1 /******************************************************************************
4 * Generic x86 (32-bit and 64-bit) instruction decoder and emulator.
6 * Copyright (c) 2005 Keir Fraser
8 * Linux coding style, mod r/m decoder, segment base fixes, real-mode
9 * privileged instructions:
11 * Copyright (C) 2006 Qumranet
12 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
14 * Avi Kivity <avi@qumranet.com>
15 * Yaniv Kamay <yaniv@qumranet.com>
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
20 * From: xen-unstable 10676:af9809f51f81a3c43f276f00c81a52ef558afda4
23 #include <linux/kvm_host.h>
24 #include "kvm_cache_regs.h"
25 #include <linux/module.h>
26 #include <asm/kvm_emulate.h>
27 #include <linux/stringify.h>
36 #define OpImplicit 1ull /* No generic decode */
37 #define OpReg 2ull /* Register */
38 #define OpMem 3ull /* Memory */
39 #define OpAcc 4ull /* Accumulator: AL/AX/EAX/RAX */
40 #define OpDI 5ull /* ES:DI/EDI/RDI */
41 #define OpMem64 6ull /* Memory, 64-bit */
42 #define OpImmUByte 7ull /* Zero-extended 8-bit immediate */
43 #define OpDX 8ull /* DX register */
44 #define OpCL 9ull /* CL register (for shifts) */
45 #define OpImmByte 10ull /* 8-bit sign extended immediate */
46 #define OpOne 11ull /* Implied 1 */
47 #define OpImm 12ull /* Sign extended up to 32-bit immediate */
48 #define OpMem16 13ull /* Memory operand (16-bit). */
49 #define OpMem32 14ull /* Memory operand (32-bit). */
50 #define OpImmU 15ull /* Immediate operand, zero extended */
51 #define OpSI 16ull /* SI/ESI/RSI */
52 #define OpImmFAddr 17ull /* Immediate far address */
53 #define OpMemFAddr 18ull /* Far address in memory */
54 #define OpImmU16 19ull /* Immediate operand, 16 bits, zero extended */
55 #define OpES 20ull /* ES */
56 #define OpCS 21ull /* CS */
57 #define OpSS 22ull /* SS */
58 #define OpDS 23ull /* DS */
59 #define OpFS 24ull /* FS */
60 #define OpGS 25ull /* GS */
61 #define OpMem8 26ull /* 8-bit zero extended memory operand */
62 #define OpImm64 27ull /* Sign extended 16/32/64-bit immediate */
63 #define OpXLat 28ull /* memory at BX/EBX/RBX + zero-extended AL */
64 #define OpAccLo 29ull /* Low part of extended acc (AX/AX/EAX/RAX) */
65 #define OpAccHi 30ull /* High part of extended acc (-/DX/EDX/RDX) */
67 #define OpBits 5 /* Width of operand field */
68 #define OpMask ((1ull << OpBits) - 1)
71 * Opcode effective-address decode tables.
72 * Note that we only emulate instructions that have at least one memory
73 * operand (excluding implicit stack references). We assume that stack
74 * references and instruction fetches will never occur in special memory
75 * areas that require emulation. So, for example, 'mov <imm>,<reg>' need
79 /* Operand sizes: 8-bit operands or specified/overridden size. */
80 #define ByteOp (1<<0) /* 8-bit operands. */
81 /* Destination operand type. */
83 #define ImplicitOps (OpImplicit << DstShift)
84 #define DstReg (OpReg << DstShift)
85 #define DstMem (OpMem << DstShift)
86 #define DstAcc (OpAcc << DstShift)
87 #define DstDI (OpDI << DstShift)
88 #define DstMem64 (OpMem64 << DstShift)
89 #define DstImmUByte (OpImmUByte << DstShift)
90 #define DstDX (OpDX << DstShift)
91 #define DstAccLo (OpAccLo << DstShift)
92 #define DstMask (OpMask << DstShift)
93 /* Source operand type. */
95 #define SrcNone (OpNone << SrcShift)
96 #define SrcReg (OpReg << SrcShift)
97 #define SrcMem (OpMem << SrcShift)
98 #define SrcMem16 (OpMem16 << SrcShift)
99 #define SrcMem32 (OpMem32 << SrcShift)
100 #define SrcImm (OpImm << SrcShift)
101 #define SrcImmByte (OpImmByte << SrcShift)
102 #define SrcOne (OpOne << SrcShift)
103 #define SrcImmUByte (OpImmUByte << SrcShift)
104 #define SrcImmU (OpImmU << SrcShift)
105 #define SrcSI (OpSI << SrcShift)
106 #define SrcXLat (OpXLat << SrcShift)
107 #define SrcImmFAddr (OpImmFAddr << SrcShift)
108 #define SrcMemFAddr (OpMemFAddr << SrcShift)
109 #define SrcAcc (OpAcc << SrcShift)
110 #define SrcImmU16 (OpImmU16 << SrcShift)
111 #define SrcImm64 (OpImm64 << SrcShift)
112 #define SrcDX (OpDX << SrcShift)
113 #define SrcMem8 (OpMem8 << SrcShift)
114 #define SrcAccHi (OpAccHi << SrcShift)
115 #define SrcMask (OpMask << SrcShift)
116 #define BitOp (1<<11)
117 #define MemAbs (1<<12) /* Memory operand is absolute displacement */
118 #define String (1<<13) /* String instruction (rep capable) */
119 #define Stack (1<<14) /* Stack instruction (push/pop) */
120 #define GroupMask (7<<15) /* Opcode uses one of the group mechanisms */
121 #define Group (1<<15) /* Bits 3:5 of modrm byte extend opcode */
122 #define GroupDual (2<<15) /* Alternate decoding of mod == 3 */
123 #define Prefix (3<<15) /* Instruction varies with 66/f2/f3 prefix */
124 #define RMExt (4<<15) /* Opcode extension in ModRM r/m if mod == 3 */
125 #define Escape (5<<15) /* Escape to coprocessor instruction */
126 #define Sse (1<<18) /* SSE Vector instruction */
127 /* Generic ModRM decode. */
128 #define ModRM (1<<19)
129 /* Destination is only written; never read. */
132 #define Prot (1<<21) /* instruction generates #UD if not in prot-mode */
133 #define VendorSpecific (1<<22) /* Vendor specific instruction */
134 #define NoAccess (1<<23) /* Don't access memory (lea/invlpg/verr etc) */
135 #define Op3264 (1<<24) /* Operand is 64b in long mode, 32b otherwise */
136 #define Undefined (1<<25) /* No Such Instruction */
137 #define Lock (1<<26) /* lock prefix is allowed for the instruction */
138 #define Priv (1<<27) /* instruction generates #GP if current CPL != 0 */
140 #define PageTable (1 << 29) /* instruction used to write page table */
141 #define NotImpl (1 << 30) /* instruction is not implemented */
142 /* Source 2 operand type */
143 #define Src2Shift (31)
144 #define Src2None (OpNone << Src2Shift)
145 #define Src2Mem (OpMem << Src2Shift)
146 #define Src2CL (OpCL << Src2Shift)
147 #define Src2ImmByte (OpImmByte << Src2Shift)
148 #define Src2One (OpOne << Src2Shift)
149 #define Src2Imm (OpImm << Src2Shift)
150 #define Src2ES (OpES << Src2Shift)
151 #define Src2CS (OpCS << Src2Shift)
152 #define Src2SS (OpSS << Src2Shift)
153 #define Src2DS (OpDS << Src2Shift)
154 #define Src2FS (OpFS << Src2Shift)
155 #define Src2GS (OpGS << Src2Shift)
156 #define Src2Mask (OpMask << Src2Shift)
157 #define Mmx ((u64)1 << 40) /* MMX Vector instruction */
158 #define Aligned ((u64)1 << 41) /* Explicitly aligned (e.g. MOVDQA) */
159 #define Unaligned ((u64)1 << 42) /* Explicitly unaligned (e.g. MOVDQU) */
160 #define Avx ((u64)1 << 43) /* Advanced Vector Extensions */
161 #define Fastop ((u64)1 << 44) /* Use opcode::u.fastop */
162 #define NoWrite ((u64)1 << 45) /* No writeback */
163 #define SrcWrite ((u64)1 << 46) /* Write back src operand */
164 #define NearBranch ((u64)1 << 52) /* Near branches */
166 #define DstXacc (DstAccLo | SrcAccHi | SrcWrite)
168 #define X2(x...) x, x
169 #define X3(x...) X2(x), x
170 #define X4(x...) X2(x), X2(x)
171 #define X5(x...) X4(x), x
172 #define X6(x...) X4(x), X2(x)
173 #define X7(x...) X4(x), X3(x)
174 #define X8(x...) X4(x), X4(x)
175 #define X16(x...) X8(x), X8(x)
177 #define NR_FASTOP (ilog2(sizeof(ulong)) + 1)
178 #define FASTOP_SIZE 8
181 * fastop functions have a special calling convention:
186 * flags: rflags (in/out)
187 * ex: rsi (in:fastop pointer, out:zero if exception)
189 * Moreover, they are all exactly FASTOP_SIZE bytes long, so functions for
190 * different operand sizes can be reached by calculation, rather than a jump
191 * table (which would be bigger than the code).
193 * fastop functions are declared as taking a never-defined fastop parameter,
194 * so they can't be called from C directly.
203 int (*execute
)(struct x86_emulate_ctxt
*ctxt
);
204 const struct opcode
*group
;
205 const struct group_dual
*gdual
;
206 const struct gprefix
*gprefix
;
207 const struct escape
*esc
;
208 void (*fastop
)(struct fastop
*fake
);
210 int (*check_perm
)(struct x86_emulate_ctxt
*ctxt
);
214 struct opcode mod012
[8];
215 struct opcode mod3
[8];
219 struct opcode pfx_no
;
220 struct opcode pfx_66
;
221 struct opcode pfx_f2
;
222 struct opcode pfx_f3
;
227 struct opcode high
[64];
230 /* EFLAGS bit definitions. */
231 #define EFLG_ID (1<<21)
232 #define EFLG_VIP (1<<20)
233 #define EFLG_VIF (1<<19)
234 #define EFLG_AC (1<<18)
235 #define EFLG_VM (1<<17)
236 #define EFLG_RF (1<<16)
237 #define EFLG_IOPL (3<<12)
238 #define EFLG_NT (1<<14)
239 #define EFLG_OF (1<<11)
240 #define EFLG_DF (1<<10)
241 #define EFLG_IF (1<<9)
242 #define EFLG_TF (1<<8)
243 #define EFLG_SF (1<<7)
244 #define EFLG_ZF (1<<6)
245 #define EFLG_AF (1<<4)
246 #define EFLG_PF (1<<2)
247 #define EFLG_CF (1<<0)
249 #define EFLG_RESERVED_ZEROS_MASK 0xffc0802a
250 #define EFLG_RESERVED_ONE_MASK 2
252 static ulong
reg_read(struct x86_emulate_ctxt
*ctxt
, unsigned nr
)
254 if (!(ctxt
->regs_valid
& (1 << nr
))) {
255 ctxt
->regs_valid
|= 1 << nr
;
256 ctxt
->_regs
[nr
] = ctxt
->ops
->read_gpr(ctxt
, nr
);
258 return ctxt
->_regs
[nr
];
261 static ulong
*reg_write(struct x86_emulate_ctxt
*ctxt
, unsigned nr
)
263 ctxt
->regs_valid
|= 1 << nr
;
264 ctxt
->regs_dirty
|= 1 << nr
;
265 return &ctxt
->_regs
[nr
];
268 static ulong
*reg_rmw(struct x86_emulate_ctxt
*ctxt
, unsigned nr
)
271 return reg_write(ctxt
, nr
);
274 static void writeback_registers(struct x86_emulate_ctxt
*ctxt
)
278 for_each_set_bit(reg
, (ulong
*)&ctxt
->regs_dirty
, 16)
279 ctxt
->ops
->write_gpr(ctxt
, reg
, ctxt
->_regs
[reg
]);
282 static void invalidate_registers(struct x86_emulate_ctxt
*ctxt
)
284 ctxt
->regs_dirty
= 0;
285 ctxt
->regs_valid
= 0;
289 * These EFLAGS bits are restored from saved value during emulation, and
290 * any changes are written back to the saved value after emulation.
