coresight: configuring ETF in FIFO mode when acting as link
[linux/fpc-iii.git] / kernel / futex.c
bloba5d2e74c89e0b217df98326e5febf3caf687687c
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/hugetlb.h>
65 #include <linux/freezer.h>
66 #include <linux/bootmem.h>
67 #include <linux/fault-inject.h>
69 #include <asm/futex.h>
71 #include "locking/rtmutex_common.h"
74 * READ this before attempting to hack on futexes!
76 * Basic futex operation and ordering guarantees
77 * =============================================
79 * The waiter reads the futex value in user space and calls
80 * futex_wait(). This function computes the hash bucket and acquires
81 * the hash bucket lock. After that it reads the futex user space value
82 * again and verifies that the data has not changed. If it has not changed
83 * it enqueues itself into the hash bucket, releases the hash bucket lock
84 * and schedules.
86 * The waker side modifies the user space value of the futex and calls
87 * futex_wake(). This function computes the hash bucket and acquires the
88 * hash bucket lock. Then it looks for waiters on that futex in the hash
89 * bucket and wakes them.
91 * In futex wake up scenarios where no tasks are blocked on a futex, taking
92 * the hb spinlock can be avoided and simply return. In order for this
93 * optimization to work, ordering guarantees must exist so that the waiter
94 * being added to the list is acknowledged when the list is concurrently being
95 * checked by the waker, avoiding scenarios like the following:
97 * CPU 0 CPU 1
98 * val = *futex;
99 * sys_futex(WAIT, futex, val);
100 * futex_wait(futex, val);
101 * uval = *futex;
102 * *futex = newval;
103 * sys_futex(WAKE, futex);
104 * futex_wake(futex);
105 * if (queue_empty())
106 * return;
107 * if (uval == val)
108 * lock(hash_bucket(futex));
109 * queue();
110 * unlock(hash_bucket(futex));
111 * schedule();
113 * This would cause the waiter on CPU 0 to wait forever because it
114 * missed the transition of the user space value from val to newval
115 * and the waker did not find the waiter in the hash bucket queue.
117 * The correct serialization ensures that a waiter either observes
118 * the changed user space value before blocking or is woken by a
119 * concurrent waker:
121 * CPU 0 CPU 1
122 * val = *futex;
123 * sys_futex(WAIT, futex, val);
124 * futex_wait(futex, val);
126 * waiters++; (a)
127 * smp_mb(); (A) <-- paired with -.
129 * lock(hash_bucket(futex)); |
131 * uval = *futex; |
132 * | *futex = newval;
133 * | sys_futex(WAKE, futex);
134 * | futex_wake(futex);
136 * `--------> smp_mb(); (B)
137 * if (uval == val)
138 * queue();
139 * unlock(hash_bucket(futex));
140 * schedule(); if (waiters)
141 * lock(hash_bucket(futex));
142 * else wake_waiters(futex);
143 * waiters--; (b) unlock(hash_bucket(futex));
145 * Where (A) orders the waiters increment and the futex value read through
146 * atomic operations (see hb_waiters_inc) and where (B) orders the write
147 * to futex and the waiters read -- this is done by the barriers for both
148 * shared and private futexes in get_futex_key_refs().
150 * This yields the following case (where X:=waiters, Y:=futex):
152 * X = Y = 0
154 * w[X]=1 w[Y]=1
155 * MB MB
156 * r[Y]=y r[X]=x
158 * Which guarantees that x==0 && y==0 is impossible; which translates back into
159 * the guarantee that we cannot both miss the futex variable change and the
160 * enqueue.
162 * Note that a new waiter is accounted for in (a) even when it is possible that
163 * the wait call can return error, in which case we backtrack from it in (b).
164 * Refer to the comment in queue_lock().
166 * Similarly, in order to account for waiters being requeued on another
167 * address we always increment the waiters for the destination bucket before
168 * acquiring the lock. It then decrements them again after releasing it -
169 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
170 * will do the additional required waiter count housekeeping. This is done for
171 * double_lock_hb() and double_unlock_hb(), respectively.
174 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
175 int __read_mostly futex_cmpxchg_enabled;
176 #endif
179 * Futex flags used to encode options to functions and preserve them across
180 * restarts.
182 #define FLAGS_SHARED 0x01
183 #define FLAGS_CLOCKRT 0x02
184 #define FLAGS_HAS_TIMEOUT 0x04
187 * Priority Inheritance state:
189 struct futex_pi_state {
191 * list of 'owned' pi_state instances - these have to be
192 * cleaned up in do_exit() if the task exits prematurely:
194 struct list_head list;
197 * The PI object:
199 struct rt_mutex pi_mutex;
201 struct task_struct *owner;
202 atomic_t refcount;
204 union futex_key key;
208 * struct futex_q - The hashed futex queue entry, one per waiting task
209 * @list: priority-sorted list of tasks waiting on this futex
210 * @task: the task waiting on the futex
211 * @lock_ptr: the hash bucket lock
212 * @key: the key the futex is hashed on
213 * @pi_state: optional priority inheritance state
214 * @rt_waiter: rt_waiter storage for use with requeue_pi
215 * @requeue_pi_key: the requeue_pi target futex key
216 * @bitset: bitset for the optional bitmasked wakeup
218 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
219 * we can wake only the relevant ones (hashed queues may be shared).
221 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
222 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
223 * The order of wakeup is always to make the first condition true, then
224 * the second.
226 * PI futexes are typically woken before they are removed from the hash list via
227 * the rt_mutex code. See unqueue_me_pi().
229 struct futex_q {
230 struct plist_node list;
232 struct task_struct *task;
233 spinlock_t *lock_ptr;
234 union futex_key key;
235 struct futex_pi_state *pi_state;
236 struct rt_mutex_waiter *rt_waiter;
237 union futex_key *requeue_pi_key;
238 u32 bitset;
241 static const struct futex_q futex_q_init = {
242 /* list gets initialized in queue_me()*/
243 .key = FUTEX_KEY_INIT,
244 .bitset = FUTEX_BITSET_MATCH_ANY
248 * Hash buckets are shared by all the futex_keys that hash to the same
249 * location. Each key may have multiple futex_q structures, one for each task
250 * waiting on a futex.
252 struct futex_hash_bucket {
253 atomic_t waiters;
254 spinlock_t lock;
255 struct plist_head chain;
256 } ____cacheline_aligned_in_smp;
259 * The base of the bucket array and its size are always used together
260 * (after initialization only in hash_futex()), so ensure that they
261 * reside in the same cacheline.
263 static struct {
264 struct futex_hash_bucket *queues;
265 unsigned long hashsize;
266 } __futex_data __read_mostly __aligned(2*sizeof(long));
267 #define futex_queues (__futex_data.queues)
268 #define futex_hashsize (__futex_data.hashsize)
272 * Fault injections for futexes.
274 #ifdef CONFIG_FAIL_FUTEX
276 static struct {
277 struct fault_attr attr;
279 bool ignore_private;
280 } fail_futex = {
281 .attr = FAULT_ATTR_INITIALIZER,
282 .ignore_private = false,
285 static int __init setup_fail_futex(char *str)
287 return setup_fault_attr(&fail_futex.attr, str);
289 __setup("fail_futex=", setup_fail_futex);
291 static bool should_fail_futex(bool fshared)
293 if (fail_futex.ignore_private && !fshared)
294 return false;
296 return should_fail(&fail_futex.attr, 1);
299 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
301 static int __init fail_futex_debugfs(void)
303 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
304 struct dentry *dir;
306 dir = fault_create_debugfs_attr("fail_futex", NULL,
307 &fail_futex.attr);
308 if (IS_ERR(dir))
309 return PTR_ERR(dir);
311 if (!debugfs_create_bool("ignore-private", mode, dir,
312 &fail_futex.ignore_private)) {
313 debugfs_remove_recursive(dir);
314 return -ENOMEM;
317 return 0;
320 late_initcall(fail_futex_debugfs);
322 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
324 #else
325 static inline bool should_fail_futex(bool fshared)
327 return false;
329 #endif /* CONFIG_FAIL_FUTEX */
331 static inline void futex_get_mm(union futex_key *key)
333 atomic_inc(&key->private.mm->mm_count);
335 * Ensure futex_get_mm() implies a full barrier such that
336 * get_futex_key() implies a full barrier. This is relied upon
337 * as smp_mb(); (B), see the ordering comment above.
339 smp_mb__after_atomic();
343 * Reflects a new waiter being added to the waitqueue.
345 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
347 #ifdef CONFIG_SMP
348 atomic_inc(&hb->waiters);
350 * Full barrier (A), see the ordering comment above.
352 smp_mb__after_atomic();
353 #endif
357 * Reflects a waiter being removed from the waitqueue by wakeup
358 * paths.
360 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
362 #ifdef CONFIG_SMP
363 atomic_dec(&hb->waiters);
364 #endif
367 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
369 #ifdef CONFIG_SMP
370 return atomic_read(&hb->waiters);
371 #else
372 return 1;
373 #endif
377 * We hash on the keys returned from get_futex_key (see below).
379 static struct futex_hash_bucket *hash_futex(union futex_key *key)
381 u32 hash = jhash2((u32*)&key->both.word,
382 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
383 key->both.offset);
384 return &futex_queues[hash & (futex_hashsize - 1)];
388 * Return 1 if two futex_keys are equal, 0 otherwise.
390 static inline int match_futex(union futex_key *key1, union futex_key *key2)
392 return (key1 && key2
393 && key1->both.word == key2->both.word
394 && key1->both.ptr == key2->both.ptr
395 && key1->both.offset == key2->both.offset);
399 * Take a reference to the resource addressed by a key.
400 * Can be called while holding spinlocks.
403 static void get_futex_key_refs(union futex_key *key)
405 if (!key->both.ptr)
406 return;
408 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
409 case FUT_OFF_INODE:
410 ihold(key->shared.inode); /* implies smp_mb(); (B) */
411 break;
412 case FUT_OFF_MMSHARED:
413 futex_get_mm(key); /* implies smp_mb(); (B) */
414 break;
415 default:
417 * Private futexes do not hold reference on an inode or
418 * mm, therefore the only purpose of calling get_futex_key_refs
419 * is because we need the barrier for the lockless waiter check.
421 smp_mb(); /* explicit smp_mb(); (B) */
426 * Drop a reference to the resource addressed by a key.
427 * The hash bucket spinlock must not be held. This is
428 * a no-op for private futexes, see comment in the get
429 * counterpart.
431 static void drop_futex_key_refs(union futex_key *key)
433 if (!key->both.ptr) {
434 /* If we're here then we tried to put a key we failed to get */
435 WARN_ON_ONCE(1);
436 return;
439 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
440 case FUT_OFF_INODE:
441 iput(key->shared.inode);
442 break;
443 case FUT_OFF_MMSHARED:
444 mmdrop(key->private.mm);
445 break;
450 * get_futex_key() - Get parameters which are the keys for a futex
451 * @uaddr: virtual address of the futex
452 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
453 * @key: address where result is stored.
