIF_EXT_PHY_CTRL_4_SHDW);
890 * When voltage ramps dll calibration and forced read idle should
891 * happen more often
893 static void setup_volt_sensitive_regs(struct emif_data *emif,
894 struct emif_regs *regs, u32 volt_state)
896 u32 calib_ctrl;
897 void __iomem *base = emif->base;
900 * EMIF_READ_IDLE_CTRL in EMIF4D refers to the same register as
901 * EMIF_DLL_CALIB_CTRL in EMIF4D5 and dll_calib_ctrl_shadow_*
902 * is an alias of the respective read_idle_ctrl_shdw_* (members of
903 * a union). So, the below code takes care of both cases
905 if (volt_state == DDR_VOLTAGE_RAMPING)
906 calib_ctrl = regs->dll_calib_ctrl_shdw_volt_ramp;
907 else
908 calib_ctrl = regs->dll_calib_ctrl_shdw_normal;
910 writel(calib_ctrl, base + EMIF_DLL_CALIB_CTRL_SHDW);
914 * setup_temperature_sensitive_regs() - set the timings for temperature
915 * sensitive registers. This happens once at initialisation time based
916 * on the temperature at boot time and subsequently based on the temperature
917 * alert interrupt. Temperature alert can happen when the temperature
918 * increases or drops. So this function can have the effect of either
919 * derating the timings or going back to nominal values.
921 static void setup_temperature_sensitive_regs(struct emif_data *emif,
922 struct emif_regs *regs)
924 u32 tim1, tim3, ref_ctrl, type;
925 void __iomem *base = emif->base;
926 u32 temperature;
928 type = emif->plat_data->device_info->type;
930 tim1 = regs->sdram_tim1_shdw;
931 tim3 = regs->sdram_tim3_shdw;
932 ref_ctrl = regs->ref_ctrl_shdw;
934 /* No de-rating for non-lpddr2 devices */
935 if (type != DDR_TYPE_LPDDR2_S2 && type != DDR_TYPE_LPDDR2_S4)
936 goto out;
938 temperature = emif->temperature_level;
939 if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH) {
940 ref_ctrl = regs->ref_ctrl_shdw_derated;
941 } else if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS) {
942 tim1 = regs->sdram_tim1_shdw_derated;
943 tim3 = regs->sdram_tim3_shdw_derated;
944 ref_ctrl = regs->ref_ctrl_shdw_derated;
947 out:
948 writel(tim1, base + EMIF_SDRAM_TIMING_1_SHDW);
949 writel(tim3, base + EMIF_SDRAM_TIMING_3_SHDW);
950 writel(ref_ctrl, base + EMIF_SDRAM_REFRESH_CTRL_SHDW);
953 static irqreturn_t handle_temp_alert(void __iomem *base, struct emif_data *emif)
955 u32 old_temp_level;
956 irqreturn_t ret = IRQ_HANDLED;
957 struct emif_custom_configs *custom_configs;
959 spin_lock_irqsave(&emif_lock, irq_state);
960 old_temp_level = emif->temperature_level;
961 get_temperature_level(emif);
963 if (unlikely(emif->temperature_level == old_temp_level)) {
964 goto out;
965 } else if (!emif->curr_regs) {
966 dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
967 goto out;
970 custom_configs = emif->plat_data->custom_configs;
973 * IF we detect higher than "nominal rating" from DDR sensor
974 * on an unsupported DDR part, shutdown system
976 if (custom_configs && !(custom_configs->mask &
977 EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART)) {
978 if (emif->temperature_level >= SDRAM_TEMP_HIGH_DERATE_REFRESH) {
979 dev_err(emif->dev,
980 "%s:NOT Extended temperature capable memory."