292 #define EFLAGS_MASK (EFLG_OF|EFLG_SF|EFLG_ZF|EFLG_AF|EFLG_PF|EFLG_CF)
300 static int fastop(struct x86_emulate_ctxt
*ctxt
, void (*fop
)(struct fastop
*));
302 #define FOP_ALIGN ".align " __stringify(FASTOP_SIZE) " \n\t"
303 #define FOP_RET "ret \n\t"
305 #define FOP_START(op) \
306 extern void em_##op(struct fastop *fake); \
307 asm(".pushsection .text, \"ax\" \n\t" \
308 ".global em_" #op " \n\t" \
315 #define FOPNOP() FOP_ALIGN FOP_RET
317 #define FOP1E(op, dst) \
318 FOP_ALIGN "10: " #op " %" #dst " \n\t" FOP_RET
320 #define FOP1EEX(op, dst) \
321 FOP1E(op, dst) _ASM_EXTABLE(10b, kvm_fastop_exception)
323 #define FASTOP1(op) \
328 ON64(FOP1E(op##q, rax)) \
331 /* 1-operand, using src2 (for MUL/DIV r/m) */
332 #define FASTOP1SRC2(op, name) \
337 ON64(FOP1E(op, rcx)) \
340 /* 1-operand, using src2 (for MUL/DIV r/m), with exceptions */
341 #define FASTOP1SRC2EX(op, name) \
346 ON64(FOP1EEX(op, rcx)) \
349 #define FOP2E(op, dst, src) \
350 FOP_ALIGN #op " %" #src ", %" #dst " \n\t" FOP_RET
352 #define FASTOP2(op) \
354 FOP2E(op##b, al, dl) \
355 FOP2E(op##w, ax, dx) \
356 FOP2E(op##l, eax, edx) \
357 ON64(FOP2E(op##q, rax, rdx)) \
360 /* 2 operand, word only */
361 #define FASTOP2W(op) \
364 FOP2E(op##w, ax, dx) \
365 FOP2E(op##l, eax, edx) \
366 ON64(FOP2E(op##q, rax, rdx)) \
369 /* 2 operand, src is CL */
370 #define FASTOP2CL(op) \
372 FOP2E(op##b, al, cl) \
373 FOP2E(op##w, ax, cl) \
374 FOP2E(op##l, eax, cl) \
375 ON64(FOP2E(op##q, rax, cl)) \
378 #define FOP3E(op, dst, src, src2) \
379 FOP_ALIGN #op " %" #src2 ", %" #src ", %" #dst " \n\t" FOP_RET
381 /* 3-operand, word-only, src2=cl */
382 #define FASTOP3WCL(op) \
385 FOP3E(op##w, ax, dx, cl) \
386 FOP3E(op##l, eax, edx, cl) \
387 ON64(FOP3E(op##q, rax, rdx, cl)) \
390 /* Special case for SETcc - 1 instruction per cc */
391 #define FOP_SETCC(op) ".align 4; " #op " %al; ret \n\t"
393 asm(".global kvm_fastop_exception \n"
394 "kvm_fastop_exception: xor %esi, %esi; ret");
415 FOP_START(salc
) "pushf; sbb %al, %al; popf \n\t" FOP_RET
418 static int emulator_check_intercept(struct x86_emulate_ctxt
*ctxt
,
419 enum x86_intercept intercept
,
420 enum x86_intercept_stage stage
)
422 struct x86_instruction_info info
= {
423 .intercept
= intercept
,
424 .rep_prefix
= ctxt
->rep_prefix
,
425 .modrm_mod
= ctxt
->modrm_mod
,
426 .modrm_reg
= ctxt
->modrm_reg
,
427 .modrm_rm
= ctxt
->modrm_rm
,
428 .src_val
= ctxt
->src
.val64
,
429 .src_bytes
= ctxt
->src
.bytes
,
430 .dst_bytes
= ctxt
->dst
.bytes
,
431 .ad_bytes
= ctxt
->ad_bytes
,
432 .next_rip
= ctxt
->eip
,
435 return ctxt
->ops
->intercept(ctxt
, &info
, stage
);
438 static void assign_masked(ulong
*dest
, ulong src
, ulong mask
)
440 *dest
= (*dest
& ~mask
) | (src
& mask
);
443 static inline unsigned long ad_mask(struct x86_emulate_ctxt
*ctxt
)
445 return (1UL << (ctxt
->ad_bytes
<< 3)) - 1;
448 static ulong
stack_mask(struct x86_emulate_ctxt
*ctxt
)
451 struct desc_struct ss
;
453 if (ctxt
->mode
== X86EMUL_MODE_PROT64
)
455 ctxt
->ops
->get_segment(ctxt
, &sel
, &ss
, NULL
, VCPU_SREG_SS
);
456 return ~0U >> ((ss
.d
^ 1) * 16); /* d=0: 0xffff; d=1: 0xffffffff */
459 static int stack_size(struct x86_emulate_ctxt
*ctxt
)
461 return (__fls(stack_mask(ctxt
)) + 1) >> 3;
464 /* Access/update address held in a register, based on addressing mode. */
465 static inline unsigned long
466 address_mask(struct x86_emulate_ctxt
*ctxt
, unsigned long reg
)
468 if (ctxt
->ad_bytes
== sizeof(unsigned long))
471 return reg
& ad_mask(ctxt
);
474 static inline unsigned long
475 register_address(struct x86_emulate_ctxt
*ctxt
, unsigned long reg
)
477 return address_mask(ctxt
, reg
);
480 static void masked_increment(ulong
*reg
, ulong mask
, int inc
)
482 assign_masked(reg
, *reg
+ inc
, mask
);
486 register_address_increment(struct x86_emulate_ctxt
*ctxt
, unsigned long *reg
, int inc
)
490 if (ctxt
->ad_bytes
== sizeof(unsigned long))
493 mask
= ad_mask(ctxt
);
494 masked_increment(reg
, mask
, inc
);
497 static void rsp_increment(struct x86_emulate_ctxt
*ctxt
, int inc
)
499 masked_increment(reg_rmw(ctxt
, VCPU_REGS_RSP
), stack_mask(ctxt
), inc
);
502 static u32
desc_limit_scaled(struct desc_struct
*desc
)
504 u32 limit
= get_desc_limit(desc
);
506 return desc
->g
? (limit
<< 12) | 0xfff : limit
;
509 static void set_seg_override(struct x86_emulate_ctxt
*ctxt
, int seg
)
511 ctxt
->has_seg_override
= true;
512 ctxt
->seg_override
= seg
;
515 static unsigned long seg_base(struct x86_emulate_ctxt
*ctxt
, int seg
)
517 if (ctxt
->mode
== X86EMUL_MODE_PROT64
&& seg
< VCPU_SREG_FS
)
520 return ctxt
->ops
->get_cached_segment_base(ctxt
, seg
);
523 static unsigned seg_override(struct x86_emulate_ctxt
*ctxt
)
525 if (!ctxt
->has_seg_override
)
528 return ctxt
->seg_override
;
531 static int emulate_exception(struct x86_emulate_ctxt
*ctxt
, int vec
,
532 u32 error
, bool valid
)
534 ctxt
->exception
.vector
= vec
;
535 ctxt
->exception
.error_code
= error
;
536 ctxt
->exception
.error_code_valid
= valid
;
537 return X86EMUL_PROPAGATE_FAULT
;
540 static int emulate_db(struct x86_emulate_ctxt
*ctxt
)
542 return emulate_exception(ctxt
, DB_VECTOR
, 0, false);
545 static int emulate_gp(struct x86_emulate_ctxt
*ctxt
, int err
)
547 return emulate_exception(ctxt
, GP_VECTOR
, err
, true);
550 static int emulate_ss(struct x86_emulate_ctxt
*ctxt
, int err
)
552 return emulate_exception(ctxt
, SS_VECTOR
, err
, true);
555 static int emulate_ud(struct x86_emulate_ctxt
*ctxt
)
557 return emulate_exception(ctxt
, UD_VECTOR
, 0, false);
560 static int emulate_ts(struct x86_emulate_ctxt
*ctxt
, int err
)
562 return emulate_exception(ctxt
, TS_VECTOR
, err
, true);
565 static int emulate_de(struct x86_emulate_ctxt
*ctxt
)
567 return emulate_exception(ctxt
, DE_VECTOR
, 0, false);
570 static int emulate_nm(struct x86_emulate_ctxt
*ctxt
)
572 return emulate_exception(ctxt
, NM_VECTOR
, 0, false);
575 static inline int assign_eip_far(struct x86_emulate_ctxt
*ctxt
, ulong dst
,
578 switch (ctxt
->op_bytes
) {
580 ctxt
->_eip
= (u16
)dst
;
583 ctxt
->_eip
= (u32
)dst
;
587 if ((cs_l
&& is_noncanonical_address(dst
)) ||
588 (!cs_l
&& (dst
>> 32) != 0))
589 return emulate_gp(ctxt
, 0);
594 WARN(1, "unsupported eip assignment size\n");
596 return X86EMUL_CONTINUE
;
599 static inline int assign_eip_near(struct x86_emulate_ctxt
*ctxt
, ulong dst
)
601 return assign_eip_far(ctxt
, dst
, ctxt
->mode
== X86EMUL_MODE_PROT64
);
604 static inline int jmp_rel(struct x86_emulate_ctxt
*ctxt
, int rel
)
606 return assign_eip_near(ctxt
, ctxt
->_eip
+ rel
);
609 static u16
get_segment_selector(struct x86_emulate_ctxt
*ctxt
, unsigned seg
)
612 struct desc_struct desc
;
614 ctxt
->ops
->get_segment(ctxt
, &selector
, &desc
, NULL
, seg
);
618 static void set_segment_selector(struct x86_emulate_ctxt
*ctxt
, u16 selector
,
623 struct desc_struct desc
;
625 ctxt
->ops
->get_segment(ctxt
, &dummy
, &desc
, &base3
, seg
);
626 ctxt
->ops
->set_segment(ctxt
, selector
, &desc
, base3
, seg
);
630 * x86 defines three classes of vector instructions: explicitly
631 * aligned, explicitly unaligned, and the rest, which change behaviour
632 * depending on whether they're AVX encoded or not.
634 * Also included is CMPXCHG16B which is not a vector instruction, yet it is
635 * subject to the same check.
637 static bool insn_aligned(struct x86_emulate_ctxt
*ctxt
, unsigned size
)
639 if (likely(size
< 16))
642 if (ctxt
->d
& Aligned
)
644 else if (ctxt
->d
& Unaligned
)
646 else if (ctxt
->d
& Avx
)
652 static int __linearize(struct x86_emulate_ctxt
*ctxt
,
653 struct segmented_address addr
,
654 unsigned size
, bool write
, bool fetch
,
657 struct desc_struct desc
;
664 la
= seg_base(ctxt
, addr
.seg
) + addr
.ea
;
665 switch (ctxt
->mode
) {
666 case X86EMUL_MODE_PROT64
:
667 if (is_noncanonical_address(la
))
668 return emulate_gp(ctxt
, 0);
671 usable
= ctxt
->ops
->get_segment(ctxt
, &sel
, &desc
, NULL
,
675 /* code segment in protected mode or read-only data segment */
676 if ((((ctxt
->mode
!= X86EMUL_MODE_REAL
) && (desc
.type
& 8))
677 || !(desc
.type
& 2)) && write
)
679 /* unreadable code segment */
680 if (!fetch
&& (desc
.type
& 8) && !(desc
.type
& 2))
682 lim
= desc_limit_scaled(&desc
);
683 if ((desc
.type
& 8) || !(desc
.type
& 4)) {
684 /* expand-up segment */
685 if (addr
.ea
> lim
|| (u32
)(addr
.ea
+ size
- 1) > lim
)
688 /* expand-down segment */
689 if (addr
.ea
<= lim
|| (u32
)(addr
.ea
+ size
- 1) <= lim
)
691 lim
= desc
.d
? 0xffffffff : 0xffff;
692 if (addr
.ea
> lim
|| (u32
)(addr
.ea
+ size
- 1) > lim
)
695 cpl
= ctxt
->ops
->cpl(ctxt
);
696 if (!(desc
.type
& 8)) {
700 } else if ((desc
.type
& 8) && !(desc
.type
& 4)) {
701 /* nonconforming code segment */
704 } else if ((desc
.type
& 8) && (desc
.type
& 4)) {
705 /* conforming code segment */
711 if (fetch
? ctxt
->mode
!= X86EMUL_MODE_PROT64
: ctxt
->ad_bytes
!= 8)
713 if (insn_aligned(ctxt
, size
) && ((la
& (size
- 1)) != 0))
714 return emulate_gp(ctxt
, 0);
716 return X86EMUL_CONTINUE
;
718 if (addr
.seg
== VCPU_SREG_SS
)
719 return emulate_ss(ctxt
, sel
);
721 return emulate_gp(ctxt
, sel
);
724 static int linearize(struct x86_emulate_ctxt
*ctxt
,
725 struct segmented_address addr
,
726 unsigned size
, bool write
,
729 return __linearize(ctxt
, addr
, size
, write
, false, linear
);
733 static int segmented_read_std(struct x86_emulate_ctxt
*ctxt
,
734 struct segmented_address addr
,
741 rc
= linearize(ctxt
, addr
, size
, false, &linear
);
742 if (rc
!= X86EMUL_CONTINUE
)
744 return ctxt
->ops
->read_std(ctxt
, linear
, data
, size
, &ctxt
->exception
);
748 * Fetch the next byte of the instruction being emulated which is pointed to
749 * by ctxt->_eip, then increment ctxt->_eip.
751 * Also prefetch the remaining bytes of the instruction without crossing page
752 * boundary if they are not in fetch_cache yet.
754 static int do_insn_fetch_byte(struct x86_emulate_ctxt
*ctxt
, u8
*dest
)
756 struct fetch_cache
*fc
= &ctxt
->fetch
;
760 if (ctxt
->_eip
== fc
->end
) {
761 unsigned long linear
;
762 struct segmented_address addr
= { .seg
= VCPU_SREG_CS
,
764 cur_size
= fc
->end
- fc
->start
;
765 size
= min(15UL - cur_size
,
766 PAGE_SIZE
- offset_in_page(ctxt
->_eip
));
767 rc
= __linearize(ctxt
, addr
, size
, false, true, &linear
);
768 if (unlikely(rc
!= X86EMUL_CONTINUE
))
770 rc
= ctxt
->ops
->fetch(ctxt
, linear
, fc
->data
+ cur_size
,
771 size
, &ctxt
->exception
);
772 if (unlikely(rc
!= X86EMUL_CONTINUE
))
776 *dest
= fc
->data
[ctxt
->_eip
- fc
->start
];
778 return X86EMUL_CONTINUE
;
781 static int do_insn_fetch(struct x86_emulate_ctxt
*ctxt
,
782 void *dest
, unsigned size
)
786 /* x86 instructions are limited to 15 bytes. */
787 if (unlikely(ctxt
->_eip
+ size
- ctxt
->eip
> 15))
788 return X86EMUL_UNHANDLEABLE
;
790 rc
= do_insn_fetch_byte(ctxt
, dest
++);
791 if (rc
!= X86EMUL_CONTINUE
)
794 return X86EMUL_CONTINUE
;
797 /* Fetch next part of the instruction being emulated. */
798 #define insn_fetch(_type, _ctxt) \
799 ({ unsigned long _x; \
800 rc = do_insn_fetch(_ctxt, &_x, sizeof(_type)); \
801 if (rc != X86EMUL_CONTINUE) \
806 #define insn_fetch_arr(_arr, _size, _ctxt) \
807 ({ rc = do_insn_fetch(_ctxt, _arr, (_size)); \
808 if (rc != X86EMUL_CONTINUE) \
813 * Given the 'reg' portion of a ModRM byte, and a register block, return a
814 * pointer into the block that addresses the relevant register.
815 * @highbyte_regs specifies whether to decode AH,CH,DH,BH.
817 static void *decode_register(struct x86_emulate_ctxt
*ctxt
, u8 modrm_reg
,
822 if (highbyte_regs
&& modrm_reg
>= 4 && modrm_reg
< 8)
823 p
= (unsigned char *)reg_rmw(ctxt
, modrm_reg