454 * @rw: mapping needs to be read/write (values: VERIFY_READ,
455 * VERIFY_WRITE)
457 * Return: a negative error code or 0
459 * The key words are stored in *key on success.
461 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
462 * offset_within_page). For private mappings, it's (uaddr, current->mm).
463 * We can usually work out the index without swapping in the page.
465 * lock_page() might sleep, the caller should not hold a spinlock.
467 static int
468 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
470 unsigned long address = (unsigned long)uaddr;
471 struct mm_struct *mm = current->mm;
472 struct page *page;
473 struct address_space *mapping;
474 int err, ro = 0;
477 * The futex address must be "naturally" aligned.
479 key->both.offset = address % PAGE_SIZE;
480 if (unlikely((address % sizeof(u32)) != 0))
481 return -EINVAL;
482 address -= key->both.offset;
484 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
485 return -EFAULT;
487 if (unlikely(should_fail_futex(fshared)))
488 return -EFAULT;
491 * PROCESS_PRIVATE futexes are fast.
492 * As the mm cannot disappear under us and the 'key' only needs
493 * virtual address, we dont even have to find the underlying vma.
494 * Note : We do have to check 'uaddr' is a valid user address,
495 * but access_ok() should be faster than find_vma()
497 if (!fshared) {
498 key->private.mm = mm;
499 key->private.address = address;
500 get_futex_key_refs(key); /* implies smp_mb(); (B) */
501 return 0;
504 again:
505 /* Ignore any VERIFY_READ mapping (futex common case) */
506 if (unlikely(should_fail_futex(fshared)))
507 return -EFAULT;
509 err = get_user_pages_fast(address, 1, 1, &page);
511 * If write access is not required (eg. FUTEX_WAIT), try
512 * and get read-only access.
514 if (err == -EFAULT && rw == VERIFY_READ) {
515 err = get_user_pages_fast(address, 1, 0, &page);
516 ro = 1;
518 if (err < 0)
519 return err;
520 else
521 err = 0;
524 * The treatment of mapping from this point on is critical. The page
525 * lock protects many things but in this context the page lock
526 * stabilizes mapping, prevents inode freeing in the shared
527 * file-backed region case and guards against movement to swap cache.
529 * Strictly speaking the page lock is not needed in all cases being
530 * considered here and page lock forces unnecessarily serialization
531 * From this point on, mapping will be re-verified if necessary and
532 * page lock will be acquired only if it is unavoidable
534 page = compound_head(page);
535 mapping = READ_ONCE(page->mapping);
538 * If page->mapping is NULL, then it cannot be a PageAnon
539 * page; but it might be the ZERO_PAGE or in the gate area or
540 * in a special mapping (all cases which we are happy to fail);
541 * or it may have been a good file page when get_user_pages_fast
542 * found it, but truncated or holepunched or subjected to
543 * invalidate_complete_page2 before we got the page lock (also
544 * cases which we are happy to fail). And we hold a reference,
545 * so refcount care in invalidate_complete_page's remove_mapping
546 * prevents drop_caches from setting mapping to NULL beneath us.
548 * The case we do have to guard against is when memory pressure made
549 * shmem_writepage move it from filecache to swapcache beneath us:
550 * an unlikely race, but we do need to retry for page->mapping.
552 if (unlikely(!mapping)) {
553 int shmem_swizzled;
556 * Page lock is required to identify which special case above
557 * applies. If this is really a shmem page then the page lock
558 * will prevent unexpected transitions.
560 lock_page(page);
561 shmem_swizzled = PageSwapCache(page) || page->mapping;
562 unlock_page(page);
563 put_page(page);
565 if (shmem_swizzled)
566 goto again;
568 return -EFAULT;
572 * Private mappings are handled in a simple way.
574 * If the futex key is stored on an anonymous page, then the associated
575 * object is the mm which is implicitly pinned by the calling process.
577 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
578 * it's a read-only handle, it's expected that futexes attach to
579 * the object not the particular process.
581 if (PageAnon(page)) {
583 * A RO anonymous page will never change and thus doesn't make
584 * sense for futex operations.
586 if (unlikely(should_fail_futex(fshared)) || ro) {
587 err = -EFAULT;
588 goto out;
591 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
592 key->private.mm = mm;
593 key->private.address = address;
595 get_futex_key_refs(key); /* implies smp_mb(); (B) */
597 } else {
598 struct inode *inode;
601 * The associated futex object in this case is the inode and
602 * the page->mapping must be traversed. Ordinarily this should
603 * be stabilised under page lock but it's not strictly
604 * necessary in this case as we just want to pin the inode, not
605 * update the radix tree or anything like that.
607 * The RCU read lock is taken as the inode is finally freed
608 * under RCU. If the mapping still matches expectations then the
609 * mapping->host can be safely accessed as being a valid inode.
611 rcu_read_lock();
613 if (READ_ONCE(page->mapping) != mapping) {
614 rcu_read_unlock();
615 put_page(page);
617 goto again;
620 inode = READ_ONCE(mapping->host);
621 if (!inode) {
622 rcu_read_unlock();
623 put_page(page);
625 goto again;
629 * Take a reference unless it is about to be freed. Previously
630 * this reference was taken by ihold under the page lock
631 * pinning the inode in place so i_lock was unnecessary. The
632 * only way for this check to fail is if the inode was
633 * truncated in parallel so warn for now if this happens.
635 * We are not calling into get_futex_key_refs() in file-backed
636 * cases, therefore a successful atomic_inc return below will
637 * guarantee that get_futex_key() will still imply smp_mb(); (B).
639 if (WARN_ON_ONCE(!atomic_inc_not_zero(&inode->i_count))) {
640 rcu_read_unlock();
641 put_page(page);
643 goto again;
646 /* Should be impossible but lets be paranoid for now */
647 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
648 err = -EFAULT;
649 rcu_read_unlock();
650 iput(inode);
652 goto out;
655 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
656 key->shared.inode = inode;
657 key->shared.pgoff = basepage_index(page);
658 rcu_read_unlock();
661 out:
662 put_page(page);
663 return err;
666 static inline void put_futex_key(union futex_key *key)
668 drop_futex_key_refs(key);
672 * fault_in_user_writeable() - Fault in user address and verify RW access
673 * @uaddr: pointer to faulting user space address
675 * Slow path to fixup the fault we just took in the atomic write
676 * access to @uaddr.
678 * We have no generic implementation of a non-destructive write to the
679 * user address. We know that we faulted in the atomic pagefault
680 * disabled section so we can as well avoid the #PF overhead by
681 * calling get_user_pages() right away.
683 static int fault_in_user_writeable(u32 __user *uaddr)
685 struct mm_struct *mm = current->mm;
686 int ret;
688 down_read(&mm->mmap_sem);
689 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
690 FAULT_FLAG_WRITE, NULL);
691 up_read(&mm->mmap_sem);
693 return ret < 0 ? ret : 0;
697 * futex_top_waiter() - Return the highest priority waiter on a futex
698 * @hb: the hash bucket the futex_q's reside in
699 * @key: the futex key (to distinguish it from other futex futex_q's)
701 * Must be called with the hb lock held.
703 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
704 union futex_key *key)
706 struct futex_q *this;
708 plist_for_each_entry(this, &hb->chain, list) {
709 if (match_futex(&this->key, key))
710 return this;
712 return NULL;
715 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
716 u32 uval, u32 newval)
718 int ret;
720 pagefault_disable();
721 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
722 pagefault_enable();
724 return ret;
727 static int get_futex_value_locked(u32 *dest, u32 __user *from)
729 int ret;
731 pagefault_disable();
732 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
733 pagefault_enable();
735 return ret ? -EFAULT : 0;
740 * PI code:
742 static int refill_pi_state_cache(void)
744 struct futex_pi_state *pi_state;
746 if (likely(current->pi_state_cache))
747 return 0;
749 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
751 if (!pi_state)
752 return -ENOMEM;
754 INIT_LIST_HEAD(&pi_state->list);
755 /* pi_mutex gets initialized later */
756 pi_state->owner = NULL;
757 atomic_set(&pi_state->refcount, 1);
758 pi_state->key = FUTEX_KEY_INIT;
760 current->pi_state_cache = pi_state;
762 return 0;
765 static struct futex_pi_state * alloc_pi_state(void)
767 struct futex_pi_state *pi_state = current->pi_state_cache;
769 WARN_ON(!pi_state);
770 current->pi_state_cache = NULL;
772 return pi_state;
776 * Drops a reference to the pi_state object and frees or caches it
777 * when the last reference is gone.
779 * Must be called with the hb lock held.
781 static void put_pi_state(struct futex_pi_state *pi_state)
783 if (!pi_state)
784 return;
786 if (!atomic_dec_and_test(&pi_state->refcount))
787 return;
790 * If pi_state->owner is NULL, the owner is most probably dying
791 * and has cleaned up the pi_state already
793 if (pi_state->owner) {
794 raw_spin_lock_irq(&pi_state->owner->pi_lock);
795 list_del_init(&pi_state->list);
796 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
798 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
801 if (current->pi_state_cache)
802 kfree(pi_state);
803 else {
805 * pi_state->list is already empty.
806 * clear pi_state->owner.
807 * refcount is at 0 - put it back to 1.
809 pi_state->owner = NULL;
810 atomic_set(&pi_state->refcount, 1);
811 current->pi_state_cache = pi_state;
816 * Look up the task based on what TID userspace gave us.
817 * We dont trust it.
819 static struct task_struct * futex_find_get_task(pid_t pid)
821 struct task_struct *p;
823 rcu_read_lock();
824 p = find_task_by_vpid(pid);
825 if (p)
826 get_task_struct(p);
828 rcu_read_unlock();
830 return p;
834 * This task is holding PI mutexes at exit time => bad.
835 * Kernel cleans up PI-state, but userspace is likely hosed.
836 * (Robust-futex cleanup is separate and might save the day for userspace.)
838 void exit_pi_state_list(struct task_struct *curr)
840 struct list_head *next, *head = &curr->pi_state_list;
841 struct futex_pi_state *pi_state;
842 struct futex_hash_bucket *hb;
843 union futex_key key = FUTEX_KEY_INIT;
845 if (!futex_cmpxchg_enabled)
846 return;
848 * We are a ZOMBIE and nobody can enqueue itself on
849 * pi_state_list anymore, but we have to be careful
850 * versus waiters unqueueing themselves:
852 raw_spin_lock_irq(&curr->pi_lock);
853 while (!list_empty(head)) {
855 next = head->next;
856 pi_state = list_entry(next, struct futex_pi_state, list);
857 key = pi_state->key;
858 hb = hash_futex(&key);
859 raw_spin_unlock_irq(&curr->pi_lock);
861 spin_lock(&hb->lock);
863 raw_spin_lock_irq(&curr->pi_lock);
865 * We dropped the pi-lock, so re-check whether this
866 * task still owns the PI-state:
868 if (head->next != next) {
869 spin_unlock(&hb->lock);
870 continue;
873 WARN_ON(pi_state->owner != curr);
874 WARN_ON(list_empty(&pi_state->list));
875 list_del_init(&pi_state->list);
876 pi_state->owner = NULL;
877 raw_spin_unlock_irq(&curr->pi_lock);
879 rt_mutex_unlock(&pi_state->pi_mutex);
881 spin_unlock(&hb->lock);
883 raw_spin_lock_irq(&curr->pi_lock);
885 raw_spin_unlock_irq(&curr->pi_lock);
889 * We need to check the following states:
891 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
893 * [1] NULL | --- | --- | 0 | 0/1 | Valid
894 * [2] NULL | --- | --- | >0 | 0/1 | Valid
896 * [3] Found | NULL | -- | Any | 0/1 | Invalid
898 * [4] Found | Found | NULL | 0 | 1 | Valid
899 * [5] Found | Found | NULL | >0 | 1 | Invalid
901 * [6] Found | Found | task | 0 | 1 | Valid
903 * [7] Found | Found | NULL | Any | 0 | Invalid
905 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
906 * [9] Found | Found | task | 0 | 0 | Invalid
907 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
909 * [1] Indicates that the kernel can acquire the futex atomically. We
910 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
912 * [2] Valid, if TID does not belong to a kernel thread. If no matching
913 * thread is found then it indicates that the owner TID has died.
