mfd: wm8350-i2c: Make sure the i2c regmap functions are compiled
[linux/fpc-iii.git] / arch / s390 / kernel / crash_dump.c
blob7dd21720e5b002d03ff406afb12faf546f09e9f3
1 /*
2 * S390 kdump implementation
4 * Copyright IBM Corp. 2011
5 * Author(s): Michael Holzheu <holzheu@linux.vnet.ibm.com>
6 */
8 #include <linux/crash_dump.h>
9 #include <asm/lowcore.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/gfp.h>
13 #include <linux/slab.h>
14 #include <linux/bootmem.h>
15 #include <linux/elf.h>
16 #include <asm/os_info.h>
17 #include <asm/elf.h>
18 #include <asm/ipl.h>
19 #include <asm/sclp.h>
21 #define PTR_ADD(x, y) (((char *) (x)) + ((unsigned long) (y)))
22 #define PTR_SUB(x, y) (((char *) (x)) - ((unsigned long) (y)))
23 #define PTR_DIFF(x, y) ((unsigned long)(((char *) (x)) - ((unsigned long) (y))))
27 * Return physical address for virtual address
29 static inline void *load_real_addr(void *addr)
31 unsigned long real_addr;
33 asm volatile(
34 " lra %0,0(%1)\n"
35 " jz 0f\n"
36 " la %0,0\n"
37 "0:"
38 : "=a" (real_addr) : "a" (addr) : "cc");
39 return (void *)real_addr;
43 * Copy real to virtual or real memory
45 static int copy_from_realmem(void *dest, void *src, size_t count)
47 unsigned long size;
48 int rc;
50 if (!count)
51 return 0;
52 if (!is_vmalloc_or_module_addr(dest))
53 return memcpy_real(dest, src, count);
54 do {
55 size = min(count, PAGE_SIZE - (__pa(dest) & ~PAGE_MASK));
56 if (memcpy_real(load_real_addr(dest), src, size))
57 return -EFAULT;
58 count -= size;
59 dest += size;
60 src += size;
61 } while (count);
62 return 0;
66 * Pointer to ELF header in new kernel
68 static void *elfcorehdr_newmem;
71 * Copy one page from zfcpdump "oldmem"
73 * For pages below ZFCPDUMP_HSA_SIZE memory from the HSA is copied. Otherwise
74 * real memory copy is used.
76 static ssize_t copy_oldmem_page_zfcpdump(char *buf, size_t csize,
77 unsigned long src, int userbuf)
79 int rc;
81 if (src < ZFCPDUMP_HSA_SIZE) {
82 rc = memcpy_hsa(buf, src, csize, userbuf);
83 } else {
84 if (userbuf)
85 rc = copy_to_user_real((void __force __user *) buf,
86 (void *) src, csize);
87 else
88 rc = memcpy_real(buf, (void *) src, csize);
90 return rc ? rc : csize;
94 * Copy one page from kdump "oldmem"
96 * For the kdump reserved memory this functions performs a swap operation:
97 * - [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE] is mapped to [0 - OLDMEM_SIZE].
98 * - [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE]
100 static ssize_t copy_oldmem_page_kdump(char *buf, size_t csize,
101 unsigned long src, int userbuf)
104 int rc;
106 if (src < OLDMEM_SIZE)
107 src += OLDMEM_BASE;
108 else if (src > OLDMEM_BASE &&
109 src < OLDMEM_BASE + OLDMEM_SIZE)
110 src -= OLDMEM_BASE;
111 if (userbuf)
112 rc = copy_to_user_real((void __force __user *) buf,
113 (void *) src, csize);
114 else
115 rc = copy_from_realmem(buf, (void *) src, csize);
116 return (rc == 0) ? rc : csize;
120 * Copy one page from "oldmem"
122 ssize_t copy_oldmem_page(unsigned long pfn, char *buf, size_t csize,
123 unsigned long offset, int userbuf)
125 unsigned long src;
127 if (!csize)
128 return 0;
129 src = (pfn << PAGE_SHIFT) + offset;
130 if (OLDMEM_BASE)
131 return copy_oldmem_page_kdump(buf, csize, src, userbuf);
132 else
133 return copy_oldmem_page_zfcpdump(buf, csize, src, userbuf);
137 * Remap "oldmem" for kdump
139 * For the kdump reserved memory this functions performs a swap operation:
140 * [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE]
142 static int remap_oldmem_pfn_range_kdump(struct vm_area_struct *vma,
143 unsigned long from, unsigned long pfn,
144 unsigned long size, pgprot_t prot)
146 unsigned long size_old;
147 int rc;
149 if (pfn < OLDMEM_SIZE >> PAGE_SHIFT) {
150 size_old = min(size, OLDMEM_SIZE - (pfn << PAGE_SHIFT));
151 rc = remap_pfn_range(vma, from,
152 pfn + (OLDMEM_BASE >> PAGE_SHIFT),
153 size_old, prot);
154 if (rc || size == size_old)
155 return rc;
156 size -= size_old;
157 from += size_old;
158 pfn += size_old >> PAGE_SHIFT;
160 return remap_pfn_range(vma, from, pfn, size, prot);
164 * Remap "oldmem" for zfcpdump
166 * We only map available memory above ZFCPDUMP_HSA_SIZE. Memory below
167 * ZFCPDUMP_HSA_SIZE is read on demand using the copy_oldmem_page() function.
