2 * linux/arch/arm/mm/dma-mapping.c
4 * Copyright (C) 2000-2004 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 * DMA uncached mapping support.
12 #include <linux/module.h>
14 #include <linux/gfp.h>
15 #include <linux/errno.h>
16 #include <linux/list.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/dma-contiguous.h>
21 #include <linux/highmem.h>
22 #include <linux/memblock.h>
23 #include <linux/slab.h>
24 #include <linux/iommu.h>
26 #include <linux/vmalloc.h>
27 #include <linux/sizes.h>
29 #include <asm/memory.h>
30 #include <asm/highmem.h>
31 #include <asm/cacheflush.h>
32 #include <asm/tlbflush.h>
33 #include <asm/mach/arch.h>
34 #include <asm/dma-iommu.h>
35 #include <asm/mach/map.h>
36 #include <asm/system_info.h>
37 #include <asm/dma-contiguous.h>
42 * The DMA API is built upon the notion of "buffer ownership". A buffer
43 * is either exclusively owned by the CPU (and therefore may be accessed
44 * by it) or exclusively owned by the DMA device. These helper functions
45 * represent the transitions between these two ownership states.
47 * Note, however, that on later ARMs, this notion does not work due to
48 * speculative prefetches. We model our approach on the assumption that
49 * the CPU does do speculative prefetches, which means we clean caches
50 * before transfers and delay cache invalidation until transfer completion.
53 static void __dma_page_cpu_to_dev(struct page
*, unsigned long,
54 size_t, enum dma_data_direction
);
55 static void __dma_page_dev_to_cpu(struct page
*, unsigned long,
56 size_t, enum dma_data_direction
);
59 * arm_dma_map_page - map a portion of a page for streaming DMA
60 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
61 * @page: page that buffer resides in
62 * @offset: offset into page for start of buffer
63 * @size: size of buffer to map
64 * @dir: DMA transfer direction
66 * Ensure that any data held in the cache is appropriately discarded
69 * The device owns this memory once this call has completed. The CPU
70 * can regain ownership by calling dma_unmap_page().
72 static dma_addr_t
arm_dma_map_page(struct device
*dev
, struct page
*page
,
73 unsigned long offset
, size_t size
, enum dma_data_direction dir
,
74 struct dma_attrs
*attrs
)
76 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC
, attrs
))
77 __dma_page_cpu_to_dev(page
, offset
, size
, dir
);
78 return pfn_to_dma(dev
, page_to_pfn(page
)) + offset
;
81 static dma_addr_t
arm_coherent_dma_map_page(struct device
*dev
, struct page
*page
,
82 unsigned long offset
, size_t size
, enum dma_data_direction dir
,
83 struct dma_attrs
*attrs
)
85 return pfn_to_dma(dev
, page_to_pfn(page
)) + offset
;
89 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
90 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
91 * @handle: DMA address of buffer
92 * @size: size of buffer (same as passed to dma_map_page)
93 * @dir: DMA transfer direction (same as passed to dma_map_page)
95 * Unmap a page streaming mode DMA translation. The handle and size
96 * must match what was provided in the previous dma_map_page() call.
97 * All other usages are undefined.
99 * After this call, reads by the CPU to the buffer are guaranteed to see
100 * whatever the device wrote there.
102 static void arm_dma_unmap_page(struct device
*dev
, dma_addr_t handle
,
103 size_t size
, enum dma_data_direction dir
,
104 struct dma_attrs
*attrs
)
106 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC
, attrs
))
107 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev
, handle
)),
108 handle
& ~PAGE_MASK
, size
, dir
);
111 static void arm_dma_sync_single_for_cpu(struct device
*dev
,
112 dma_addr_t handle
, size_t size
, enum dma_data_direction dir
)
114 unsigned int offset
= handle
& (PAGE_SIZE
- 1);
115 struct page
*page
= pfn_to_page(dma_to_pfn(dev
, handle
-offset
));
116 __dma_page_dev_to_cpu(page
, offset
, size
, dir
);
119 static void arm_dma_sync_single_for_device(struct device
*dev
,
120 dma_addr_t handle
, size_t size
, enum dma_data_direction dir
)
122 unsigned int offset
= handle
& (PAGE_SIZE
- 1);
123 struct page
*page
= pfn_to_page(dma_to_pfn(dev
, handle
-offset
));
124 __dma_page_cpu_to_dev(page
, offset
, size
, dir
);
127 struct dma_map_ops arm_dma_ops
= {
128 .alloc
= arm_dma_alloc
,
129 .free
= arm_dma_free
,
130 .mmap
= arm_dma_mmap
,
131 .get_sgtable
= arm_dma_get_sgtable
,
132 .map_page
= arm_dma_map_page
,
133 .unmap_page
= arm_dma_unmap_page
,
134 .map_sg
= arm_dma_map_sg
,
135 .unmap_sg
= arm_dma_unmap_sg
,
136 .sync_single_for_cpu
= arm_dma_sync_single_for_cpu
,
137 .sync_single_for_device
= arm_dma_sync_single_for_device
,
138 .sync_sg_for_cpu
= arm_dma_sync_sg_for_cpu
,
139 .sync_sg_for_device
= arm_dma_sync_sg_for_device
,
140 .set_dma_mask
= arm_dma_set_mask
,
142 EXPORT_SYMBOL(arm_dma_ops
);
144 static void *arm_coherent_dma_alloc(struct device
*dev
, size_t size
,
145 dma_addr_t
*handle
, gfp_t gfp
, struct dma_attrs
*attrs
);
146 static void arm_coherent_dma_free(struct device
*dev
, size_t size
, void *cpu_addr
,
147 dma_addr_t handle
, struct dma_attrs
*attrs
);
149 struct dma_map_ops arm_coherent_dma_ops
= {
150 .alloc
= arm_coherent_dma_alloc
,
151 .free
= arm_coherent_dma_free
,
152 .mmap
= arm_dma_mmap
,
153 .get_sgtable
= arm_dma_get_sgtable
,
154 .map_page
= arm_coherent_dma_map_page
,
155 .map_sg
= arm_dma_map_sg
,
156 .set_dma_mask
= arm_dma_set_mask
,
158 EXPORT_SYMBOL(arm_coherent_dma_ops
);
160 static u64
get_coherent_dma_mask(struct device
*dev
)
162 u64 mask
= (u64
)arm_dma_limit
;
165 mask
= dev
->coherent_dma_mask
;
168 * Sanity check the DMA mask - it must be non-zero, and
169 * must be able to be satisfied by a DMA allocation.
172 dev_warn(dev
, "coherent DMA mask is unset\n");
176 if ((~mask
) & (u64
)arm_dma_limit
) {
177 dev_warn(dev
, "coherent DMA mask %#llx is smaller "
178 "than system GFP_DMA mask %#llx\n",
179 mask
, (u64
)arm_dma_limit
);
187 static void __dma_clear_buffer(struct page
*page
, size_t size
)
190 * Ensure that the allocated pages are zeroed, and that any data
191 * lurking in the kernel direct-mapped region is invalidated.
193 if (PageHighMem(page
)) {
194 phys_addr_t base
= __pfn_to_phys(page_to_pfn(page
));
195 phys_addr_t end
= base
+ size
;
197 void *ptr
= kmap_atomic(page
);
198 memset(ptr
, 0, PAGE_SIZE
);
199 dmac_flush_range(ptr
, ptr
+ PAGE_SIZE
);
204 outer_flush_range(base
, end
);
206 void *ptr
= page_address(page
);
207 memset(ptr
, 0, size
);
208 dmac_flush_range(ptr
, ptr
+ size
);
209 outer_flush_range(__pa(ptr
), __pa(ptr
) + size
);
214 * Allocate a DMA buffer for 'dev' of size 'size' using the
215 * specified gfp mask. Note that 'size' must be page aligned.