915 * [3] Invalid. The waiter is queued on a non PI futex
917 * [4] Valid state after exit_robust_list(), which sets the user space
918 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
920 * [5] The user space value got manipulated between exit_robust_list()
921 * and exit_pi_state_list()
923 * [6] Valid state after exit_pi_state_list() which sets the new owner in
924 * the pi_state but cannot access the user space value.
926 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
928 * [8] Owner and user space value match
930 * [9] There is no transient state which sets the user space TID to 0
931 * except exit_robust_list(), but this is indicated by the
932 * FUTEX_OWNER_DIED bit. See [4]
934 * [10] There is no transient state which leaves owner and user space
935 * TID out of sync.
939 * Validate that the existing waiter has a pi_state and sanity check
940 * the pi_state against the user space value. If correct, attach to
941 * it.
943 static int attach_to_pi_state(u32 uval, struct futex_pi_state *pi_state,
944 struct futex_pi_state **ps)
946 pid_t pid = uval & FUTEX_TID_MASK;
949 * Userspace might have messed up non-PI and PI futexes [3]
951 if (unlikely(!pi_state))
952 return -EINVAL;
954 WARN_ON(!atomic_read(&pi_state->refcount));
957 * Handle the owner died case:
959 if (uval & FUTEX_OWNER_DIED) {
961 * exit_pi_state_list sets owner to NULL and wakes the
962 * topmost waiter. The task which acquires the
963 * pi_state->rt_mutex will fixup owner.
965 if (!pi_state->owner) {
967 * No pi state owner, but the user space TID
968 * is not 0. Inconsistent state. [5]
970 if (pid)
971 return -EINVAL;
973 * Take a ref on the state and return success. [4]
975 goto out_state;
979 * If TID is 0, then either the dying owner has not
980 * yet executed exit_pi_state_list() or some waiter
981 * acquired the rtmutex in the pi state, but did not
982 * yet fixup the TID in user space.
984 * Take a ref on the state and return success. [6]
986 if (!pid)
987 goto out_state;
988 } else {
990 * If the owner died bit is not set, then the pi_state
991 * must have an owner. [7]
993 if (!pi_state->owner)
994 return -EINVAL;
998 * Bail out if user space manipulated the futex value. If pi
999 * state exists then the owner TID must be the same as the
1000 * user space TID. [9/10]
1002 if (pid != task_pid_vnr(pi_state->owner))
1003 return -EINVAL;
1004 out_state:
1005 atomic_inc(&pi_state->refcount);
1006 *ps = pi_state;
1007 return 0;
1011 * Lookup the task for the TID provided from user space and attach to
1012 * it after doing proper sanity checks.
1014 static int attach_to_pi_owner(u32 uval, union futex_key *key,
1015 struct futex_pi_state **ps)
1017 pid_t pid = uval & FUTEX_TID_MASK;
1018 struct futex_pi_state *pi_state;
1019 struct task_struct *p;
1022 * We are the first waiter - try to look up the real owner and attach
1023 * the new pi_state to it, but bail out when TID = 0 [1]
1025 if (!pid)
1026 return -ESRCH;
1027 p = futex_find_get_task(pid);
1028 if (!p)
1029 return -ESRCH;
1031 if (unlikely(p->flags & PF_KTHREAD)) {
1032 put_task_struct(p);
1033 return -EPERM;
1037 * We need to look at the task state flags to figure out,
1038 * whether the task is exiting. To protect against the do_exit
1039 * change of the task flags, we do this protected by
1040 * p->pi_lock:
1042 raw_spin_lock_irq(&p->pi_lock);
1043 if (unlikely(p->flags & PF_EXITING)) {
1045 * The task is on the way out. When PF_EXITPIDONE is
1046 * set, we know that the task has finished the
1047 * cleanup:
1049 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
1051 raw_spin_unlock_irq(&p->pi_lock);
1052 put_task_struct(p);
1053 return ret;
1057 * No existing pi state. First waiter. [2]
1059 pi_state = alloc_pi_state();
1062 * Initialize the pi_mutex in locked state and make @p
1063 * the owner of it:
1065 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1067 /* Store the key for possible exit cleanups: */
1068 pi_state->key = *key;
1070 WARN_ON(!list_empty(&pi_state->list));
1071 list_add(&pi_state->list, &p->pi_state_list);
1072 pi_state->owner = p;
1073 raw_spin_unlock_irq(&p->pi_lock);
1075 put_task_struct(p);
1077 *ps = pi_state;
1079 return 0;
1082 static int lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
1083 union futex_key *key, struct futex_pi_state **ps)
1085 struct futex_q *match = futex_top_waiter(hb, key);
1088 * If there is a waiter on that futex, validate it and
1089 * attach to the pi_state when the validation succeeds.
1091 if (match)
1092 return attach_to_pi_state(uval, match->pi_state, ps);
1095 * We are the first waiter - try to look up the owner based on
1096 * @uval and attach to it.
1098 return attach_to_pi_owner(uval, key, ps);
1101 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1103 u32 uninitialized_var(curval);
1105 if (unlikely(should_fail_futex(true)))
1106 return -EFAULT;
1108 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1109 return -EFAULT;
1111 /*If user space value changed, let the caller retry */
1112 return curval != uval ? -EAGAIN : 0;
1116 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1117 * @uaddr: the pi futex user address
1118 * @hb: the pi futex hash bucket
1119 * @key: the futex key associated with uaddr and hb
1120 * @ps: the pi_state pointer where we store the result of the
1121 * lookup
1122 * @task: the task to perform the atomic lock work for. This will
1123 * be "current" except in the case of requeue pi.
1124 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1126 * Return:
1127 * 0 - ready to wait;
1128 * 1 - acquired the lock;
1129 * <0 - error
1131 * The hb->lock and futex_key refs shall be held by the caller.
1133 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1134 union futex_key *key,
1135 struct futex_pi_state **ps,
1136 struct task_struct *task, int set_waiters)
1138 u32 uval, newval, vpid = task_pid_vnr(task);
1139 struct futex_q *match;
1140 int ret;
1143 * Read the user space value first so we can validate a few
1144 * things before proceeding further.
1146 if (get_futex_value_locked(&uval, uaddr))
1147 return -EFAULT;
1149 if (unlikely(should_fail_futex(true)))
1150 return -EFAULT;
1153 * Detect deadlocks.
1155 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1156 return -EDEADLK;
1158 if ((unlikely(should_fail_futex(true))))
1159 return -EDEADLK;
1162 * Lookup existing state first. If it exists, try to attach to
1163 * its pi_state.
1165 match = futex_top_waiter(hb, key);
1166 if (match)
1167 return attach_to_pi_state(uval, match->pi_state, ps);
1170 * No waiter and user TID is 0. We are here because the
1171 * waiters or the owner died bit is set or called from
1172 * requeue_cmp_pi or for whatever reason something took the
1173 * syscall.
1175 if (!(uval & FUTEX_TID_MASK)) {
1177 * We take over the futex. No other waiters and the user space
1178 * TID is 0. We preserve the owner died bit.
1180 newval = uval & FUTEX_OWNER_DIED;
1181 newval |= vpid;
1183 /* The futex requeue_pi code can enforce the waiters bit */
1184 if (set_waiters)
1185 newval |= FUTEX_WAITERS;
1187 ret = lock_pi_update_atomic(uaddr, uval, newval);
1188 /* If the take over worked, return 1 */
1189 return ret < 0 ? ret : 1;
1193 * First waiter. Set the waiters bit before attaching ourself to
1194 * the owner. If owner tries to unlock, it will be forced into
1195 * the kernel and blocked on hb->lock.
1197 newval = uval | FUTEX_WAITERS;
1198 ret = lock_pi_update_atomic(uaddr, uval, newval);
1199 if (ret)
1200 return ret;
1202 * If the update of the user space value succeeded, we try to
1203 * attach to the owner. If that fails, no harm done, we only
1204 * set the FUTEX_WAITERS bit in the user space variable.
1206 return attach_to_pi_owner(uval, key, ps);
1210 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1211 * @q: The futex_q to unqueue
1213 * The q->lock_ptr must not be NULL and must be held by the caller.
1215 static void __unqueue_futex(struct futex_q *q)
1217 struct futex_hash_bucket *hb;
1219 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1220 || WARN_ON(plist_node_empty(&q->list)))
1221 return;
1223 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1224 plist_del(&q->list, &hb->chain);
1225 hb_waiters_dec(hb);
1229 * The hash bucket lock must be held when this is called.
1230 * Afterwards, the futex_q must not be accessed. Callers
1231 * must ensure to later call wake_up_q() for the actual
1232 * wakeups to occur.
1234 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1236 struct task_struct *p = q->task;
1238 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1239 return;
1242 * Queue the task for later wakeup for after we've released
1243 * the hb->lock. wake_q_add() grabs reference to p.
1245 wake_q_add(wake_q, p);
1246 __unqueue_futex(q);
1248 * The waiting task can free the futex_q as soon as
1249 * q->lock_ptr = NULL is written, without taking any locks. A
1250 * memory barrier is required here to prevent the following
1251 * store to lock_ptr from getting ahead of the plist_del.
1253 smp_wmb();
1254 q->lock_ptr = NULL;
1257 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this,
1258 struct futex_hash_bucket *hb)
1260 struct task_struct *new_owner;
1261 struct futex_pi_state *pi_state = this->pi_state;
1262 u32 uninitialized_var(curval), newval;
1263 WAKE_Q(wake_q);
1264 bool deboost;
1265 int ret = 0;
1267 if (!pi_state)
1268 return -EINVAL;
1271 * If current does not own the pi_state then the futex is
1272 * inconsistent and user space fiddled with the futex value.
1274 if (pi_state->owner != current)
1275 return -EINVAL;
1277 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1278 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1281 * It is possible that the next waiter (the one that brought
1282 * this owner to the kernel) timed out and is no longer
1283 * waiting on the lock.
