mfd: wm8350-i2c: Make sure the i2c regmap functions are compiled
[linux/fpc-iii.git] / arch / arm / mm / dma-mapping.c
blob8f3375adfcf9ccd54c6750003a65cf02f63b0ac8
1 /*
2 * linux/arch/arm/mm/dma-mapping.c
4 * Copyright (C) 2000-2004 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 * DMA uncached mapping support.
12 #include <linux/module.h>
13 #include <linux/mm.h>
14 #include <linux/gfp.h>
15 #include <linux/errno.h>
16 #include <linux/list.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/dma-contiguous.h>
21 #include <linux/highmem.h>
22 #include <linux/memblock.h>
23 #include <linux/slab.h>
24 #include <linux/iommu.h>
25 #include <linux/io.h>
26 #include <linux/vmalloc.h>
27 #include <linux/sizes.h>
29 #include <asm/memory.h>
30 #include <asm/highmem.h>
31 #include <asm/cacheflush.h>
32 #include <asm/tlbflush.h>
33 #include <asm/mach/arch.h>
34 #include <asm/dma-iommu.h>
35 #include <asm/mach/map.h>
36 #include <asm/system_info.h>
37 #include <asm/dma-contiguous.h>
39 #include "mm.h"
42 * The DMA API is built upon the notion of "buffer ownership". A buffer
43 * is either exclusively owned by the CPU (and therefore may be accessed
44 * by it) or exclusively owned by the DMA device. These helper functions
45 * represent the transitions between these two ownership states.
47 * Note, however, that on later ARMs, this notion does not work due to
48 * speculative prefetches. We model our approach on the assumption that
49 * the CPU does do speculative prefetches, which means we clean caches
50 * before transfers and delay cache invalidation until transfer completion.
53 static void __dma_page_cpu_to_dev(struct page *, unsigned long,
54 size_t, enum dma_data_direction);
55 static void __dma_page_dev_to_cpu(struct page *, unsigned long,
56 size_t, enum dma_data_direction);
58 /**
59 * arm_dma_map_page - map a portion of a page for streaming DMA
60 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
61 * @page: page that buffer resides in
62 * @offset: offset into page for start of buffer
63 * @size: size of buffer to map
64 * @dir: DMA transfer direction
66 * Ensure that any data held in the cache is appropriately discarded
67 * or written back.
69 * The device owns this memory once this call has completed. The CPU
70 * can regain ownership by calling dma_unmap_page().
72 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
73 unsigned long offset, size_t size, enum dma_data_direction dir,
74 struct dma_attrs *attrs)
76 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
77 __dma_page_cpu_to_dev(page, offset, size, dir);
78 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
81 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
82 unsigned long offset, size_t size, enum dma_data_direction dir,
83 struct dma_attrs *attrs)
85 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
88 /**
89 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
90 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
91 * @handle: DMA address of buffer
92 * @size: size of buffer (same as passed to dma_map_page)
93 * @dir: DMA transfer direction (same as passed to dma_map_page)
95 * Unmap a page streaming mode DMA translation. The handle and size
96 * must match what was provided in the previous dma_map_page() call.
97 * All other usages are undefined.
99 * After this call, reads by the CPU to the buffer are guaranteed to see
100 * whatever the device wrote there.
102 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
103 size_t size, enum dma_data_direction dir,
104 struct dma_attrs *attrs)
106 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
107 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
108 handle & ~PAGE_MASK, size, dir);
111 static void arm_dma_sync_single_for_cpu(struct device *dev,
112 dma_addr_t handle, size_t size, enum dma_data_direction dir)
114 unsigned int offset = handle & (PAGE_SIZE - 1);
115 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
116 __dma_page_dev_to_cpu(page, offset, size, dir);
119 static void arm_dma_sync_single_for_device(struct device *dev,
120 dma_addr_t handle, size_t size, enum dma_data_direction dir)
122 unsigned int offset = handle & (PAGE_SIZE - 1);
123 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
124 __dma_page_cpu_to_dev(page, offset, size, dir);
127 struct dma_map_ops arm_dma_ops = {
128 .alloc = arm_dma_alloc,
129 .free = arm_dma_free,
130 .mmap = arm_dma_mmap,
131 .get_sgtable = arm_dma_get_sgtable,
132 .map_page = arm_dma_map_page,
133 .unmap_page = arm_dma_unmap_page,
134 .map_sg = arm_dma_map_sg,
135 .unmap_sg = arm_dma_unmap_sg,
136 .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
137 .sync_single_for_device = arm_dma_sync_single_for_device,
138 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
139 .sync_sg_for_device = arm_dma_sync_sg_for_device,
140 .set_dma_mask = arm_dma_set_mask,
142 EXPORT_SYMBOL(arm_dma_ops);
144 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
145 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
146 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
147 dma_addr_t handle, struct dma_attrs *attrs);
149 struct dma_map_ops arm_coherent_dma_ops = {
150 .alloc = arm_coherent_dma_alloc,
151 .free = arm_coherent_dma_free,
152 .mmap = arm_dma_mmap,
153 .get_sgtable = arm_dma_get_sgtable,
154 .map_page = arm_coherent_dma_map_page,
155 .map_sg = arm_dma_map_sg,
156 .set_dma_mask = arm_dma_set_mask,
158 EXPORT_SYMBOL(arm_coherent_dma_ops);
160 static u64 get_coherent_dma_mask(struct device *dev)
162 u64 mask = (u64)arm_dma_limit;
164 if (dev) {
165 mask = dev->coherent_dma_mask;
168 * Sanity check the DMA mask - it must be non-zero, and
169 * must be able to be satisfied by a DMA allocation.
171 if (mask == 0) {
172 dev_warn(dev, "coherent DMA mask is unset\n");
173 return 0;
176 if ((~mask) & (u64)arm_dma_limit) {
177 dev_warn(dev, "coherent DMA mask %#llx is smaller "
178 "than system GFP_DMA mask %#llx\n",
179 mask, (u64)arm_dma_limit);
180 return 0;
184 return mask;
187 static void __dma_clear_buffer(struct page *page, size_t size)
190 * Ensure that the allocated pages are zeroed, and that any data
191 * lurking in the kernel direct-mapped region is invalidated.
193 if (PageHighMem(page)) {
194 phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
195 phys_addr_t end = base + size;
196 while (size > 0) {
197 void *ptr = kmap_atomic(page);
198 memset(ptr, 0, PAGE_SIZE);
199 dmac_flush_range(ptr, ptr + PAGE_SIZE);
200 kunmap_atomic(ptr);
201 page++;
202 size -= PAGE_SIZE;
204 outer_flush_range(base, end);
205 } else {
206 void *ptr = page_address(page);
207 memset(ptr, 0, size);
208 dmac_flush_range(ptr, ptr + size);
209 outer_flush_range(__pa(ptr), __pa(ptr) + size);
214 * Allocate a DMA buffer for 'dev' of size 'size' using the
215 * specified gfp mask. Note that 'size' must be page aligned.
