2 * This file implements the perfmon-2 subsystem which is used
3 * to program the IA-64 Performance Monitoring Unit (PMU).
5 * The initial version of perfmon.c was written by
6 * Ganesh Venkitachalam, IBM Corp.
8 * Then it was modified for perfmon-1.x by Stephane Eranian and
9 * David Mosberger, Hewlett Packard Co.
11 * Version Perfmon-2.x is a rewrite of perfmon-1.x
12 * by Stephane Eranian, Hewlett Packard Co.
14 * Copyright (C) 1999-2005 Hewlett Packard Co
15 * Stephane Eranian <eranian@hpl.hp.com>
16 * David Mosberger-Tang <davidm@hpl.hp.com>
18 * More information about perfmon available at:
19 * http://www.hpl.hp.com/research/linux/perfmon
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/sched.h>
25 #include <linux/interrupt.h>
26 #include <linux/proc_fs.h>
27 #include <linux/seq_file.h>
28 #include <linux/init.h>
29 #include <linux/vmalloc.h>
31 #include <linux/sysctl.h>
32 #include <linux/list.h>
33 #include <linux/file.h>
34 #include <linux/poll.h>
35 #include <linux/vfs.h>
36 #include <linux/smp.h>
37 #include <linux/pagemap.h>
38 #include <linux/mount.h>
39 #include <linux/bitops.h>
40 #include <linux/capability.h>
41 #include <linux/rcupdate.h>
42 #include <linux/completion.h>
43 #include <linux/tracehook.h>
44 #include <linux/slab.h>
45 #include <linux/cpu.h>
47 #include <asm/errno.h>
48 #include <asm/intrinsics.h>
50 #include <asm/perfmon.h>
51 #include <asm/processor.h>
52 #include <asm/signal.h>
53 #include <asm/uaccess.h>
54 #include <asm/delay.h>
58 * perfmon context state
60 #define PFM_CTX_UNLOADED 1 /* context is not loaded onto any task */
61 #define PFM_CTX_LOADED 2 /* context is loaded onto a task */
62 #define PFM_CTX_MASKED 3 /* context is loaded but monitoring is masked due to overflow */
63 #define PFM_CTX_ZOMBIE 4 /* owner of the context is closing it */
65 #define PFM_INVALID_ACTIVATION (~0UL)
67 #define PFM_NUM_PMC_REGS 64 /* PMC save area for ctxsw */
68 #define PFM_NUM_PMD_REGS 64 /* PMD save area for ctxsw */
71 * depth of message queue
73 #define PFM_MAX_MSGS 32
74 #define PFM_CTXQ_EMPTY(g) ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
77 * type of a PMU register (bitmask).
79 * bit0 : register implemented
82 * bit4 : pmc has pmc.pm
83 * bit5 : pmc controls a counter (has pmc.oi), pmd is used as counter
84 * bit6-7 : register type
87 #define PFM_REG_NOTIMPL 0x0 /* not implemented at all */
88 #define PFM_REG_IMPL 0x1 /* register implemented */
89 #define PFM_REG_END 0x2 /* end marker */
90 #define PFM_REG_MONITOR (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
91 #define PFM_REG_COUNTING (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
92 #define PFM_REG_CONTROL (0x4<<4|PFM_REG_IMPL) /* PMU control register */
93 #define PFM_REG_CONFIG (0x8<<4|PFM_REG_IMPL) /* configuration register */
94 #define PFM_REG_BUFFER (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
96 #define PMC_IS_LAST(i) (pmu_conf->pmc_desc[i].type & PFM_REG_END)
97 #define PMD_IS_LAST(i) (pmu_conf->pmd_desc[i].type & PFM_REG_END)
99 #define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags & PFM_REGFL_OVFL_NOTIFY)
101 /* i assumed unsigned */
102 #define PMC_IS_IMPL(i) (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
103 #define PMD_IS_IMPL(i) (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
105 /* XXX: these assume that register i is implemented */
106 #define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
107 #define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
108 #define PMC_IS_MONITOR(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR) == PFM_REG_MONITOR)
109 #define PMC_IS_CONTROL(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL) == PFM_REG_CONTROL)
111 #define PMC_DFL_VAL(i) pmu_conf->pmc_desc[i].default_value
112 #define PMC_RSVD_MASK(i) pmu_conf->pmc_desc[i].reserved_mask
113 #define PMD_PMD_DEP(i) pmu_conf->pmd_desc[i].dep_pmd[0]
114 #define PMC_PMD_DEP(i) pmu_conf->pmc_desc[i].dep_pmd[0]
116 #define PFM_NUM_IBRS IA64_NUM_DBG_REGS
117 #define PFM_NUM_DBRS IA64_NUM_DBG_REGS
119 #define CTX_OVFL_NOBLOCK(c) ((c)->ctx_fl_block == 0)
120 #define CTX_HAS_SMPL(c) ((c)->ctx_fl_is_sampling)
121 #define PFM_CTX_TASK(h) (h)->ctx_task
123 #define PMU_PMC_OI 5 /* position of pmc.oi bit */
125 /* XXX: does not support more than 64 PMDs */
126 #define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
127 #define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
129 #define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
131 #define CTX_USED_IBR(ctx,n) (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
132 #define CTX_USED_DBR(ctx,n) (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
133 #define CTX_USES_DBREGS(ctx) (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
134 #define PFM_CODE_RR 0 /* requesting code range restriction */
135 #define PFM_DATA_RR 1 /* requestion data range restriction */
137 #define PFM_CPUINFO_CLEAR(v) pfm_get_cpu_var(pfm_syst_info) &= ~(v)
138 #define PFM_CPUINFO_SET(v) pfm_get_cpu_var(pfm_syst_info) |= (v)
139 #define PFM_CPUINFO_GET() pfm_get_cpu_var(pfm_syst_info)
141 #define RDEP(x) (1UL<<(x))
144 * context protection macros
146 * - we need to protect against CPU concurrency (spin_lock)
147 * - we need to protect against PMU overflow interrupts (local_irq_disable)
149 * - we need to protect against PMU overflow interrupts (local_irq_disable)
151 * spin_lock_irqsave()/spin_unlock_irqrestore():
152 * in SMP: local_irq_disable + spin_lock
153 * in UP : local_irq_disable
155 * spin_lock()/spin_lock():
156 * in UP : removed automatically
157 * in SMP: protect against context accesses from other CPU. interrupts
158 * are not masked. This is useful for the PMU interrupt handler
159 * because we know we will not get PMU concurrency in that code.
161 #define PROTECT_CTX(c, f) \
163 DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, task_pid_nr(current))); \
164 spin_lock_irqsave(&(c)->ctx_lock, f); \
165 DPRINT(("spinlocked ctx %p by [%d]\n", c, task_pid_nr(current))); \
168 #define UNPROTECT_CTX(c, f) \
170 DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, task_pid_nr(current))); \
171 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
174 #define PROTECT_CTX_NOPRINT(c, f) \
176 spin_lock_irqsave(&(c)->ctx_lock, f); \
180 #define UNPROTECT_CTX_NOPRINT(c, f) \
182 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
186 #define PROTECT_CTX_NOIRQ(c) \
188 spin_lock(&(c)->ctx_lock); \
191 #define UNPROTECT_CTX_NOIRQ(c) \
193 spin_unlock(&(c)->ctx_lock); \
199 #define GET_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)
200 #define INC_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)++
201 #define SET_ACTIVATION(c) (c)->ctx_last_activation = GET_ACTIVATION()
203 #else /* !CONFIG_SMP */
204 #define SET_ACTIVATION(t) do {} while(0)
205 #define GET_ACTIVATION(t) do {} while(0)
206 #define INC_ACTIVATION(t) do {} while(0)
207 #endif /* CONFIG_SMP */
209 #define SET_PMU_OWNER(t, c) do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
210 #define GET_PMU_OWNER() pfm_get_cpu_var(pmu_owner)
211 #define GET_PMU_CTX() pfm_get_cpu_var(pmu_ctx)
213 #define LOCK_PFS(g) spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
214 #define UNLOCK_PFS(g) spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
216 #define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
219 * cmp0 must be the value of pmc0
221 #define PMC0_HAS_OVFL(cmp0) (cmp0 & ~0x1UL)
223 #define PFMFS_MAGIC 0xa0b4d889
228 #define PFM_DEBUGGING 1
232 if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
235 #define DPRINT_ovfl(a) \
237 if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
242 * 64-bit software counter structure
244 * the next_reset_type is applied to the next call to pfm_reset_regs()
247 unsigned long val
; /* virtual 64bit counter value */
248 unsigned long lval
; /* last reset value */
249 unsigned long long_reset
; /* reset value on sampling overflow */
250 unsigned long short_reset
; /* reset value on overflow */
251 unsigned long reset_pmds
[4]; /* which other pmds to reset when this counter overflows */
252 unsigned long smpl_pmds
[4]; /* which pmds are accessed when counter overflow */
253 unsigned long seed
; /* seed for random-number generator */
254 unsigned long mask
; /* mask for random-number generator */
255 unsigned int flags
; /* notify/do not notify */
256 unsigned long eventid
; /* overflow event identifier */
263 unsigned int block
:1; /* when 1, task will blocked on user notifications */
264 unsigned int system
:1; /* do system wide monitoring */
265 unsigned int using_dbreg
:1; /* using range restrictions (debug registers) */
266 unsigned int is_sampling
:1; /* true if using a custom format */
267 unsigned int excl_idle
:1; /* exclude idle task in system wide session */
268 unsigned int going_zombie
:1; /* context is zombie (MASKED+blocking) */
269 unsigned int trap_reason
:2; /* reason for going into pfm_handle_work() */
270 unsigned int no_msg
:1; /* no message sent on overflow */
271 unsigned int can_restart
:1; /* allowed to issue a PFM_RESTART */
272 unsigned int reserved
:22;
273 } pfm_context_flags_t
;
275 #define PFM_TRAP_REASON_NONE 0x0 /* default value */
276 #define PFM_TRAP_REASON_BLOCK 0x1 /* we need to block on overflow */
277 #define PFM_TRAP_REASON_RESET 0x2 /* we need to reset PMDs */
281 * perfmon context: encapsulates all the state of a monitoring session
284 typedef struct pfm_context
{
285 spinlock_t ctx_lock
; /* context protection */
287 pfm_context_flags_t ctx_flags
; /* bitmask of flags (block reason incl.) */
288 unsigned int ctx_state
; /* state: active/inactive (no bitfield) */
290 struct task_struct
*ctx_task
; /* task to which context is attached */
292 unsigned long ctx_ovfl_regs
[4]; /* which registers overflowed (notification) */
294 struct completion ctx_restart_done
; /* use for blocking notification mode */
296 unsigned long ctx_used_pmds
[4]; /* bitmask of PMD used */
297 unsigned long ctx_all_pmds
[4]; /* bitmask of all accessible PMDs */
298 unsigned long ctx_reload_pmds
[4]; /* bitmask of force reload PMD on ctxsw in */
300 unsigned long ctx_all_pmcs
[4]; /* bitmask of all accessible PMCs */
301 unsigned long ctx_reload_pmcs
[4]; /* bitmask of force reload PMC on ctxsw in */
302 unsigned long ctx_used_monitors
[4]; /* bitmask of monitor PMC being used */
304 unsigned long ctx_pmcs
[PFM_NUM_PMC_REGS
]; /* saved copies of PMC values */
306 unsigned int ctx_used_ibrs
[1]; /* bitmask of used IBR (speedup ctxsw in) */
307 unsigned int ctx_used_dbrs
[1]; /* bitmask of used DBR (speedup ctxsw in) */
308 unsigned long ctx_dbrs
[IA64_NUM_DBG_REGS
]; /* DBR values (cache) when not loaded */
309 unsigned long ctx_ibrs
[IA64_NUM_DBG_REGS
]; /* IBR values (cache) when not loaded */
311 pfm_counter_t ctx_pmds
[PFM_NUM_PMD_REGS
]; /* software state for PMDS */
313 unsigned long th_pmcs
[PFM_NUM_PMC_REGS
]; /* PMC thread save state */
314 unsigned long th_pmds
[PFM_NUM_PMD_REGS
]; /* PMD thread save state */
316 unsigned long ctx_saved_psr_up
; /* only contains psr.up value */
318 unsigned long ctx_last_activation
; /* context last activation number for last_cpu */
319 unsigned int ctx_last_cpu
; /* CPU id of current or last CPU used (SMP only) */
320 unsigned int ctx_cpu
; /* cpu to which perfmon is applied (system wide) */
322 int ctx_fd
; /* file descriptor used my this context */
323 pfm_ovfl_arg_t ctx_ovfl_arg
; /* argument to custom buffer format handler */
325 pfm_buffer_fmt_t
*ctx_buf_fmt
; /* buffer format callbacks */
326 void *ctx_smpl_hdr
; /* points to sampling buffer header kernel vaddr */
327 unsigned long ctx_smpl_size
; /* size of sampling buffer */
328 void *ctx_smpl_vaddr
; /* user level virtual address of smpl buffer */
330 wait_queue_head_t ctx_msgq_wait
;
331 pfm_msg_t ctx_msgq
[PFM_MAX_MSGS
];
334 struct fasync_struct
*ctx_async_queue
;
336 wait_queue_head_t ctx_zombieq
; /* termination cleanup wait queue */
340 * magic number used to verify that structure is really
343 #define PFM_IS_FILE(f) ((f)->f_op == &pfm_file_ops)
345 #define PFM_GET_CTX(t) ((pfm_context_t *)(t)->thread.pfm_context)
348 #define SET_LAST_CPU(ctx, v) (ctx)->ctx_last_cpu = (v)
349 #define GET_LAST_CPU(ctx) (ctx)->ctx_last_cpu
351 #define SET_LAST_CPU(ctx, v) do {} while(0)
352 #define GET_LAST_CPU(ctx) do {} while(0)
356 #define ctx_fl_block ctx_flags.block
357 #define ctx_fl_system ctx_flags.system
358 #define ctx_fl_using_dbreg ctx_flags.using_dbreg
359 #define ctx_fl_is_sampling ctx_flags.is_sampling
360 #define ctx_fl_excl_idle ctx_flags.excl_idle
361 #define ctx_fl_going_zombie ctx_flags.going_zombie
362 #define ctx_fl_trap_reason ctx_flags.trap_reason
363 #define ctx_fl_no_msg ctx_flags.no_msg
364 #define ctx_fl_can_restart ctx_flags.can_restart
366 #define PFM_SET_WORK_PENDING(t, v) do { (t)->thread.pfm_needs_checking = v; } while(0);
367 #define PFM_GET_WORK_PENDING(t) (t)->thread.pfm_needs_checking
370 * global information about all sessions
371 * mostly used to synchronize between system wide and per-process
374 spinlock_t pfs_lock
; /* lock the structure */
376 unsigned int pfs_task_sessions
; /* number of per task sessions */
377 unsigned int pfs_sys_sessions
; /* number of per system wide sessions */
378 unsigned int pfs_sys_use_dbregs
; /* incremented when a system wide session uses debug regs */
379 unsigned int pfs_ptrace_use_dbregs
; /* incremented when a process uses debug regs */
380 struct task_struct
*pfs_sys_session
[NR_CPUS
]; /* point to task owning a system-wide session */
384 * information about a PMC or PMD.
385 * dep_pmd[]: a bitmask of dependent PMD registers
386 * dep_pmc[]: a bitmask of dependent PMC registers
388 typedef int (*pfm_reg_check_t
)(struct task_struct
*task
, pfm_context_t
*ctx
, unsigned int cnum
, unsigned long *val
, struct pt_regs
*regs
);
392 unsigned long default_value
; /* power-on default value */
393 unsigned long reserved_mask
; /* bitmask of reserved bits */
394 pfm_reg_check_t read_check
;
395 pfm_reg_check_t write_check
;
396 unsigned long dep_pmd
[4];
397 unsigned long dep_pmc
[4];
400 /* assume cnum is a valid monitor */
401 #define PMC_PM(cnum, val) (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
404 * This structure is initialized at boot time and contains
405 * a description of the PMU main characteristics.
407 * If the probe function is defined, detection is based
408 * on its return value:
409 * - 0 means recognized PMU
410 * - anything else means not supported
411 * When the probe function is not defined, then the pmu_family field
412 * is used and it must match the host CPU family such that:
413 * - cpu->family & config->pmu_family != 0
416 unsigned long ovfl_val
; /* overflow value for counters */
418 pfm_reg_desc_t
*pmc_desc
; /* detailed PMC register dependencies descriptions */
419 pfm_reg_desc_t
*pmd_desc
; /* detailed PMD register dependencies descriptions */
421 unsigned int num_pmcs
; /* number of PMCS: computed at init time */
422 unsigned int num_pmds
; /* number of PMDS: computed at init time */
423 unsigned long impl_pmcs
[4]; /* bitmask of implemented PMCS */
424 unsigned long impl_pmds
[4]; /* bitmask of implemented PMDS */
426 char *pmu_name
; /* PMU family name */
427 unsigned int pmu_family
; /* cpuid family pattern used to identify pmu */
428 unsigned int flags
; /* pmu specific flags */
429 unsigned int num_ibrs
; /* number of IBRS: computed at init time */
430 unsigned int num_dbrs
; /* number of DBRS: computed at init time */
431 unsigned int num_counters
; /* PMC/PMD counting pairs : computed at init time */
432 int (*probe
)(void); /* customized probe routine */
433 unsigned int use_rr_dbregs
:1; /* set if debug registers used for range restriction */
438 #define PFM_PMU_IRQ_RESEND 1 /* PMU needs explicit IRQ resend */
441 * debug register related type definitions
444 unsigned long ibr_mask
:56;
445 unsigned long ibr_plm
:4;
446 unsigned long ibr_ig
:3;
447 unsigned long ibr_x
:1;
451 unsigned long dbr_mask
:56;
452 unsigned long dbr_plm
:4;
453 unsigned long dbr_ig
:2;
454 unsigned long dbr_w
:1;
455 unsigned long dbr_r
:1;
466 * perfmon command descriptions
469 int (*cmd_func
)(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
);
472 unsigned int cmd_narg
;
474 int (*cmd_getsize
)(void *arg
, size_t *sz
);
477 #define PFM_CMD_FD 0x01 /* command requires a file descriptor */
478 #define PFM_CMD_ARG_READ 0x02 /* command must read argument(s) */
479 #define PFM_CMD_ARG_RW 0x04 /* command must read/write argument(s) */
480 #define PFM_CMD_STOP 0x08 /* command does not work on zombie context */
483 #define PFM_CMD_NAME(cmd) pfm_cmd_tab[(cmd)].cmd_name
484 #define PFM_CMD_READ_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
485 #define PFM_CMD_RW_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
486 #define PFM_CMD_USE_FD(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
487 #define PFM_CMD_STOPPED(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
489 #define PFM_CMD_ARG_MANY -1 /* cannot be zero */
492 unsigned long pfm_spurious_ovfl_intr_count
; /* keep track of spurious ovfl interrupts */
493 unsigned long pfm_replay_ovfl_intr_count
; /* keep track of replayed ovfl interrupts */
494 unsigned long pfm_ovfl_intr_count
; /* keep track of ovfl interrupts */
495 unsigned long pfm_ovfl_intr_cycles
; /* cycles spent processing ovfl interrupts */
496 unsigned long pfm_ovfl_intr_cycles_min
; /* min cycles spent processing ovfl interrupts */
497 unsigned long pfm_ovfl_intr_cycles_max
; /* max cycles spent processing ovfl interrupts */
498 unsigned long pfm_smpl_handler_calls
;
499 unsigned long pfm_smpl_handler_cycles
;
500 char pad
[SMP_CACHE_BYTES
] ____cacheline_aligned
;
504 * perfmon internal variables
506 static pfm_stats_t pfm_stats
[NR_CPUS
];
507 static pfm_session_t pfm_sessions
; /* global sessions information */
509 static DEFINE_SPINLOCK(pfm_alt_install_check
);
510 static pfm_intr_handler_desc_t
*pfm_alt_intr_handler
;
512 static struct proc_dir_entry
*perfmon_dir
;
513 static pfm_uuid_t pfm_null_uuid
= {0,};
515 static spinlock_t pfm_buffer_fmt_lock
;
516 static LIST_HEAD(pfm_buffer_fmt_list
);
518 static pmu_config_t
*pmu_conf
;
520 /* sysctl() controls */
521 pfm_sysctl_t pfm_sysctl
;
522 EXPORT_SYMBOL(pfm_sysctl
);
524 static ctl_table pfm_ctl_table
[]={
527 .data
= &pfm_sysctl
.debug
,
528 .maxlen
= sizeof(int),
530 .proc_handler
= proc_dointvec
,
533 .procname
= "debug_ovfl",
534 .data
= &pfm_sysctl
.debug_ovfl
,
535 .maxlen
= sizeof(int),
537 .proc_handler
= proc_dointvec
,
540 .procname
= "fastctxsw",
541 .data
= &pfm_sysctl
.fastctxsw
,
542 .maxlen
= sizeof(int),
544 .proc_handler
= proc_dointvec
,
547 .procname
= "expert_mode",
548 .data
= &pfm_sysctl
.expert_mode
,
549 .maxlen
= sizeof(int),
551 .proc_handler
= proc_dointvec
,
555 static ctl_table pfm_sysctl_dir
[] = {
557 .procname
= "perfmon",
559 .child
= pfm_ctl_table
,
563 static ctl_table pfm_sysctl_root
[] = {
565 .procname
= "kernel",
567 .child
= pfm_sysctl_dir
,
571 static struct ctl_table_header
*pfm_sysctl_header
;
573 static int pfm_context_unload(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
);
575 #define pfm_get_cpu_var(v) __ia64_per_cpu_var(v)
576 #define pfm_get_cpu_data(a,b) per_cpu(a, b)
579 pfm_put_task(struct task_struct
*task
)
581 if (task
!= current
) put_task_struct(task
);
585 pfm_reserve_page(unsigned long a
)
587 SetPageReserved(vmalloc_to_page((void *)a
));
590 pfm_unreserve_page(unsigned long a
)
592 ClearPageReserved(vmalloc_to_page((void*)a
));
595 static inline unsigned long
596 pfm_protect_ctx_ctxsw(pfm_context_t
*x
)
598 spin_lock(&(x
)->ctx_lock
);
603 pfm_unprotect_ctx_ctxsw(pfm_context_t
*x
, unsigned long f
)
605 spin_unlock(&(x
)->ctx_lock
);
608 /* forward declaration */
609 static const struct dentry_operations pfmfs_dentry_operations
;
611 static struct dentry
*
612 pfmfs_mount(struct file_system_type
*fs_type
, int flags
, const char *dev_name
, void *data
)
614 return mount_pseudo(fs_type
, "pfm:", NULL
, &pfmfs_dentry_operations
,
618 static struct file_system_type pfm_fs_type
= {
620 .mount
= pfmfs_mount
,
621 .kill_sb
= kill_anon_super
,
623 MODULE_ALIAS_FS("pfmfs");
625 DEFINE_PER_CPU(unsigned long, pfm_syst_info
);
626 DEFINE_PER_CPU(struct task_struct
*, pmu_owner
);
627 DEFINE_PER_CPU(pfm_context_t
*, pmu_ctx
);
628 DEFINE_PER_CPU(unsigned long, pmu_activation_number
);
629 EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info
);
632 /* forward declaration */
633 static const struct file_operations pfm_file_ops
;
636 * forward declarations
639 static void pfm_lazy_save_regs (struct task_struct
*ta
);
642 void dump_pmu_state(const char *);
643 static int pfm_write_ibr_dbr(int mode
, pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
);
645 #include "perfmon_itanium.h"
646 #include "perfmon_mckinley.h"
647 #include "perfmon_montecito.h"
648 #include "perfmon_generic.h"
650 static pmu_config_t
*pmu_confs
[]={
654 &pmu_conf_gen
, /* must be last */
659 static int pfm_end_notify_user(pfm_context_t
*ctx
);
662 pfm_clear_psr_pp(void)
664 ia64_rsm(IA64_PSR_PP
);
671 ia64_ssm(IA64_PSR_PP
);
676 pfm_clear_psr_up(void)
678 ia64_rsm(IA64_PSR_UP
);
685 ia64_ssm(IA64_PSR_UP
);
689 static inline unsigned long
693 tmp
= ia64_getreg(_IA64_REG_PSR
);
699 pfm_set_psr_l(unsigned long val
)
701 ia64_setreg(_IA64_REG_PSR_L
, val
);
713 pfm_unfreeze_pmu(void)
720 pfm_restore_ibrs(unsigned long *ibrs
, unsigned int nibrs
)
724 for (i
=0; i
< nibrs
; i
++) {
725 ia64_set_ibr(i
, ibrs
[i
]);
726 ia64_dv_serialize_instruction();
732 pfm_restore_dbrs(unsigned long *dbrs
, unsigned int ndbrs
)
736 for (i
=0; i
< ndbrs
; i
++) {
737 ia64_set_dbr(i
, dbrs
[i
]);
738 ia64_dv_serialize_data();
744 * PMD[i] must be a counter. no check is made
746 static inline unsigned long
747 pfm_read_soft_counter(pfm_context_t
*ctx
, int i
)
749 return ctx
->ctx_pmds
[i
].val
+ (ia64_get_pmd(i
) & pmu_conf
->ovfl_val
);
753 * PMD[i] must be a counter. no check is made
756 pfm_write_soft_counter(pfm_context_t
*ctx
, int i
, unsigned long val
)
758 unsigned long ovfl_val
= pmu_conf
->ovfl_val
;
760 ctx
->ctx_pmds
[i
].val
= val
& ~ovfl_val
;
762 * writing to unimplemented part is ignore, so we do not need to
765 ia64_set_pmd(i
, val
& ovfl_val
);
769 pfm_get_new_msg(pfm_context_t
*ctx
)
773 next
= (ctx
->ctx_msgq_tail
+1) % PFM_MAX_MSGS
;
775 DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx
, ctx
->ctx_msgq_head
, ctx
->ctx_msgq_tail
));
776 if (next
== ctx
->ctx_msgq_head
) return NULL
;
778 idx
= ctx
->ctx_msgq_tail
;
779 ctx
->ctx_msgq_tail
= next
;
781 DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx
, ctx
->ctx_msgq_head
, ctx
->ctx_msgq_tail
, idx
));
783 return ctx
->ctx_msgq
+idx
;
787 pfm_get_next_msg(pfm_context_t
*ctx
)
791 DPRINT(("ctx=%p head=%d tail=%d\n", ctx
, ctx
->ctx_msgq_head
, ctx
->ctx_msgq_tail
));
793 if (PFM_CTXQ_EMPTY(ctx
)) return NULL
;
798 msg
= ctx
->ctx_msgq
+ctx
->ctx_msgq_head
;
803 ctx
->ctx_msgq_head
= (ctx
->ctx_msgq_head
+1) % PFM_MAX_MSGS
;
805 DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx
, ctx
->ctx_msgq_head
, ctx
->ctx_msgq_tail
, msg
->pfm_gen_msg
.msg_type
));
811 pfm_reset_msgq(pfm_context_t
*ctx
)
813 ctx
->ctx_msgq_head
= ctx
->ctx_msgq_tail
= 0;
814 DPRINT(("ctx=%p msgq reset\n", ctx
));
818 pfm_rvmalloc(unsigned long size
)
823 size
= PAGE_ALIGN(size
);
826 //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
827 addr
= (unsigned long)mem
;
829 pfm_reserve_page(addr
);
838 pfm_rvfree(void *mem
, unsigned long size
)
843 DPRINT(("freeing physical buffer @%p size=%lu\n", mem
, size
));
844 addr
= (unsigned long) mem
;
845 while ((long) size
> 0) {
846 pfm_unreserve_page(addr
);
855 static pfm_context_t
*
856 pfm_context_alloc(int ctx_flags
)
861 * allocate context descriptor
862 * must be able to free with interrupts disabled
864 ctx
= kzalloc(sizeof(pfm_context_t
), GFP_KERNEL
);
866 DPRINT(("alloc ctx @%p\n", ctx
));
869 * init context protection lock
871 spin_lock_init(&ctx
->ctx_lock
);
874 * context is unloaded
876 ctx
->ctx_state
= PFM_CTX_UNLOADED
;
879 * initialization of context's flags
881 ctx
->ctx_fl_block
= (ctx_flags
& PFM_FL_NOTIFY_BLOCK
) ? 1 : 0;
882 ctx
->ctx_fl_system
= (ctx_flags
& PFM_FL_SYSTEM_WIDE
) ? 1: 0;
883 ctx
->ctx_fl_no_msg
= (ctx_flags
& PFM_FL_OVFL_NO_MSG
) ? 1: 0;
885 * will move to set properties
886 * ctx->ctx_fl_excl_idle = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
890 * init restart semaphore to locked
892 init_completion(&ctx
->ctx_restart_done
);
895 * activation is used in SMP only
897 ctx
->ctx_last_activation
= PFM_INVALID_ACTIVATION
;
898 SET_LAST_CPU(ctx
, -1);
901 * initialize notification message queue
903 ctx
->ctx_msgq_head
= ctx
->ctx_msgq_tail
= 0;
904 init_waitqueue_head(&ctx
->ctx_msgq_wait
);
905 init_waitqueue_head(&ctx
->ctx_zombieq
);
912 pfm_context_free(pfm_context_t
*ctx
)
915 DPRINT(("free ctx @%p\n", ctx
));
921 pfm_mask_monitoring(struct task_struct
*task
)
923 pfm_context_t
*ctx
= PFM_GET_CTX(task
);
924 unsigned long mask
, val
, ovfl_mask
;
927 DPRINT_ovfl(("masking monitoring for [%d]\n", task_pid_nr(task
)));
929 ovfl_mask
= pmu_conf
->ovfl_val
;
931 * monitoring can only be masked as a result of a valid
932 * counter overflow. In UP, it means that the PMU still
933 * has an owner. Note that the owner can be different
934 * from the current task. However the PMU state belongs
936 * In SMP, a valid overflow only happens when task is
937 * current. Therefore if we come here, we know that
938 * the PMU state belongs to the current task, therefore
939 * we can access the live registers.
