mfd: wm8350-i2c: Make sure the i2c regmap functions are compiled
[linux/fpc-iii.git] / arch / arm / kvm / coproc.c
blob4dc9256d48a381528eeaa380efbd5bfc7fbfabe6
1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Authors: Rusty Russell <rusty@rustcorp.com.au>
4 * Christoffer Dall <c.dall@virtualopensystems.com>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2, as
8 * published by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
19 #include <linux/mm.h>
20 #include <linux/kvm_host.h>
21 #include <linux/uaccess.h>
22 #include <asm/kvm_arm.h>
23 #include <asm/kvm_host.h>
24 #include <asm/kvm_emulate.h>
25 #include <asm/kvm_coproc.h>
26 #include <asm/kvm_mmu.h>
27 #include <asm/cacheflush.h>
28 #include <asm/cputype.h>
29 #include <trace/events/kvm.h>
30 #include <asm/vfp.h>
31 #include "../vfp/vfpinstr.h"
33 #include "trace.h"
34 #include "coproc.h"
37 /******************************************************************************
38 * Co-processor emulation
39 *****************************************************************************/
41 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
42 static u32 cache_levels;
44 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
45 #define CSSELR_MAX 12
47 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu, struct kvm_run *run)
49 kvm_inject_undefined(vcpu);
50 return 1;
53 int kvm_handle_cp_0_13_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
56 * We can get here, if the host has been built without VFPv3 support,
57 * but the guest attempted a floating point operation.
59 kvm_inject_undefined(vcpu);
60 return 1;
63 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
65 kvm_inject_undefined(vcpu);
66 return 1;
69 int kvm_handle_cp14_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
71 kvm_inject_undefined(vcpu);
72 return 1;
75 /* See note at ARM ARM B1.14.4 */
76 static bool access_dcsw(struct kvm_vcpu *vcpu,
77 const struct coproc_params *p,
78 const struct coproc_reg *r)
80 unsigned long val;
81 int cpu;
83 if (!p->is_write)
84 return read_from_write_only(vcpu, p);
86 cpu = get_cpu();
88 cpumask_setall(&vcpu->arch.require_dcache_flush);
89 cpumask_clear_cpu(cpu, &vcpu->arch.require_dcache_flush);
91 /* If we were already preempted, take the long way around */
92 if (cpu != vcpu->arch.last_pcpu) {
93 flush_cache_all();
94 goto done;
97 val = *vcpu_reg(vcpu, p->Rt1);
99 switch (p->CRm) {
100 case 6: /* Upgrade DCISW to DCCISW, as per HCR.SWIO */
101 case 14: /* DCCISW */
102 asm volatile("mcr p15, 0, %0, c7, c14, 2" : : "r" (val));
103 break;
105 case 10: /* DCCSW */
106 asm volatile("mcr p15, 0, %0, c7, c10, 2" : : "r" (val));
107 break;
110 done:
111 put_cpu();
113 return true;
117 * Generic accessor for VM registers. Only called as long as HCR_TVM
118 * is set.
120 static bool access_vm_reg(struct kvm_vcpu *vcpu,
121 const struct coproc_params *p,
122 const struct coproc_reg *r)
124 BUG_ON(!p->is_write);
126 vcpu->arch.cp15[r->reg] = *vcpu_reg(vcpu, p->Rt1);
127 if (p->is_64bit)
128 vcpu->arch.cp15[r->reg + 1] = *vcpu_reg(vcpu, p->Rt2);
130 return true;
134 * SCTLR accessor. Only called as long as HCR_TVM is set. If the
135 * guest enables the MMU, we stop trapping the VM sys_regs and leave
136 * it in complete control of the caches.
138 * Used by the cpu-specific code.
140 bool access_sctlr(struct kvm_vcpu *vcpu,
141 const struct coproc_params *p,
142 const struct coproc_reg *r)
144 access_vm_reg(vcpu, p, r);
146 if (vcpu_has_cache_enabled(vcpu)) { /* MMU+Caches enabled? */
147 vcpu->arch.hcr &= ~HCR_TVM;
148 stage2_flush_vm(vcpu->kvm);
151 return true;
155 * We could trap ID_DFR0 and tell the guest we don't support performance
156 * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
157 * NAKed, so it will read the PMCR anyway.
159 * Therefore we tell the guest we have 0 counters. Unfortunately, we
160 * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
161 * all PM registers, which doesn't crash the guest kernel at least.
163 static bool pm_fake(struct kvm_vcpu *vcpu,
164 const struct coproc_params *p,
165 const struct coproc_reg *r)
167 if (p->is_write)
168 return ignore_write(vcpu, p);
169 else
170 return read_zero(vcpu, p);
173 #define access_pmcr pm_fake
174 #define access_pmcntenset pm_fake
175 #define access_pmcntenclr pm_fake
176 #define access_pmovsr pm_fake
177 #define access_pmselr pm_fake
178 #define access_pmceid0 pm_fake
179 #define access_pmceid1 pm_fake
180 #define access_pmccntr pm_fake
181 #define access_pmxevtyper pm_fake
182 #define access_pmxevcntr pm_fake
183 #define access_pmuserenr pm_fake
184 #define access_pmintenset pm_fake
185 #define access_pmintenclr pm_fake
187 /* Architected CP15 registers.