217 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
219 unsigned long order = get_order(size);
220 struct page *page, *p, *e;
222 page = alloc_pages(gfp, order);
223 if (!page)
224 return NULL;
227 * Now split the huge page and free the excess pages
229 split_page(page, order);
230 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
231 __free_page(p);
233 __dma_clear_buffer(page, size);
235 return page;
239 * Free a DMA buffer. 'size' must be page aligned.
241 static void __dma_free_buffer(struct page *page, size_t size)
243 struct page *e = page + (size >> PAGE_SHIFT);
245 while (page < e) {
246 __free_page(page);
247 page++;
251 #ifdef CONFIG_MMU
252 #ifdef CONFIG_HUGETLB_PAGE
253 #warning ARM Coherent DMA allocator does not (yet) support huge TLB
254 #endif
256 static void *__alloc_from_contiguous(struct device *dev, size_t size,
257 pgprot_t prot, struct page **ret_page,
258 const void *caller);
260 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
261 pgprot_t prot, struct page **ret_page,
262 const void *caller);
264 static void *
265 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
266 const void *caller)
268 struct vm_struct *area;
269 unsigned long addr;
272 * DMA allocation can be mapped to user space, so lets
273 * set VM_USERMAP flags too.
275 area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
276 caller);
277 if (!area)
278 return NULL;
279 addr = (unsigned long)area->addr;
280 area->phys_addr = __pfn_to_phys(page_to_pfn(page));
282 if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) {
283 vunmap((void *)addr);
284 return NULL;
286 return (void *)addr;
289 static void __dma_free_remap(void *cpu_addr, size_t size)
291 unsigned int flags = VM_ARM_DMA_CONSISTENT | VM_USERMAP;
292 struct vm_struct *area = find_vm_area(cpu_addr);
293 if (!area || (area->flags & flags) != flags) {
294 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
295 return;
297 unmap_kernel_range((unsigned long)cpu_addr, size);
298 vunmap(cpu_addr);
301 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
303 struct dma_pool {
304 size_t size;
305 spinlock_t lock;
306 unsigned long *bitmap;
307 unsigned long nr_pages;
308 void *vaddr;
309 struct page **pages;
312 static struct dma_pool atomic_pool = {
313 .size = DEFAULT_DMA_COHERENT_POOL_SIZE,
316 static int __init early_coherent_pool(char *p)
318 atomic_pool.size = memparse(p, &p);
319 return 0;
321 early_param("coherent_pool", early_coherent_pool);
323 void __init init_dma_coherent_pool_size(unsigned long size)
326 * Catch any attempt to set the pool size too late.
328 BUG_ON(atomic_pool.vaddr);
331 * Set architecture specific coherent pool size only if
332 * it has not been changed by kernel command line parameter.
334 if (atomic_pool.size == DEFAULT_DMA_COHERENT_POOL_SIZE)
335 atomic_pool.size = size;
339 * Initialise the coherent pool for atomic allocations.
341 static int __init atomic_pool_init(void)
343 struct dma_pool *pool = &atomic_pool;
344 pgprot_t prot = pgprot_dmacoherent(pgprot_kernel);
345 gfp_t gfp = GFP_KERNEL | GFP_DMA;
346 unsigned long nr_pages = pool->size >> PAGE_SHIFT;
347 unsigned long *bitmap;
348 struct page *page;
349 struct page **pages;
350 void *ptr;
351 int bitmap_size = BITS_TO_LONGS(nr_pages) * sizeof(long);
353 bitmap = kzalloc(bitmap_size, GFP_KERNEL);
354 if (!bitmap)
355 goto no_bitmap;
357 pages = kzalloc(nr_pages * sizeof(struct page *), GFP_KERNEL);
358 if (!pages)
359 goto no_pages;
361 if (IS_ENABLED(CONFIG_DMA_CMA))
362 ptr = __alloc_from_contiguous(NULL, pool->size, prot, &page,
363 atomic_pool_init);
364 else
365 ptr = __alloc_remap_buffer(NULL, pool->size, gfp, prot, &page,
366 atomic_pool_init);
367 if (ptr) {
368 int i;
370 for (i = 0; i < nr_pages; i++)
371 pages[i] = page + i;
373 spin_lock_init(&pool->lock);
374 pool->vaddr = ptr;
375 pool->pages = pages;
376 pool->bitmap = bitmap;
377 pool->nr_pages = nr_pages;
378 pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n",
379 (unsigned)pool->size / 1024);
380 return 0;
383 kfree(pages);
384 no_pages:
385 kfree(bitmap);
386 no_bitmap:
387 pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",
388 (unsigned)pool->size / 1024);
389 return -ENOMEM;
392 * CMA is activated by core_initcall, so we must be called after it.
394 postcore_initcall(atomic_pool_init);
396 struct dma_contig_early_reserve {
397 phys_addr_t base;
398 unsigned long size;
401 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
403 static int dma_mmu_remap_num __initdata;
405 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
407 dma_mmu_remap[dma_mmu_remap_num].base = base;
408 dma_mmu_remap[dma_mmu_remap_num].size = size;
409 dma_mmu_remap_num++;
412 void __init dma_contiguous_remap(void)
414 int i;
415 for (i = 0; i < dma_mmu_remap_num; i++) {
416 phys_addr_t start = dma_mmu_remap[i].base;
417 phys_addr_t end = start + dma_mmu_remap[i].size;
418 struct map_desc map;
419 unsigned long addr;
421 if (end > arm_lowmem_limit)
422 end = arm_lowmem_limit;
423 if (start >= end)
424 continue;
426 map.pfn = __phys_to_pfn(start);
427 map.virtual = __phys_to_virt(start);
428 map.length = end - start;
429 map.type = MT_MEMORY_DMA_READY;
432 * Clear previous low-memory mapping to ensure that the
433 * TLB does not see any conflicting entries, then flush
434 * the TLB of the old entries before creating new mappings.
436 * This ensures that any speculatively loaded TLB entries
437 * (even though they may be rare) can not cause any problems,
438 * and ensures that this code is architecturally compliant.