217 static struct page
*__dma_alloc_buffer(struct device
*dev
, size_t size
, gfp_t gfp
)
219 unsigned long order
= get_order(size
);
220 struct page
*page
, *p
, *e
;
222 page
= alloc_pages(gfp
, order
);
227 * Now split the huge page and free the excess pages
229 split_page(page
, order
);
230 for (p
= page
+ (size
>> PAGE_SHIFT
), e
= page
+ (1 << order
); p
< e
; p
++)
233 __dma_clear_buffer(page
, size
);
239 * Free a DMA buffer. 'size' must be page aligned.
241 static void __dma_free_buffer(struct page
*page
, size_t size
)
243 struct page
*e
= page
+ (size
>> PAGE_SHIFT
);
252 #ifdef CONFIG_HUGETLB_PAGE
253 #warning ARM Coherent DMA allocator does not (yet) support huge TLB
256 static void *__alloc_from_contiguous(struct device
*dev
, size_t size
,
257 pgprot_t prot
, struct page
**ret_page
,
260 static void *__alloc_remap_buffer(struct device
*dev
, size_t size
, gfp_t gfp
,
261 pgprot_t prot
, struct page
**ret_page
,
265 __dma_alloc_remap(struct page
*page
, size_t size
, gfp_t gfp
, pgprot_t prot
,
268 struct vm_struct
*area
;
272 * DMA allocation can be mapped to user space, so lets
273 * set VM_USERMAP flags too.
275 area
= get_vm_area_caller(size
, VM_ARM_DMA_CONSISTENT
| VM_USERMAP
,
279 addr
= (unsigned long)area
->addr
;
280 area
->phys_addr
= __pfn_to_phys(page_to_pfn(page
));
282 if (ioremap_page_range(addr
, addr
+ size
, area
->phys_addr
, prot
)) {
283 vunmap((void *)addr
);
289 static void __dma_free_remap(void *cpu_addr
, size_t size
)
291 unsigned int flags
= VM_ARM_DMA_CONSISTENT
| VM_USERMAP
;
292 struct vm_struct
*area
= find_vm_area(cpu_addr
);
293 if (!area
|| (area
->flags
& flags
) != flags
) {
294 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr
);
297 unmap_kernel_range((unsigned long)cpu_addr
, size
);
301 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
306 unsigned long *bitmap
;
307 unsigned long nr_pages
;
312 static struct dma_pool atomic_pool
= {
313 .size
= DEFAULT_DMA_COHERENT_POOL_SIZE
,
316 static int __init
early_coherent_pool(char *p
)
318 atomic_pool
.size
= memparse(p
, &p
);
321 early_param("coherent_pool", early_coherent_pool
);
323 void __init
init_dma_coherent_pool_size(unsigned long size
)
326 * Catch any attempt to set the pool size too late.
328 BUG_ON(atomic_pool
.vaddr
);
331 * Set architecture specific coherent pool size only if
332 * it has not been changed by kernel command line parameter.
334 if (atomic_pool
.size
== DEFAULT_DMA_COHERENT_POOL_SIZE
)
335 atomic_pool
.size
= size
;
339 * Initialise the coherent pool for atomic allocations.
341 static int __init
atomic_pool_init(void)
343 struct dma_pool
*pool
= &atomic_pool
;
344 pgprot_t prot
= pgprot_dmacoherent(pgprot_kernel
);
345 gfp_t gfp
= GFP_KERNEL
| GFP_DMA
;
346 unsigned long nr_pages
= pool
->size
>> PAGE_SHIFT
;
347 unsigned long *bitmap
;
351 int bitmap_size
= BITS_TO_LONGS(nr_pages
) * sizeof(long);
353 bitmap
= kzalloc(bitmap_size
, GFP_KERNEL
);
357 pages
= kzalloc(nr_pages
* sizeof(struct page
*), GFP_KERNEL
);
361 if (IS_ENABLED(CONFIG_DMA_CMA
))
362 ptr
= __alloc_from_contiguous(NULL
, pool
->size
, prot
, &page
,
365 ptr
= __alloc_remap_buffer(NULL
, pool
->size
, gfp
, prot
, &page
,
370 for (i
= 0; i
< nr_pages
; i
++)
373 spin_lock_init(&pool
->lock
);
376 pool
->bitmap
= bitmap
;
377 pool
->nr_pages
= nr_pages
;
378 pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n",
379 (unsigned)pool
->size
/ 1024);
387 pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",
388 (unsigned)pool
->size
/ 1024);
392 * CMA is activated by core_initcall, so we must be called after it.
394 postcore_initcall(atomic_pool_init
);
396 struct dma_contig_early_reserve
{
401 static struct dma_contig_early_reserve dma_mmu_remap
[MAX_CMA_AREAS
] __initdata
;
403 static int dma_mmu_remap_num __initdata
;
405 void __init
dma_contiguous_early_fixup(phys_addr_t base
, unsigned long size
)
407 dma_mmu_remap
[dma_mmu_remap_num
].base
= base
;
408 dma_mmu_remap
[dma_mmu_remap_num
].size
= size
;
412 void __init
dma_contiguous_remap(void)
415 for (i
= 0; i
< dma_mmu_remap_num
; i
++) {
416 phys_addr_t start
= dma_mmu_remap
[i
].base
;
417 phys_addr_t end
= start
+ dma_mmu_remap
[i
].size
;
421 if (end
> arm_lowmem_limit
)
422 end
= arm_lowmem_limit
;
426 map
.pfn
= __phys_to_pfn(start
);
427 map
.virtual = __phys_to_virt(start
);
428 map
.length
= end
- start
;
429 map
.type
= MT_MEMORY_DMA_READY
;
432 * Clear previous low-memory mapping to ensure that the
433 * TLB does not see any conflicting entries, then flush
434 * the TLB of the old entries before creating new mappings.
436 * This ensures that any speculatively loaded TLB entries
437 * (even though they may be rare) can not cause any problems,
438 * and ensures that this code is architecturally compliant.
440 for (addr
= __phys_to_virt(start
); addr
< __phys_to_virt(end
);
442 pmd_clear(pmd_off_k(addr
));
444 flush_tlb_kernel_range(__phys_to_virt(start
),
445 __phys_to_virt(end
));
447 iotable_init(&map
, 1);
451 static int __dma_update_pte(pte_t
*pte
, pgtable_t token
, unsigned long addr
,
454 struct page
*page
= virt_to_page(addr
);
455 pgprot_t prot
= *(pgprot_t
*)data
;
457 set_pte_ext(pte
, mk_pte(page
, prot
), 0);
461 static void __dma_remap(struct page
*page
, size_t size
, pgprot_t prot
)
463 unsigned long start
= (unsigned long) page_address(page
);
464 unsigned end
= start
+ size
;
466 apply_to_page_range(&init_mm
, start
, size
, __dma_update_pte
, &prot
);
467 flush_tlb_kernel_range(start
, end
);
470 static void *__alloc_remap_buffer(struct device
*dev
, size_t size
, gfp_t gfp
,
471 pgprot_t prot
, struct page
**ret_page
,
476 page
= __dma_alloc_buffer(dev
, size
, gfp
);
480 ptr
= __dma_alloc_remap(page
, size
, gfp
, prot
, caller
);
482 __dma_free_buffer(page
, size
);
490 static void *__alloc_from_pool(size_t size
, struct page
**ret_page
)
492 struct dma_pool
*pool
= &atomic_pool
;
493 unsigned int count
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
497 unsigned long align_mask
;
500 WARN(1, "coherent pool not initialised!\n");
505 * Align the region allocation - allocations from pool are rather
506 * small, so align them to their order in pages, minimum is a page
507 * size. This helps reduce fragmentation of the DMA space.