188 * CRn denotes the primary register number, but is copied to the CRm in the
189 * user space API for 64-bit register access in line with the terminology used
190 * in the ARM ARM.
191 * Important: Must be sorted ascending by CRn, CRM, Op1, Op2 and with 64-bit
192 * registers preceding 32-bit ones.
194 static const struct coproc_reg cp15_regs[] = {
195 /* CSSELR: swapped by interrupt.S. */
196 { CRn( 0), CRm( 0), Op1( 2), Op2( 0), is32,
197 NULL, reset_unknown, c0_CSSELR },
199 /* TTBR0/TTBR1/TTBCR: swapped by interrupt.S. */
200 { CRm64( 2), Op1( 0), is64, access_vm_reg, reset_unknown64, c2_TTBR0 },
201 { CRn(2), CRm( 0), Op1( 0), Op2( 0), is32,
202 access_vm_reg, reset_unknown, c2_TTBR0 },
203 { CRn(2), CRm( 0), Op1( 0), Op2( 1), is32,
204 access_vm_reg, reset_unknown, c2_TTBR1 },
205 { CRn( 2), CRm( 0), Op1( 0), Op2( 2), is32,
206 access_vm_reg, reset_val, c2_TTBCR, 0x00000000 },
207 { CRm64( 2), Op1( 1), is64, access_vm_reg, reset_unknown64, c2_TTBR1 },
209 /* DACR: swapped by interrupt.S. */
210 { CRn( 3), CRm( 0), Op1( 0), Op2( 0), is32,
211 access_vm_reg, reset_unknown, c3_DACR },
213 /* DFSR/IFSR/ADFSR/AIFSR: swapped by interrupt.S. */
214 { CRn( 5), CRm( 0), Op1( 0), Op2( 0), is32,
215 access_vm_reg, reset_unknown, c5_DFSR },
216 { CRn( 5), CRm( 0), Op1( 0), Op2( 1), is32,
217 access_vm_reg, reset_unknown, c5_IFSR },
218 { CRn( 5), CRm( 1), Op1( 0), Op2( 0), is32,
219 access_vm_reg, reset_unknown, c5_ADFSR },
220 { CRn( 5), CRm( 1), Op1( 0), Op2( 1), is32,
221 access_vm_reg, reset_unknown, c5_AIFSR },
223 /* DFAR/IFAR: swapped by interrupt.S. */
224 { CRn( 6), CRm( 0), Op1( 0), Op2( 0), is32,
225 access_vm_reg, reset_unknown, c6_DFAR },
226 { CRn( 6), CRm( 0), Op1( 0), Op2( 2), is32,
227 access_vm_reg, reset_unknown, c6_IFAR },
229 /* PAR swapped by interrupt.S */
230 { CRm64( 7), Op1( 0), is64, NULL, reset_unknown64, c7_PAR },
233 * DC{C,I,CI}SW operations:
235 { CRn( 7), CRm( 6), Op1( 0), Op2( 2), is32, access_dcsw},
236 { CRn( 7), CRm(10), Op1( 0), Op2( 2), is32, access_dcsw},
237 { CRn( 7), CRm(14), Op1( 0), Op2( 2), is32, access_dcsw},
239 * Dummy performance monitor implementation.