& 3) + 1;
825 p
= reg_rmw(ctxt
, modrm_reg
);
829 static int read_descriptor(struct x86_emulate_ctxt
*ctxt
,
830 struct segmented_address addr
,
831 u16
*size
, unsigned long *address
, int op_bytes
)
838 rc
= segmented_read_std(ctxt
, addr
, size
, 2);
839 if (rc
!= X86EMUL_CONTINUE
)
842 rc
= segmented_read_std(ctxt
, addr
, address
, op_bytes
);
856 FASTOP1SRC2(mul
, mul_ex
);
857 FASTOP1SRC2(imul
, imul_ex
);
858 FASTOP1SRC2EX(div
, div_ex
);
859 FASTOP1SRC2EX(idiv
, idiv_ex
);
888 static u8
test_cc(unsigned int condition
, unsigned long flags
)
891 void (*fop
)(void) = (void *)em_setcc
+ 4 * (condition
& 0xf);
893 flags
= (flags
& EFLAGS_MASK
) | X86_EFLAGS_IF
;
894 asm("push %[flags]; popf; call *%[fastop]"
895 : "=a"(rc
) : [fastop
]"r"(fop
), [flags
]"r"(flags
));
899 static void fetch_register_operand(struct operand
*op
)
903 op
->val
= *(u8
*)op
->addr
.reg
;
906 op
->val
= *(u16
*)op
->addr
.reg
;
909 op
->val
= *(u32
*)op
->addr
.reg
;
912 op
->val
= *(u64
*)op
->addr
.reg
;
917 static void read_sse_reg(struct x86_emulate_ctxt
*ctxt
, sse128_t
*data
, int reg
)
919 ctxt
->ops
->get_fpu(ctxt
);
921 case 0: asm("movdqa %%xmm0, %0" : "=m"(*data
)); break;
922 case 1: asm("movdqa %%xmm1, %0" : "=m"(*data
)); break;
923 case 2: asm("movdqa %%xmm2, %0" : "=m"(*data
)); break;
924 case 3: asm("movdqa %%xmm3, %0" : "=m"(*data
)); break;
925 case 4: asm("movdqa %%xmm4, %0" : "=m"(*data
)); break;
926 case 5: asm("movdqa %%xmm5, %0" : "=m"(*data
)); break;
927 case 6: asm("movdqa %%xmm6, %0" : "=m"(*data
)); break;
928 case 7: asm("movdqa %%xmm7, %0" : "=m"(*data
)); break;
930 case 8: asm("movdqa %%xmm8, %0" : "=m"(*data
)); break;
931 case 9: asm("movdqa %%xmm9, %0" : "=m"(*data
)); break;
932 case 10: asm("movdqa %%xmm10, %0" : "=m"(*data
)); break;
933 case 11: asm("movdqa %%xmm11, %0" : "=m"(*data
)); break;
934 case 12: asm("movdqa %%xmm12, %0" : "=m"(*data
)); break;
935 case 13: asm("movdqa %%xmm13, %0" : "=m"(*data
)); break;
936 case 14: asm("movdqa %%xmm14, %0" : "=m"(*data
)); break;
937 case 15: asm("movdqa %%xmm15, %0" : "=m"(*data
)); break;
941 ctxt
->ops
->put_fpu(ctxt
);
944 static void write_sse_reg(struct x86_emulate_ctxt
*ctxt
, sse128_t
*data
,
947 ctxt
->ops
->get_fpu(ctxt
);
949 case 0: asm("movdqa %0, %%xmm0" : : "m"(*data
)); break;
950 case 1: asm("movdqa %0, %%xmm1" : : "m"(*data
)); break;
951 case 2: asm("movdqa %0, %%xmm2" : : "m"(*data
)); break;
952 case 3: asm("movdqa %0, %%xmm3" : : "m"(*data
)); break;
953 case 4: asm("movdqa %0, %%xmm4" : : "m"(*data
)); break;
954 case 5: asm("movdqa %0, %%xmm5" : : "m"(*data
)); break;
955 case 6: asm("movdqa %0, %%xmm6" : : "m"(*data
)); break;
956 case 7: asm("movdqa %0, %%xmm7" : : "m"(*data
)); break;
958 case 8: asm("movdqa %0, %%xmm8" : : "m"(*data
)); break;
959 case 9: asm("movdqa %0, %%xmm9" : : "m"(*data
)); break;
960 case 10: asm("movdqa %0, %%xmm10" : : "m"(*data
)); break;
961 case 11: asm("movdqa %0, %%xmm11" : : "m"(*data
)); break;
962 case 12: asm("movdqa %0, %%xmm12" : : "m"(*data
)); break;
963 case 13: asm("movdqa %0, %%xmm13" : : "m"(*data
)); break;
964 case 14: asm("movdqa %0, %%xmm14" : : "m"(*data
)); break;
965 case 15: asm("movdqa %0, %%xmm15" : : "m"(*data
)); break;
969 ctxt
->ops
->put_fpu(ctxt
);
972 static void read_mmx_reg(struct x86_emulate_ctxt
*ctxt
, u64
*data
, int reg
)
974 ctxt
->ops
->get_fpu(ctxt
);
976 case 0: asm("movq %%mm0, %0" : "=m"(*data
)); break;
977 case 1: asm("movq %%mm1, %0" : "=m"(*data
)); break;
978 case 2: asm("movq %%mm2, %0" : "=m"(*data
)); break;
979 case 3: asm("movq %%mm3, %0" : "=m"(*data
)); break;
980 case 4: asm("movq %%mm4, %0" : "=m"(*data
)); break;
981 case 5: asm("movq %%mm5, %0" : "=m"(*data
)); break;
982 case 6: asm("movq %%mm6, %0" : "=m"(*data
)); break;
983 case 7: asm("movq %%mm7, %0" : "=m"(*data
)); break;
986 ctxt
->ops
->put_fpu(ctxt
);
989 static void write_mmx_reg(struct x86_emulate_ctxt
*ctxt
, u64
*data
, int reg
)
991 ctxt
->ops
->get_fpu(ctxt
);
993 case 0: asm("movq %0, %%mm0" : : "m"(*data
)); break;
994 case 1: asm("movq %0, %%mm1" : : "m"(*data
)); break;
995 case 2: asm("movq %0, %%mm2" : : "m"(*data
)); break;
996 case 3: asm("movq %0, %%mm3" : : "m"(*data
)); break;
997 case 4: asm("movq %0, %%mm4" : : "m"(*data
)); break;
998 case 5: asm("movq %0, %%mm5" : : "m"(*data
)); break;
999 case 6: asm("movq %0, %%mm6" : : "m"(*data
)); break;
1000 case 7: asm("movq %0, %%mm7" : : "m"(*data
)); break;
1003 ctxt
->ops
->put_fpu(ctxt
);
1006 static int em_fninit(struct x86_emulate_ctxt
*ctxt
)
1008 if (ctxt
->ops
->get_cr(ctxt
, 0) & (X86_CR0_TS
| X86_CR0_EM
))
1009 return emulate_nm(ctxt
);
1011 ctxt
->ops
->get_fpu(ctxt
);
1012 asm volatile("fninit");
1013 ctxt
->ops
->put_fpu(ctxt
);
1014 return X86EMUL_CONTINUE
;
1017 static int em_fnstcw(struct x86_emulate_ctxt
*ctxt
)
1021 if (ctxt
->ops
->get_cr(ctxt
, 0) & (X86_CR0_TS
| X86_CR0_EM
))
1022 return emulate_nm(ctxt
);
1024 ctxt
->ops
->get_fpu(ctxt
);
1025 asm volatile("fnstcw %0": "+m"(fcw
));
1026 ctxt
->ops
->put_fpu(ctxt
);
1028 /* force 2 byte destination */
1029 ctxt
->dst
.bytes
= 2;
1030 ctxt
->dst
.val
= fcw
;
1032 return X86EMUL_CONTINUE
;
1035 static int em_fnstsw(struct x86_emulate_ctxt
*ctxt
)
1039 if (ctxt
->ops
->get_cr(ctxt
, 0) & (X86_CR0_TS
| X86_CR0_EM
))
1040 return emulate_nm(ctxt
);
1042 ctxt
->ops
->get_fpu(ctxt
);
1043 asm volatile("fnstsw %0": "+m"(fsw
));
1044 ctxt
->ops
->put_fpu(ctxt
);
1046 /* force 2 byte destination */
1047 ctxt
->dst
.bytes
= 2;
1048 ctxt
->dst
.val
= fsw
;
1050 return X86EMUL_CONTINUE
;
1053 static void decode_register_operand(struct x86_emulate_ctxt
*ctxt
,
1056 unsigned reg
= ctxt
->modrm_reg
;
1057 int highbyte_regs
= ctxt
->rex_prefix
== 0;
1059 if (!(ctxt
->d
& ModRM
))
1060 reg
= (ctxt
->b
& 7) | ((ctxt
->rex_prefix
& 1) << 3);
1062 if (ctxt
->d
& Sse
) {
1066 read_sse_reg(ctxt
, &op
->vec_val
, reg
);
1069 if (ctxt
->d
& Mmx
) {
1078 if (ctxt
->d
& ByteOp
) {
1079 op
->addr
.reg
= decode_register(ctxt
, reg
, highbyte_regs
);
1082 op
->addr
.reg
= decode_register(ctxt
, reg
, 0);
1083 op
->bytes
= ctxt
->op_bytes
;
1085 fetch_register_operand(op
);
1086 op
->orig_val
= op
->val
;
1089 static void adjust_modrm_seg(struct x86_emulate_ctxt
*ctxt
, int base_reg
)
1091 if (base_reg
== VCPU_REGS_RSP
|| base_reg
== VCPU_REGS_RBP
)
1092 ctxt
->modrm_seg
= VCPU_SREG_SS
;
1095 static int decode_modrm(struct x86_emulate_ctxt
*ctxt
,
1099 int index_reg
= 0, base_reg
= 0, scale
;
1100 int rc
= X86EMUL_CONTINUE
;
1103 if (ctxt
->rex_prefix
) {
1104 ctxt
->modrm_reg
= (ctxt
->rex_prefix
& 4) << 1; /* REX.R */
1105 index_reg
= (ctxt
->rex_prefix
& 2) << 2; /* REX.X */
1106 ctxt
->modrm_rm
= base_reg
= (ctxt
->rex_prefix
& 1) << 3; /* REG.B */
1109 ctxt
->modrm_mod
|= (ctxt
->modrm
& 0xc0) >> 6;
1110 ctxt
->modrm_reg
|= (ctxt
->modrm
& 0x38) >> 3;
1111 ctxt
->modrm_rm
|= (ctxt
->modrm
& 0x07);
1112 ctxt
->modrm_seg
= VCPU_SREG_DS
;
1114 if (ctxt
->modrm_mod
== 3) {
1115 int highbyte_regs
= ctxt
->rex_prefix
== 0;
1118 op
->bytes
= (ctxt
->d
& ByteOp
) ? 1 : ctxt
->op_bytes
;
1119 op
->addr
.reg
= decode_register(ctxt
, ctxt
->modrm_rm
,
1120 highbyte_regs
&& (ctxt
->d
& ByteOp
));
1121 if (ctxt
->d
& Sse
) {
1124 op
->addr
.xmm
= ctxt
->modrm_rm
;
1125 read_sse_reg(ctxt
, &op
->vec_val
, ctxt
->modrm_rm
);
1128 if (ctxt
->d
& Mmx
) {
1131 op
->addr
.xmm
= ctxt
->modrm_rm
& 7;
1134 fetch_register_operand(op
);
1140 if (ctxt
->ad_bytes
== 2) {
1141 unsigned bx
= reg_read(ctxt
, VCPU_REGS_RBX
);
1142 unsigned bp
= reg_read(ctxt
, VCPU_REGS_RBP
);
1143 unsigned si
= reg_read(ctxt
, VCPU_REGS_RSI
);
1144 unsigned di
= reg_read(ctxt
, VCPU_REGS_RDI
);
1146 /* 16-bit ModR/M decode. */
1147 switch (ctxt
->modrm_mod
) {
1149 if (ctxt
->modrm_rm
== 6)
1150 modrm_ea
+= insn_fetch(u16
, ctxt
);
1153 modrm_ea
+= insn_fetch(s8
, ctxt
);
1156 modrm_ea
+= insn_fetch(u16
, ctxt
);
1159 switch (ctxt
->modrm_rm
) {
1161 modrm_ea
+= bx
+ si
;
1164 modrm_ea
+= bx
+ di
;
1167 modrm_ea
+= bp
+ si
;
1170 modrm_ea
+= bp
+ di
;
1179 if (ctxt
->modrm_mod
!= 0)
1186 if (ctxt
->modrm_rm
== 2 || ctxt
->modrm_rm
== 3 ||
1187 (ctxt
->modrm_rm
== 6 && ctxt
->modrm_mod
!= 0))
1188 ctxt
->modrm_seg
= VCPU_SREG_SS
;
1189 modrm_ea
= (u16
)modrm_ea
;
1191 /* 32/64-bit ModR/M decode. */
1192 if ((ctxt
->modrm_rm
& 7) == 4) {
1193 sib
= insn_fetch(u8
, ctxt
);
1194 index_reg
|= (sib
>> 3) & 7;
1195 base_reg
|= sib
& 7;
1198 if ((base_reg
& 7) == 5 && ctxt
->modrm_mod
== 0)
1199 modrm_ea
+= insn_fetch(s32
, ctxt
);
1201 modrm_ea
+= reg_read(ctxt
, base_reg
);
1202 adjust_modrm_seg(ctxt
, base_reg
);
1205 modrm_ea
+= reg_read(ctxt
, index_reg
) << scale
;
1206 } else if ((ctxt
->modrm_rm
& 7) == 5 && ctxt
->modrm_mod
== 0) {
1207 if (ctxt
->mode
== X86EMUL_MODE_PROT64
)
1208 ctxt
->rip_relative
= 1;
1210 base_reg
= ctxt
->modrm_rm
;
1211 modrm_ea
+= reg_read(ctxt
, base_reg
);
1212 adjust_modrm_seg(ctxt
, base_reg
);
1214 switch (ctxt
->modrm_mod
) {
1216 if (ctxt
->modrm_rm
== 5)
1217 modrm_ea
+= insn_fetch(s32
, ctxt
);
1220 modrm_ea
+= insn_fetch(s8
, ctxt
);
1223 modrm_ea
+= insn_fetch(s32
, ctxt
);
1227 op
->addr
.mem
.ea
= modrm_ea
;
1232 static int decode_abs(struct x86_emulate_ctxt
*ctxt
,
1235 int rc
= X86EMUL_CONTINUE
;
1238 switch (ctxt
->ad_bytes
) {
1240 op
->addr
.mem
.ea
= insn_fetch(u16
, ctxt
);
1243 op
->addr
.mem
.ea
= insn_fetch(u32
, ctxt
);
1246 op
->addr
.mem
.ea
= insn_fetch(u64
, ctxt
);
1253 static void fetch_bit_operand(struct x86_emulate_ctxt
*ctxt
)
1257 if (ctxt
->dst
.type
== OP_MEM
&& ctxt
->src
.type
== OP_REG
) {
1258 mask
= ~(ctxt
->dst
.bytes
* 8 - 1);
1260 if (ctxt
->src
.bytes
== 2)
1261 sv
= (s16
)ctxt
->src
.val
& (s16
)mask
;
1262 else if (ctxt
->src
.bytes
== 4)
1263 sv
= (s32
)ctxt
->src
.val
& (s32
)mask
;
1265 ctxt
->dst
.addr
.mem
.ea
+= (sv
>> 3);
1268 /* only subword offset */
1269 ctxt
->src
.val
&= (ctxt
->dst
.bytes
<< 3) - 1;
1272 static int read_emulated(struct x86_emulate_ctxt
*ctxt
,
1273 unsigned long addr
, void *dest
, unsigned size
)
1276 struct read_cache
*mc
= &ctxt
->mem_read
;
1278 if (mc
->pos
< mc
->end
)
1281 WARN_ON((mc
->end
+ size
) >= sizeof(mc
->data
));
1283 rc
= ctxt
->ops
->read_emulated(ctxt
, addr
, mc
->data
+ mc
->end
, size
,
1285 if (rc
!= X86EMUL_CONTINUE
)
1291 memcpy(dest
, mc
->data
+ mc
->pos
, size
);
1293 return X86EMUL_CONTINUE
;
1296 static int segmented_read(struct x86_emulate_ctxt
*ctxt
,
1297 struct segmented_address addr
,
1304 rc
= linearize(ctxt
, addr
, size
, false, &linear
);
1305 if (rc
!= X86EMUL_CONTINUE
)
1307 return read_emulated(ctxt
, linear
, data
, size
);
1310 static int segmented_write(struct x86_emulate_ctxt
*ctxt
,
1311 struct segmented_address addr
,
1318 rc
= linearize(ctxt
, addr
, size
, true, &linear
);
1319 if (rc
!= X86EMUL_CONTINUE
)
1321 return ctxt
->ops
->write_emulated(ctxt
, linear
, data
, size
,
1325 static int segmented_cmpxchg(struct x86_emulate_ctxt
*ctxt
,
1326 struct segmented_address addr
,
1327 const void *orig_data
, const void *data
,
1333 rc
= linearize(ctxt
, addr
, size
, true, &linear
);
1334 if (rc
!= X86EMUL_CONTINUE
)
1336 return ctxt
->ops
->cmpxchg_emulated(ctxt
, linear
, orig_data
, data
,
1337 size
, &ctxt
->exception
);
1340 static int pio_in_emulated(struct x86_emulate_ctxt
*ctxt
,
1341 unsigned int size
, unsigned short port
,
1344 struct read_cache
*rc
= &ctxt
->io_read
;
1346 if (rc
->pos
== rc
->end
) { /* refill pio read ahead */
1347 unsigned int in_page
, n
;
1348 unsigned int count
= ctxt
->rep_prefix
?
1349 address_mask(ctxt
, reg_read(ctxt
, VCPU_REGS_RCX
)) : 1;
1350 in_page
= (ctxt
->eflags
& EFLG_DF
) ?