981 "Converting MR4=0x%02x as shutdown event\n",
982 __func__, emif->temperature_level);
984 * Temperature far too high - do kernel_power_off()
985 * from thread context
987 emif->temperature_level = SDRAM_TEMP_VERY_HIGH_SHUTDOWN;
988 ret = IRQ_WAKE_THREAD;
989 goto out;
993 if (emif->temperature_level < old_temp_level ||
994 emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
996 * Temperature coming down - defer handling to thread OR
997 * Temperature far too high - do kernel_power_off() from
998 * thread context
1000 ret = IRQ_WAKE_THREAD;
1001 } else {
1002 /* Temperature is going up - handle immediately */
1003 setup_temperature_sensitive_regs(emif, emif->curr_regs);
1004 do_freq_update();
1007 out:
1008 spin_unlock_irqrestore(&emif_lock, irq_state);
1009 return ret;
1012 static irqreturn_t emif_interrupt_handler(int irq, void *dev_id)
1014 u32 interrupts;
1015 struct emif_data *emif = dev_id;
1016 void __iomem *base = emif->base;
1017 struct device *dev = emif->dev;
1018 irqreturn_t ret = IRQ_HANDLED;
1020 /* Save the status and clear it */
1021 interrupts = readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
1022 writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
1025 * Handle temperature alert
1026 * Temperature alert should be same for all ports
1027 * So, it's enough to process it only for one of the ports
1029 if (interrupts & TA_SYS_MASK)
1030 ret = handle_temp_alert(base, emif);
1032 if (interrupts & ERR_SYS_MASK)
1033 dev_err(dev, "Access error from SYS port - %x\n", interrupts);
1035 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
1036 /* Save the status and clear it */
1037 interrupts = readl(base + EMIF_LL_OCP_INTERRUPT_STATUS);
1038 writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_STATUS);
1040 if (interrupts & ERR_LL_MASK)
1041 dev_err(dev, "Access error from LL port - %x\n",
1042 interrupts);
1045 return ret;
1048 static irqreturn_t emif_threaded_isr(int irq, void *dev_id)
1050 struct emif_data *emif = dev_id;
1052 if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
1053 dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
1055 /* If we have Power OFF ability, use it, else try restarting */
1056 if (pm_power_off) {
1057 kernel_power_off();
1058 } else {
1059 WARN(1, "FIXME: NO pm_power_off!!! trying restart\n");
1060 kernel_restart("SDRAM Over-temp Emergency restart");
1062 return IRQ_HANDLED;
1065 spin_lock_irqsave(&emif_lock, irq_state);
1067 if (emif->curr_regs) {
1068 setup_temperature_sensitive_regs(emif, emif->curr_regs);
1069 do_freq_update();
1070 } else {
1071 dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
1074 spin_unlock_irqrestore(&emif_lock, irq_state);
1076 return IRQ_HANDLED;
1079 static void clear_all_interrupts(struct emif_data *emif)
1081 void __iomem *base = emif->base;
1083 writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS),
1084 base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
1085 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
1086 writel(readl(base + EMIF_LL_OCP_INTERRUPT_STATUS),
1087 base + EMIF_LL_OCP_INTERRUPT_STATUS);
1090 static void disable_and_clear_all_interrupts(struct emif_data *emif)
1092 void __iomem *base = emif->base;
1094 /* Disable all interrupts */
1095 writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET),
1096 base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_CLEAR);
1097 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
1098 writel(readl(base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET),
1099 base + EMIF_LL_OCP_INTERRUPT_ENABLE_CLEAR);
1101 /* Clear all interrupts */
1102 clear_all_interrupts(emif);
1105 static int __init_or_module setup_interrupts(struct emif_data *emif, u32 irq)
1107 u32 interrupts, type;
1108 void __iomem *base = emif->base;
1110 type = emif->plat_data->device_info->type;
1112 clear_all_interrupts(emif);
1114 /* Enable interrupts for SYS interface */
1115 interrupts = EN_ERR_SYS_MASK;
1116 if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4)
1117 interrupts |= EN_TA_SYS_MASK;
1118 writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET);
1120 /* Enable interrupts for LL interface */
1121 if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
1122 /* TA need not be enabled for LL */
1123 interrupts = EN_ERR_LL_MASK;
1124 writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET);
1127 /* setup IRQ handlers */
1128 return devm_request_threaded_irq(emif->dev, irq,
1129 emif_interrupt_handler,
1130 emif_threaded_isr,
1131 0, dev_name(emif->dev),
1132 emif);
