2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Authors: Rusty Russell <rusty@rustcorp.com.au>
4 * Christoffer Dall <c.dall@virtualopensystems.com>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2, as
8 * published by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
20 #include <linux/kvm_host.h>
21 #include <linux/uaccess.h>
22 #include <asm/kvm_arm.h>
23 #include <asm/kvm_host.h>
24 #include <asm/kvm_emulate.h>
25 #include <asm/kvm_coproc.h>
26 #include <asm/kvm_mmu.h>
27 #include <asm/cacheflush.h>
28 #include <asm/cputype.h>
29 #include <trace/events/kvm.h>
31 #include "../vfp/vfpinstr.h"
37 /******************************************************************************
38 * Co-processor emulation
39 *****************************************************************************/
41 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
42 static u32 cache_levels
;
44 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
47 int kvm_handle_cp10_id(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
49 kvm_inject_undefined(vcpu
);
53 int kvm_handle_cp_0_13_access(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
56 * We can get here, if the host has been built without VFPv3 support,
57 * but the guest attempted a floating point operation.
59 kvm_inject_undefined(vcpu
);
63 int kvm_handle_cp14_load_store(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
65 kvm_inject_undefined(vcpu
);
69 int kvm_handle_cp14_access(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
71 kvm_inject_undefined(vcpu
);
75 /* See note at ARM ARM B1.14.4 */
76 static bool access_dcsw(struct kvm_vcpu
*vcpu
,
77 const struct coproc_params
*p
,
78 const struct coproc_reg
*r
)
84 return read_from_write_only(vcpu
, p
);
88 cpumask_setall(&vcpu
->arch
.require_dcache_flush
);
89 cpumask_clear_cpu(cpu
, &vcpu
->arch
.require_dcache_flush
);
91 /* If we were already preempted, take the long way around */
92 if (cpu
!= vcpu
->arch
.last_pcpu
) {
97 val
= *vcpu_reg(vcpu
, p
->Rt1
);
100 case 6: /* Upgrade DCISW to DCCISW, as per HCR.SWIO */
101 case 14: /* DCCISW */
102 asm volatile("mcr p15, 0, %0, c7, c14, 2" : : "r" (val
));
106 asm volatile("mcr p15, 0, %0, c7, c10, 2" : : "r" (val
));
117 * Generic accessor for VM registers. Only called as long as HCR_TVM
120 static bool access_vm_reg(struct kvm_vcpu
*vcpu
,
121 const struct coproc_params
*p
,
122 const struct coproc_reg
*r
)
124 BUG_ON(!p
->is_write
);
126 vcpu
->arch
.cp15
[r
->reg
] = *vcpu_reg(vcpu
, p
->Rt1
);
128 vcpu
->arch
.cp15
[r
->reg
+ 1] = *vcpu_reg(vcpu
, p
->Rt2
);
134 * SCTLR accessor. Only called as long as HCR_TVM is set. If the
135 * guest enables the MMU, we stop trapping the VM sys_regs and leave
136 * it in complete control of the caches.
138 * Used by the cpu-specific code.
140 bool access_sctlr(struct kvm_vcpu
*vcpu
,
141 const struct coproc_params
*p
,
142 const struct coproc_reg
*r
)
144 access_vm_reg(vcpu
, p
, r
);
146 if (vcpu_has_cache_enabled(vcpu
)) { /* MMU+Caches enabled? */
147 vcpu
->arch
.hcr
&= ~HCR_TVM
;
148 stage2_flush_vm(vcpu
->kvm
);
155 * We could trap ID_DFR0 and tell the guest we don't support performance
156 * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
157 * NAKed, so it will read the PMCR anyway.
159 * Therefore we tell the guest we have 0 counters. Unfortunately, we
160 * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
161 * all PM registers, which doesn't crash the guest kernel at least.
163 static bool pm_fake(struct kvm_vcpu
*vcpu
,
164 const struct coproc_params
*p
,
165 const struct coproc_reg
*r
)
168 return ignore_write(vcpu
, p
);
170 return read_zero(vcpu
, p
);
173 #define access_pmcr pm_fake
174 #define access_pmcntenset pm_fake
175 #define access_pmcntenclr pm_fake
176 #define access_pmovsr pm_fake
177 #define access_pmselr pm_fake
178 #define access_pmceid0 pm_fake
179 #define access_pmceid1 pm_fake
180 #define access_pmccntr pm_fake
181 #define access_pmxevtyper pm_fake
182 #define access_pmxevcntr pm_fake
183 #define access_pmuserenr pm_fake
184 #define access_pmintenset pm_fake
185 #define access_pmintenclr pm_fake
187 /* Architected CP15 registers.
188 * CRn denotes the primary register number, but is copied to the CRm in the
189 * user space API for 64-bit register access in line with the terminology used
191 * Important: Must be sorted ascending by CRn, CRM, Op1, Op2 and with 64-bit
192 * registers preceding 32-bit ones.