1351 offset_in_page(reg_read(ctxt
, VCPU_REGS_RDI
)) :
1352 PAGE_SIZE
- offset_in_page(reg_read(ctxt
, VCPU_REGS_RDI
));
1353 n
= min(min(in_page
, (unsigned int)sizeof(rc
->data
)) / size
,
1357 rc
->pos
= rc
->end
= 0;
1358 if (!ctxt
->ops
->pio_in_emulated(ctxt
, size
, port
, rc
->data
, n
))
1363 if (ctxt
->rep_prefix
&& !(ctxt
->eflags
& EFLG_DF
)) {
1364 ctxt
->dst
.data
= rc
->data
+ rc
->pos
;
1365 ctxt
->dst
.type
= OP_MEM_STR
;
1366 ctxt
->dst
.count
= (rc
->end
- rc
->pos
) / size
;
1369 memcpy(dest
, rc
->data
+ rc
->pos
, size
);
1375 static int read_interrupt_descriptor(struct x86_emulate_ctxt
*ctxt
,
1376 u16 index
, struct desc_struct
*desc
)
1381 ctxt
->ops
->get_idt(ctxt
, &dt
);
1383 if (dt
.size
< index
* 8 + 7)
1384 return emulate_gp(ctxt
, index
<< 3 | 0x2);
1386 addr
= dt
.address
+ index
* 8;
1387 return ctxt
->ops
->read_std(ctxt
, addr
, desc
, sizeof *desc
,
1391 static void get_descriptor_table_ptr(struct x86_emulate_ctxt
*ctxt
,
1392 u16 selector
, struct desc_ptr
*dt
)
1394 const struct x86_emulate_ops
*ops
= ctxt
->ops
;
1396 if (selector
& 1 << 2) {
1397 struct desc_struct desc
;
1400 memset (dt
, 0, sizeof *dt
);
1401 if (!ops
->get_segment(ctxt
, &sel
, &desc
, NULL
, VCPU_SREG_LDTR
))
1404 dt
->size
= desc_limit_scaled(&desc
); /* what if limit > 65535? */
1405 dt
->address
= get_desc_base(&desc
);
1407 ops
->get_gdt(ctxt
, dt
);
1410 /* allowed just for 8 bytes segments */
1411 static int read_segment_descriptor(struct x86_emulate_ctxt
*ctxt
,
1412 u16 selector
, struct desc_struct
*desc
,
1416 u16 index
= selector
>> 3;
1419 get_descriptor_table_ptr(ctxt
, selector
, &dt
);
1421 if (dt
.size
< index
* 8 + 7)
1422 return emulate_gp(ctxt
, selector
& 0xfffc);
1424 *desc_addr_p
= addr
= dt
.address
+ index
* 8;
1425 return ctxt
->ops
->read_std(ctxt
, addr
, desc
, sizeof *desc
,
1429 /* allowed just for 8 bytes segments */
1430 static int write_segment_descriptor(struct x86_emulate_ctxt
*ctxt
,
1431 u16 selector
, struct desc_struct
*desc
)
1434 u16 index
= selector
>> 3;
1437 get_descriptor_table_ptr(ctxt
, selector
, &dt
);
1439 if (dt
.size
< index
* 8 + 7)
1440 return emulate_gp(ctxt
, selector
& 0xfffc);
1442 addr
= dt
.address
+ index
* 8;
1443 return ctxt
->ops
->write_std(ctxt
, addr
, desc
, sizeof *desc
,
1447 /* Does not support long mode */
1448 static int load_segment_descriptor(struct x86_emulate_ctxt
*ctxt
,
1449 u16 selector
, int seg
,
1450 struct desc_struct
*desc
)
1452 struct desc_struct seg_desc
, old_desc
;
1454 unsigned err_vec
= GP_VECTOR
;
1456 bool null_selector
= !(selector
& ~0x3); /* 0000-0003 are null */
1461 memset(&seg_desc
, 0, sizeof seg_desc
);
1463 if (ctxt
->mode
== X86EMUL_MODE_REAL
) {
1464 /* set real mode segment descriptor (keep limit etc. for
1466 ctxt
->ops
->get_segment(ctxt
, &dummy
, &seg_desc
, NULL
, seg
);
1467 set_desc_base(&seg_desc
, selector
<< 4);
1469 } else if (seg
<= VCPU_SREG_GS
&& ctxt
->mode
== X86EMUL_MODE_VM86
) {
1470 /* VM86 needs a clean new segment descriptor */
1471 set_desc_base(&seg_desc
, selector
<< 4);
1472 set_desc_limit(&seg_desc
, 0xffff);
1481 cpl
= ctxt
->ops
->cpl(ctxt
);
1483 /* NULL selector is not valid for TR, CS and SS (except for long mode) */
1484 if ((seg
== VCPU_SREG_CS
1485 || (seg
== VCPU_SREG_SS
1486 && (ctxt
->mode
!= X86EMUL_MODE_PROT64
|| rpl
!= cpl
))
1487 || seg
== VCPU_SREG_TR
)
1491 /* TR should be in GDT only */
1492 if (seg
== VCPU_SREG_TR
&& (selector
& (1 << 2)))
1495 if (null_selector
) /* for NULL selector skip all following checks */
1498 ret
= read_segment_descriptor(ctxt
, selector
, &seg_desc
, &desc_addr
);
1499 if (ret
!= X86EMUL_CONTINUE
)
1502 err_code
= selector
& 0xfffc;
1503 err_vec
= GP_VECTOR
;
1505 /* can't load system descriptor into segment selector */
1506 if (seg
<= VCPU_SREG_GS
&& !seg_desc
.s
)
1510 err_vec
= (seg
== VCPU_SREG_SS
) ? SS_VECTOR
: NP_VECTOR
;
1519 * segment is not a writable data segment or segment
1520 * selector's RPL != CPL or segment selector's RPL != CPL
1522 if (rpl
!= cpl
|| (seg_desc
.type
& 0xa) != 0x2 || dpl
!= cpl
)
1526 if (!(seg_desc
.type
& 8))
1529 if (seg_desc
.type
& 4) {
1535 if (rpl
> cpl
|| dpl
!= cpl
)
1538 /* in long-mode d/b must be clear if l is set */
1539 if (seg_desc
.d
&& seg_desc
.l
) {
1542 ctxt
->ops
->get_msr(ctxt
, MSR_EFER
, &efer
);
1543 if (efer
& EFER_LMA
)
1547 /* CS(RPL) <- CPL */
1548 selector
= (selector
& 0xfffc) | cpl
;
1551 if (seg_desc
.s
|| (seg_desc
.type
!= 1 && seg_desc
.type
!= 9))
1553 old_desc
= seg_desc
;
1554 seg_desc
.type
|= 2; /* busy */
1555 ret
= ctxt
->ops
->cmpxchg_emulated(ctxt
, desc_addr
, &old_desc
, &seg_desc
,
1556 sizeof(seg_desc
), &ctxt
->exception
);
1557 if (ret
!= X86EMUL_CONTINUE
)
1560 case VCPU_SREG_LDTR
:
1561 if (seg_desc
.s
|| seg_desc
.type
!= 2)
1564 default: /* DS, ES, FS, or GS */
1566 * segment is not a data or readable code segment or
1567 * ((segment is a data or nonconforming code segment)
1568 * and (both RPL and CPL > DPL))
1570 if ((seg_desc
.type
& 0xa) == 0x8 ||
1571 (((seg_desc
.type
& 0xc) != 0xc) &&
1572 (rpl
> dpl
&& cpl
> dpl
)))
1578 /* mark segment as accessed */
1580 ret
= write_segment_descriptor(ctxt
, selector
, &seg_desc
);
1581 if (ret
!= X86EMUL_CONTINUE
)
1585 ctxt
->ops
->set_segment(ctxt
, selector
, &seg_desc
, 0, seg
);
1588 return X86EMUL_CONTINUE
;
1590 emulate_exception(ctxt
, err_vec
, err_code
, true);
1591 return X86EMUL_PROPAGATE_FAULT
;
1594 static void write_register_operand(struct operand
*op
)
1596 /* The 4-byte case *is* correct: in 64-bit mode we zero-extend. */
1597 switch (op
->bytes
) {
1599 *(u8
*)op
->addr
.reg
= (u8
)op
->val
;
1602 *(u16
*)op
->addr
.reg
= (u16
)op
->val
;
1605 *op
->addr
.reg
= (u32
)op
->val
;
1606 break; /* 64b: zero-extend */
1608 *op
->addr
.reg
= op
->val
;
1613 static int writeback(struct x86_emulate_ctxt
*ctxt
, struct operand
*op
)
1619 write_register_operand(op
);
1622 if (ctxt
->lock_prefix
)
1623 rc
= segmented_cmpxchg(ctxt
,
1629 rc
= segmented_write(ctxt
,
1633 if (rc
!= X86EMUL_CONTINUE
)
1637 rc
= segmented_write(ctxt
,
1640 op
->bytes
* op
->count
);
1641 if (rc
!= X86EMUL_CONTINUE
)
1645 write_sse_reg(ctxt
, &op
->vec_val
, op
->addr
.xmm
);
1648 write_mmx_reg(ctxt
, &op
->mm_val
, op
->addr
.mm
);
1656 return X86EMUL_CONTINUE
;
1659 static int push(struct x86_emulate_ctxt
*ctxt
, void *data
, int bytes
)
1661 struct segmented_address addr
;
1663 rsp_increment(ctxt
, -bytes
);
1664 addr
.ea
= reg_read(ctxt
, VCPU_REGS_RSP
) & stack_mask(ctxt
);
1665 addr
.seg
= VCPU_SREG_SS
;
1667 return segmented_write(ctxt
, addr
, data
, bytes
);
1670 static int em_push(struct x86_emulate_ctxt
*ctxt
)
1672 /* Disable writeback. */
1673 ctxt
->dst
.type
= OP_NONE
;
1674 return push(ctxt
, &ctxt
->src
.val
, ctxt
->op_bytes
);
1677 static int emulate_pop(struct x86_emulate_ctxt
*ctxt
,
1678 void *dest
, int len
)
1681 struct segmented_address addr
;
1683 addr
.ea
= reg_read(ctxt
, VCPU_REGS_RSP
) & stack_mask(ctxt
);
1684 addr
.seg
= VCPU_SREG_SS
;
1685 rc
= segmented_read(ctxt
, addr
, dest
, len
);
1686 if (rc
!= X86EMUL_CONTINUE
)
1689 rsp_increment(ctxt
, len
);
1693 static int em_pop(struct x86_emulate_ctxt
*ctxt
)
1695 return emulate_pop(ctxt
, &ctxt
->dst
.val
, ctxt
->op_bytes
);
1698 static int emulate_popf(struct x86_emulate_ctxt
*ctxt
,
1699 void *dest
, int len
)
1702 unsigned long val
, change_mask
;
1703 int iopl
= (ctxt
->eflags
& X86_EFLAGS_IOPL
) >> IOPL_SHIFT
;
1704 int cpl
= ctxt
->ops
->cpl(ctxt
);
1706 rc
= emulate_pop(ctxt
, &val
, len
);
1707 if (rc
!= X86EMUL_CONTINUE
)
1710 change_mask
= EFLG_CF
| EFLG_PF
| EFLG_AF
| EFLG_ZF
| EFLG_SF
| EFLG_OF
1711 | EFLG_TF
| EFLG_DF
| EFLG_NT
| EFLG_RF
| EFLG_AC
| EFLG_ID
;
1713 switch(ctxt
->mode
) {
1714 case X86EMUL_MODE_PROT64
:
1715 case X86EMUL_MODE_PROT32
:
1716 case X86EMUL_MODE_PROT16
:
1718 change_mask
|= EFLG_IOPL
;
1720 change_mask
|= EFLG_IF
;
1722 case X86EMUL_MODE_VM86
:
1724 return emulate_gp(ctxt
, 0);
1725 change_mask
|= EFLG_IF
;
1727 default: /* real mode */
1728 change_mask
|= (EFLG_IOPL
| EFLG_IF
);
1732 *(unsigned long *)dest
=
1733 (ctxt
->eflags
& ~change_mask
) | (val
& change_mask
);
1738 static int em_popf(struct x86_emulate_ctxt
*ctxt
)
1740 ctxt
->dst
.type
= OP_REG
;
1741 ctxt
->dst
.addr
.reg
= &ctxt
->eflags
;
1742 ctxt
->dst
.bytes
= ctxt
->op_bytes
;
1743 return emulate_popf(ctxt
, &ctxt
->dst
.val
, ctxt
->op_bytes
);
1746 static int em_enter(struct x86_emulate_ctxt
*ctxt
)
1749 unsigned frame_size
= ctxt
->src
.val
;
1750 unsigned nesting_level
= ctxt
->src2
.val
& 31;
1754 return X86EMUL_UNHANDLEABLE
;
1756 rbp
= reg_read(ctxt
, VCPU_REGS_RBP
);
1757 rc
= push(ctxt
, &rbp
, stack_size(ctxt
));
1758 if (rc
!= X86EMUL_CONTINUE
)
1760 assign_masked(reg_rmw(ctxt
, VCPU_REGS_RBP
), reg_read(ctxt
, VCPU_REGS_RSP
),
1762 assign_masked(reg_rmw(ctxt
, VCPU_REGS_RSP
),
1763 reg_read(ctxt
, VCPU_REGS_RSP
) - frame_size
,
1765 return X86EMUL_CONTINUE
;
1768 static int em_leave(struct x86_emulate_ctxt
*ctxt
)
1770 assign_masked(reg_rmw(ctxt
, VCPU_REGS_RSP
), reg_read(ctxt
, VCPU_REGS_RBP
),
1772 return emulate_pop(ctxt
, reg_rmw(ctxt
, VCPU_REGS_RBP
), ctxt
->op_bytes
);
1775 static int em_push_sreg(struct x86_emulate_ctxt
*ctxt
)
1777 int seg
= ctxt
->src2
.val
;
1779 ctxt
->src
.val
= get_segment_selector(ctxt
, seg
);
1781 return em_push(ctxt
);
1784 static int em_pop_sreg(struct x86_emulate_ctxt
*ctxt
)
1786 int seg
= ctxt
->src2
.val
;
1787 unsigned long selector
;
1790 rc
= emulate_pop(ctxt
, &selector
, ctxt
->op_bytes
);
1791 if (rc
!= X86EMUL_CONTINUE
)
1794 rc
= load_segment_descriptor(ctxt
, (u16
)selector
, seg
, NULL
);
1798 static int em_pusha(struct x86_emulate_ctxt
*ctxt
)
1800 unsigned long old_esp
= reg_read(ctxt
, VCPU_REGS_RSP
);
1801 int rc
= X86EMUL_CONTINUE
;
1802 int reg
= VCPU_REGS_RAX
;
1804 while (reg
<= VCPU_REGS_RDI
) {
1805 (reg
== VCPU_REGS_RSP
) ?
1806 (ctxt
->src
.val
= old_esp
) : (ctxt
->src
.val
= reg_read(ctxt
, reg
));
1809 if (rc
!= X86EMUL_CONTINUE
)
1818 static int em_pushf(struct x86_emulate_ctxt
*ctxt
)
1820 ctxt
->src
.val
= (unsigned long)ctxt
->eflags
;
1821 return em_push(ctxt
);
1824 static int em_popa(struct x86_emulate_ctxt
*ctxt
)
1826 int rc
= X86EMUL_CONTINUE
;
1827 int reg
= VCPU_REGS_RDI
;
1829 while (reg
>= VCPU_REGS_RAX
) {
1830 if (reg
== VCPU_REGS_RSP
) {
1831 rsp_increment(ctxt
, ctxt
->op_bytes
);
1835 rc
= emulate_pop(ctxt
, reg_rmw(ctxt
, reg
), ctxt
->op_bytes
);
1836 if (rc
!= X86EMUL_CONTINUE
)
1843 static int __emulate_int_real(struct x86_emulate_ctxt
*ctxt
, int irq
)
1845 const struct x86_emulate_ops
*ops
= ctxt
->ops
;
1852 /* TODO: Add limit checks */
1853 ctxt
->src
.val
= ctxt
->eflags
;
1855 if (rc
!= X86EMUL_CONTINUE
)
1858 ctxt
->eflags
&= ~(EFLG_IF
| EFLG_TF
| EFLG_AC
);
1860 ctxt
->src
.val
= get_segment_selector(ctxt
, VCPU_SREG_CS
);
1862 if (rc
!= X86EMUL_CONTINUE
)
1865 ctxt
->src
.val
= ctxt
->_eip
;
1867 if (rc
!= X86EMUL_CONTINUE
)
1870 ops