509 align_mask
= (1 << get_order(size
)) - 1;
511 spin_lock_irqsave(&pool
->lock
, flags
);
512 pageno
= bitmap_find_next_zero_area(pool
->bitmap
, pool
->nr_pages
,
513 0, count
, align_mask
);
514 if (pageno
< pool
->nr_pages
) {
515 bitmap_set(pool
->bitmap
, pageno
, count
);
516 ptr
= pool
->vaddr
+ PAGE_SIZE
* pageno
;
517 *ret_page
= pool
->pages
[pageno
];
519 pr_err_once("ERROR: %u KiB atomic DMA coherent pool is too small!\n"
520 "Please increase it with coherent_pool= kernel parameter!\n",
521 (unsigned)pool
->size
/ 1024);
523 spin_unlock_irqrestore(&pool
->lock
, flags
);
528 static bool __in_atomic_pool(void *start
, size_t size
)
530 struct dma_pool
*pool
= &atomic_pool
;
531 void *end
= start
+ size
;
532 void *pool_start
= pool
->vaddr
;
533 void *pool_end
= pool
->vaddr
+ pool
->size
;
535 if (start
< pool_start
|| start
>= pool_end
)
541 WARN(1, "Wrong coherent size(%p-%p) from atomic pool(%p-%p)\n",
542 start
, end
- 1, pool_start
, pool_end
- 1);
547 static int __free_from_pool(void *start
, size_t size
)
549 struct dma_pool
*pool
= &atomic_pool
;
550 unsigned long pageno
, count
;
553 if (!__in_atomic_pool(start
, size
))
556 pageno
= (start
- pool
->vaddr
) >> PAGE_SHIFT
;
557 count
= size
>> PAGE_SHIFT
;
559 spin_lock_irqsave(&pool
->lock
, flags
);
560 bitmap_clear(pool
->bitmap
, pageno
, count
);
561 spin_unlock_irqrestore(&pool
->lock
, flags
);
566 static void *__alloc_from_contiguous(struct device
*dev
, size_t size
,
567 pgprot_t prot
, struct page
**ret_page
,
570 unsigned long order
= get_order(size
);
571 size_t count
= size
>> PAGE_SHIFT
;
575 page
= dma_alloc_from_contiguous(dev
, count
, order
);
579 __dma_clear_buffer(page
, size
);
581 if (PageHighMem(page
)) {
582 ptr
= __dma_alloc_remap(page
, size
, GFP_KERNEL
, prot
, caller
);
584 dma_release_from_contiguous(dev
, page
, count
);
588 __dma_remap(page
, size
, prot
);
589 ptr
= page_address(page
);
595 static void __free_from_contiguous(struct device
*dev
, struct page
*page
,
596 void *cpu_addr
, size_t size
)
598 if (PageHighMem(page
))
599 __dma_free_remap(cpu_addr
, size
);
601 __dma_remap(page
, size
, pgprot_kernel
);
602 dma_release_from_contiguous(dev
, page
, size
>> PAGE_SHIFT
);
605 static inline pgprot_t
__get_dma_pgprot(struct dma_attrs
*attrs
, pgprot_t prot
)
607 prot
= dma_get_attr(DMA_ATTR_WRITE_COMBINE
, attrs
) ?
608 pgprot_writecombine(prot
) :
609 pgprot_dmacoherent(prot
);
615 #else /* !CONFIG_MMU */
619 #define __get_dma_pgprot(attrs, prot) __pgprot(0)
620 #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c) NULL
621 #define __alloc_from_pool(size, ret_page) NULL
622 #define __alloc_from_contiguous(dev, size, prot, ret, c) NULL
623 #define __free_from_pool(cpu_addr, size) 0
624 #define __free_from_contiguous(dev, page, cpu_addr, size) do { } while (0)
625 #define __dma_free_remap(cpu_addr, size) do { } while (0)
627 #endif /* CONFIG_MMU */
629 static void *__alloc_simple_buffer(struct device
*dev
, size_t size
, gfp_t gfp
,
630 struct page
**ret_page
)
633 page
= __dma_alloc_buffer(dev
, size
, gfp
);
638 return page_address(page
);
643 static void *__dma_alloc(struct device
*dev
, size_t size
, dma_addr_t
*handle
,
644 gfp_t gfp
, pgprot_t prot
, bool is_coherent
, const void *caller
)
646 u64 mask
= get_coherent_dma_mask(dev
);
647 struct page
*page
= NULL
;
650 #ifdef CONFIG_DMA_API_DEBUG
651 u64 limit
= (mask
+ 1) & ~mask
;
652 if (limit
&& size
>= limit
) {
653 dev_warn(dev
, "coherent allocation too big (requested %#x mask %#llx)\n",
662 if (mask
< 0xffffffffULL
)
666 * Following is a work-around (a.k.a. hack) to prevent pages
667 * with __GFP_COMP being passed to split_page() which cannot
668 * handle them. The real problem is that this flag probably
669 * should be 0 on ARM as it is not supported on this
670 * platform; see CONFIG_HUGETLBFS.
672 gfp
&= ~(__GFP_COMP
);
674 *handle
= DMA_ERROR_CODE
;
675 size
= PAGE_ALIGN(size
);
677 if (is_coherent
|| nommu())
678 addr
= __alloc_simple_buffer(dev
, size
, gfp
, &page
);
679 else if (!(gfp
& __GFP_WAIT
))
680 addr
= __alloc_from_pool(size
, &page
);
681 else if (!IS_ENABLED(CONFIG_DMA_CMA
))
682 addr
= __alloc_remap_buffer(dev
, size
, gfp
, prot
, &page
, caller
);
684 addr
= __alloc_from_contiguous(dev
, size
, prot
, &page
, caller
);
687 *handle
= pfn_to_dma(dev
, page_to_pfn(page
));
693 * Allocate DMA-coherent memory space and return both the kernel remapped
694 * virtual and bus address for that space.
696 void *arm_dma_alloc(struct device
*dev
, size_t size
, dma_addr_t
*handle
,
697 gfp_t gfp
, struct dma_attrs
*attrs
)
699 pgprot_t prot
= __get_dma_pgprot(attrs
, pgprot_kernel
);
702 if (dma_alloc_from_coherent(dev
, size
, handle
, &memory
))
705 return __dma_alloc(dev
, size
, handle
, gfp
, prot
, false,
706 __builtin_return_address(0));
709 static void *arm_coherent_dma_alloc(struct device
*dev
, size_t size
,
710 dma_addr_t
*handle
, gfp_t gfp
, struct dma_attrs
*attrs
)
712 pgprot_t prot
= __get_dma_pgprot(attrs
, pgprot_kernel
);
715 if (dma_alloc_from_coherent(dev
, size
, handle
, &memory
))
718 return __dma_alloc(dev
, size
, handle
, gfp
, prot
, true,
719 __builtin_return_address(0));
723 * Create userspace mapping for the DMA-coherent memory.
725 int arm_dma_mmap(struct device
*dev
, struct vm_area_struct
*vma
,
726 void *cpu_addr
, dma_addr_t dma_addr
, size_t size
,
727 struct dma_attrs
*attrs
)
731 unsigned long nr_vma_pages
= (vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
;
732 unsigned long nr_pages
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
733 unsigned long pfn
= dma_to_pfn(dev
, dma_addr
);
734 unsigned long off
= vma
->vm_pgoff
;
736 vma
->vm_page_prot
= __get_dma_pgprot(attrs
, vma
->vm_page_prot
);
738 if (dma_mmap_from_coherent(dev
, vma
, cpu_addr
, size
, &ret
))
741 if (off
< nr_pages
&& nr_vma_pages
<= (nr_pages
- off
)) {
742 ret
= remap_pfn_range(vma
, vma
->vm_start
,
744 vma
->vm_end
- vma
->vm_start
,
747 #endif /* CONFIG_MMU */
753 * Free a buffer as defined by the above mapping.
