mfd: wm8350-i2c: Make sure the i2c regmap functions are compiled
[linux/fpc-iii.git] / arch / um / kernel / irq.c
blob1d8505b1e2908289b49961019b885908d312fed8
1 /*
2 * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
3 * Licensed under the GPL
4 * Derived (i.e. mostly copied) from arch/i386/kernel/irq.c:
5 * Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar
6 */
8 #include <linux/cpumask.h>
9 #include <linux/hardirq.h>
10 #include <linux/interrupt.h>
11 #include <linux/kernel_stat.h>
12 #include <linux/module.h>
13 #include <linux/sched.h>
14 #include <linux/seq_file.h>
15 #include <linux/slab.h>
16 #include <as-layout.h>
17 #include <kern_util.h>
18 #include <os.h>
21 * This list is accessed under irq_lock, except in sigio_handler,
22 * where it is safe from being modified. IRQ handlers won't change it -
23 * if an IRQ source has vanished, it will be freed by free_irqs just
24 * before returning from sigio_handler. That will process a separate
25 * list of irqs to free, with its own locking, coming back here to
26 * remove list elements, taking the irq_lock to do so.
28 static struct irq_fd *active_fds = NULL;
29 static struct irq_fd **last_irq_ptr = &active_fds;
31 extern void free_irqs(void);
33 void sigio_handler(int sig, struct siginfo *unused_si, struct uml_pt_regs *regs)
35 struct irq_fd *irq_fd;
36 int n;
38 if (smp_sigio_handler())
39 return;
41 while (1) {
42 n = os_waiting_for_events(active_fds);
43 if (n <= 0) {
44 if (n == -EINTR)
45 continue;
46 else break;
49 for (irq_fd = active_fds; irq_fd != NULL;
50 irq_fd = irq_fd->next) {
51 if (irq_fd->current_events != 0) {
52 irq_fd->current_events = 0;
53 do_IRQ(irq_fd->irq, regs);
58 free_irqs();
61 static DEFINE_SPINLOCK(irq_lock);
63 static int activate_fd(int irq, int fd, int type, void *dev_id)
65 struct pollfd *tmp_pfd;
66 struct irq_fd *new_fd, *irq_fd;
67 unsigned long flags;
68 int events, err, n;
70 err = os_set_fd_async(fd);
71 if (err < 0)
72 goto out;
74 err = -ENOMEM;
75 new_fd = kmalloc(sizeof(struct irq_fd), GFP_KERNEL);
76 if (new_fd == NULL)
77 goto out;
79 if (type == IRQ_READ)
80 events = UM_POLLIN | UM_POLLPRI;
81 else events = UM_POLLOUT;
82 *new_fd = ((struct irq_fd) { .next = NULL,
83 .id = dev_id,
84 .fd = fd,
85 .type = type,
86 .irq = irq,
87 .events = events,
88 .current_events = 0 } );
90 err = -EBUSY;
91 spin_lock_irqsave(&irq_lock, flags);
92 for (irq_fd = active_fds; irq_fd != NULL; irq_fd = irq_fd->next) {
93 if ((irq_fd->fd == fd) && (irq_fd->type == type)) {
94 printk(KERN_ERR "Registering fd %d twice\n", fd);
95 printk(KERN_ERR "Irqs : %d, %d\n", irq_fd->irq, irq);
96 printk(KERN_ERR "Ids : 0x%p, 0x%p\n", irq_fd->id,
97 dev_id);
98 goto out_unlock;
102 if (type == IRQ_WRITE)
103 fd = -1;
105 tmp_pfd = NULL;
106 n = 0;
108 while (1) {
109 n = os_create_pollfd(fd, events, tmp_pfd, n);
110 if (n == 0)
111 break;
114 * n > 0
115 * It means we couldn't put new pollfd to current pollfds
116 * and tmp_fds is NULL or too small for new pollfds array.
117 * Needed size is equal to n as minimum.
119 * Here we have to drop the lock in order to call
120 * kmalloc, which might sleep.
121 * If something else came in and changed the pollfds array
122 * so we will not be able to put new pollfd struct to pollfds
123 * then we free the buffer tmp_fds and try again.
125 spin_unlock_irqrestore(&irq_lock, flags);
126 kfree(tmp_pfd);
128 tmp_pfd = kmalloc(n, GFP_KERNEL);
129 if (tmp_pfd == NULL)
130 goto out_kfree;
132 spin_lock_irqsave(&irq_lock, flags);
135 *last_irq_ptr = new_fd;
136 last_irq_ptr = &new_fd->next;
138 spin_unlock_irqrestore(&irq_lock, flags);
141 * This calls activate_fd, so it has to be outside the critical
142 * section.