169 static int remap_oldmem_pfn_range_zfcpdump(struct vm_area_struct *vma,
170 unsigned long from,
171 unsigned long pfn,
172 unsigned long size, pgprot_t prot)
174 unsigned long size_hsa;
176 if (pfn < ZFCPDUMP_HSA_SIZE >> PAGE_SHIFT) {
177 size_hsa = min(size, ZFCPDUMP_HSA_SIZE - (pfn << PAGE_SHIFT));
178 if (size == size_hsa)
179 return 0;
180 size -= size_hsa;
181 from += size_hsa;
182 pfn += size_hsa >> PAGE_SHIFT;
184 return remap_pfn_range(vma, from, pfn, size, prot);
188 * Remap "oldmem" for kdump or zfcpdump
190 int remap_oldmem_pfn_range(struct vm_area_struct *vma, unsigned long from,
191 unsigned long pfn, unsigned long size, pgprot_t prot)
193 if (OLDMEM_BASE)
194 return remap_oldmem_pfn_range_kdump(vma, from, pfn, size, prot);
195 else
196 return remap_oldmem_pfn_range_zfcpdump(vma, from, pfn, size,
197 prot);
201 * Copy memory from old kernel
203 int copy_from_oldmem(void *dest, void *src, size_t count)
205 unsigned long copied = 0;
206 int rc;
208 if (OLDMEM_BASE) {
209 if ((unsigned long) src < OLDMEM_SIZE) {
210 copied = min(count, OLDMEM_SIZE - (unsigned long) src);
211 rc = copy_from_realmem(dest, src + OLDMEM_BASE, copied);
212 if (rc)
213 return rc;
215 } else {
216 if ((unsigned long) src < ZFCPDUMP_HSA_SIZE) {
217 copied = min(count,
218 ZFCPDUMP_HSA_SIZE - (unsigned long) src);
219 rc = memcpy_hsa(dest, (unsigned long) src, copied, 0);
220 if (rc)
221 return rc;
224 return copy_from_realmem(dest + copied, src + copied, count - copied);
228 * Alloc memory and panic in case of ENOMEM
230 static void *kzalloc_panic(int len)
232 void *rc;
234 rc = kzalloc(len, GFP_KERNEL);
235 if (!rc)
236 panic("s390 kdump kzalloc (%d) failed", len);
237 return rc;
241 * Get memory layout and create hole for oldmem
243 static struct mem_chunk *get_memory_layout(void)
245 struct mem_chunk *chunk_array;
247 chunk_array = kzalloc_panic(MEMORY_CHUNKS * sizeof(struct mem_chunk));
248 detect_memory_layout(chunk_array, 0);
249 create_mem_hole(chunk_array, OLDMEM_BASE, OLDMEM_SIZE);
250 return chunk_array;
254 * Initialize ELF note
256 static void *nt_init(void *buf, Elf64_Word type, void *desc, int d_len,
257 const char *name)
259 Elf64_Nhdr *note;
260 u64 len;
262 note = (Elf64_Nhdr *)buf;
263 note->n_namesz = strlen(name) + 1;
264 note->n_descsz = d_len;
265 note->n_type = type;
266 len = sizeof(Elf64_Nhdr);
268 memcpy(buf + len, name, note->n_namesz);
269 len = roundup(len + note->n_namesz, 4);
271 memcpy(buf + len, desc, note->n_descsz);
272 len = roundup(len + note->n_descsz, 4);
274 return PTR_ADD(buf, len);
278 * Initialize prstatus note
280 static void *nt_prstatus(void *ptr, struct save_area *sa)
282 struct elf_prstatus nt_prstatus;
283 static int cpu_nr = 1;
285 memset(&nt_prstatus, 0, sizeof(nt_prstatus));
286 memcpy(&nt_prstatus.pr_reg.gprs, sa->gp_regs, sizeof(sa->gp_regs));