194 static const struct coproc_reg cp15_regs
[] = {
195 /* CSSELR: swapped by interrupt.S. */
196 { CRn( 0), CRm( 0), Op1( 2), Op2( 0), is32
,
197 NULL
, reset_unknown
, c0_CSSELR
},
199 /* TTBR0/TTBR1/TTBCR: swapped by interrupt.S. */
200 { CRm64( 2), Op1( 0), is64
, access_vm_reg
, reset_unknown64
, c2_TTBR0
},
201 { CRn(2), CRm( 0), Op1( 0), Op2( 0), is32
,
202 access_vm_reg
, reset_unknown
, c2_TTBR0
},
203 { CRn(2), CRm( 0), Op1( 0), Op2( 1), is32
,
204 access_vm_reg
, reset_unknown
, c2_TTBR1
},
205 { CRn( 2), CRm( 0), Op1( 0), Op2( 2), is32
,
206 access_vm_reg
, reset_val
, c2_TTBCR
, 0x00000000 },
207 { CRm64( 2), Op1( 1), is64
, access_vm_reg
, reset_unknown64
, c2_TTBR1
},
209 /* DACR: swapped by interrupt.S. */
210 { CRn( 3), CRm( 0), Op1( 0), Op2( 0), is32
,
211 access_vm_reg
, reset_unknown
, c3_DACR
},
213 /* DFSR/IFSR/ADFSR/AIFSR: swapped by interrupt.S. */
214 { CRn( 5), CRm( 0), Op1( 0), Op2( 0), is32
,
215 access_vm_reg
, reset_unknown
, c5_DFSR
},
216 { CRn( 5), CRm( 0), Op1( 0), Op2( 1), is32
,
217 access_vm_reg
, reset_unknown
, c5_IFSR
},
218 { CRn( 5), CRm( 1), Op1( 0), Op2( 0), is32
,
219 access_vm_reg
, reset_unknown
, c5_ADFSR
},
220 { CRn( 5), CRm( 1), Op1( 0), Op2( 1), is32
,
221 access_vm_reg
, reset_unknown
, c5_AIFSR
},
223 /* DFAR/IFAR: swapped by interrupt.S. */
224 { CRn( 6), CRm( 0), Op1( 0), Op2( 0), is32
,
225 access_vm_reg
, reset_unknown
, c6_DFAR
},
226 { CRn( 6), CRm( 0), Op1( 0), Op2( 2), is32
,
227 access_vm_reg
, reset_unknown
, c6_IFAR
},
229 /* PAR swapped by interrupt.S */
230 { CRm64( 7), Op1( 0), is64
, NULL
, reset_unknown64
, c7_PAR
},
233 * DC{C,I,CI}SW operations:
235 { CRn( 7), CRm( 6), Op1( 0), Op2( 2), is32
, access_dcsw
},
236 { CRn( 7), CRm(10), Op1( 0), Op2( 2), is32
, access_dcsw
},
237 { CRn( 7), CRm(14), Op1( 0), Op2( 2), is32
, access_dcsw
},
239 * Dummy performance monitor implementation.
241 { CRn( 9), CRm(12), Op1( 0), Op2( 0), is32
, access_pmcr
},
242 { CRn( 9), CRm(12), Op1( 0), Op2( 1), is32
, access_pmcntenset
},
243 { CRn( 9), CRm(12), Op1( 0), Op2( 2), is32
, access_pmcntenclr
},
244 { CRn( 9), CRm(12), Op1( 0), Op2( 3), is32
, access_pmovsr
},
245 { CRn( 9), CRm(12), Op1( 0), Op2( 5), is32
, access_pmselr
},
246 { CRn( 9), CRm(12), Op1( 0), Op2( 6), is32
, access_pmceid0
},
247 { CRn( 9), CRm(12), Op1( 0), Op2( 7), is32
, access_pmceid1
},
248 { CRn( 9), CRm(13), Op1( 0), Op2( 0), is32
, access_pmccntr
},
249 { CRn( 9), CRm(13), Op1( 0), Op2( 1), is32
, access_pmxevtyper
},
250 { CRn( 9), CRm(13), Op1( 0), Op2( 2), is32
, access_pmxevcntr
},
251 { CRn( 9), CRm(14), Op1( 0), Op2( 0), is32
, access_pmuserenr
},
252 { CRn( 9), CRm(14), Op1( 0), Op2( 1), is32
, access_pmintenset
},
253 { CRn( 9), CRm(14), Op1( 0), Op2( 2), is32
, access_pmintenclr
},
255 /* PRRR/NMRR (aka MAIR0/MAIR1): swapped by interrupt.S. */
256 { CRn(10), CRm( 2), Op1( 0), Op2( 0), is32
,
257 access_vm_reg
, reset_unknown
, c10_PRRR
},
258 { CRn(10), CRm( 2), Op1( 0), Op2( 1), is32
,
259 access_vm_reg
, reset_unknown
, c10_NMRR
},
261 /* AMAIR0/AMAIR1: swapped by interrupt.S. */
262 { CRn(10), CRm( 3), Op1( 0), Op2( 0), is32
,
263 access_vm_reg
, reset_unknown
, c10_AMAIR0
},
264 { CRn(10), CRm( 3), Op1( 0), Op2( 1), is32
,
265 access_vm_reg
, reset_unknown
, c10_AMAIR1
},
267 /* VBAR: swapped by interrupt.S. */
268 { CRn(12), CRm( 0), Op1( 0), Op2( 0), is32
,
269 NULL
, reset_val
, c12_VBAR
, 0x00000000 },
271 /* CONTEXTIDR/TPIDRURW/TPIDRURO/TPIDRPRW: swapped by interrupt.S. */
272 { CRn(13), CRm( 0), Op1( 0), Op2( 1), is32
,