1136 static void __init_or_module emif_onetime_settings(struct emif_data *emif)
1138 u32 pwr_mgmt_ctrl, zq, temp_alert_cfg;
1139 void __iomem *base = emif->base;
1140 const struct lpddr2_addressing *addressing;
1141 const struct ddr_device_info *device_info;
1143 device_info = emif->plat_data->device_info;
1144 addressing = get_addressing_table(device_info);
1147 * Init power management settings
1148 * We don't know the frequency yet. Use a high frequency
1149 * value for a conservative timeout setting
1151 pwr_mgmt_ctrl = get_pwr_mgmt_ctrl(1000000000, emif,
1152 emif->plat_data->ip_rev);
1153 emif->lpmode = (pwr_mgmt_ctrl & LP_MODE_MASK) >> LP_MODE_SHIFT;
1154 writel(pwr_mgmt_ctrl, base + EMIF_POWER_MANAGEMENT_CONTROL);
1156 /* Init ZQ calibration settings */
1157 zq = get_zq_config_reg(addressing, device_info->cs1_used,
1158 device_info->cal_resistors_per_cs);
1159 writel(zq, base + EMIF_SDRAM_OUTPUT_IMPEDANCE_CALIBRATION_CONFIG);
1161 /* Check temperature level temperature level*/
1162 get_temperature_level(emif);
1163 if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN)
1164 dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
1166 /* Init temperature polling */
1167 temp_alert_cfg = get_temp_alert_config(addressing,
1168 emif->plat_data->custom_configs, device_info->cs1_used,
1169 device_info->io_width, get_emif_bus_width(emif));
1170 writel(temp_alert_cfg, base + EMIF_TEMPERATURE_ALERT_CONFIG);
1173 * Program external PHY control registers that are not frequency
1174 * dependent
1176 if (emif->plat_data->phy_type != EMIF_PHY_TYPE_INTELLIPHY)
1177 return;
1178 writel(EMIF_EXT_PHY_CTRL_1_VAL, base + EMIF_EXT_PHY_CTRL_1_SHDW);
1179 writel(EMIF_EXT_PHY_CTRL_5_VAL, base + EMIF_EXT_PHY_CTRL_5_SHDW);
1180 writel(EMIF_EXT_PHY_CTRL_6_VAL, base + EMIF_EXT_PHY_CTRL_6_SHDW);
1181 writel(EMIF_EXT_PHY_CTRL_7_VAL, base + EMIF_EXT_PHY_CTRL_7_SHDW);
1182 writel(EMIF_EXT_PHY_CTRL_8_VAL, base + EMIF_EXT_PHY_CTRL_8_SHDW);
1183 writel(EMIF_EXT_PHY_CTRL_9_VAL, base + EMIF_EXT_PHY_CTRL_9_SHDW);
1184 writel(EMIF_EXT_PHY_CTRL_10_VAL, base + EMIF_EXT_PHY_CTRL_10_SHDW);
1185 writel(EMIF_EXT_PHY_CTRL_11_VAL, base + EMIF_EXT_PHY_CTRL_11_SHDW);
1186 writel(EMIF_EXT_PHY_CTRL_12_VAL, base + EMIF_EXT_PHY_CTRL_12_SHDW);
1187 writel(EMIF_EXT_PHY_CTRL_13_VAL, base + EMIF_EXT_PHY_CTRL_13_SHDW);
1188 writel(EMIF_EXT_PHY_CTRL_14_VAL, base + EMIF_EXT_PHY_CTRL_14_SHDW);
1189 writel(EMIF_EXT_PHY_CTRL_15_VAL, base + EMIF_EXT_PHY_CTRL_15_SHDW);
1190 writel(EMIF_EXT_PHY_CTRL_16_VAL, base + EMIF_EXT_PHY_CTRL_16_SHDW);
1191 writel(EMIF_EXT_PHY_CTRL_17_VAL, base + EMIF_EXT_PHY_CTRL_17_SHDW);
1192 writel(EMIF_EXT_PHY_CTRL_18_VAL, base + EMIF_EXT_PHY_CTRL_18_SHDW);
1193 writel(EMIF_EXT_PHY_CTRL_19_VAL, base + EMIF_EXT_PHY_CTRL_19_SHDW);
1194 writel(EMIF_EXT_PHY_CTRL_20_VAL, base + EMIF_EXT_PHY_CTRL_20_SHDW);
1195 writel(EMIF_EXT_PHY_CTRL_21_VAL, base + EMIF_EXT_PHY_CTRL_21_SHDW);
1196 writel(EMIF_EXT_PHY_CTRL_22_VAL, base + EMIF_EXT_PHY_CTRL_22_SHDW);
1197 writel(EMIF_EXT_PHY_CTRL_23_VAL, base + EMIF_EXT_PHY_CTRL_23_SHDW);
1198 writel(EMIF_EXT_PHY_CTRL_24_VAL, base + EMIF_EXT_PHY_CTRL_24_SHDW);
1201 static void get_default_timings(struct emif_data *emif)
1203 struct emif_platform_data *pd = emif->plat_data;
1205 pd->timings = lpddr2_jedec_timings;
1206 pd->timings_arr_size = ARRAY_SIZE(lpddr2_jedec_timings);
1208 dev_warn(emif->dev, "%s: using default timings\n", __func__);
1211 static int is_dev_data_valid(u32 type, u32 density, u32 io_width, u32 phy_type,
1212 u32 ip_rev, struct device *dev)
1214 int valid;
1216 valid = (type == DDR_TYPE_LPDDR2_S4 ||
1217 type == DDR_TYPE_LPDDR2_S2)
1218 && (density >= DDR_DENSITY_64Mb
1219 && density <= DDR_DENSITY_8Gb)
1220 && (io_width >= DDR_IO_WIDTH_8
1221 && io_width <= DDR_IO_WIDTH_32);
1223 /* Combinations of EMIF and PHY revisions that we support today */
1224 switch (ip_rev) {
1225 case EMIF_4D:
1226 valid = valid && (phy_type == EMIF_PHY_TYPE_ATTILAPHY);
1227 break;
1228 case EMIF_4D5:
1229 valid = valid && (phy_type == EMIF_PHY_TYPE_INTELLIPHY);
1230 break;
1231 default:
1232 valid = 0;
1235 if (!valid)
1236 dev_err(dev, "%s: invalid DDR details\n", __func__);
1237 return valid;
1240 static int is_custom_config_valid(struct emif_custom_configs *cust_cfgs,
1241 struct device *dev)
1243 int valid = 1;
1245 if ((cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE) &&
1246 (cust_cfgs->lpmode != EMIF_LP_MODE_DISABLE))
1247 valid = cust_cfgs->lpmode_freq_threshold &&
1248 cust_cfgs->lpmode_timeout_performance &&
1249 cust_cfgs->lpmode_timeout_power;
1251 if (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL)