941 * So in both cases, the live register contains the owner's
942 * state. We can ONLY touch the PMU registers and NOT the PSR.
944 * As a consequence to this call, the ctx->th_pmds[] array
945 * contains stale information which must be ignored
946 * when context is reloaded AND monitoring is active (see
949 mask
= ctx
->ctx_used_pmds
[0];
950 for (i
= 0; mask
; i
++, mask
>>=1) {
951 /* skip non used pmds */
952 if ((mask
& 0x1) == 0) continue;
953 val
= ia64_get_pmd(i
);
955 if (PMD_IS_COUNTING(i
)) {
957 * we rebuild the full 64 bit value of the counter
959 ctx
->ctx_pmds
[i
].val
+= (val
& ovfl_mask
);
961 ctx
->ctx_pmds
[i
].val
= val
;
963 DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
965 ctx
->ctx_pmds
[i
].val
,
969 * mask monitoring by setting the privilege level to 0
970 * we cannot use psr.pp/psr.up for this, it is controlled by
973 * if task is current, modify actual registers, otherwise modify
974 * thread save state, i.e., what will be restored in pfm_load_regs()
976 mask
= ctx
->ctx_used_monitors
[0] >> PMU_FIRST_COUNTER
;
977 for(i
= PMU_FIRST_COUNTER
; mask
; i
++, mask
>>=1) {
978 if ((mask
& 0x1) == 0UL) continue;
979 ia64_set_pmc(i
, ctx
->th_pmcs
[i
] & ~0xfUL
);
980 ctx
->th_pmcs
[i
] &= ~0xfUL
;
981 DPRINT_ovfl(("pmc[%d]=0x%lx\n", i
, ctx
->th_pmcs
[i
]));
984 * make all of this visible
990 * must always be done with task == current
992 * context must be in MASKED state when calling
995 pfm_restore_monitoring(struct task_struct
*task
)
997 pfm_context_t
*ctx
= PFM_GET_CTX(task
);
998 unsigned long mask
, ovfl_mask
;
999 unsigned long psr
, val
;
1002 is_system
= ctx
->ctx_fl_system
;
1003 ovfl_mask
= pmu_conf
->ovfl_val
;
1005 if (task
!= current
) {
1006 printk(KERN_ERR
"perfmon.%d: invalid task[%d] current[%d]\n", __LINE__
, task_pid_nr(task
), task_pid_nr(current
));
1009 if (ctx
->ctx_state
!= PFM_CTX_MASKED
) {
1010 printk(KERN_ERR
"perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__
,
1011 task_pid_nr(task
), task_pid_nr(current
), ctx
->ctx_state
);
1014 psr
= pfm_get_psr();
1016 * monitoring is masked via the PMC.
1017 * As we restore their value, we do not want each counter to
1018 * restart right away. We stop monitoring using the PSR,
1019 * restore the PMC (and PMD) and then re-establish the psr
1020 * as it was. Note that there can be no pending overflow at
1021 * this point, because monitoring was MASKED.
1023 * system-wide session are pinned and self-monitoring
1025 if (is_system
&& (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP
)) {
1026 /* disable dcr pp */
1027 ia64_setreg(_IA64_REG_CR_DCR
, ia64_getreg(_IA64_REG_CR_DCR
) & ~IA64_DCR_PP
);
1033 * first, we restore the PMD
1035 mask
= ctx
->ctx_used_pmds
[0];
1036 for (i
= 0; mask
; i
++, mask
>>=1) {
1037 /* skip non used pmds */
1038 if ((mask
& 0x1) == 0) continue;
1040 if (PMD_IS_COUNTING(i
)) {
1042 * we split the 64bit value according to
1045 val
= ctx
->ctx_pmds
[i
].val
& ovfl_mask
;
1046 ctx
->ctx_pmds
[i
].val
&= ~ovfl_mask
;
1048 val
= ctx
->ctx_pmds
[i
].val
;
1050 ia64_set_pmd(i
, val
);
1052 DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
1054 ctx
->ctx_pmds
[i
].val
,
1060 mask
= ctx
->ctx_used_monitors
[0] >> PMU_FIRST_COUNTER
;
1061 for(i
= PMU_FIRST_COUNTER
; mask
; i
++, mask
>>=1) {
1062 if ((mask
& 0x1) == 0UL) continue;
1063 ctx
->th_pmcs
[i
] = ctx
->ctx_pmcs
[i
];
1064 ia64_set_pmc(i
, ctx
->th_pmcs
[i
]);
1065 DPRINT(("[%d] pmc[%d]=0x%lx\n",
1066 task_pid_nr(task
), i
, ctx
->th_pmcs
[i
]));
1071 * must restore DBR/IBR because could be modified while masked
1072 * XXX: need to optimize
1074 if (ctx
->ctx_fl_using_dbreg
) {
1075 pfm_restore_ibrs(ctx
->ctx_ibrs
, pmu_conf
->num_ibrs
);
1076 pfm_restore_dbrs(ctx
->ctx_dbrs
, pmu_conf
->num_dbrs
);
1082 if (is_system
&& (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP
)) {
1084 ia64_setreg(_IA64_REG_CR_DCR
, ia64_getreg(_IA64_REG_CR_DCR
) | IA64_DCR_PP
);
1091 pfm_save_pmds(unsigned long *pmds
, unsigned long mask
)
1097 for (i
=0; mask
; i
++, mask
>>=1) {
1098 if (mask
& 0x1) pmds
[i
] = ia64_get_pmd(i
);
1103 * reload from thread state (used for ctxw only)
1106 pfm_restore_pmds(unsigned long *pmds
, unsigned long mask
)
1109 unsigned long val
, ovfl_val
= pmu_conf
->ovfl_val
;
1111 for (i
=0; mask
; i
++, mask
>>=1) {
1112 if ((mask
& 0x1) == 0) continue;
1113 val
= PMD_IS_COUNTING(i
) ? pmds
[i
] & ovfl_val
: pmds
[i
];
1114 ia64_set_pmd(i
, val
);
1120 * propagate PMD from context to thread-state
1123 pfm_copy_pmds(struct task_struct
*task
, pfm_context_t
*ctx
)
1125 unsigned long ovfl_val
= pmu_conf
->ovfl_val
;
1126 unsigned long mask
= ctx
->ctx_all_pmds
[0];
1130 DPRINT(("mask=0x%lx\n", mask
));
1132 for (i
=0; mask
; i
++, mask
>>=1) {
1134 val
= ctx
->ctx_pmds
[i
].val
;
1137 * We break up the 64 bit value into 2 pieces
1138 * the lower bits go to the machine state in the
1139 * thread (will be reloaded on ctxsw in).
1140 * The upper part stays in the soft-counter.
1142 if (PMD_IS_COUNTING(i
)) {
1143 ctx
->ctx_pmds
[i
].val
= val
& ~ovfl_val
;
1146 ctx
->th_pmds
[i
] = val
;
1148 DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1151 ctx
->ctx_pmds
[i
].val
));
1156 * propagate PMC from context to thread-state
1159 pfm_copy_pmcs(struct task_struct
*task
, pfm_context_t
*ctx
)
1161 unsigned long mask
= ctx
->ctx_all_pmcs
[0];
1164 DPRINT(("mask=0x%lx\n", mask
));
1166 for (i
=0; mask
; i
++, mask
>>=1) {
1167 /* masking 0 with ovfl_val yields 0 */
1168 ctx
->th_pmcs
[i
] = ctx
->ctx_pmcs
[i
];
1169 DPRINT(("pmc[%d]=0x%lx\n", i
, ctx
->th_pmcs
[i
]));
1176 pfm_restore_pmcs(unsigned long *pmcs
, unsigned long mask
)
1180 for (i
=0; mask
; i
++, mask
>>=1) {
1181 if ((mask
& 0x1) == 0) continue;
1182 ia64_set_pmc(i
, pmcs
[i
]);
1188 pfm_uuid_cmp(pfm_uuid_t a
, pfm_uuid_t b
)
1190 return memcmp(a
, b
, sizeof(pfm_uuid_t
));
1194 pfm_buf_fmt_exit(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, void *buf
, struct pt_regs
*regs
)
1197 if (fmt
->fmt_exit
) ret
= (*fmt
->fmt_exit
)(task
, buf
, regs
);
1202 pfm_buf_fmt_getsize(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, unsigned int flags
, int cpu
, void *arg
, unsigned long *size
)
1205 if (fmt
->fmt_getsize
) ret
= (*fmt
->fmt_getsize
)(task
, flags
, cpu
, arg
, size
);
1211 pfm_buf_fmt_validate(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, unsigned int flags
,
1215 if (fmt
->fmt_validate
) ret
= (*fmt
->fmt_validate
)(task
, flags
, cpu
, arg
);
1220 pfm_buf_fmt_init(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, void *buf
, unsigned int flags
,
1224 if (fmt
->fmt_init
) ret
= (*fmt
->fmt_init
)(task
, buf
, flags
, cpu
, arg
);
1229 pfm_buf_fmt_restart(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, pfm_ovfl_ctrl_t
*ctrl
, void *buf
, struct pt_regs
*regs
)
1232 if (fmt
->fmt_restart
) ret
= (*fmt
->fmt_restart
)(task
, ctrl
, buf
, regs
);
1237 pfm_buf_fmt_restart_active(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, pfm_ovfl_ctrl_t
*ctrl
, void *buf
, struct pt_regs
*regs
)
1240 if (fmt
->fmt_restart_active
) ret
= (*fmt
->fmt_restart_active
)(task
, ctrl
, buf
, regs
);
1244 static pfm_buffer_fmt_t
*
1245 __pfm_find_buffer_fmt(pfm_uuid_t uuid
)
1247 struct list_head
* pos
;
1248 pfm_buffer_fmt_t
* entry
;
1250 list_for_each(pos
, &pfm_buffer_fmt_list
) {
1251 entry
= list_entry(pos
, pfm_buffer_fmt_t
, fmt_list
);
1252 if (pfm_uuid_cmp(uuid
, entry
->fmt_uuid
) == 0)
1259 * find a buffer format based on its uuid
1261 static pfm_buffer_fmt_t
*
1262 pfm_find_buffer_fmt(pfm_uuid_t uuid
)
1264 pfm_buffer_fmt_t
* fmt
;
1265 spin_lock(&pfm_buffer_fmt_lock
);
1266 fmt
= __pfm_find_buffer_fmt(uuid
);
1267 spin_unlock(&pfm_buffer_fmt_lock
);
1272 pfm_register_buffer_fmt(pfm_buffer_fmt_t
*fmt
)
1276 /* some sanity checks */
1277 if (fmt
== NULL
|| fmt
->fmt_name
== NULL
) return -EINVAL
;
1279 /* we need at least a handler */
1280 if (fmt
->fmt_handler
== NULL
) return -EINVAL
;
1283 * XXX: need check validity of fmt_arg_size
1286 spin_lock(&pfm_buffer_fmt_lock
);
1288 if (__pfm_find_buffer_fmt(fmt
->fmt_uuid
)) {
1289 printk(KERN_ERR
"perfmon: duplicate sampling format: %s\n", fmt
->fmt_name
);
1293 list_add(&fmt
->fmt_list
, &pfm_buffer_fmt_list
);
1294 printk(KERN_INFO
"perfmon: added sampling format %s\n", fmt
->fmt_name
);
1297 spin_unlock(&pfm_buffer_fmt_lock
);
1300 EXPORT_SYMBOL(pfm_register_buffer_fmt
);
1303 pfm_unregister_buffer_fmt(pfm_uuid_t uuid
)
1305 pfm_buffer_fmt_t
*fmt
;
1308 spin_lock(&pfm_buffer_fmt_lock
);
1310 fmt
= __pfm_find_buffer_fmt(uuid
);
1312 printk(KERN_ERR
"perfmon: cannot unregister format, not found\n");
1316 list_del_init(&fmt
->fmt_list
);
1317 printk(KERN_INFO
"perfmon: removed sampling format: %s\n", fmt
->fmt_name
);
1320 spin_unlock(&pfm_buffer_fmt_lock
);
1324 EXPORT_SYMBOL(pfm_unregister_buffer_fmt
);
1327 pfm_reserve_session(struct task_struct
*task
, int is_syswide
, unsigned int cpu
)
1329 unsigned long flags
;
1331 * validity checks on cpu_mask have been done upstream
1335 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1336 pfm_sessions
.pfs_sys_sessions
,
1337 pfm_sessions
.pfs_task_sessions
,
1338 pfm_sessions
.pfs_sys_use_dbregs
,
1344 * cannot mix system wide and per-task sessions
1346 if (pfm_sessions
.pfs_task_sessions
> 0UL) {
1347 DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1348 pfm_sessions
.pfs_task_sessions
));
1352 if (pfm_sessions
.pfs_sys_session
[cpu
]) goto error_conflict
;
1354 DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu
, smp_processor_id()));
1356 pfm_sessions
.pfs_sys_session
[cpu
] = task
;
1358 pfm_sessions
.pfs_sys_sessions
++ ;
1361 if (pfm_sessions
.pfs_sys_sessions
) goto abort
;
1362 pfm_sessions
.pfs_task_sessions
++;
1365 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1366 pfm_sessions
.pfs_sys_sessions
,
1367 pfm_sessions
.pfs_task_sessions
,
1368 pfm_sessions
.pfs_sys_use_dbregs
,
1373 * Force idle() into poll mode
1375 cpu_idle_poll_ctrl(true);
1382 DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1383 task_pid_nr(pfm_sessions
.pfs_sys_session
[cpu
]),
1393 pfm_unreserve_session(pfm_context_t
*ctx
, int is_syswide
, unsigned int cpu
)
1395 unsigned long flags
;
1397 * validity checks on cpu_mask have been done upstream
1401 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1402 pfm_sessions
.pfs_sys_sessions
,
1403 pfm_sessions
.pfs_task_sessions
,
1404 pfm_sessions
.pfs_sys_use_dbregs
,
1410 pfm_sessions
.pfs_sys_session
[cpu
] = NULL
;
1412 * would not work with perfmon+more than one bit in cpu_mask
1414 if (ctx
&& ctx
->ctx_fl_using_dbreg
) {
1415 if (pfm_sessions
.pfs_sys_use_dbregs
== 0) {
1416 printk(KERN_ERR
"perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx
);
1418 pfm_sessions
.pfs_sys_use_dbregs
--;
1421 pfm_sessions
.pfs_sys_sessions
--;
1423 pfm_sessions
.pfs_task_sessions
--;
1425 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1426 pfm_sessions
.pfs_sys_sessions
,
1427 pfm_sessions
.pfs_task_sessions
,
1428 pfm_sessions
.pfs_sys_use_dbregs
,
1432 /* Undo forced polling. Last session reenables pal_halt */
1433 cpu_idle_poll_ctrl(false);
1441 * removes virtual mapping of the sampling buffer.
1442 * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1443 * a PROTECT_CTX() section.
1446 pfm_remove_smpl_mapping(void *vaddr
, unsigned long size
)
1448 struct task_struct
*task
= current
;
1452 if (task
->mm
== NULL
|| size
== 0UL || vaddr
== NULL
) {
1453 printk(KERN_ERR
"perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task_pid_nr(task
), task
->mm
);
1457 DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr
, size
));
1460 * does the actual unmapping
1462 r
= vm_munmap((unsigned long)vaddr
, size
);
1465 printk(KERN_ERR
"perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task_pid_nr(task
), vaddr
, size
);
1468 DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr
, size
, r
));
1474 * free actual physical storage used by sampling buffer
1478 pfm_free_smpl_buffer(pfm_context_t
*ctx
)
1480 pfm_buffer_fmt_t
*fmt
;
1482 if (ctx
->ctx_smpl_hdr
== NULL
) goto invalid_free
;
1485 * we won't use the buffer format anymore
1487 fmt
= ctx
->ctx_buf_fmt
;
1489 DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1492 ctx
->ctx_smpl_vaddr
));
1494 pfm_buf_fmt_exit(fmt
, current
, NULL
, NULL
);
1499 pfm_rvfree(ctx
->ctx_smpl_hdr
, ctx
->ctx_smpl_size
);
1501 ctx
->ctx_smpl_hdr
= NULL
;
1502 ctx
->ctx_smpl_size
= 0UL;
1507 printk(KERN_ERR
"perfmon: pfm_free_smpl_buffer [%d] no buffer\n", task_pid_nr(current
));
1513 pfm_exit_smpl_buffer(pfm_buffer_fmt_t
*fmt
)
1515 if (fmt
== NULL
) return;
1517 pfm_buf_fmt_exit(fmt
, current
, NULL
, NULL
);
1522 * pfmfs should _never_ be mounted by userland - too much of security hassle,
1523 * no real gain from having the whole whorehouse mounted. So we don't need
1524 * any operations on the root directory. However, we need a non-trivial
1525 * d_name - pfm: will go nicely and kill the special-casing in procfs.
1527 static struct vfsmount
*pfmfs_mnt __read_mostly
;
1532 int err
= register_filesystem(&pfm_fs_type
);
1534 pfmfs_mnt
= kern_mount(&pfm_fs_type
);
1535 err
= PTR_ERR(pfmfs_mnt
);
1536 if (IS_ERR(pfmfs_mnt
))
1537 unregister_filesystem(&pfm_fs_type
);
1545 pfm_read(struct file
*filp
, char __user
*buf
, size_t size
, loff_t
*ppos
)
1550 unsigned long flags
;
1551 DECLARE_WAITQUEUE(wait
, current
);
1552 if (PFM_IS_FILE(filp
) == 0) {
1553 printk(KERN_ERR
"perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current
));
1557 ctx
= filp
->private_data
;
1559 printk(KERN_ERR
"perfmon: pfm_read: NULL ctx [%d]\n", task_pid_nr(current
));
1564 * check even when there is no message
1566 if (size
< sizeof(pfm_msg_t
)) {
1567 DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx
, sizeof(pfm_msg_t
)));
1571 PROTECT_CTX(ctx
, flags
);
1574 * put ourselves on the wait queue
1576 add_wait_queue(&ctx
->ctx_msgq_wait
, &wait
);
1584 set_current_state(TASK_INTERRUPTIBLE
);
1586 DPRINT(("head=%d tail=%d\n", ctx
->ctx_msgq_head
, ctx
->ctx_msgq_tail
));
1589 if(PFM_CTXQ_EMPTY(ctx
) == 0) break;
1591 UNPROTECT_CTX(ctx
, flags
);
1594 * check non-blocking read
1597 if(filp
->f_flags
& O_NONBLOCK
) break;
1600 * check pending signals
1602 if(signal_pending(current
)) {
1607 * no message, so wait
1611 PROTECT_CTX(ctx
, flags
);
1613 DPRINT(("[%d] back to running ret=%ld\n", task_pid_nr(current
), ret
));
1614 set_current_state(TASK_RUNNING
);
1615 remove_wait_queue(&ctx
->ctx_msgq_wait
, &wait
);
1617 if (ret
< 0) goto abort
;
1620 msg
= pfm_get_next_msg(ctx
);
1622 printk(KERN_ERR
"perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx
, task_pid_nr(current
));
1626 DPRINT(("fd=%d type=%d\n", msg
->pfm_gen_msg
.msg_ctx_fd
, msg
->pfm_gen_msg
.msg_type
));
1629 if(copy_to_user(buf
, msg
, sizeof(pfm_msg_t
)) == 0) ret
= sizeof(pfm_msg_t
);
1632 UNPROTECT_CTX(ctx
, flags
);
1638 pfm_write(struct file
*file
, const char __user
*ubuf
,
1639 size_t size
, loff_t
*ppos
)
1641 DPRINT(("pfm_write called\n"));
1646 pfm_poll(struct file
*filp
, poll_table
* wait
)
1649 unsigned long flags
;
1650 unsigned int mask
= 0;
1652 if (PFM_IS_FILE(filp
) == 0) {
1653 printk(KERN_ERR
"perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current
));
1657 ctx
= filp
->private_data
;
1659 printk(KERN_ERR
"perfmon: pfm_poll: NULL ctx [%d]\n", task_pid_nr(current
));
1664 DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx
->ctx_fd
));
1666 poll_wait(filp
, &ctx
->ctx_msgq_wait
, wait
);
1668 PROTECT_CTX(ctx
, flags
);
1670 if (PFM_CTXQ_EMPTY(ctx
) == 0)
1671 mask
= POLLIN
| POLLRDNORM
;
1673 UNPROTECT_CTX(ctx
, flags
);
1675 DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx
->ctx_fd
, mask
));
1681 pfm_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
1683 DPRINT(("pfm_ioctl called\n"));
1688 * interrupt cannot be masked when coming here
1691 pfm_do_fasync(int fd
, struct file
*filp
, pfm_context_t
*ctx
, int on
)
1695 ret
= fasync_helper (fd
, filp
, on
, &ctx
->ctx_async_queue
);
1697 DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1698 task_pid_nr(current
),
1701 ctx
->ctx_async_queue
, ret
));
1707 pfm_fasync(int fd
, struct file
*filp
, int on
)
1712 if (PFM_IS_FILE(filp
) == 0) {
1713 printk(KERN_ERR
"perfmon: pfm_fasync bad magic [%d]\n", task_pid_nr(current
));
1717 ctx
= filp
->private_data
;
1719 printk(KERN_ERR
"perfmon: pfm_fasync NULL ctx [%d]\n", task_pid_nr(current
));
1723 * we cannot mask interrupts during this call because this may
1724 * may go to sleep if memory is not readily avalaible.