1285 if (!new_owner)
1286 new_owner = this->task;
1289 * We pass it to the next owner. The WAITERS bit is always
1290 * kept enabled while there is PI state around. We cleanup the
1291 * owner died bit, because we are the owner.
1293 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1295 if (unlikely(should_fail_futex(true)))
1296 ret = -EFAULT;
1298 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1299 ret = -EFAULT;
1300 else if (curval != uval)
1301 ret = -EINVAL;
1302 if (ret) {
1303 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1304 return ret;
1307 raw_spin_lock(&pi_state->owner->pi_lock);
1308 WARN_ON(list_empty(&pi_state->list));
1309 list_del_init(&pi_state->list);
1310 raw_spin_unlock(&pi_state->owner->pi_lock);
1312 raw_spin_lock(&new_owner->pi_lock);
1313 WARN_ON(!list_empty(&pi_state->list));
1314 list_add(&pi_state->list, &new_owner->pi_state_list);
1315 pi_state->owner = new_owner;
1316 raw_spin_unlock(&new_owner->pi_lock);
1318 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1320 deboost = rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1323 * First unlock HB so the waiter does not spin on it once he got woken
1324 * up. Second wake up the waiter before the priority is adjusted. If we
1325 * deboost first (and lose our higher priority), then the task might get
1326 * scheduled away before the wake up can take place.
1328 spin_unlock(&hb->lock);
1329 wake_up_q(&wake_q);
1330 if (deboost)
1331 rt_mutex_adjust_prio(current);
1333 return 0;
1337 * Express the locking dependencies for lockdep:
1339 static inline void
1340 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1342 if (hb1 <= hb2) {
1343 spin_lock(&hb1->lock);
1344 if (hb1 < hb2)
1345 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1346 } else { /* hb1 > hb2 */
1347 spin_lock(&hb2->lock);
1348 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1352 static inline void
1353 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1355 spin_unlock(&hb1->lock);
1356 if (hb1 != hb2)
1357 spin_unlock(&hb2->lock);
1361 * Wake up waiters matching bitset queued on this futex (uaddr).
1363 static int
1364 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1366 struct futex_hash_bucket *hb;
1367 struct futex_q *this, *next;
1368 union futex_key key = FUTEX_KEY_INIT;
1369 int ret;
1370 WAKE_Q(wake_q);
1372 if (!bitset)
1373 return -EINVAL;
1375 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1376 if (unlikely(ret != 0))
1377 goto out;
1379 hb = hash_futex(&key);
1381 /* Make sure we really have tasks to wakeup */
1382 if (!hb_waiters_pending(hb))
1383 goto out_put_key;
1385 spin_lock(&hb->lock);
1387 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1388 if (match_futex (&this->key, &key)) {
1389 if (this->pi_state || this->rt_waiter) {
1390 ret = -EINVAL;
1391 break;
1394 /* Check if one of the bits is set in both bitsets */
1395 if (!(this->bitset & bitset))
1396 continue;
1398 mark_wake_futex(&wake_q, this);
1399 if (++ret >= nr_wake)
1400 break;
1404 spin_unlock(&hb->lock);
1405 wake_up_q(&wake_q);
1406 out_put_key:
1407 put_futex_key(&key);
1408 out:
1409 return ret;
1413 * Wake up all waiters hashed on the physical page that is mapped
1414 * to this virtual address:
1416 static int
1417 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1418 int nr_wake, int nr_wake2, int op)
1420 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1421 struct futex_hash_bucket *hb1, *hb2;
1422 struct futex_q *this, *next;
1423 int ret, op_ret;
1424 WAKE_Q(wake_q);
1426 retry:
1427 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1428 if (unlikely(ret != 0))
1429 goto out;
1430 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1431 if (unlikely(ret != 0))
1432 goto out_put_key1;
1434 hb1 = hash_futex(&key1);
1435 hb2 = hash_futex(&key2);
1437 retry_private:
1438 double_lock_hb(hb1, hb2);
1439 op_ret = futex_atomic_op_inuser(op, uaddr2);
1440 if (unlikely(op_ret < 0)) {
1442 double_unlock_hb(hb1, hb2);
1444 #ifndef CONFIG_MMU
1446 * we don't get EFAULT from MMU faults if we don't have an MMU,
1447 * but we might get them from range checking
1449 ret = op_ret;
1450 goto out_put_keys;
1451 #endif
1453 if (unlikely(op_ret != -EFAULT)) {
1454 ret = op_ret;
1455 goto out_put_keys;
1458 ret = fault_in_user_writeable(uaddr2);
1459 if (ret)
1460 goto out_put_keys;
1462 if (!(flags & FLAGS_SHARED))
1463 goto retry_private;
1465 put_futex_key(&key2);
1466 put_futex_key(&key1);
1467 goto retry;
1470 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1471 if (match_futex (&this->key, &key1)) {
1472 if (this->pi_state || this->rt_waiter) {
1473 ret = -EINVAL;
1474 goto out_unlock;
1476 mark_wake_futex(&wake_q, this);
1477 if (++ret >= nr_wake)
1478 break;
1482 if (op_ret > 0) {
1483 op_ret = 0;
1484 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1485 if (match_futex (&this->key, &key2)) {
1486 if (this->pi_state || this->rt_waiter) {
1487 ret = -EINVAL;
1488 goto out_unlock;
1490 mark_wake_futex(&wake_q, this);
1491 if (++op_ret >= nr_wake2)
1492 break;
1495 ret += op_ret;
1498 out_unlock:
1499 double_unlock_hb(hb1, hb2);
1500 wake_up_q(&wake_q);
1501 out_put_keys:
1502 put_futex_key(&key2);
1503 out_put_key1:
1504 put_futex_key(&key1);
1505 out:
1506 return ret;
1510 * requeue_futex() - Requeue a futex_q from one hb to another
1511 * @q: the futex_q to requeue
1512 * @hb1: the source hash_bucket
1513 * @hb2: the target hash_bucket
1514 * @key2: the new key for the requeued futex_q
1516 static inline
1517 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1518 struct futex_hash_bucket *hb2, union futex_key *key2)
1522 * If key1 and key2 hash to the same bucket, no need to
1523 * requeue.
1525 if (likely(&hb1->chain != &hb2->chain)) {
1526 plist_del(&q->list, &hb1->chain);
1527 hb_waiters_dec(hb1);
1528 plist_add(&q->list, &hb2->chain);
1529 hb_waiters_inc(hb2);
1530 q->lock_ptr = &hb2->lock;
1532 get_futex_key_refs(key2);
1533 q->key = *key2;
1537 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1538 * @q: the futex_q
1539 * @key: the key of the requeue target futex
1540 * @hb: the hash_bucket of the requeue target futex
1542 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1543 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1544 * to the requeue target futex so the waiter can detect the wakeup on the right
1545 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1546 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1547 * to protect access to the pi_state to fixup the owner later. Must be called
1548 * with both q->lock_ptr and hb->lock held.
1550 static inline
1551 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1552 struct futex_hash_bucket *hb)
1554 get_futex_key_refs(key);
1555 q->key = *key;
1557 __unqueue_futex(q);
1559 WARN_ON(!q->rt_waiter);
1560 q->rt_waiter = NULL;
1562 q->lock_ptr = &hb->lock;
1564 wake_up_state(q->task, TASK_NORMAL);
1568 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1569 * @pifutex: the user address of the to futex
1570 * @hb1: the from futex hash bucket, must be locked by the caller
1571 * @hb2: the to futex hash bucket, must be locked by the caller
1572 * @key1: the from futex key
1573 * @key2: the to futex key
1574 * @ps: address to store the pi_state pointer
1575 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1577 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1578 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1579 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1580 * hb1 and hb2 must be held by the caller.
1582 * Return:
1583 * 0 - failed to acquire the lock atomically;
1584 * >0 - acquired the lock, return value is vpid of the top_waiter
1585 * <0 - error
1587 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1588 struct futex_hash_bucket *hb1,
1589 struct futex_hash_bucket *hb2,
1590 union futex_key *key1, union futex_key *key2,
1591 struct futex_pi_state **ps, int set_waiters)
1593 struct futex_q *top_waiter = NULL;
1594 u32 curval;
1595 int ret, vpid;
1597 if (get_futex_value_locked(&curval, pifutex))
1598 return -EFAULT;
1600 if (unlikely(should_fail_futex(true)))
1601 return -EFAULT;
1604 * Find the top_waiter and determine if there are additional waiters.
1605 * If the caller intends to requeue more than 1 waiter to pifutex,
1606 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1607 * as we have means to handle the possible fault. If not, don't set
1608 * the bit unecessarily as it will force the subsequent unlock to enter
1609 * the kernel.
1611 top_waiter = futex_top_waiter(hb1, key1);
1613 /* There are no waiters, nothing for us to do. */
1614 if (!top_waiter)
1615 return 0;
1617 /* Ensure we requeue to the expected futex. */
1618 if (!match_futex(top_waiter->requeue_pi_key, key2))
1619 return -EINVAL;
1622 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1623 * the contended case or if set_waiters is 1. The pi_state is returned
1624 * in ps in contended cases.
1626 vpid = task_pid_vnr(top_waiter->task);
1627 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1628 set_waiters);
1629 if (ret == 1) {
1630 requeue_pi_wake_futex(top_waiter, key2, hb2);
1631 return vpid;
1633 return ret;
1637 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1638 * @uaddr1: source futex user address
1639 * @flags: futex flags (FLAGS_SHARED, etc.)
1640 * @uaddr2: target futex user address
1641 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1642 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1643 * @cmpval: @uaddr1 expected value (or %NULL)
1644 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1645 * pi futex (pi to pi requeue is not supported)
1647 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1648 * uaddr2 atomically on behalf of the top waiter.
1650 * Return:
1651 * >=0 - on success, the number of tasks requeued or woken;
1652 * <0 - on error
1654 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1655 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1656 u32 *cmpval, int requeue_pi)
1658 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1659 int drop_count = 0, task_count = 0, ret;
1660 struct futex_pi_state *pi_state = NULL;
1661 struct futex_hash_bucket *hb1, *hb2;
1662 struct futex_q *this, *next;
1663 WAKE_Q(wake_q);
1665 if (requeue_pi) {
1667 * Requeue PI only works on two distinct uaddrs. This
1668 * check is only valid for private futexes. See below.
1670 if (uaddr1 == uaddr2)
1671 return -EINVAL;
1674 * requeue_pi requires a pi_state, try to allocate it now
1675 * without any locks in case it fails.
1677 if (refill_pi_state_cache())
1678 return -ENOMEM;
1680 * requeue_pi must wake as many tasks as it can, up to nr_wake
1681 * + nr_requeue, since it acquires the rt_mutex prior to
1682 * returning to userspace, so as to not leave the rt_mutex with
1683 * waiters and no owner. However, second and third wake-ups
1684 * cannot be predicted as they involve race conditions with the
1685 * first wake and a fault while looking up the pi_state. Both
1686 * pthread_cond_signal() and pthread_cond_broadcast() should
1687 * use nr_wake=1.