1252 valid = valid && cust_cfgs->temp_alert_poll_interval_ms;
1254 if (!valid)
1255 dev_warn(dev, "%s: invalid custom configs\n", __func__);
1257 return valid;
1260 #if defined(CONFIG_OF)
1261 static void __init_or_module of_get_custom_configs(struct device_node *np_emif,
1262 struct emif_data *emif)
1264 struct emif_custom_configs *cust_cfgs = NULL;
1265 int len;
1266 const __be32 *lpmode, *poll_intvl;
1268 lpmode = of_get_property(np_emif, "low-power-mode", &len);
1269 poll_intvl = of_get_property(np_emif, "temp-alert-poll-interval", &len);
1271 if (lpmode || poll_intvl)
1272 cust_cfgs = devm_kzalloc(emif->dev, sizeof(*cust_cfgs),
1273 GFP_KERNEL);
1275 if (!cust_cfgs)
1276 return;
1278 if (lpmode) {
1279 cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_LPMODE;
1280 cust_cfgs->lpmode = be32_to_cpup(lpmode);
1281 of_property_read_u32(np_emif,
1282 "low-power-mode-timeout-performance",
1283 &cust_cfgs->lpmode_timeout_performance);
1284 of_property_read_u32(np_emif,
1285 "low-power-mode-timeout-power",
1286 &cust_cfgs->lpmode_timeout_power);
1287 of_property_read_u32(np_emif,
1288 "low-power-mode-freq-threshold",
1289 &cust_cfgs->lpmode_freq_threshold);
1292 if (poll_intvl) {
1293 cust_cfgs->mask |=
1294 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL;
1295 cust_cfgs->temp_alert_poll_interval_ms =
1296 be32_to_cpup(poll_intvl);
1299 if (of_find_property(np_emif, "extended-temp-part", &len))
1300 cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART;
1302 if (!is_custom_config_valid(cust_cfgs, emif->dev)) {
1303 devm_kfree(emif->dev, cust_cfgs);
1304 return;
1307 emif->plat_data->custom_configs = cust_cfgs;
1310 static void __init_or_module of_get_ddr_info(struct device_node *np_emif,
1311 struct device_node *np_ddr,
1312 struct ddr_device_info *dev_info)
1314 u32 density = 0, io_width = 0;
1315 int len;
1317 if (of_find_property(np_emif, "cs1-used", &len))
1318 dev_info->cs1_used = true;
1320 if (of_find_property(np_emif, "cal-resistor-per-cs", &len))
1321 dev_info->cal_resistors_per_cs = true;
1323 if (of_device_is_compatible(np_ddr , "jedec,lpddr2-s4"))
1324 dev_info->type = DDR_TYPE_LPDDR2_S4;
1325 else if (of_device_is_compatible(np_ddr , "jedec,lpddr2-s2"))
1326 dev_info->type = DDR_TYPE_LPDDR2_S2;
1328 of_property_read_u32(np_ddr, "density", &density);
1329 of_property_read_u32(np_ddr, "io-width", &io_width);
1331 /* Convert from density in Mb to the density encoding in jedc_ddr.h */
1332 if (density & (density - 1))
1333 dev_info->density = 0;
1334 else
1335 dev_info->density = __fls(density) - 5;
1337 /* Convert from io_width in bits to io_width encoding in jedc_ddr.h */
1338 if (io_width & (io_width - 1))
1339 dev_info->io_width = 0;
1340 else
1341 dev_info->io_width = __fls(io_width) - 1;
1344 static struct emif_data * __init_or_module of_get_memory_device_details(
1345 struct device_node *np_emif, struct device *dev)
1347 struct emif_data *emif = NULL;
1348 struct ddr_device_info *dev_info = NULL;
1349 struct emif_platform_data *pd = NULL;
1350 struct device_node *np_ddr;
1351 int len;
1353 np_ddr = of_parse_phandle(np_emif, "device-handle", 0);
1354 if (!np_ddr)
1355 goto error;
1356 emif = devm_kzalloc(dev, sizeof(struct emif_data), GFP_KERNEL);
1357 pd = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1358 dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1360 if (!emif || !pd || !dev_info) {
1361 dev_err(dev, "%s: Out of memory!!\n",
1362 __func__);
1363 goto error;
1366 emif->plat_data = pd;
1367 pd->device_info = dev_info;
1368 emif->dev = dev;
1369 emif->np_ddr = np_ddr;
1370 emif->temperature_level = SDRAM_TEMP_NOMINAL;
1372 if (of_device_is_compatible(np_emif, "ti,emif-4d"))
1373 emif->plat_data->ip_rev = EMIF_4D;
1374 else if (of_device_is_compatible(np_emif, "ti,emif-4d5"))
1375 emif->plat_data->ip_rev = EMIF_4D5;
1377 of_property_read_u32(np_emif, "phy-type", &pd->phy_type);
1379 if (of_find_property(np_emif, "hw-caps-ll-interface", &len))
1380 pd->hw_caps |= EMIF_HW_CAPS_LL_INTERFACE;
1382 of_get_ddr_info(np_emif, np_ddr, dev_info);
1383 if (!is_dev_data_valid(pd->device_info->type, pd->device_info->density,
1384 pd->device_info->io_width, pd->phy_type, pd->ip_rev,
1385 emif->dev)) {
1386 dev_err(dev, "%s: invalid device data!!\n", __func__);
1387 goto error;
1390 * For EMIF instances other than EMIF1 see if the devices connected
1391 * are exactly same as on EMIF1(which is typically the case). If so,
1392 * mark it as a duplicate of EMIF1. This will save some memory and
1393 * computation.