755 static void __arm_dma_free(struct device
*dev
, size_t size
, void *cpu_addr
,
756 dma_addr_t handle
, struct dma_attrs
*attrs
,
759 struct page
*page
= pfn_to_page(dma_to_pfn(dev
, handle
));
761 if (dma_release_from_coherent(dev
, get_order(size
), cpu_addr
))
764 size
= PAGE_ALIGN(size
);
766 if (is_coherent
|| nommu()) {
767 __dma_free_buffer(page
, size
);
768 } else if (__free_from_pool(cpu_addr
, size
)) {
770 } else if (!IS_ENABLED(CONFIG_DMA_CMA
)) {
771 __dma_free_remap(cpu_addr
, size
);
772 __dma_free_buffer(page
, size
);
775 * Non-atomic allocations cannot be freed with IRQs disabled
777 WARN_ON(irqs_disabled());
778 __free_from_contiguous(dev
, page
, cpu_addr
, size
);
782 void arm_dma_free(struct device
*dev
, size_t size
, void *cpu_addr
,
783 dma_addr_t handle
, struct dma_attrs
*attrs
)
785 __arm_dma_free(dev
, size
, cpu_addr
, handle
, attrs
, false);
788 static void arm_coherent_dma_free(struct device
*dev
, size_t size
, void *cpu_addr
,
789 dma_addr_t handle
, struct dma_attrs
*attrs
)
791 __arm_dma_free(dev
, size
, cpu_addr
, handle
, attrs
, true);
794 int arm_dma_get_sgtable(struct device
*dev
, struct sg_table
*sgt
,
795 void *cpu_addr
, dma_addr_t handle
, size_t size
,
796 struct dma_attrs
*attrs
)
798 struct page
*page
= pfn_to_page(dma_to_pfn(dev
, handle
));
801 ret
= sg_alloc_table(sgt
, 1, GFP_KERNEL
);
805 sg_set_page(sgt
->sgl
, page
, PAGE_ALIGN(size
), 0);
809 static void dma_cache_maint_page(struct page
*page
, unsigned long offset
,
810 size_t size
, enum dma_data_direction dir
,
811 void (*op
)(const void *, size_t, int))
816 pfn
= page_to_pfn(page
) + offset
/ PAGE_SIZE
;
820 * A single sg entry may refer to multiple physically contiguous
821 * pages. But we still need to process highmem pages individually.
822 * If highmem is not configured then the bulk of this loop gets
829 page
= pfn_to_page(pfn
);
831 if (PageHighMem(page
)) {
832 if (len
+ offset
> PAGE_SIZE
)
833 len
= PAGE_SIZE
- offset
;
835 if (cache_is_vipt_nonaliasing()) {
836 vaddr
= kmap_atomic(page
);
837 op(vaddr
+ offset
, len
, dir
);
838 kunmap_atomic(vaddr
);
840 vaddr
= kmap_high_get(page
);
842 op(vaddr
+ offset
, len
, dir
);
847 vaddr
= page_address(page
) + offset
;
857 * Make an area consistent for devices.
858 * Note: Drivers should NOT use this function directly, as it will break
859 * platforms with CONFIG_DMABOUNCE.
860 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
862 static void __dma_page_cpu_to_dev(struct page
*page
, unsigned long off
,
863 size_t size
, enum dma_data_direction dir
)
867 dma_cache_maint_page(page
, off
, size
, dir
, dmac_map_area
);
869 paddr
= page_to_phys(page
) + off
;
870 if (dir
== DMA_FROM_DEVICE
) {
871 outer_inv_range(paddr
, paddr
+ size
);
873 outer_clean_range(paddr
, paddr
+ size
);
875 /* FIXME: non-speculating: flush on bidirectional mappings? */
878 static void __dma_page_dev_to_cpu(struct page
*page
, unsigned long off
,
879 size_t size
, enum dma_data_direction dir
)
881 unsigned long paddr
= page_to_phys(page
) + off
;
883 /* FIXME: non-speculating: not required */
884 /* don't bother invalidating if DMA to device */
885 if (dir
!= DMA_TO_DEVICE
)
886 outer_inv_range(paddr
, paddr
+ size
);
888 dma_cache_maint_page(page
, off
, size
, dir
, dmac_unmap_area
);
891 * Mark the D-cache clean for these pages to avoid extra flushing.
893 if (dir
!= DMA_TO_DEVICE
&& size
>= PAGE_SIZE
) {
897 pfn
= page_to_pfn(page
) + off
/ PAGE_SIZE
;
901 left
-= PAGE_SIZE
- off
;
903 while (left
>= PAGE_SIZE
) {
904 page
= pfn_to_page(pfn
++);
905 set_bit(PG_dcache_clean
, &page
->flags
);
912 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
913 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
914 * @sg: list of buffers
915 * @nents: number of buffers to map
916 * @dir: DMA transfer direction
918 * Map a set of buffers described by scatterlist in streaming mode for DMA.
919 * This is the scatter-gather version of the dma_map_single interface.
920 * Here the scatter gather list elements are each tagged with the
921 * appropriate dma address and length. They are obtained via
922 * sg_dma_{address,length}.
924 * Device ownership issues as mentioned for dma_map_single are the same
927 int arm_dma_map_sg(struct device
*dev
, struct scatterlist
*sg
, int nents
,
928 enum dma_data_direction dir
, struct dma_attrs
*attrs
)
930 struct dma_map_ops
*ops
= get_dma_ops(dev
);
931 struct scatterlist
*s
;
934 for_each_sg(sg
, s
, nents
, i
) {
935 #ifdef CONFIG_NEED_SG_DMA_LENGTH
936 s
->dma_length
= s
->length
;
938 s
->dma_address
= ops
->map_page(dev
, sg_page(s
), s
->offset
,
939 s
->length
, dir
, attrs
);
940 if (dma_mapping_error(dev
, s
->dma_address
))
946 for_each_sg(sg
, s
, i
, j
)
947 ops
->unmap_page(dev
, sg_dma_address(s
), sg_dma_len(s
), dir
, attrs
);
952 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
953 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
954 * @sg: list of buffers
955 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
956 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
958 * Unmap a set of streaming mode DMA translations. Again, CPU access
959 * rules concerning calls here are the same as for dma_unmap_single().