440 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
441 addr += PMD_SIZE)
442 pmd_clear(pmd_off_k(addr));
444 flush_tlb_kernel_range(__phys_to_virt(start),
445 __phys_to_virt(end));
447 iotable_init(&map, 1);
451 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
452 void *data)
454 struct page *page = virt_to_page(addr);
455 pgprot_t prot = *(pgprot_t *)data;
457 set_pte_ext(pte, mk_pte(page, prot), 0);
458 return 0;
461 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
463 unsigned long start = (unsigned long) page_address(page);
464 unsigned end = start + size;
466 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
467 flush_tlb_kernel_range(start, end);
470 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
471 pgprot_t prot, struct page **ret_page,
472 const void *caller)
474 struct page *page;
475 void *ptr;
476 page = __dma_alloc_buffer(dev, size, gfp);
477 if (!page)
478 return NULL;
480 ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
481 if (!ptr) {
482 __dma_free_buffer(page, size);
483 return NULL;
486 *ret_page = page;
487 return ptr;
490 static void *__alloc_from_pool(size_t size, struct page **ret_page)
492 struct dma_pool *pool = &atomic_pool;
493 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
494 unsigned int pageno;
495 unsigned long flags;
496 void *ptr = NULL;
497 unsigned long align_mask;
499 if (!pool->vaddr) {
500 WARN(1, "coherent pool not initialised!\n");
501 return NULL;
505 * Align the region allocation - allocations from pool are rather
506 * small, so align them to their order in pages, minimum is a page
507 * size. This helps reduce fragmentation of the DMA space.
509 align_mask = (1 << get_order(size)) - 1;
511 spin_lock_irqsave(&pool->lock, flags);
512 pageno = bitmap_find_next_zero_area(pool->bitmap, pool->nr_pages,
513 0, count, align_mask);
514 if (pageno < pool->nr_pages) {
515 bitmap_set(pool->bitmap, pageno, count);
516 ptr = pool->vaddr + PAGE_SIZE * pageno;
517 *ret_page = pool->pages[pageno];
518 } else {
519 pr_err_once("ERROR: %u KiB atomic DMA coherent pool is too small!\n"
520 "Please increase it with coherent_pool= kernel parameter!\n",
521 (unsigned)pool->size / 1024);
523 spin_unlock_irqrestore(&pool->lock, flags);
525 return ptr;
528 static bool __in_atomic_pool(void *start, size_t size)
530 struct dma_pool *pool = &atomic_pool;
531 void *end = start + size;
532 void *pool_start = pool->vaddr;
533 void *pool_end = pool->vaddr + pool->size;
535 if (start < pool_start || start >= pool_end)
536 return false;
538 if (end <= pool_end)
539 return true;
541 WARN(1, "Wrong coherent size(%p-%p) from atomic pool(%p-%p)\n",
542 start, end - 1, pool_start, pool_end - 1);
544 return false;
547 static int __free_from_pool(void *start, size_t size)
549 struct dma_pool *pool = &atomic_pool;
550 unsigned long pageno, count;
551 unsigned long flags;
553 if (!__in_atomic_pool(start, size))
554 return 0;
556 pageno = (start - pool->vaddr) >> PAGE_SHIFT;
557 count = size >> PAGE_SHIFT;
559 spin_lock_irqsave(&pool->lock, flags);
560 bitmap_clear(pool->bitmap, pageno, count);
561 spin_unlock_irqrestore(&pool->lock, flags);
563 return 1;
566 static void *__alloc_from_contiguous(struct device *dev, size_t size,
567 pgprot_t prot, struct page **ret_page,
568 const void *caller)
570 unsigned long order = get_order(size);
571 size_t count = size >> PAGE_SHIFT;
572 struct page *page;
573 void *ptr;
575 page = dma_alloc_from_contiguous(dev, count, order);
576 if (!page)
577 return NULL;
579 __dma_clear_buffer(page, size);
581 if (PageHighMem(page)) {
582 ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
583 if (!ptr) {
584 dma_release_from_contiguous(dev, page, count);
585 return NULL;
587 } else {
588 __dma_remap(page, size, prot);
589 ptr = page_address(page);
591 *ret_page = page;
592 return ptr;
595 static void __free_from_contiguous(struct device *dev, struct page *page,
596 void *cpu_addr, size_t size)
598 if (PageHighMem(page))
599 __dma_free_remap(cpu_addr, size);
600 else
601 __dma_remap(page, size, pgprot_kernel);
602 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
605 static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
607 prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
608 pgprot_writecombine(prot) :
609 pgprot_dmacoherent(prot);
610 return prot;
613 #define nommu() 0
615 #else /* !CONFIG_MMU */
617 #define nommu() 1
619 #define __get_dma_pgprot(attrs, prot) __pgprot(0)
620 #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c) NULL
621 #define __alloc_from_pool(size, ret_page) NULL
622 #define __alloc_from_contiguous(dev, size, prot, ret, c) NULL
623 #define __free_from_pool(cpu_addr, size) 0
624 #define __free_from_contiguous(dev, page, cpu_addr, size) do { } while (0)
625 #define __dma_free_remap(cpu_addr, size) do { } while (0)
627 #endif /* CONFIG_MMU */
629 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
630 struct page **ret_page)
632 struct page *page;
633 page = __dma_alloc_buffer(dev, size, gfp);
634 if (!page)
635 return NULL;
637 *ret_page = page;
638 return page_address(page);
643 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
644 gfp_t gfp, pgprot_t prot, bool is_coherent, const void *caller)
646 u64 mask = get_coherent_dma_mask(dev);
647 struct page *page = NULL;
648 void *addr;
650 #ifdef CONFIG_DMA_API_DEBUG
651 u64 limit = (mask + 1) & ~mask;
652 if (limit && size >= limit) {
653 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
654 size, mask);
655 return NULL;
657 #endif
659 if (!mask)
660 return NULL;
662 if (mask < 0xffffffffULL)
663 gfp |= GFP_DMA;
666 * Following is a work-around (a.k.a. hack) to prevent pages
667 * with __GFP_COMP being passed to split_page() which cannot
668 * handle them. The real problem is that this flag probably
669 * should be 0 on ARM as it is not supported on this
670 * platform; see CONFIG_HUGETLBFS.
672 gfp &= ~(__GFP_COMP);
674 *handle = DMA_ERROR_CODE;
675 size = PAGE_ALIGN(size);
677 if (is_coherent || nommu())
678 addr = __alloc_simple_buffer(dev, size, gfp, &page);
679 else if (!(gfp & __GFP_WAIT))
680 addr = __alloc_from_pool(size, &page);
681 else if (!IS_ENABLED(CONFIG_DMA_CMA))
682 addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
683 else
684 addr = __alloc_from_contiguous(dev, size, prot, &page, caller);
686 if (addr)
687 *handle = pfn_to_dma(dev, page_to_pfn(page));
689 return addr;
693 * Allocate DMA-coherent memory space and return both the kernel remapped
694 * virtual and bus address for that space.