1395 if (emif1 && emif1->np_ddr == np_ddr) {
1396 emif->duplicate = true;
1397 goto out;
1398 } else if (emif1) {
1399 dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1400 __func__);
1403 of_get_custom_configs(np_emif, emif);
1404 emif->plat_data->timings = of_get_ddr_timings(np_ddr, emif->dev,
1405 emif->plat_data->device_info->type,
1406 &emif->plat_data->timings_arr_size);
1408 emif->plat_data->min_tck = of_get_min_tck(np_ddr, emif->dev);
1409 goto out;
1411 error:
1412 return NULL;
1413 out:
1414 return emif;
1417 #else
1419 static struct emif_data * __init_or_module of_get_memory_device_details(
1420 struct device_node *np_emif, struct device *dev)
1422 return NULL;
1424 #endif
1426 static struct emif_data *__init_or_module get_device_details(
1427 struct platform_device *pdev)
1429 u32 size;
1430 struct emif_data *emif = NULL;
1431 struct ddr_device_info *dev_info;
1432 struct emif_custom_configs *cust_cfgs;
1433 struct emif_platform_data *pd;
1434 struct device *dev;
1435 void *temp;
1437 pd = pdev->dev.platform_data;
1438 dev = &pdev->dev;
1440 if (!(pd && pd->device_info && is_dev_data_valid(pd->device_info->type,
1441 pd->device_info->density, pd->device_info->io_width,
1442 pd->phy_type, pd->ip_rev, dev))) {
1443 dev_err(dev, "%s: invalid device data\n", __func__);
1444 goto error;
1447 emif = devm_kzalloc(dev, sizeof(*emif), GFP_KERNEL);
1448 temp = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1449 dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1451 if (!emif || !pd || !dev_info) {
1452 dev_err(dev, "%s:%d: allocation error\n", __func__, __LINE__);
1453 goto error;
1456 memcpy(temp, pd, sizeof(*pd));
1457 pd = temp;
1458 memcpy(dev_info, pd->device_info, sizeof(*dev_info));
1460 pd->device_info = dev_info;
1461 emif->plat_data = pd;
1462 emif->dev = dev;
1463 emif->temperature_level = SDRAM_TEMP_NOMINAL;
1466 * For EMIF instances other than EMIF1 see if the devices connected
1467 * are exactly same as on EMIF1(which is typically the case). If so,
1468 * mark it as a duplicate of EMIF1 and skip copying timings data.
1469 * This will save some memory and some computation later.
1471 emif->duplicate = emif1 && (memcmp(dev_info,
1472 emif1->plat_data->device_info,
1473 sizeof(struct ddr_device_info)) == 0);
1475 if (emif->duplicate) {
1476 pd->timings = NULL;
1477 pd->min_tck = NULL;
1478 goto out;
1479 } else if (emif1) {
1480 dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1481 __func__);
1485 * Copy custom configs - ignore allocation error, if any, as
1486 * custom_configs is not very critical
1488 cust_cfgs = pd->custom_configs;
1489 if (cust_cfgs && is_custom_config_valid(cust_cfgs, dev)) {
1490 temp = devm_kzalloc(dev, sizeof(*cust_cfgs), GFP_KERNEL);
1491 if (temp)
1492 memcpy(temp, cust_cfgs, sizeof(*cust_cfgs));
1493 else
1494 dev_warn(dev, "%s:%d: allocation error\n", __func__,
1495 __LINE__);
1496 pd->custom_configs = temp;
1500 * Copy timings and min-tck values from platform data. If it is not
1501 * available or if memory allocation fails, use JEDEC defaults
1503 size = sizeof(struct lpddr2_timings) * pd->timings_arr_size;
1504 if (pd->timings) {
1505 temp = devm_kzalloc(dev, size, GFP_KERNEL);
1506 if (temp) {
1507 memcpy(temp, pd->timings, size);
1508 pd->timings = temp;
1509 } else {
1510 dev_warn(dev, "%s:%d: allocation error\n", __func__,
1511 __LINE__);
1512 get_default_timings(emif);
1514 } else {
1515 get_default_timings(emif);
1518 if (pd->min_tck) {
1519 temp = devm_kzalloc(dev, sizeof(*pd->min_tck), GFP_KERNEL);
1520 if (temp) {
1521 memcpy(temp, pd->min_tck, sizeof(*pd->min_tck));
1522 pd->min_tck = temp;
1523 } else {
1524 dev_warn(dev, "%s:%d: allocation error\n", __func__,
1525 __LINE__);
1526 pd->min_tck = &lpddr2_jedec_min_tck;
1528 } else {
1529 pd->min_tck = &lpddr2_jedec_min_tck;
1532 out:
1533 return emif;
1535 error:
1536 return NULL;