1689 if (nr_wake != 1)
1690 return -EINVAL;
1693 retry:
1694 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1695 if (unlikely(ret != 0))
1696 goto out;
1697 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1698 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1699 if (unlikely(ret != 0))
1700 goto out_put_key1;
1703 * The check above which compares uaddrs is not sufficient for
1704 * shared futexes. We need to compare the keys:
1706 if (requeue_pi && match_futex(&key1, &key2)) {
1707 ret = -EINVAL;
1708 goto out_put_keys;
1711 hb1 = hash_futex(&key1);
1712 hb2 = hash_futex(&key2);
1714 retry_private:
1715 hb_waiters_inc(hb2);
1716 double_lock_hb(hb1, hb2);
1718 if (likely(cmpval != NULL)) {
1719 u32 curval;
1721 ret = get_futex_value_locked(&curval, uaddr1);
1723 if (unlikely(ret)) {
1724 double_unlock_hb(hb1, hb2);
1725 hb_waiters_dec(hb2);
1727 ret = get_user(curval, uaddr1);
1728 if (ret)
1729 goto out_put_keys;
1731 if (!(flags & FLAGS_SHARED))
1732 goto retry_private;
1734 put_futex_key(&key2);
1735 put_futex_key(&key1);
1736 goto retry;
1738 if (curval != *cmpval) {
1739 ret = -EAGAIN;
1740 goto out_unlock;
1744 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1746 * Attempt to acquire uaddr2 and wake the top waiter. If we
1747 * intend to requeue waiters, force setting the FUTEX_WAITERS
1748 * bit. We force this here where we are able to easily handle
1749 * faults rather in the requeue loop below.
1751 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1752 &key2, &pi_state, nr_requeue);
1755 * At this point the top_waiter has either taken uaddr2 or is
1756 * waiting on it. If the former, then the pi_state will not
1757 * exist yet, look it up one more time to ensure we have a
1758 * reference to it. If the lock was taken, ret contains the
1759 * vpid of the top waiter task.
1760 * If the lock was not taken, we have pi_state and an initial
1761 * refcount on it. In case of an error we have nothing.
1763 if (ret > 0) {
1764 WARN_ON(pi_state);
1765 drop_count++;
1766 task_count++;
1768 * If we acquired the lock, then the user space value
1769 * of uaddr2 should be vpid. It cannot be changed by
1770 * the top waiter as it is blocked on hb2 lock if it
1771 * tries to do so. If something fiddled with it behind
1772 * our back the pi state lookup might unearth it. So
1773 * we rather use the known value than rereading and
1774 * handing potential crap to lookup_pi_state.
1776 * If that call succeeds then we have pi_state and an
1777 * initial refcount on it.
1779 ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
1782 switch (ret) {
1783 case 0:
1784 /* We hold a reference on the pi state. */
1785 break;
1787 /* If the above failed, then pi_state is NULL */
1788 case -EFAULT:
1789 double_unlock_hb(hb1, hb2);
1790 hb_waiters_dec(hb2);
1791 put_futex_key(&key2);
1792 put_futex_key(&key1);
1793 ret = fault_in_user_writeable(uaddr2);
1794 if (!ret)
1795 goto retry;
1796 goto out;
1797 case -EAGAIN:
1799 * Two reasons for this:
1800 * - Owner is exiting and we just wait for the
1801 * exit to complete.
1802 * - The user space value changed.
1804 double_unlock_hb(hb1, hb2);
1805 hb_waiters_dec(hb2);
1806 put_futex_key(&key2);
1807 put_futex_key(&key1);
1808 cond_resched();
1809 goto retry;
1810 default:
1811 goto out_unlock;
1815 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1816 if (task_count - nr_wake >= nr_requeue)
1817 break;
1819 if (!match_futex(&this->key, &key1))
1820 continue;
1823 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1824 * be paired with each other and no other futex ops.
1826 * We should never be requeueing a futex_q with a pi_state,
1827 * which is awaiting a futex_unlock_pi().
1829 if ((requeue_pi && !this->rt_waiter) ||
1830 (!requeue_pi && this->rt_waiter) ||
1831 this->pi_state) {
1832 ret = -EINVAL;
1833 break;
1837 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1838 * lock, we already woke the top_waiter. If not, it will be
1839 * woken by futex_unlock_pi().
1841 if (++task_count <= nr_wake && !requeue_pi) {
1842 mark_wake_futex(&wake_q, this);
1843 continue;
1846 /* Ensure we requeue to the expected futex for requeue_pi. */
1847 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1848 ret = -EINVAL;
1849 break;
1853 * Requeue nr_requeue waiters and possibly one more in the case
1854 * of requeue_pi if we couldn't acquire the lock atomically.
1856 if (requeue_pi) {
1858 * Prepare the waiter to take the rt_mutex. Take a
1859 * refcount on the pi_state and store the pointer in
1860 * the futex_q object of the waiter.
1862 atomic_inc(&pi_state->refcount);
1863 this->pi_state = pi_state;
1864 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1865 this->rt_waiter,
1866 this->task);
1867 if (ret == 1) {
1869 * We got the lock. We do neither drop the
1870 * refcount on pi_state nor clear
1871 * this->pi_state because the waiter needs the
1872 * pi_state for cleaning up the user space
1873 * value. It will drop the refcount after
1874 * doing so.
1876 requeue_pi_wake_futex(this, &key2, hb2);
1877 drop_count++;
1878 continue;
1879 } else if (ret) {
1881 * rt_mutex_start_proxy_lock() detected a
1882 * potential deadlock when we tried to queue
1883 * that waiter. Drop the pi_state reference
1884 * which we took above and remove the pointer
1885 * to the state from the waiters futex_q
1886 * object.
1888 this->pi_state = NULL;
1889 put_pi_state(pi_state);
1891 * We stop queueing more waiters and let user
1892 * space deal with the mess.
1894 break;
1897 requeue_futex(this, hb1, hb2, &key2);
1898 drop_count++;
1902 * We took an extra initial reference to the pi_state either
1903 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
1904 * need to drop it here again.
1906 put_pi_state(pi_state);
1908 out_unlock:
1909 double_unlock_hb(hb1, hb2);
1910 wake_up_q(&wake_q);
1911 hb_waiters_dec(hb2);
1914 * drop_futex_key_refs() must be called outside the spinlocks. During
1915 * the requeue we moved futex_q's from the hash bucket at key1 to the
1916 * one at key2 and updated their key pointer. We no longer need to
1917 * hold the references to key1.
1919 while (--drop_count >= 0)
1920 drop_futex_key_refs(&key1);
1922 out_put_keys:
1923 put_futex_key(&key2);
1924 out_put_key1:
1925 put_futex_key(&key1);
1926 out:
1927 return ret ? ret : task_count;
1930 /* The key must be already stored in q->key. */
1931 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1932 __acquires(&hb->lock)
1934 struct futex_hash_bucket *hb;
1936 hb = hash_futex(&q->key);
1939 * Increment the counter before taking the lock so that
1940 * a potential waker won't miss a to-be-slept task that is
1941 * waiting for the spinlock. This is safe as all queue_lock()
1942 * users end up calling queue_me(). Similarly, for housekeeping,
1943 * decrement the counter at queue_unlock() when some error has
1944 * occurred and we don't end up adding the task to the list.
1946 hb_waiters_inc(hb);
1948 q->lock_ptr = &hb->lock;
1950 spin_lock(&hb->lock); /* implies smp_mb(); (A) */
1951 return hb;
1954 static inline void
1955 queue_unlock(struct futex_hash_bucket *hb)
1956 __releases(&hb->lock)
1958 spin_unlock(&hb->lock);
1959 hb_waiters_dec(hb);
1963 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1964 * @q: The futex_q to enqueue
1965 * @hb: The destination hash bucket
1967 * The hb->lock must be held by the caller, and is released here. A call to
1968 * queue_me() is typically paired with exactly one call to unqueue_me(). The
1969 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1970 * or nothing if the unqueue is done as part of the wake process and the unqueue
1971 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1972 * an example).
1974 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1975 __releases(&hb->lock)
1977 int prio;
1980 * The priority used to register this element is
1981 * - either the real thread-priority for the real-time threads
1982 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1983 * - or MAX_RT_PRIO for non-RT threads.
1984 * Thus, all RT-threads are woken first in priority order, and
1985 * the others are woken last, in FIFO order.
1987 prio = min(current->normal_prio, MAX_RT_PRIO);
1989 plist_node_init(&q->list, prio);
1990 plist_add(&q->list, &hb->chain);
1991 q->task = current;
1992 spin_unlock(&hb->lock);
1996 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1997 * @q: The futex_q to unqueue
1999 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2000 * be paired with exactly one earlier call to queue_me().
2002 * Return:
2003 * 1 - if the futex_q was still queued (and we removed unqueued it);
2004 * 0 - if the futex_q was already removed by the waking thread
2006 static int unqueue_me(struct futex_q *q)
2008 spinlock_t *lock_ptr;
2009 int ret = 0;
2011 /* In the common case we don't take the spinlock, which is nice. */
2012 retry:
2014 * q->lock_ptr can change between this read and the following spin_lock.
2015 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2016 * optimizing lock_ptr out of the logic below.
2018 lock_ptr = READ_ONCE(q->lock_ptr);
2019 if (lock_ptr != NULL) {
2020 spin_lock(lock_ptr);
2022 * q->lock_ptr can change between reading it and
2023 * spin_lock(), causing us to take the wrong lock. This
2024 * corrects the race condition.
2026 * Reasoning goes like this: if we have the wrong lock,
2027 * q->lock_ptr must have changed (maybe several times)
2028 * between reading it and the spin_lock(). It can
2029 * change again after the spin_lock() but only if it was
2030 * already changed before the spin_lock(). It cannot,
2031 * however, change back to the original value. Therefore
2032 * we can detect whether we acquired the correct lock.
2034 if (unlikely(lock_ptr != q->lock_ptr)) {
2035 spin_unlock(lock_ptr);
2036 goto retry;
2038 __unqueue_futex(q);
2040 BUG_ON(q->pi_state);
2042 spin_unlock(lock_ptr);
2043 ret = 1;
2046 drop_futex_key_refs(&q->key);
2047 return ret;
2051 * PI futexes can not be requeued and must remove themself from the
2052 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2053 * and dropped here.
2055 static void unqueue_me_pi(struct futex_q *q)
2056 __releases(q->lock_ptr)
2058 __unqueue_futex(q);
2060 BUG_ON(!q->pi_state);
2061 put_pi_state(q->pi_state);
2062 q->pi_state = NULL;
2064 spin_unlock(q->lock_ptr);
2068 * Fixup the pi_state owner with the new owner.
2070 * Must be called with hash bucket lock held and mm->sem held for non
2071 * private futexes.