273 access_vm_reg
, reset_val
, c13_CID
, 0x00000000 },
274 { CRn(13), CRm( 0), Op1( 0), Op2( 2), is32
,
275 NULL
, reset_unknown
, c13_TID_URW
},
276 { CRn(13), CRm( 0), Op1( 0), Op2( 3), is32
,
277 NULL
, reset_unknown
, c13_TID_URO
},
278 { CRn(13), CRm( 0), Op1( 0), Op2( 4), is32
,
279 NULL
, reset_unknown
, c13_TID_PRIV
},
281 /* CNTKCTL: swapped by interrupt.S. */
282 { CRn(14), CRm( 1), Op1( 0), Op2( 0), is32
,
283 NULL
, reset_val
, c14_CNTKCTL
, 0x00000000 },
286 /* Target specific emulation tables */
287 static struct kvm_coproc_target_table
*target_tables
[KVM_ARM_NUM_TARGETS
];
289 void kvm_register_target_coproc_table(struct kvm_coproc_target_table
*table
)
291 target_tables
[table
->target
] = table
;
294 /* Get specific register table for this target. */
295 static const struct coproc_reg
*get_target_table(unsigned target
, size_t *num
)
297 struct kvm_coproc_target_table
*table
;
299 table
= target_tables
[target
];
304 static const struct coproc_reg
*find_reg(const struct coproc_params
*params
,
305 const struct coproc_reg table
[],
310 for (i
= 0; i
< num
; i
++) {
311 const struct coproc_reg
*r
= &table
[i
];
313 if (params
->is_64bit
!= r
->is_64
)
315 if (params
->CRn
!= r
->CRn
)
317 if (params
->CRm
!= r
->CRm
)
319 if (params
->Op1
!= r
->Op1
)
321 if (params
->Op2
!= r
->Op2
)
329 static int emulate_cp15(struct kvm_vcpu
*vcpu
,
330 const struct coproc_params
*params
)
333 const struct coproc_reg
*table
, *r
;
335 trace_kvm_emulate_cp15_imp(params
->Op1
, params
->Rt1
, params
->CRn
,
336 params
->CRm
, params
->Op2
, params
->is_write
);
338 table
= get_target_table(vcpu
->arch
.target
, &num
);
340 /* Search target-specific then generic table. */
341 r
= find_reg(params
, table
, num
);
343 r
= find_reg(params
, cp15_regs
, ARRAY_SIZE(cp15_regs
));
346 /* If we don't have an accessor, we should never get here! */
349 if (likely(r
->access(vcpu
, params
, r
))) {
350 /* Skip instruction, since it was emulated */
351 kvm_skip_instr(vcpu
, kvm_vcpu_trap_il_is32bit(vcpu
));
354 /* If access function fails, it should complain. */
356 kvm_err("Unsupported guest CP15 access at: %08lx\n",
358 print_cp_instr(params
);
360 kvm_inject_undefined(vcpu
);
365 * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
366 * @vcpu: The VCPU pointer
367 * @run: The kvm_run struct
369 int kvm_handle_cp15_64(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
371 struct coproc_params params
;
373 params
.CRn
= (kvm_vcpu_get_hsr(vcpu
) >> 1) & 0xf;
374 params
.Rt1
= (kvm_vcpu_get_hsr(vcpu
) >> 5) & 0xf;
375 params
.is_write
= ((kvm_vcpu_get_hsr(vcpu
) & 1) == 0);
376 params
.is_64bit
= true;
378 params
.Op1
= (kvm_vcpu_get_hsr(vcpu
) >> 16) & 0xf;
380 params
.Rt2
= (kvm_vcpu_get_hsr(vcpu
) >> 10) & 0xf;
383 return emulate_cp15(vcpu
, ¶ms
);
386 static void reset_coproc_regs(struct kvm_vcpu
*vcpu
,
387 const struct coproc_reg
*table
, size_t num
)
391 for (i
= 0; i
< num
; i
++)
393 table
[i
].reset(vcpu
, &table
[i
]);
397 * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
398 * @vcpu: The VCPU pointer
399 * @run: The kvm_run struct
401 int kvm_handle_cp15_32(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
403 struct coproc_params params
;
405 params
.CRm
= (kvm_vcpu_get_hsr(vcpu
) >> 1) & 0xf;
406 params
.Rt1
= (kvm_vcpu_get_hsr(vcpu
) >> 5) & 0xf;
407 params
.is_write
= ((kvm_vcpu_get_hsr(vcpu
) & 1) == 0);
408 params
.is_64bit
= false;
410 params
.CRn
= (kvm_vcpu_get_hsr(vcpu
) >> 10) & 0xf;
411 params
.Op1
= (kvm_vcpu_get_hsr(vcpu
) >> 14) & 0x7;
412 params
.Op2