961 void arm_dma_unmap_sg(struct device
*dev
, struct scatterlist
*sg
, int nents
,
962 enum dma_data_direction dir
, struct dma_attrs
*attrs
)
964 struct dma_map_ops
*ops
= get_dma_ops(dev
);
965 struct scatterlist
*s
;
969 for_each_sg(sg
, s
, nents
, i
)
970 ops
->unmap_page(dev
, sg_dma_address(s
), sg_dma_len(s
), dir
, attrs
);
974 * arm_dma_sync_sg_for_cpu
975 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
976 * @sg: list of buffers
977 * @nents: number of buffers to map (returned from dma_map_sg)
978 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
980 void arm_dma_sync_sg_for_cpu(struct device
*dev
, struct scatterlist
*sg
,
981 int nents
, enum dma_data_direction dir
)
983 struct dma_map_ops
*ops
= get_dma_ops(dev
);
984 struct scatterlist
*s
;
987 for_each_sg(sg
, s
, nents
, i
)
988 ops
->sync_single_for_cpu(dev
, sg_dma_address(s
), s
->length
,
993 * arm_dma_sync_sg_for_device
994 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
995 * @sg: list of buffers
996 * @nents: number of buffers to map (returned from dma_map_sg)
997 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
999 void arm_dma_sync_sg_for_device(struct device
*dev
, struct scatterlist
*sg
,
1000 int nents
, enum dma_data_direction dir
)
1002 struct dma_map_ops
*ops
= get_dma_ops(dev
);
1003 struct scatterlist
*s
;
1006 for_each_sg(sg
, s
, nents
, i
)
1007 ops
->sync_single_for_device(dev
, sg_dma_address(s
), s
->length
,
1012 * Return whether the given device DMA address mask can be supported
1013 * properly. For example, if your device can only drive the low 24-bits
1014 * during bus mastering, then you would pass 0x00ffffff as the mask
1017 int dma_supported(struct device
*dev
, u64 mask
)
1019 if (mask
< (u64
)arm_dma_limit
)
1023 EXPORT_SYMBOL(dma_supported
);
1025 int arm_dma_set_mask(struct device
*dev
, u64 dma_mask
)
1027 if (!dev
->dma_mask
|| !dma_supported(dev
, dma_mask
))
1030 *dev
->dma_mask
= dma_mask
;
1035 #define PREALLOC_DMA_DEBUG_ENTRIES 4096
1037 static int __init
dma_debug_do_init(void)
1039 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES
);
1042 fs_initcall(dma_debug_do_init
);
1044 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1048 static inline dma_addr_t
__alloc_iova(struct dma_iommu_mapping
*mapping
,
1051 unsigned int order
= get_order(size
);
1052 unsigned int align
= 0;
1053 unsigned int count
, start
;
1054 unsigned long flags
;
1056 if (order
> CONFIG_ARM_DMA_IOMMU_ALIGNMENT
)
1057 order
= CONFIG_ARM_DMA_IOMMU_ALIGNMENT
;
1059 count
= ((PAGE_ALIGN(size
) >> PAGE_SHIFT
) +
1060 (1 << mapping
->order
) - 1) >> mapping
->order
;
1062 if (order
> mapping
->order
)
1063 align
= (1 << (order
- mapping
->order
)) - 1;
1065 spin_lock_irqsave(&mapping
->lock
, flags
);
1066 start
= bitmap_find_next_zero_area(mapping
->bitmap
, mapping
->bits
, 0,
1068 if (start
> mapping
->bits
) {
1069 spin_unlock_irqrestore(&mapping
->lock
, flags
);
1070 return DMA_ERROR_CODE
;
1073 bitmap_set(mapping
->bitmap
, start
, count
);
1074 spin_unlock_irqrestore(&mapping
->lock
, flags
);
1076 return mapping
->base
+ (start
<< (mapping
->order
+ PAGE_SHIFT
));
1079 static inline void __free_iova(struct dma_iommu_mapping
*mapping
,
1080 dma_addr_t addr
, size_t size
)
1082 unsigned int start
= (addr
- mapping
->base
) >>
1083 (mapping
->order
+ PAGE_SHIFT
);
1084 unsigned int count
= ((size
>> PAGE_SHIFT
) +
1085 (1 << mapping
->order
) - 1) >> mapping
->order
;
1086 unsigned long flags
;
1088 spin_lock_irqsave(&mapping
->lock
, flags
);
1089 bitmap_clear(mapping
->bitmap
, start
, count
);
1090 spin_unlock_irqrestore(&mapping
->lock
, flags
);
1093 static struct page
**__iommu_alloc_buffer(struct device
*dev
, size_t size
,
1094 gfp_t gfp
, struct dma_attrs
*attrs
)
1096 struct page
**pages
;
1097 int count
= size
>> PAGE_SHIFT
;
1098 int array_size
= count
* sizeof(struct page
*);
1101 if (array_size
<= PAGE_SIZE
)
1102 pages
= kzalloc(array_size
, gfp
);
1104 pages
= vzalloc(array_size
);
1108 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS
, attrs
))
1110 unsigned long order
= get_order(size
);
1113 page
= dma_alloc_from_contiguous(dev
, count
, order
);
1117 __dma_clear_buffer(page
, size
);
1119 for (i
= 0; i
< count
; i
++)
1120 pages
[i
] = page
+ i
;
1126 * IOMMU can map any pages, so himem can also be used here
1128 gfp
|= __GFP_NOWARN
| __GFP_HIGHMEM
;
1131 int j
, order
= __fls(count
);
1133 pages
[i
] = alloc_pages(gfp
, order
);
1134 while (!pages
[i
] && order
)
1135 pages
[i
] = alloc_pages(gfp
, --order
);
1140 split_page(pages
[i
], order
);
1143 pages
[i
+ j
] = pages
[i
] + j
;
1146 __dma_clear_buffer(pages
[i
], PAGE_SIZE
<< order
);
1148 count
-= 1 << order
;
1155 __free_pages(pages
[i
], 0);
1156 if (array_size
<= PAGE_SIZE
)
1163 static int __iommu_free_buffer(struct device
*dev
, struct page
**pages
,
1164 size_t size
, struct dma_attrs
*attrs
)
1166 int count
= size
>> PAGE_SHIFT
;
1167 int array_size
= count
* sizeof(struct page
*);
1170 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS
, attrs
)) {
1171 dma_release_from_contiguous(dev
, pages
[0], count
);
1173 for (i
= 0; i
< count
; i
++)
1175 __free_pages(pages
[i
], 0);
1178 if (array_size
<= PAGE_SIZE
)
1186 * Create a CPU mapping for a specified pages
1189 __iommu_alloc_remap(struct page
**pages
, size_t size
, gfp_t gfp
, pgprot_t prot
,
1192 unsigned int i
, nr_pages
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
1193 struct vm_struct
*area
;
1196 area
= get_vm_area_caller(size
, VM_ARM_DMA_CONSISTENT
| VM_USERMAP
,
1201 area
->pages
= pages
;
1202 area
->nr_pages
= nr_pages
;
1203 p
= (unsigned long)area
->addr
;
1205 for (i
= 0; i
< nr_pages
; i
++) {
1206 phys_addr_t phys
= __pfn_to_phys(page_to_pfn(pages
[i
]));
1207 if (ioremap_page_range(p
, p
+ PAGE_SIZE
, phys
, prot
))
1213 unmap_kernel_range((unsigned long)area
->addr
, size
);
1219 * Create a mapping in device IO address space for specified pages
1222 __iommu_create_mapping(struct device
*dev
, struct page
**pages
, size_t size
)
1224 struct dma_iommu_mapping
*mapping
= dev
->archdata
.mapping
;
1225 unsigned int count
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
1226 dma_addr_t dma_addr
, iova
;
1227 int i
, ret
= DMA_ERROR_CODE
;
1229 dma_addr
= __alloc_iova(mapping
, size
);
1230 if (dma_addr
== DMA_ERROR_CODE
)
1234 for (i
= 0; i
< count
; ) {
1235 unsigned int next_pfn
= page_to_pfn(pages
[i
]) + 1;
1236 phys_addr_t phys
= page_to_phys(pages
[i
]);
1237 unsigned int len
, j
;
1239 for (j
= i
+ 1; j
< count
; j
++, next_pfn
++)
1240 if (page_to_pfn(pages
[j
]) != next_pfn
)
1243 len
= (j
- i
) << PAGE_SHIFT
;
1244 ret
= iommu_map(mapping
->domain
, iova
, phys
, len
,
1245 IOMMU_READ
|IOMMU_WRITE
);
1253 iommu_unmap(mapping
->domain
, dma_addr
, iova
-dma_addr
);
1254 __free_iova(mapping
, dma_addr
, size
);
1255 return DMA_ERROR_CODE
;
1258 static int __iommu_remove_mapping(struct device
*dev
, dma_addr_t iova
, size_t size
)
1260 struct dma_iommu_mapping
*mapping
= dev
->archdata
.mapping
;
1263 * add optional in-page offset from iova to size and align
1264 * result to page size
1266 size
= PAGE_ALIGN((iova
& ~PAGE_MASK
) + size
);
1269 iommu_unmap(mapping
->domain
, iova
, size
);
1270 __free_iova(mapping
, iova
, size
);
1274 static struct page
**__atomic_get_pages(void *addr
)
1276 struct dma_pool
*pool
= &atomic_pool
;
1277 struct page
**pages
= pool
->pages
;
1278 int offs
= (addr
- pool
->vaddr
) >> PAGE_SHIFT
;
1280 return pages
+ offs
;
1283 static struct page
**__iommu_get_pages(void *cpu_addr
, struct dma_attrs
*attrs
)
1285 struct vm_struct
*area
;
1287 if (__in_atomic_pool(cpu_addr
, PAGE_SIZE
))
1288 return __atomic_get_pages(cpu_addr
);
1290 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING
, attrs
))
1293 area
= find_vm_area(cpu_addr
);
1294 if (area
&& (area
->flags
& VM_ARM_DMA_CONSISTENT
))
1299 static void *__iommu_alloc_atomic(struct device
*dev
, size_t size
,
1305 addr
= __alloc_from_pool(size
, &page
);
1309 *handle
= __iommu_create_mapping(dev
, &page
, size
);
1310 if (*handle
== DMA_ERROR_CODE
)
1316 __free_from_pool(addr
, size
);
1320 static void __iommu_free_atomic(struct device
*dev
, void *cpu_addr
,
1321 dma_addr_t handle
, size_t size
)
1323 __iommu_remove_mapping(dev
, handle
, size
);
1324 __free_from_pool(cpu_addr
, size
);
1327 static void *arm_iommu_alloc_attrs(struct device
*dev
, size_t size
,
1328 dma_addr_t
*handle
, gfp_t gfp
, struct dma_attrs
*attrs
)
1330 pgprot_t prot
= __get_dma_pgprot(attrs
, pgprot_kernel
);
1331 struct page
**pages
;
1334 *handle
= DMA_ERROR_CODE
;
1335 size
= PAGE_ALIGN(size
);
1337 if (!(gfp
& __GFP_WAIT
))
1338 return __iommu_alloc_atomic(dev
, size
, handle
);
1341 * Following is a work-around (a.k.a. hack) to prevent pages
1342 * with __GFP_COMP being passed to split_page() which cannot
1343 * handle them. The real problem is that this flag probably
1344 * should be 0 on ARM as it is not supported on this
1345 * platform; see CONFIG_HUGETLBFS.