->get_idt(ctxt
, &dt
);
1872 eip_addr
= dt
.address
+ (irq
<< 2);
1873 cs_addr
= dt
.address
+ (irq
<< 2) + 2;
1875 rc
= ops
->read_std(ctxt
, cs_addr
, &cs
, 2, &ctxt
->exception
);
1876 if (rc
!= X86EMUL_CONTINUE
)
1879 rc
= ops
->read_std(ctxt
, eip_addr
, &eip
, 2, &ctxt
->exception
);
1880 if (rc
!= X86EMUL_CONTINUE
)
1883 rc
= load_segment_descriptor(ctxt
, cs
, VCPU_SREG_CS
, NULL
);
1884 if (rc
!= X86EMUL_CONTINUE
)
1892 int emulate_int_real(struct x86_emulate_ctxt
*ctxt
, int irq
)
1896 invalidate_registers(ctxt
);
1897 rc
= __emulate_int_real(ctxt
, irq
);
1898 if (rc
== X86EMUL_CONTINUE
)
1899 writeback_registers(ctxt
);
1903 static int emulate_int(struct x86_emulate_ctxt
*ctxt
, int irq
)
1905 switch(ctxt
->mode
) {
1906 case X86EMUL_MODE_REAL
:
1907 return __emulate_int_real(ctxt
, irq
);
1908 case X86EMUL_MODE_VM86
:
1909 case X86EMUL_MODE_PROT16
:
1910 case X86EMUL_MODE_PROT32
:
1911 case X86EMUL_MODE_PROT64
:
1913 /* Protected mode interrupts unimplemented yet */
1914 return X86EMUL_UNHANDLEABLE
;
1918 static int emulate_iret_real(struct x86_emulate_ctxt
*ctxt
)
1920 int rc
= X86EMUL_CONTINUE
;
1921 unsigned long temp_eip
= 0;
1922 unsigned long temp_eflags
= 0;
1923 unsigned long cs
= 0;
1924 unsigned long mask
= EFLG_CF
| EFLG_PF
| EFLG_AF
| EFLG_ZF
| EFLG_SF
| EFLG_TF
|
1925 EFLG_IF
| EFLG_DF
| EFLG_OF
| EFLG_IOPL
| EFLG_NT
| EFLG_RF
|
1926 EFLG_AC
| EFLG_ID
| (1 << 1); /* Last one is the reserved bit */
1927 unsigned long vm86_mask
= EFLG_VM
| EFLG_VIF
| EFLG_VIP
;
1929 /* TODO: Add stack limit check */
1931 rc
= emulate_pop(ctxt
, &temp_eip
, ctxt
->op_bytes
);
1933 if (rc
!= X86EMUL_CONTINUE
)
1936 if (temp_eip
& ~0xffff)
1937 return emulate_gp(ctxt
, 0);
1939 rc
= emulate_pop(ctxt
, &cs
, ctxt
->op_bytes
);
1941 if (rc
!= X86EMUL_CONTINUE
)
1944 rc
= emulate_pop(ctxt
, &temp_eflags
, ctxt
->op_bytes
);
1946 if (rc
!= X86EMUL_CONTINUE
)
1949 rc
= load_segment_descriptor(ctxt
, (u16
)cs
, VCPU_SREG_CS
, NULL
);
1951 if (rc
!= X86EMUL_CONTINUE
)
1954 ctxt
->_eip
= temp_eip
;
1957 if (ctxt
->op_bytes
== 4)
1958 ctxt
->eflags
= ((temp_eflags
& mask
) | (ctxt
->eflags
& vm86_mask
));
1959 else if (ctxt
->op_bytes
== 2) {
1960 ctxt
->eflags
&= ~0xffff;
1961 ctxt
->eflags
|= temp_eflags
;
1964 ctxt
->eflags
&= ~EFLG_RESERVED_ZEROS_MASK
; /* Clear reserved zeros */
1965 ctxt
->eflags
|= EFLG_RESERVED_ONE_MASK
;
1970 static int em_iret(struct x86_emulate_ctxt
*ctxt
)
1972 switch(ctxt
->mode
) {
1973 case X86EMUL_MODE_REAL
:
1974 return emulate_iret_real(ctxt
);
1975 case X86EMUL_MODE_VM86
:
1976 case X86EMUL_MODE_PROT16
:
1977 case X86EMUL_MODE_PROT32
:
1978 case X86EMUL_MODE_PROT64
:
1980 /* iret from protected mode unimplemented yet */
1981 return X86EMUL_UNHANDLEABLE
;
1985 static int em_jmp_far(struct x86_emulate_ctxt
*ctxt
)
1988 unsigned short sel
, old_sel
;
1989 struct desc_struct old_desc
, new_desc
;
1990 const struct x86_emulate_ops
*ops
= ctxt
->ops
;
1992 /* Assignment of RIP may only fail in 64-bit mode */
1993 if (ctxt
->mode
== X86EMUL_MODE_PROT64
)
1994 ops
->get_segment(ctxt
, &old_sel
, &old_desc
, NULL
,
1997 memcpy(&sel
, ctxt
->src
.valptr
+ ctxt
->op_bytes
, 2);
1999 rc
= load_segment_descriptor(ctxt
, sel
, VCPU_SREG_CS
, &new_desc
);
2000 if (rc
!= X86EMUL_CONTINUE
)
2003 rc
= assign_eip_far(ctxt
, ctxt
->src
.val
, new_desc
.l
);
2004 if (rc
!= X86EMUL_CONTINUE
) {
2005 WARN_ON(ctxt
->mode
!= X86EMUL_MODE_PROT64
);
2006 /* assigning eip failed; restore the old cs */
2007 ops
->set_segment(ctxt
, old_sel
, &old_desc
, 0, VCPU_SREG_CS
);
2013 static int em_jmp_abs(struct x86_emulate_ctxt
*ctxt
)
2015 return assign_eip_near(ctxt
, ctxt
->src
.val
);
2018 static int em_call_near_abs(struct x86_emulate_ctxt
*ctxt
)
2023 old_eip
= ctxt
->_eip
;
2024 rc
= assign_eip_near(ctxt
, ctxt
->src
.val
);
2025 if (rc
!= X86EMUL_CONTINUE
)
2027 ctxt
->src
.val
= old_eip
;
2032 static int em_cmpxchg8b(struct x86_emulate_ctxt
*ctxt
)
2034 u64 old
= ctxt
->dst
.orig_val64
;
2036 if (((u32
) (old
>> 0) != (u32
) reg_read(ctxt
, VCPU_REGS_RAX
)) ||
2037 ((u32
) (old
>> 32) != (u32
) reg_read(ctxt
, VCPU_REGS_RDX
))) {
2038 *reg_write(ctxt
, VCPU_REGS_RAX
) = (u32
) (old
>> 0);
2039 *reg_write(ctxt
, VCPU_REGS_RDX
) = (u32
) (old
>> 32);
2040 ctxt
->eflags
&= ~EFLG_ZF
;
2042 ctxt
->dst
.val64
= ((u64
)reg_read(ctxt
, VCPU_REGS_RCX
) << 32) |
2043 (u32
) reg_read(ctxt
, VCPU_REGS_RBX
);
2045 ctxt
->eflags
|= EFLG_ZF
;
2047 return X86EMUL_CONTINUE
;
2050 static int em_ret(struct x86_emulate_ctxt
*ctxt
)
2055 rc
= emulate_pop(ctxt
, &eip
, ctxt
->op_bytes
);
2056 if (rc
!= X86EMUL_CONTINUE
)
2059 return assign_eip_near(ctxt
, eip
);
2062 static int em_ret_far(struct x86_emulate_ctxt
*ctxt
)
2065 unsigned long eip
, cs
;
2067 int cpl
= ctxt
->ops
->cpl(ctxt
);
2068 struct desc_struct old_desc
, new_desc
;
2069 const struct x86_emulate_ops
*ops
= ctxt
->ops
;
2071 if (ctxt
->mode
== X86EMUL_MODE_PROT64
)
2072 ops
->get_segment(ctxt
, &old_cs
, &old_desc
, NULL
,
2075 rc
= emulate_pop(ctxt
, &eip
, ctxt
->op_bytes
);
2076 if (rc
!= X86EMUL_CONTINUE
)
2078 rc
= emulate_pop(ctxt
, &cs
, ctxt
->op_bytes
);
2079 if (rc
!= X86EMUL_CONTINUE
)
2081 /* Outer-privilege level return is not implemented */
2082 if (ctxt
->mode
>= X86EMUL_MODE_PROT16
&& (cs
& 3) > cpl
)
2083 return X86EMUL_UNHANDLEABLE
;
2084 rc
= load_segment_descriptor(ctxt
, (u16
)cs
, VCPU_SREG_CS
, &new_desc
);
2085 if (rc
!= X86EMUL_CONTINUE
)
2087 rc
= assign_eip_far(ctxt
, eip
, new_desc
.l
);
2088 if (rc
!= X86EMUL_CONTINUE
) {
2089 WARN_ON(ctxt
->mode
!= X86EMUL_MODE_PROT64
);
2090 ops
->set_segment(ctxt
, old_cs
, &old_desc
, 0, VCPU_SREG_CS
);
2095 static int em_ret_far_imm(struct x86_emulate_ctxt
*ctxt
)
2099 rc
= em_ret_far(ctxt
);
2100 if (rc
!= X86EMUL_CONTINUE
)
2102 rsp_increment(ctxt
, ctxt
->src
.val
);
2103 return X86EMUL_CONTINUE
;
2106 static int em_cmpxchg(struct x86_emulate_ctxt
*ctxt
)
2108 /* Save real source value, then compare EAX against destination. */
2109 ctxt
->src
.orig_val
= ctxt
->src
.val
;
2110 ctxt
->src
.val
= reg_read(ctxt
, VCPU_REGS_RAX
);
2111 fastop(ctxt
, em_cmp
);
2113 if (ctxt
->eflags
& EFLG_ZF
) {
2114 /* Success: write back to memory. */
2115 ctxt
->dst
.val
= ctxt
->src
.orig_val
;
2117 /* Failure: write the value we saw to EAX. */
2118 ctxt
->dst
.type
= OP_REG
;
2119 ctxt
->dst
.addr
.reg
= reg_rmw(ctxt
, VCPU_REGS_RAX
);
2121 return X86EMUL_CONTINUE
;
2124 static int em_lseg(struct x86_emulate_ctxt
*ctxt
)
2126 int seg
= ctxt
->src2
.val
;
2130 memcpy(&sel
, ctxt
->src
.valptr
+ ctxt
->op_bytes
, 2);
2132 rc
= load_segment_descriptor(ctxt
, sel
, seg
, NULL
);
2133 if (rc
!= X86EMUL_CONTINUE
)
2136 ctxt
->dst
.val
= ctxt
->src
.val
;
2141 setup_syscalls_segments(struct x86_emulate_ctxt
*ctxt
,
2142 struct desc_struct
*cs
, struct desc_struct
*ss
)
2144 cs
->l
= 0; /* will be adjusted later */
2145 set_desc_base(cs
, 0); /* flat segment */
2146 cs
->g
= 1; /* 4kb granularity */
2147 set_desc_limit(cs
, 0xfffff); /* 4GB limit */
2148 cs
->type
= 0x0b; /* Read, Execute, Accessed */
2150 cs
->dpl
= 0; /* will be adjusted later */
2155 set_desc_base(ss
, 0); /* flat segment */
2156 set_desc_limit(ss
, 0xfffff); /* 4GB limit */
2157 ss
->g
= 1; /* 4kb granularity */
2159 ss
->type
= 0x03; /* Read/Write, Accessed */
2160 ss
->d
= 1; /* 32bit stack segment */
2167 static bool vendor_intel(struct x86_emulate_ctxt
*ctxt
)
2169 u32 eax
, ebx
, ecx
, edx
;
2172 ctxt
->ops
->get_cpuid(ctxt
, &eax
, &ebx
, &ecx
, &edx
);
2173 return ebx
== X86EMUL_CPUID_VENDOR_GenuineIntel_ebx
2174 && ecx
== X86EMUL_CPUID_VENDOR_GenuineIntel_ecx
2175 && edx
== X86EMUL_CPUID_VENDOR_GenuineIntel_edx
;
2178 static bool em_syscall_is_enabled(struct x86_emulate_ctxt
*ctxt
)
2180 const struct x86_emulate_ops
*ops
= ctxt
->ops
;
2181 u32 eax
, ebx
, ecx
, edx
;
2184 * syscall should always be enabled in longmode - so only become
2185 * vendor specific (cpuid) if other modes are active...
2187 if (ctxt
->mode
== X86EMUL_MODE_PROT64
)
2192 ops
->get_cpuid(ctxt
, &eax
, &ebx
, &ecx
, &edx
);
2194 * Intel ("GenuineIntel")
2195 * remark: Intel CPUs only support "syscall" in 64bit
2196 * longmode. Also an 64bit guest with a
2197 * 32bit compat-app running will #UD !! While this
2198 * behaviour can be fixed (by emulating) into AMD
2199 * response - CPUs of AMD can't behave like Intel.
2201 if (ebx
== X86EMUL_CPUID_VENDOR_GenuineIntel_ebx
&&
2202 ecx
== X86EMUL_CPUID_VENDOR_GenuineIntel_ecx
&&
2203 edx
== X86EMUL_CPUID_VENDOR_GenuineIntel_edx
)
2206 /* AMD ("AuthenticAMD") */
2207 if (ebx
== X86EMUL_CPUID_VENDOR_AuthenticAMD_ebx
&&
2208 ecx
== X86EMUL_CPUID_VENDOR_AuthenticAMD_ecx
&&
2209 edx
== X86EMUL_CPUID_VENDOR_AuthenticAMD_edx
)
2212 /* AMD ("AMDisbetter!") */
2213 if (ebx
== X86EMUL_CPUID_VENDOR_AMDisbetterI_ebx
&&
2214 ecx
== X86EMUL_CPUID_VENDOR_AMDisbetterI_ecx
&&
2215 edx
== X86EMUL_CPUID_VENDOR_AMDisbetterI_edx
)
2218 /* default: (not Intel, not AMD), apply Intel's stricter rules... */
2222 static int em_syscall(struct x86_emulate_ctxt
*ctxt
)
2224 const struct x86_emulate_ops
*ops
= ctxt
->ops
;
2225 struct desc_struct cs
, ss
;
2230 /* syscall is not available in real mode */
2231 if (ctxt
->mode
== X86EMUL_MODE_REAL
||
2232 ctxt
->mode
== X86EMUL_MODE_VM86
)
2233 return emulate_ud(ctxt
);
2235 if (!(em_syscall_is_enabled(ctxt
)))
2236 return emulate_ud(ctxt
);
2238 ops
->get_msr(ctxt
, MSR_EFER
, &efer
);
2239 setup_syscalls_segments(ctxt
, &cs
, &ss
);
2241 if (!(efer
& EFER_SCE
))
2242 return emulate_ud(ctxt
);
2244 ops
->get_msr(ctxt
, MSR_STAR
, &msr_data
);
2246 cs_sel
= (u16
)(msr_data
& 0xfffc);
2247 ss_sel
= (u16
)(msr_data
+ 8);
2249 if (efer
& EFER_LMA
) {
2253 ops
->set_segment(ctxt
, cs_sel
, &cs
, 0, VCPU_SREG_CS
);
2254 ops
->set_segment(ctxt
, ss_sel
, &ss
, 0, VCPU_SREG_SS
);
2256 *reg_write(ctxt
, VCPU_REGS_RCX
) = ctxt
->_eip
;
2257 if (efer
& EFER_LMA
) {
2258 #ifdef CONFIG_X86_64
2259 *reg_write(ctxt
, VCPU_REGS_R11
) = ctxt
->eflags
& ~EFLG_RF
;
2262 ctxt
->mode
== X86EMUL_MODE_PROT64
?
2263 MSR_LSTAR
: MSR_CSTAR
, &msr_data
);
2264 ctxt
->_eip
= msr_data
;
2266 ops
->get_msr(ctxt
, MSR_SYSCALL_MASK
, &msr_data
);
2267 ctxt
->eflags
&= ~(msr_data
| EFLG_RF
);
2271 ops
->get_msr(ctxt
, MSR_STAR
, &msr_data
);
2272 ctxt
->_eip
= (u32
)msr_data
;
2274 ctxt
->eflags
&= ~(EFLG_VM
| EFLG_IF
| EFLG_RF
);
2277 return X86EMUL_CONTINUE
;
2280 static int em_sysenter(struct x86_emulate_ctxt
*ctxt
)
2282 const struct x86_emulate_ops
*ops
= ctxt
->ops
;
2283 struct desc_struct cs
, ss
;
2288 ops
->get_msr(ctxt
, MSR_EFER
, &efer
);
2289 /* inject #GP if in real mode */
2290 if (ctxt
->mode
== X86EMUL_MODE_REAL
)
2291 return emulate_gp(ctxt
, 0);
2294 * Not recognized on AMD in compat mode (but is recognized in legacy
2297 if ((ctxt
->mode
!= X86EMUL_MODE_PROT64
) && (efer
& EFER_LMA
)
2298 && !vendor_intel(ctxt
))
2299 return emulate_ud(ctxt
);
2301 /* XXX sysenter/sysexit have not been tested in 64bit mode.
2302 * Therefore, we inject an #UD.