= (kvm_vcpu_get_hsr(vcpu
) >> 17) & 0x7;
415 return emulate_cp15(vcpu
, ¶ms
);
418 /******************************************************************************
420 *****************************************************************************/
422 static bool index_to_params(u64 id
, struct coproc_params
*params
)
424 switch (id
& KVM_REG_SIZE_MASK
) {
425 case KVM_REG_SIZE_U32
:
426 /* Any unused index bits means it's not valid. */
427 if (id
& ~(KVM_REG_ARCH_MASK
| KVM_REG_SIZE_MASK
428 | KVM_REG_ARM_COPROC_MASK
429 | KVM_REG_ARM_32_CRN_MASK
430 | KVM_REG_ARM_CRM_MASK
431 | KVM_REG_ARM_OPC1_MASK
432 | KVM_REG_ARM_32_OPC2_MASK
))
435 params
->is_64bit
= false;
436 params
->CRn
= ((id
& KVM_REG_ARM_32_CRN_MASK
)
437 >> KVM_REG_ARM_32_CRN_SHIFT
);
438 params
->CRm
= ((id
& KVM_REG_ARM_CRM_MASK
)
439 >> KVM_REG_ARM_CRM_SHIFT
);
440 params
->Op1
= ((id
& KVM_REG_ARM_OPC1_MASK
)
441 >> KVM_REG_ARM_OPC1_SHIFT
);
442 params
->Op2
= ((id
& KVM_REG_ARM_32_OPC2_MASK
)
443 >> KVM_REG_ARM_32_OPC2_SHIFT
);
445 case KVM_REG_SIZE_U64
:
446 /* Any unused index bits means it's not valid. */
447 if (id
& ~(KVM_REG_ARCH_MASK
| KVM_REG_SIZE_MASK
448 | KVM_REG_ARM_COPROC_MASK
449 | KVM_REG_ARM_CRM_MASK
450 | KVM_REG_ARM_OPC1_MASK
))
452 params
->is_64bit
= true;
453 /* CRm to CRn: see cp15_to_index for details */
454 params
->CRn
= ((id
& KVM_REG_ARM_CRM_MASK
)
455 >> KVM_REG_ARM_CRM_SHIFT
);
456 params
->Op1
= ((id
& KVM_REG_ARM_OPC1_MASK
)
457 >> KVM_REG_ARM_OPC1_SHIFT
);
466 /* Decode an index value, and find the cp15 coproc_reg entry. */
467 static const struct coproc_reg
*index_to_coproc_reg(struct kvm_vcpu
*vcpu
,
471 const struct coproc_reg
*table
, *r
;
472 struct coproc_params params
;
474 /* We only do cp15 for now. */
475 if ((id
& KVM_REG_ARM_COPROC_MASK
) >> KVM_REG_ARM_COPROC_SHIFT
!= 15)
478 if (!index_to_params(id
, ¶ms
))
481 table
= get_target_table(vcpu
->arch
.target
, &num
);
482 r
= find_reg(¶ms
, table
, num
);
484 r
= find_reg(¶ms
, cp15_regs
, ARRAY_SIZE(cp15_regs
));
486 /* Not saved in the cp15 array? */
494 * These are the invariant cp15 registers: we let the guest see the host
495 * versions of these, so they're part of the guest state.
497 * A future CPU may provide a mechanism to present different values to
498 * the guest, or a future kvm may trap them.
500 /* Unfortunately, there's no register-argument for mrc, so generate. */
501 #define FUNCTION_FOR32(crn, crm, op1, op2, name) \
502 static void get_##name(struct kvm_vcpu *v, \
503 const struct coproc_reg *r) \
507 asm volatile("mrc p15, " __stringify(op1) \
508 ", %0, c" __stringify(crn) \
509 ", c" __stringify(crm) \
510 ", " __stringify(op2) "\n" : "=r" (val)); \
511 ((struct coproc_reg *)r)->val = val; \
514 FUNCTION_FOR32(0, 0, 0, 0, MIDR
)
515 FUNCTION_FOR32(0, 0, 0, 1, CTR
)
516 FUNCTION_FOR32(0, 0, 0, 2, TCMTR
)
517 FUNCTION_FOR32(0, 0, 0, 3, TLBTR
)
518 FUNCTION_FOR32(0, 0, 0, 6, REVIDR
)
519 FUNCTION_FOR32(0, 1, 0, 0, ID_PFR0
)
520 FUNCTION_FOR32(0, 1, 0, 1, ID_PFR1
)
521 FUNCTION_FOR32(0, 1, 0, 2, ID_DFR0
)
522 FUNCTION_FOR32(0, 1, 0, 3, ID_AFR0
)
523 FUNCTION_FOR32(0, 1, 0, 4, ID_MMFR0
)
524 FUNCTION_FOR32(0, 1, 0, 5, ID_MMFR1
)
525 FUNCTION_FOR32(0, 1, 0, 6, ID_MMFR2
)
526 FUNCTION_FOR32(0, 1, 0, 7, ID_MMFR3
)
527 FUNCTION_FOR32(0, 2, 0, 0, ID_ISAR0
)
528 FUNCTION_FOR32(0, 2, 0, 1, ID_ISAR1
)
529 FUNCTION_FOR32(0, 2, 0, 2, ID_ISAR2
)
530 FUNCTION_FOR32(0, 2, 0, 3, ID_ISAR3
)
531 FUNCTION_FOR32(0, 2, 0, 4, ID_ISAR4
)
532 FUNCTION_FOR32(0, 2, 0, 5, ID_ISAR5
)
533 FUNCTION_FOR32(0, 0, 1, 1, CLIDR
)