1347 gfp
&= ~(__GFP_COMP
);
1349 pages
= __iommu_alloc_buffer(dev
, size
, gfp
, attrs
);
1353 *handle
= __iommu_create_mapping(dev
, pages
, size
);
1354 if (*handle
== DMA_ERROR_CODE
)
1357 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING
, attrs
))
1360 addr
= __iommu_alloc_remap(pages
, size
, gfp
, prot
,
1361 __builtin_return_address(0));
1368 __iommu_remove_mapping(dev
, *handle
, size
);
1370 __iommu_free_buffer(dev
, pages
, size
, attrs
);
1374 static int arm_iommu_mmap_attrs(struct device
*dev
, struct vm_area_struct
*vma
,
1375 void *cpu_addr
, dma_addr_t dma_addr
, size_t size
,
1376 struct dma_attrs
*attrs
)
1378 unsigned long uaddr
= vma
->vm_start
;
1379 unsigned long usize
= vma
->vm_end
- vma
->vm_start
;
1380 struct page
**pages
= __iommu_get_pages(cpu_addr
, attrs
);
1381 unsigned long nr_pages
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
1382 unsigned long off
= vma
->vm_pgoff
;
1384 vma
->vm_page_prot
= __get_dma_pgprot(attrs
, vma
->vm_page_prot
);
1389 if (off
>= nr_pages
|| (usize
>> PAGE_SHIFT
) > nr_pages
- off
)
1395 int ret
= vm_insert_page(vma
, uaddr
, *pages
++);
1397 pr_err("Remapping memory failed: %d\n", ret
);
1402 } while (usize
> 0);
1408 * free a page as defined by the above mapping.
1409 * Must not be called with IRQs disabled.
1411 void arm_iommu_free_attrs(struct device
*dev
, size_t size
, void *cpu_addr
,
1412 dma_addr_t handle
, struct dma_attrs
*attrs
)
1414 struct page
**pages
;
1415 size
= PAGE_ALIGN(size
);
1417 if (__in_atomic_pool(cpu_addr
, size
)) {
1418 __iommu_free_atomic(dev
, cpu_addr
, handle
, size
);
1422 pages
= __iommu_get_pages(cpu_addr
, attrs
);
1424 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr
);
1428 if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING
, attrs
)) {
1429 unmap_kernel_range((unsigned long)cpu_addr
, size
);
1433 __iommu_remove_mapping(dev
, handle
, size
);
1434 __iommu_free_buffer(dev
, pages
, size
, attrs
);
1437 static int arm_iommu_get_sgtable(struct device
*dev
, struct sg_table
*sgt
,
1438 void *cpu_addr
, dma_addr_t dma_addr
,
1439 size_t size
, struct dma_attrs
*attrs
)
1441 unsigned int count
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
1442 struct page
**pages
= __iommu_get_pages(cpu_addr
, attrs
);
1447 return sg_alloc_table_from_pages(sgt
, pages
, count
, 0, size
,
1451 static int __dma_direction_to_prot(enum dma_data_direction dir
)
1456 case DMA_BIDIRECTIONAL
:
1457 prot
= IOMMU_READ
| IOMMU_WRITE
;
1462 case DMA_FROM_DEVICE
:
1473 * Map a part of the scatter-gather list into contiguous io address space
1475 static int __map_sg_chunk(struct device
*dev
, struct scatterlist
*sg
,
1476 size_t size
, dma_addr_t
*handle
,
1477 enum dma_data_direction dir
, struct dma_attrs
*attrs
,
1480 struct dma_iommu_mapping
*mapping
= dev
->archdata
.mapping
;
1481 dma_addr_t iova
, iova_base
;
1484 struct scatterlist
*s
;
1487 size
= PAGE_ALIGN(size
);
1488 *handle
= DMA_ERROR_CODE
;
1490 iova_base
= iova
= __alloc_iova(mapping
, size
);
1491 if (iova
== DMA_ERROR_CODE
)
1494 for (count
= 0, s
= sg
; count
< (size
>> PAGE_SHIFT
); s
= sg_next(s
)) {
1495 phys_addr_t phys
= page_to_phys(sg_page(s
));
1496 unsigned int len
= PAGE_ALIGN(s
->offset
+ s
->length
);
1499 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC
, attrs
))
1500 __dma_page_cpu_to_dev(sg_page(s
), s
->offset
, s
->length
, dir
);
1502 prot
= __dma_direction_to_prot(dir
);
1504 ret
= iommu_map(mapping
->domain
, iova
, phys
, len
, prot
);
1507 count
+= len
>> PAGE_SHIFT
;
1510 *handle
= iova_base
;
1514 iommu_unmap(mapping
->domain
, iova_base
, count
* PAGE_SIZE
);
1515 __free_iova(mapping
, iova_base
, size
);
1519 static int __iommu_map_sg(struct device
*dev
, struct scatterlist
*sg
, int nents
,
1520 enum dma_data_direction dir
, struct dma_attrs
*attrs
,
1523 struct scatterlist
*s
= sg
, *dma
= sg
, *start
= sg
;
1525 unsigned int offset
= s
->offset
;
1526 unsigned int size
= s
->offset
+ s
->length
;
1527 unsigned int max
= dma_get_max_seg_size(dev
);
1529 for (i
= 1; i
< nents
; i
++) {
1532 s
->dma_address
= DMA_ERROR_CODE
;
1535 if (s
->offset
|| (size
& ~PAGE_MASK
) || size
+ s
->length
> max
) {
1536 if (__map_sg_chunk(dev
, start
, size
, &dma
->dma_address
,
1537 dir
, attrs
, is_coherent
) < 0)
1540 dma
->dma_address
+= offset
;
1541 dma
->dma_length
= size
- offset
;
1543 size
= offset
= s
->offset
;
1550 if (__map_sg_chunk(dev
, start
, size
, &dma
->dma_address
, dir
, attrs
,
1554 dma
->dma_address
+= offset
;
1555 dma
->dma_length
= size
- offset
;
1560 for_each_sg(sg
, s
, count
, i
)
1561 __iommu_remove_mapping(dev
, sg_dma_address(s
), sg_dma_len(s
));
1566 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1567 * @dev: valid struct device pointer
1568 * @sg: list of buffers
1569 * @nents: number of buffers to map
1570 * @dir: DMA transfer direction
1572 * Map a set of i/o coherent buffers described by scatterlist in streaming
1573 * mode for DMA. The scatter gather list elements are merged together (if
1574 * possible) and tagged with the appropriate dma address and length. They are
1575 * obtained via sg_dma_{address,length}.