287 memcpy(&nt_prstatus.pr_reg.psw, sa->psw, sizeof(sa->psw));
288 memcpy(&nt_prstatus.pr_reg.acrs, sa->acc_regs, sizeof(sa->acc_regs));
289 nt_prstatus.pr_pid = cpu_nr;
290 cpu_nr++;
292 return nt_init(ptr, NT_PRSTATUS, &nt_prstatus, sizeof(nt_prstatus),
293 "CORE");
297 * Initialize fpregset (floating point) note
299 static void *nt_fpregset(void *ptr, struct save_area *sa)
301 elf_fpregset_t nt_fpregset;
303 memset(&nt_fpregset, 0, sizeof(nt_fpregset));
304 memcpy(&nt_fpregset.fpc, &sa->fp_ctrl_reg, sizeof(sa->fp_ctrl_reg));
305 memcpy(&nt_fpregset.fprs, &sa->fp_regs, sizeof(sa->fp_regs));
307 return nt_init(ptr, NT_PRFPREG, &nt_fpregset, sizeof(nt_fpregset),
308 "CORE");
312 * Initialize timer note
314 static void *nt_s390_timer(void *ptr, struct save_area *sa)
316 return nt_init(ptr, NT_S390_TIMER, &sa->timer, sizeof(sa->timer),
317 KEXEC_CORE_NOTE_NAME);
321 * Initialize TOD clock comparator note
323 static void *nt_s390_tod_cmp(void *ptr, struct save_area *sa)
325 return nt_init(ptr, NT_S390_TODCMP, &sa->clk_cmp,
326 sizeof(sa->clk_cmp), KEXEC_CORE_NOTE_NAME);
330 * Initialize TOD programmable register note
332 static void *nt_s390_tod_preg(void *ptr, struct save_area *sa)
334 return nt_init(ptr, NT_S390_TODPREG, &sa->tod_reg,
335 sizeof(sa->tod_reg), KEXEC_CORE_NOTE_NAME);
339 * Initialize control register note
341 static void *nt_s390_ctrs(void *ptr, struct save_area *sa)
343 return nt_init(ptr, NT_S390_CTRS, &sa->ctrl_regs,
344 sizeof(sa->ctrl_regs), KEXEC_CORE_NOTE_NAME);
348 * Initialize prefix register note
350 static void *nt_s390_prefix(void *ptr, struct save_area *sa)
352 return nt_init(ptr, NT_S390_PREFIX, &sa->pref_reg,
353 sizeof(sa->pref_reg), KEXEC_CORE_NOTE_NAME);
357 * Fill ELF notes for one CPU with save area registers
359 void *fill_cpu_elf_notes(void *ptr, struct save_area *sa)
361 ptr = nt_prstatus(ptr, sa);
362 ptr = nt_fpregset(ptr, sa);
363 ptr = nt_s390_timer(ptr, sa);
364 ptr = nt_s390_tod_cmp(ptr, sa);
365 ptr = nt_s390_tod_preg(ptr, sa);
366 ptr = nt_s390_ctrs(ptr, sa);
367 ptr = nt_s390_prefix(ptr, sa);
368 return ptr;
372 * Initialize prpsinfo note (new kernel)
374 static void *nt_prpsinfo(void *ptr)
376 struct elf_prpsinfo prpsinfo;
378 memset(&prpsinfo, 0, sizeof(prpsinfo));
379 prpsinfo.pr_sname = 'R';
380 strcpy(prpsinfo.pr_fname, "vmlinux");
381 return nt_init(ptr, NT_PRPSINFO, &prpsinfo, sizeof(prpsinfo),
382 KEXEC_CORE_NOTE_NAME);
386 * Get vmcoreinfo using lowcore->vmcore_info (new kernel)
388 static void *get_vmcoreinfo_old(unsigned long *size)
390 char nt_name[11], *vmcoreinfo;
391 Elf64_Nhdr note;
392 void *addr;
394 if (copy_from_oldmem(&addr, &S390_lowcore.vmcore_info, sizeof(addr)))
395 return NULL;
396 memset(nt_name, 0, sizeof(nt_name));
397 if (copy_from_oldmem(&note, addr, sizeof(note)))