534 FUNCTION_FOR32(0, 0, 1, 7, AIDR
)
536 /* ->val is filled in by kvm_invariant_coproc_table_init() */
537 static struct coproc_reg invariant_cp15
[] = {
538 { CRn( 0), CRm( 0), Op1( 0), Op2( 0), is32
, NULL
, get_MIDR
},
539 { CRn( 0), CRm( 0), Op1( 0), Op2( 1), is32
, NULL
, get_CTR
},
540 { CRn( 0), CRm( 0), Op1( 0), Op2( 2), is32
, NULL
, get_TCMTR
},
541 { CRn( 0), CRm( 0), Op1( 0), Op2( 3), is32
, NULL
, get_TLBTR
},
542 { CRn( 0), CRm( 0), Op1( 0), Op2( 6), is32
, NULL
, get_REVIDR
},
544 { CRn( 0), CRm( 1), Op1( 0), Op2( 0), is32
, NULL
, get_ID_PFR0
},
545 { CRn( 0), CRm( 1), Op1( 0), Op2( 1), is32
, NULL
, get_ID_PFR1
},
546 { CRn( 0), CRm( 1), Op1( 0), Op2( 2), is32
, NULL
, get_ID_DFR0
},
547 { CRn( 0), CRm( 1), Op1( 0), Op2( 3), is32
, NULL
, get_ID_AFR0
},
548 { CRn( 0), CRm( 1), Op1( 0), Op2( 4), is32
, NULL
, get_ID_MMFR0
},
549 { CRn( 0), CRm( 1), Op1( 0), Op2( 5), is32
, NULL
, get_ID_MMFR1
},
550 { CRn( 0), CRm( 1), Op1( 0), Op2( 6), is32
, NULL
, get_ID_MMFR2
},
551 { CRn( 0), CRm( 1), Op1( 0), Op2( 7), is32
, NULL
, get_ID_MMFR3
},
553 { CRn( 0), CRm( 2), Op1( 0), Op2( 0), is32
, NULL
, get_ID_ISAR0
},
554 { CRn( 0), CRm( 2), Op1( 0), Op2( 1), is32
, NULL
, get_ID_ISAR1
},
555 { CRn( 0), CRm( 2), Op1( 0), Op2( 2), is32
, NULL
, get_ID_ISAR2
},
556 { CRn( 0), CRm( 2), Op1( 0), Op2( 3), is32
, NULL
, get_ID_ISAR3
},
557 { CRn( 0), CRm( 2), Op1( 0), Op2( 4), is32
, NULL
, get_ID_ISAR4
},
558 { CRn( 0), CRm( 2), Op1( 0), Op2( 5), is32
, NULL
, get_ID_ISAR5
},
560 { CRn( 0), CRm( 0), Op1( 1), Op2( 1), is32
, NULL
, get_CLIDR
},
561 { CRn( 0), CRm( 0), Op1( 1), Op2( 7), is32
, NULL
, get_AIDR
},
564 static int reg_from_user(void *val
, const void __user
*uaddr
, u64 id
)
566 /* This Just Works because we are little endian. */
567 if (copy_from_user(val
, uaddr
, KVM_REG_SIZE(id
)) != 0)
572 static int reg_to_user(void __user
*uaddr
, const void *val
, u64 id
)
574 /* This Just Works because we are little endian. */
575 if (copy_to_user(uaddr
, val
, KVM_REG_SIZE(id
)) != 0)
580 static int get_invariant_cp15(u64 id
, void __user
*uaddr
)
582 struct coproc_params params
;
583 const struct coproc_reg
*r
;
585 if (!index_to_params(id
, ¶ms
))
588 r
= find_reg(¶ms
, invariant_cp15
, ARRAY_SIZE(invariant_cp15
));
592 return reg_to_user(uaddr
, &r
->val
, id
);
595 static int set_invariant_cp15(u64 id
, void __user
*uaddr
)
597 struct coproc_params params
;
598 const struct coproc_reg
*r
;
600 u64 val
= 0; /* Make sure high bits are 0 for 32-bit regs */
602 if (!index_to_params(id
, ¶ms
))
604 r
= find_reg(¶ms
, invariant_cp15
, ARRAY_SIZE(invariant_cp15
));
608 err
= reg_from_user(&val
, uaddr
, id
);
612 /* This is what we mean by invariant: you can't change it. */
619 static bool is_valid_cache(u32 val
)
623 if (val
>= CSSELR_MAX
)
626 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
628 ctype
= (cache_levels
>> (level
* 3)) & 7;
631 case 0: /* No cache */
633 case 1: /* Instruction cache only */
635 case 2: /* Data cache only */
636 case 4: /* Unified cache */
638 case 3: /* Separate instruction and data caches */
640 default: /* Reserved: we can't know instruction or data. */
645 /* Which cache CCSIDR represents depends on CSSELR value. */
646 static u32
get_ccsidr(u32 csselr
)
650 /* Make sure noone else changes CSSELR during this! */
652 /* Put value into CSSELR */
653 asm volatile("mcr p15, 2, %0, c0, c0, 0" : : "r" (csselr
));
655 /* Read result out of CCSIDR */
656 asm volatile("mrc p15, 1, %0, c0, c0, 0" : "=r" (ccsidr
));
662 static int demux_c15_get(u64 id