1539 static int __init_or_module emif_probe(struct platform_device *pdev)
1541 struct emif_data *emif;
1542 struct resource *res;
1543 int irq;
1545 if (pdev->dev.of_node)
1546 emif = of_get_memory_device_details(pdev->dev.of_node, &pdev->dev);
1547 else
1548 emif = get_device_details(pdev);
1550 if (!emif) {
1551 pr_err("%s: error getting device data\n", __func__);
1552 goto error;
1555 list_add(&emif->node, &device_list);
1556 emif->addressing = get_addressing_table(emif->plat_data->device_info);
1558 /* Save pointers to each other in emif and device structures */
1559 emif->dev = &pdev->dev;
1560 platform_set_drvdata(pdev, emif);
1562 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1563 emif->base = devm_ioremap_resource(emif->dev, res);
1564 if (IS_ERR(emif->base))
1565 goto error;
1567 irq = platform_get_irq(pdev, 0);
1568 if (irq < 0) {
1569 dev_err(emif->dev, "%s: error getting IRQ resource - %d\n",
1570 __func__, irq);
1571 goto error;
1574 emif_onetime_settings(emif);
1575 emif_debugfs_init(emif);
1576 disable_and_clear_all_interrupts(emif);
1577 setup_interrupts(emif, irq);
1579 /* One-time actions taken on probing the first device */
1580 if (!emif1) {
1581 emif1 = emif;
1582 spin_lock_init(&emif_lock);
1585 * TODO: register notifiers for frequency and voltage
1586 * change here once the respective frameworks are
1587 * available
1591 dev_info(&pdev->dev, "%s: device configured with addr = %p and IRQ%d\n",
1592 __func__, emif->base, irq);
1594 return 0;
1595 error:
1596 return -ENODEV;
1599 static int __exit emif_remove(struct platform_device *pdev)
1601 struct emif_data *emif = platform_get_drvdata(pdev);
1603 emif_debugfs_exit(emif);
1605 return 0;
1608 static void emif_shutdown(struct platform_device *pdev)
1610 struct emif_data *emif = platform_get_drvdata(pdev);
1612 disable_and_clear_all_interrupts(emif);
1615 static int get_emif_reg_values(struct emif_data *emif, u32 freq,
1616 struct emif_regs *regs)
1618 u32 cs1_used, ip_rev, phy_type;
1619 u32 cl, type;
1620 const struct lpddr2_timings *timings;
1621 const struct lpddr2_min_tck *min_tck;
1622 const struct ddr_device_info *device_info;
1623 const struct lpddr2_addressing *addressing;
1624 struct emif_data *emif_for_calc;
1625 struct device *dev;
1626 const struct emif_custom_configs *custom_configs;
1628 dev = emif->dev;
1630 * If the devices on this EMIF instance is duplicate of EMIF1,
1631 * use EMIF1 details for the calculation
1633 emif_for_calc = emif->duplicate ? emif1 : emif;
1634 timings = get_timings_table(emif_for_calc, freq);
1635 addressing = emif_for_calc->addressing;
1636 if (!timings || !addressing) {
1637 dev_err(dev, "%s: not enough data available for %dHz",
1638 __func__, freq);
1639 return -1;
1642 device_info = emif_for_calc->plat_data->device_info;
1643 type = device_info->type;
1644 cs1_used = device_info->cs1_used;
1645 ip_rev = emif_for_calc->plat_data->ip_rev;
1646 phy_type = emif_for_calc->plat_data->phy_type;
1648 min_tck = emif_for_calc->plat_data->min_tck;
1649 custom_configs = emif_for_calc->plat_data->custom_configs;
1651 set_ddr_clk_period(freq);
1653 regs->ref_ctrl_shdw = get_sdram_ref_ctrl_shdw(freq, addressing);
1654 regs->sdram_tim1_shdw = get_sdram_tim_1_shdw(timings, min_tck,
1655 addressing);
1656 regs->sdram_tim2_shdw = get_sdram_tim_2_shdw(timings, min_tck,
1657 addressing, type);
1658 regs->sdram_tim3_shdw = get_sdram_tim_3_shdw(timings, min_tck,
1659 addressing, type, ip_rev, EMIF_NORMAL_TIMINGS);
1661 cl = get_cl(emif);
1663 if (phy_type == EMIF_PHY_TYPE_ATTILAPHY && ip_rev == EMIF_4D) {
1664 regs->phy_ctrl_1_shdw = get_ddr_phy_ctrl_1_attilaphy_4d(
1665 timings, freq, cl);
1666 } else if (phy_type == EMIF_PHY_TYPE_INTELLIPHY && ip_rev == EMIF_4D5) {
1667 regs->phy_ctrl_1_shdw = get_phy_ctrl_1_intelliphy_4d5(freq, cl);
1668 regs->ext_phy_ctrl_2_shdw = get_ext_phy_ctrl_2_intelliphy_4d5();