1726 * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1727 * done in caller. Serialization of this function is ensured by caller.
1729 ret
= pfm_do_fasync(fd
, filp
, ctx
, on
);
1732 DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1735 ctx
->ctx_async_queue
, ret
));
1742 * this function is exclusively called from pfm_close().
1743 * The context is not protected at that time, nor are interrupts
1744 * on the remote CPU. That's necessary to avoid deadlocks.
1747 pfm_syswide_force_stop(void *info
)
1749 pfm_context_t
*ctx
= (pfm_context_t
*)info
;
1750 struct pt_regs
*regs
= task_pt_regs(current
);
1751 struct task_struct
*owner
;
1752 unsigned long flags
;
1755 if (ctx
->ctx_cpu
!= smp_processor_id()) {
1756 printk(KERN_ERR
"perfmon: pfm_syswide_force_stop for CPU%d but on CPU%d\n",
1758 smp_processor_id());
1761 owner
= GET_PMU_OWNER();
1762 if (owner
!= ctx
->ctx_task
) {
1763 printk(KERN_ERR
"perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1765 task_pid_nr(owner
), task_pid_nr(ctx
->ctx_task
));
1768 if (GET_PMU_CTX() != ctx
) {
1769 printk(KERN_ERR
"perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1771 GET_PMU_CTX(), ctx
);
1775 DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), task_pid_nr(ctx
->ctx_task
)));
1777 * the context is already protected in pfm_close(), we simply
1778 * need to mask interrupts to avoid a PMU interrupt race on
1781 local_irq_save(flags
);
1783 ret
= pfm_context_unload(ctx
, NULL
, 0, regs
);
1785 DPRINT(("context_unload returned %d\n", ret
));
1789 * unmask interrupts, PMU interrupts are now spurious here
1791 local_irq_restore(flags
);
1795 pfm_syswide_cleanup_other_cpu(pfm_context_t
*ctx
)
1799 DPRINT(("calling CPU%d for cleanup\n", ctx
->ctx_cpu
));
1800 ret
= smp_call_function_single(ctx
->ctx_cpu
, pfm_syswide_force_stop
, ctx
, 1);
1801 DPRINT(("called CPU%d for cleanup ret=%d\n", ctx
->ctx_cpu
, ret
));
1803 #endif /* CONFIG_SMP */
1806 * called for each close(). Partially free resources.
1807 * When caller is self-monitoring, the context is unloaded.
1810 pfm_flush(struct file
*filp
, fl_owner_t id
)
1813 struct task_struct
*task
;
1814 struct pt_regs
*regs
;
1815 unsigned long flags
;
1816 unsigned long smpl_buf_size
= 0UL;
1817 void *smpl_buf_vaddr
= NULL
;
1818 int state
, is_system
;
1820 if (PFM_IS_FILE(filp
) == 0) {
1821 DPRINT(("bad magic for\n"));
1825 ctx
= filp
->private_data
;
1827 printk(KERN_ERR
"perfmon: pfm_flush: NULL ctx [%d]\n", task_pid_nr(current
));
1832 * remove our file from the async queue, if we use this mode.
1833 * This can be done without the context being protected. We come
1834 * here when the context has become unreachable by other tasks.
1836 * We may still have active monitoring at this point and we may
1837 * end up in pfm_overflow_handler(). However, fasync_helper()
1838 * operates with interrupts disabled and it cleans up the
1839 * queue. If the PMU handler is called prior to entering
1840 * fasync_helper() then it will send a signal. If it is
1841 * invoked after, it will find an empty queue and no
1842 * signal will be sent. In both case, we are safe
1844 PROTECT_CTX(ctx
, flags
);
1846 state
= ctx
->ctx_state
;
1847 is_system
= ctx
->ctx_fl_system
;
1849 task
= PFM_CTX_TASK(ctx
);
1850 regs
= task_pt_regs(task
);
1852 DPRINT(("ctx_state=%d is_current=%d\n",
1854 task
== current
? 1 : 0));
1857 * if state == UNLOADED, then task is NULL
1861 * we must stop and unload because we are losing access to the context.
1863 if (task
== current
) {
1866 * the task IS the owner but it migrated to another CPU: that's bad
1867 * but we must handle this cleanly. Unfortunately, the kernel does
1868 * not provide a mechanism to block migration (while the context is loaded).
1870 * We need to release the resource on the ORIGINAL cpu.
1872 if (is_system
&& ctx
->ctx_cpu
!= smp_processor_id()) {
1874 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
1876 * keep context protected but unmask interrupt for IPI
1878 local_irq_restore(flags
);
1880 pfm_syswide_cleanup_other_cpu(ctx
);
1883 * restore interrupt masking
1885 local_irq_save(flags
);
1888 * context is unloaded at this point
1891 #endif /* CONFIG_SMP */
1894 DPRINT(("forcing unload\n"));
1896 * stop and unload, returning with state UNLOADED
1897 * and session unreserved.
1899 pfm_context_unload(ctx
, NULL
, 0, regs
);
1901 DPRINT(("ctx_state=%d\n", ctx
->ctx_state
));
1906 * remove virtual mapping, if any, for the calling task.
1907 * cannot reset ctx field until last user is calling close().
1909 * ctx_smpl_vaddr must never be cleared because it is needed
1910 * by every task with access to the context
1912 * When called from do_exit(), the mm context is gone already, therefore
1913 * mm is NULL, i.e., the VMA is already gone and we do not have to
1916 if (ctx
->ctx_smpl_vaddr
&& current
->mm
) {
1917 smpl_buf_vaddr
= ctx
->ctx_smpl_vaddr
;
1918 smpl_buf_size
= ctx
->ctx_smpl_size
;
1921 UNPROTECT_CTX(ctx
, flags
);
1924 * if there was a mapping, then we systematically remove it
1925 * at this point. Cannot be done inside critical section
1926 * because some VM function reenables interrupts.
1929 if (smpl_buf_vaddr
) pfm_remove_smpl_mapping(smpl_buf_vaddr
, smpl_buf_size
);
1934 * called either on explicit close() or from exit_files().
1935 * Only the LAST user of the file gets to this point, i.e., it is
1938 * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
1939 * (fput()),i.e, last task to access the file. Nobody else can access the
1940 * file at this point.
1942 * When called from exit_files(), the VMA has been freed because exit_mm()
1943 * is executed before exit_files().
1945 * When called from exit_files(), the current task is not yet ZOMBIE but we
1946 * flush the PMU state to the context.
1949 pfm_close(struct inode
*inode
, struct file
*filp
)
1952 struct task_struct
*task
;
1953 struct pt_regs
*regs
;
1954 DECLARE_WAITQUEUE(wait
, current
);
1955 unsigned long flags
;
1956 unsigned long smpl_buf_size
= 0UL;
1957 void *smpl_buf_addr
= NULL
;
1958 int free_possible
= 1;
1959 int state
, is_system
;
1961 DPRINT(("pfm_close called private=%p\n", filp
->private_data
));
1963 if (PFM_IS_FILE(filp
) == 0) {
1964 DPRINT(("bad magic\n"));
1968 ctx
= filp
->private_data
;
1970 printk(KERN_ERR
"perfmon: pfm_close: NULL ctx [%d]\n", task_pid_nr(current
));
1974 PROTECT_CTX(ctx
, flags
);
1976 state
= ctx
->ctx_state
;
1977 is_system
= ctx
->ctx_fl_system
;
1979 task
= PFM_CTX_TASK(ctx
);
1980 regs
= task_pt_regs(task
);
1982 DPRINT(("ctx_state=%d is_current=%d\n",
1984 task
== current
? 1 : 0));
1987 * if task == current, then pfm_flush() unloaded the context
1989 if (state
== PFM_CTX_UNLOADED
) goto doit
;
1992 * context is loaded/masked and task != current, we need to
1993 * either force an unload or go zombie
1997 * The task is currently blocked or will block after an overflow.
1998 * we must force it to wakeup to get out of the
1999 * MASKED state and transition to the unloaded state by itself.
2001 * This situation is only possible for per-task mode
2003 if (state
== PFM_CTX_MASKED
&& CTX_OVFL_NOBLOCK(ctx
) == 0) {
2006 * set a "partial" zombie state to be checked
2007 * upon return from down() in pfm_handle_work().
2009 * We cannot use the ZOMBIE state, because it is checked
2010 * by pfm_load_regs() which is called upon wakeup from down().
2011 * In such case, it would free the context and then we would
2012 * return to pfm_handle_work() which would access the
2013 * stale context. Instead, we set a flag invisible to pfm_load_regs()
2014 * but visible to pfm_handle_work().
2016 * For some window of time, we have a zombie context with
2017 * ctx_state = MASKED and not ZOMBIE
2019 ctx
->ctx_fl_going_zombie
= 1;
2022 * force task to wake up from MASKED state
2024 complete(&ctx
->ctx_restart_done
);
2026 DPRINT(("waking up ctx_state=%d\n", state
));
2029 * put ourself to sleep waiting for the other
2030 * task to report completion
2032 * the context is protected by mutex, therefore there
2033 * is no risk of being notified of completion before
2034 * begin actually on the waitq.
2036 set_current_state(TASK_INTERRUPTIBLE
);
2037 add_wait_queue(&ctx
->ctx_zombieq
, &wait
);
2039 UNPROTECT_CTX(ctx
, flags
);
2042 * XXX: check for signals :
2043 * - ok for explicit close
2044 * - not ok when coming from exit_files()
2049 PROTECT_CTX(ctx
, flags
);
2052 remove_wait_queue(&ctx
->ctx_zombieq
, &wait
);
2053 set_current_state(TASK_RUNNING
);
2056 * context is unloaded at this point
2058 DPRINT(("after zombie wakeup ctx_state=%d for\n", state
));
2060 else if (task
!= current
) {
2063 * switch context to zombie state
2065 ctx
->ctx_state
= PFM_CTX_ZOMBIE
;
2067 DPRINT(("zombie ctx for [%d]\n", task_pid_nr(task
)));
2069 * cannot free the context on the spot. deferred until
2070 * the task notices the ZOMBIE state
2074 pfm_context_unload(ctx
, NULL
, 0, regs
);
2079 /* reload state, may have changed during opening of critical section */
2080 state
= ctx
->ctx_state
;
2083 * the context is still attached to a task (possibly current)
2084 * we cannot destroy it right now
2088 * we must free the sampling buffer right here because
2089 * we cannot rely on it being cleaned up later by the
2090 * monitored task. It is not possible to free vmalloc'ed
2091 * memory in pfm_load_regs(). Instead, we remove the buffer
2092 * now. should there be subsequent PMU overflow originally
2093 * meant for sampling, the will be converted to spurious
2094 * and that's fine because the monitoring tools is gone anyway.
2096 if (ctx
->ctx_smpl_hdr
) {
2097 smpl_buf_addr
= ctx
->ctx_smpl_hdr
;
2098 smpl_buf_size
= ctx
->ctx_smpl_size
;
2099 /* no more sampling */
2100 ctx
->ctx_smpl_hdr
= NULL
;
2101 ctx
->ctx_fl_is_sampling
= 0;
2104 DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2110 if (smpl_buf_addr
) pfm_exit_smpl_buffer(ctx
->ctx_buf_fmt
);
2113 * UNLOADED that the session has already been unreserved.
2115 if (state
== PFM_CTX_ZOMBIE
) {
2116 pfm_unreserve_session(ctx
, ctx
->ctx_fl_system
, ctx
->ctx_cpu
);
2120 * disconnect file descriptor from context must be done
2123 filp
->private_data
= NULL
;
2126 * if we free on the spot, the context is now completely unreachable
2127 * from the callers side. The monitored task side is also cut, so we
2130 * If we have a deferred free, only the caller side is disconnected.
2132 UNPROTECT_CTX(ctx
, flags
);
2135 * All memory free operations (especially for vmalloc'ed memory)
2136 * MUST be done with interrupts ENABLED.
2138 if (smpl_buf_addr
) pfm_rvfree(smpl_buf_addr
, smpl_buf_size
);
2141 * return the memory used by the context
2143 if (free_possible
) pfm_context_free(ctx
);
2149 pfm_no_open(struct inode
*irrelevant
, struct file
*dontcare
)
2151 DPRINT(("pfm_no_open called\n"));
2157 static const struct file_operations pfm_file_ops
= {
2158 .llseek
= no_llseek
,
2162 .unlocked_ioctl
= pfm_ioctl
,
2163 .open
= pfm_no_open
, /* special open code to disallow open via /proc */
2164 .fasync
= pfm_fasync
,
2165 .release
= pfm_close
,
2170 pfmfs_delete_dentry(const struct dentry
*dentry
)
2175 static char *pfmfs_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
2177 return dynamic_dname(dentry
, buffer
, buflen
, "pfm:[%lu]",
2178 dentry
->d_inode
->i_ino
);
2181 static const struct dentry_operations pfmfs_dentry_operations
= {
2182 .d_delete
= pfmfs_delete_dentry
,
2183 .d_dname
= pfmfs_dname
,
2187 static struct file
*
2188 pfm_alloc_file(pfm_context_t
*ctx
)
2191 struct inode
*inode
;
2193 struct qstr
this = { .name
= "" };
2196 * allocate a new inode
2198 inode
= new_inode(pfmfs_mnt
->mnt_sb
);
2200 return ERR_PTR(-ENOMEM
);
2202 DPRINT(("new inode ino=%ld @%p\n", inode
->i_ino
, inode
));
2204 inode
->i_mode
= S_IFCHR
|S_IRUGO
;
2205 inode
->i_uid
= current_fsuid();
2206 inode
->i_gid
= current_fsgid();
2209 * allocate a new dcache entry
2211 path
.dentry
= d_alloc(pfmfs_mnt
->mnt_root
, &this);
2214 return ERR_PTR(-ENOMEM
);
2216 path
.mnt
= mntget(pfmfs_mnt
);
2218 d_add(path
.dentry
, inode
);
2220 file
= alloc_file(&path
, FMODE_READ
, &pfm_file_ops
);
2226 file
->f_flags
= O_RDONLY
;
2227 file
->private_data
= ctx
;
2233 pfm_remap_buffer(struct vm_area_struct
*vma
, unsigned long buf
, unsigned long addr
, unsigned long size
)
2235 DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf
, addr
, size
));
2238 unsigned long pfn
= ia64_tpa(buf
) >> PAGE_SHIFT
;
2241 if (remap_pfn_range(vma
, addr
, pfn
, PAGE_SIZE
, PAGE_READONLY
))
2252 * allocate a sampling buffer and remaps it into the user address space of the task
2255 pfm_smpl_buffer_alloc(struct task_struct
*task
, struct file
*filp
, pfm_context_t
*ctx
, unsigned long rsize
, void **user_vaddr
)
2257 struct mm_struct
*mm
= task
->mm
;
2258 struct vm_area_struct
*vma
= NULL
;
2264 * the fixed header + requested size and align to page boundary
2266 size
= PAGE_ALIGN(rsize
);
2268 DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize
, size
));
2271 * check requested size to avoid Denial-of-service attacks
2272 * XXX: may have to refine this test
2273 * Check against address space limit.
2275 * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2278 if (size
> task_rlimit(task
, RLIMIT_MEMLOCK
))
2282 * We do the easy to undo allocations first.
2284 * pfm_rvmalloc(), clears the buffer, so there is no leak
2286 smpl_buf
= pfm_rvmalloc(size
);
2287 if (smpl_buf
== NULL
) {
2288 DPRINT(("Can't allocate sampling buffer\n"));
2292 DPRINT(("smpl_buf @%p\n", smpl_buf
));
2295 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
2297 DPRINT(("Cannot allocate vma\n"));
2300 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
2303 * partially initialize the vma for the sampling buffer
2306 vma
->vm_file
= get_file(filp
);
2307 vma
->vm_flags
= VM_READ
|VM_MAYREAD
|VM_DONTEXPAND
|VM_DONTDUMP
;
2308 vma
->vm_page_prot
= PAGE_READONLY
; /* XXX may need to change */
2311 * Now we have everything we need and we can initialize
2312 * and connect all the data structures
2315 ctx
->ctx_smpl_hdr
= smpl_buf
;
2316 ctx
->ctx_smpl_size
= size
; /* aligned size */
2319 * Let's do the difficult operations next.
2321 * now we atomically find some area in the address space and
2322 * remap the buffer in it.
2324 down_write(&task
->mm
->mmap_sem
);
2326 /* find some free area in address space, must have mmap sem held */
2327 vma
->vm_start
= get_unmapped_area(NULL
, 0, size
, 0, MAP_PRIVATE
|MAP_ANONYMOUS
);
2328 if (IS_ERR_VALUE(vma
->vm_start
)) {
2329 DPRINT(("Cannot find unmapped area for size %ld\n", size
));
2330 up_write(&task
->mm
->mmap_sem
);
2333 vma
->vm_end
= vma
->vm_start
+ size
;
2334 vma
->vm_pgoff
= vma
->vm_start
>> PAGE_SHIFT
;
2336 DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size
, ctx
->ctx_smpl_hdr
, vma
->vm_start
));
2338 /* can only be applied to current task, need to have the mm semaphore held when called */
2339 if (pfm_remap_buffer(vma
, (unsigned long)smpl_buf
, vma
->vm_start
, size
)) {
2340 DPRINT(("Can't remap buffer\n"));
2341 up_write(&task
->mm
->mmap_sem
);
2346 * now insert the vma in the vm list for the process, must be
2347 * done with mmap lock held
2349 insert_vm_struct(mm
, vma
);
2351 vm_stat_account(vma
->vm_mm
, vma
->vm_flags
, vma
->vm_file
,
2353 up_write(&task
->mm
->mmap_sem
);
2356 * keep track of user level virtual address
2358 ctx
->ctx_smpl_vaddr
= (void *)vma
->vm_start
;
2359 *(unsigned long *)user_vaddr
= vma
->vm_start
;
2364 kmem_cache_free(vm_area_cachep
, vma
);
2366 pfm_rvfree(smpl_buf
, size
);
2372 * XXX: do something better here
2375 pfm_bad_permissions(struct task_struct
*task
)
2377 const struct cred
*tcred
;
2378 kuid_t uid
= current_uid();
2379 kgid_t gid
= current_gid();
2383 tcred
= __task_cred(task
);
2385 /* inspired by ptrace_attach() */
2386 DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2387 from_kuid(&init_user_ns
, uid
),
2388 from_kgid(&init_user_ns
, gid
),
2389 from_kuid(&init_user_ns
, tcred
->euid
),
2390 from_kuid(&init_user_ns
, tcred
->suid
),
2391 from_kuid(&init_user_ns
, tcred
->uid
),
2392 from_kgid(&init_user_ns
, tcred
->egid
),
2393 from_kgid(&init_user_ns
, tcred
->sgid
)));
2395 ret
= ((!uid_eq(uid
, tcred
->euid
))
2396 || (!uid_eq(uid
, tcred
->suid
))
2397 || (!uid_eq(uid
, tcred
->uid
))
2398 || (!gid_eq(gid
, tcred
->egid
))
2399 || (!gid_eq(gid
, tcred
->sgid
))
2400 || (!gid_eq(gid
, tcred
->gid
))) && !capable(CAP_SYS_PTRACE
);
2407 pfarg_is_sane(struct task_struct
*task
, pfarg_context_t
*pfx
)
2413 ctx_flags
= pfx
->ctx_flags
;
2415 if (ctx_flags
& PFM_FL_SYSTEM_WIDE
) {
2418 * cannot block in this mode
2420 if (ctx_flags
& PFM_FL_NOTIFY_BLOCK
) {
2421 DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2426 /* probably more to add here */
2432 pfm_setup_buffer_fmt(struct task_struct
*task
, struct file
*filp
, pfm_context_t
*ctx
, unsigned int ctx_flags
,
2433 unsigned int cpu
, pfarg_context_t
*arg
)
2435 pfm_buffer_fmt_t
*fmt
= NULL
;
2436 unsigned long size
= 0UL;
2438 void *fmt_arg
= NULL
;
2440 #define PFM_CTXARG_BUF_ARG(a) (pfm_buffer_fmt_t *)(a+1)
2442 /* invoke and lock buffer format, if found */
2443 fmt
= pfm_find_buffer_fmt(arg
->ctx_smpl_buf_id
);
2445 DPRINT(("[%d] cannot find buffer format\n", task_pid_nr(task
)));
2450 * buffer argument MUST be contiguous to pfarg_context_t
2452 if (fmt
->fmt_arg_size
) fmt_arg
= PFM_CTXARG_BUF_ARG(arg
);
2454 ret
= pfm_buf_fmt_validate(fmt
, task
, ctx_flags
, cpu
, fmt_arg
);
2456 DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task_pid_nr(task
), ctx_flags
, cpu
, fmt_arg
, ret
));
2458 if (ret
) goto error
;
2460 /* link buffer format and context */
2461 ctx
->ctx_buf_fmt
= fmt
;
2462 ctx
->ctx_fl_is_sampling
= 1; /* assume record() is defined */
2465 * check if buffer format wants to use perfmon buffer allocation/mapping service
2467 ret
= pfm_buf_fmt_getsize(fmt
, task
, ctx_flags
, cpu
, fmt_arg
, &size
);
2468 if (ret
) goto error
;
2472 * buffer is always remapped into the caller's address space
2474 ret
= pfm_smpl_buffer_alloc(current
, filp
, ctx
, size
, &uaddr
);
2475 if (ret
) goto error
;
2477 /* keep track of user address of buffer */
2478 arg
->ctx_smpl_vaddr
= uaddr
;
2480 ret
= pfm_buf_fmt_init(fmt
, task
, ctx
->ctx_smpl_hdr
, ctx_flags
, cpu
, fmt_arg
);
2487 pfm_reset_pmu_state(pfm_context_t
*ctx
)
2492 * install reset values for PMC.
2494 for (i
=1; PMC_IS_LAST(i
) == 0; i
++) {
2495 if (PMC_IS_IMPL(i
) == 0) continue;
2496 ctx
->ctx_pmcs
[i
] = PMC_DFL_VAL(i
);
2497 DPRINT(("pmc[%d]=0x%lx\n", i
, ctx
->ctx_pmcs
[i
]));
2500 * PMD registers are set to 0UL when the context in memset()
2504 * On context switched restore, we must restore ALL pmc and ALL pmd even
2505 * when they are not actively used by the task. In UP, the incoming process
2506 * may otherwise pick up left over PMC, PMD state from the previous process.
2507 * As opposed to PMD, stale PMC can cause harm to the incoming
2508 * process because they may change what is being measured.