398 return NULL;
399 if (copy_from_oldmem(nt_name, addr + sizeof(note), sizeof(nt_name) - 1))
400 return NULL;
401 if (strcmp(nt_name, "VMCOREINFO") != 0)
402 return NULL;
403 vmcoreinfo = kzalloc_panic(note.n_descsz);
404 if (copy_from_oldmem(vmcoreinfo, addr + 24, note.n_descsz))
405 return NULL;
406 *size = note.n_descsz;
407 return vmcoreinfo;
411 * Initialize vmcoreinfo note (new kernel)
413 static void *nt_vmcoreinfo(void *ptr)
415 unsigned long size;
416 void *vmcoreinfo;
418 vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size);
419 if (!vmcoreinfo)
420 vmcoreinfo = get_vmcoreinfo_old(&size);
421 if (!vmcoreinfo)
422 return ptr;
423 return nt_init(ptr, 0, vmcoreinfo, size, "VMCOREINFO");
427 * Initialize ELF header (new kernel)
429 static void *ehdr_init(Elf64_Ehdr *ehdr, int mem_chunk_cnt)
431 memset(ehdr, 0, sizeof(*ehdr));
432 memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
433 ehdr->e_ident[EI_CLASS] = ELFCLASS64;
434 ehdr->e_ident[EI_DATA] = ELFDATA2MSB;
435 ehdr->e_ident[EI_VERSION] = EV_CURRENT;
436 memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
437 ehdr->e_type = ET_CORE;
438 ehdr->e_machine = EM_S390;
439 ehdr->e_version = EV_CURRENT;
440 ehdr->e_phoff = sizeof(Elf64_Ehdr);
441 ehdr->e_ehsize = sizeof(Elf64_Ehdr);
442 ehdr->e_phentsize = sizeof(Elf64_Phdr);
443 ehdr->e_phnum = mem_chunk_cnt + 1;
444 return ehdr + 1;
448 * Return CPU count for ELF header (new kernel)
450 static int get_cpu_cnt(void)
452 int i, cpus = 0;
454 for (i = 0; zfcpdump_save_areas[i]; i++) {
455 if (zfcpdump_save_areas[i]->pref_reg == 0)
456 continue;
457 cpus++;
459 return cpus;
463 * Return memory chunk count for ELF header (new kernel)
465 static int get_mem_chunk_cnt(void)
467 struct mem_chunk *chunk_array, *mem_chunk;
468 int i, cnt = 0;
470 chunk_array = get_memory_layout();
471 for (i = 0; i < MEMORY_CHUNKS; i++) {
472 mem_chunk = &chunk_array[i];
473 if (chunk_array[i].type != CHUNK_READ_WRITE &&
474 chunk_array[i].type != CHUNK_READ_ONLY)
475 continue;
476 if (mem_chunk->size == 0)
477 continue;
478 cnt++;
480 kfree(chunk_array);
481 return cnt;
485 * Initialize ELF loads (new kernel)
487 static int loads_init(Elf64_Phdr *phdr, u64 loads_offset)
489 struct mem_chunk *chunk_array, *mem_chunk;
490 int i;
492 chunk_array = get_memory_layout();
493 for (i = 0; i < MEMORY_CHUNKS; i++) {
494 mem_chunk = &chunk_array[i];
495 if (mem_chunk->size == 0)
496 continue;
497 if (chunk_array[i].type != CHUNK_READ_WRITE &&
498 chunk_array[i].type != CHUNK_READ_ONLY)
499 continue;
500 else
501 phdr->p_filesz = mem_chunk->size;
502 phdr->p_type = PT_LOAD;
503 phdr->p_offset = mem_chunk->addr;
504 phdr->p_vaddr = mem_chunk->addr;
505 phdr->p_paddr = mem_chunk->addr;
506 phdr->p_memsz = mem_chunk->size;
507 phdr->p_flags = PF_R | PF_W | PF_X;