, void __user
*uaddr
)
665 u32 __user
*uval
= uaddr
;
667 /* Fail if we have unknown bits set. */
668 if (id
& ~(KVM_REG_ARCH_MASK
|KVM_REG_SIZE_MASK
|KVM_REG_ARM_COPROC_MASK
669 | ((1 << KVM_REG_ARM_COPROC_SHIFT
)-1)))
672 switch (id
& KVM_REG_ARM_DEMUX_ID_MASK
) {
673 case KVM_REG_ARM_DEMUX_ID_CCSIDR
:
674 if (KVM_REG_SIZE(id
) != 4)
676 val
= (id
& KVM_REG_ARM_DEMUX_VAL_MASK
)
677 >> KVM_REG_ARM_DEMUX_VAL_SHIFT
;
678 if (!is_valid_cache(val
))
681 return put_user(get_ccsidr(val
), uval
);
687 static int demux_c15_set(u64 id
, void __user
*uaddr
)
690 u32 __user
*uval
= uaddr
;
692 /* Fail if we have unknown bits set. */
693 if (id
& ~(KVM_REG_ARCH_MASK
|KVM_REG_SIZE_MASK
|KVM_REG_ARM_COPROC_MASK
694 | ((1 << KVM_REG_ARM_COPROC_SHIFT
)-1)))
697 switch (id
& KVM_REG_ARM_DEMUX_ID_MASK
) {
698 case KVM_REG_ARM_DEMUX_ID_CCSIDR
:
699 if (KVM_REG_SIZE(id
) != 4)
701 val
= (id
& KVM_REG_ARM_DEMUX_VAL_MASK
)
702 >> KVM_REG_ARM_DEMUX_VAL_SHIFT
;
703 if (!is_valid_cache(val
))
706 if (get_user(newval
, uval
))
709 /* This is also invariant: you can't change it. */
710 if (newval
!= get_ccsidr(val
))
719 static const int vfp_sysregs
[] = { KVM_REG_ARM_VFP_FPEXC
,
720 KVM_REG_ARM_VFP_FPSCR
,
721 KVM_REG_ARM_VFP_FPINST
,
722 KVM_REG_ARM_VFP_FPINST2
,
723 KVM_REG_ARM_VFP_MVFR0
,
724 KVM_REG_ARM_VFP_MVFR1
,
725 KVM_REG_ARM_VFP_FPSID
};
727 static unsigned int num_fp_regs(void)
729 if (((fmrx(MVFR0
) & MVFR0_A_SIMD_MASK
) >> MVFR0_A_SIMD_BIT
) == 2)
735 static unsigned int num_vfp_regs(void)
737 /* Normal FP regs + control regs. */
738 return num_fp_regs() + ARRAY_SIZE(vfp_sysregs
);
741 static int copy_vfp_regids(u64 __user
*uindices
)
744 const u64 u32reg
= KVM_REG_ARM
| KVM_REG_SIZE_U32
| KVM_REG_ARM_VFP
;
745 const u64 u64reg
= KVM_REG_ARM
| KVM_REG_SIZE_U64
| KVM_REG_ARM_VFP
;
747 for (i
= 0; i
< num_fp_regs(); i
++) {
748 if (put_user((u64reg
| KVM_REG_ARM_VFP_BASE_REG
) + i
,
754 for (i
= 0; i
< ARRAY_SIZE(vfp_sysregs
); i
++) {
755 if (put_user(u32reg
| vfp_sysregs
[i
], uindices
))
760 return num_vfp_regs();
763 static int vfp_get_reg(const struct kvm_vcpu
*vcpu
, u64 id
, void __user
*uaddr
)
765 u32 vfpid
= (id
& KVM_REG_ARM_VFP_MASK
);
768 /* Fail if we have unknown bits set. */
769 if (id
& ~(KVM_REG_ARCH_MASK
|KVM_REG_SIZE_MASK
|KVM_REG_ARM_COPROC_MASK
770 | ((1 << KVM_REG_ARM_COPROC_SHIFT
)-1)))
773 if (vfpid
< num_fp_regs()) {
774 if (KVM_REG_SIZE(id
) != 8)
776 return reg_to_user(uaddr
, &vcpu
->arch
.vfp_guest
.fpregs
[vfpid
],
780 /* FP control registers are all 32 bit. */
781 if (KVM_REG_SIZE(id
) != 4)
785 case KVM_REG_ARM_VFP_FPEXC
:
786 return reg_to_user(uaddr
, &vcpu
->arch
.vfp_guest
.fpexc
, id
);
787 case KVM_REG_ARM_VFP_FPSCR
:
788 return reg_to_user(uaddr
, &vcpu
->arch
.vfp_guest
.fpscr
, id
);
789 case KVM_REG_ARM_VFP_FPINST
:
790 return reg_to_user(uaddr
, &vcpu
->arch
.vfp_guest
.fpinst
, id
);
791 case KVM_REG_ARM_VFP_FPINST2
:
792 return reg_to_user(uaddr
, &vcpu
->arch
.vfp_guest
.fpinst2
, id
);
793 case KVM_REG_ARM_VFP_MVFR0
:
795 return reg_to_user(uaddr
, &val
, id
);
796 case KVM_REG_ARM_VFP_MVFR1
:
798 return reg_to_user(uaddr
, &val
, id
);
799 case KVM_REG_ARM_VFP_FPSID
:
801 return reg_to_user(uaddr
, &val
, id
);
807 static int vfp_set_reg(struct kvm_vcpu
*vcpu
, u64 id
, const void __user
*uaddr
)
809 u32 vfpid
= (id
& KVM_REG_ARM_VFP_MASK
);
812 /* Fail if we have unknown bits set. */
813 if (id
& ~(KVM_REG_ARCH_MASK
|KVM_REG_SIZE_MASK
|KVM_REG_ARM_COPROC_MASK
814 | ((1 << KVM_REG_ARM_COPROC_SHIFT
)-1)))
817 if (vfpid
< num_fp_regs()) {