2509 * Therefore, we must systematically reinstall the entire
2510 * PMC state. In SMP, the same thing is possible on the
2511 * same CPU but also on between 2 CPUs.
2513 * The problem with PMD is information leaking especially
2514 * to user level when psr.sp=0
2516 * There is unfortunately no easy way to avoid this problem
2517 * on either UP or SMP. This definitively slows down the
2518 * pfm_load_regs() function.
2522 * bitmask of all PMCs accessible to this context
2524 * PMC0 is treated differently.
2526 ctx
->ctx_all_pmcs
[0] = pmu_conf
->impl_pmcs
[0] & ~0x1;
2529 * bitmask of all PMDs that are accessible to this context
2531 ctx
->ctx_all_pmds
[0] = pmu_conf
->impl_pmds
[0];
2533 DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx
->ctx_fd
, ctx
->ctx_all_pmcs
[0],ctx
->ctx_all_pmds
[0]));
2536 * useful in case of re-enable after disable
2538 ctx
->ctx_used_ibrs
[0] = 0UL;
2539 ctx
->ctx_used_dbrs
[0] = 0UL;
2543 pfm_ctx_getsize(void *arg
, size_t *sz
)
2545 pfarg_context_t
*req
= (pfarg_context_t
*)arg
;
2546 pfm_buffer_fmt_t
*fmt
;
2550 if (!pfm_uuid_cmp(req
->ctx_smpl_buf_id
, pfm_null_uuid
)) return 0;
2552 fmt
= pfm_find_buffer_fmt(req
->ctx_smpl_buf_id
);
2554 DPRINT(("cannot find buffer format\n"));
2557 /* get just enough to copy in user parameters */
2558 *sz
= fmt
->fmt_arg_size
;
2559 DPRINT(("arg_size=%lu\n", *sz
));
2567 * cannot attach if :
2569 * - task not owned by caller
2570 * - task incompatible with context mode
2573 pfm_task_incompatible(pfm_context_t
*ctx
, struct task_struct
*task
)
2576 * no kernel task or task not owner by caller
2578 if (task
->mm
== NULL
) {
2579 DPRINT(("task [%d] has not memory context (kernel thread)\n", task_pid_nr(task
)));
2582 if (pfm_bad_permissions(task
)) {
2583 DPRINT(("no permission to attach to [%d]\n", task_pid_nr(task
)));
2587 * cannot block in self-monitoring mode
2589 if (CTX_OVFL_NOBLOCK(ctx
) == 0 && task
== current
) {
2590 DPRINT(("cannot load a blocking context on self for [%d]\n", task_pid_nr(task
)));
2594 if (task
->exit_state
== EXIT_ZOMBIE
) {
2595 DPRINT(("cannot attach to zombie task [%d]\n", task_pid_nr(task
)));
2600 * always ok for self
2602 if (task
== current
) return 0;
2604 if (!task_is_stopped_or_traced(task
)) {
2605 DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task_pid_nr(task
), task
->state
));
2609 * make sure the task is off any CPU
2611 wait_task_inactive(task
, 0);
2613 /* more to come... */
2619 pfm_get_task(pfm_context_t
*ctx
, pid_t pid
, struct task_struct
**task
)
2621 struct task_struct
*p
= current
;
2624 /* XXX: need to add more checks here */
2625 if (pid
< 2) return -EPERM
;
2627 if (pid
!= task_pid_vnr(current
)) {
2629 read_lock(&tasklist_lock
);
2631 p
= find_task_by_vpid(pid
);
2633 /* make sure task cannot go away while we operate on it */
2634 if (p
) get_task_struct(p
);
2636 read_unlock(&tasklist_lock
);
2638 if (p
== NULL
) return -ESRCH
;
2641 ret
= pfm_task_incompatible(ctx
, p
);
2644 } else if (p
!= current
) {
2653 pfm_context_create(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
2655 pfarg_context_t
*req
= (pfarg_context_t
*)arg
;
2662 /* let's check the arguments first */
2663 ret
= pfarg_is_sane(current
, req
);
2667 ctx_flags
= req
->ctx_flags
;
2671 fd
= get_unused_fd();
2675 ctx
= pfm_context_alloc(ctx_flags
);
2679 filp
= pfm_alloc_file(ctx
);
2681 ret
= PTR_ERR(filp
);
2685 req
->ctx_fd
= ctx
->ctx_fd
= fd
;
2688 * does the user want to sample?
2690 if (pfm_uuid_cmp(req
->ctx_smpl_buf_id
, pfm_null_uuid
)) {
2691 ret
= pfm_setup_buffer_fmt(current
, filp
, ctx
, ctx_flags
, 0, req
);
2696 DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d\n",
2701 ctx
->ctx_fl_excl_idle
,
2706 * initialize soft PMU state
2708 pfm_reset_pmu_state(ctx
);
2710 fd_install(fd
, filp
);
2715 path
= filp
->f_path
;
2719 if (ctx
->ctx_buf_fmt
) {
2720 pfm_buf_fmt_exit(ctx
->ctx_buf_fmt
, current
, NULL
, regs
);
2723 pfm_context_free(ctx
);
2730 static inline unsigned long
2731 pfm_new_counter_value (pfm_counter_t
*reg
, int is_long_reset
)
2733 unsigned long val
= is_long_reset
? reg
->long_reset
: reg
->short_reset
;
2734 unsigned long new_seed
, old_seed
= reg
->seed
, mask
= reg
->mask
;
2735 extern unsigned long carta_random32 (unsigned long seed
);
2737 if (reg
->flags
& PFM_REGFL_RANDOM
) {
2738 new_seed
= carta_random32(old_seed
);
2739 val
-= (old_seed
& mask
); /* counter values are negative numbers! */
2740 if ((mask
>> 32) != 0)
2741 /* construct a full 64-bit random value: */
2742 new_seed
|= carta_random32(old_seed
>> 32) << 32;
2743 reg
->seed
= new_seed
;
2750 pfm_reset_regs_masked(pfm_context_t
*ctx
, unsigned long *ovfl_regs
, int is_long_reset
)
2752 unsigned long mask
= ovfl_regs
[0];
2753 unsigned long reset_others
= 0UL;
2758 * now restore reset value on sampling overflowed counters
2760 mask
>>= PMU_FIRST_COUNTER
;
2761 for(i
= PMU_FIRST_COUNTER
; mask
; i
++, mask
>>= 1) {
2763 if ((mask
& 0x1UL
) == 0UL) continue;
2765 ctx
->ctx_pmds
[i
].val
= val
= pfm_new_counter_value(ctx
->ctx_pmds
+ i
, is_long_reset
);
2766 reset_others
|= ctx
->ctx_pmds
[i
].reset_pmds
[0];
2768 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset
? "long" : "short", i
, val
));
2772 * Now take care of resetting the other registers
2774 for(i
= 0; reset_others
; i
++, reset_others
>>= 1) {
2776 if ((reset_others
& 0x1) == 0) continue;
2778 ctx
->ctx_pmds
[i
].val
= val
= pfm_new_counter_value(ctx
->ctx_pmds
+ i
, is_long_reset
);
2780 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2781 is_long_reset
? "long" : "short", i
, val
));
2786 pfm_reset_regs(pfm_context_t
*ctx
, unsigned long *ovfl_regs
, int is_long_reset
)
2788 unsigned long mask
= ovfl_regs
[0];
2789 unsigned long reset_others
= 0UL;
2793 DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs
[0], is_long_reset
));
2795 if (ctx
->ctx_state
== PFM_CTX_MASKED
) {
2796 pfm_reset_regs_masked(ctx
, ovfl_regs
, is_long_reset
);
2801 * now restore reset value on sampling overflowed counters
2803 mask
>>= PMU_FIRST_COUNTER
;
2804 for(i
= PMU_FIRST_COUNTER
; mask
; i
++, mask
>>= 1) {
2806 if ((mask
& 0x1UL
) == 0UL) continue;
2808 val
= pfm_new_counter_value(ctx
->ctx_pmds
+ i
, is_long_reset
);
2809 reset_others
|= ctx
->ctx_pmds
[i
].reset_pmds
[0];
2811 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset
? "long" : "short", i
, val
));
2813 pfm_write_soft_counter(ctx
, i
, val
);
2817 * Now take care of resetting the other registers
2819 for(i
= 0; reset_others
; i
++, reset_others
>>= 1) {
2821 if ((reset_others
& 0x1) == 0) continue;
2823 val
= pfm_new_counter_value(ctx
->ctx_pmds
+ i
, is_long_reset
);
2825 if (PMD_IS_COUNTING(i
)) {
2826 pfm_write_soft_counter(ctx
, i
, val
);
2828 ia64_set_pmd(i
, val
);
2830 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2831 is_long_reset
? "long" : "short", i
, val
));
2837 pfm_write_pmcs(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
2839 struct task_struct
*task
;
2840 pfarg_reg_t
*req
= (pfarg_reg_t
*)arg
;
2841 unsigned long value
, pmc_pm
;
2842 unsigned long smpl_pmds
, reset_pmds
, impl_pmds
;
2843 unsigned int cnum
, reg_flags
, flags
, pmc_type
;
2844 int i
, can_access_pmu
= 0, is_loaded
, is_system
, expert_mode
;
2845 int is_monitor
, is_counting
, state
;
2847 pfm_reg_check_t wr_func
;
2848 #define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2850 state
= ctx
->ctx_state
;
2851 is_loaded
= state
== PFM_CTX_LOADED
? 1 : 0;
2852 is_system
= ctx
->ctx_fl_system
;
2853 task
= ctx
->ctx_task
;
2854 impl_pmds
= pmu_conf
->impl_pmds
[0];
2856 if (state
== PFM_CTX_ZOMBIE
) return -EINVAL
;
2860 * In system wide and when the context is loaded, access can only happen
2861 * when the caller is running on the CPU being monitored by the session.
2862 * It does not have to be the owner (ctx_task) of the context per se.
2864 if (is_system
&& ctx
->ctx_cpu
!= smp_processor_id()) {
2865 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
2868 can_access_pmu
= GET_PMU_OWNER() == task
|| is_system
? 1 : 0;
2870 expert_mode
= pfm_sysctl
.expert_mode
;
2872 for (i
= 0; i
< count
; i
++, req
++) {
2874 cnum
= req
->reg_num
;
2875 reg_flags
= req
->reg_flags
;
2876 value
= req
->reg_value
;
2877 smpl_pmds
= req
->reg_smpl_pmds
[0];
2878 reset_pmds
= req
->reg_reset_pmds
[0];
2882 if (cnum
>= PMU_MAX_PMCS
) {
2883 DPRINT(("pmc%u is invalid\n", cnum
));
2887 pmc_type
= pmu_conf
->pmc_desc
[cnum
].type
;
2888 pmc_pm
= (value
>> pmu_conf
->pmc_desc
[cnum
].pm_pos
) & 0x1;
2889 is_counting
= (pmc_type
& PFM_REG_COUNTING
) == PFM_REG_COUNTING
? 1 : 0;
2890 is_monitor
= (pmc_type
& PFM_REG_MONITOR
) == PFM_REG_MONITOR
? 1 : 0;
2893 * we reject all non implemented PMC as well
2894 * as attempts to modify PMC[0-3] which are used
2895 * as status registers by the PMU
2897 if ((pmc_type
& PFM_REG_IMPL
) == 0 || (pmc_type
& PFM_REG_CONTROL
) == PFM_REG_CONTROL
) {
2898 DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum
, pmc_type
));
2901 wr_func
= pmu_conf
->pmc_desc
[cnum
].write_check
;
2903 * If the PMC is a monitor, then if the value is not the default:
2904 * - system-wide session: PMCx.pm=1 (privileged monitor)
2905 * - per-task : PMCx.pm=0 (user monitor)
2907 if (is_monitor
&& value
!= PMC_DFL_VAL(cnum
) && is_system
^ pmc_pm
) {
2908 DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2917 * enforce generation of overflow interrupt. Necessary on all
2920 value
|= 1 << PMU_PMC_OI
;
2922 if (reg_flags
& PFM_REGFL_OVFL_NOTIFY
) {
2923 flags
|= PFM_REGFL_OVFL_NOTIFY
;
2926 if (reg_flags
& PFM_REGFL_RANDOM
) flags
|= PFM_REGFL_RANDOM
;
2928 /* verify validity of smpl_pmds */
2929 if ((smpl_pmds
& impl_pmds
) != smpl_pmds
) {
2930 DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds
, cnum
));
2934 /* verify validity of reset_pmds */
2935 if ((reset_pmds
& impl_pmds
) != reset_pmds
) {
2936 DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds
, cnum
));
2940 if (reg_flags
& (PFM_REGFL_OVFL_NOTIFY
|PFM_REGFL_RANDOM
)) {
2941 DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum
));
2944 /* eventid on non-counting monitors are ignored */
2948 * execute write checker, if any
2950 if (likely(expert_mode
== 0 && wr_func
)) {
2951 ret
= (*wr_func
)(task
, ctx
, cnum
, &value
, regs
);
2952 if (ret
) goto error
;
2957 * no error on this register
2959 PFM_REG_RETFLAG_SET(req
->reg_flags
, 0);
2962 * Now we commit the changes to the software state
2966 * update overflow information
2970 * full flag update each time a register is programmed
2972 ctx
->ctx_pmds
[cnum
].flags
= flags
;
2974 ctx
->ctx_pmds
[cnum
].reset_pmds
[0] = reset_pmds
;
2975 ctx
->ctx_pmds
[cnum
].smpl_pmds
[0] = smpl_pmds
;
2976 ctx
->ctx_pmds
[cnum
].eventid
= req
->reg_smpl_eventid
;
2979 * Mark all PMDS to be accessed as used.
2981 * We do not keep track of PMC because we have to
2982 * systematically restore ALL of them.
2984 * We do not update the used_monitors mask, because
2985 * if we have not programmed them, then will be in
2986 * a quiescent state, therefore we will not need to
2987 * mask/restore then when context is MASKED.
2989 CTX_USED_PMD(ctx
, reset_pmds
);
2990 CTX_USED_PMD(ctx
, smpl_pmds
);
2992 * make sure we do not try to reset on
2993 * restart because we have established new values
2995 if (state
== PFM_CTX_MASKED
) ctx
->ctx_ovfl_regs
[0] &= ~1UL << cnum
;
2998 * Needed in case the user does not initialize the equivalent
2999 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
3000 * possible leak here.
3002 CTX_USED_PMD(ctx
, pmu_conf
->pmc_desc
[cnum
].dep_pmd
[0]);
3005 * keep track of the monitor PMC that we are using.
3006 * we save the value of the pmc in ctx_pmcs[] and if
3007 * the monitoring is not stopped for the context we also
3008 * place it in the saved state area so that it will be
3009 * picked up later by the context switch code.
3011 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
3013 * The value in th_pmcs[] may be modified on overflow, i.e., when
3014 * monitoring needs to be stopped.
3016 if (is_monitor
) CTX_USED_MONITOR(ctx
, 1UL << cnum
);
3019 * update context state
3021 ctx
->ctx_pmcs
[cnum
] = value
;
3025 * write thread state
3027 if (is_system
== 0) ctx
->th_pmcs
[cnum
] = value
;
3030 * write hardware register if we can
3032 if (can_access_pmu
) {
3033 ia64_set_pmc(cnum
, value
);
3038 * per-task SMP only here
3040 * we are guaranteed that the task is not running on the other CPU,
3041 * we indicate that this PMD will need to be reloaded if the task
3042 * is rescheduled on the CPU it ran last on.
3044 ctx
->ctx_reload_pmcs
[0] |= 1UL << cnum
;
3049 DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3055 ctx
->ctx_all_pmcs
[0],
3056 ctx
->ctx_used_pmds
[0],
3057 ctx
->ctx_pmds
[cnum
].eventid
,
3060 ctx
->ctx_reload_pmcs
[0],
3061 ctx
->ctx_used_monitors
[0],
3062 ctx
->ctx_ovfl_regs
[0]));
3066 * make sure the changes are visible
3068 if (can_access_pmu
) ia64_srlz_d();
3072 PFM_REG_RETFLAG_SET(req
->reg_flags
, PFM_REG_RETFL_EINVAL
);
3077 pfm_write_pmds(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3079 struct task_struct
*task
;
3080 pfarg_reg_t
*req
= (pfarg_reg_t
*)arg
;
3081 unsigned long value
, hw_value
, ovfl_mask
;
3083 int i
, can_access_pmu
= 0, state
;
3084 int is_counting
, is_loaded
, is_system
, expert_mode
;
3086 pfm_reg_check_t wr_func
;
3089 state
= ctx
->ctx_state
;
3090 is_loaded
= state
== PFM_CTX_LOADED
? 1 : 0;
3091 is_system
= ctx
->ctx_fl_system
;
3092 ovfl_mask
= pmu_conf
->ovfl_val
;
3093 task
= ctx
->ctx_task
;
3095 if (unlikely(state
== PFM_CTX_ZOMBIE
)) return -EINVAL
;
3098 * on both UP and SMP, we can only write to the PMC when the task is
3099 * the owner of the local PMU.
3101 if (likely(is_loaded
)) {
3103 * In system wide and when the context is loaded, access can only happen
3104 * when the caller is running on the CPU being monitored by the session.
3105 * It does not have to be the owner (ctx_task) of the context per se.
3107 if (unlikely(is_system
&& ctx
->ctx_cpu
!= smp_processor_id())) {
3108 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
3111 can_access_pmu
= GET_PMU_OWNER() == task
|| is_system
? 1 : 0;
3113 expert_mode
= pfm_sysctl
.expert_mode
;
3115 for (i
= 0; i
< count
; i
++, req
++) {
3117 cnum
= req
->reg_num
;
3118 value
= req
->reg_value
;
3120 if (!PMD_IS_IMPL(cnum
)) {
3121 DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum
));
3124 is_counting
= PMD_IS_COUNTING(cnum
);
3125 wr_func
= pmu_conf
->pmd_desc
[cnum
].write_check
;
3128 * execute write checker, if any
3130 if (unlikely(expert_mode
== 0 && wr_func
)) {
3131 unsigned long v
= value
;
3133 ret
= (*wr_func
)(task
, ctx
, cnum
, &v
, regs
);
3134 if (ret
) goto abort_mission
;
3141 * no error on this register
3143 PFM_REG_RETFLAG_SET(req
->reg_flags
, 0);
3146 * now commit changes to software state
3151 * update virtualized (64bits) counter
3155 * write context state
3157 ctx
->ctx_pmds
[cnum
].lval
= value
;
3160 * when context is load we use the split value
3163 hw_value
= value
& ovfl_mask
;
3164 value
= value
& ~ovfl_mask
;
3168 * update reset values (not just for counters)
3170 ctx
->ctx_pmds
[cnum
].long_reset
= req
->reg_long_reset
;
3171 ctx
->ctx_pmds
[cnum
].short_reset
= req
->reg_short_reset
;
3174 * update randomization parameters (not just for counters)
3176 ctx
->ctx_pmds
[cnum
].seed
= req
->reg_random_seed
;
3177 ctx
->ctx_pmds
[cnum
].mask
= req
->reg_random_mask
;
3180 * update context value
3182 ctx
->ctx_pmds
[cnum
].val
= value
;
3185 * Keep track of what we use
3187 * We do not keep track of PMC because we have to
3188 * systematically restore ALL of them.
3190 CTX_USED_PMD(ctx
, PMD_PMD_DEP(cnum
));
3193 * mark this PMD register used as well
3195 CTX_USED_PMD(ctx
, RDEP(cnum
));
3198 * make sure we do not try to reset on
3199 * restart because we have established new values
3201 if (is_counting
&& state
== PFM_CTX_MASKED
) {
3202 ctx
->ctx_ovfl_regs
[0] &= ~1UL << cnum
;
3207 * write thread state
3209 if (is_system
== 0) ctx
->th_pmds
[cnum
] = hw_value
;
3212 * write hardware register if we can
3214 if (can_access_pmu
) {
3215 ia64_set_pmd(cnum
, hw_value
);
3219 * we are guaranteed that the task is not running on the other CPU,
3220 * we indicate that this PMD will need to be reloaded if the task
3221 * is rescheduled on the CPU it ran last on.
3223 ctx
->ctx_reload_pmds
[0] |= 1UL << cnum
;
3228 DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx short_reset=0x%lx "
3229 "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3235 ctx
->ctx_pmds
[cnum
].val
,
3236 ctx
->ctx_pmds
[cnum
].short_reset
,
3237 ctx
->ctx_pmds
[cnum
].long_reset
,
3238 PMC_OVFL_NOTIFY(ctx
, cnum
) ? 'Y':'N',
3239 ctx
->ctx_pmds
[cnum
].seed
,
3240 ctx
->ctx_pmds
[cnum
].mask
,
3241 ctx
->ctx_used_pmds
[0],
3242 ctx
->ctx_pmds
[cnum
].reset_pmds
[0],
3243 ctx
->ctx_reload_pmds
[0],
3244 ctx
->ctx_all_pmds
[0],
3245 ctx
->ctx_ovfl_regs
[0]));
3249 * make changes visible
3251 if (can_access_pmu
) ia64_srlz_d();
3257 * for now, we have only one possibility for error
3259 PFM_REG_RETFLAG_SET(req
->reg_flags
, PFM_REG_RETFL_EINVAL
);
3264 * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3265 * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3266 * interrupt is delivered during the call, it will be kept pending until we leave, making
3267 * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3268 * guaranteed to return consistent data to the user, it may simply be old. It is not
3269 * trivial to treat the overflow while inside the call because you may end up in
3270 * some module sampling buffer code causing deadlocks.
3273 pfm_read_pmds(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3275 struct task_struct
*task
;
3276 unsigned long val
= 0UL, lval
, ovfl_mask
, sval
;
3277 pfarg_reg_t
*req
= (pfarg_reg_t
*)arg
;
3278 unsigned int cnum
, reg_flags
= 0;
3279 int i
, can_access_pmu
= 0, state
;
3280 int is_loaded
, is_system
, is_counting
, expert_mode
;
3282 pfm_reg_check_t rd_func
;
3285 * access is possible when loaded only for
3286 * self-monitoring tasks or in UP mode
3289 state
= ctx
->ctx_state
;
3290 is_loaded
= state
== PFM_CTX_LOADED
? 1 : 0;
3291 is_system
= ctx
->ctx_fl_system
;
3292 ovfl_mask
= pmu_conf
->ovfl_val
;
3293 task
= ctx
->ctx_task
;
3295 if (state
== PFM_CTX_ZOMBIE
) return -EINVAL
;
3297 if (likely(is_loaded
)) {
3299 * In system wide and when the context is loaded, access can only happen
3300 * when the caller is running on the CPU being monitored by the session.
3301 * It does not have to be the owner (ctx_task) of the context per se.
3303 if (unlikely(is_system
&& ctx
->ctx_cpu
!= smp_processor_id())) {
3304 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
3308 * this can be true when not self-monitoring only in UP
3310 can_access_pmu
= GET_PMU_OWNER() == task
|| is_system
? 1 : 0;
3312 if (can_access_pmu
) ia64_srlz_d();
3314 expert_mode
= pfm_sysctl
.expert_mode
;
3316 DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3322 * on both UP and SMP, we can only read the PMD from the hardware register when
3323 * the task is the owner of the local PMU.
3326 for (i
= 0; i
< count
; i
++, req
++) {
3328 cnum
= req
->reg_num
;
3329 reg_flags
= req
->reg_flags
;
3331 if (unlikely(!PMD_IS_IMPL(cnum
))) goto error
;
3333 * we can only read the register that we use. That includes
3334 * the one we explicitly initialize AND the one we want included
3335 * in the sampling buffer (smpl_regs).
3337 * Having this restriction allows optimization in the ctxsw routine
3338 * without compromising security (leaks)
3340 if (unlikely(!CTX_IS_USED_PMD(ctx
, cnum
))) goto error
;
3342 sval
= ctx
->ctx_pmds
[cnum
].val
;
3343 lval
= ctx
->ctx_pmds
[cnum
].lval
;
3344 is_counting
= PMD_IS_COUNTING(cnum
);
3347 * If the task is not the current one, then we check if the
3348 * PMU state is still in the local live register due to lazy ctxsw.
3349 * If true, then we read directly from the registers.
3351 if (can_access_pmu
){
3352 val
= ia64_get_pmd(cnum
);
3355 * context has been saved
3356 * if context is zombie, then task does not exist anymore.
3357 * In this case, we use the full value saved in the context (pfm_flush_regs()).