508 phdr->p_align = PAGE_SIZE;
509 phdr++;
511 kfree(chunk_array);
512 return i;
516 * Initialize notes (new kernel)
518 static void *notes_init(Elf64_Phdr *phdr, void *ptr, u64 notes_offset)
520 struct save_area *sa;
521 void *ptr_start = ptr;
522 int i;
524 ptr = nt_prpsinfo(ptr);
526 for (i = 0; zfcpdump_save_areas[i]; i++) {
527 sa = zfcpdump_save_areas[i];
528 if (sa->pref_reg == 0)
529 continue;
530 ptr = fill_cpu_elf_notes(ptr, sa);
532 ptr = nt_vmcoreinfo(ptr);
533 memset(phdr, 0, sizeof(*phdr));
534 phdr->p_type = PT_NOTE;
535 phdr->p_offset = notes_offset;
536 phdr->p_filesz = (unsigned long) PTR_SUB(ptr, ptr_start);
537 phdr->p_memsz = phdr->p_filesz;
538 return ptr;
542 * Create ELF core header (new kernel)
544 int elfcorehdr_alloc(unsigned long long *addr, unsigned long long *size)
546 Elf64_Phdr *phdr_notes, *phdr_loads;
547 int mem_chunk_cnt;
548 void *ptr, *hdr;
549 u32 alloc_size;
550 u64 hdr_off;
552 /* If we are not in kdump or zfcpdump mode return */
553 if (!OLDMEM_BASE && ipl_info.type != IPL_TYPE_FCP_DUMP)
554 return 0;
555 /* If elfcorehdr= has been passed via cmdline, we use that one */
556 if (elfcorehdr_addr != ELFCORE_ADDR_MAX)
557 return 0;
558 mem_chunk_cnt = get_mem_chunk_cnt();
560 alloc_size = 0x1000 + get_cpu_cnt() * 0x300 +
561 mem_chunk_cnt * sizeof(Elf64_Phdr);
562 hdr = kzalloc_panic(alloc_size);
563 /* Init elf header */
564 ptr = ehdr_init(hdr, mem_chunk_cnt);
565 /* Init program headers */
566 phdr_notes = ptr;
567 ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr));
568 phdr_loads = ptr;
569 ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr) * mem_chunk_cnt);
570 /* Init notes */
571 hdr_off = PTR_DIFF(ptr, hdr);
572 ptr = notes_init(phdr_notes, ptr, ((unsigned long) hdr) + hdr_off);
573 /* Init loads */
574 hdr_off = PTR_DIFF(ptr, hdr);
575 loads_init(phdr_loads, hdr_off);
576 *addr = (unsigned long long) hdr;
577 elfcorehdr_newmem = hdr;
578 *size = (unsigned long long) hdr_off;
579 BUG_ON(elfcorehdr_size > alloc_size);
580 return 0;
584 * Free ELF core header (new kernel)
586 void elfcorehdr_free(unsigned long long addr)
588 if (!elfcorehdr_newmem)
589 return;
590 kfree((void *)(unsigned long)addr);
594 * Read from ELF header
596 ssize_t elfcorehdr_read(char *buf, size_t count, u64 *ppos)
598 void *src = (void *)(unsigned long)*ppos;
600 src = elfcorehdr_newmem ? src : src - OLDMEM_BASE;
601 memcpy(buf, src, count);
602 *ppos += count;
603 return count;
607 * Read from ELF notes data
609 ssize_t elfcorehdr_read_notes(char *buf, size_t count, u64 *ppos)
611 void *src = (void *)(unsigned long)*ppos;
612 int rc;
614 if (elfcorehdr_newmem) {
615 memcpy(buf, src, count);
616 } else {
617 rc = copy_from_oldmem(buf, src, count);
618 if (rc)
619 return rc;
621 *ppos += count;
622 return count;