241 { CRn( 9), CRm(12), Op1( 0), Op2( 0), is32, access_pmcr},
242 { CRn( 9), CRm(12), Op1( 0), Op2( 1), is32, access_pmcntenset},
243 { CRn( 9), CRm(12), Op1( 0), Op2( 2), is32, access_pmcntenclr},
244 { CRn( 9), CRm(12), Op1( 0), Op2( 3), is32, access_pmovsr},
245 { CRn( 9), CRm(12), Op1( 0), Op2( 5), is32, access_pmselr},
246 { CRn( 9), CRm(12), Op1( 0), Op2( 6), is32, access_pmceid0},
247 { CRn( 9), CRm(12), Op1( 0), Op2( 7), is32, access_pmceid1},
248 { CRn( 9), CRm(13), Op1( 0), Op2( 0), is32, access_pmccntr},
249 { CRn( 9), CRm(13), Op1( 0), Op2( 1), is32, access_pmxevtyper},
250 { CRn( 9), CRm(13), Op1( 0), Op2( 2), is32, access_pmxevcntr},
251 { CRn( 9), CRm(14), Op1( 0), Op2( 0), is32, access_pmuserenr},
252 { CRn( 9), CRm(14), Op1( 0), Op2( 1), is32, access_pmintenset},
253 { CRn( 9), CRm(14), Op1( 0), Op2( 2), is32, access_pmintenclr},
255 /* PRRR/NMRR (aka MAIR0/MAIR1): swapped by interrupt.S. */
256 { CRn(10), CRm( 2), Op1( 0), Op2( 0), is32,
257 access_vm_reg, reset_unknown, c10_PRRR},
258 { CRn(10), CRm( 2), Op1( 0), Op2( 1), is32,
259 access_vm_reg, reset_unknown, c10_NMRR},
261 /* AMAIR0/AMAIR1: swapped by interrupt.S. */
262 { CRn(10), CRm( 3), Op1( 0), Op2( 0), is32,
263 access_vm_reg, reset_unknown, c10_AMAIR0},
264 { CRn(10), CRm( 3), Op1( 0), Op2( 1), is32,
265 access_vm_reg, reset_unknown, c10_AMAIR1},
267 /* VBAR: swapped by interrupt.S. */
268 { CRn(12), CRm( 0), Op1( 0), Op2( 0), is32,
269 NULL, reset_val, c12_VBAR, 0x00000000 },
271 /* CONTEXTIDR/TPIDRURW/TPIDRURO/TPIDRPRW: swapped by interrupt.S. */
272 { CRn(13), CRm( 0), Op1( 0), Op2( 1), is32,
273 access_vm_reg, reset_val, c13_CID, 0x00000000 },
274 { CRn(13), CRm( 0), Op1( 0), Op2( 2), is32,
275 NULL, reset_unknown, c13_TID_URW },
276 { CRn(13), CRm( 0), Op1( 0), Op2( 3), is32,
277 NULL, reset_unknown, c13_TID_URO },
278 { CRn(13), CRm( 0), Op1( 0), Op2( 4), is32,
279 NULL, reset_unknown, c13_TID_PRIV },
281 /* CNTKCTL: swapped by interrupt.S. */
282 { CRn(14), CRm( 1), Op1( 0), Op2( 0), is32,
283 NULL, reset_val, c14_CNTKCTL, 0x00000000 },
286 /* Target specific emulation tables */
287 static struct kvm_coproc_target_table *target_tables[KVM_ARM_NUM_TARGETS];
289 void kvm_register_target_coproc_table(struct kvm_coproc_target_table *table)
291 target_tables[table->target] = table;
294 /* Get specific register table for this target. */
295 static const struct coproc_reg *get_target_table(unsigned target, size_t *num)
297 struct kvm_coproc_target_table *table;
299 table = target_tables[target];
300 *num = table->num;
301 return table->table;
304 static const struct coproc_reg *find_reg(const struct coproc_params *params,
305 const struct coproc_reg table[],
306 unsigned int num)
308 unsigned int i;
310 for (i = 0; i < num; i++) {
311 const struct coproc_reg *r = &table[i];
313 if (params->is_64bit != r->is_64)
314 continue;
315 if (params->CRn != r->CRn)
316 continue;
317 if (params->CRm != r->CRm)
318 continue;
319 if (params->Op1 != r->Op1)
320 continue;
321 if (params->Op2 != r->Op2)
322 continue;
324 return r;
326 return NULL;
329 static int emulate_cp15(struct kvm_vcpu *vcpu,
330 const struct coproc_params *params)
332 size_t num;
333 const struct coproc_reg *table, *r;
335 trace_kvm_emulate_cp15_imp(params->Op1, params->Rt1, params->CRn,
336 params->CRm, params->Op2, params->is_write);
338 table = get_target_table(vcpu->arch.target, &num);
340 /* Search target-specific then generic table. */
341 r = find_reg(params, table, num);
342 if (!r)
343 r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs));
345 if (likely(r)) {
346 /* If we don't have an accessor, we should never get here! */
347 BUG_ON(!r->access);
349 if (likely(r->access(vcpu, params, r))) {
350 /* Skip instruction, since it was emulated */
351 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
352 return 1;
354 /* If access function fails, it should complain. */
355 } else {
356 kvm_err("Unsupported guest CP15 access at: %08lx\n",
357 *vcpu_pc(vcpu));
358 print_cp_instr(params);
360 kvm_inject_undefined(vcpu);
361 return 1;
365 * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
366 * @vcpu: The VCPU pointer
367 * @run: The kvm_run struct
369 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
371 struct coproc_params params;