1577 int arm_coherent_iommu_map_sg(struct device
*dev
, struct scatterlist
*sg
,
1578 int nents
, enum dma_data_direction dir
, struct dma_attrs
*attrs
)
1580 return __iommu_map_sg(dev
, sg
, nents
, dir
, attrs
, true);
1584 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1585 * @dev: valid struct device pointer
1586 * @sg: list of buffers
1587 * @nents: number of buffers to map
1588 * @dir: DMA transfer direction
1590 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1591 * The scatter gather list elements are merged together (if possible) and
1592 * tagged with the appropriate dma address and length. They are obtained via
1593 * sg_dma_{address,length}.
1595 int arm_iommu_map_sg(struct device
*dev
, struct scatterlist
*sg
,
1596 int nents
, enum dma_data_direction dir
, struct dma_attrs
*attrs
)
1598 return __iommu_map_sg(dev
, sg
, nents
, dir
, attrs
, false);
1601 static void __iommu_unmap_sg(struct device
*dev
, struct scatterlist
*sg
,
1602 int nents
, enum dma_data_direction dir
, struct dma_attrs
*attrs
,
1605 struct scatterlist
*s
;
1608 for_each_sg(sg
, s
, nents
, i
) {
1610 __iommu_remove_mapping(dev
, sg_dma_address(s
),
1613 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC
, attrs
))
1614 __dma_page_dev_to_cpu(sg_page(s
), s
->offset
,
1620 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1621 * @dev: valid struct device pointer
1622 * @sg: list of buffers
1623 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1624 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1626 * Unmap a set of streaming mode DMA translations. Again, CPU access
1627 * rules concerning calls here are the same as for dma_unmap_single().
1629 void arm_coherent_iommu_unmap_sg(struct device
*dev
, struct scatterlist
*sg
,
1630 int nents
, enum dma_data_direction dir
, struct dma_attrs
*attrs
)
1632 __iommu_unmap_sg(dev
, sg
, nents
, dir
, attrs
, true);
1636 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1637 * @dev: valid struct device pointer
1638 * @sg: list of buffers
1639 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1640 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1642 * Unmap a set of streaming mode DMA translations. Again, CPU access
1643 * rules concerning calls here are the same as for dma_unmap_single().
1645 void arm_iommu_unmap_sg(struct device
*dev
, struct scatterlist
*sg
, int nents
,
1646 enum dma_data_direction dir
, struct dma_attrs
*attrs
)
1648 __iommu_unmap_sg(dev
, sg
, nents
, dir
, attrs
, false);
1652 * arm_iommu_sync_sg_for_cpu
1653 * @dev: valid struct device pointer
1654 * @sg: list of buffers
1655 * @nents: number of buffers to map (returned from dma_map_sg)
1656 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1658 void arm_iommu_sync_sg_for_cpu(struct device
*dev
, struct scatterlist
*sg
,
1659 int nents
, enum dma_data_direction dir
)
1661 struct scatterlist
*s
;
1664 for_each_sg(sg
, s
, nents
, i
)
1665 __dma_page_dev_to_cpu(sg_page(s
), s
->offset
, s
->length
, dir
);
1670 * arm_iommu_sync_sg_for_device
1671 * @dev: valid struct device pointer
1672 * @sg: list of buffers
1673 * @nents: number of buffers to map (returned from dma_map_sg)
1674 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1676 void arm_iommu_sync_sg_for_device(struct device
*dev
, struct scatterlist
*sg
,
1677 int nents
, enum dma_data_direction dir
)
1679 struct scatterlist
*s
;
1682 for_each_sg(sg
, s
, nents
, i
)
1683 __dma_page_cpu_to_dev(sg_page(s
), s
->offset
, s
->length
, dir
);
1688 * arm_coherent_iommu_map_page
1689 * @dev: valid struct device pointer
1690 * @page: page that buffer resides in
1691 * @offset: offset into page for start of buffer
1692 * @size: size of buffer to map
1693 * @dir: DMA transfer direction
1695 * Coherent IOMMU aware version of arm_dma_map_page()
1697 static dma_addr_t
arm_coherent_iommu_map_page(struct device
*dev
, struct page
*page
,
1698 unsigned long offset
, size_t size
, enum dma_data_direction dir
,
1699 struct dma_attrs
*attrs
)
1701 struct dma_iommu_mapping
*mapping
= dev
->archdata
.mapping
;
1702 dma_addr_t dma_addr
;
1703 int ret
, prot
, len
= PAGE_ALIGN(size
+ offset
);
1705 dma_addr
= __alloc_iova(mapping
, len
);
1706 if (dma_addr
== DMA_ERROR_CODE
)
1709 prot
= __dma_direction_to_prot(dir
);
1711 ret
= iommu_map(mapping
->domain
, dma_addr
, page_to_phys(page
), len
, prot
);
1715 return dma_addr
+ offset
;
1717 __free_iova(mapping
, dma_addr
, len
);
1718 return DMA_ERROR_CODE
;
1722 * arm_iommu_map_page
1723 * @dev: valid struct device pointer
1724 * @page: page that buffer resides in
1725 * @offset: offset into page for start of buffer
1726 * @size: size of buffer to map
1727 * @dir: DMA transfer direction
1729 * IOMMU aware version of arm_dma_map_page()
1731 static dma_addr_t
arm_iommu_map_page(struct device
*dev
, struct page
*page
,
1732 unsigned long offset
, size_t size
, enum dma_data_direction dir
,
1733 struct dma_attrs
*attrs
)
1735 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC
, attrs
))
1736 __dma_page_cpu_to_dev(page
, offset
, size
, dir
);
1738 return arm_coherent_iommu_map_page(dev
, page
, offset
, size
, dir
, attrs
);
1742 * arm_coherent_iommu_unmap_page
1743 * @dev: valid struct device pointer
1744 * @handle: DMA address of buffer
1745 * @size: size of buffer (same as passed to dma_map_page)
1746 * @dir: DMA transfer direction (same as passed to dma_map_page)
1748 * Coherent IOMMU aware version of arm_dma_unmap_page()
1750 static void arm_coherent_iommu_unmap_page(struct device
*dev
, dma_addr_t handle
,
1751 size_t size
, enum dma_data_direction dir
,
1752 struct dma_attrs
*attrs
)
1754 struct dma_iommu_mapping
*mapping
= dev
->archdata
.mapping
;
1755 dma_addr_t iova
= handle
& PAGE_MASK
;
1756 int offset
= handle
& ~PAGE_MASK
;
1757 int len
= PAGE_ALIGN(size
+ offset
);
1762 iommu_unmap(mapping
->domain
, iova
, len
);
1763 __free_iova(mapping
, iova
, len
);
1767 * arm_iommu_unmap_page
1768 * @dev: valid struct device pointer
1769 * @handle: DMA address of buffer
1770 * @size: size of buffer (same as passed to dma_map_page)