696 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
697 gfp_t gfp, struct dma_attrs *attrs)
699 pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
700 void *memory;
702 if (dma_alloc_from_coherent(dev, size, handle, &memory))
703 return memory;
705 return __dma_alloc(dev, size, handle, gfp, prot, false,
706 __builtin_return_address(0));
709 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
710 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
712 pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
713 void *memory;
715 if (dma_alloc_from_coherent(dev, size, handle, &memory))
716 return memory;
718 return __dma_alloc(dev, size, handle, gfp, prot, true,
719 __builtin_return_address(0));
723 * Create userspace mapping for the DMA-coherent memory.
725 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
726 void *cpu_addr, dma_addr_t dma_addr, size_t size,
727 struct dma_attrs *attrs)
729 int ret = -ENXIO;
730 #ifdef CONFIG_MMU
731 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
732 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
733 unsigned long pfn = dma_to_pfn(dev, dma_addr);
734 unsigned long off = vma->vm_pgoff;
736 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
738 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
739 return ret;
741 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
742 ret = remap_pfn_range(vma, vma->vm_start,
743 pfn + off,
744 vma->vm_end - vma->vm_start,
745 vma->vm_page_prot);
747 #endif /* CONFIG_MMU */
749 return ret;
753 * Free a buffer as defined by the above mapping.
755 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
756 dma_addr_t handle, struct dma_attrs *attrs,
757 bool is_coherent)
759 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
761 if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
762 return;
764 size = PAGE_ALIGN(size);
766 if (is_coherent || nommu()) {
767 __dma_free_buffer(page, size);
768 } else if (__free_from_pool(cpu_addr, size)) {
769 return;
770 } else if (!IS_ENABLED(CONFIG_DMA_CMA)) {
771 __dma_free_remap(cpu_addr, size);
772 __dma_free_buffer(page, size);
773 } else {
775 * Non-atomic allocations cannot be freed with IRQs disabled
777 WARN_ON(irqs_disabled());
778 __free_from_contiguous(dev, page, cpu_addr, size);
782 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
783 dma_addr_t handle, struct dma_attrs *attrs)
785 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
788 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
789 dma_addr_t handle, struct dma_attrs *attrs)
791 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
794 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
795 void *cpu_addr, dma_addr_t handle, size_t size,
796 struct dma_attrs *attrs)
798 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
799 int ret;
801 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
802 if (unlikely(ret))
803 return ret;
805 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
806 return 0;
809 static void dma_cache_maint_page(struct page *page, unsigned long offset,
810 size_t size, enum dma_data_direction dir,
811 void (*op)(const void *, size_t, int))
813 unsigned long pfn;
814 size_t left = size;
816 pfn = page_to_pfn(page) + offset / PAGE_SIZE;
817 offset %= PAGE_SIZE;
820 * A single sg entry may refer to multiple physically contiguous
821 * pages. But we still need to process highmem pages individually.
822 * If highmem is not configured then the bulk of this loop gets
823 * optimized out.
825 do {
826 size_t len = left;
827 void *vaddr;
829 page = pfn_to_page(pfn);
831 if (PageHighMem(page)) {
832 if (len + offset > PAGE_SIZE)
833 len = PAGE_SIZE - offset;
835 if (cache_is_vipt_nonaliasing()) {
836 vaddr = kmap_atomic(page);
837 op(vaddr + offset, len, dir);
838 kunmap_atomic(vaddr);
839 } else {
840 vaddr = kmap_high_get(page);
841 if (vaddr) {
842 op(vaddr + offset, len, dir);
843 kunmap_high(page);
846 } else {
847 vaddr = page_address(page) + offset;
848 op(vaddr, len, dir);
850 offset = 0;
851 pfn++;
852 left -= len;
853 } while (left);
857 * Make an area consistent for devices.
858 * Note: Drivers should NOT use this function directly, as it will break
859 * platforms with CONFIG_DMABOUNCE.
860 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
862 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
863 size_t size, enum dma_data_direction dir)
865 unsigned long paddr;
867 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
869 paddr = page_to_phys(page) + off;
870 if (dir == DMA_FROM_DEVICE) {
871 outer_inv_range(paddr, paddr + size);
872 } else {
873 outer_clean_range(paddr, paddr + size);
875 /* FIXME: non-speculating: flush on bidirectional mappings? */
878 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
879 size_t size, enum dma_data_direction dir)
881 unsigned long paddr = page_to_phys(page) + off;
883 /* FIXME: non-speculating: not required */
884 /* don't bother invalidating if DMA to device */
885 if (dir != DMA_TO_DEVICE)
886 outer_inv_range(paddr, paddr + size);
888 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
891 * Mark the D-cache clean for these pages to avoid extra flushing.
893 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
894 unsigned long pfn;
895 size_t left = size;
897 pfn = page_to_pfn(page) + off / PAGE_SIZE;
898 off %= PAGE_SIZE;
899 if (off) {
900 pfn++;
901 left -= PAGE_SIZE - off;
903 while (left >= PAGE_SIZE) {
904 page = pfn_to_page(pfn++);
905 set_bit(PG_dcache_clean, &page->flags);
906 left -= PAGE_SIZE;
912 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
913 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
914 * @sg: list of buffers
915 * @nents: number of buffers to map
916 * @dir: DMA transfer direction
918 * Map a set of buffers described by scatterlist in streaming mode for DMA.
919 * This is the scatter-gather version of the dma_map_single interface.
920 * Here the scatter gather list elements are each tagged with the
921 * appropriate dma address and length. They are obtained via
922 * sg_dma_{address,length}.
924 * Device ownership issues as mentioned for dma_map_single are the same
925 * here.
927 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
928 enum dma_data_direction dir, struct dma_attrs *attrs)
930 struct dma_map_ops *ops = get_dma_ops(dev);
931 struct scatterlist *s;
932 int i, j;
934 for_each_sg(sg, s, nents, i) {
935 #ifdef CONFIG_NEED_SG_DMA_LENGTH
936 s->dma_length = s->length;
937 #endif
938 s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
939 s->length, dir, attrs);
940 if (dma_mapping_error(dev, s->dma_address))
941 goto bad_mapping;
943 return nents;
945 bad_mapping:
946 for_each_sg(sg, s, i, j)
947 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
948 return 0;
952 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
953 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
954 * @sg: list of buffers
955 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
956 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
958 * Unmap a set of streaming mode DMA translations. Again, CPU access
959 * rules concerning calls here are the same as for dma_unmap_single().