2073 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2074 struct task_struct *newowner)
2076 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2077 struct futex_pi_state *pi_state = q->pi_state;
2078 struct task_struct *oldowner = pi_state->owner;
2079 u32 uval, uninitialized_var(curval), newval;
2080 int ret;
2082 /* Owner died? */
2083 if (!pi_state->owner)
2084 newtid |= FUTEX_OWNER_DIED;
2087 * We are here either because we stole the rtmutex from the
2088 * previous highest priority waiter or we are the highest priority
2089 * waiter but failed to get the rtmutex the first time.
2090 * We have to replace the newowner TID in the user space variable.
2091 * This must be atomic as we have to preserve the owner died bit here.
2093 * Note: We write the user space value _before_ changing the pi_state
2094 * because we can fault here. Imagine swapped out pages or a fork
2095 * that marked all the anonymous memory readonly for cow.
2097 * Modifying pi_state _before_ the user space value would
2098 * leave the pi_state in an inconsistent state when we fault
2099 * here, because we need to drop the hash bucket lock to
2100 * handle the fault. This might be observed in the PID check
2101 * in lookup_pi_state.
2103 retry:
2104 if (get_futex_value_locked(&uval, uaddr))
2105 goto handle_fault;
2107 while (1) {
2108 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2110 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
2111 goto handle_fault;
2112 if (curval == uval)
2113 break;
2114 uval = curval;
2118 * We fixed up user space. Now we need to fix the pi_state
2119 * itself.
2121 if (pi_state->owner != NULL) {
2122 raw_spin_lock_irq(&pi_state->owner->pi_lock);
2123 WARN_ON(list_empty(&pi_state->list));
2124 list_del_init(&pi_state->list);
2125 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
2128 pi_state->owner = newowner;
2130 raw_spin_lock_irq(&newowner->pi_lock);
2131 WARN_ON(!list_empty(&pi_state->list));
2132 list_add(&pi_state->list, &newowner->pi_state_list);
2133 raw_spin_unlock_irq(&newowner->pi_lock);
2134 return 0;
2137 * To handle the page fault we need to drop the hash bucket
2138 * lock here. That gives the other task (either the highest priority
2139 * waiter itself or the task which stole the rtmutex) the
2140 * chance to try the fixup of the pi_state. So once we are
2141 * back from handling the fault we need to check the pi_state
2142 * after reacquiring the hash bucket lock and before trying to
2143 * do another fixup. When the fixup has been done already we
2144 * simply return.
2146 handle_fault:
2147 spin_unlock(q->lock_ptr);
2149 ret = fault_in_user_writeable(uaddr);
2151 spin_lock(q->lock_ptr);
2154 * Check if someone else fixed it for us:
2156 if (pi_state->owner != oldowner)
2157 return 0;
2159 if (ret)
2160 return ret;
2162 goto retry;
2165 static long futex_wait_restart(struct restart_block *restart);
2168 * fixup_owner() - Post lock pi_state and corner case management
2169 * @uaddr: user address of the futex
2170 * @q: futex_q (contains pi_state and access to the rt_mutex)
2171 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2173 * After attempting to lock an rt_mutex, this function is called to cleanup
2174 * the pi_state owner as well as handle race conditions that may allow us to
2175 * acquire the lock. Must be called with the hb lock held.
2177 * Return:
2178 * 1 - success, lock taken;
2179 * 0 - success, lock not taken;
2180 * <0 - on error (-EFAULT)
2182 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2184 struct task_struct *owner;
2185 int ret = 0;
2187 if (locked) {
2189 * Got the lock. We might not be the anticipated owner if we
2190 * did a lock-steal - fix up the PI-state in that case:
2192 if (q->pi_state->owner != current)
2193 ret = fixup_pi_state_owner(uaddr, q, current);
2194 goto out;
2198 * Catch the rare case, where the lock was released when we were on the
2199 * way back before we locked the hash bucket.
2201 if (q->pi_state->owner == current) {
2203 * Try to get the rt_mutex now. This might fail as some other
2204 * task acquired the rt_mutex after we removed ourself from the
2205 * rt_mutex waiters list.
2207 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
2208 locked = 1;
2209 goto out;
2213 * pi_state is incorrect, some other task did a lock steal and
2214 * we returned due to timeout or signal without taking the
2215 * rt_mutex. Too late.
2217 raw_spin_lock_irq(&q->pi_state->pi_mutex.wait_lock);
2218 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
2219 if (!owner)
2220 owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
2221 raw_spin_unlock_irq(&q->pi_state->pi_mutex.wait_lock);
2222 ret = fixup_pi_state_owner(uaddr, q, owner);
2223 goto out;
2227 * Paranoia check. If we did not take the lock, then we should not be
2228 * the owner of the rt_mutex.
2230 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
2231 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2232 "pi-state %p\n", ret,
2233 q->pi_state->pi_mutex.owner,
2234 q->pi_state->owner);
2236 out:
2237 return ret ? ret : locked;
2241 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2242 * @hb: the futex hash bucket, must be locked by the caller
2243 * @q: the futex_q to queue up on
2244 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
2246 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2247 struct hrtimer_sleeper *timeout)
2250 * The task state is guaranteed to be set before another task can
2251 * wake it. set_current_state() is implemented using smp_store_mb() and
2252 * queue_me() calls spin_unlock() upon completion, both serializing
2253 * access to the hash list and forcing another memory barrier.
2255 set_current_state(TASK_INTERRUPTIBLE);
2256 queue_me(q, hb);
2258 /* Arm the timer */
2259 if (timeout)
2260 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2263 * If we have been removed from the hash list, then another task
2264 * has tried to wake us, and we can skip the call to schedule().
2266 if (likely(!plist_node_empty(&q->list))) {
2268 * If the timer has already expired, current will already be
2269 * flagged for rescheduling. Only call schedule if there
2270 * is no timeout, or if it has yet to expire.
2272 if (!timeout || timeout->task)
2273 freezable_schedule();
2275 __set_current_state(TASK_RUNNING);
2279 * futex_wait_setup() - Prepare to wait on a futex
2280 * @uaddr: the futex userspace address
2281 * @val: the expected value
2282 * @flags: futex flags (FLAGS_SHARED, etc.)
2283 * @q: the associated futex_q
2284 * @hb: storage for hash_bucket pointer to be returned to caller
2286 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2287 * compare it with the expected value. Handle atomic faults internally.
2288 * Return with the hb lock held and a q.key reference on success, and unlocked
2289 * with no q.key reference on failure.
2291 * Return:
2292 * 0 - uaddr contains val and hb has been locked;
2293 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2295 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2296 struct futex_q *q, struct futex_hash_bucket **hb)
2298 u32 uval;
2299 int ret;
2302 * Access the page AFTER the hash-bucket is locked.
2303 * Order is important:
2305 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2306 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2308 * The basic logical guarantee of a futex is that it blocks ONLY
2309 * if cond(var) is known to be true at the time of blocking, for
2310 * any cond. If we locked the hash-bucket after testing *uaddr, that
2311 * would open a race condition where we could block indefinitely with
2312 * cond(var) false, which would violate the guarantee.
2314 * On the other hand, we insert q and release the hash-bucket only
2315 * after testing *uaddr. This guarantees that futex_wait() will NOT
2316 * absorb a wakeup if *uaddr does not match the desired values
2317 * while the syscall executes.
2319 retry:
2320 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2321 if (unlikely(ret != 0))
2322 return ret;
2324 retry_private:
2325 *hb = queue_lock(q);
2327 ret = get_futex_value_locked(&uval, uaddr);
2329 if (ret) {
2330 queue_unlock(*hb);
2332 ret = get_user(uval, uaddr);
2333 if (ret)
2334 goto out;
2336 if (!(flags & FLAGS_SHARED))
2337 goto retry_private;
2339 put_futex_key(&q->key);
2340 goto retry;
2343 if (uval != val) {
2344 queue_unlock(*hb);
2345 ret = -EWOULDBLOCK;
2348 out:
2349 if (ret)
2350 put_futex_key(&q->key);
2351 return ret;
2354 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2355 ktime_t *abs_time, u32 bitset)
2357 struct hrtimer_sleeper timeout, *to = NULL;
2358 struct restart_block *restart;
2359 struct futex_hash_bucket *hb;
2360 struct futex_q q = futex_q_init;
2361 int ret;
2363 if (!bitset)
2364 return -EINVAL;
2365 q.bitset = bitset;
2367 if (abs_time) {
2368 to = &timeout;
2370 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2371 CLOCK_REALTIME : CLOCK_MONOTONIC,
2372 HRTIMER_MODE_ABS);
2373 hrtimer_init_sleeper(to, current);
2374 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2375 current->timer_slack_ns);
2378 retry:
2380 * Prepare to wait on uaddr. On success, holds hb lock and increments
2381 * q.key refs.
2383 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2384 if (ret)
2385 goto out;
2387 /* queue_me and wait for wakeup, timeout, or a signal. */
2388 futex_wait_queue_me(hb, &q, to);
2390 /* If we were woken (and unqueued), we succeeded, whatever. */
2391 ret = 0;
2392 /* unqueue_me() drops q.key ref */
2393 if (!unqueue_me(&q))
2394 goto out;
2395 ret = -ETIMEDOUT;
2396 if (to && !to->task)
2397 goto out;
2400 * We expect signal_pending(current), but we might be the
2401 * victim of a spurious wakeup as well.
2403 if (!signal_pending(current))
2404 goto retry;
2406 ret = -ERESTARTSYS;
2407 if (!abs_time)
2408 goto out;
2410 restart = &current->restart_block;
2411 restart->fn = futex_wait_restart;
2412 restart->futex.uaddr = uaddr;
2413 restart->futex.val = val;
2414 restart->futex.time = abs_time->tv64;
2415 restart->futex.bitset = bitset;
2416 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2418 ret = -ERESTART_RESTARTBLOCK;
2420 out:
2421 if (to) {
2422 hrtimer_cancel(&to->timer);
2423 destroy_hrtimer_on_stack(&to->timer);
2425 return ret;
2429 static long futex_wait_restart(struct restart_block *restart)
2431 u32 __user *uaddr = restart->futex.uaddr;
2432 ktime_t t, *tp = NULL;
2434 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2435 t.tv64 = restart->futex.time;
2436 tp = &t;
2438 restart->fn = do_no_restart_syscall;
2440 return (long)futex_wait(uaddr, restart->futex.flags,
2441 restart->futex.val, tp, restart->futex.bitset);
2446 * Userspace tried a 0 -> TID atomic transition of the futex value
2447 * and failed. The kernel side here does the whole locking operation:
2448 * if there are waiters then it will block as a consequence of relying
2449 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2450 * a 0 value of the futex too.).
2452 * Also serves as futex trylock_pi()'ing, and due semantics.
2454 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2455 ktime_t *time, int trylock)
2457 struct hrtimer_sleeper timeout, *to = NULL;
2458 struct futex_hash_bucket *hb;
2459 struct futex_q q = futex_q_init;
2460 int res, ret;
2462 if (refill_pi_state_cache())
2463 return -ENOMEM;
2465 if (time) {
2466 to = &timeout;
2467 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2468 HRTIMER_MODE_ABS);
2469 hrtimer_init_sleeper(to, current);
2470 hrtimer_set_expires(&to->timer, *time);
2473 retry:
2474 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2475 if (unlikely(ret != 0))
2476 goto out;
2478 retry_private:
2479 hb = queue_lock(&q);
2481 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2482 if (unlikely(ret)) {
2484 * Atomic work succeeded and we got the lock,
2485 * or failed. Either way, we do _not_ block.