1669 regs->ext_phy_ctrl_3_shdw = get_ext_phy_ctrl_3_intelliphy_4d5();
1670 regs->ext_phy_ctrl_4_shdw = get_ext_phy_ctrl_4_intelliphy_4d5();
1671 } else {
1672 return -1;
1675 /* Only timeout values in pwr_mgmt_ctrl_shdw register */
1676 regs->pwr_mgmt_ctrl_shdw =
1677 get_pwr_mgmt_ctrl(freq, emif_for_calc, ip_rev) &
1678 (CS_TIM_MASK | SR_TIM_MASK | PD_TIM_MASK);
1680 if (ip_rev & EMIF_4D) {
1681 regs->read_idle_ctrl_shdw_normal =
1682 get_read_idle_ctrl_shdw(DDR_VOLTAGE_STABLE);
1684 regs->read_idle_ctrl_shdw_volt_ramp =
1685 get_read_idle_ctrl_shdw(DDR_VOLTAGE_RAMPING);
1686 } else if (ip_rev & EMIF_4D5) {
1687 regs->dll_calib_ctrl_shdw_normal =
1688 get_dll_calib_ctrl_shdw(DDR_VOLTAGE_STABLE);
1690 regs->dll_calib_ctrl_shdw_volt_ramp =
1691 get_dll_calib_ctrl_shdw(DDR_VOLTAGE_RAMPING);
1694 if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
1695 regs->ref_ctrl_shdw_derated = get_sdram_ref_ctrl_shdw(freq / 4,
1696 addressing);
1698 regs->sdram_tim1_shdw_derated =
1699 get_sdram_tim_1_shdw_derated(timings, min_tck,
1700 addressing);
1702 regs->sdram_tim3_shdw_derated = get_sdram_tim_3_shdw(timings,
1703 min_tck, addressing, type, ip_rev,
1704 EMIF_DERATED_TIMINGS);
1707 regs->freq = freq;
1709 return 0;
1713 * get_regs() - gets the cached emif_regs structure for a given EMIF instance
1714 * given frequency(freq):
1716 * As an optimisation, every EMIF instance other than EMIF1 shares the
1717 * register cache with EMIF1 if the devices connected on this instance
1718 * are same as that on EMIF1(indicated by the duplicate flag)
1720 * If we do not have an entry corresponding to the frequency given, we
1721 * allocate a new entry and calculate the values
1723 * Upon finding the right reg dump, save it in curr_regs. It can be
1724 * directly used for thermal de-rating and voltage ramping changes.
1726 static struct emif_regs *get_regs(struct emif_data *emif, u32 freq)
1728 int i;
1729 struct emif_regs **regs_cache;
1730 struct emif_regs *regs = NULL;
1731 struct device *dev;
1733 dev = emif->dev;
1734 if (emif->curr_regs && emif->curr_regs->freq == freq) {
1735 dev_dbg(dev, "%s: using curr_regs - %u Hz", __func__, freq);
1736 return emif->curr_regs;
1739 if (emif->duplicate)
1740 regs_cache = emif1->regs_cache;
1741 else
1742 regs_cache = emif->regs_cache;
1744 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
1745 if (regs_cache[i]->freq == freq) {
1746 regs = regs_cache[i];
1747 dev_dbg(dev,
1748 "%s: reg dump found in reg cache for %u Hz\n",
1749 __func__, freq);
1750 break;
1755 * If we don't have an entry for this frequency in the cache create one
1756 * and calculate the values
1758 if (!regs) {
1759 regs = devm_kzalloc(emif->dev, sizeof(*regs), GFP_ATOMIC);
1760 if (!regs)
1761 return NULL;
1763 if (get_emif_reg_values(emif, freq, regs)) {
1764 devm_kfree(emif->dev, regs);
1765 return NULL;
1769 * Now look for an un-used entry in the cache and save the
1770 * newly created struct. If there are no free entries
1771 * over-write the last entry
1773 for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++)
1776 if (i >= EMIF_MAX_NUM_FREQUENCIES) {
1777 dev_warn(dev, "%s: regs_cache full - reusing a slot!!\n",
1778 __func__);
1779 i = EMIF_MAX_NUM_FREQUENCIES - 1;
1780 devm_kfree(emif->dev, regs_cache[i]);
1782 regs_cache[i] = regs;
1785 return regs;
1788 static void do_volt_notify_handling(struct emif_data *emif, u32 volt_state)
1790 dev_dbg(emif->dev, "%s: voltage notification : %d", __func__,
1791 volt_state);
1793 if (!emif->curr_regs) {
1794 dev_err(emif->dev,
1795 "%s: volt-notify before registers are ready: %d\n",
1796 __func__, volt_state);
1797 return;
1800 setup_volt_sensitive_regs(emif, emif->curr_regs, volt_state);
1804 * TODO: voltage notify handling should be hooked up to
1805 * regulator framework as soon as the necessary support
1806 * is available in mainline kernel. This function is un-used
1807 * right now.