3359 val
= is_loaded
? ctx
->th_pmds
[cnum
] : 0UL;
3361 rd_func
= pmu_conf
->pmd_desc
[cnum
].read_check
;
3365 * XXX: need to check for overflow when loaded
3372 * execute read checker, if any
3374 if (unlikely(expert_mode
== 0 && rd_func
)) {
3375 unsigned long v
= val
;
3376 ret
= (*rd_func
)(ctx
->ctx_task
, ctx
, cnum
, &v
, regs
);
3377 if (ret
) goto error
;
3382 PFM_REG_RETFLAG_SET(reg_flags
, 0);
3384 DPRINT(("pmd[%u]=0x%lx\n", cnum
, val
));
3387 * update register return value, abort all if problem during copy.
3388 * we only modify the reg_flags field. no check mode is fine because
3389 * access has been verified upfront in sys_perfmonctl().
3391 req
->reg_value
= val
;
3392 req
->reg_flags
= reg_flags
;
3393 req
->reg_last_reset_val
= lval
;
3399 PFM_REG_RETFLAG_SET(req
->reg_flags
, PFM_REG_RETFL_EINVAL
);
3404 pfm_mod_write_pmcs(struct task_struct
*task
, void *req
, unsigned int nreq
, struct pt_regs
*regs
)
3408 if (req
== NULL
) return -EINVAL
;
3410 ctx
= GET_PMU_CTX();
3412 if (ctx
== NULL
) return -EINVAL
;
3415 * for now limit to current task, which is enough when calling
3416 * from overflow handler
3418 if (task
!= current
&& ctx
->ctx_fl_system
== 0) return -EBUSY
;
3420 return pfm_write_pmcs(ctx
, req
, nreq
, regs
);
3422 EXPORT_SYMBOL(pfm_mod_write_pmcs
);
3425 pfm_mod_read_pmds(struct task_struct
*task
, void *req
, unsigned int nreq
, struct pt_regs
*regs
)
3429 if (req
== NULL
) return -EINVAL
;
3431 ctx
= GET_PMU_CTX();
3433 if (ctx
== NULL
) return -EINVAL
;
3436 * for now limit to current task, which is enough when calling
3437 * from overflow handler
3439 if (task
!= current
&& ctx
->ctx_fl_system
== 0) return -EBUSY
;
3441 return pfm_read_pmds(ctx
, req
, nreq
, regs
);
3443 EXPORT_SYMBOL(pfm_mod_read_pmds
);
3446 * Only call this function when a process it trying to
3447 * write the debug registers (reading is always allowed)
3450 pfm_use_debug_registers(struct task_struct
*task
)
3452 pfm_context_t
*ctx
= task
->thread
.pfm_context
;
3453 unsigned long flags
;
3456 if (pmu_conf
->use_rr_dbregs
== 0) return 0;
3458 DPRINT(("called for [%d]\n", task_pid_nr(task
)));
3463 if (task
->thread
.flags
& IA64_THREAD_DBG_VALID
) return 0;
3466 * Even on SMP, we do not need to use an atomic here because
3467 * the only way in is via ptrace() and this is possible only when the
3468 * process is stopped. Even in the case where the ctxsw out is not totally
3469 * completed by the time we come here, there is no way the 'stopped' process
3470 * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3471 * So this is always safe.
3473 if (ctx
&& ctx
->ctx_fl_using_dbreg
== 1) return -1;
3478 * We cannot allow setting breakpoints when system wide monitoring
3479 * sessions are using the debug registers.
3481 if (pfm_sessions
.pfs_sys_use_dbregs
> 0)
3484 pfm_sessions
.pfs_ptrace_use_dbregs
++;
3486 DPRINT(("ptrace_use_dbregs=%u sys_use_dbregs=%u by [%d] ret = %d\n",
3487 pfm_sessions
.pfs_ptrace_use_dbregs
,
3488 pfm_sessions
.pfs_sys_use_dbregs
,
3489 task_pid_nr(task
), ret
));
3497 * This function is called for every task that exits with the
3498 * IA64_THREAD_DBG_VALID set. This indicates a task which was
3499 * able to use the debug registers for debugging purposes via
3500 * ptrace(). Therefore we know it was not using them for
3501 * performance monitoring, so we only decrement the number
3502 * of "ptraced" debug register users to keep the count up to date
3505 pfm_release_debug_registers(struct task_struct
*task
)
3507 unsigned long flags
;
3510 if (pmu_conf
->use_rr_dbregs
== 0) return 0;
3513 if (pfm_sessions
.pfs_ptrace_use_dbregs
== 0) {
3514 printk(KERN_ERR
"perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task_pid_nr(task
));
3517 pfm_sessions
.pfs_ptrace_use_dbregs
--;
3526 pfm_restart(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3528 struct task_struct
*task
;
3529 pfm_buffer_fmt_t
*fmt
;
3530 pfm_ovfl_ctrl_t rst_ctrl
;
3531 int state
, is_system
;
3534 state
= ctx
->ctx_state
;
3535 fmt
= ctx
->ctx_buf_fmt
;
3536 is_system
= ctx
->ctx_fl_system
;
3537 task
= PFM_CTX_TASK(ctx
);
3540 case PFM_CTX_MASKED
:
3542 case PFM_CTX_LOADED
:
3543 if (CTX_HAS_SMPL(ctx
) && fmt
->fmt_restart_active
) break;
3545 case PFM_CTX_UNLOADED
:
3546 case PFM_CTX_ZOMBIE
:
3547 DPRINT(("invalid state=%d\n", state
));
3550 DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state
));
3555 * In system wide and when the context is loaded, access can only happen
3556 * when the caller is running on the CPU being monitored by the session.
3557 * It does not have to be the owner (ctx_task) of the context per se.
3559 if (is_system
&& ctx
->ctx_cpu
!= smp_processor_id()) {
3560 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
3565 if (unlikely(task
== NULL
)) {
3566 printk(KERN_ERR
"perfmon: [%d] pfm_restart no task\n", task_pid_nr(current
));
3570 if (task
== current
|| is_system
) {
3572 fmt
= ctx
->ctx_buf_fmt
;
3574 DPRINT(("restarting self %d ovfl=0x%lx\n",
3576 ctx
->ctx_ovfl_regs
[0]));
3578 if (CTX_HAS_SMPL(ctx
)) {
3580 prefetch(ctx
->ctx_smpl_hdr
);
3582 rst_ctrl
.bits
.mask_monitoring
= 0;
3583 rst_ctrl
.bits
.reset_ovfl_pmds
= 0;
3585 if (state
== PFM_CTX_LOADED
)
3586 ret
= pfm_buf_fmt_restart_active(fmt
, task
, &rst_ctrl
, ctx
->ctx_smpl_hdr
, regs
);
3588 ret
= pfm_buf_fmt_restart(fmt
, task
, &rst_ctrl
, ctx
->ctx_smpl_hdr
, regs
);
3590 rst_ctrl
.bits
.mask_monitoring
= 0;
3591 rst_ctrl
.bits
.reset_ovfl_pmds
= 1;
3595 if (rst_ctrl
.bits
.reset_ovfl_pmds
)
3596 pfm_reset_regs(ctx
, ctx
->ctx_ovfl_regs
, PFM_PMD_LONG_RESET
);
3598 if (rst_ctrl
.bits
.mask_monitoring
== 0) {
3599 DPRINT(("resuming monitoring for [%d]\n", task_pid_nr(task
)));
3601 if (state
== PFM_CTX_MASKED
) pfm_restore_monitoring(task
);
3603 DPRINT(("keeping monitoring stopped for [%d]\n", task_pid_nr(task
)));
3605 // cannot use pfm_stop_monitoring(task, regs);
3609 * clear overflowed PMD mask to remove any stale information
3611 ctx
->ctx_ovfl_regs
[0] = 0UL;
3614 * back to LOADED state
3616 ctx
->ctx_state
= PFM_CTX_LOADED
;
3619 * XXX: not really useful for self monitoring
3621 ctx
->ctx_fl_can_restart
= 0;
3627 * restart another task
3631 * When PFM_CTX_MASKED, we cannot issue a restart before the previous
3632 * one is seen by the task.
3634 if (state
== PFM_CTX_MASKED
) {
3635 if (ctx
->ctx_fl_can_restart
== 0) return -EINVAL
;
3637 * will prevent subsequent restart before this one is
3638 * seen by other task
3640 ctx
->ctx_fl_can_restart
= 0;
3644 * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3645 * the task is blocked or on its way to block. That's the normal
3646 * restart path. If the monitoring is not masked, then the task
3647 * can be actively monitoring and we cannot directly intervene.
3648 * Therefore we use the trap mechanism to catch the task and
3649 * force it to reset the buffer/reset PMDs.
3651 * if non-blocking, then we ensure that the task will go into
3652 * pfm_handle_work() before returning to user mode.
3654 * We cannot explicitly reset another task, it MUST always
3655 * be done by the task itself. This works for system wide because
3656 * the tool that is controlling the session is logically doing
3657 * "self-monitoring".
3659 if (CTX_OVFL_NOBLOCK(ctx
) == 0 && state
== PFM_CTX_MASKED
) {
3660 DPRINT(("unblocking [%d]\n", task_pid_nr(task
)));
3661 complete(&ctx
->ctx_restart_done
);
3663 DPRINT(("[%d] armed exit trap\n", task_pid_nr(task
)));
3665 ctx
->ctx_fl_trap_reason
= PFM_TRAP_REASON_RESET
;
3667 PFM_SET_WORK_PENDING(task
, 1);
3669 set_notify_resume(task
);
3672 * XXX: send reschedule if task runs on another CPU
3679 pfm_debug(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3681 unsigned int m
= *(unsigned int *)arg
;
3683 pfm_sysctl
.debug
= m
== 0 ? 0 : 1;
3685 printk(KERN_INFO
"perfmon debugging %s (timing reset)\n", pfm_sysctl
.debug
? "on" : "off");
3688 memset(pfm_stats
, 0, sizeof(pfm_stats
));
3689 for(m
=0; m
< NR_CPUS
; m
++) pfm_stats
[m
].pfm_ovfl_intr_cycles_min
= ~0UL;
3695 * arg can be NULL and count can be zero for this function
3698 pfm_write_ibr_dbr(int mode
, pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3700 struct thread_struct
*thread
= NULL
;
3701 struct task_struct
*task
;
3702 pfarg_dbreg_t
*req
= (pfarg_dbreg_t
*)arg
;
3703 unsigned long flags
;
3708 int i
, can_access_pmu
= 0;
3709 int is_system
, is_loaded
;
3711 if (pmu_conf
->use_rr_dbregs
== 0) return -EINVAL
;
3713 state
= ctx
->ctx_state
;
3714 is_loaded
= state
== PFM_CTX_LOADED
? 1 : 0;
3715 is_system
= ctx
->ctx_fl_system
;
3716 task
= ctx
->ctx_task
;
3718 if (state
== PFM_CTX_ZOMBIE
) return -EINVAL
;
3721 * on both UP and SMP, we can only write to the PMC when the task is
3722 * the owner of the local PMU.
3725 thread
= &task
->thread
;
3727 * In system wide and when the context is loaded, access can only happen
3728 * when the caller is running on the CPU being monitored by the session.
3729 * It does not have to be the owner (ctx_task) of the context per se.
3731 if (unlikely(is_system
&& ctx
->ctx_cpu
!= smp_processor_id())) {
3732 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
3735 can_access_pmu
= GET_PMU_OWNER() == task
|| is_system
? 1 : 0;
3739 * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3740 * ensuring that no real breakpoint can be installed via this call.
3742 * IMPORTANT: regs can be NULL in this function
3745 first_time
= ctx
->ctx_fl_using_dbreg
== 0;
3748 * don't bother if we are loaded and task is being debugged
3750 if (is_loaded
&& (thread
->flags
& IA64_THREAD_DBG_VALID
) != 0) {
3751 DPRINT(("debug registers already in use for [%d]\n", task_pid_nr(task
)));
3756 * check for debug registers in system wide mode
3758 * If though a check is done in pfm_context_load(),
3759 * we must repeat it here, in case the registers are
3760 * written after the context is loaded
3765 if (first_time
&& is_system
) {
3766 if (pfm_sessions
.pfs_ptrace_use_dbregs
)
3769 pfm_sessions
.pfs_sys_use_dbregs
++;
3774 if (ret
!= 0) return ret
;
3777 * mark ourself as user of the debug registers for
3780 ctx
->ctx_fl_using_dbreg
= 1;
3783 * clear hardware registers to make sure we don't
3784 * pick up stale state.
3786 * for a system wide session, we do not use
3787 * thread.dbr, thread.ibr because this process
3788 * never leaves the current CPU and the state
3789 * is shared by all processes running on it
3791 if (first_time
&& can_access_pmu
) {
3792 DPRINT(("[%d] clearing ibrs, dbrs\n", task_pid_nr(task
)));
3793 for (i
=0; i
< pmu_conf
->num_ibrs
; i
++) {
3794 ia64_set_ibr(i
, 0UL);
3795 ia64_dv_serialize_instruction();
3798 for (i
=0; i
< pmu_conf
->num_dbrs
; i
++) {
3799 ia64_set_dbr(i
, 0UL);
3800 ia64_dv_serialize_data();
3806 * Now install the values into the registers
3808 for (i
= 0; i
< count
; i
++, req
++) {
3810 rnum
= req
->dbreg_num
;
3811 dbreg
.val
= req
->dbreg_value
;
3815 if ((mode
== PFM_CODE_RR
&& rnum
>= PFM_NUM_IBRS
) || ((mode
== PFM_DATA_RR
) && rnum
>= PFM_NUM_DBRS
)) {
3816 DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3817 rnum
, dbreg
.val
, mode
, i
, count
));
3823 * make sure we do not install enabled breakpoint
3826 if (mode
== PFM_CODE_RR
)
3827 dbreg
.ibr
.ibr_x
= 0;
3829 dbreg
.dbr
.dbr_r
= dbreg
.dbr
.dbr_w
= 0;
3832 PFM_REG_RETFLAG_SET(req
->dbreg_flags
, 0);
3835 * Debug registers, just like PMC, can only be modified
3836 * by a kernel call. Moreover, perfmon() access to those
3837 * registers are centralized in this routine. The hardware
3838 * does not modify the value of these registers, therefore,
3839 * if we save them as they are written, we can avoid having
3840 * to save them on context switch out. This is made possible
3841 * by the fact that when perfmon uses debug registers, ptrace()
3842 * won't be able to modify them concurrently.
3844 if (mode
== PFM_CODE_RR
) {
3845 CTX_USED_IBR(ctx
, rnum
);
3847 if (can_access_pmu
) {
3848 ia64_set_ibr(rnum
, dbreg
.val
);
3849 ia64_dv_serialize_instruction();
3852 ctx
->ctx_ibrs
[rnum
] = dbreg
.val
;
3854 DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3855 rnum
, dbreg
.val
, ctx
->ctx_used_ibrs
[0], is_loaded
, can_access_pmu
));
3857 CTX_USED_DBR(ctx
, rnum
);
3859 if (can_access_pmu
) {
3860 ia64_set_dbr(rnum
, dbreg
.val
);
3861 ia64_dv_serialize_data();
3863 ctx
->ctx_dbrs
[rnum
] = dbreg
.val
;
3865 DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3866 rnum
, dbreg
.val
, ctx
->ctx_used_dbrs
[0], is_loaded
, can_access_pmu
));
3874 * in case it was our first attempt, we undo the global modifications
3878 if (ctx
->ctx_fl_system
) {
3879 pfm_sessions
.pfs_sys_use_dbregs
--;
3882 ctx
->ctx_fl_using_dbreg
= 0;
3885 * install error return flag
3887 PFM_REG_RETFLAG_SET(req
->dbreg_flags
, PFM_REG_RETFL_EINVAL
);
3893 pfm_write_ibrs(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3895 return pfm_write_ibr_dbr(PFM_CODE_RR
, ctx
, arg
, count
, regs
);
3899 pfm_write_dbrs(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3901 return pfm_write_ibr_dbr(PFM_DATA_RR
, ctx
, arg
, count
, regs
);
3905 pfm_mod_write_ibrs(struct task_struct
*task
, void *req
, unsigned int nreq
, struct pt_regs
*regs
)
3909 if (req
== NULL
) return -EINVAL
;
3911 ctx
= GET_PMU_CTX();
3913 if (ctx
== NULL
) return -EINVAL
;
3916 * for now limit to current task, which is enough when calling
3917 * from overflow handler
3919 if (task
!= current
&& ctx
->ctx_fl_system
== 0) return -EBUSY
;
3921 return pfm_write_ibrs(ctx
, req
, nreq
, regs
);
3923 EXPORT_SYMBOL(pfm_mod_write_ibrs
);
3926 pfm_mod_write_dbrs(struct task_struct
*task
, void *req
, unsigned int nreq
, struct pt_regs
*regs
)
3930 if (req
== NULL
) return -EINVAL
;
3932 ctx
= GET_PMU_CTX();
3934 if (ctx
== NULL
) return -EINVAL
;
3937 * for now limit to current task, which is enough when calling
3938 * from overflow handler
3940 if (task
!= current
&& ctx
->ctx_fl_system
== 0) return -EBUSY
;
3942 return pfm_write_dbrs(ctx
, req
, nreq
, regs
);
3944 EXPORT_SYMBOL(pfm_mod_write_dbrs
);
3948 pfm_get_features(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3950 pfarg_features_t
*req
= (pfarg_features_t
*)arg
;
3952 req
->ft_version
= PFM_VERSION
;
3957 pfm_stop(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3959 struct pt_regs
*tregs
;
3960 struct task_struct
*task
= PFM_CTX_TASK(ctx
);
3961 int state
, is_system
;
3963 state
= ctx
->ctx_state
;
3964 is_system
= ctx
->ctx_fl_system
;
3967 * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
3969 if (state
== PFM_CTX_UNLOADED
) return -EINVAL
;
3972 * In system wide and when the context is loaded, access can only happen
3973 * when the caller is running on the CPU being monitored by the session.
3974 * It does not have to be the owner (ctx_task) of the context per se.
3976 if (is_system
&& ctx
->ctx_cpu
!= smp_processor_id()) {
3977 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
3980 DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
3981 task_pid_nr(PFM_CTX_TASK(ctx
)),
3985 * in system mode, we need to update the PMU directly
3986 * and the user level state of the caller, which may not
3987 * necessarily be the creator of the context.
3991 * Update local PMU first
3995 ia64_setreg(_IA64_REG_CR_DCR
, ia64_getreg(_IA64_REG_CR_DCR
) & ~IA64_DCR_PP
);
3999 * update local cpuinfo
4001 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP
);
4004 * stop monitoring, does srlz.i
4009 * stop monitoring in the caller
4011 ia64_psr(regs
)->pp
= 0;
4019 if (task
== current
) {
4020 /* stop monitoring at kernel level */
4024 * stop monitoring at the user level
4026 ia64_psr(regs
)->up
= 0;
4028 tregs
= task_pt_regs(task
);
4031 * stop monitoring at the user level
4033 ia64_psr(tregs
)->up
= 0;
4036 * monitoring disabled in kernel at next reschedule
4038 ctx
->ctx_saved_psr_up
= 0;
4039 DPRINT(("task=[%d]\n", task_pid_nr(task
)));
4046 pfm_start(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
4048 struct pt_regs
*tregs
;
4049 int state
, is_system
;
4051 state
= ctx
->ctx_state
;
4052 is_system
= ctx
->ctx_fl_system
;
4054 if (state
!= PFM_CTX_LOADED
) return -EINVAL
;
4057 * In system wide and when the context is loaded, access can only happen
4058 * when the caller is running on the CPU being monitored by the session.
4059 * It does not have to be the owner (ctx_task) of the context per se.
4061 if (is_system
&& ctx
->ctx_cpu
!= smp_processor_id()) {
4062 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
4067 * in system mode, we need to update the PMU directly
4068 * and the user level state of the caller, which may not
4069 * necessarily be the creator of the context.
4074 * set user level psr.pp for the caller
4076 ia64_psr(regs
)->pp
= 1;
4079 * now update the local PMU and cpuinfo
4081 PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP
);
4084 * start monitoring at kernel level
4089 ia64_setreg(_IA64_REG_CR_DCR
, ia64_getreg(_IA64_REG_CR_DCR
) | IA64_DCR_PP
);
4099 if (ctx
->ctx_task
== current
) {
4101 /* start monitoring at kernel level */
4105 * activate monitoring at user level
4107 ia64_psr(regs
)->up
= 1;
4110 tregs
= task_pt_regs(ctx
->ctx_task
);
4113 * start monitoring at the kernel level the next
4114 * time the task is scheduled
4116 ctx
->ctx_saved_psr_up
= IA64_PSR_UP
;
4119 * activate monitoring at user level
4121 ia64_psr(tregs
)->up
= 1;
4127 pfm_get_pmc_reset(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
4129 pfarg_reg_t
*req
= (pfarg_reg_t
*)arg
;
4134 for (i
= 0; i
< count
; i
++, req
++) {
4136 cnum
= req
->reg_num
;
4138 if (!PMC_IS_IMPL(cnum
)) goto abort_mission
;
4140 req
->reg_value
= PMC_DFL_VAL(cnum
);
4142 PFM_REG_RETFLAG_SET(req
->reg_flags
, 0);
4144 DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum
, req
->reg_value
));
4149 PFM_REG_RETFLAG_SET(req
->reg_flags
, PFM_REG_RETFL_EINVAL
);
4154 pfm_check_task_exist(pfm_context_t
*ctx
)
4156 struct task_struct
*g
, *t
;
4159 read_lock(&tasklist_lock
);
4161 do_each_thread (g
, t
) {
4162 if (t
->thread
.pfm_context
== ctx
) {
4166 } while_each_thread (g
, t
);
4168 read_unlock(&tasklist_lock
);
4170 DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret
, ctx
));
4176 pfm_context_load(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
4178 struct task_struct
*task
;
4179 struct thread_struct
*thread
;
4180 struct pfm_context_t
*old
;
4181 unsigned long flags
;
4183 struct task_struct
*owner_task
= NULL
;
4185 pfarg_load_t
*req
= (pfarg_load_t
*)arg
;
4186 unsigned long *pmcs_source
, *pmds_source
;
4189 int state
, is_system
, set_dbregs
= 0;
4191 state
= ctx
->ctx_state
;
4192 is_system
= ctx
->ctx_fl_system
;
4194 * can only load from unloaded or terminated state
4196 if (state
!= PFM_CTX_UNLOADED
) {
4197 DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4203 DPRINT(("load_pid [%d] using_dbreg=%d\n", req
->load_pid
, ctx
->ctx_fl_using_dbreg
));
4205 if (CTX_OVFL_NOBLOCK(ctx
) == 0 && req
->load_pid
== current
->pid
) {
4206 DPRINT(("cannot use blocking mode on self\n"));
4210 ret
= pfm_get_task(ctx
, req
->load_pid
, &task
);
4212 DPRINT(("load_pid [%d] get_task=%d\n", req
->load_pid
, ret
));
4219 * system wide is self monitoring only
4221 if (is_system
&& task
!= current
) {
4222 DPRINT(("system wide is self monitoring only load_pid=%d\n",
4227 thread
= &task
->thread
;
4231 * cannot load a context which is using range restrictions,
4232 * into a task that is being debugged.
4234 if (ctx
->ctx_fl_using_dbreg
) {
4235 if (thread
->flags
& IA64_THREAD_DBG_VALID
) {
4237 DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req
->load_pid
));
4243 if (pfm_sessions
.pfs_ptrace_use_dbregs
) {
4244 DPRINT(("cannot load [%d] dbregs in use\n",
4245 task_pid_nr(task
)));
4248 pfm_sessions
.pfs_sys_use_dbregs
++;
4249 DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task_pid_nr(task
), pfm_sessions
.pfs_sys_use_dbregs
));
4256 if (ret
) goto error
;
4260 * SMP system-wide monitoring implies self-monitoring.
4262 * The programming model expects the task to
4263 * be pinned on a CPU throughout the session.
4264 * Here we take note of the current CPU at the
4265 * time the context is loaded. No call from
4266 * another CPU will be allowed.
4268 * The pinning via shed_setaffinity()
4269 * must be done by the calling task prior
4272 * systemwide: keep track of CPU this session is supposed to run on
4274 the_cpu
= ctx
->ctx_cpu
= smp_processor_id();
4278 * now reserve the session
4280 ret
= pfm_reserve_session(current
, is_system
, the_cpu
);
4281 if (ret
) goto error
;
4284 * task is necessarily stopped at this point.
4286 * If the previous context was zombie, then it got removed in
4287 * pfm_save_regs(). Therefore we should not see it here.