144 maybe_sigio_broken(fd, (type == IRQ_READ));
146 return 0;
148 out_unlock:
149 spin_unlock_irqrestore(&irq_lock, flags);
150 out_kfree:
151 kfree(new_fd);
152 out:
153 return err;
156 static void free_irq_by_cb(int (*test)(struct irq_fd *, void *), void *arg)
158 unsigned long flags;
160 spin_lock_irqsave(&irq_lock, flags);
161 os_free_irq_by_cb(test, arg, active_fds, &last_irq_ptr);
162 spin_unlock_irqrestore(&irq_lock, flags);
165 struct irq_and_dev {
166 int irq;
167 void *dev;
170 static int same_irq_and_dev(struct irq_fd *irq, void *d)
172 struct irq_and_dev *data = d;
174 return ((irq->irq == data->irq) && (irq->id == data->dev));
177 static void free_irq_by_irq_and_dev(unsigned int irq, void *dev)
179 struct irq_and_dev data = ((struct irq_and_dev) { .irq = irq,
180 .dev = dev });
182 free_irq_by_cb(same_irq_and_dev, &data);
185 static int same_fd(struct irq_fd *irq, void *fd)
187 return (irq->fd == *((int *)fd));
190 void free_irq_by_fd(int fd)
192 free_irq_by_cb(same_fd, &fd);
195 /* Must be called with irq_lock held */
196 static struct irq_fd *find_irq_by_fd(int fd, int irqnum, int *index_out)
198 struct irq_fd *irq;
199 int i = 0;
200 int fdi;
202 for (irq = active_fds; irq != NULL; irq = irq->next) {
203 if ((irq->fd == fd) && (irq->irq == irqnum))
204 break;
205 i++;
207 if (irq == NULL) {
208 printk(KERN_ERR "find_irq_by_fd doesn't have descriptor %d\n",
209 fd);
210 goto out;
212 fdi = os_get_pollfd(i);
213 if ((fdi != -1) && (fdi != fd)) {
214 printk(KERN_ERR "find_irq_by_fd - mismatch between active_fds "
215 "and pollfds, fd %d vs %d, need %d\n", irq->fd,
216 fdi, fd);
217 irq = NULL;
218 goto out;
220 *index_out = i;
221 out:
222 return irq;
225 void reactivate_fd(int fd, int irqnum)
227 struct irq_fd *irq;
228 unsigned long flags;
229 int i;
231 spin_lock_irqsave(&irq_lock, flags);
232 irq = find_irq_by_fd(fd, irqnum, &i);
233 if (irq == NULL) {
234 spin_unlock_irqrestore(&irq_lock, flags);
235 return;
237 os_set_pollfd(i, irq->fd);
238 spin_unlock_irqrestore(&irq_lock, flags);
240 add_sigio_fd(fd);
243 void deactivate_fd(int fd, int irqnum)
245 struct irq_fd *irq;
246 unsigned long flags;
247 int i;
249 spin_lock_irqsave(&irq_lock, flags);
250 irq = find_irq_by_fd(fd, irqnum, &i);
251 if (irq == NULL) {
252 spin_unlock_irqrestore(&irq_lock, flags);
253 return;
256 os_set_pollfd(i, -1);
257 spin_unlock_irqrestore(&irq_lock, flags);
259 ignore_sigio_fd(fd);
261 EXPORT_SYMBOL(deactivate_fd);
264 * Called just before shutdown in order to provide a clean exec
265 * environment in case the system is rebooting. No locking because
266 * that would cause a pointless shutdown hang if something hadn't
267 * released the lock.
269 int deactivate_all_fds(void)
271 struct irq_fd *irq;
272 int err;
274 for (irq = active_fds; irq != NULL; irq = irq->next) {
275 err = os_clear_fd_async(irq->fd);
276 if (err)
277 return err;
279 /* If there is a signal already queued, after unblocking ignore it */
280 os_set_ioignore();
282 return 0;
286 * do_IRQ handles all normal device IRQs (the special
287 * SMP cross-CPU interrupts have their own specific
288 * handlers).
290 unsigned int do_IRQ(int irq, struct uml_pt_regs *regs)
292 struct pt_regs *old_regs = set_irq_regs((struct pt_regs *)regs);
293 irq_enter();
294 generic_handle_irq(irq);
295 irq_exit();
296 set_irq_regs(old_regs);
297 return 1;
300 void um_free_irq(unsigned int irq, void *dev)
302 free_irq_by_irq_and_dev(irq, dev);
303 free_irq(irq, dev);
305 EXPORT_SYMBOL(um_free_irq);
307 int um_request_irq(unsigned int irq, int fd, int type,
308 irq_handler_t handler,
309 unsigned long irqflags, const char * devname,
310 void *dev_id)
312 int err;
314 if (fd != -1) {
315 err = activate_fd(irq, fd, type, dev_id);
316 if (err)
317 return err;
320 return request_irq(irq, handler, irqflags, devname, dev_id);
323 EXPORT_SYMBOL(um_request_irq);
324 EXPORT_SYMBOL(reactivate_fd);
327 * irq_chip must define at least enable/disable and ack when
328 * the edge handler is used.