373 params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
374 params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
375 params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
376 params.is_64bit = true;
378 params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 16) & 0xf;
379 params.Op2 = 0;
380 params.Rt2 = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
381 params.CRm = 0;
383 return emulate_cp15(vcpu, &params);
386 static void reset_coproc_regs(struct kvm_vcpu *vcpu,
387 const struct coproc_reg *table, size_t num)
389 unsigned long i;
391 for (i = 0; i < num; i++)
392 if (table[i].reset)
393 table[i].reset(vcpu, &table[i]);
397 * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
398 * @vcpu: The VCPU pointer
399 * @run: The kvm_run struct
401 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
403 struct coproc_params params;
405 params.CRm = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
406 params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
407 params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
408 params.is_64bit = false;
410 params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
411 params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 14) & 0x7;
412 params.Op2 = (kvm_vcpu_get_hsr(vcpu) >> 17) & 0x7;
413 params.Rt2 = 0;
415 return emulate_cp15(vcpu, &params);
418 /******************************************************************************
419 * Userspace API
420 *****************************************************************************/
422 static bool index_to_params(u64 id, struct coproc_params *params)
424 switch (id & KVM_REG_SIZE_MASK) {
425 case KVM_REG_SIZE_U32:
426 /* Any unused index bits means it's not valid. */
427 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
428 | KVM_REG_ARM_COPROC_MASK
429 | KVM_REG_ARM_32_CRN_MASK
430 | KVM_REG_ARM_CRM_MASK
431 | KVM_REG_ARM_OPC1_MASK
432 | KVM_REG_ARM_32_OPC2_MASK))
433 return false;
435 params->is_64bit = false;
436 params->CRn = ((id & KVM_REG_ARM_32_CRN_MASK)
437 >> KVM_REG_ARM_32_CRN_SHIFT);
438 params->CRm = ((id & KVM_REG_ARM_CRM_MASK)
439 >> KVM_REG_ARM_CRM_SHIFT);
440 params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
441 >> KVM_REG_ARM_OPC1_SHIFT);
442 params->Op2 = ((id & KVM_REG_ARM_32_OPC2_MASK)
443 >> KVM_REG_ARM_32_OPC2_SHIFT);
444 return true;
445 case KVM_REG_SIZE_U64:
446 /* Any unused index bits means it's not valid. */
447 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
448 | KVM_REG_ARM_COPROC_MASK
449 | KVM_REG_ARM_CRM_MASK
450 | KVM_REG_ARM_OPC1_MASK))
451 return false;
452 params->is_64bit = true;
453 /* CRm to CRn: see cp15_to_index for details */
454 params->CRn = ((id & KVM_REG_ARM_CRM_MASK)
455 >> KVM_REG_ARM_CRM_SHIFT);
456 params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
457 >> KVM_REG_ARM_OPC1_SHIFT);
458 params->Op2 = 0;
459 params->CRm = 0;
460 return true;
461 default:
462 return false;
466 /* Decode an index value, and find the cp15 coproc_reg entry. */
467 static const struct coproc_reg *index_to_coproc_reg(struct kvm_vcpu *vcpu,
468 u64 id)
470 size_t num;
471 const struct coproc_reg *table, *r;
472 struct coproc_params params;
474 /* We only do cp15 for now. */
475 if ((id & KVM_REG_ARM_COPROC_MASK) >> KVM_REG_ARM_COPROC_SHIFT != 15)
476 return NULL;
478 if (!index_to_params(id, &params))
479 return NULL;
481 table = get_target_table(vcpu->arch.target, &num);
482 r = find_reg(&params, table, num);
483 if (!r)
484 r = find_reg(&params, cp15_regs, ARRAY_SIZE(cp15_regs));
486 /* Not saved in the cp15 array? */
487 if (r && !r->reg)
488 r = NULL;
490 return r;
494 * These are the invariant cp15 registers: we let the guest see the host
495 * versions of these, so they're part of the guest state.
497 * A future CPU may provide a mechanism to present different values to
498 * the guest, or a future kvm may trap them.
500 /* Unfortunately, there's no register-argument for mrc, so generate. */
501 #define FUNCTION_FOR32(crn, crm, op1, op2, name) \
502 static void get_##name(struct kvm_vcpu *v, \
503 const struct coproc_reg *r) \
505 u32 val; \
507 asm volatile("mrc p15, " __stringify(op1) \
508 ", %0, c" __stringify(crn) \
509 ", c" __stringify(crm) \
510 ", " __stringify(op2) "\n" : "=r" (val)); \
511 ((struct coproc_reg *)r)->val = val; \