2487 switch (ret) {
2488 case 1:
2489 /* We got the lock. */
2490 ret = 0;
2491 goto out_unlock_put_key;
2492 case -EFAULT:
2493 goto uaddr_faulted;
2494 case -EAGAIN:
2496 * Two reasons for this:
2497 * - Task is exiting and we just wait for the
2498 * exit to complete.
2499 * - The user space value changed.
2501 queue_unlock(hb);
2502 put_futex_key(&q.key);
2503 cond_resched();
2504 goto retry;
2505 default:
2506 goto out_unlock_put_key;
2511 * Only actually queue now that the atomic ops are done:
2513 queue_me(&q, hb);
2515 WARN_ON(!q.pi_state);
2517 * Block on the PI mutex:
2519 if (!trylock) {
2520 ret = rt_mutex_timed_futex_lock(&q.pi_state->pi_mutex, to);
2521 } else {
2522 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2523 /* Fixup the trylock return value: */
2524 ret = ret ? 0 : -EWOULDBLOCK;
2527 spin_lock(q.lock_ptr);
2529 * Fixup the pi_state owner and possibly acquire the lock if we
2530 * haven't already.
2532 res = fixup_owner(uaddr, &q, !ret);
2534 * If fixup_owner() returned an error, proprogate that. If it acquired
2535 * the lock, clear our -ETIMEDOUT or -EINTR.
2537 if (res)
2538 ret = (res < 0) ? res : 0;
2541 * If fixup_owner() faulted and was unable to handle the fault, unlock
2542 * it and return the fault to userspace.
2544 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2545 rt_mutex_unlock(&q.pi_state->pi_mutex);
2547 /* Unqueue and drop the lock */
2548 unqueue_me_pi(&q);
2550 goto out_put_key;
2552 out_unlock_put_key:
2553 queue_unlock(hb);
2555 out_put_key:
2556 put_futex_key(&q.key);
2557 out:
2558 if (to)
2559 destroy_hrtimer_on_stack(&to->timer);
2560 return ret != -EINTR ? ret : -ERESTARTNOINTR;
2562 uaddr_faulted:
2563 queue_unlock(hb);
2565 ret = fault_in_user_writeable(uaddr);
2566 if (ret)
2567 goto out_put_key;
2569 if (!(flags & FLAGS_SHARED))
2570 goto retry_private;
2572 put_futex_key(&q.key);
2573 goto retry;
2577 * Userspace attempted a TID -> 0 atomic transition, and failed.
2578 * This is the in-kernel slowpath: we look up the PI state (if any),
2579 * and do the rt-mutex unlock.
2581 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2583 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2584 union futex_key key = FUTEX_KEY_INIT;
2585 struct futex_hash_bucket *hb;
2586 struct futex_q *match;
2587 int ret;
2589 retry:
2590 if (get_user(uval, uaddr))
2591 return -EFAULT;
2593 * We release only a lock we actually own:
2595 if ((uval & FUTEX_TID_MASK) != vpid)
2596 return -EPERM;
2598 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2599 if (ret)
2600 return ret;
2602 hb = hash_futex(&key);
2603 spin_lock(&hb->lock);
2606 * Check waiters first. We do not trust user space values at
2607 * all and we at least want to know if user space fiddled
2608 * with the futex value instead of blindly unlocking.
2610 match = futex_top_waiter(hb, &key);
2611 if (match) {
2612 ret = wake_futex_pi(uaddr, uval, match, hb);
2614 * In case of success wake_futex_pi dropped the hash
2615 * bucket lock.
2617 if (!ret)
2618 goto out_putkey;
2620 * The atomic access to the futex value generated a
2621 * pagefault, so retry the user-access and the wakeup:
2623 if (ret == -EFAULT)
2624 goto pi_faulted;
2626 * wake_futex_pi has detected invalid state. Tell user
2627 * space.
2629 goto out_unlock;
2633 * We have no kernel internal state, i.e. no waiters in the
2634 * kernel. Waiters which are about to queue themselves are stuck
2635 * on hb->lock. So we can safely ignore them. We do neither
2636 * preserve the WAITERS bit not the OWNER_DIED one. We are the
2637 * owner.
2639 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))
2640 goto pi_faulted;
2643 * If uval has changed, let user space handle it.
2645 ret = (curval == uval) ? 0 : -EAGAIN;
2647 out_unlock:
2648 spin_unlock(&hb->lock);
2649 out_putkey:
2650 put_futex_key(&key);
2651 return ret;
2653 pi_faulted:
2654 spin_unlock(&hb->lock);
2655 put_futex_key(&key);
2657 ret = fault_in_user_writeable(uaddr);
2658 if (!ret)
2659 goto retry;
2661 return ret;
2665 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2666 * @hb: the hash_bucket futex_q was original enqueued on
2667 * @q: the futex_q woken while waiting to be requeued
2668 * @key2: the futex_key of the requeue target futex
2669 * @timeout: the timeout associated with the wait (NULL if none)
2671 * Detect if the task was woken on the initial futex as opposed to the requeue
2672 * target futex. If so, determine if it was a timeout or a signal that caused
2673 * the wakeup and return the appropriate error code to the caller. Must be
2674 * called with the hb lock held.
2676 * Return:
2677 * 0 = no early wakeup detected;
2678 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2680 static inline
2681 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2682 struct futex_q *q, union futex_key *key2,
2683 struct hrtimer_sleeper *timeout)
2685 int ret = 0;
2688 * With the hb lock held, we avoid races while we process the wakeup.
2689 * We only need to hold hb (and not hb2) to ensure atomicity as the
2690 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2691 * It can't be requeued from uaddr2 to something else since we don't
2692 * support a PI aware source futex for requeue.
2694 if (!match_futex(&q->key, key2)) {
2695 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2697 * We were woken prior to requeue by a timeout or a signal.
2698 * Unqueue the futex_q and determine which it was.
2700 plist_del(&q->list, &hb->chain);
2701 hb_waiters_dec(hb);
2703 /* Handle spurious wakeups gracefully */
2704 ret = -EWOULDBLOCK;
2705 if (timeout && !timeout->task)
2706 ret = -ETIMEDOUT;
2707 else if (signal_pending(current))
2708 ret = -ERESTARTNOINTR;
2710 return ret;
2714 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2715 * @uaddr: the futex we initially wait on (non-pi)
2716 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2717 * the same type, no requeueing from private to shared, etc.
2718 * @val: the expected value of uaddr
2719 * @abs_time: absolute timeout
2720 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
2721 * @uaddr2: the pi futex we will take prior to returning to user-space
2723 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2724 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
2725 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2726 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
2727 * without one, the pi logic would not know which task to boost/deboost, if
2728 * there was a need to.
2730 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2731 * via the following--
2732 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2733 * 2) wakeup on uaddr2 after a requeue
2734 * 3) signal
2735 * 4) timeout
2737 * If 3, cleanup and return -ERESTARTNOINTR.
2739 * If 2, we may then block on trying to take the rt_mutex and return via:
2740 * 5) successful lock
2741 * 6) signal
2742 * 7) timeout
2743 * 8) other lock acquisition failure
2745 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2747 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2749 * Return:
2750 * 0 - On success;
2751 * <0 - On error
2753 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2754 u32 val, ktime_t *abs_time, u32 bitset,
2755 u32 __user *uaddr2)
2757 struct hrtimer_sleeper timeout, *to = NULL;
2758 struct rt_mutex_waiter rt_waiter;
2759 struct rt_mutex *pi_mutex = NULL;
2760 struct futex_hash_bucket *hb;
2761 union futex_key key2 = FUTEX_KEY_INIT;
2762 struct futex_q q = futex_q_init;
2763 int res, ret;
2765 if (uaddr == uaddr2)
2766 return -EINVAL;
2768 if (!bitset)
2769 return -EINVAL;
2771 if (abs_time) {
2772 to = &timeout;
2773 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2774 CLOCK_REALTIME : CLOCK_MONOTONIC,
2775 HRTIMER_MODE_ABS);
2776 hrtimer_init_sleeper(to, current);
2777 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2778 current->timer_slack_ns);
2782 * The waiter is allocated on our stack, manipulated by the requeue
2783 * code while we sleep on uaddr.
2785 debug_rt_mutex_init_waiter(&rt_waiter);
2786 RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2787 RB_CLEAR_NODE(&rt_waiter.tree_entry);
2788 rt_waiter.task = NULL;
2790 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2791 if (unlikely(ret != 0))
2792 goto out;
2794 q.bitset = bitset;
2795 q.rt_waiter = &rt_waiter;
2796 q.requeue_pi_key = &key2;
2799 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2800 * count.
2802 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2803 if (ret)
2804 goto out_key2;
2807 * The check above which compares uaddrs is not sufficient for
2808 * shared futexes. We need to compare the keys:
2810 if (match_futex(&q.key, &key2)) {
2811 queue_unlock(hb);
2812 ret = -EINVAL;
2813 goto out_put_keys;
2816 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2817 futex_wait_queue_me(hb, &q, to);
2819 spin_lock(&hb->lock);
2820 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2821 spin_unlock(&hb->lock);
2822 if (ret)
2823 goto out_put_keys;
2826 * In order for us to be here, we know our q.key == key2, and since
2827 * we took the hb->lock above, we also know that futex_requeue() has
2828 * completed and we no longer have to concern ourselves with a wakeup
2829 * race with the atomic proxy lock acquisition by the requeue code. The
2830 * futex_requeue dropped our key1 reference and incremented our key2
2831 * reference count.
2834 /* Check if the requeue code acquired the second futex for us. */
2835 if (!q.rt_waiter) {
2837 * Got the lock. We might not be the anticipated owner if we
2838 * did a lock-steal - fix up the PI-state in that case.
2840 if (q.pi_state && (q.pi_state->owner != current)) {
2841 spin_lock(q.lock_ptr);
2842 ret = fixup_pi_state_owner(uaddr2, &q, current);
2844 * Drop the reference to the pi state which
2845 * the requeue_pi() code acquired for us.
2847 put_pi_state(q.pi_state);
2848 spin_unlock(q.lock_ptr);
2850 } else {
2852 * We have been woken up by futex_unlock_pi(), a timeout, or a
2853 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2854 * the pi_state.
2856 WARN_ON(!q.pi_state);
2857 pi_mutex = &q.pi_state->pi_mutex;
2858 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter);
2859 debug_rt_mutex_free_waiter(&rt_waiter);
2861 spin_lock(q.lock_ptr);
2863 * Fixup the pi_state owner and possibly acquire the lock if we
2864 * haven't already.