4288 * If we see a context, then this is an active context
4290 * XXX: needs to be atomic
4292 DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4293 thread
->pfm_context
, ctx
));
4296 old
= ia64_cmpxchg(acq
, &thread
->pfm_context
, NULL
, ctx
, sizeof(pfm_context_t
*));
4298 DPRINT(("load_pid [%d] already has a context\n", req
->load_pid
));
4302 pfm_reset_msgq(ctx
);
4304 ctx
->ctx_state
= PFM_CTX_LOADED
;
4307 * link context to task
4309 ctx
->ctx_task
= task
;
4313 * we load as stopped
4315 PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE
);
4316 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP
);
4318 if (ctx
->ctx_fl_excl_idle
) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE
);
4320 thread
->flags
|= IA64_THREAD_PM_VALID
;
4324 * propagate into thread-state
4326 pfm_copy_pmds(task
, ctx
);
4327 pfm_copy_pmcs(task
, ctx
);
4329 pmcs_source
= ctx
->th_pmcs
;
4330 pmds_source
= ctx
->th_pmds
;
4333 * always the case for system-wide
4335 if (task
== current
) {
4337 if (is_system
== 0) {
4339 /* allow user level control */
4340 ia64_psr(regs
)->sp
= 0;
4341 DPRINT(("clearing psr.sp for [%d]\n", task_pid_nr(task
)));
4343 SET_LAST_CPU(ctx
, smp_processor_id());
4345 SET_ACTIVATION(ctx
);
4348 * push the other task out, if any
4350 owner_task
= GET_PMU_OWNER();
4351 if (owner_task
) pfm_lazy_save_regs(owner_task
);
4355 * load all PMD from ctx to PMU (as opposed to thread state)
4356 * restore all PMC from ctx to PMU
4358 pfm_restore_pmds(pmds_source
, ctx
->ctx_all_pmds
[0]);
4359 pfm_restore_pmcs(pmcs_source
, ctx
->ctx_all_pmcs
[0]);
4361 ctx
->ctx_reload_pmcs
[0] = 0UL;
4362 ctx
->ctx_reload_pmds
[0] = 0UL;
4365 * guaranteed safe by earlier check against DBG_VALID
4367 if (ctx
->ctx_fl_using_dbreg
) {
4368 pfm_restore_ibrs(ctx
->ctx_ibrs
, pmu_conf
->num_ibrs
);
4369 pfm_restore_dbrs(ctx
->ctx_dbrs
, pmu_conf
->num_dbrs
);
4374 SET_PMU_OWNER(task
, ctx
);
4376 DPRINT(("context loaded on PMU for [%d]\n", task_pid_nr(task
)));
4379 * when not current, task MUST be stopped, so this is safe
4381 regs
= task_pt_regs(task
);
4383 /* force a full reload */
4384 ctx
->ctx_last_activation
= PFM_INVALID_ACTIVATION
;
4385 SET_LAST_CPU(ctx
, -1);
4387 /* initial saved psr (stopped) */
4388 ctx
->ctx_saved_psr_up
= 0UL;
4389 ia64_psr(regs
)->up
= ia64_psr(regs
)->pp
= 0;
4395 if (ret
) pfm_unreserve_session(ctx
, ctx
->ctx_fl_system
, the_cpu
);
4398 * we must undo the dbregs setting (for system-wide)
4400 if (ret
&& set_dbregs
) {
4402 pfm_sessions
.pfs_sys_use_dbregs
--;
4406 * release task, there is now a link with the context
4408 if (is_system
== 0 && task
!= current
) {
4412 ret
= pfm_check_task_exist(ctx
);
4414 ctx
->ctx_state
= PFM_CTX_UNLOADED
;
4415 ctx
->ctx_task
= NULL
;
4423 * in this function, we do not need to increase the use count
4424 * for the task via get_task_struct(), because we hold the
4425 * context lock. If the task were to disappear while having
4426 * a context attached, it would go through pfm_exit_thread()
4427 * which also grabs the context lock and would therefore be blocked
4428 * until we are here.
4430 static void pfm_flush_pmds(struct task_struct
*, pfm_context_t
*ctx
);
4433 pfm_context_unload(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
4435 struct task_struct
*task
= PFM_CTX_TASK(ctx
);
4436 struct pt_regs
*tregs
;
4437 int prev_state
, is_system
;
4440 DPRINT(("ctx_state=%d task [%d]\n", ctx
->ctx_state
, task
? task_pid_nr(task
) : -1));
4442 prev_state
= ctx
->ctx_state
;
4443 is_system
= ctx
->ctx_fl_system
;
4446 * unload only when necessary
4448 if (prev_state
== PFM_CTX_UNLOADED
) {
4449 DPRINT(("ctx_state=%d, nothing to do\n", prev_state
));
4454 * clear psr and dcr bits
4456 ret
= pfm_stop(ctx
, NULL
, 0, regs
);
4457 if (ret
) return ret
;
4459 ctx
->ctx_state
= PFM_CTX_UNLOADED
;
4462 * in system mode, we need to update the PMU directly
4463 * and the user level state of the caller, which may not
4464 * necessarily be the creator of the context.
4471 * local PMU is taken care of in pfm_stop()
4473 PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE
);
4474 PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE
);
4477 * save PMDs in context
4480 pfm_flush_pmds(current
, ctx
);
4483 * at this point we are done with the PMU
4484 * so we can unreserve the resource.
4486 if (prev_state
!= PFM_CTX_ZOMBIE
)
4487 pfm_unreserve_session(ctx
, 1 , ctx
->ctx_cpu
);
4490 * disconnect context from task
4492 task
->thread
.pfm_context
= NULL
;
4494 * disconnect task from context
4496 ctx
->ctx_task
= NULL
;
4499 * There is nothing more to cleanup here.
4507 tregs
= task
== current
? regs
: task_pt_regs(task
);
4509 if (task
== current
) {
4511 * cancel user level control
4513 ia64_psr(regs
)->sp
= 1;
4515 DPRINT(("setting psr.sp for [%d]\n", task_pid_nr(task
)));
4518 * save PMDs to context
4521 pfm_flush_pmds(task
, ctx
);
4524 * at this point we are done with the PMU
4525 * so we can unreserve the resource.
4527 * when state was ZOMBIE, we have already unreserved.
4529 if (prev_state
!= PFM_CTX_ZOMBIE
)
4530 pfm_unreserve_session(ctx
, 0 , ctx
->ctx_cpu
);
4533 * reset activation counter and psr
4535 ctx
->ctx_last_activation
= PFM_INVALID_ACTIVATION
;
4536 SET_LAST_CPU(ctx
, -1);
4539 * PMU state will not be restored
4541 task
->thread
.flags
&= ~IA64_THREAD_PM_VALID
;
4544 * break links between context and task
4546 task
->thread
.pfm_context
= NULL
;
4547 ctx
->ctx_task
= NULL
;
4549 PFM_SET_WORK_PENDING(task
, 0);
4551 ctx
->ctx_fl_trap_reason
= PFM_TRAP_REASON_NONE
;
4552 ctx
->ctx_fl_can_restart
= 0;
4553 ctx
->ctx_fl_going_zombie
= 0;
4555 DPRINT(("disconnected [%d] from context\n", task_pid_nr(task
)));
4562 * called only from exit_thread(): task == current
4563 * we come here only if current has a context attached (loaded or masked)
4566 pfm_exit_thread(struct task_struct
*task
)
4569 unsigned long flags
;
4570 struct pt_regs
*regs
= task_pt_regs(task
);
4574 ctx
= PFM_GET_CTX(task
);
4576 PROTECT_CTX(ctx
, flags
);
4578 DPRINT(("state=%d task [%d]\n", ctx
->ctx_state
, task_pid_nr(task
)));
4580 state
= ctx
->ctx_state
;
4582 case PFM_CTX_UNLOADED
:
4584 * only comes to this function if pfm_context is not NULL, i.e., cannot
4585 * be in unloaded state
4587 printk(KERN_ERR
"perfmon: pfm_exit_thread [%d] ctx unloaded\n", task_pid_nr(task
));
4589 case PFM_CTX_LOADED
:
4590 case PFM_CTX_MASKED
:
4591 ret
= pfm_context_unload(ctx
, NULL
, 0, regs
);
4593 printk(KERN_ERR
"perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task
), state
, ret
);
4595 DPRINT(("ctx unloaded for current state was %d\n", state
));
4597 pfm_end_notify_user(ctx
);
4599 case PFM_CTX_ZOMBIE
:
4600 ret
= pfm_context_unload(ctx
, NULL
, 0, regs
);
4602 printk(KERN_ERR
"perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task
), state
, ret
);
4607 printk(KERN_ERR
"perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task_pid_nr(task
), state
);
4610 UNPROTECT_CTX(ctx
, flags
);
4612 { u64 psr
= pfm_get_psr();
4613 BUG_ON(psr
& (IA64_PSR_UP
|IA64_PSR_PP
));
4614 BUG_ON(GET_PMU_OWNER());
4615 BUG_ON(ia64_psr(regs
)->up
);
4616 BUG_ON(ia64_psr(regs
)->pp
);
4620 * All memory free operations (especially for vmalloc'ed memory)
4621 * MUST be done with interrupts ENABLED.
4623 if (free_ok
) pfm_context_free(ctx
);
4627 * functions MUST be listed in the increasing order of their index (see permfon.h)
4629 #define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4630 #define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4631 #define PFM_CMD_PCLRWS (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4632 #define PFM_CMD_PCLRW (PFM_CMD_FD|PFM_CMD_ARG_RW)
4633 #define PFM_CMD_NONE { NULL, "no-cmd", 0, 0, 0, NULL}
4635 static pfm_cmd_desc_t pfm_cmd_tab
[]={
4636 /* 0 */PFM_CMD_NONE
,
4637 /* 1 */PFM_CMD(pfm_write_pmcs
, PFM_CMD_PCLRWS
, PFM_CMD_ARG_MANY
, pfarg_reg_t
, NULL
),
4638 /* 2 */PFM_CMD(pfm_write_pmds
, PFM_CMD_PCLRWS
, PFM_CMD_ARG_MANY
, pfarg_reg_t
, NULL
),
4639 /* 3 */PFM_CMD(pfm_read_pmds
, PFM_CMD_PCLRWS
, PFM_CMD_ARG_MANY
, pfarg_reg_t
, NULL
),
4640 /* 4 */PFM_CMD_S(pfm_stop
, PFM_CMD_PCLRWS
),
4641 /* 5 */PFM_CMD_S(pfm_start
, PFM_CMD_PCLRWS
),
4642 /* 6 */PFM_CMD_NONE
,
4643 /* 7 */PFM_CMD_NONE
,
4644 /* 8 */PFM_CMD(pfm_context_create
, PFM_CMD_ARG_RW
, 1, pfarg_context_t
, pfm_ctx_getsize
),
4645 /* 9 */PFM_CMD_NONE
,
4646 /* 10 */PFM_CMD_S(pfm_restart
, PFM_CMD_PCLRW
),
4647 /* 11 */PFM_CMD_NONE
,
4648 /* 12 */PFM_CMD(pfm_get_features
, PFM_CMD_ARG_RW
, 1, pfarg_features_t
, NULL
),
4649 /* 13 */PFM_CMD(pfm_debug
, 0, 1, unsigned int, NULL
),
4650 /* 14 */PFM_CMD_NONE
,
4651 /* 15 */PFM_CMD(pfm_get_pmc_reset
, PFM_CMD_ARG_RW
, PFM_CMD_ARG_MANY
, pfarg_reg_t
, NULL
),
4652 /* 16 */PFM_CMD(pfm_context_load
, PFM_CMD_PCLRWS
, 1, pfarg_load_t
, NULL
),
4653 /* 17 */PFM_CMD_S(pfm_context_unload
, PFM_CMD_PCLRWS
),
4654 /* 18 */PFM_CMD_NONE
,
4655 /* 19 */PFM_CMD_NONE
,
4656 /* 20 */PFM_CMD_NONE
,
4657 /* 21 */PFM_CMD_NONE
,
4658 /* 22 */PFM_CMD_NONE
,
4659 /* 23 */PFM_CMD_NONE
,
4660 /* 24 */PFM_CMD_NONE
,
4661 /* 25 */PFM_CMD_NONE
,
4662 /* 26 */PFM_CMD_NONE
,
4663 /* 27 */PFM_CMD_NONE
,
4664 /* 28 */PFM_CMD_NONE
,
4665 /* 29 */PFM_CMD_NONE
,
4666 /* 30 */PFM_CMD_NONE
,
4667 /* 31 */PFM_CMD_NONE
,
4668 /* 32 */PFM_CMD(pfm_write_ibrs
, PFM_CMD_PCLRWS
, PFM_CMD_ARG_MANY
, pfarg_dbreg_t
, NULL
),
4669 /* 33 */PFM_CMD(pfm_write_dbrs
, PFM_CMD_PCLRWS
, PFM_CMD_ARG_MANY
, pfarg_dbreg_t
, NULL
)
4671 #define PFM_CMD_COUNT (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4674 pfm_check_task_state(pfm_context_t
*ctx
, int cmd
, unsigned long flags
)
4676 struct task_struct
*task
;
4677 int state
, old_state
;
4680 state
= ctx
->ctx_state
;
4681 task
= ctx
->ctx_task
;
4684 DPRINT(("context %d no task, state=%d\n", ctx
->ctx_fd
, state
));
4688 DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4692 task
->state
, PFM_CMD_STOPPED(cmd
)));
4695 * self-monitoring always ok.
4697 * for system-wide the caller can either be the creator of the
4698 * context (to one to which the context is attached to) OR
4699 * a task running on the same CPU as the session.
4701 if (task
== current
|| ctx
->ctx_fl_system
) return 0;
4704 * we are monitoring another thread
4707 case PFM_CTX_UNLOADED
:
4709 * if context is UNLOADED we are safe to go
4712 case PFM_CTX_ZOMBIE
:
4714 * no command can operate on a zombie context
4716 DPRINT(("cmd %d state zombie cannot operate on context\n", cmd
));
4718 case PFM_CTX_MASKED
:
4720 * PMU state has been saved to software even though
4721 * the thread may still be running.
4723 if (cmd
!= PFM_UNLOAD_CONTEXT
) return 0;
4727 * context is LOADED or MASKED. Some commands may need to have
4730 * We could lift this restriction for UP but it would mean that
4731 * the user has no guarantee the task would not run between
4732 * two successive calls to perfmonctl(). That's probably OK.
4733 * If this user wants to ensure the task does not run, then
4734 * the task must be stopped.
4736 if (PFM_CMD_STOPPED(cmd
)) {
4737 if (!task_is_stopped_or_traced(task
)) {
4738 DPRINT(("[%d] task not in stopped state\n", task_pid_nr(task
)));
4742 * task is now stopped, wait for ctxsw out
4744 * This is an interesting point in the code.
4745 * We need to unprotect the context because
4746 * the pfm_save_regs() routines needs to grab
4747 * the same lock. There are danger in doing
4748 * this because it leaves a window open for
4749 * another task to get access to the context
4750 * and possibly change its state. The one thing
4751 * that is not possible is for the context to disappear
4752 * because we are protected by the VFS layer, i.e.,
4753 * get_fd()/put_fd().
4757 UNPROTECT_CTX(ctx
, flags
);
4759 wait_task_inactive(task
, 0);
4761 PROTECT_CTX(ctx
, flags
);
4764 * we must recheck to verify if state has changed
4766 if (ctx
->ctx_state
!= old_state
) {
4767 DPRINT(("old_state=%d new_state=%d\n", old_state
, ctx
->ctx_state
));
4775 * system-call entry point (must return long)
4778 sys_perfmonctl (int fd
, int cmd
, void __user
*arg
, int count
)
4780 struct fd f
= {NULL
, 0};
4781 pfm_context_t
*ctx
= NULL
;
4782 unsigned long flags
= 0UL;
4783 void *args_k
= NULL
;
4784 long ret
; /* will expand int return types */
4785 size_t base_sz
, sz
, xtra_sz
= 0;
4786 int narg
, completed_args
= 0, call_made
= 0, cmd_flags
;
4787 int (*func
)(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
);
4788 int (*getsize
)(void *arg
, size_t *sz
);
4789 #define PFM_MAX_ARGSIZE 4096
4792 * reject any call if perfmon was disabled at initialization
4794 if (unlikely(pmu_conf
== NULL
)) return -ENOSYS
;
4796 if (unlikely(cmd
< 0 || cmd
>= PFM_CMD_COUNT
)) {
4797 DPRINT(("invalid cmd=%d\n", cmd
));
4801 func
= pfm_cmd_tab
[cmd
].cmd_func
;
4802 narg
= pfm_cmd_tab
[cmd
].cmd_narg
;
4803 base_sz
= pfm_cmd_tab
[cmd
].cmd_argsize
;
4804 getsize
= pfm_cmd_tab
[cmd
].cmd_getsize
;
4805 cmd_flags
= pfm_cmd_tab
[cmd
].cmd_flags
;
4807 if (unlikely(func
== NULL
)) {
4808 DPRINT(("invalid cmd=%d\n", cmd
));
4812 DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4820 * check if number of arguments matches what the command expects
4822 if (unlikely((narg
== PFM_CMD_ARG_MANY
&& count
<= 0) || (narg
> 0 && narg
!= count
)))
4826 sz
= xtra_sz
+ base_sz
*count
;
4828 * limit abuse to min page size
4830 if (unlikely(sz
> PFM_MAX_ARGSIZE
)) {
4831 printk(KERN_ERR
"perfmon: [%d] argument too big %lu\n", task_pid_nr(current
), sz
);
4836 * allocate default-sized argument buffer
4838 if (likely(count
&& args_k
== NULL
)) {
4839 args_k
= kmalloc(PFM_MAX_ARGSIZE
, GFP_KERNEL
);
4840 if (args_k
== NULL
) return -ENOMEM
;
4848 * assume sz = 0 for command without parameters
4850 if (sz
&& copy_from_user(args_k
, arg
, sz
)) {
4851 DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz
, arg
));
4856 * check if command supports extra parameters
4858 if (completed_args
== 0 && getsize
) {
4860 * get extra parameters size (based on main argument)
4862 ret
= (*getsize
)(args_k
, &xtra_sz
);
4863 if (ret
) goto error_args
;
4867 DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz
, xtra_sz
));
4869 /* retry if necessary */
4870 if (likely(xtra_sz
)) goto restart_args
;
4873 if (unlikely((cmd_flags
& PFM_CMD_FD
) == 0)) goto skip_fd
;
4878 if (unlikely(f
.file
== NULL
)) {
4879 DPRINT(("invalid fd %d\n", fd
));
4882 if (unlikely(PFM_IS_FILE(f
.file
) == 0)) {
4883 DPRINT(("fd %d not related to perfmon\n", fd
));
4887 ctx
= f
.file
->private_data
;
4888 if (unlikely(ctx
== NULL
)) {
4889 DPRINT(("no context for fd %d\n", fd
));
4892 prefetch(&ctx
->ctx_state
);
4894 PROTECT_CTX(ctx
, flags
);
4897 * check task is stopped
4899 ret
= pfm_check_task_state(ctx
, cmd
, flags
);
4900 if (unlikely(ret
)) goto abort_locked
;
4903 ret
= (*func
)(ctx
, args_k
, count
, task_pt_regs(current
));
4909 DPRINT(("context unlocked\n"));
4910 UNPROTECT_CTX(ctx
, flags
);
4913 /* copy argument back to user, if needed */
4914 if (call_made
&& PFM_CMD_RW_ARG(cmd
) && copy_to_user(arg
, args_k
, base_sz
*count
)) ret
= -EFAULT
;
4922 DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd
), ret
));
4928 pfm_resume_after_ovfl(pfm_context_t
*ctx
, unsigned long ovfl_regs
, struct pt_regs
*regs
)
4930 pfm_buffer_fmt_t
*fmt
= ctx
->ctx_buf_fmt
;
4931 pfm_ovfl_ctrl_t rst_ctrl
;
4935 state
= ctx
->ctx_state
;
4937 * Unlock sampling buffer and reset index atomically
4938 * XXX: not really needed when blocking
4940 if (CTX_HAS_SMPL(ctx
)) {
4942 rst_ctrl
.bits
.mask_monitoring
= 0;
4943 rst_ctrl
.bits
.reset_ovfl_pmds
= 0;
4945 if (state
== PFM_CTX_LOADED
)
4946 ret
= pfm_buf_fmt_restart_active(fmt
, current
, &rst_ctrl
, ctx
->ctx_smpl_hdr
, regs
);
4948 ret
= pfm_buf_fmt_restart(fmt
, current
, &rst_ctrl
, ctx
->ctx_smpl_hdr
, regs
);
4950 rst_ctrl
.bits
.mask_monitoring
= 0;
4951 rst_ctrl
.bits
.reset_ovfl_pmds
= 1;
4955 if (rst_ctrl
.bits
.reset_ovfl_pmds
) {
4956 pfm_reset_regs(ctx
, &ovfl_regs
, PFM_PMD_LONG_RESET
);
4958 if (rst_ctrl
.bits
.mask_monitoring
== 0) {
4959 DPRINT(("resuming monitoring\n"));
4960 if (ctx
->ctx_state
== PFM_CTX_MASKED
) pfm_restore_monitoring(current
);
4962 DPRINT(("stopping monitoring\n"));
4963 //pfm_stop_monitoring(current, regs);
4965 ctx
->ctx_state
= PFM_CTX_LOADED
;
4970 * context MUST BE LOCKED when calling
4971 * can only be called for current
4974 pfm_context_force_terminate(pfm_context_t
*ctx
, struct pt_regs
*regs
)
4978 DPRINT(("entering for [%d]\n", task_pid_nr(current
)));
4980 ret
= pfm_context_unload(ctx
, NULL
, 0, regs
);
4982 printk(KERN_ERR
"pfm_context_force_terminate: [%d] unloaded failed with %d\n", task_pid_nr(current
), ret
);
4986 * and wakeup controlling task, indicating we are now disconnected
4988 wake_up_interruptible(&ctx
->ctx_zombieq
);
4991 * given that context is still locked, the controlling
4992 * task will only get access when we return from
4993 * pfm_handle_work().
4997 static int pfm_ovfl_notify_user(pfm_context_t
*ctx
, unsigned long ovfl_pmds
);
5000 * pfm_handle_work() can be called with interrupts enabled
5001 * (TIF_NEED_RESCHED) or disabled. The down_interruptible
5002 * call may sleep, therefore we must re-enable interrupts
5003 * to avoid deadlocks. It is safe to do so because this function
5004 * is called ONLY when returning to user level (pUStk=1), in which case
5005 * there is no risk of kernel stack overflow due to deep
5006 * interrupt nesting.
5009 pfm_handle_work(void)
5012 struct pt_regs
*regs
;
5013 unsigned long flags
, dummy_flags
;
5014 unsigned long ovfl_regs
;
5015 unsigned int reason
;
5018 ctx
= PFM_GET_CTX(current
);
5020 printk(KERN_ERR
"perfmon: [%d] has no PFM context\n",
5021 task_pid_nr(current
));
5025 PROTECT_CTX(ctx
, flags
);
5027 PFM_SET_WORK_PENDING(current
, 0);
5029 regs
= task_pt_regs(current
);
5032 * extract reason for being here and clear
5034 reason
= ctx
->ctx_fl_trap_reason
;
5035 ctx
->ctx_fl_trap_reason
= PFM_TRAP_REASON_NONE
;
5036 ovfl_regs
= ctx
->ctx_ovfl_regs
[0];
5038 DPRINT(("reason=%d state=%d\n", reason
, ctx
->ctx_state
));
5041 * must be done before we check for simple-reset mode
5043 if (ctx
->ctx_fl_going_zombie
|| ctx
->ctx_state
== PFM_CTX_ZOMBIE
)
5046 //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5047 if (reason
== PFM_TRAP_REASON_RESET
)
5051 * restore interrupt mask to what it was on entry.
5052 * Could be enabled/diasbled.
5054 UNPROTECT_CTX(ctx
, flags
);
5057 * force interrupt enable because of down_interruptible()
5061 DPRINT(("before block sleeping\n"));
5064 * may go through without blocking on SMP systems
5065 * if restart has been received already by the time we call down()
5067 ret
= wait_for_completion_interruptible(&ctx
->ctx_restart_done
);
5069 DPRINT(("after block sleeping ret=%d\n", ret
));
5072 * lock context and mask interrupts again
5073 * We save flags into a dummy because we may have
5074 * altered interrupts mask compared to entry in this
5077 PROTECT_CTX(ctx
, dummy_flags
);
5080 * we need to read the ovfl_regs only after wake-up
5081 * because we may have had pfm_write_pmds() in between
5082 * and that can changed PMD values and therefore
5083 * ovfl_regs is reset for these new PMD values.