514 FUNCTION_FOR32(0, 0, 0, 0, MIDR)
515 FUNCTION_FOR32(0, 0, 0, 1, CTR)
516 FUNCTION_FOR32(0, 0, 0, 2, TCMTR)
517 FUNCTION_FOR32(0, 0, 0, 3, TLBTR)
518 FUNCTION_FOR32(0, 0, 0, 6, REVIDR)
519 FUNCTION_FOR32(0, 1, 0, 0, ID_PFR0)
520 FUNCTION_FOR32(0, 1, 0, 1, ID_PFR1)
521 FUNCTION_FOR32(0, 1, 0, 2, ID_DFR0)
522 FUNCTION_FOR32(0, 1, 0, 3, ID_AFR0)
523 FUNCTION_FOR32(0, 1, 0, 4, ID_MMFR0)
524 FUNCTION_FOR32(0, 1, 0, 5, ID_MMFR1)
525 FUNCTION_FOR32(0, 1, 0, 6, ID_MMFR2)
526 FUNCTION_FOR32(0, 1, 0, 7, ID_MMFR3)
527 FUNCTION_FOR32(0, 2, 0, 0, ID_ISAR0)
528 FUNCTION_FOR32(0, 2, 0, 1, ID_ISAR1)
529 FUNCTION_FOR32(0, 2, 0, 2, ID_ISAR2)
530 FUNCTION_FOR32(0, 2, 0, 3, ID_ISAR3)
531 FUNCTION_FOR32(0, 2, 0, 4, ID_ISAR4)
532 FUNCTION_FOR32(0, 2, 0, 5, ID_ISAR5)
533 FUNCTION_FOR32(0, 0, 1, 1, CLIDR)
534 FUNCTION_FOR32(0, 0, 1, 7, AIDR)
536 /* ->val is filled in by kvm_invariant_coproc_table_init() */
537 static struct coproc_reg invariant_cp15[] = {
538 { CRn( 0), CRm( 0), Op1( 0), Op2( 0), is32, NULL, get_MIDR },
539 { CRn( 0), CRm( 0), Op1( 0), Op2( 1), is32, NULL, get_CTR },
540 { CRn( 0), CRm( 0), Op1( 0), Op2( 2), is32, NULL, get_TCMTR },
541 { CRn( 0), CRm( 0), Op1( 0), Op2( 3), is32, NULL, get_TLBTR },
542 { CRn( 0), CRm( 0), Op1( 0), Op2( 6), is32, NULL, get_REVIDR },
544 { CRn( 0), CRm( 1), Op1( 0), Op2( 0), is32, NULL, get_ID_PFR0 },
545 { CRn( 0), CRm( 1), Op1( 0), Op2( 1), is32, NULL, get_ID_PFR1 },
546 { CRn( 0), CRm( 1), Op1( 0), Op2( 2), is32, NULL, get_ID_DFR0 },
547 { CRn( 0), CRm( 1), Op1( 0), Op2( 3), is32, NULL, get_ID_AFR0 },
548 { CRn( 0), CRm( 1), Op1( 0), Op2( 4), is32, NULL, get_ID_MMFR0 },
549 { CRn( 0), CRm( 1), Op1( 0), Op2( 5), is32, NULL, get_ID_MMFR1 },
550 { CRn( 0), CRm( 1), Op1( 0), Op2( 6), is32, NULL, get_ID_MMFR2 },
551 { CRn( 0), CRm( 1), Op1( 0), Op2( 7), is32, NULL, get_ID_MMFR3 },
553 { CRn( 0), CRm( 2), Op1( 0), Op2( 0), is32, NULL, get_ID_ISAR0 },
554 { CRn( 0), CRm( 2), Op1( 0), Op2( 1), is32, NULL, get_ID_ISAR1 },
555 { CRn( 0), CRm( 2), Op1( 0), Op2( 2), is32, NULL, get_ID_ISAR2 },
556 { CRn( 0), CRm( 2), Op1( 0), Op2( 3), is32, NULL, get_ID_ISAR3 },
557 { CRn( 0), CRm( 2), Op1( 0), Op2( 4), is32, NULL, get_ID_ISAR4 },
558 { CRn( 0), CRm( 2), Op1( 0), Op2( 5), is32, NULL, get_ID_ISAR5 },
560 { CRn( 0), CRm( 0), Op1( 1), Op2( 1), is32, NULL, get_CLIDR },
561 { CRn( 0), CRm( 0), Op1( 1), Op2( 7), is32, NULL, get_AIDR },
564 static int reg_from_user(void *val, const void __user *uaddr, u64 id)
566 /* This Just Works because we are little endian. */
567 if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
568 return -EFAULT;
569 return 0;
572 static int reg_to_user(void __user *uaddr, const void *val, u64 id)
574 /* This Just Works because we are little endian. */
575 if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
576 return -EFAULT;
577 return 0;
580 static int get_invariant_cp15(u64 id, void __user *uaddr)
582 struct coproc_params params;
583 const struct coproc_reg *r;
585 if (!index_to_params(id, &params))
586 return -ENOENT;
588 r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
589 if (!r)
590 return -ENOENT;
592 return reg_to_user(uaddr, &r->val, id);
595 static int set_invariant_cp15(u64 id, void __user *uaddr)
597 struct coproc_params params;
598 const struct coproc_reg *r;
599 int err;
600 u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
602 if (!index_to_params(id, &params))
603 return -ENOENT;
604 r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
605 if (!r)
606 return -ENOENT;
608 err = reg_from_user(&val, uaddr, id);
609 if (err)
610 return err;
612 /* This is what we mean by invariant: you can't change it. */
613 if (r->val != val)
614 return -EINVAL;
616 return 0;
619 static bool is_valid_cache(u32 val)
621 u32 level, ctype;
623 if (val >= CSSELR_MAX)
624 return false;
626 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
627 level = (val >> 1);
628 ctype = (cache_levels >> (level * 3)) & 7;
630 switch (ctype) {
631 case 0: /* No cache */
632 return false;
633 case 1: /* Instruction cache only */
634 return (val & 1);
635 case 2: /* Data cache only */
636 case 4: /* Unified cache */
637 return !(val & 1);
638 case 3: /* Separate instruction and data caches */
639 return true;
640 default: /* Reserved: we can't know instruction or data. */