818 if (KVM_REG_SIZE(id
) != 8)
820 return reg_from_user(&vcpu
->arch
.vfp_guest
.fpregs
[vfpid
],
824 /* FP control registers are all 32 bit. */
825 if (KVM_REG_SIZE(id
) != 4)
829 case KVM_REG_ARM_VFP_FPEXC
:
830 return reg_from_user(&vcpu
->arch
.vfp_guest
.fpexc
, uaddr
, id
);
831 case KVM_REG_ARM_VFP_FPSCR
:
832 return reg_from_user(&vcpu
->arch
.vfp_guest
.fpscr
, uaddr
, id
);
833 case KVM_REG_ARM_VFP_FPINST
:
834 return reg_from_user(&vcpu
->arch
.vfp_guest
.fpinst
, uaddr
, id
);
835 case KVM_REG_ARM_VFP_FPINST2
:
836 return reg_from_user(&vcpu
->arch
.vfp_guest
.fpinst2
, uaddr
, id
);
837 /* These are invariant. */
838 case KVM_REG_ARM_VFP_MVFR0
:
839 if (reg_from_user(&val
, uaddr
, id
))
841 if (val
!= fmrx(MVFR0
))
844 case KVM_REG_ARM_VFP_MVFR1
:
845 if (reg_from_user(&val
, uaddr
, id
))
847 if (val
!= fmrx(MVFR1
))
850 case KVM_REG_ARM_VFP_FPSID
:
851 if (reg_from_user(&val
, uaddr
, id
))
853 if (val
!= fmrx(FPSID
))
860 #else /* !CONFIG_VFPv3 */
861 static unsigned int num_vfp_regs(void)
866 static int copy_vfp_regids(u64 __user
*uindices
)
871 static int vfp_get_reg(const struct kvm_vcpu
*vcpu
, u64 id
, void __user
*uaddr
)
876 static int vfp_set_reg(struct kvm_vcpu
*vcpu
, u64 id
, const void __user
*uaddr
)
880 #endif /* !CONFIG_VFPv3 */
882 int kvm_arm_coproc_get_reg(struct kvm_vcpu
*vcpu
, const struct kvm_one_reg
*reg
)
884 const struct coproc_reg
*r
;
885 void __user
*uaddr
= (void __user
*)(long)reg
->addr
;
887 if ((reg
->id
& KVM_REG_ARM_COPROC_MASK
) == KVM_REG_ARM_DEMUX
)
888 return demux_c15_get(reg
->id
, uaddr
);
890 if ((reg
->id
& KVM_REG_ARM_COPROC_MASK
) == KVM_REG_ARM_VFP
)
891 return vfp_get_reg(vcpu
, reg
->id
, uaddr
);
893 r
= index_to_coproc_reg(vcpu
, reg
->id
);
895 return get_invariant_cp15(reg
->id
, uaddr
);
897 /* Note: copies two regs if size is 64 bit. */
898 return reg_to_user(uaddr
, &vcpu
->arch
.cp15
[r
->reg
], reg
->id
);
901 int kvm_arm_coproc_set_reg(struct kvm_vcpu
*vcpu
, const struct kvm_one_reg
*reg
)
903 const struct coproc_reg
*r
;
904 void __user
*uaddr
= (void __user
*)(long)reg
->addr
;
906 if ((reg
->id
& KVM_REG_ARM_COPROC_MASK
) == KVM_REG_ARM_DEMUX
)
907 return demux_c15_set(reg
->id
, uaddr
);
909 if ((reg
->id
& KVM_REG_ARM_COPROC_MASK
) == KVM_REG_ARM_VFP
)
910 return vfp_set_reg(vcpu
, reg
->id
, uaddr
);
912 r
= index_to_coproc_reg(vcpu
, reg
->id
);
914 return set_invariant_cp15(reg
->id
, uaddr
);
916 /* Note: copies two regs if size is 64 bit */
917 return reg_from_user(&vcpu
->arch
.cp15
[r
->reg
], uaddr
, reg
->id
);
920 static unsigned int num_demux_regs(void)
922 unsigned int i
, count
= 0;
924 for (i
= 0; i
< CSSELR_MAX
; i
++)
925 if (is_valid_cache(i
))
931 static int write_demux_regids(u64 __user
*uindices
)
933 u64 val
= KVM_REG_ARM
| KVM_REG_SIZE_U32
| KVM_REG_ARM_DEMUX
;
936 val
|= KVM_REG_ARM_DEMUX_ID_CCSIDR
;
937 for (i
= 0; i
< CSSELR_MAX
; i
++) {
938 if (!is_valid_cache(i
))
940 if (put_user(val
| i
, uindices
))
947 static u64
cp15_to_index(const struct coproc_reg
*reg
)
949 u64 val
= KVM_REG_ARM
| (15 << KVM_REG_ARM_COPROC_SHIFT
);
951 val
|= KVM_REG_SIZE_U64
;
952 val
|= (reg
->Op1
<< KVM_REG_ARM_OPC1_SHIFT
);
954 * CRn always denotes the primary coproc. reg. nr. for the
955 * in-kernel representation, but the user space API uses the
956 * CRm for the encoding, because it is modelled after the
957 * MRRC/MCRR instructions: see the ARM ARM rev. c page
960 val
|= (reg
->CRn
<< KVM_REG_ARM_CRM_SHIFT
);
962 val
|= KVM_REG_SIZE_U32
;
963 val
|= (reg
->Op1
<< KVM_REG_ARM_OPC1_SHIFT