961 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
962 enum dma_data_direction dir, struct dma_attrs *attrs)
964 struct dma_map_ops *ops = get_dma_ops(dev);
965 struct scatterlist *s;
967 int i;
969 for_each_sg(sg, s, nents, i)
970 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
974 * arm_dma_sync_sg_for_cpu
975 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
976 * @sg: list of buffers
977 * @nents: number of buffers to map (returned from dma_map_sg)
978 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
980 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
981 int nents, enum dma_data_direction dir)
983 struct dma_map_ops *ops = get_dma_ops(dev);
984 struct scatterlist *s;
985 int i;
987 for_each_sg(sg, s, nents, i)
988 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
989 dir);
993 * arm_dma_sync_sg_for_device
994 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
995 * @sg: list of buffers
996 * @nents: number of buffers to map (returned from dma_map_sg)
997 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
999 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1000 int nents, enum dma_data_direction dir)
1002 struct dma_map_ops *ops = get_dma_ops(dev);
1003 struct scatterlist *s;
1004 int i;
1006 for_each_sg(sg, s, nents, i)
1007 ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1008 dir);
1012 * Return whether the given device DMA address mask can be supported
1013 * properly. For example, if your device can only drive the low 24-bits
1014 * during bus mastering, then you would pass 0x00ffffff as the mask
1015 * to this function.
1017 int dma_supported(struct device *dev, u64 mask)
1019 if (mask < (u64)arm_dma_limit)
1020 return 0;
1021 return 1;
1023 EXPORT_SYMBOL(dma_supported);
1025 int arm_dma_set_mask(struct device *dev, u64 dma_mask)
1027 if (!dev->dma_mask || !dma_supported(dev, dma_mask))
1028 return -EIO;
1030 *dev->dma_mask = dma_mask;
1032 return 0;
1035 #define PREALLOC_DMA_DEBUG_ENTRIES 4096
1037 static int __init dma_debug_do_init(void)
1039 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1040 return 0;
1042 fs_initcall(dma_debug_do_init);
1044 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1046 /* IOMMU */
1048 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1049 size_t size)
1051 unsigned int order = get_order(size);
1052 unsigned int align = 0;
1053 unsigned int count, start;
1054 unsigned long flags;
1056 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1057 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1059 count = ((PAGE_ALIGN(size) >> PAGE_SHIFT) +
1060 (1 << mapping->order) - 1) >> mapping->order;
1062 if (order > mapping->order)
1063 align = (1 << (order - mapping->order)) - 1;
1065 spin_lock_irqsave(&mapping->lock, flags);
1066 start = bitmap_find_next_zero_area(mapping->bitmap, mapping->bits, 0,
1067 count, align);
1068 if (start > mapping->bits) {
1069 spin_unlock_irqrestore(&mapping->lock, flags);
1070 return DMA_ERROR_CODE;
1073 bitmap_set(mapping->bitmap, start, count);
1074 spin_unlock_irqrestore(&mapping->lock, flags);
1076 return mapping->base + (start << (mapping->order + PAGE_SHIFT));
1079 static inline void __free_iova(struct dma_iommu_mapping *mapping,
1080 dma_addr_t addr, size_t size)
1082 unsigned int start = (addr - mapping->base) >>
1083 (mapping->order + PAGE_SHIFT);
1084 unsigned int count = ((size >> PAGE_SHIFT) +
1085 (1 << mapping->order) - 1) >> mapping->order;
1086 unsigned long flags;
1088 spin_lock_irqsave(&mapping->lock, flags);
1089 bitmap_clear(mapping->bitmap, start, count);
1090 spin_unlock_irqrestore(&mapping->lock, flags);
1093 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1094 gfp_t gfp, struct dma_attrs *attrs)
1096 struct page **pages;
1097 int count = size >> PAGE_SHIFT;
1098 int array_size = count * sizeof(struct page *);
1099 int i = 0;
1101 if (array_size <= PAGE_SIZE)
1102 pages = kzalloc(array_size, gfp);
1103 else
1104 pages = vzalloc(array_size);
1105 if (!pages)
1106 return NULL;
1108 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
1110 unsigned long order = get_order(size);
1111 struct page *page;
1113 page = dma_alloc_from_contiguous(dev, count, order);
1114 if (!page)
1115 goto error;
1117 __dma_clear_buffer(page, size);
1119 for (i = 0; i < count; i++)
1120 pages[i] = page + i;
1122 return pages;
1126 * IOMMU can map any pages, so himem can also be used here
1128 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1130 while (count) {
1131 int j, order = __fls(count);
1133 pages[i] = alloc_pages(gfp, order);
1134 while (!pages[i] && order)
1135 pages[i] = alloc_pages(gfp, --order);
1136 if (!pages[i])
1137 goto error;
1139 if (order) {
1140 split_page(pages[i], order);
1141 j = 1 << order;
1142 while (--j)
1143 pages[i + j] = pages[i] + j;
1146 __dma_clear_buffer(pages[i], PAGE_SIZE << order);
1147 i += 1 << order;
1148 count -= 1 << order;
1151 return pages;
1152 error:
1153 while (i--)
1154 if (pages[i])
1155 __free_pages(pages[i], 0);
1156 if (array_size <= PAGE_SIZE)
1157 kfree(pages);
1158 else
1159 vfree(pages);
1160 return NULL;
1163 static int __iommu_free_buffer(struct device *dev, struct page **pages,
1164 size_t size, struct dma_attrs *attrs)
1166 int count = size >> PAGE_SHIFT;
1167 int array_size = count * sizeof(struct page *);
1168 int i;
1170 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
1171 dma_release_from_contiguous(dev, pages[0], count);
1172 } else {
1173 for (i = 0; i < count; i++)
1174 if (pages[i])
1175 __free_pages(pages[i], 0);
1178 if (array_size <= PAGE_SIZE)
1179 kfree(pages);
1180 else
1181 vfree(pages);
1182 return 0;
1186 * Create a CPU mapping for a specified pages