641 return false;
645 /* Which cache CCSIDR represents depends on CSSELR value. */
646 static u32 get_ccsidr(u32 csselr)
648 u32 ccsidr;
650 /* Make sure noone else changes CSSELR during this! */
651 local_irq_disable();
652 /* Put value into CSSELR */
653 asm volatile("mcr p15, 2, %0, c0, c0, 0" : : "r" (csselr));
654 isb();
655 /* Read result out of CCSIDR */
656 asm volatile("mrc p15, 1, %0, c0, c0, 0" : "=r" (ccsidr));
657 local_irq_enable();
659 return ccsidr;
662 static int demux_c15_get(u64 id, void __user *uaddr)
664 u32 val;
665 u32 __user *uval = uaddr;
667 /* Fail if we have unknown bits set. */
668 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
669 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
670 return -ENOENT;
672 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
673 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
674 if (KVM_REG_SIZE(id) != 4)
675 return -ENOENT;
676 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
677 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
678 if (!is_valid_cache(val))
679 return -ENOENT;
681 return put_user(get_ccsidr(val), uval);
682 default:
683 return -ENOENT;
687 static int demux_c15_set(u64 id, void __user *uaddr)
689 u32 val, newval;
690 u32 __user *uval = uaddr;
692 /* Fail if we have unknown bits set. */
693 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
694 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
695 return -ENOENT;
697 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
698 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
699 if (KVM_REG_SIZE(id) != 4)
700 return -ENOENT;
701 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
702 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
703 if (!is_valid_cache(val))
704 return -ENOENT;
706 if (get_user(newval, uval))
707 return -EFAULT;
709 /* This is also invariant: you can't change it. */
710 if (newval != get_ccsidr(val))
711 return -EINVAL;
712 return 0;
713 default:
714 return -ENOENT;
718 #ifdef CONFIG_VFPv3
719 static const int vfp_sysregs[] = { KVM_REG_ARM_VFP_FPEXC,
720 KVM_REG_ARM_VFP_FPSCR,
721 KVM_REG_ARM_VFP_FPINST,
722 KVM_REG_ARM_VFP_FPINST2,
723 KVM_REG_ARM_VFP_MVFR0,
724 KVM_REG_ARM_VFP_MVFR1,
725 KVM_REG_ARM_VFP_FPSID };
727 static unsigned int num_fp_regs(void)
729 if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK) >> MVFR0_A_SIMD_BIT) == 2)
730 return 32;
731 else
732 return 16;
735 static unsigned int num_vfp_regs(void)
737 /* Normal FP regs + control regs. */
738 return num_fp_regs() + ARRAY_SIZE(vfp_sysregs);
741 static int copy_vfp_regids(u64 __user *uindices)
743 unsigned int i;
744 const u64 u32reg = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP;
745 const u64 u64reg = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
747 for (i = 0; i < num_fp_regs(); i++) {
748 if (put_user((u64reg | KVM_REG_ARM_VFP_BASE_REG) + i,
749 uindices))
750 return -EFAULT;
751 uindices++;
754 for (i = 0; i < ARRAY_SIZE(vfp_sysregs); i++) {
755 if (put_user(u32reg | vfp_sysregs[i], uindices))
756 return -EFAULT;
757 uindices++;
760 return num_vfp_regs();
763 static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
765 u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
766 u32 val;
768 /* Fail if we have unknown bits set. */
769 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
770 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
771 return -ENOENT;
773 if (vfpid < num_fp_regs()) {
774 if (KVM_REG_SIZE(id) != 8)
775 return -ENOENT;
776 return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpregs[vfpid],
777 id);
780 /* FP control registers are all 32 bit. */
781 if (KVM_REG_SIZE(id) != 4)
782 return -ENOENT;
784 switch (vfpid) {
785 case KVM_REG_ARM_VFP_FPEXC:
786 return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpexc, id);
787 case KVM_REG_ARM_VFP_FPSCR:
788 return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpscr, id);
789 case KVM_REG_ARM_VFP_FPINST:
790 return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpinst, id);
791 case KVM_REG_ARM_VFP_FPINST2:
792 return reg_to_user(uaddr, &vcpu->arch.vfp_guest.fpinst2, id);
793 case KVM_REG_ARM_VFP_MVFR0:
794 val = fmrx(MVFR0);
795 return reg_to_user(uaddr, &val, id);
796 case KVM_REG_ARM_VFP_MVFR1:
797 val = fmrx(MVFR1);
798 return reg_to_user(uaddr, &val, id);
799 case KVM_REG_ARM_VFP_FPSID:
800 val = fmrx(FPSID);
801 return reg_to_user(uaddr, &val, id);
802 default:
803 return -ENOENT;
807 static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
809 u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
810 u32 val;
812 /* Fail if we have unknown bits set. */
813 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
814 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
815 return -ENOENT;
817 if (vfpid < num_fp_regs()) {
818 if (KVM_REG_SIZE(id) != 8)
819 return -ENOENT;
820 return reg_from_user(&vcpu->arch.vfp_guest.fpregs[vfpid],
821 uaddr, id);
824 /* FP control registers are all 32 bit. */
825 if (KVM_REG_SIZE(id) != 4)
826 return -ENOENT;
828 switch (vfpid) {
829 case KVM_REG_ARM_VFP_FPEXC:
830 return reg_from_user(&vcpu->arch.vfp_guest.fpexc, uaddr, id);
831 case KVM_REG_ARM_VFP_FPSCR:
832 return reg_from_user(&vcpu->arch.vfp_guest.fpscr, uaddr, id);
833 case KVM_REG_ARM_VFP_FPINST:
834 return reg_from_user(&vcpu->arch.vfp_guest.fpinst, uaddr, id);
835 case KVM_REG_ARM_VFP_FPINST2:
836 return reg_from_user(&vcpu->arch.vfp_guest.fpinst2, uaddr, id);
837 /* These are invariant. */
838 case KVM_REG_ARM_VFP_MVFR0:
839 if (reg_from_user(&val, uaddr, id))
840 return -EFAULT;
841 if (val != fmrx(MVFR0))
842 return -EINVAL;
843 return 0;
844 case KVM_REG_ARM_VFP_MVFR1:
845 if (reg_from_user(&val, uaddr, id))
846 return -EFAULT;
847 if (val != fmrx(MVFR1))
848 return -EINVAL;
849 return 0;
850 case KVM_REG_ARM_VFP_FPSID:
851 if (reg_from_user(&val, uaddr, id))
852 return -EFAULT;
853 if (val != fmrx(FPSID))
854 return -EINVAL;
855 return 0;
856 default:
857 return -ENOENT;
860 #else /* !CONFIG_VFPv3 */
861 static unsigned int num_vfp_regs(void)
863 return 0;
866 static int copy_vfp_regids(u64 __user *uindices)
868 return 0;
871 static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
873 return -ENOENT;
876 static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
878 return -ENOENT;
880 #endif /* !CONFIG_VFPv3 */
882 int kvm_arm_coproc_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
884 const struct coproc_reg *r;
885 void __user *uaddr = (void __user *)(long)reg->addr;
887 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
888 return demux_c15_get(reg->id, uaddr);
890 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
891 return vfp_get_reg(vcpu, reg->id, uaddr);
893 r = index_to_coproc_reg(vcpu, reg->id);
894 if (!r)
895 return get_invariant_cp15(reg->id, uaddr);
897 /* Note: copies two regs if size is 64 bit. */
898 return reg_to_user(uaddr, &vcpu->arch.cp15[r->reg], reg->id);
901 int kvm_arm_coproc_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
903 const struct coproc_reg *r;
904 void __user *uaddr = (void __user *)(long)reg->addr;
906 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
907 return demux_c15_set(reg->id, uaddr);
909 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
910 return vfp_set_reg(vcpu, reg->id, uaddr);
912 r = index_to_coproc_reg(vcpu, reg->id);
913 if (!r)
914 return set_invariant_cp15(reg->id, uaddr);
916 /* Note: copies two regs if size is 64 bit */
917 return reg_from_user(&vcpu->arch.cp15[r->reg], uaddr, reg->id);
920 static unsigned int num_demux_regs(void)
922 unsigned int i, count = 0;
924 for (i = 0; i < CSSELR_MAX; i++)
925 if (is_valid_cache(i))
926 count++;
928 return count;
931 static int write_demux_regids(u64 __user *uindices)
933 u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
934 unsigned int i;
936 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
937 for (i = 0; i < CSSELR_MAX; i++) {
938 if (!is_valid_cache(i))
939 continue;
940 if (put_user(val | i, uindices))
941 return -EFAULT;
942 uindices++;
944 return 0;
947 static u64 cp15_to_index(const struct coproc_reg *reg)
949 u64 val = KVM_REG_ARM | (15 << KVM_REG_ARM_COPROC_SHIFT);
950 if (reg->is_64) {
951 val |= KVM_REG_SIZE_U64;
952 val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
954 * CRn always denotes the primary coproc. reg. nr. for the
955 * in-kernel representation, but the user space API uses the
956 * CRm for the encoding, because it is modelled after the
957 * MRRC/MCRR instructions: see the ARM ARM rev. c page
958 * B3-1445