5085 ovfl_regs
= ctx
->ctx_ovfl_regs
[0];
5087 if (ctx
->ctx_fl_going_zombie
) {
5089 DPRINT(("context is zombie, bailing out\n"));
5090 pfm_context_force_terminate(ctx
, regs
);
5094 * in case of interruption of down() we don't restart anything
5100 pfm_resume_after_ovfl(ctx
, ovfl_regs
, regs
);
5101 ctx
->ctx_ovfl_regs
[0] = 0UL;
5105 * restore flags as they were upon entry
5107 UNPROTECT_CTX(ctx
, flags
);
5111 pfm_notify_user(pfm_context_t
*ctx
, pfm_msg_t
*msg
)
5113 if (ctx
->ctx_state
== PFM_CTX_ZOMBIE
) {
5114 DPRINT(("ignoring overflow notification, owner is zombie\n"));
5118 DPRINT(("waking up somebody\n"));
5120 if (msg
) wake_up_interruptible(&ctx
->ctx_msgq_wait
);
5123 * safe, we are not in intr handler, nor in ctxsw when
5126 kill_fasync (&ctx
->ctx_async_queue
, SIGIO
, POLL_IN
);
5132 pfm_ovfl_notify_user(pfm_context_t
*ctx
, unsigned long ovfl_pmds
)
5134 pfm_msg_t
*msg
= NULL
;
5136 if (ctx
->ctx_fl_no_msg
== 0) {
5137 msg
= pfm_get_new_msg(ctx
);
5139 printk(KERN_ERR
"perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5143 msg
->pfm_ovfl_msg
.msg_type
= PFM_MSG_OVFL
;
5144 msg
->pfm_ovfl_msg
.msg_ctx_fd
= ctx
->ctx_fd
;
5145 msg
->pfm_ovfl_msg
.msg_active_set
= 0;
5146 msg
->pfm_ovfl_msg
.msg_ovfl_pmds
[0] = ovfl_pmds
;
5147 msg
->pfm_ovfl_msg
.msg_ovfl_pmds
[1] = 0UL;
5148 msg
->pfm_ovfl_msg
.msg_ovfl_pmds
[2] = 0UL;
5149 msg
->pfm_ovfl_msg
.msg_ovfl_pmds
[3] = 0UL;
5150 msg
->pfm_ovfl_msg
.msg_tstamp
= 0UL;
5153 DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5159 return pfm_notify_user(ctx
, msg
);
5163 pfm_end_notify_user(pfm_context_t
*ctx
)
5167 msg
= pfm_get_new_msg(ctx
);
5169 printk(KERN_ERR
"perfmon: pfm_end_notify_user no more notification msgs\n");
5173 memset(msg
, 0, sizeof(*msg
));
5175 msg
->pfm_end_msg
.msg_type
= PFM_MSG_END
;
5176 msg
->pfm_end_msg
.msg_ctx_fd
= ctx
->ctx_fd
;
5177 msg
->pfm_ovfl_msg
.msg_tstamp
= 0UL;
5179 DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5184 return pfm_notify_user(ctx
, msg
);
5188 * main overflow processing routine.
5189 * it can be called from the interrupt path or explicitly during the context switch code
5191 static void pfm_overflow_handler(struct task_struct
*task
, pfm_context_t
*ctx
,
5192 unsigned long pmc0
, struct pt_regs
*regs
)
5194 pfm_ovfl_arg_t
*ovfl_arg
;
5196 unsigned long old_val
, ovfl_val
, new_val
;
5197 unsigned long ovfl_notify
= 0UL, ovfl_pmds
= 0UL, smpl_pmds
= 0UL, reset_pmds
;
5198 unsigned long tstamp
;
5199 pfm_ovfl_ctrl_t ovfl_ctrl
;
5200 unsigned int i
, has_smpl
;
5201 int must_notify
= 0;
5203 if (unlikely(ctx
->ctx_state
== PFM_CTX_ZOMBIE
)) goto stop_monitoring
;
5206 * sanity test. Should never happen
5208 if (unlikely((pmc0
& 0x1) == 0)) goto sanity_check
;
5210 tstamp
= ia64_get_itc();
5211 mask
= pmc0
>> PMU_FIRST_COUNTER
;
5212 ovfl_val
= pmu_conf
->ovfl_val
;
5213 has_smpl
= CTX_HAS_SMPL(ctx
);
5215 DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5216 "used_pmds=0x%lx\n",
5218 task
? task_pid_nr(task
): -1,
5219 (regs
? regs
->cr_iip
: 0),
5220 CTX_OVFL_NOBLOCK(ctx
) ? "nonblocking" : "blocking",
5221 ctx
->ctx_used_pmds
[0]));
5225 * first we update the virtual counters
5226 * assume there was a prior ia64_srlz_d() issued
5228 for (i
= PMU_FIRST_COUNTER
; mask
; i
++, mask
>>= 1) {
5230 /* skip pmd which did not overflow */
5231 if ((mask
& 0x1) == 0) continue;
5234 * Note that the pmd is not necessarily 0 at this point as qualified events
5235 * may have happened before the PMU was frozen. The residual count is not
5236 * taken into consideration here but will be with any read of the pmd via
5239 old_val
= new_val
= ctx
->ctx_pmds
[i
].val
;
5240 new_val
+= 1 + ovfl_val
;
5241 ctx
->ctx_pmds
[i
].val
= new_val
;
5244 * check for overflow condition
5246 if (likely(old_val
> new_val
)) {
5247 ovfl_pmds
|= 1UL << i
;
5248 if (PMC_OVFL_NOTIFY(ctx
, i
)) ovfl_notify
|= 1UL << i
;
5251 DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5255 ia64_get_pmd(i
) & ovfl_val
,
5261 * there was no 64-bit overflow, nothing else to do
5263 if (ovfl_pmds
== 0UL) return;
5266 * reset all control bits
5272 * if a sampling format module exists, then we "cache" the overflow by
5273 * calling the module's handler() routine.
5276 unsigned long start_cycles
, end_cycles
;
5277 unsigned long pmd_mask
;
5279 int this_cpu
= smp_processor_id();
5281 pmd_mask
= ovfl_pmds
>> PMU_FIRST_COUNTER
;
5282 ovfl_arg
= &ctx
->ctx_ovfl_arg
;
5284 prefetch(ctx
->ctx_smpl_hdr
);
5286 for(i
=PMU_FIRST_COUNTER
; pmd_mask
&& ret
== 0; i
++, pmd_mask
>>=1) {
5290 if ((pmd_mask
& 0x1) == 0) continue;
5292 ovfl_arg
->ovfl_pmd
= (unsigned char )i
;
5293 ovfl_arg
->ovfl_notify
= ovfl_notify
& mask
? 1 : 0;
5294 ovfl_arg
->active_set
= 0;
5295 ovfl_arg
->ovfl_ctrl
.val
= 0; /* module must fill in all fields */
5296 ovfl_arg
->smpl_pmds
[0] = smpl_pmds
= ctx
->ctx_pmds
[i
].smpl_pmds
[0];
5298 ovfl_arg
->pmd_value
= ctx
->ctx_pmds
[i
].val
;
5299 ovfl_arg
->pmd_last_reset
= ctx
->ctx_pmds
[i
].lval
;
5300 ovfl_arg
->pmd_eventid
= ctx
->ctx_pmds
[i
].eventid
;
5303 * copy values of pmds of interest. Sampling format may copy them
5304 * into sampling buffer.
5307 for(j
=0, k
=0; smpl_pmds
; j
++, smpl_pmds
>>=1) {
5308 if ((smpl_pmds
& 0x1) == 0) continue;
5309 ovfl_arg
->smpl_pmds_values
[k
++] = PMD_IS_COUNTING(j
) ? pfm_read_soft_counter(ctx
, j
) : ia64_get_pmd(j
);
5310 DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k
-1, j
, ovfl_arg
->smpl_pmds_values
[k
-1]));
5314 pfm_stats
[this_cpu
].pfm_smpl_handler_calls
++;
5316 start_cycles
= ia64_get_itc();
5319 * call custom buffer format record (handler) routine
5321 ret
= (*ctx
->ctx_buf_fmt
->fmt_handler
)(task
, ctx
->ctx_smpl_hdr
, ovfl_arg
, regs
, tstamp
);
5323 end_cycles
= ia64_get_itc();
5326 * For those controls, we take the union because they have
5327 * an all or nothing behavior.
5329 ovfl_ctrl
.bits
.notify_user
|= ovfl_arg
->ovfl_ctrl
.bits
.notify_user
;
5330 ovfl_ctrl
.bits
.block_task
|= ovfl_arg
->ovfl_ctrl
.bits
.block_task
;
5331 ovfl_ctrl
.bits
.mask_monitoring
|= ovfl_arg
->ovfl_ctrl
.bits
.mask_monitoring
;
5333 * build the bitmask of pmds to reset now
5335 if (ovfl_arg
->ovfl_ctrl
.bits
.reset_ovfl_pmds
) reset_pmds
|= mask
;
5337 pfm_stats
[this_cpu
].pfm_smpl_handler_cycles
+= end_cycles
- start_cycles
;
5340 * when the module cannot handle the rest of the overflows, we abort right here
5342 if (ret
&& pmd_mask
) {
5343 DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5344 pmd_mask
<<PMU_FIRST_COUNTER
));
5347 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5349 ovfl_pmds
&= ~reset_pmds
;
5352 * when no sampling module is used, then the default
5353 * is to notify on overflow if requested by user
5355 ovfl_ctrl
.bits
.notify_user
= ovfl_notify
? 1 : 0;
5356 ovfl_ctrl
.bits
.block_task
= ovfl_notify
? 1 : 0;
5357 ovfl_ctrl
.bits
.mask_monitoring
= ovfl_notify
? 1 : 0; /* XXX: change for saturation */
5358 ovfl_ctrl
.bits
.reset_ovfl_pmds
= ovfl_notify
? 0 : 1;
5360 * if needed, we reset all overflowed pmds
5362 if (ovfl_notify
== 0) reset_pmds
= ovfl_pmds
;
5365 DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds
, reset_pmds
));
5368 * reset the requested PMD registers using the short reset values
5371 unsigned long bm
= reset_pmds
;
5372 pfm_reset_regs(ctx
, &bm
, PFM_PMD_SHORT_RESET
);
5375 if (ovfl_notify
&& ovfl_ctrl
.bits
.notify_user
) {
5377 * keep track of what to reset when unblocking
5379 ctx
->ctx_ovfl_regs
[0] = ovfl_pmds
;
5382 * check for blocking context
5384 if (CTX_OVFL_NOBLOCK(ctx
) == 0 && ovfl_ctrl
.bits
.block_task
) {
5386 ctx
->ctx_fl_trap_reason
= PFM_TRAP_REASON_BLOCK
;
5389 * set the perfmon specific checking pending work for the task
5391 PFM_SET_WORK_PENDING(task
, 1);
5394 * when coming from ctxsw, current still points to the
5395 * previous task, therefore we must work with task and not current.
5397 set_notify_resume(task
);
5400 * defer until state is changed (shorten spin window). the context is locked
5401 * anyway, so the signal receiver would come spin for nothing.
5406 DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5407 GET_PMU_OWNER() ? task_pid_nr(GET_PMU_OWNER()) : -1,
5408 PFM_GET_WORK_PENDING(task
),
5409 ctx
->ctx_fl_trap_reason
,
5412 ovfl_ctrl
.bits
.mask_monitoring
? 1 : 0));
5414 * in case monitoring must be stopped, we toggle the psr bits
5416 if (ovfl_ctrl
.bits
.mask_monitoring
) {
5417 pfm_mask_monitoring(task
);
5418 ctx
->ctx_state
= PFM_CTX_MASKED
;
5419 ctx
->ctx_fl_can_restart
= 1;
5423 * send notification now
5425 if (must_notify
) pfm_ovfl_notify_user(ctx
, ovfl_notify
);
5430 printk(KERN_ERR
"perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5432 task
? task_pid_nr(task
) : -1,
5438 * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5439 * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5440 * come here as zombie only if the task is the current task. In which case, we
5441 * can access the PMU hardware directly.
5443 * Note that zombies do have PM_VALID set. So here we do the minimal.
5445 * In case the context was zombified it could not be reclaimed at the time
5446 * the monitoring program exited. At this point, the PMU reservation has been
5447 * returned, the sampiing buffer has been freed. We must convert this call
5448 * into a spurious interrupt. However, we must also avoid infinite overflows
5449 * by stopping monitoring for this task. We can only come here for a per-task
5450 * context. All we need to do is to stop monitoring using the psr bits which
5451 * are always task private. By re-enabling secure montioring, we ensure that
5452 * the monitored task will not be able to re-activate monitoring.
5453 * The task will eventually be context switched out, at which point the context
5454 * will be reclaimed (that includes releasing ownership of the PMU).
5456 * So there might be a window of time where the number of per-task session is zero
5457 * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5458 * context. This is safe because if a per-task session comes in, it will push this one
5459 * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5460 * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5461 * also push our zombie context out.
5463 * Overall pretty hairy stuff....
5465 DPRINT(("ctx is zombie for [%d], converted to spurious\n", task
? task_pid_nr(task
): -1));
5467 ia64_psr(regs
)->up
= 0;
5468 ia64_psr(regs
)->sp
= 1;
5473 pfm_do_interrupt_handler(void *arg
, struct pt_regs
*regs
)
5475 struct task_struct
*task
;
5477 unsigned long flags
;
5479 int this_cpu
= smp_processor_id();
5482 pfm_stats
[this_cpu
].pfm_ovfl_intr_count
++;
5485 * srlz.d done before arriving here
5487 pmc0
= ia64_get_pmc(0);
5489 task
= GET_PMU_OWNER();
5490 ctx
= GET_PMU_CTX();
5493 * if we have some pending bits set
5494 * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5496 if (PMC0_HAS_OVFL(pmc0
) && task
) {
5498 * we assume that pmc0.fr is always set here
5502 if (!ctx
) goto report_spurious1
;
5504 if (ctx
->ctx_fl_system
== 0 && (task
->thread
.flags
& IA64_THREAD_PM_VALID
) == 0)
5505 goto report_spurious2
;
5507 PROTECT_CTX_NOPRINT(ctx
, flags
);
5509 pfm_overflow_handler(task
, ctx
, pmc0
, regs
);
5511 UNPROTECT_CTX_NOPRINT(ctx
, flags
);
5514 pfm_stats
[this_cpu
].pfm_spurious_ovfl_intr_count
++;
5518 * keep it unfrozen at all times
5525 printk(KERN_INFO
"perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5526 this_cpu
, task_pid_nr(task
));
5530 printk(KERN_INFO
"perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
5538 pfm_interrupt_handler(int irq
, void *arg
)
5540 unsigned long start_cycles
, total_cycles
;
5541 unsigned long min
, max
;
5544 struct pt_regs
*regs
= get_irq_regs();
5546 this_cpu
= get_cpu();
5547 if (likely(!pfm_alt_intr_handler
)) {
5548 min
= pfm_stats
[this_cpu
].pfm_ovfl_intr_cycles_min
;
5549 max
= pfm_stats
[this_cpu
].pfm_ovfl_intr_cycles_max
;
5551 start_cycles
= ia64_get_itc();
5553 ret
= pfm_do_interrupt_handler(arg
, regs
);
5555 total_cycles
= ia64_get_itc();
5558 * don't measure spurious interrupts
5560 if (likely(ret
== 0)) {
5561 total_cycles
-= start_cycles
;
5563 if (total_cycles
< min
) pfm_stats
[this_cpu
].pfm_ovfl_intr_cycles_min
= total_cycles
;
5564 if (total_cycles
> max
) pfm_stats
[this_cpu
].pfm_ovfl_intr_cycles_max
= total_cycles
;
5566 pfm_stats
[this_cpu
].pfm_ovfl_intr_cycles
+= total_cycles
;
5570 (*pfm_alt_intr_handler
->handler
)(irq
, arg
, regs
);
5578 * /proc/perfmon interface, for debug only
5581 #define PFM_PROC_SHOW_HEADER ((void *)(long)nr_cpu_ids+1)
5584 pfm_proc_start(struct seq_file
*m
, loff_t
*pos
)
5587 return PFM_PROC_SHOW_HEADER
;
5590 while (*pos
<= nr_cpu_ids
) {
5591 if (cpu_online(*pos
- 1)) {
5592 return (void *)*pos
;
5600 pfm_proc_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
5603 return pfm_proc_start(m
, pos
);
5607 pfm_proc_stop(struct seq_file
*m
, void *v
)
5612 pfm_proc_show_header(struct seq_file
*m
)
5614 struct list_head
* pos
;
5615 pfm_buffer_fmt_t
* entry
;
5616 unsigned long flags
;
5619 "perfmon version : %u.%u\n"
5622 "expert mode : %s\n"
5623 "ovfl_mask : 0x%lx\n"
5624 "PMU flags : 0x%x\n",
5625 PFM_VERSION_MAJ
, PFM_VERSION_MIN
,
5627 pfm_sysctl
.fastctxsw
> 0 ? "Yes": "No",
5628 pfm_sysctl
.expert_mode
> 0 ? "Yes": "No",
5635 "proc_sessions : %u\n"
5636 "sys_sessions : %u\n"
5637 "sys_use_dbregs : %u\n"
5638 "ptrace_use_dbregs : %u\n",
5639 pfm_sessions
.pfs_task_sessions
,
5640 pfm_sessions
.pfs_sys_sessions
,
5641 pfm_sessions
.pfs_sys_use_dbregs
,
5642 pfm_sessions
.pfs_ptrace_use_dbregs
);
5646 spin_lock(&pfm_buffer_fmt_lock
);
5648 list_for_each(pos
, &pfm_buffer_fmt_list
) {
5649 entry
= list_entry(pos
, pfm_buffer_fmt_t
, fmt_list
);
5650 seq_printf(m
, "format : %16phD %s\n",
5651 entry
->fmt_uuid
, entry
->fmt_name
);
5653 spin_unlock(&pfm_buffer_fmt_lock
);
5658 pfm_proc_show(struct seq_file
*m
, void *v
)
5664 if (v
== PFM_PROC_SHOW_HEADER
) {
5665 pfm_proc_show_header(m
);
5669 /* show info for CPU (v - 1) */
5673 "CPU%-2d overflow intrs : %lu\n"
5674 "CPU%-2d overflow cycles : %lu\n"
5675 "CPU%-2d overflow min : %lu\n"
5676 "CPU%-2d overflow max : %lu\n"
5677 "CPU%-2d smpl handler calls : %lu\n"
5678 "CPU%-2d smpl handler cycles : %lu\n"
5679 "CPU%-2d spurious intrs : %lu\n"
5680 "CPU%-2d replay intrs : %lu\n"
5681 "CPU%-2d syst_wide : %d\n"
5682 "CPU%-2d dcr_pp : %d\n"
5683 "CPU%-2d exclude idle : %d\n"
5684 "CPU%-2d owner : %d\n"
5685 "CPU%-2d context : %p\n"
5686 "CPU%-2d activations : %lu\n",
5687 cpu
, pfm_stats
[cpu
].pfm_ovfl_intr_count
,
5688 cpu
, pfm_stats
[cpu
].pfm_ovfl_intr_cycles
,
5689 cpu
, pfm_stats
[cpu
].pfm_ovfl_intr_cycles_min
,
5690 cpu
, pfm_stats
[cpu
].pfm_ovfl_intr_cycles_max
,
5691 cpu
, pfm_stats
[cpu
].pfm_smpl_handler_calls
,
5692 cpu
, pfm_stats
[cpu
].pfm_smpl_handler_cycles
,
5693 cpu
, pfm_stats
[cpu
].pfm_spurious_ovfl_intr_count
,
5694 cpu
, pfm_stats
[cpu
].pfm_replay_ovfl_intr_count
,
5695 cpu
, pfm_get_cpu_data(pfm_syst_info
, cpu
) & PFM_CPUINFO_SYST_WIDE
? 1 : 0,
5696 cpu
, pfm_get_cpu_data(pfm_syst_info
, cpu
) & PFM_CPUINFO_DCR_PP
? 1 : 0,
5697 cpu
, pfm_get_cpu_data(pfm_syst_info
, cpu
) & PFM_CPUINFO_EXCL_IDLE
? 1 : 0,
5698 cpu
, pfm_get_cpu_data(pmu_owner
, cpu
) ? pfm_get_cpu_data(pmu_owner
, cpu
)->pid
: -1,
5699 cpu
, pfm_get_cpu_data(pmu_ctx
, cpu
),
5700 cpu
, pfm_get_cpu_data(pmu_activation_number
, cpu
));
5702 if (num_online_cpus() == 1 && pfm_sysctl
.debug
> 0) {
5704 psr
= pfm_get_psr();
5709 "CPU%-2d psr : 0x%lx\n"
5710 "CPU%-2d pmc0 : 0x%lx\n",
5712 cpu
, ia64_get_pmc(0));
5714 for (i
=0; PMC_IS_LAST(i
) == 0; i
++) {
5715 if (PMC_IS_COUNTING(i
) == 0) continue;
5717 "CPU%-2d pmc%u : 0x%lx\n"
5718 "CPU%-2d pmd%u : 0x%lx\n",
5719 cpu
, i
, ia64_get_pmc(i
),
5720 cpu
, i
, ia64_get_pmd(i
));
5726 const struct seq_operations pfm_seq_ops
= {
5727 .start
= pfm_proc_start
,
5728 .next
= pfm_proc_next
,
5729 .stop
= pfm_proc_stop
,
5730 .show
= pfm_proc_show
5734 pfm_proc_open(struct inode
*inode
, struct file
*file
)
5736 return seq_open(file
, &pfm_seq_ops
);
5741 * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5742 * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5743 * is active or inactive based on mode. We must rely on the value in
5744 * local_cpu_data->pfm_syst_info
5747 pfm_syst_wide_update_task(struct task_struct
*task
, unsigned long info
, int is_ctxswin
)
5749 struct pt_regs
*regs
;
5751 unsigned long dcr_pp
;
5753 dcr_pp
= info
& PFM_CPUINFO_DCR_PP
? 1 : 0;
5756 * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5757 * on every CPU, so we can rely on the pid to identify the idle task.
5759 if ((info
& PFM_CPUINFO_EXCL_IDLE
) == 0 || task
->pid
) {
5760 regs
= task_pt_regs(task
);
5761 ia64_psr(regs
)->pp
= is_ctxswin
? dcr_pp
: 0;
5765 * if monitoring has started
5768 dcr
= ia64_getreg(_IA64_REG_CR_DCR
);
5770 * context switching in?
5773 /* mask monitoring for the idle task */
5774 ia64_setreg(_IA64_REG_CR_DCR
, dcr
& ~IA64_DCR_PP
);
5780 * context switching out
5781 * restore monitoring for next task
5783 * Due to inlining this odd if-then-else construction generates
5786 ia64_setreg(_IA64_REG_CR_DCR
, dcr
|IA64_DCR_PP
);
5795 pfm_force_cleanup(pfm_context_t
*ctx
, struct pt_regs
*regs
)
5797 struct task_struct
*task
= ctx
->ctx_task
;
5799 ia64_psr(regs
)->up
= 0;
5800 ia64_psr(regs
)->sp
= 1;
5802 if (GET_PMU_OWNER() == task
) {
5803 DPRINT(("cleared ownership for [%d]\n",
5804 task_pid_nr(ctx
->ctx_task
)));
5805 SET_PMU_OWNER(NULL
, NULL
);
5809 * disconnect the task from the context and vice-versa
5811 PFM_SET_WORK_PENDING(task
, 0);
5813 task
->thread
.pfm_context
= NULL
;
5814 task
->thread
.flags
&= ~IA64_THREAD_PM_VALID
;
5816 DPRINT(("force cleanup for [%d]\n", task_pid_nr(task
)));
5821 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5824 pfm_save_regs(struct task_struct
*task
)
5827 unsigned long flags
;
5831 ctx
= PFM_GET_CTX(task
);
5832 if (ctx
== NULL
) return;
5835 * we always come here with interrupts ALREADY disabled by
5836 * the scheduler. So we simply need to protect against concurrent
5837 * access, not CPU concurrency.
5839 flags
= pfm_protect_ctx_ctxsw(ctx
);
5841 if (ctx
->ctx_state
== PFM_CTX_ZOMBIE
) {
5842 struct pt_regs
*regs
= task_pt_regs(task
);
5846 pfm_force_cleanup(ctx
, regs
);
5848 BUG_ON(ctx
->ctx_smpl_hdr
);
5850 pfm_unprotect_ctx_ctxsw(ctx
, flags
);
5852 pfm_context_free(ctx
);
5857 * save current PSR: needed because we modify it
5860 psr
= pfm_get_psr();
5862 BUG_ON(psr
& (IA64_PSR_I
));
5866 * This is the last instruction which may generate an overflow
5868 * We do not need to set psr.sp because, it is irrelevant in kernel.