1771 * @dir: DMA transfer direction (same as passed to dma_map_page)
1773 * IOMMU aware version of arm_dma_unmap_page()
1775 static void arm_iommu_unmap_page(struct device
*dev
, dma_addr_t handle
,
1776 size_t size
, enum dma_data_direction dir
,
1777 struct dma_attrs
*attrs
)
1779 struct dma_iommu_mapping
*mapping
= dev
->archdata
.mapping
;
1780 dma_addr_t iova
= handle
& PAGE_MASK
;
1781 struct page
*page
= phys_to_page(iommu_iova_to_phys(mapping
->domain
, iova
));
1782 int offset
= handle
& ~PAGE_MASK
;
1783 int len
= PAGE_ALIGN(size
+ offset
);
1788 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC
, attrs
))
1789 __dma_page_dev_to_cpu(page
, offset
, size
, dir
);
1791 iommu_unmap(mapping
->domain
, iova
, len
);
1792 __free_iova(mapping
, iova
, len
);
1795 static void arm_iommu_sync_single_for_cpu(struct device
*dev
,
1796 dma_addr_t handle
, size_t size
, enum dma_data_direction dir
)
1798 struct dma_iommu_mapping
*mapping
= dev
->archdata
.mapping
;
1799 dma_addr_t iova
= handle
& PAGE_MASK
;
1800 struct page
*page
= phys_to_page(iommu_iova_to_phys(mapping
->domain
, iova
));
1801 unsigned int offset
= handle
& ~PAGE_MASK
;
1806 __dma_page_dev_to_cpu(page
, offset
, size
, dir
);
1809 static void arm_iommu_sync_single_for_device(struct device
*dev
,
1810 dma_addr_t handle
, size_t size
, enum dma_data_direction dir
)
1812 struct dma_iommu_mapping
*mapping
= dev
->archdata
.mapping
;
1813 dma_addr_t iova
= handle
& PAGE_MASK
;
1814 struct page
*page
= phys_to_page(iommu_iova_to_phys(mapping
->domain
, iova
));
1815 unsigned int offset
= handle
& ~PAGE_MASK
;
1820 __dma_page_cpu_to_dev(page
, offset
, size
, dir
);
1823 struct dma_map_ops iommu_ops
= {
1824 .alloc
= arm_iommu_alloc_attrs
,
1825 .free
= arm_iommu_free_attrs
,
1826 .mmap
= arm_iommu_mmap_attrs
,
1827 .get_sgtable
= arm_iommu_get_sgtable
,
1829 .map_page
= arm_iommu_map_page
,
1830 .unmap_page
= arm_iommu_unmap_page
,
1831 .sync_single_for_cpu
= arm_iommu_sync_single_for_cpu
,
1832 .sync_single_for_device
= arm_iommu_sync_single_for_device
,
1834 .map_sg
= arm_iommu_map_sg
,
1835 .unmap_sg
= arm_iommu_unmap_sg
,
1836 .sync_sg_for_cpu
= arm_iommu_sync_sg_for_cpu
,
1837 .sync_sg_for_device
= arm_iommu_sync_sg_for_device
,
1839 .set_dma_mask
= arm_dma_set_mask
,
1842 struct dma_map_ops iommu_coherent_ops
= {
1843 .alloc
= arm_iommu_alloc_attrs
,
1844 .free
= arm_iommu_free_attrs
,
1845 .mmap
= arm_iommu_mmap_attrs
,
1846 .get_sgtable
= arm_iommu_get_sgtable
,
1848 .map_page
= arm_coherent_iommu_map_page
,
1849 .unmap_page
= arm_coherent_iommu_unmap_page
,
1851 .map_sg
= arm_coherent_iommu_map_sg
,
1852 .unmap_sg
= arm_coherent_iommu_unmap_sg
,
1854 .set_dma_mask
= arm_dma_set_mask
,
1858 * arm_iommu_create_mapping
1859 * @bus: pointer to the bus holding the client device (for IOMMU calls)
1860 * @base: start address of the valid IO address space
1861 * @size: size of the valid IO address space
1862 * @order: accuracy of the IO addresses allocations
1864 * Creates a mapping structure which holds information about used/unused
1865 * IO address ranges, which is required to perform memory allocation and
1866 * mapping with IOMMU aware functions.
1868 * The client device need to be attached to the mapping with
1869 * arm_iommu_attach_device function.
1871 struct dma_iommu_mapping
*
1872 arm_iommu_create_mapping(struct bus_type
*bus
, dma_addr_t base
, size_t size
,
1875 unsigned int count
= size
>> (PAGE_SHIFT
+ order
);
1876 unsigned int bitmap_size
= BITS_TO_LONGS(count
) * sizeof(long);
1877 struct dma_iommu_mapping
*mapping
;
1881 return ERR_PTR(-EINVAL
);
1883 mapping
= kzalloc(sizeof(struct dma_iommu_mapping
), GFP_KERNEL
);
1887 mapping
->bitmap
= kzalloc(bitmap_size
, GFP_KERNEL
);
1888 if (!mapping
->bitmap
)
1891 mapping
->base
= base
;
1892 mapping
->bits
= BITS_PER_BYTE
* bitmap_size
;
1893 mapping
->order
= order
;
1894 spin_lock_init(&mapping
->lock
);
1896 mapping
->domain
= iommu_domain_alloc(bus
);
1897 if (!mapping
->domain
)
1900 kref_init(&mapping
->kref
);
1903 kfree(mapping
->bitmap
);
1907 return ERR_PTR(err
);
1909 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping
);
1911 static void release_iommu_mapping(struct kref
*kref
)
1913 struct dma_iommu_mapping
*mapping
=
1914 container_of(kref
, struct dma_iommu_mapping
, kref
);
1916 iommu_domain_free(mapping
->domain
);
1917 kfree(mapping
->bitmap
);
1921 void arm_iommu_release_mapping(struct dma_iommu_mapping
*mapping
)
1924 kref_put(&mapping
->kref
, release_iommu_mapping
);
1926 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping
);
1929 * arm_iommu_attach_device
1930 * @dev: valid struct device pointer
1931 * @mapping: io address space mapping structure (returned from
1932 * arm_iommu_create_mapping)
1934 * Attaches specified io address space mapping to the provided device,
1935 * this replaces the dma operations (dma_map_ops pointer) with the
1936 * IOMMU aware version. More than one client might be attached to
1937 * the same io address space mapping.
1939 int arm_iommu_attach_device(struct device
*dev
,
1940 struct dma_iommu_mapping
*mapping
)
1944 err
= iommu_attach_device(mapping
->domain
, dev
);
1948 kref_get(&mapping
->kref
);
1949 dev
->archdata
.mapping
= mapping
;
1950 set_dma_ops(dev
, &iommu_ops
);
1952 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev
));
1955 EXPORT_SYMBOL_GPL(arm_iommu_attach_device
);
1958 * arm_iommu_detach_device
1959 * @dev: valid struct device pointer
1961 * Detaches the provided device from a previously attached map.
1962 * This voids the dma operations (dma_map_ops pointer)
1964 void arm_iommu_detach_device(struct device
*dev
)
1966 struct dma_iommu_mapping
*mapping
;
1968 mapping
= to_dma_iommu_mapping(dev
);
1970 dev_warn(dev
, "Not attached\n");
1974 iommu_detach_device(mapping
->domain
, dev
);
1975 kref_put(&mapping
->kref
, release_iommu_mapping
);
1976 dev
->archdata
.mapping
= NULL
;
1977 set_dma_ops(dev
, NULL
);
1979 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev
));
1981 EXPORT_SYMBOL_GPL(arm_iommu_detach_device
);