1809 static void __attribute__((unused)) volt_notify_handling(u32 volt_state)
1811 struct emif_data *emif;
1813 spin_lock_irqsave(&emif_lock, irq_state);
1815 list_for_each_entry(emif, &device_list, node)
1816 do_volt_notify_handling(emif, volt_state);
1817 do_freq_update();
1819 spin_unlock_irqrestore(&emif_lock, irq_state);
1822 static void do_freq_pre_notify_handling(struct emif_data *emif, u32 new_freq)
1824 struct emif_regs *regs;
1826 regs = get_regs(emif, new_freq);
1827 if (!regs)
1828 return;
1830 emif->curr_regs = regs;
1833 * Update the shadow registers:
1834 * Temperature and voltage-ramp sensitive settings are also configured
1835 * in terms of DDR cycles. So, we need to update them too when there
1836 * is a freq change
1838 dev_dbg(emif->dev, "%s: setting up shadow registers for %uHz",
1839 __func__, new_freq);
1840 setup_registers(emif, regs);
1841 setup_temperature_sensitive_regs(emif, regs);
1842 setup_volt_sensitive_regs(emif, regs, DDR_VOLTAGE_STABLE);
1845 * Part of workaround for errata i728. See do_freq_update()
1846 * for more details
1848 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
1849 set_lpmode(emif, EMIF_LP_MODE_DISABLE);
1853 * TODO: frequency notify handling should be hooked up to
1854 * clock framework as soon as the necessary support is
1855 * available in mainline kernel. This function is un-used
1856 * right now.
1858 static void __attribute__((unused)) freq_pre_notify_handling(u32 new_freq)
1860 struct emif_data *emif;
1863 * NOTE: we are taking the spin-lock here and releases it
1864 * only in post-notifier. This doesn't look good and
1865 * Sparse complains about it, but this seems to be
1866 * un-avoidable. We need to lock a sequence of events
1867 * that is split between EMIF and clock framework.
1869 * 1. EMIF driver updates EMIF timings in shadow registers in the
1870 * frequency pre-notify callback from clock framework
1871 * 2. clock framework sets up the registers for the new frequency
1872 * 3. clock framework initiates a hw-sequence that updates
1873 * the frequency EMIF timings synchronously.
1875 * All these 3 steps should be performed as an atomic operation
1876 * vis-a-vis similar sequence in the EMIF interrupt handler
1877 * for temperature events. Otherwise, there could be race
1878 * conditions that could result in incorrect EMIF timings for
1879 * a given frequency
1881 spin_lock_irqsave(&emif_lock, irq_state);
1883 list_for_each_entry(emif, &device_list, node)
1884 do_freq_pre_notify_handling(emif, new_freq);
1887 static void do_freq_post_notify_handling(struct emif_data *emif)
1890 * Part of workaround for errata i728. See do_freq_update()
1891 * for more details
1893 if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
1894 set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
1898 * TODO: frequency notify handling should be hooked up to
1899 * clock framework as soon as the necessary support is
1900 * available in mainline kernel. This function is un-used
1901 * right now.
1903 static void __attribute__((unused)) freq_post_notify_handling(void)
1905 struct emif_data *emif;
1907 list_for_each_entry(emif, &device_list, node)
1908 do_freq_post_notify_handling(emif);
1911 * Lock is done in pre-notify handler. See freq_pre_notify_handling()
1912 * for more details
1914 spin_unlock_irqrestore(&emif_lock, irq_state);
1917 #if defined(CONFIG_OF)
1918 static const struct of_device_id emif_of_match[] = {
1919 { .compatible = "ti,emif-4d" },
1920 { .compatible = "ti,emif-4d5" },
1923 MODULE_DEVICE_TABLE(of, emif_of_match);
1924 #endif
1926 static struct platform_driver emif_driver = {
1927 .remove = __exit_p(emif_remove),
1928 .shutdown = emif_shutdown,
1929 .driver = {
1930 .name = "emif",
1931 .of_match_table = of_match_ptr(emif_of_match),
1935 module_platform_driver_probe(emif_driver, emif_probe);
1937 MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver");
1938 MODULE_LICENSE("GPL");
1939 MODULE_ALIAS("platform:emif");
1940 MODULE_AUTHOR("Texas Instruments Inc");