5869 * It will be restored from ipsr when going back to user level
5874 * keep a copy of psr.up (for reload)
5876 ctx
->ctx_saved_psr_up
= psr
& IA64_PSR_UP
;
5879 * release ownership of this PMU.
5880 * PM interrupts are masked, so nothing
5883 SET_PMU_OWNER(NULL
, NULL
);
5886 * we systematically save the PMD as we have no
5887 * guarantee we will be schedule at that same
5890 pfm_save_pmds(ctx
->th_pmds
, ctx
->ctx_used_pmds
[0]);
5893 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5894 * we will need it on the restore path to check
5895 * for pending overflow.
5897 ctx
->th_pmcs
[0] = ia64_get_pmc(0);
5900 * unfreeze PMU if had pending overflows
5902 if (ctx
->th_pmcs
[0] & ~0x1UL
) pfm_unfreeze_pmu();
5905 * finally, allow context access.
5906 * interrupts will still be masked after this call.
5908 pfm_unprotect_ctx_ctxsw(ctx
, flags
);
5911 #else /* !CONFIG_SMP */
5913 pfm_save_regs(struct task_struct
*task
)
5918 ctx
= PFM_GET_CTX(task
);
5919 if (ctx
== NULL
) return;
5922 * save current PSR: needed because we modify it
5924 psr
= pfm_get_psr();
5926 BUG_ON(psr
& (IA64_PSR_I
));
5930 * This is the last instruction which may generate an overflow
5932 * We do not need to set psr.sp because, it is irrelevant in kernel.
5933 * It will be restored from ipsr when going back to user level
5938 * keep a copy of psr.up (for reload)
5940 ctx
->ctx_saved_psr_up
= psr
& IA64_PSR_UP
;
5944 pfm_lazy_save_regs (struct task_struct
*task
)
5947 unsigned long flags
;
5949 { u64 psr
= pfm_get_psr();
5950 BUG_ON(psr
& IA64_PSR_UP
);
5953 ctx
= PFM_GET_CTX(task
);
5956 * we need to mask PMU overflow here to
5957 * make sure that we maintain pmc0 until
5958 * we save it. overflow interrupts are
5959 * treated as spurious if there is no
5962 * XXX: I don't think this is necessary
5964 PROTECT_CTX(ctx
,flags
);
5967 * release ownership of this PMU.
5968 * must be done before we save the registers.
5970 * after this call any PMU interrupt is treated
5973 SET_PMU_OWNER(NULL
, NULL
);
5976 * save all the pmds we use
5978 pfm_save_pmds(ctx
->th_pmds
, ctx
->ctx_used_pmds
[0]);
5981 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5982 * it is needed to check for pended overflow
5983 * on the restore path
5985 ctx
->th_pmcs
[0] = ia64_get_pmc(0);
5988 * unfreeze PMU if had pending overflows
5990 if (ctx
->th_pmcs
[0] & ~0x1UL
) pfm_unfreeze_pmu();
5993 * now get can unmask PMU interrupts, they will
5994 * be treated as purely spurious and we will not
5995 * lose any information
5997 UNPROTECT_CTX(ctx
,flags
);
5999 #endif /* CONFIG_SMP */
6003 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
6006 pfm_load_regs (struct task_struct
*task
)
6009 unsigned long pmc_mask
= 0UL, pmd_mask
= 0UL;
6010 unsigned long flags
;
6012 int need_irq_resend
;
6014 ctx
= PFM_GET_CTX(task
);
6015 if (unlikely(ctx
== NULL
)) return;
6017 BUG_ON(GET_PMU_OWNER());
6020 * possible on unload
6022 if (unlikely((task
->thread
.flags
& IA64_THREAD_PM_VALID
) == 0)) return;
6025 * we always come here with interrupts ALREADY disabled by
6026 * the scheduler. So we simply need to protect against concurrent
6027 * access, not CPU concurrency.
6029 flags
= pfm_protect_ctx_ctxsw(ctx
);
6030 psr
= pfm_get_psr();
6032 need_irq_resend
= pmu_conf
->flags
& PFM_PMU_IRQ_RESEND
;
6034 BUG_ON(psr
& (IA64_PSR_UP
|IA64_PSR_PP
));
6035 BUG_ON(psr
& IA64_PSR_I
);
6037 if (unlikely(ctx
->ctx_state
== PFM_CTX_ZOMBIE
)) {
6038 struct pt_regs
*regs
= task_pt_regs(task
);
6040 BUG_ON(ctx
->ctx_smpl_hdr
);
6042 pfm_force_cleanup(ctx
, regs
);
6044 pfm_unprotect_ctx_ctxsw(ctx
, flags
);
6047 * this one (kmalloc'ed) is fine with interrupts disabled
6049 pfm_context_free(ctx
);
6055 * we restore ALL the debug registers to avoid picking up
6058 if (ctx
->ctx_fl_using_dbreg
) {
6059 pfm_restore_ibrs(ctx
->ctx_ibrs
, pmu_conf
->num_ibrs
);
6060 pfm_restore_dbrs(ctx
->ctx_dbrs
, pmu_conf
->num_dbrs
);
6063 * retrieve saved psr.up
6065 psr_up
= ctx
->ctx_saved_psr_up
;
6068 * if we were the last user of the PMU on that CPU,
6069 * then nothing to do except restore psr
6071 if (GET_LAST_CPU(ctx
) == smp_processor_id() && ctx
->ctx_last_activation
== GET_ACTIVATION()) {
6074 * retrieve partial reload masks (due to user modifications)
6076 pmc_mask
= ctx
->ctx_reload_pmcs
[0];
6077 pmd_mask
= ctx
->ctx_reload_pmds
[0];
6081 * To avoid leaking information to the user level when psr.sp=0,
6082 * we must reload ALL implemented pmds (even the ones we don't use).
6083 * In the kernel we only allow PFM_READ_PMDS on registers which
6084 * we initialized or requested (sampling) so there is no risk there.
6086 pmd_mask
= pfm_sysctl
.fastctxsw
? ctx
->ctx_used_pmds
[0] : ctx
->ctx_all_pmds
[0];
6089 * ALL accessible PMCs are systematically reloaded, unused registers
6090 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6091 * up stale configuration.
6093 * PMC0 is never in the mask. It is always restored separately.
6095 pmc_mask
= ctx
->ctx_all_pmcs
[0];
6098 * when context is MASKED, we will restore PMC with plm=0
6099 * and PMD with stale information, but that's ok, nothing
6102 * XXX: optimize here
6104 if (pmd_mask
) pfm_restore_pmds(ctx
->th_pmds
, pmd_mask
);
6105 if (pmc_mask
) pfm_restore_pmcs(ctx
->th_pmcs
, pmc_mask
);
6108 * check for pending overflow at the time the state
6111 if (unlikely(PMC0_HAS_OVFL(ctx
->th_pmcs
[0]))) {
6113 * reload pmc0 with the overflow information
6114 * On McKinley PMU, this will trigger a PMU interrupt
6116 ia64_set_pmc(0, ctx
->th_pmcs
[0]);
6118 ctx
->th_pmcs
[0] = 0UL;
6121 * will replay the PMU interrupt
6123 if (need_irq_resend
) ia64_resend_irq(IA64_PERFMON_VECTOR
);
6125 pfm_stats
[smp_processor_id()].pfm_replay_ovfl_intr_count
++;
6129 * we just did a reload, so we reset the partial reload fields
6131 ctx
->ctx_reload_pmcs
[0] = 0UL;
6132 ctx
->ctx_reload_pmds
[0] = 0UL;
6134 SET_LAST_CPU(ctx
, smp_processor_id());
6137 * dump activation value for this PMU
6141 * record current activation for this context
6143 SET_ACTIVATION(ctx
);
6146 * establish new ownership.
6148 SET_PMU_OWNER(task
, ctx
);
6151 * restore the psr.up bit. measurement
6153 * no PMU interrupt can happen at this point
6154 * because we still have interrupts disabled.
6156 if (likely(psr_up
)) pfm_set_psr_up();
6159 * allow concurrent access to context
6161 pfm_unprotect_ctx_ctxsw(ctx
, flags
);
6163 #else /* !CONFIG_SMP */
6165 * reload PMU state for UP kernels
6166 * in 2.5 we come here with interrupts disabled
6169 pfm_load_regs (struct task_struct
*task
)
6172 struct task_struct
*owner
;
6173 unsigned long pmd_mask
, pmc_mask
;
6175 int need_irq_resend
;
6177 owner
= GET_PMU_OWNER();
6178 ctx
= PFM_GET_CTX(task
);
6179 psr
= pfm_get_psr();
6181 BUG_ON(psr
& (IA64_PSR_UP
|IA64_PSR_PP
));
6182 BUG_ON(psr
& IA64_PSR_I
);
6185 * we restore ALL the debug registers to avoid picking up
6188 * This must be done even when the task is still the owner
6189 * as the registers may have been modified via ptrace()
6190 * (not perfmon) by the previous task.
6192 if (ctx
->ctx_fl_using_dbreg
) {
6193 pfm_restore_ibrs(ctx
->ctx_ibrs
, pmu_conf
->num_ibrs
);
6194 pfm_restore_dbrs(ctx
->ctx_dbrs
, pmu_conf
->num_dbrs
);
6198 * retrieved saved psr.up
6200 psr_up
= ctx
->ctx_saved_psr_up
;
6201 need_irq_resend
= pmu_conf
->flags
& PFM_PMU_IRQ_RESEND
;
6204 * short path, our state is still there, just
6205 * need to restore psr and we go
6207 * we do not touch either PMC nor PMD. the psr is not touched
6208 * by the overflow_handler. So we are safe w.r.t. to interrupt
6209 * concurrency even without interrupt masking.
6211 if (likely(owner
== task
)) {
6212 if (likely(psr_up
)) pfm_set_psr_up();
6217 * someone else is still using the PMU, first push it out and
6218 * then we'll be able to install our stuff !
6220 * Upon return, there will be no owner for the current PMU
6222 if (owner
) pfm_lazy_save_regs(owner
);
6225 * To avoid leaking information to the user level when psr.sp=0,
6226 * we must reload ALL implemented pmds (even the ones we don't use).
6227 * In the kernel we only allow PFM_READ_PMDS on registers which
6228 * we initialized or requested (sampling) so there is no risk there.
6230 pmd_mask
= pfm_sysctl
.fastctxsw
? ctx
->ctx_used_pmds
[0] : ctx
->ctx_all_pmds
[0];
6233 * ALL accessible PMCs are systematically reloaded, unused registers
6234 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6235 * up stale configuration.
6237 * PMC0 is never in the mask. It is always restored separately
6239 pmc_mask
= ctx
->ctx_all_pmcs
[0];
6241 pfm_restore_pmds(ctx
->th_pmds
, pmd_mask
);
6242 pfm_restore_pmcs(ctx
->th_pmcs
, pmc_mask
);
6245 * check for pending overflow at the time the state
6248 if (unlikely(PMC0_HAS_OVFL(ctx
->th_pmcs
[0]))) {
6250 * reload pmc0 with the overflow information
6251 * On McKinley PMU, this will trigger a PMU interrupt
6253 ia64_set_pmc(0, ctx
->th_pmcs
[0]);
6256 ctx
->th_pmcs
[0] = 0UL;
6259 * will replay the PMU interrupt
6261 if (need_irq_resend
) ia64_resend_irq(IA64_PERFMON_VECTOR
);
6263 pfm_stats
[smp_processor_id()].pfm_replay_ovfl_intr_count
++;
6267 * establish new ownership.
6269 SET_PMU_OWNER(task
, ctx
);
6272 * restore the psr.up bit. measurement
6274 * no PMU interrupt can happen at this point
6275 * because we still have interrupts disabled.
6277 if (likely(psr_up
)) pfm_set_psr_up();
6279 #endif /* CONFIG_SMP */
6282 * this function assumes monitoring is stopped
6285 pfm_flush_pmds(struct task_struct
*task
, pfm_context_t
*ctx
)
6288 unsigned long mask2
, val
, pmd_val
, ovfl_val
;
6289 int i
, can_access_pmu
= 0;
6293 * is the caller the task being monitored (or which initiated the
6294 * session for system wide measurements)
6296 is_self
= ctx
->ctx_task
== task
? 1 : 0;
6299 * can access PMU is task is the owner of the PMU state on the current CPU
6300 * or if we are running on the CPU bound to the context in system-wide mode
6301 * (that is not necessarily the task the context is attached to in this mode).
6302 * In system-wide we always have can_access_pmu true because a task running on an
6303 * invalid processor is flagged earlier in the call stack (see pfm_stop).
6305 can_access_pmu
= (GET_PMU_OWNER() == task
) || (ctx
->ctx_fl_system
&& ctx
->ctx_cpu
== smp_processor_id());
6306 if (can_access_pmu
) {
6308 * Mark the PMU as not owned
6309 * This will cause the interrupt handler to do nothing in case an overflow
6310 * interrupt was in-flight
6311 * This also guarantees that pmc0 will contain the final state
6312 * It virtually gives us full control on overflow processing from that point
6315 SET_PMU_OWNER(NULL
, NULL
);
6316 DPRINT(("releasing ownership\n"));
6319 * read current overflow status:
6321 * we are guaranteed to read the final stable state
6324 pmc0
= ia64_get_pmc(0); /* slow */
6327 * reset freeze bit, overflow status information destroyed
6331 pmc0
= ctx
->th_pmcs
[0];
6333 * clear whatever overflow status bits there were
6335 ctx
->th_pmcs
[0] = 0;
6337 ovfl_val
= pmu_conf
->ovfl_val
;
6339 * we save all the used pmds
6340 * we take care of overflows for counting PMDs
6342 * XXX: sampling situation is not taken into account here
6344 mask2
= ctx
->ctx_used_pmds
[0];
6346 DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self
, ovfl_val
, mask2
));
6348 for (i
= 0; mask2
; i
++, mask2
>>=1) {
6350 /* skip non used pmds */
6351 if ((mask2
& 0x1) == 0) continue;
6354 * can access PMU always true in system wide mode
6356 val
= pmd_val
= can_access_pmu
? ia64_get_pmd(i
) : ctx
->th_pmds
[i
];
6358 if (PMD_IS_COUNTING(i
)) {
6359 DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6362 ctx
->ctx_pmds
[i
].val
,
6366 * we rebuild the full 64 bit value of the counter
6368 val
= ctx
->ctx_pmds
[i
].val
+ (val
& ovfl_val
);
6371 * now everything is in ctx_pmds[] and we need
6372 * to clear the saved context from save_regs() such that
6373 * pfm_read_pmds() gets the correct value
6378 * take care of overflow inline
6380 if (pmc0
& (1UL << i
)) {
6381 val
+= 1 + ovfl_val
;
6382 DPRINT(("[%d] pmd[%d] overflowed\n", task_pid_nr(task
), i
));
6386 DPRINT(("[%d] ctx_pmd[%d]=0x%lx pmd_val=0x%lx\n", task_pid_nr(task
), i
, val
, pmd_val
));
6388 if (is_self
) ctx
->th_pmds
[i
] = pmd_val
;
6390 ctx
->ctx_pmds
[i
].val
= val
;
6394 static struct irqaction perfmon_irqaction
= {
6395 .handler
= pfm_interrupt_handler
,
6396 .flags
= IRQF_DISABLED
,
6401 pfm_alt_save_pmu_state(void *data
)
6403 struct pt_regs
*regs
;
6405 regs
= task_pt_regs(current
);
6407 DPRINT(("called\n"));
6410 * should not be necessary but
6411 * let's take not risk
6415 ia64_psr(regs
)->pp
= 0;
6418 * This call is required
6419 * May cause a spurious interrupt on some processors
6427 pfm_alt_restore_pmu_state(void *data
)
6429 struct pt_regs
*regs
;
6431 regs
= task_pt_regs(current
);
6433 DPRINT(("called\n"));
6436 * put PMU back in state expected
6441 ia64_psr(regs
)->pp
= 0;
6444 * perfmon runs with PMU unfrozen at all times
6452 pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t
*hdl
)
6457 /* some sanity checks */
6458 if (hdl
== NULL
|| hdl
->handler
== NULL
) return -EINVAL
;
6460 /* do the easy test first */
6461 if (pfm_alt_intr_handler
) return -EBUSY
;
6463 /* one at a time in the install or remove, just fail the others */
6464 if (!spin_trylock(&pfm_alt_install_check
)) {
6468 /* reserve our session */
6469 for_each_online_cpu(reserve_cpu
) {
6470 ret
= pfm_reserve_session(NULL
, 1, reserve_cpu
);
6471 if (ret
) goto cleanup_reserve
;
6474 /* save the current system wide pmu states */
6475 ret
= on_each_cpu(pfm_alt_save_pmu_state
, NULL
, 1);
6477 DPRINT(("on_each_cpu() failed: %d\n", ret
));
6478 goto cleanup_reserve
;
6481 /* officially change to the alternate interrupt handler */
6482 pfm_alt_intr_handler
= hdl
;
6484 spin_unlock(&pfm_alt_install_check
);
6489 for_each_online_cpu(i
) {
6490 /* don't unreserve more than we reserved */
6491 if (i
>= reserve_cpu
) break;
6493 pfm_unreserve_session(NULL
, 1, i
);
6496 spin_unlock(&pfm_alt_install_check
);
6500 EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt
);
6503 pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t
*hdl
)
6508 if (hdl
== NULL
) return -EINVAL
;
6510 /* cannot remove someone else's handler! */
6511 if (pfm_alt_intr_handler
!= hdl
) return -EINVAL
;
6513 /* one at a time in the install or remove, just fail the others */
6514 if (!spin_trylock(&pfm_alt_install_check
)) {
6518 pfm_alt_intr_handler
= NULL
;
6520 ret
= on_each_cpu(pfm_alt_restore_pmu_state
, NULL
, 1);
6522 DPRINT(("on_each_cpu() failed: %d\n", ret
));
6525 for_each_online_cpu(i
) {
6526 pfm_unreserve_session(NULL
, 1, i
);
6529 spin_unlock(&pfm_alt_install_check
);
6533 EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt
);
6536 * perfmon initialization routine, called from the initcall() table
6538 static int init_pfm_fs(void);
6546 family
= local_cpu_data
->family
;
6551 if ((*p
)->probe() == 0) goto found
;
6552 } else if ((*p
)->pmu_family
== family
|| (*p
)->pmu_family
== 0xff) {
6563 static const struct file_operations pfm_proc_fops
= {
6564 .open
= pfm_proc_open
,
6566 .llseek
= seq_lseek
,
6567 .release
= seq_release
,
6573 unsigned int n
, n_counters
, i
;
6575 printk("perfmon: version %u.%u IRQ %u\n",
6578 IA64_PERFMON_VECTOR
);
6580 if (pfm_probe_pmu()) {
6581 printk(KERN_INFO
"perfmon: disabled, there is no support for processor family %d\n",
6582 local_cpu_data
->family
);
6587 * compute the number of implemented PMD/PMC from the
6588 * description tables
6591 for (i
=0; PMC_IS_LAST(i
) == 0; i
++) {
6592 if (PMC_IS_IMPL(i
) == 0) continue;
6593 pmu_conf
->impl_pmcs
[i
>>6] |= 1UL << (i
&63);
6596 pmu_conf
->num_pmcs
= n
;
6598 n
= 0; n_counters
= 0;
6599 for (i
=0; PMD_IS_LAST(i
) == 0; i
++) {
6600 if (PMD_IS_IMPL(i
) == 0) continue;
6601 pmu_conf
->impl_pmds
[i
>>6] |= 1UL << (i
&63);
6603 if (PMD_IS_COUNTING(i
)) n_counters
++;
6605 pmu_conf
->num_pmds
= n
;
6606 pmu_conf
->num_counters
= n_counters
;
6609 * sanity checks on the number of debug registers
6611 if (pmu_conf
->use_rr_dbregs
) {
6612 if (pmu_conf
->num_ibrs
> IA64_NUM_DBG_REGS
) {
6613 printk(KERN_INFO
"perfmon: unsupported number of code debug registers (%u)\n", pmu_conf
->num_ibrs
);
6617 if (pmu_conf
->num_dbrs
> IA64_NUM_DBG_REGS
) {
6618 printk(KERN_INFO
"perfmon: unsupported number of data debug registers (%u)\n", pmu_conf
->num_ibrs
);
6624 printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6628 pmu_conf
->num_counters
,
6629 ffz(pmu_conf
->ovfl_val
));
6632 if (pmu_conf
->num_pmds
>= PFM_NUM_PMD_REGS
|| pmu_conf
->num_pmcs
>= PFM_NUM_PMC_REGS
) {
6633 printk(KERN_ERR
"perfmon: not enough pmc/pmd, perfmon disabled\n");
6639 * create /proc/perfmon (mostly for debugging purposes)
6641 perfmon_dir
= proc_create("perfmon", S_IRUGO
, NULL
, &pfm_proc_fops
);
6642 if (perfmon_dir
== NULL
) {
6643 printk(KERN_ERR
"perfmon: cannot create /proc entry, perfmon disabled\n");
6649 * create /proc/sys/kernel/perfmon (for debugging purposes)
6651 pfm_sysctl_header
= register_sysctl_table(pfm_sysctl_root
);
6654 * initialize all our spinlocks
6656 spin_lock_init(&pfm_sessions
.pfs_lock
);
6657 spin_lock_init(&pfm_buffer_fmt_lock
);
6661 for(i
=0; i
< NR_CPUS
; i
++) pfm_stats
[i
].pfm_ovfl_intr_cycles_min
= ~0UL;
6666 __initcall(pfm_init
);
6669 * this function is called before pfm_init()
6672 pfm_init_percpu (void)
6674 static int first_time
=1;
6676 * make sure no measurement is active
6677 * (may inherit programmed PMCs from EFI).
6683 * we run with the PMU not frozen at all times
6688 register_percpu_irq(IA64_PERFMON_VECTOR
, &perfmon_irqaction
);
6692 ia64_setreg(_IA64_REG_CR_PMV
, IA64_PERFMON_VECTOR
);
6697 * used for debug purposes only
6700 dump_pmu_state(const char *from
)
6702 struct task_struct
*task
;
6703 struct pt_regs
*regs
;
6705 unsigned long psr
, dcr
, info
, flags
;
6708 local_irq_save(flags
);
6710 this_cpu
= smp_processor_id();
6711 regs
= task_pt_regs(current
);
6712 info
= PFM_CPUINFO_GET();
6713 dcr
= ia64_getreg(_IA64_REG_CR_DCR
);
6715 if (info
== 0 && ia64_psr(regs
)->pp
== 0 && (dcr
& IA64_DCR_PP
) == 0) {
6716 local_irq_restore(flags
);
6720 printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
6723 task_pid_nr(current
),
6727 task
= GET_PMU_OWNER();
6728 ctx
= GET_PMU_CTX();
6730 printk("->CPU%d owner [%d] ctx=%p\n", this_cpu
, task
? task_pid_nr(task
) : -1, ctx
);
6732 psr
= pfm_get_psr();
6734 printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
6737 psr
& IA64_PSR_PP
? 1 : 0,
6738 psr
& IA64_PSR_UP
? 1 : 0,
6739 dcr
& IA64_DCR_PP
? 1 : 0,
6742 ia64_psr(regs
)->pp
);
6744 ia64_psr(regs
)->up
= 0;
6745 ia64_psr(regs
)->pp
= 0;
6747 for (i
=1; PMC_IS_LAST(i
) == 0; i
++) {
6748 if (PMC_IS_IMPL(i
) == 0) continue;
6749 printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu
, i
, ia64_get_pmc(i
), i
, ctx
->th_pmcs
[i
]);
6752 for (i
=1; PMD_IS_LAST(i
) == 0; i
++) {
6753 if (PMD_IS_IMPL(i
) == 0) continue;
6754 printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu
, i
, ia64_get_pmd(i
), i
, ctx
->th_pmds
[i
]);
6758 printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6761 ctx
->ctx_smpl_vaddr
,
6765 ctx
->ctx_saved_psr_up
);
6767 local_irq_restore(flags
);
6771 * called from process.c:copy_thread(). task is new child.
6774 pfm_inherit(struct task_struct
*task
, struct pt_regs
*regs
)
6776 struct thread_struct
*thread
;
6778 DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task_pid_nr(task
)));
6780 thread
= &task
->thread
;
6783 * cut links inherited from parent (current)
6785 thread
->pfm_context
= NULL
;
6787 PFM_SET_WORK_PENDING(task
, 0);
6790 * the psr bits are already set properly in copy_threads()
6793 #else /* !CONFIG_PERFMON */
6795 sys_perfmonctl (int fd
, int cmd
, void *arg
, int count
)
6799 #endif /* CONFIG_PERFMON */