2304 if (ctxt
->mode
== X86EMUL_MODE_PROT64
)
2305 return emulate_ud(ctxt
);
2307 setup_syscalls_segments(ctxt
, &cs
, &ss
);
2309 ops
->get_msr(ctxt
, MSR_IA32_SYSENTER_CS
, &msr_data
);
2310 if ((msr_data
& 0xfffc) == 0x0)
2311 return emulate_gp(ctxt
, 0);
2313 ctxt
->eflags
&= ~(EFLG_VM
| EFLG_IF
| EFLG_RF
);
2314 cs_sel
= (u16
)msr_data
& ~SELECTOR_RPL_MASK
;
2315 ss_sel
= cs_sel
+ 8;
2316 if (efer
& EFER_LMA
) {
2321 ops
->set_segment(ctxt
, cs_sel
, &cs
, 0, VCPU_SREG_CS
);
2322 ops
->set_segment(ctxt
, ss_sel
, &ss
, 0, VCPU_SREG_SS
);
2324 ops
->get_msr(ctxt
, MSR_IA32_SYSENTER_EIP
, &msr_data
);
2325 ctxt
->_eip
= (efer
& EFER_LMA
) ? msr_data
: (u32
)msr_data
;
2327 ops
->get_msr(ctxt
, MSR_IA32_SYSENTER_ESP
, &msr_data
);
2328 *reg_write(ctxt
, VCPU_REGS_RSP
) = (efer
& EFER_LMA
) ? msr_data
:
2331 return X86EMUL_CONTINUE
;
2334 static int em_sysexit(struct x86_emulate_ctxt
*ctxt
)
2336 const struct x86_emulate_ops
*ops
= ctxt
->ops
;
2337 struct desc_struct cs
, ss
;
2338 u64 msr_data
, rcx
, rdx
;
2340 u16 cs_sel
= 0, ss_sel
= 0;
2342 /* inject #GP if in real mode or Virtual 8086 mode */
2343 if (ctxt
->mode
== X86EMUL_MODE_REAL
||
2344 ctxt
->mode
== X86EMUL_MODE_VM86
)
2345 return emulate_gp(ctxt
, 0);
2347 setup_syscalls_segments(ctxt
, &cs
, &ss
);
2349 if ((ctxt
->rex_prefix
& 0x8) != 0x0)
2350 usermode
= X86EMUL_MODE_PROT64
;
2352 usermode
= X86EMUL_MODE_PROT32
;
2354 rcx
= reg_read(ctxt
, VCPU_REGS_RCX
);
2355 rdx
= reg_read(ctxt
, VCPU_REGS_RDX
);
2359 ops
->get_msr(ctxt
, MSR_IA32_SYSENTER_CS
, &msr_data
);
2361 case X86EMUL_MODE_PROT32
:
2362 cs_sel
= (u16
)(msr_data
+ 16);
2363 if ((msr_data
& 0xfffc) == 0x0)
2364 return emulate_gp(ctxt
, 0);
2365 ss_sel
= (u16
)(msr_data
+ 24);
2369 case X86EMUL_MODE_PROT64
:
2370 cs_sel
= (u16
)(msr_data
+ 32);
2371 if (msr_data
== 0x0)
2372 return emulate_gp(ctxt
, 0);
2373 ss_sel
= cs_sel
+ 8;
2376 if (is_noncanonical_address(rcx
) ||
2377 is_noncanonical_address(rdx
))
2378 return emulate_gp(ctxt
, 0);
2381 cs_sel
|= SELECTOR_RPL_MASK
;
2382 ss_sel
|= SELECTOR_RPL_MASK
;
2384 ops
->set_segment(ctxt
, cs_sel
, &cs
, 0, VCPU_SREG_CS
);
2385 ops
->set_segment(ctxt
, ss_sel
, &ss
, 0, VCPU_SREG_SS
);
2388 *reg_write(ctxt
, VCPU_REGS_RSP
) = rcx
;
2390 return X86EMUL_CONTINUE
;
2393 static bool emulator_bad_iopl(struct x86_emulate_ctxt
*ctxt
)
2396 if (ctxt
->mode
== X86EMUL_MODE_REAL
)
2398 if (ctxt
->mode
== X86EMUL_MODE_VM86
)
2400 iopl
= (ctxt
->eflags
& X86_EFLAGS_IOPL
) >> IOPL_SHIFT
;
2401 return ctxt
->ops
->cpl(ctxt
) > iopl
;
2404 static bool emulator_io_port_access_allowed(struct x86_emulate_ctxt
*ctxt
,
2407 const struct x86_emulate_ops
*ops
= ctxt
->ops
;
2408 struct desc_struct tr_seg
;
2411 u16 tr
, io_bitmap_ptr
, perm
, bit_idx
= port
& 0x7;
2412 unsigned mask
= (1 << len
) - 1;
2415 ops
->get_segment(ctxt
, &tr
, &tr_seg
, &base3
, VCPU_SREG_TR
);
2418 if (desc_limit_scaled(&tr_seg
) < 103)
2420 base
= get_desc_base(&tr_seg
);
2421 #ifdef CONFIG_X86_64
2422 base
|= ((u64
)base3
) << 32;
2424 r
= ops
->read_std(ctxt
, base
+ 102, &io_bitmap_ptr
, 2, NULL
);
2425 if (r
!= X86EMUL_CONTINUE
)
2427 if (io_bitmap_ptr
+ port
/8 > desc_limit_scaled(&tr_seg
))
2429 r
= ops
->read_std(ctxt
, base
+ io_bitmap_ptr
+ port
/8, &perm
, 2, NULL
);
2430 if (r
!= X86EMUL_CONTINUE
)
2432 if ((perm
>> bit_idx
) & mask
)
2437 static bool emulator_io_permited(struct x86_emulate_ctxt
*ctxt
,
2443 if (emulator_bad_iopl(ctxt
))
2444 if (!emulator_io_port_access_allowed(ctxt
, port
, len
))
2447 ctxt
->perm_ok
= true;
2452 static void save_state_to_tss16(struct x86_emulate_ctxt
*ctxt
,
2453 struct tss_segment_16
*tss
)
2455 tss
->ip
= ctxt
->_eip
;
2456 tss
->flag
= ctxt
->eflags
;
2457 tss
->ax
= reg_read(ctxt
, VCPU_REGS_RAX
);
2458 tss
->cx
= reg_read(ctxt
, VCPU_REGS_RCX
);
2459 tss
->dx
= reg_read(ctxt
, VCPU_REGS_RDX
);
2460 tss
->bx
= reg_read(ctxt
, VCPU_REGS_RBX
);
2461 tss
->sp
= reg_read(ctxt
, VCPU_REGS_RSP
);
2462 tss
->bp
= reg_read(ctxt
, VCPU_REGS_RBP
);
2463 tss
->si
= reg_read(ctxt
, VCPU_REGS_RSI
);
2464 tss
->di
= reg_read(ctxt
, VCPU_REGS_RDI
);
2466 tss
->es
= get_segment_selector(ctxt
, VCPU_SREG_ES
);
2467 tss
->cs
= get_segment_selector(ctxt
, VCPU_SREG_CS
);
2468 tss
->ss
= get_segment_selector(ctxt
, VCPU_SREG_SS
);
2469 tss
->ds
= get_segment_selector(ctxt
, VCPU_SREG_DS
);
2470 tss
->ldt
= get_segment_selector(ctxt
, VCPU_SREG_LDTR
);
2473 static int load_state_from_tss16(struct x86_emulate_ctxt
*ctxt
,
2474 struct tss_segment_16
*tss
)
2478 ctxt
->_eip
= tss
->ip
;
2479 ctxt
->eflags
= tss
->flag
| 2;
2480 *reg_write(ctxt
, VCPU_REGS_RAX
) = tss
->ax
;
2481 *reg_write(ctxt
, VCPU_REGS_RCX
) = tss
->cx
;
2482 *reg_write(ctxt
, VCPU_REGS_RDX
) = tss
->dx
;
2483 *reg_write(ctxt
, VCPU_REGS_RBX
) = tss
->bx
;
2484 *reg_write(ctxt
, VCPU_REGS_RSP
) = tss
->sp
;
2485 *reg_write(ctxt
, VCPU_REGS_RBP
) = tss
->bp
;
2486 *reg_write(ctxt
, VCPU_REGS_RSI
) = tss
->si
;
2487 *reg_write(ctxt
, VCPU_REGS_RDI
) = tss
->di
;
2490 * SDM says that segment selectors are loaded before segment
2493 set_segment_selector(ctxt
, tss
->ldt
, VCPU_SREG_LDTR
);
2494 set_segment_selector(ctxt
, tss
->es
, VCPU_SREG_ES
);
2495 set_segment_selector(ctxt
, tss
->cs
, VCPU_SREG_CS
);
2496 set_segment_selector(ctxt
, tss
->ss
, VCPU_SREG_SS
);
2497 set_segment_selector(ctxt
, tss
->ds
, VCPU_SREG_DS
);
2500 * Now load segment descriptors. If fault happens at this stage
2501 * it is handled in a context of new task
2503 ret
= load_segment_descriptor(ctxt
, tss
->ldt
, VCPU_SREG_LDTR
, NULL
);
2504 if (ret
!= X86EMUL_CONTINUE
)
2506 ret
= load_segment_descriptor(ctxt
, tss
->es
, VCPU_SREG_ES
, NULL
);
2507 if (ret
!= X86EMUL_CONTINUE
)
2509 ret
= load_segment_descriptor(ctxt
, tss
->cs
, VCPU_SREG_CS
, NULL
);
2510 if (ret
!= X86EMUL_CONTINUE
)
2512 ret
= load_segment_descriptor(ctxt
, tss
->ss
, VCPU_SREG_SS
, NULL
);
2513 if (ret
!= X86EMUL_CONTINUE
)
2515 ret
= load_segment_descriptor(ctxt
, tss
->ds
, VCPU_SREG_DS
, NULL
);
2516 if (ret
!= X86EMUL_CONTINUE
)
2519 return X86EMUL_CONTINUE
;
2522 static int task_switch_16(struct x86_emulate_ctxt
*ctxt
,
2523 u16 tss_selector
, u16 old_tss_sel
,
2524 ulong old_tss_base
, struct desc_struct
*new_desc
)
2526 const struct x86_emulate_ops
*ops
= ctxt
->ops
;
2527 struct tss_segment_16 tss_seg
;
2529 u32 new_tss_base
= get_desc_base(new_desc
);
2531 ret
= ops
->read_std(ctxt
, old_tss_base
, &tss_seg
, sizeof tss_seg
,
2533 if (ret
!= X86EMUL_CONTINUE
)
2534 /* FIXME: need to provide precise fault address */
2537 save_state_to_tss16(ctxt
, &tss_seg
);
2539 ret
= ops
->write_std(ctxt
, old_tss_base
, &tss_seg
, sizeof tss_seg
,
2541 if (ret
!= X86EMUL_CONTINUE
)
2542 /* FIXME: need to provide precise fault address */
2545 ret
= ops
->read_std(ctxt
, new_tss_base
, &tss_seg
, sizeof tss_seg
,
2547 if (ret
!= X86EMUL_CONTINUE
)
2548 /* FIXME: need to provide precise fault address */
2551 if (old_tss_sel
!= 0xffff) {
2552 tss_seg
.prev_task_link
= old_tss_sel
;
2554 ret
= ops
->write_std(ctxt
, new_tss_base
,
2555 &tss_seg
.prev_task_link
,
2556 sizeof tss_seg
.prev_task_link
,
2558 if (ret
!= X86EMUL_CONTINUE
)
2559 /* FIXME: need to provide precise fault address */
2563 return load_state_from_tss16(ctxt
, &tss_seg
);
2566 static void save_state_to_tss32(struct x86_emulate_ctxt
*ctxt
,
2567 struct tss_segment_32
*tss
)
2569 tss
->cr3
= ctxt
->ops
->get_cr(ctxt
, 3);
2570 tss
->eip
= ctxt
->_eip
;
2571 tss
->eflags
= ctxt
->eflags
;
2572 tss
->eax
= reg_read(ctxt
, VCPU_REGS_RAX
);
2573 tss
->ecx
= reg_read(ctxt
, VCPU_REGS_RCX
);
2574 tss
->edx
= reg_read(ctxt
, VCPU_REGS_RDX
);
2575 tss
->ebx
= reg_read(ctxt
, VCPU_REGS_RBX
);
2576 tss
->esp
= reg_read(ctxt
, VCPU_REGS_RSP
);
2577 tss
->ebp
= reg_read(ctxt
, VCPU_REGS_RBP
);
2578 tss
->esi
= reg_read(ctxt
, VCPU_REGS_RSI
);
2579 tss
->edi
= reg_read(ctxt
, VCPU_REGS_RDI
);
2581 tss
->es
= get_segment_selector(ctxt
, VCPU_SREG_ES
);
2582 tss
->cs
= get_segment_selector(ctxt
, VCPU_SREG_CS
);
2583 tss
->ss
= get_segment_selector(ctxt
, VCPU_SREG_SS
);
2584 tss
->ds
= get_segment_selector(ctxt
, VCPU_SREG_DS
);
2585 tss
->fs
= get_segment_selector(ctxt
, VCPU_SREG_FS
);
2586 tss
->gs
= get_segment_selector(ctxt
, VCPU_SREG_GS
);
2587 tss
->ldt_selector
= get_segment_selector(ctxt
, VCPU_SREG_LDTR
);
2590 static int load_state_from_tss32(struct x86_emulate_ctxt
*ctxt
,
2591 struct tss_segment_32
*tss
)
2595 if (ctxt
->ops
->set_cr(ctxt
, 3, tss
->cr3
))
2596 return emulate_gp(ctxt
, 0);
2597 ctxt
->_eip
= tss
->eip
;
2598 ctxt
->eflags
= tss
->eflags
| 2;
2600 /* General purpose registers */
2601 *reg_write(ctxt
, VCPU_REGS_RAX
) = tss
->eax
;
2602 *reg_write(ctxt
, VCPU_REGS_RCX
) = tss
->ecx
;
2603 *reg_write(ctxt
, VCPU_REGS_RDX
) = tss
->edx
;
2604 *reg_write(ctxt
, VCPU_REGS_RBX
) = tss
->ebx
;
2605 *reg_write(ctxt
, VCPU_REGS_RSP
) = tss
->esp
;
2606 *reg_write(ctxt
, VCPU_REGS_RBP
) = tss
->ebp
;
2607 *reg_write(ctxt
, VCPU_REGS_RSI
) = tss
->esi
;
2608 *reg_write(ctxt
, VCPU_REGS_RDI
) = tss
->edi
;
2611 * SDM says that segment selectors are loaded before segment
2614 set_segment_selector(ctxt
, tss
->ldt_selector
, VCPU_SREG_LDTR
);
2615 set_segment_selector(ctxt
, tss
->es
, VCPU_SREG_ES
);
2616 set_segment_selector(ctxt
, tss
->cs
, VCPU_SREG_CS
);
2617 set_segment_selector(ctxt
, tss
->ss
, VCPU_SREG_SS
);
2618 set_segment_selector(ctxt
, tss
->ds
, VCPU_SREG_DS
);
2619 set_segment_selector(ctxt
, tss
->fs
, VCPU_SREG_FS
);
2620 set_segment_selector(ctxt
, tss
->gs
, VCPU_SREG_GS
);
2623 * If we're switching between Protected Mode and VM86, we need to make
2624 * sure to update the mode before loading the segment descriptors so
2625 * that the selectors are interpreted correctly.
2627 * Need to get rflags to the vcpu struct immediately because it
2628 * influences the CPL which is checked at least when loading the segment
2629 * descriptors and when pushing an error code to the new kernel stack.
2631 * TODO Introduce a separate ctxt->ops->set_cpl callback
2633 if (ctxt
->eflags
& X86_EFLAGS_VM
)
2634 ctxt
->mode
= X86EMUL_MODE_VM86
;
2636 ctxt
->mode
= X86EMUL_MODE_PROT32
;
2638 ctxt
->ops
->set_rflags(ctxt
, ctxt
->eflags
);
2641 * Now load segment descriptors. If fault happenes at this stage
2642 * it is handled in a context of new task
2644 ret
= load_segment_descriptor(ctxt
, tss
->ldt_selector
, VCPU_SREG_LDTR
,
2646 if (ret
!= X86EMUL_CONTINUE
)
2648 ret
= load_segment_descriptor(ctxt
, tss
->es
, VCPU_SREG_ES
, NULL
);
2649 if (ret
!= X86EMUL_CONTINUE
)
2651 ret
= load_segment_descriptor(ctxt
, tss
->cs
, VCPU_SREG_CS
, NULL
);
2652 if (ret
!= X86EMUL_CONTINUE
)
2654 ret
= load_segment_descriptor(ctxt
, tss
->ss
, VCPU_SREG_SS
, NULL
);
2655 if (ret
!= X86EMUL_CONTINUE
)
2657 ret
= load_segment_descriptor(ctxt
, tss
->ds
, VCPU_SREG_DS
, NULL
);
2658 if (ret
!= X86EMUL_CONTINUE
)
2660 ret
= load_segment_descriptor(ctxt
, tss
->fs
, VCPU_SREG_FS
, NULL
);
2661 if (ret
!= X86EMUL_CONTINUE
)
2663 ret
= load_segment_descriptor(ctxt
, tss
->gs
, VCPU_SREG_GS
, NULL
);
2664 if (ret
!= X86EMUL_CONTINUE
)
2667 return X86EMUL_CONTINUE
;
2670 static int task_switch_32(struct x86_emulate_ctxt
*ctxt
,
2671 u16 tss_selector
, u16 old_tss_sel
,
2672 ulong old_tss_base
, struct desc_struct
*new_desc
)
2674 const struct x86_emulate_ops
*ops
= ctxt
->ops
;
2675 struct tss_segment_32 tss_seg
;
2677 u32 new_tss_base
= get_desc_base(new_desc
);
2679 ret
= ops
->read_std(ctxt
, old_tss_base
, &tss_seg
, sizeof tss_seg
,
2681 if (ret
!= X86EMUL_CONTINUE
)
2682 /* FIXME: need to provide precise fault address */
2685 save_state_to_tss32(ctxt
, &tss_seg
);
2687 ret
= ops
->write_std(ctxt
, old_tss_base
, &tss_seg
, sizeof tss_seg
,
2689 if (ret
!= X86EMUL_CONTINUE
)
2690 /* FIXME: need to provide precise fault address */
2693 ret
= ops
->read_std(ctxt
, new_tss_base
, &tss_seg
, sizeof tss_seg
,
2695 if (ret
!= X86EMUL_CONTINUE
)
2696 /* FIXME: need to provide precise fault address */
2699 if (old_tss_sel
!= 0xffff) {
2700 tss_seg
.prev_task_link
= old_tss_sel
;
2702 ret
= ops
->write_std(ctxt
, new_tss_base
,
2703 &tss_seg
.prev_task_link
,
2704 sizeof tss_seg
.prev_task_link
,
2706 if (ret
!= X86EMUL_CONTINUE
)
2707 /* FIXME: need to provide precise fault address */
2711 return load_state_from_tss32(ctxt
, &tss_seg
);
2714 static int emulator_do_task_switch(struct x86_emulate_ctxt
*ctxt
,
2715 u16 tss_selector
, int idt_index
, int reason
,
2716 bool has_error_code
, u32 error_code
)
2718 const struct x86_emulate_ops
*ops
= ctxt
->ops
;
2719 struct desc_struct curr_tss_desc
, next_tss_desc
;
2721 u16 old_tss_sel
= get_segment_selector(ctxt
, VCPU_SREG_TR
);
2722 ulong old_tss_base
=
2723 ops
->get_cached_segment_base(ctxt
, VCPU_SREG_TR
);
2727 /* FIXME: old_tss_base == ~0 ? */
2729 ret
= read_segment_descriptor(ctxt
, tss_selector
, &next_tss_desc
, &desc_addr
);
2730 if (ret
!= X86EMUL_CONTINUE
)
2732 ret
= read_segment_descriptor(ctxt
, old_tss_sel
, &curr_tss_desc
, &desc_addr
);
2733 if (ret
!= X86EMUL_CONTINUE
)
2736 /* FIXME: check that next_tss_desc is tss */
2739 * Check privileges. The three cases are task switch caused by...