1188 static void *
1189 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1190 const void *caller)
1192 unsigned int i, nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1193 struct vm_struct *area;
1194 unsigned long p;
1196 area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
1197 caller);
1198 if (!area)
1199 return NULL;
1201 area->pages = pages;
1202 area->nr_pages = nr_pages;
1203 p = (unsigned long)area->addr;
1205 for (i = 0; i < nr_pages; i++) {
1206 phys_addr_t phys = __pfn_to_phys(page_to_pfn(pages[i]));
1207 if (ioremap_page_range(p, p + PAGE_SIZE, phys, prot))
1208 goto err;
1209 p += PAGE_SIZE;
1211 return area->addr;
1212 err:
1213 unmap_kernel_range((unsigned long)area->addr, size);
1214 vunmap(area->addr);
1215 return NULL;
1219 * Create a mapping in device IO address space for specified pages
1221 static dma_addr_t
1222 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1224 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1225 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1226 dma_addr_t dma_addr, iova;
1227 int i, ret = DMA_ERROR_CODE;
1229 dma_addr = __alloc_iova(mapping, size);
1230 if (dma_addr == DMA_ERROR_CODE)
1231 return dma_addr;
1233 iova = dma_addr;
1234 for (i = 0; i < count; ) {
1235 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1236 phys_addr_t phys = page_to_phys(pages[i]);
1237 unsigned int len, j;
1239 for (j = i + 1; j < count; j++, next_pfn++)
1240 if (page_to_pfn(pages[j]) != next_pfn)
1241 break;
1243 len = (j - i) << PAGE_SHIFT;
1244 ret = iommu_map(mapping->domain, iova, phys, len,
1245 IOMMU_READ|IOMMU_WRITE);
1246 if (ret < 0)
1247 goto fail;
1248 iova += len;
1249 i = j;
1251 return dma_addr;
1252 fail:
1253 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1254 __free_iova(mapping, dma_addr, size);
1255 return DMA_ERROR_CODE;
1258 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1260 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1263 * add optional in-page offset from iova to size and align
1264 * result to page size
1266 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1267 iova &= PAGE_MASK;
1269 iommu_unmap(mapping->domain, iova, size);
1270 __free_iova(mapping, iova, size);
1271 return 0;
1274 static struct page **__atomic_get_pages(void *addr)
1276 struct dma_pool *pool = &atomic_pool;
1277 struct page **pages = pool->pages;
1278 int offs = (addr - pool->vaddr) >> PAGE_SHIFT;
1280 return pages + offs;
1283 static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1285 struct vm_struct *area;
1287 if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1288 return __atomic_get_pages(cpu_addr);
1290 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1291 return cpu_addr;
1293 area = find_vm_area(cpu_addr);
1294 if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1295 return area->pages;
1296 return NULL;
1299 static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1300 dma_addr_t *handle)
1302 struct page *page;
1303 void *addr;
1305 addr = __alloc_from_pool(size, &page);
1306 if (!addr)
1307 return NULL;
1309 *handle = __iommu_create_mapping(dev, &page, size);
1310 if (*handle == DMA_ERROR_CODE)
1311 goto err_mapping;
1313 return addr;
1315 err_mapping:
1316 __free_from_pool(addr, size);
1317 return NULL;
1320 static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1321 dma_addr_t handle, size_t size)
1323 __iommu_remove_mapping(dev, handle, size);
1324 __free_from_pool(cpu_addr, size);
1327 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1328 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1330 pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
1331 struct page **pages;
1332 void *addr = NULL;
1334 *handle = DMA_ERROR_CODE;
1335 size = PAGE_ALIGN(size);
1337 if (!(gfp & __GFP_WAIT))
1338 return __iommu_alloc_atomic(dev, size, handle);
1341 * Following is a work-around (a.k.a. hack) to prevent pages
1342 * with __GFP_COMP being passed to split_page() which cannot
1343 * handle them. The real problem is that this flag probably
1344 * should be 0 on ARM as it is not supported on this
1345 * platform; see CONFIG_HUGETLBFS.
1347 gfp &= ~(__GFP_COMP);
1349 pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
1350 if (!pages)
1351 return NULL;
1353 *handle = __iommu_create_mapping(dev, pages, size);
1354 if (*handle == DMA_ERROR_CODE)
1355 goto err_buffer;
1357 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1358 return pages;
1360 addr = __iommu_alloc_remap(pages, size, gfp, prot,
1361 __builtin_return_address(0));
1362 if (!addr)
1363 goto err_mapping;
1365 return addr;
1367 err_mapping:
1368 __iommu_remove_mapping(dev, *handle, size);
1369 err_buffer:
1370 __iommu_free_buffer(dev, pages, size, attrs);
1371 return NULL;
1374 static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1375 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1376 struct dma_attrs *attrs)
1378 unsigned long uaddr = vma->vm_start;
1379 unsigned long usize = vma->vm_end - vma->vm_start;
1380 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1381 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1382 unsigned long off = vma->vm_pgoff;
1384 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1386 if (!pages)
1387 return -ENXIO;
1389 if (off >= nr_pages || (usize >> PAGE_SHIFT) > nr_pages - off)
1390 return -ENXIO;
1392 pages += off;
1394 do {
1395 int ret = vm_insert_page(vma, uaddr, *pages++);
1396 if (ret) {
1397 pr_err("Remapping memory failed: %d\n", ret);
1398 return ret;
1400 uaddr += PAGE_SIZE;
1401 usize -= PAGE_SIZE;
1402 } while (usize > 0);
1404 return 0;
1408 * free a page as defined by the above mapping.
1409 * Must not be called with IRQs disabled.