2866 res = fixup_owner(uaddr2, &q, !ret);
2868 * If fixup_owner() returned an error, proprogate that. If it
2869 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2871 if (res)
2872 ret = (res < 0) ? res : 0;
2874 /* Unqueue and drop the lock. */
2875 unqueue_me_pi(&q);
2879 * If fixup_pi_state_owner() faulted and was unable to handle the
2880 * fault, unlock the rt_mutex and return the fault to userspace.
2882 if (ret == -EFAULT) {
2883 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2884 rt_mutex_unlock(pi_mutex);
2885 } else if (ret == -EINTR) {
2887 * We've already been requeued, but cannot restart by calling
2888 * futex_lock_pi() directly. We could restart this syscall, but
2889 * it would detect that the user space "val" changed and return
2890 * -EWOULDBLOCK. Save the overhead of the restart and return
2891 * -EWOULDBLOCK directly.
2893 ret = -EWOULDBLOCK;
2896 out_put_keys:
2897 put_futex_key(&q.key);
2898 out_key2:
2899 put_futex_key(&key2);
2901 out:
2902 if (to) {
2903 hrtimer_cancel(&to->timer);
2904 destroy_hrtimer_on_stack(&to->timer);
2906 return ret;
2910 * Support for robust futexes: the kernel cleans up held futexes at
2911 * thread exit time.
2913 * Implementation: user-space maintains a per-thread list of locks it
2914 * is holding. Upon do_exit(), the kernel carefully walks this list,
2915 * and marks all locks that are owned by this thread with the
2916 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2917 * always manipulated with the lock held, so the list is private and
2918 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2919 * field, to allow the kernel to clean up if the thread dies after
2920 * acquiring the lock, but just before it could have added itself to
2921 * the list. There can only be one such pending lock.
2925 * sys_set_robust_list() - Set the robust-futex list head of a task
2926 * @head: pointer to the list-head
2927 * @len: length of the list-head, as userspace expects
2929 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2930 size_t, len)
2932 if (!futex_cmpxchg_enabled)
2933 return -ENOSYS;
2935 * The kernel knows only one size for now:
2937 if (unlikely(len != sizeof(*head)))
2938 return -EINVAL;
2940 current->robust_list = head;
2942 return 0;
2946 * sys_get_robust_list() - Get the robust-futex list head of a task
2947 * @pid: pid of the process [zero for current task]
2948 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2949 * @len_ptr: pointer to a length field, the kernel fills in the header size
2951 SYSCALL_DEFINE3(get_robust_list, int, pid,
2952 struct robust_list_head __user * __user *, head_ptr,
2953 size_t __user *, len_ptr)
2955 struct robust_list_head __user *head;
2956 unsigned long ret;
2957 struct task_struct *p;
2959 if (!futex_cmpxchg_enabled)
2960 return -ENOSYS;
2962 rcu_read_lock();
2964 ret = -ESRCH;
2965 if (!pid)
2966 p = current;
2967 else {
2968 p = find_task_by_vpid(pid);
2969 if (!p)
2970 goto err_unlock;
2973 ret = -EPERM;
2974 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
2975 goto err_unlock;
2977 head = p->robust_list;
2978 rcu_read_unlock();
2980 if (put_user(sizeof(*head), len_ptr))
2981 return -EFAULT;
2982 return put_user(head, head_ptr);
2984 err_unlock:
2985 rcu_read_unlock();
2987 return ret;
2991 * Process a futex-list entry, check whether it's owned by the
2992 * dying task, and do notification if so:
2994 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2996 u32 uval, uninitialized_var(nval), mval;
2998 retry:
2999 if (get_user(uval, uaddr))
3000 return -1;
3002 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
3004 * Ok, this dying thread is truly holding a futex
3005 * of interest. Set the OWNER_DIED bit atomically
3006 * via cmpxchg, and if the value had FUTEX_WAITERS
3007 * set, wake up a waiter (if any). (We have to do a
3008 * futex_wake() even if OWNER_DIED is already set -
3009 * to handle the rare but possible case of recursive
3010 * thread-death.) The rest of the cleanup is done in
3011 * userspace.
3013 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3015 * We are not holding a lock here, but we want to have
3016 * the pagefault_disable/enable() protection because
3017 * we want to handle the fault gracefully. If the
3018 * access fails we try to fault in the futex with R/W
3019 * verification via get_user_pages. get_user() above
3020 * does not guarantee R/W access. If that fails we
3021 * give up and leave the futex locked.
3023 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3024 if (fault_in_user_writeable(uaddr))
3025 return -1;
3026 goto retry;
3028 if (nval != uval)
3029 goto retry;
3032 * Wake robust non-PI futexes here. The wakeup of
3033 * PI futexes happens in exit_pi_state():
3035 if (!pi && (uval & FUTEX_WAITERS))
3036 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3038 return 0;
3042 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3044 static inline int fetch_robust_entry(struct robust_list __user **entry,
3045 struct robust_list __user * __user *head,
3046 unsigned int *pi)
3048 unsigned long uentry;
3050 if (get_user(uentry, (unsigned long __user *)head))
3051 return -EFAULT;
3053 *entry = (void __user *)(uentry & ~1UL);
3054 *pi = uentry & 1;
3056 return 0;
3060 * Walk curr->robust_list (very carefully, it's a userspace list!)
3061 * and mark any locks found there dead, and notify any waiters.
3063 * We silently return on any sign of list-walking problem.
3065 void exit_robust_list(struct task_struct *curr)
3067 struct robust_list_head __user *head = curr->robust_list;
3068 struct robust_list __user *entry, *next_entry, *pending;
3069 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3070 unsigned int uninitialized_var(next_pi);
3071 unsigned long futex_offset;
3072 int rc;
3074 if (!futex_cmpxchg_enabled)
3075 return;
3078 * Fetch the list head (which was registered earlier, via
3079 * sys_set_robust_list()):
3081 if (fetch_robust_entry(&entry, &head->list.next, &pi))
3082 return;
3084 * Fetch the relative futex offset:
3086 if (get_user(futex_offset, &head->futex_offset))
3087 return;
3089 * Fetch any possibly pending lock-add first, and handle it
3090 * if it exists:
3092 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3093 return;
3095 next_entry = NULL; /* avoid warning with gcc */
3096 while (entry != &head->list) {
3098 * Fetch the next entry in the list before calling
3099 * handle_futex_death:
3101 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3103 * A pending lock might already be on the list, so
3104 * don't process it twice:
3106 if (entry != pending)
3107 if (handle_futex_death((void __user *)entry + futex_offset,
3108 curr, pi))
3109 return;
3110 if (rc)
3111 return;
3112 entry = next_entry;
3113 pi = next_pi;
3115 * Avoid excessively long or circular lists:
3117 if (!--limit)
3118 break;
3120 cond_resched();
3123 if (pending)
3124 handle_futex_death((void __user *)pending + futex_offset,
3125 curr, pip);
3128 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3129 u32 __user *uaddr2, u32 val2, u32 val3)
3131 int cmd = op & FUTEX_CMD_MASK;
3132 unsigned int flags = 0;
3134 if (!(op & FUTEX_PRIVATE_FLAG))
3135 flags |= FLAGS_SHARED;
3137 if (op & FUTEX_CLOCK_REALTIME) {
3138 flags |= FLAGS_CLOCKRT;
3139 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3140 cmd != FUTEX_WAIT_REQUEUE_PI)
3141 return -ENOSYS;
3144 switch (cmd) {
3145 case FUTEX_LOCK_PI:
3146 case FUTEX_UNLOCK_PI:
3147 case FUTEX_TRYLOCK_PI:
3148 case FUTEX_WAIT_REQUEUE_PI:
3149 case FUTEX_CMP_REQUEUE_PI:
3150 if (!futex_cmpxchg_enabled)
3151 return -ENOSYS;
3154 switch (cmd) {
3155 case FUTEX_WAIT:
3156 val3 = FUTEX_BITSET_MATCH_ANY;
3157 case FUTEX_WAIT_BITSET:
3158 return futex_wait(uaddr, flags, val, timeout, val3);
3159 case FUTEX_WAKE:
3160 val3 = FUTEX_BITSET_MATCH_ANY;
3161 case FUTEX_WAKE_BITSET:
3162 return futex_wake(uaddr, flags, val, val3);
3163 case FUTEX_REQUEUE:
3164 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3165 case FUTEX_CMP_REQUEUE:
3166 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3167 case FUTEX_WAKE_OP:
3168 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3169 case FUTEX_LOCK_PI:
3170 return futex_lock_pi(uaddr, flags, timeout, 0);
3171 case FUTEX_UNLOCK_PI:
3172 return futex_unlock_pi(uaddr, flags);
3173 case FUTEX_TRYLOCK_PI:
3174 return futex_lock_pi(uaddr, flags, NULL, 1);
3175 case FUTEX_WAIT_REQUEUE_PI:
3176 val3 = FUTEX_BITSET_MATCH_ANY;
3177 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3178 uaddr2);
3179 case FUTEX_CMP_REQUEUE_PI:
3180 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3182 return -ENOSYS;
3186 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3187 struct timespec __user *, utime, u32 __user *, uaddr2,
3188 u32, val3)
3190 struct timespec ts;
3191 ktime_t t, *tp = NULL;
3192 u32 val2 = 0;
3193 int cmd = op & FUTEX_CMD_MASK;
3195 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3196 cmd == FUTEX_WAIT_BITSET ||
3197 cmd == FUTEX_WAIT_REQUEUE_PI)) {
3198 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3199 return -EFAULT;
3200 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3201 return -EFAULT;
3202 if (!timespec_valid(&ts))
3203 return -EINVAL;
3205 t = timespec_to_ktime(ts);
3206 if (cmd == FUTEX_WAIT)
3207 t = ktime_add_safe(ktime_get(), t);
3208 tp = &t;
3211 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3212 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3214 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3215 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3216 val2 = (u32) (unsigned long) utime;
3218 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3221 static void __init futex_detect_cmpxchg(void)
3223 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3224 u32 curval;
3227 * This will fail and we want it. Some arch implementations do
3228 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3229 * functionality. We want to know that before we call in any
3230 * of the complex code paths. Also we want to prevent
3231 * registration of robust lists in that case. NULL is
3232 * guaranteed to fault and we get -EFAULT on functional
3233 * implementation, the non-functional ones will return
3234 * -ENOSYS.
3236 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3237 futex_cmpxchg_enabled = 1;
3238 #endif
3241 static int __init futex_init(void)
3243 unsigned int futex_shift;
3244 unsigned long i;
3246 #if CONFIG_BASE_SMALL
3247 futex_hashsize = 16;
3248 #else
3249 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3250 #endif
3252 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3253 futex_hashsize, 0,
3254 futex_hashsize < 256 ? HASH_SMALL : 0,
3255 &futex_shift, NULL,
3256 futex_hashsize, futex_hashsize);
3257 futex_hashsize = 1UL << futex_shift;
3259 futex_detect_cmpxchg();
3261 for (i = 0; i < futex_hashsize; i++) {
3262 atomic_set(&futex_queues[i].waiters, 0);
3263 plist_head_init(&futex_queues[i].chain);
3264 spin_lock_init(&futex_queues[i].lock);
3267 return 0;
3269 __initcall(futex_init);