2741 * 1. jmp/call/int to task gate: Check against DPL of the task gate
2742 * 2. Exception/IRQ/iret: No check is performed
2743 * 3. jmp/call to TSS: Check against DPL of the TSS
2745 if (reason
== TASK_SWITCH_GATE
) {
2746 if (idt_index
!= -1) {
2747 /* Software interrupts */
2748 struct desc_struct task_gate_desc
;
2751 ret
= read_interrupt_descriptor(ctxt
, idt_index
,
2753 if (ret
!= X86EMUL_CONTINUE
)
2756 dpl
= task_gate_desc
.dpl
;
2757 if ((tss_selector
& 3) > dpl
|| ops
->cpl(ctxt
) > dpl
)
2758 return emulate_gp(ctxt
, (idt_index
<< 3) | 0x2);
2760 } else if (reason
!= TASK_SWITCH_IRET
) {
2761 int dpl
= next_tss_desc
.dpl
;
2762 if ((tss_selector
& 3) > dpl
|| ops
->cpl(ctxt
) > dpl
)
2763 return emulate_gp(ctxt
, tss_selector
);
2767 desc_limit
= desc_limit_scaled(&next_tss_desc
);
2768 if (!next_tss_desc
.p
||
2769 ((desc_limit
< 0x67 && (next_tss_desc
.type
& 8)) ||
2770 desc_limit
< 0x2b)) {
2771 emulate_ts(ctxt
, tss_selector
& 0xfffc);
2772 return X86EMUL_PROPAGATE_FAULT
;
2775 if (reason
== TASK_SWITCH_IRET
|| reason
== TASK_SWITCH_JMP
) {
2776 curr_tss_desc
.type
&= ~(1 << 1); /* clear busy flag */
2777 write_segment_descriptor(ctxt
, old_tss_sel
, &curr_tss_desc
);
2780 if (reason
== TASK_SWITCH_IRET
)
2781 ctxt
->eflags
= ctxt
->eflags
& ~X86_EFLAGS_NT
;
2783 /* set back link to prev task only if NT bit is set in eflags
2784 note that old_tss_sel is not used after this point */
2785 if (reason
!= TASK_SWITCH_CALL
&& reason
!= TASK_SWITCH_GATE
)
2786 old_tss_sel
= 0xffff;
2788 if (next_tss_desc
.type
& 8)
2789 ret
= task_switch_32(ctxt
, tss_selector
, old_tss_sel
,
2790 old_tss_base
, &next_tss_desc
);
2792 ret
= task_switch_16(ctxt
, tss_selector
, old_tss_sel
,
2793 old_tss_base
, &next_tss_desc
);
2794 if (ret
!= X86EMUL_CONTINUE
)
2797 if (reason
== TASK_SWITCH_CALL
|| reason
== TASK_SWITCH_GATE
)
2798 ctxt
->eflags
= ctxt
->eflags
| X86_EFLAGS_NT
;
2800 if (reason
!= TASK_SWITCH_IRET
) {
2801 next_tss_desc
.type
|= (1 << 1); /* set busy flag */
2802 write_segment_descriptor(ctxt
, tss_selector
, &next_tss_desc
);
2805 ops
->set_cr(ctxt
, 0, ops
->get_cr(ctxt
, 0) | X86_CR0_TS
);
2806 ops
->set_segment(ctxt
, tss_selector
, &next_tss_desc
, 0, VCPU_SREG_TR
);
2808 if (has_error_code
) {
2809 ctxt
->op_bytes
= ctxt
->ad_bytes
= (next_tss_desc
.type
& 8) ? 4 : 2;
2810 ctxt
->lock_prefix
= 0;
2811 ctxt
->src
.val
= (unsigned long) error_code
;
2812 ret
= em_push(ctxt
);
2818 int emulator_task_switch(struct x86_emulate_ctxt
*ctxt
,
2819 u16 tss_selector
, int idt_index
, int reason
,
2820 bool has_error_code
, u32 error_code
)
2824 invalidate_registers(ctxt
);
2825 ctxt
->_eip
= ctxt
->eip
;
2826 ctxt
->dst
.type
= OP_NONE
;
2828 rc
= emulator_do_task_switch(ctxt
, tss_selector
, idt_index
, reason
,
2829 has_error_code
, error_code
);
2831 if (rc
== X86EMUL_CONTINUE
) {
2832 ctxt
->eip
= ctxt
->_eip
;
2833 writeback_registers(ctxt
);
2836 return (rc
== X86EMUL_UNHANDLEABLE
) ? EMULATION_FAILED
: EMULATION_OK
;
2839 static void string_addr_inc(struct x86_emulate_ctxt
*ctxt
, int reg
,
2842 int df
= (ctxt
->eflags
& EFLG_DF
) ? -op
->count
: op
->count
;
2844 register_address_increment(ctxt
, reg_rmw(ctxt
, reg
), df
* op
->bytes
);
2845 op
->addr
.mem
.ea
= register_address(ctxt
, reg_read(ctxt
, reg
));
2848 static int em_das(struct x86_emulate_ctxt
*ctxt
)
2851 bool af
, cf
, old_cf
;
2853 cf
= ctxt
->eflags
& X86_EFLAGS_CF
;
2859 af
= ctxt
->eflags
& X86_EFLAGS_AF
;
2860 if ((al
& 0x0f) > 9 || af
) {
2862 cf
= old_cf
| (al
>= 250);
2867 if (old_al
> 0x99 || old_cf
) {
2873 /* Set PF, ZF, SF */
2874 ctxt
->src
.type
= OP_IMM
;
2876 ctxt
->src
.bytes
= 1;
2877 fastop(ctxt
, em_or
);
2878 ctxt
->eflags
&= ~(X86_EFLAGS_AF
| X86_EFLAGS_CF
);
2880 ctxt
->eflags
|= X86_EFLAGS_CF
;
2882 ctxt
->eflags
|= X86_EFLAGS_AF
;
2883 return X86EMUL_CONTINUE
;
2886 static int em_aam(struct x86_emulate_ctxt
*ctxt
)
2890 if (ctxt
->src
.val
== 0)
2891 return emulate_de(ctxt
);
2893 al
= ctxt
->dst
.val
& 0xff;
2894 ah
= al
/ ctxt
->src
.val
;
2895 al
%= ctxt
->src
.val
;
2897 ctxt
->dst
.val
= (ctxt
->dst
.val
& 0xffff0000) | al
| (ah
<< 8);
2899 /* Set PF, ZF, SF */
2900 ctxt
->src
.type
= OP_IMM
;
2902 ctxt
->src
.bytes
= 1;
2903 fastop(ctxt
, em_or
);
2905 return X86EMUL_CONTINUE
;
2908 static int em_aad(struct x86_emulate_ctxt
*ctxt
)
2910 u8 al
= ctxt
->dst
.val
& 0xff;
2911 u8 ah
= (ctxt
->dst
.val
>> 8) & 0xff;
2913 al
= (al
+ (ah
* ctxt
->src
.val
)) & 0xff;
2915 ctxt
->dst
.val
= (ctxt
->dst
.val
& 0xffff0000) | al
;
2917 /* Set PF, ZF, SF */
2918 ctxt
->src
.type
= OP_IMM
;
2920 ctxt
->src
.bytes
= 1;
2921 fastop(ctxt
, em_or
);
2923 return X86EMUL_CONTINUE
;
2926 static int em_call(struct x86_emulate_ctxt
*ctxt
)
2929 long rel
= ctxt
->src
.val
;
2931 ctxt
->src
.val
= (unsigned long)ctxt
->_eip
;
2932 rc
= jmp_rel(ctxt
, rel
);
2933 if (rc
!= X86EMUL_CONTINUE
)
2935 return em_push(ctxt
);
2938 static int em_call_far(struct x86_emulate_ctxt
*ctxt
)
2943 struct desc_struct old_desc
, new_desc
;
2944 const struct x86_emulate_ops
*ops
= ctxt
->ops
;
2946 old_eip
= ctxt
->_eip
;
2947 ops
->get_segment(ctxt
, &old_cs
, &old_desc
, NULL
, VCPU_SREG_CS
);
2949 memcpy(&sel
, ctxt
->src
.valptr
+ ctxt
->op_bytes
, 2);
2950 rc
= load_segment_descriptor(ctxt
, sel
, VCPU_SREG_CS
, &new_desc
);
2951 if (rc
!= X86EMUL_CONTINUE
)
2952 return X86EMUL_CONTINUE
;
2954 rc
= assign_eip_far(ctxt
, ctxt
->src
.val
, new_desc
.l
);
2955 if (rc
!= X86EMUL_CONTINUE
)
2958 ctxt
->src
.val
= old_cs
;
2960 if (rc
!= X86EMUL_CONTINUE
)
2963 ctxt
->src
.val
= old_eip
;
2965 /* If we failed, we tainted the memory, but the very least we should
2967 if (rc
!= X86EMUL_CONTINUE
)
2971 ops
->set_segment(ctxt
, old_cs
, &old_desc
, 0, VCPU_SREG_CS
);
2976 static int em_ret_near_imm(struct x86_emulate_ctxt
*ctxt
)
2981 rc
= emulate_pop(ctxt
, &eip
, ctxt
->op_bytes
);
2982 if (rc
!= X86EMUL_CONTINUE
)
2984 rc
= assign_eip_near(ctxt
, eip
);
2985 if (rc
!= X86EMUL_CONTINUE
)
2987 rsp_increment(ctxt
, ctxt
->src
.val
);
2988 return X86EMUL_CONTINUE
;
2991 static int em_xchg(struct x86_emulate_ctxt
*ctxt
)
2993 /* Write back the register source. */
2994 ctxt
->src
.val
= ctxt
->dst
.val
;
2995 write_register_operand(&ctxt
->src
);
2997 /* Write back the memory destination with implicit LOCK prefix. */
2998 ctxt
->dst
.val
= ctxt
->src
.orig_val
;
2999 ctxt
->lock_prefix
= 1;
3000 return X86EMUL_CONTINUE
;
3003 static int em_imul_3op(struct x86_emulate_ctxt
*ctxt
)
3005 ctxt
->dst
.val
= ctxt
->src2
.val
;
3006 return fastop(ctxt
, em_imul
);
3009 static int em_cwd(struct x86_emulate_ctxt
*ctxt
)
3011 ctxt
->dst
.type
= OP_REG
;
3012 ctxt
->dst
.bytes
= ctxt
->src
.bytes
;
3013 ctxt
->dst
.addr
.reg
= reg_rmw(ctxt
, VCPU_REGS_RDX
);
3014 ctxt
->dst
.val
= ~((ctxt
->src
.val
>> (ctxt
->src
.bytes
* 8 - 1)) - 1);
3016 return X86EMUL_CONTINUE
;
3019 static int em_rdtsc(struct x86_emulate_ctxt
*ctxt
)
3023 ctxt
->ops
->get_msr(ctxt
, MSR_IA32_TSC
, &tsc
);
3024 *reg_write(ctxt
, VCPU_REGS_RAX
) = (u32
)tsc
;
3025 *reg_write(ctxt
, VCPU_REGS_RDX
) = tsc
>> 32;
3026 return X86EMUL_CONTINUE
;
3029 static int em_rdpmc(struct x86_emulate_ctxt
*ctxt
)
3033 if (ctxt
->ops
->read_pmc(ctxt
, reg_read(ctxt
, VCPU_REGS_RCX
), &pmc
))
3034 return emulate_gp(ctxt
, 0);
3035 *reg_write(ctxt
, VCPU_REGS_RAX
) = (u32
)pmc
;
3036 *reg_write(ctxt
, VCPU_REGS_RDX
) = pmc
>> 32;
3037 return X86EMUL_CONTINUE
;
3040 static int em_mov(struct x86_emulate_ctxt
*ctxt
)
3042 memcpy(ctxt
->dst
.valptr
, ctxt
->src
.valptr
, ctxt
->op_bytes
);
3043 return X86EMUL_CONTINUE
;
3046 static int em_cr_write(struct x86_emulate_ctxt
*ctxt
)
3048 if (ctxt
->ops
->set_cr(ctxt
, ctxt
->modrm_reg
, ctxt
->src
.val
))
3049 return emulate_gp(ctxt
, 0);
3051 /* Disable writeback. */
3052 ctxt
->dst
.type
= OP_NONE
;
3053 return X86EMUL_CONTINUE
;
3056 static int em_dr_write(struct x86_emulate_ctxt
*ctxt
)
3060 if (ctxt
->mode
== X86EMUL_MODE_PROT64
)
3061 val
= ctxt
->src
.val
& ~0ULL;
3063 val
= ctxt
->src
.val
& ~0U;
3065 /* #UD condition is already handled. */
3066 if (ctxt
->ops
->set_dr(ctxt
, ctxt
->modrm_reg
, val
) < 0)
3067 return emulate_gp(ctxt
, 0);
3069 /* Disable writeback. */
3070 ctxt
->dst
.type
= OP_NONE
;
3071 return X86EMUL_CONTINUE
;
3074 static int em_wrmsr(struct x86_emulate_ctxt
*ctxt
)
3078 msr_data
= (u32
)reg_read(ctxt
, VCPU_REGS_RAX
)
3079 | ((u64
)reg_read(ctxt
, VCPU_REGS_RDX
) << 32);
3080 if (ctxt
->ops
->set_msr(ctxt
, reg_read(ctxt
, VCPU_REGS_RCX
), msr_data
))
3081 return emulate_gp(ctxt
, 0);
3083 return X86EMUL_CONTINUE
;
3086 static int em_rdmsr(struct x86_emulate_ctxt
*ctxt
)
3090 if (ctxt
->ops
->get_msr(ctxt
, reg_read(ctxt
, VCPU_REGS_RCX
), &msr_data
))
3091 return emulate_gp(ctxt
, 0);
3093 *reg_write(ctxt
, VCPU_REGS_RAX
) = (u32
)msr_data
;
3094 *reg_write(ctxt
, VCPU_REGS_RDX
) = msr_data
>> 32;
3095 return X86EMUL_CONTINUE
;
3098 static int em_mov_rm_sreg(struct x86_emulate_ctxt
*ctxt
)
3100 if (ctxt
->modrm_reg
> VCPU_SREG_GS
)
3101 return emulate_ud(ctxt
);
3103 ctxt
->dst
.val
= get_segment_selector(ctxt
, ctxt
->modrm_reg
);
3104 return X86EMUL_CONTINUE
;
3107 static int em_mov_sreg_rm(struct x86_emulate_ctxt
*ctxt
)
3109 u16 sel
= ctxt
->src
.val
;
3111 if (ctxt
->modrm_reg
== VCPU_SREG_CS
|| ctxt
->modrm_reg
> VCPU_SREG_GS
)
3112 return emulate_ud(ctxt
);
3114 if (ctxt
->modrm_reg
== VCPU_SREG_SS
)
3115 ctxt
->interruptibility
= KVM_X86_SHADOW_INT_MOV_SS
;
3117 /* Disable writeback. */
3118 ctxt
->dst
.type
= OP_NONE
;
3119 return load_segment_descriptor(ctxt
, sel
, ctxt
->modrm_reg
, NULL
);
3122 static int em_lldt(struct x86_emulate_ctxt
*ctxt
)
3124 u16 sel
= ctxt
->src
.val
;
3126 /* Disable writeback. */
3127 ctxt
->dst
.type
= OP_NONE
;
3128 return load_segment_descriptor(ctxt
, sel
, VCPU_SREG_LDTR
, NULL
);
3131 static int em_ltr(struct x86_emulate_ctxt
*ctxt
)
3133 u16 sel
= ctxt
->src
.val
;
3135 /* Disable writeback. */
3136 ctxt
->dst
.type
= OP_NONE
;
3137 return load_segment_descriptor(ctxt
, sel
, VCPU_SREG_TR
, NULL
);
3140 static int em_invlpg(struct x86_emulate_ctxt
*ctxt
)
3145 rc
= linearize(ctxt
, ctxt
->src
.addr
.mem
, 1, false, &linear
);
3146 if (rc
== X86EMUL_CONTINUE
)
3147 ctxt
->ops
->invlpg(ctxt
, linear
);
3148 /* Disable writeback. */
3149 ctxt
->dst
.type
= OP_NONE
;
3150 return X86EMUL_CONTINUE
;
3153 static int em_clts(struct x86_emulate_ctxt
*ctxt
)
3157 cr0
= ctxt
->ops
->get_cr(ctxt
, 0);
3159 ctxt
->ops
->set_cr(ctxt
, 0, cr0
);
3160 return X86EMUL_CONTINUE
;
3163 static int em_vmcall(struct x86_emulate_ctxt
*ctxt
)
3167 if (ctxt
->modrm_mod
!= 3 || ctxt
->modrm_rm
!= 1)
3168 return X86EMUL_UNHANDLEABLE
;
3170 rc
= ctxt
->ops
->fix_hypercall(ctxt
);
3171 if (rc
!= X86EMUL_CONTINUE
)
3174 /* Let the processor re-execute the fixed hypercall */
3175 ctxt
->_eip
= ctxt
->eip
;
3176 /* Disable writeback. */
3177 ctxt
->dst
.type
= OP_NONE
;
3178 return X86EMUL_CONTINUE
;
3181 static int emulate_store_desc_ptr(struct x86_emulate_ctxt
*ctxt
,
3182 void (*get
)(struct x86_emulate_ctxt
*ctxt
,
3183 struct desc_ptr
*ptr
))
3185 struct desc_ptr desc_ptr
;
3187 if (ctxt
->mode
== X86EMUL_MODE_PROT64
)
3189 get(ctxt
, &desc_ptr
);
3190 if (ctxt
->op_bytes
== 2) {
3192 desc_ptr
.address