);
964 val
|= (reg
->Op2
<< KVM_REG_ARM_32_OPC2_SHIFT
);
965 val
|= (reg
->CRm
<< KVM_REG_ARM_CRM_SHIFT
);
966 val
|= (reg
->CRn
<< KVM_REG_ARM_32_CRN_SHIFT
);
971 static bool copy_reg_to_user(const struct coproc_reg
*reg
, u64 __user
**uind
)
976 if (put_user(cp15_to_index(reg
), *uind
))
983 /* Assumed ordered tables, see kvm_coproc_table_init. */
984 static int walk_cp15(struct kvm_vcpu
*vcpu
, u64 __user
*uind
)
986 const struct coproc_reg
*i1
, *i2
, *end1
, *end2
;
987 unsigned int total
= 0;
990 /* We check for duplicates here, to allow arch-specific overrides. */
991 i1
= get_target_table(vcpu
->arch
.target
, &num
);
994 end2
= cp15_regs
+ ARRAY_SIZE(cp15_regs
);
996 BUG_ON(i1
== end1
|| i2
== end2
);
998 /* Walk carefully, as both tables may refer to the same register. */
1000 int cmp
= cmp_reg(i1
, i2
);
1001 /* target-specific overrides generic entry. */
1003 /* Ignore registers we trap but don't save. */
1005 if (!copy_reg_to_user(i1
, &uind
))
1010 /* Ignore registers we trap but don't save. */
1012 if (!copy_reg_to_user(i2
, &uind
))
1018 if (cmp
<= 0 && ++i1
== end1
)
1020 if (cmp
>= 0 && ++i2
== end2
)
1026 unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu
*vcpu
)
1028 return ARRAY_SIZE(invariant_cp15
)
1031 + walk_cp15(vcpu
, (u64 __user
*)NULL
);
1034 int kvm_arm_copy_coproc_indices(struct kvm_vcpu
*vcpu
, u64 __user
*uindices
)
1039 /* Then give them all the invariant registers' indices. */
1040 for (i
= 0; i
< ARRAY_SIZE(invariant_cp15
); i
++) {
1041 if (put_user(cp15_to_index(&invariant_cp15
[i
]), uindices
))
1046 err
= walk_cp15(vcpu
, uindices
);
1051 err
= copy_vfp_regids(uindices
);
1056 return write_demux_regids(uindices
);
1059 void kvm_coproc_table_init(void)
1063 /* Make sure tables are unique and in order. */
1064 for (i
= 1; i
< ARRAY_SIZE(cp15_regs
); i
++)
1065 BUG_ON(cmp_reg(&cp15_regs
[i
-1], &cp15_regs
[i
]) >= 0);
1067 /* We abuse the reset function to overwrite the table itself. */
1068 for (i
= 0; i
< ARRAY_SIZE(invariant_cp15
); i
++)
1069 invariant_cp15
[i
].reset(NULL
, &invariant_cp15
[i
]);
1072 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
1074 * If software reads the Cache Type fields from Ctype1
1075 * upwards, once it has seen a value of 0b000, no caches
1076 * exist at further-out levels of the hierarchy. So, for
1077 * example, if Ctype3 is the first Cache Type field with a
1078 * value of 0b000, the values of Ctype4 to Ctype7 must be
1081 asm volatile("mrc p15, 1, %0, c0, c0, 1" : "=r" (cache_levels
));
1082 for (i
= 0; i
< 7; i
++)
1083 if (((cache_levels
>> (i
*3)) & 7) == 0)
1085 /* Clear all higher bits. */
1086 cache_levels
&= (1 << (i
*3))-1;
1090 * kvm_reset_coprocs - sets cp15 registers to reset value
1091 * @vcpu: The VCPU pointer
1093 * This function finds the right table above and sets the registers on the
1094 * virtual CPU struct to their architecturally defined reset values.
1096 void kvm_reset_coprocs(struct kvm_vcpu
*vcpu
)
1099 const struct coproc_reg
*table
;
1101 /* Catch someone adding a register without putting in reset entry. */
1102 memset(vcpu
->arch
.cp15
, 0x42, sizeof(vcpu
->arch
.cp15
));
1104 /* Generic chip reset first (so target could override). */
1105 reset_coproc_regs(vcpu
, cp15_regs
, ARRAY_SIZE(cp15_regs
));
1107 table
= get_target_table(vcpu
->arch
.target
, &num
);
1108 reset_coproc_regs(vcpu
, table
, num
);
1110 for (num
= 1; num
< NR_CP15_REGS
; num
++)
1111 if (vcpu
->arch
.cp15
[num
] == 0x42424242)
1112 panic("Didn't reset vcpu->arch.cp15[%zi]", num
);