1411 void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1412 dma_addr_t handle, struct dma_attrs *attrs)
1414 struct page **pages;
1415 size = PAGE_ALIGN(size);
1417 if (__in_atomic_pool(cpu_addr, size)) {
1418 __iommu_free_atomic(dev, cpu_addr, handle, size);
1419 return;
1422 pages = __iommu_get_pages(cpu_addr, attrs);
1423 if (!pages) {
1424 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1425 return;
1428 if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1429 unmap_kernel_range((unsigned long)cpu_addr, size);
1430 vunmap(cpu_addr);
1433 __iommu_remove_mapping(dev, handle, size);
1434 __iommu_free_buffer(dev, pages, size, attrs);
1437 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1438 void *cpu_addr, dma_addr_t dma_addr,
1439 size_t size, struct dma_attrs *attrs)
1441 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1442 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1444 if (!pages)
1445 return -ENXIO;
1447 return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1448 GFP_KERNEL);
1451 static int __dma_direction_to_prot(enum dma_data_direction dir)
1453 int prot;
1455 switch (dir) {
1456 case DMA_BIDIRECTIONAL:
1457 prot = IOMMU_READ | IOMMU_WRITE;
1458 break;
1459 case DMA_TO_DEVICE:
1460 prot = IOMMU_READ;
1461 break;
1462 case DMA_FROM_DEVICE:
1463 prot = IOMMU_WRITE;
1464 break;
1465 default:
1466 prot = 0;
1469 return prot;
1473 * Map a part of the scatter-gather list into contiguous io address space
1475 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1476 size_t size, dma_addr_t *handle,
1477 enum dma_data_direction dir, struct dma_attrs *attrs,
1478 bool is_coherent)
1480 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1481 dma_addr_t iova, iova_base;
1482 int ret = 0;
1483 unsigned int count;
1484 struct scatterlist *s;
1485 int prot;
1487 size = PAGE_ALIGN(size);
1488 *handle = DMA_ERROR_CODE;
1490 iova_base = iova = __alloc_iova(mapping, size);
1491 if (iova == DMA_ERROR_CODE)
1492 return -ENOMEM;
1494 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1495 phys_addr_t phys = page_to_phys(sg_page(s));
1496 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1498 if (!is_coherent &&
1499 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1500 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1502 prot = __dma_direction_to_prot(dir);
1504 ret = iommu_map(mapping->domain, iova, phys, len, prot);
1505 if (ret < 0)
1506 goto fail;
1507 count += len >> PAGE_SHIFT;
1508 iova += len;
1510 *handle = iova_base;
1512 return 0;
1513 fail:
1514 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1515 __free_iova(mapping, iova_base, size);
1516 return ret;
1519 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1520 enum dma_data_direction dir, struct dma_attrs *attrs,
1521 bool is_coherent)
1523 struct scatterlist *s = sg, *dma = sg, *start = sg;
1524 int i, count = 0;
1525 unsigned int offset = s->offset;
1526 unsigned int size = s->offset + s->length;
1527 unsigned int max = dma_get_max_seg_size(dev);
1529 for (i = 1; i < nents; i++) {
1530 s = sg_next(s);
1532 s->dma_address = DMA_ERROR_CODE;
1533 s->dma_length = 0;
1535 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1536 if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1537 dir, attrs, is_coherent) < 0)
1538 goto bad_mapping;
1540 dma->dma_address += offset;
1541 dma->dma_length = size - offset;
1543 size = offset = s->offset;
1544 start = s;
1545 dma = sg_next(dma);
1546 count += 1;
1548 size += s->length;
1550 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1551 is_coherent) < 0)
1552 goto bad_mapping;
1554 dma->dma_address += offset;
1555 dma->dma_length = size - offset;
1557 return count+1;
1559 bad_mapping:
1560 for_each_sg(sg, s, count, i)
1561 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1562 return 0;
1566 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1567 * @dev: valid struct device pointer
1568 * @sg: list of buffers
1569 * @nents: number of buffers to map
1570 * @dir: DMA transfer direction
1572 * Map a set of i/o coherent buffers described by scatterlist in streaming
1573 * mode for DMA. The scatter gather list elements are merged together (if
1574 * possible) and tagged with the appropriate dma address and length. They are
1575 * obtained via sg_dma_{address,length}.
1577 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1578 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1580 return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1584 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1585 * @dev: valid struct device pointer
1586 * @sg: list of buffers
1587 * @nents: number of buffers to map
1588 * @dir: DMA transfer direction
1590 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1591 * The scatter gather list elements are merged together (if possible) and
1592 * tagged with the appropriate dma address and length. They are obtained via
1593 * sg_dma_{address,length}.
1595 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1596 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1598 return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1601 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1602 int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
1603 bool is_coherent)
1605 struct scatterlist *s;
1606 int i;
1608 for_each_sg(sg, s, nents, i) {
1609 if (sg_dma_len(s))
1610 __iommu_remove_mapping(dev, sg_dma_address(s),
1611 sg_dma_len(s));
1612 if (!is_coherent &&
1613 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1614 __dma_page_dev_to_cpu(sg_page(s), s->offset,
1615 s->length, dir);
1620 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1621 * @dev: valid struct device pointer
1622 * @sg: list of buffers
1623 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1624 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1626 * Unmap a set of streaming mode DMA translations. Again, CPU access
1627 * rules concerning calls here are the same as for dma_unmap_single().
1629 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1630 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1632 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1636 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1637 * @dev: valid struct device pointer
1638 * @sg: list of buffers
1639 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1640 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1642 * Unmap a set of streaming mode DMA translations. Again, CPU access
1643 * rules concerning calls here are the same as for dma_unmap_single().
1645 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1646 enum dma_data_direction dir, struct dma_attrs *attrs)
1648 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1652 * arm_iommu_sync_sg_for_cpu
1653 * @dev: valid struct device pointer
1654 * @sg: list of buffers
1655 * @nents: number of buffers to map (returned from dma_map_sg)
1656 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1658 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1659 int nents, enum dma_data_direction dir)
1661 struct scatterlist *s;
1662 int i;
1664 for_each_sg(sg, s, nents, i)
1665 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1670 * arm_iommu_sync_sg_for_device
1671 * @dev: valid struct device pointer
1672 * @sg: list of buffers
1673 * @nents: number of buffers to map (returned from dma_map_sg)
1674 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1676 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1677 int nents, enum dma_data_direction dir)
1679 struct scatterlist *s;
1680 int i;
1682 for_each_sg(sg, s, nents, i)
1683 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1688 * arm_coherent_iommu_map_page
1689 * @dev: valid struct device pointer
1690 * @page: page that buffer resides in
1691 * @offset: offset into page for start of buffer
1692 * @size: size of buffer to map
1693 * @dir: DMA transfer direction
1695 * Coherent IOMMU aware version of arm_dma_map_page()
1697 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1698 unsigned long offset, size_t size, enum dma_data_direction dir,
1699 struct dma_attrs *attrs)