960 val |= (reg->CRn << KVM_REG_ARM_CRM_SHIFT);
961 } else {
962 val |= KVM_REG_SIZE_U32;
963 val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
964 val |= (reg->Op2 << KVM_REG_ARM_32_OPC2_SHIFT);
965 val |= (reg->CRm << KVM_REG_ARM_CRM_SHIFT);
966 val |= (reg->CRn << KVM_REG_ARM_32_CRN_SHIFT);
968 return val;
971 static bool copy_reg_to_user(const struct coproc_reg *reg, u64 __user **uind)
973 if (!*uind)
974 return true;
976 if (put_user(cp15_to_index(reg), *uind))
977 return false;
979 (*uind)++;
980 return true;
983 /* Assumed ordered tables, see kvm_coproc_table_init. */
984 static int walk_cp15(struct kvm_vcpu *vcpu, u64 __user *uind)
986 const struct coproc_reg *i1, *i2, *end1, *end2;
987 unsigned int total = 0;
988 size_t num;
990 /* We check for duplicates here, to allow arch-specific overrides. */
991 i1 = get_target_table(vcpu->arch.target, &num);
992 end1 = i1 + num;
993 i2 = cp15_regs;
994 end2 = cp15_regs + ARRAY_SIZE(cp15_regs);
996 BUG_ON(i1 == end1 || i2 == end2);
998 /* Walk carefully, as both tables may refer to the same register. */
999 while (i1 || i2) {
1000 int cmp = cmp_reg(i1, i2);
1001 /* target-specific overrides generic entry. */
1002 if (cmp <= 0) {
1003 /* Ignore registers we trap but don't save. */
1004 if (i1->reg) {
1005 if (!copy_reg_to_user(i1, &uind))
1006 return -EFAULT;
1007 total++;
1009 } else {
1010 /* Ignore registers we trap but don't save. */
1011 if (i2->reg) {
1012 if (!copy_reg_to_user(i2, &uind))
1013 return -EFAULT;
1014 total++;
1018 if (cmp <= 0 && ++i1 == end1)
1019 i1 = NULL;
1020 if (cmp >= 0 && ++i2 == end2)
1021 i2 = NULL;
1023 return total;
1026 unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu *vcpu)
1028 return ARRAY_SIZE(invariant_cp15)
1029 + num_demux_regs()
1030 + num_vfp_regs()
1031 + walk_cp15(vcpu, (u64 __user *)NULL);
1034 int kvm_arm_copy_coproc_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
1036 unsigned int i;
1037 int err;
1039 /* Then give them all the invariant registers' indices. */
1040 for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++) {
1041 if (put_user(cp15_to_index(&invariant_cp15[i]), uindices))
1042 return -EFAULT;
1043 uindices++;
1046 err = walk_cp15(vcpu, uindices);
1047 if (err < 0)
1048 return err;
1049 uindices += err;
1051 err = copy_vfp_regids(uindices);
1052 if (err < 0)
1053 return err;
1054 uindices += err;
1056 return write_demux_regids(uindices);
1059 void kvm_coproc_table_init(void)
1061 unsigned int i;
1063 /* Make sure tables are unique and in order. */
1064 for (i = 1; i < ARRAY_SIZE(cp15_regs); i++)
1065 BUG_ON(cmp_reg(&cp15_regs[i-1], &cp15_regs[i]) >= 0);
1067 /* We abuse the reset function to overwrite the table itself. */
1068 for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++)
1069 invariant_cp15[i].reset(NULL, &invariant_cp15[i]);
1072 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
1074 * If software reads the Cache Type fields from Ctype1
1075 * upwards, once it has seen a value of 0b000, no caches
1076 * exist at further-out levels of the hierarchy. So, for
1077 * example, if Ctype3 is the first Cache Type field with a
1078 * value of 0b000, the values of Ctype4 to Ctype7 must be
1079 * ignored.
1081 asm volatile("mrc p15, 1, %0, c0, c0, 1" : "=r" (cache_levels));
1082 for (i = 0; i < 7; i++)
1083 if (((cache_levels >> (i*3)) & 7) == 0)
1084 break;
1085 /* Clear all higher bits. */
1086 cache_levels &= (1 << (i*3))-1;
1090 * kvm_reset_coprocs - sets cp15 registers to reset value
1091 * @vcpu: The VCPU pointer
1093 * This function finds the right table above and sets the registers on the
1094 * virtual CPU struct to their architecturally defined reset values.
1096 void kvm_reset_coprocs(struct kvm_vcpu *vcpu)
1098 size_t num;
1099 const struct coproc_reg *table;
1101 /* Catch someone adding a register without putting in reset entry. */
1102 memset(vcpu->arch.cp15, 0x42, sizeof(vcpu->arch.cp15));
1104 /* Generic chip reset first (so target could override). */
1105 reset_coproc_regs(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
1107 table = get_target_table(vcpu->arch.target, &num);
1108 reset_coproc_regs(vcpu, table, num);
1110 for (num = 1; num < NR_CP15_REGS; num++)
1111 if (vcpu->arch.cp15[num] == 0x42424242)
1112 panic("Didn't reset vcpu->arch.cp15[%zi]", num);