330 static void dummy(struct irq_data *d)
334 /* This is used for everything else than the timer. */
335 static struct irq_chip normal_irq_type = {
336 .name = "SIGIO",
337 .irq_disable = dummy,
338 .irq_enable = dummy,
339 .irq_ack = dummy,
340 .irq_mask = dummy,
341 .irq_unmask = dummy,
344 static struct irq_chip SIGVTALRM_irq_type = {
345 .name = "SIGVTALRM",
346 .irq_disable = dummy,
347 .irq_enable = dummy,
348 .irq_ack = dummy,
349 .irq_mask = dummy,
350 .irq_unmask = dummy,
353 void __init init_IRQ(void)
355 int i;
357 irq_set_chip_and_handler(TIMER_IRQ, &SIGVTALRM_irq_type, handle_edge_irq);
359 for (i = 1; i < NR_IRQS; i++)
360 irq_set_chip_and_handler(i, &normal_irq_type, handle_edge_irq);
364 * IRQ stack entry and exit:
366 * Unlike i386, UML doesn't receive IRQs on the normal kernel stack
367 * and switch over to the IRQ stack after some preparation. We use
368 * sigaltstack to receive signals on a separate stack from the start.
369 * These two functions make sure the rest of the kernel won't be too
370 * upset by being on a different stack. The IRQ stack has a
371 * thread_info structure at the bottom so that current et al continue
372 * to work.
374 * to_irq_stack copies the current task's thread_info to the IRQ stack
375 * thread_info and sets the tasks's stack to point to the IRQ stack.
377 * from_irq_stack copies the thread_info struct back (flags may have
378 * been modified) and resets the task's stack pointer.
380 * Tricky bits -
382 * What happens when two signals race each other? UML doesn't block
383 * signals with sigprocmask, SA_DEFER, or sa_mask, so a second signal
384 * could arrive while a previous one is still setting up the
385 * thread_info.
387 * There are three cases -
388 * The first interrupt on the stack - sets up the thread_info and
389 * handles the interrupt
390 * A nested interrupt interrupting the copying of the thread_info -
391 * can't handle the interrupt, as the stack is in an unknown state
392 * A nested interrupt not interrupting the copying of the
393 * thread_info - doesn't do any setup, just handles the interrupt
395 * The first job is to figure out whether we interrupted stack setup.
396 * This is done by xchging the signal mask with thread_info->pending.
397 * If the value that comes back is zero, then there is no setup in
398 * progress, and the interrupt can be handled. If the value is
399 * non-zero, then there is stack setup in progress. In order to have
400 * the interrupt handled, we leave our signal in the mask, and it will
401 * be handled by the upper handler after it has set up the stack.
403 * Next is to figure out whether we are the outer handler or a nested
404 * one. As part of setting up the stack, thread_info->real_thread is
405 * set to non-NULL (and is reset to NULL on exit). This is the
406 * nesting indicator. If it is non-NULL, then the stack is already
407 * set up and the handler can run.
410 static unsigned long pending_mask;
412 unsigned long to_irq_stack(unsigned long *mask_out)
414 struct thread_info *ti;
415 unsigned long mask, old;
416 int nested;
418 mask = xchg(&pending_mask, *mask_out);
419 if (mask != 0) {
421 * If any interrupts come in at this point, we want to
422 * make sure that their bits aren't lost by our
423 * putting our bit in. So, this loop accumulates bits
424 * until xchg returns the same value that we put in.
425 * When that happens, there were no new interrupts,
426 * and pending_mask contains a bit for each interrupt
427 * that came in.
429 old = *mask_out;
430 do {
431 old |= mask;
432 mask = xchg(&pending_mask, old);
433 } while (mask != old);
434 return 1;
437 ti = current_thread_info();
438 nested = (ti->real_thread != NULL);
439 if (!nested) {
440 struct task_struct *task;
441 struct thread_info *tti;
443 task = cpu_tasks[ti->cpu].task;
444 tti = task_thread_info(task);
446 *ti = *tti;
447 ti->real_thread = tti;
448 task->stack = ti;
451 mask = xchg(&pending_mask, 0);
452 *mask_out |= mask | nested;
453 return 0;
456 unsigned long from_irq_stack(int nested)
458 struct thread_info *ti, *to;
459 unsigned long mask;
461 ti = current_thread_info();
463 pending_mask = 1;
465 to = ti->real_thread;
466 current->stack = to;
467 ti->real_thread = NULL;
468 *to = *ti;
470 mask = xchg(&pending_mask, 0);
471 return mask & ~1;