1701 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1702 dma_addr_t dma_addr;
1703 int ret, prot, len = PAGE_ALIGN(size + offset);
1705 dma_addr = __alloc_iova(mapping, len);
1706 if (dma_addr == DMA_ERROR_CODE)
1707 return dma_addr;
1709 prot = __dma_direction_to_prot(dir);
1711 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1712 if (ret < 0)
1713 goto fail;
1715 return dma_addr + offset;
1716 fail:
1717 __free_iova(mapping, dma_addr, len);
1718 return DMA_ERROR_CODE;
1722 * arm_iommu_map_page
1723 * @dev: valid struct device pointer
1724 * @page: page that buffer resides in
1725 * @offset: offset into page for start of buffer
1726 * @size: size of buffer to map
1727 * @dir: DMA transfer direction
1729 * IOMMU aware version of arm_dma_map_page()
1731 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1732 unsigned long offset, size_t size, enum dma_data_direction dir,
1733 struct dma_attrs *attrs)
1735 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1736 __dma_page_cpu_to_dev(page, offset, size, dir);
1738 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1742 * arm_coherent_iommu_unmap_page
1743 * @dev: valid struct device pointer
1744 * @handle: DMA address of buffer
1745 * @size: size of buffer (same as passed to dma_map_page)
1746 * @dir: DMA transfer direction (same as passed to dma_map_page)
1748 * Coherent IOMMU aware version of arm_dma_unmap_page()
1750 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1751 size_t size, enum dma_data_direction dir,
1752 struct dma_attrs *attrs)
1754 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1755 dma_addr_t iova = handle & PAGE_MASK;
1756 int offset = handle & ~PAGE_MASK;
1757 int len = PAGE_ALIGN(size + offset);
1759 if (!iova)
1760 return;
1762 iommu_unmap(mapping->domain, iova, len);
1763 __free_iova(mapping, iova, len);
1767 * arm_iommu_unmap_page
1768 * @dev: valid struct device pointer
1769 * @handle: DMA address of buffer
1770 * @size: size of buffer (same as passed to dma_map_page)
1771 * @dir: DMA transfer direction (same as passed to dma_map_page)
1773 * IOMMU aware version of arm_dma_unmap_page()
1775 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1776 size_t size, enum dma_data_direction dir,
1777 struct dma_attrs *attrs)
1779 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1780 dma_addr_t iova = handle & PAGE_MASK;
1781 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1782 int offset = handle & ~PAGE_MASK;
1783 int len = PAGE_ALIGN(size + offset);
1785 if (!iova)
1786 return;
1788 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1789 __dma_page_dev_to_cpu(page, offset, size, dir);
1791 iommu_unmap(mapping->domain, iova, len);
1792 __free_iova(mapping, iova, len);
1795 static void arm_iommu_sync_single_for_cpu(struct device *dev,
1796 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1798 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1799 dma_addr_t iova = handle & PAGE_MASK;
1800 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1801 unsigned int offset = handle & ~PAGE_MASK;
1803 if (!iova)
1804 return;
1806 __dma_page_dev_to_cpu(page, offset, size, dir);
1809 static void arm_iommu_sync_single_for_device(struct device *dev,
1810 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1812 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1813 dma_addr_t iova = handle & PAGE_MASK;
1814 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1815 unsigned int offset = handle & ~PAGE_MASK;
1817 if (!iova)
1818 return;
1820 __dma_page_cpu_to_dev(page, offset, size, dir);
1823 struct dma_map_ops iommu_ops = {
1824 .alloc = arm_iommu_alloc_attrs,
1825 .free = arm_iommu_free_attrs,
1826 .mmap = arm_iommu_mmap_attrs,
1827 .get_sgtable = arm_iommu_get_sgtable,
1829 .map_page = arm_iommu_map_page,
1830 .unmap_page = arm_iommu_unmap_page,
1831 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
1832 .sync_single_for_device = arm_iommu_sync_single_for_device,
1834 .map_sg = arm_iommu_map_sg,
1835 .unmap_sg = arm_iommu_unmap_sg,
1836 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
1837 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
1839 .set_dma_mask = arm_dma_set_mask,
1842 struct dma_map_ops iommu_coherent_ops = {
1843 .alloc = arm_iommu_alloc_attrs,
1844 .free = arm_iommu_free_attrs,
1845 .mmap = arm_iommu_mmap_attrs,
1846 .get_sgtable = arm_iommu_get_sgtable,
1848 .map_page = arm_coherent_iommu_map_page,
1849 .unmap_page = arm_coherent_iommu_unmap_page,
1851 .map_sg = arm_coherent_iommu_map_sg,
1852 .unmap_sg = arm_coherent_iommu_unmap_sg,
1854 .set_dma_mask = arm_dma_set_mask,
1858 * arm_iommu_create_mapping
1859 * @bus: pointer to the bus holding the client device (for IOMMU calls)
1860 * @base: start address of the valid IO address space
1861 * @size: size of the valid IO address space
1862 * @order: accuracy of the IO addresses allocations
1864 * Creates a mapping structure which holds information about used/unused
1865 * IO address ranges, which is required to perform memory allocation and
1866 * mapping with IOMMU aware functions.
1868 * The client device need to be attached to the mapping with
1869 * arm_iommu_attach_device function.
1871 struct dma_iommu_mapping *
1872 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size,
1873 int order)
1875 unsigned int count = size >> (PAGE_SHIFT + order);
1876 unsigned int bitmap_size = BITS_TO_LONGS(count) * sizeof(long);
1877 struct dma_iommu_mapping *mapping;
1878 int err = -ENOMEM;
1880 if (!count)
1881 return ERR_PTR(-EINVAL);
1883 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1884 if (!mapping)
1885 goto err;
1887 mapping->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1888 if (!mapping->bitmap)
1889 goto err2;
1891 mapping->base = base;
1892 mapping->bits = BITS_PER_BYTE * bitmap_size;
1893 mapping->order = order;
1894 spin_lock_init(&mapping->lock);
1896 mapping->domain = iommu_domain_alloc(bus);
1897 if (!mapping->domain)
1898 goto err3;
1900 kref_init(&mapping->kref);
1901 return mapping;
1902 err3:
1903 kfree(mapping->bitmap);
1904 err2:
1905 kfree(mapping);
1906 err:
1907 return ERR_PTR(err);
1909 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
1911 static void release_iommu_mapping(struct kref *kref)
1913 struct dma_iommu_mapping *mapping =
1914 container_of(kref, struct dma_iommu_mapping, kref);
1916 iommu_domain_free(mapping->domain);
1917 kfree(mapping->bitmap);
1918 kfree(mapping);
1921 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1923 if (mapping)
1924 kref_put(&mapping->kref, release_iommu_mapping);
1926 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
1929 * arm_iommu_attach_device
1930 * @dev: valid struct device pointer
1931 * @mapping: io address space mapping structure (returned from
1932 * arm_iommu_create_mapping)
1934 * Attaches specified io address space mapping to the provided device,
1935 * this replaces the dma operations (dma_map_ops pointer) with the
1936 * IOMMU aware version. More than one client might be attached to
1937 * the same io address space mapping.
1939 int arm_iommu_attach_device(struct device *dev,
1940 struct dma_iommu_mapping *mapping)
1942 int err;
1944 err = iommu_attach_device(mapping->domain, dev);
1945 if (err)
1946 return err;
1948 kref_get(&mapping->kref);
1949 dev->archdata.mapping = mapping;
1950 set_dma_ops(dev, &iommu_ops);
1952 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
1953 return 0;
1955 EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
1958 * arm_iommu_detach_device
1959 * @dev: valid struct device pointer
1961 * Detaches the provided device from a previously attached map.
1962 * This voids the dma operations (dma_map_ops pointer)
1964 void arm_iommu_detach_device(struct device *dev)
1966 struct dma_iommu_mapping *mapping;
1968 mapping = to_dma_iommu_mapping(dev);
1969 if (!mapping) {
1970 dev_warn(dev, "Not attached\n");
1971 return;
1974 iommu_detach_device(mapping->domain, dev);
1975 kref_put(&mapping->kref, release_iommu_mapping);
1976 dev->archdata.mapping = NULL;
1977 set_dma_ops(dev, NULL);
1979 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
1981 EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
1983 #endif