&= 0x00ffffff;
3194 /* Disable writeback. */
3195 ctxt
->dst
.type
= OP_NONE
;
3196 return segmented_write(ctxt
, ctxt
->dst
.addr
.mem
,
3197 &desc_ptr
, 2 + ctxt
->op_bytes
);
3200 static int em_sgdt(struct x86_emulate_ctxt
*ctxt
)
3202 return emulate_store_desc_ptr(ctxt
, ctxt
->ops
->get_gdt
);
3205 static int em_sidt(struct x86_emulate_ctxt
*ctxt
)
3207 return emulate_store_desc_ptr(ctxt
, ctxt
->ops
->get_idt
);
3210 static int em_lgdt(struct x86_emulate_ctxt
*ctxt
)
3212 struct desc_ptr desc_ptr
;
3215 if (ctxt
->mode
== X86EMUL_MODE_PROT64
)
3217 rc
= read_descriptor(ctxt
, ctxt
->src
.addr
.mem
,
3218 &desc_ptr
.size
, &desc_ptr
.address
,
3220 if (rc
!= X86EMUL_CONTINUE
)
3222 ctxt
->ops
->set_gdt(ctxt
, &desc_ptr
);
3223 /* Disable writeback. */
3224 ctxt
->dst
.type
= OP_NONE
;
3225 return X86EMUL_CONTINUE
;
3228 static int em_vmmcall(struct x86_emulate_ctxt
*ctxt
)
3232 rc
= ctxt
->ops
->fix_hypercall(ctxt
);
3234 /* Disable writeback. */
3235 ctxt
->dst
.type
= OP_NONE
;
3239 static int em_lidt(struct x86_emulate_ctxt
*ctxt
)
3241 struct desc_ptr desc_ptr
;
3244 if (ctxt
->mode
== X86EMUL_MODE_PROT64
)
3246 rc
= read_descriptor(ctxt
, ctxt
->src
.addr
.mem
,
3247 &desc_ptr
.size
, &desc_ptr
.address
,
3249 if (rc
!= X86EMUL_CONTINUE
)
3251 ctxt
->ops
->set_idt(ctxt
, &desc_ptr
);
3252 /* Disable writeback. */
3253 ctxt
->dst
.type
= OP_NONE
;
3254 return X86EMUL_CONTINUE
;
3257 static int em_smsw(struct x86_emulate_ctxt
*ctxt
)
3259 ctxt
->dst
.bytes
= 2;
3260 ctxt
->dst
.val
= ctxt
->ops
->get_cr(ctxt
, 0);
3261 return X86EMUL_CONTINUE
;
3264 static int em_lmsw(struct x86_emulate_ctxt
*ctxt
)
3266 ctxt
->ops
->set_cr(ctxt
, 0, (ctxt
->ops
->get_cr(ctxt
, 0) & ~0x0eul
)
3267 | (ctxt
->src
.val
& 0x0f));
3268 ctxt
->dst
.type
= OP_NONE
;
3269 return X86EMUL_CONTINUE
;
3272 static int em_loop(struct x86_emulate_ctxt
*ctxt
)
3274 int rc
= X86EMUL_CONTINUE
;
3276 register_address_increment(ctxt
, reg_rmw(ctxt
, VCPU_REGS_RCX
), -1);
3277 if ((address_mask(ctxt
, reg_read(ctxt
, VCPU_REGS_RCX
)) != 0) &&
3278 (ctxt
->b
== 0xe2 || test_cc(ctxt
->b
^ 0x5, ctxt
->eflags
)))
3279 rc
= jmp_rel(ctxt
, ctxt
->src
.val
);
3284 static int em_jcxz(struct x86_emulate_ctxt
*ctxt
)
3286 int rc
= X86EMUL_CONTINUE
;
3288 if (address_mask(ctxt
, reg_read(ctxt
, VCPU_REGS_RCX
)) == 0)
3289 rc
= jmp_rel(ctxt
, ctxt
->src
.val
);
3294 static int em_in(struct x86_emulate_ctxt
*ctxt
)
3296 if (!pio_in_emulated(ctxt
, ctxt
->dst
.bytes
, ctxt
->src
.val
,
3298 return X86EMUL_IO_NEEDED
;
3300 return X86EMUL_CONTINUE
;
3303 static int em_out(struct x86_emulate_ctxt
*ctxt
)
3305 ctxt
->ops
->pio_out_emulated(ctxt
, ctxt
->src
.bytes
, ctxt
->dst
.val
,
3307 /* Disable writeback. */
3308 ctxt
->dst
.type
= OP_NONE
;
3309 return X86EMUL_CONTINUE
;
3312 static int em_cli(struct x86_emulate_ctxt
*ctxt
)
3314 if (emulator_bad_iopl(ctxt
))
3315 return emulate_gp(ctxt
, 0);
3317 ctxt
->eflags
&= ~X86_EFLAGS_IF
;
3318 return X86EMUL_CONTINUE
;
3321 static int em_sti(struct x86_emulate_ctxt
*ctxt
)
3323 if (emulator_bad_iopl(ctxt
))
3324 return emulate_gp(ctxt
, 0);
3326 ctxt
->interruptibility
= KVM_X86_SHADOW_INT_STI
;
3327 ctxt
->eflags
|= X86_EFLAGS_IF
;
3328 return X86EMUL_CONTINUE
;
3331 static int em_cpuid(struct x86_emulate_ctxt
*ctxt
)
3333 u32 eax
, ebx
, ecx
, edx
;
3335 eax
= reg_read(ctxt
, VCPU_REGS_RAX
);
3336 ecx
= reg_read(ctxt
, VCPU_REGS_RCX
);
3337 ctxt
->ops
->get_cpuid(ctxt
, &eax
, &ebx
, &ecx
, &edx
);
3338 *reg_write(ctxt
, VCPU_REGS_RAX
) = eax
;
3339 *reg_write(ctxt
, VCPU_REGS_RBX
) = ebx
;
3340 *reg_write(ctxt
, VCPU_REGS_RCX
) = ecx
;
3341 *reg_write(ctxt
, VCPU_REGS_RDX
) = edx
;
3342 return X86EMUL_CONTINUE
;
3345 static int em_lahf(struct x86_emulate_ctxt
*ctxt
)
3347 *reg_rmw(ctxt
, VCPU_REGS_RAX
) &= ~0xff00UL
;
3348 *reg_rmw(ctxt
, VCPU_REGS_RAX
) |= (ctxt
->eflags
& 0xff) << 8;
3349 return X86EMUL_CONTINUE
;
3352 static int em_bswap(struct x86_emulate_ctxt
*ctxt
)
3354 switch (ctxt
->op_bytes
) {
3355 #ifdef CONFIG_X86_64
3357 asm("bswap %0" : "+r"(ctxt
->dst
.val
));
3361 asm("bswap %0" : "+r"(*(u32
*)&ctxt
->dst
.val
));
3364 return X86EMUL_CONTINUE
;
3367 static bool valid_cr(int nr
)
3379 static int check_cr_read(struct x86_emulate_ctxt
*ctxt
)
3381 if (!valid_cr(ctxt
->modrm_reg
))
3382 return emulate_ud(ctxt
);
3384 return X86EMUL_CONTINUE
;
3387 static int check_cr_write(struct x86_emulate_ctxt
*ctxt
)
3389 u64 new_val
= ctxt
->src
.val64
;
3390 int cr
= ctxt
->modrm_reg
;
3393 static u64 cr_reserved_bits
[] = {
3394 0xffffffff00000000ULL
,
3395 0, 0, 0, /* CR3 checked later */
3402 return emulate_ud(ctxt
);
3404 if (new_val
& cr_reserved_bits
[cr
])
3405 return emulate_gp(ctxt
, 0);
3410 if (((new_val
& X86_CR0_PG
) && !(new_val
& X86_CR0_PE
)) ||
3411 ((new_val
& X86_CR0_NW
) && !(new_val
& X86_CR0_CD
)))
3412 return emulate_gp(ctxt
, 0);
3414 cr4
= ctxt
->ops
->get_cr(ctxt
, 4);
3415 ctxt
->ops
->get_msr(ctxt
, MSR_EFER
, &efer
);
3417 if ((new_val
& X86_CR0_PG
) && (efer
& EFER_LME
) &&
3418 !(cr4
& X86_CR4_PAE
))
3419 return emulate_gp(ctxt
, 0);
3426 ctxt
->ops
->get_msr(ctxt
, MSR_EFER
, &efer
);
3427 if (efer
& EFER_LMA
)
3428 rsvd
= CR3_L_MODE_RESERVED_BITS
;
3429 else if (ctxt
->ops
->get_cr(ctxt
, 4) & X86_CR4_PAE
)
3430 rsvd
= CR3_PAE_RESERVED_BITS
;
3431 else if (ctxt
->ops
->get_cr(ctxt
, 0) & X86_CR0_PG
)
3432 rsvd
= CR3_NONPAE_RESERVED_BITS
;
3435 return emulate_gp(ctxt
, 0);
3440 ctxt
->ops
->get_msr(ctxt
, MSR_EFER
, &efer
);
3442 if ((efer
& EFER_LMA
) && !(new_val
& X86_CR4_PAE
))
3443 return emulate_gp(ctxt
, 0);
3449 return X86EMUL_CONTINUE
;
3452 static int check_dr7_gd(struct x86_emulate_ctxt
*ctxt
)
3456 ctxt
->ops
->get_dr(ctxt
, 7, &dr7
);
3458 /* Check if DR7.Global_Enable is set */
3459 return dr7
& (1 << 13);
3462 static int check_dr_read(struct x86_emulate_ctxt
*ctxt
)
3464 int dr
= ctxt
->modrm_reg
;
3468 return emulate_ud(ctxt
);
3470 cr4
= ctxt
->ops
->get_cr(ctxt
, 4);
3471 if ((cr4
& X86_CR4_DE
) && (dr
== 4 || dr
== 5))
3472 return emulate_ud(ctxt
);
3474 if (check_dr7_gd(ctxt
))
3475 return emulate_db(ctxt
);
3477 return X86EMUL_CONTINUE
;
3480 static int check_dr_write(struct x86_emulate_ctxt
*ctxt
)
3482 u64 new_val
= ctxt
->src
.val64
;
3483 int dr
= ctxt
->modrm_reg
;
3485 if ((dr
== 6 || dr
== 7) && (new_val
& 0xffffffff00000000ULL
))
3486 return emulate_gp(ctxt
, 0);
3488 return check_dr_read(ctxt
);
3491 static int check_svme(struct x86_emulate_ctxt
*ctxt
)
3495 ctxt
->ops
->get_msr(ctxt
, MSR_EFER
, &efer
);
3497 if (!(efer
& EFER_SVME
))
3498 return emulate_ud(ctxt
);
3500 return X86EMUL_CONTINUE
;
3503 static int check_svme_pa(struct x86_emulate_ctxt
*ctxt
)
3505 u64 rax
= reg_read(ctxt
, VCPU_REGS_RAX
);
3507 /* Valid physical address? */
3508 if (rax
& 0xffff000000000000ULL
)
3509 return emulate_gp(ctxt
, 0);
3511 return check_svme(ctxt
);
3514 static int check_rdtsc(struct x86_emulate_ctxt
*ctxt
)
3516 u64 cr4
= ctxt
->ops
->get_cr(ctxt
, 4);
3518 if (cr4
& X86_CR4_TSD
&& ctxt
->ops
->cpl(ctxt
))
3519 return emulate_ud(ctxt
);
3521 return X86EMUL_CONTINUE
;
3524 static int check_rdpmc(struct x86_emulate_ctxt
*ctxt
)
3526 u64 cr4
= ctxt
->ops
->get_cr(ctxt
, 4);
3527 u64 rcx
= reg_read(ctxt
, VCPU_REGS_RCX
);
3529 if ((!(cr4
& X86_CR4_PCE
) && ctxt
->ops
->cpl(ctxt
)) ||
3531 return emulate_gp(ctxt
, 0);
3533 return X86EMUL_CONTINUE
;
3536 static int check_perm_in(struct x86_emulate_ctxt
*ctxt
)
3538 ctxt
->dst
.bytes
= min(ctxt
->dst
.bytes
, 4u);
3539 if (!emulator_io_permited(ctxt
, ctxt
->src
.val
, ctxt
->dst
.bytes
))
3540 return emulate_gp(ctxt
, 0);
3542 return X86EMUL_CONTINUE
;
3545 static int check_perm_out(struct x86_emulate_ctxt
*ctxt
)
3547 ctxt
->src
.bytes
= min(ctxt
->src
.bytes
, 4u);
3548 if (!emulator_io_permited(ctxt
, ctxt
->dst
.val
, ctxt
->src
.bytes
))
3549 return emulate_gp(ctxt
, 0);
3551 return X86EMUL_CONTINUE
;
3554 #define D(_y) { .flags = (_y) }
3555 #define DI(_y, _i) { .flags = (_y), .intercept = x86_intercept_##_i }
3556 #define DIP(_y, _i, _p) { .flags = (_y), .intercept = x86_intercept_##_i, \
3557 .check_perm = (_p) }
3558 #define N D(NotImpl)
3559 #define EXT(_f, _e) { .flags = ((_f) | RMExt), .u.group = (_e) }
3560 #define G(_f, _g) { .flags = ((_f) | Group | ModRM), .u.group = (_g) }
3561 #define GD(_f, _g) { .flags = ((_f) | GroupDual | ModRM), .u.gdual = (_g) }
3562 #define E(_f, _e) { .flags = ((_f) | Escape | ModRM), .u.esc = (_e) }
3563 #define I(_f, _e) { .flags = (_f), .u.execute = (_e) }
3564 #define F(_f, _e) { .flags = (_f) | Fastop, .u.fastop = (_e) }
3565 #define II(_f, _e, _i) \
3566 { .flags = (_f), .u.execute = (_e), .intercept = x86_intercept_##_i }
3567 #define IIP(_f, _e, _i, _p) \
3568 { .flags = (_f), .u.execute = (_e), .intercept = x86_intercept_##_i, \
3569 .check_perm = (_p) }
3570 #define GP(_f, _g) { .flags = ((_f) | Prefix), .u.gprefix = (_g) }
3572 #define D2bv(_f) D((_f) | ByteOp), D(_f)
3573 #define D2bvIP(_f, _i, _p) DIP((_f) | ByteOp, _i, _p), DIP(_f, _i, _p)
3574 #define I2bv(_f, _e) I((_f) | ByteOp, _e), I(_f, _e)
3575 #define F2bv(_f, _e) F((_f) | ByteOp, _e), F(_f, _e)
3576 #define I2bvIP(_f, _e, _i, _p) \
3577 IIP((_f) | ByteOp, _e, _i, _p), IIP(_f, _e, _i, _p)
3579 #define F6ALU(_f, _e) F2bv((_f) | DstMem | SrcReg | ModRM, _e), \
3580 F2bv(((_f) | DstReg | SrcMem | ModRM) & ~Lock, _e), \
3581 F2bv(((_f) & ~Lock) | DstAcc | SrcImm, _e)
3583 static const struct opcode group7_rm1
[] = {
3584 DI(SrcNone
| Priv
, monitor
),
3585 DI(SrcNone
| Priv
, mwait
),
3589 static const struct opcode group7_rm3
[] = {
3590 DIP(SrcNone
| Prot
| Priv
, vmrun
, check_svme_pa
),
3591 II(SrcNone
| Prot
| VendorSpecific
, em_vmmcall
, vmmcall
),
3592 DIP(SrcNone
| Prot
| Priv
, vmload
, check_svme_pa
),
3593 DIP(SrcNone
| Prot
| Priv
, vmsave
, check_svme_pa
),
3594 DIP(SrcNone
| Prot
| Priv
, stgi
, check_svme
),
3595 DIP(SrcNone
| Prot
| Priv
, clgi
, check_svme
),
3596 DIP(SrcNone
| Prot
| Priv
, skinit
, check_svme
),
3597 DIP(SrcNone
| Prot
| Priv
, invlpga
, check_svme
),
3600 static const struct opcode group7_rm7
[] = {
3602 DIP(SrcNone
, rdtscp
, check_rdtsc
),
3606 static const struct opcode group1
[] = {
3608 F(Lock
| PageTable
, em_or
),
3611 F(Lock
| PageTable
, em_and
),
3617 static const struct opcode group1A
[] = {
3618 I(DstMem
| SrcNone
| Mov
| Stack
, em_pop
), N
, N
, N
, N
, N
, N
, N
,
3621 static const struct opcode group2
[] = {
3622 F(DstMem
| ModRM
, em_rol
),
3623 F(DstMem
| ModRM
, em_ror
),
3624 F(DstMem
| ModRM
, em_rcl
),
3625 F(DstMem
| ModRM
, em_rcr
),
3626 F(DstMem
| ModRM
, em_shl
),
3627 F(DstMem
| ModRM
, em_shr
),
3628 F(DstMem
| ModRM
, em_shl
),
3629 F(DstMem
| ModRM
, em_sar
),
3632 static const struct opcode group3
[] = {
3633 F(DstMem
| SrcImm
| NoWrite
, em_test
),
3634 F(DstMem
| SrcImm
| NoWrite
, em_test
),
3635 F(DstMem
| SrcNone
| Lock
, em_not
),
3636 F(DstMem
| SrcNone
| Lock
, em_neg
),
3637 F(DstXacc
| Src2Mem
, em_mul_ex
),
3638 F(DstXacc
| Src2Mem
, em_imul_ex
),
3639 F(DstXacc
| Src2Mem
, em_div_ex
),
3640 F(DstXacc
| Src2Mem
, em_idiv_ex
),
3643 static const struct opcode group4
[] = {
3644 F(ByteOp
| DstMem
| SrcNone
| Lock
, em_inc
),
3645 F(ByteOp
| DstMem
| SrcNone
| Lock
, em_dec
),
3649 static const struct opcode group5
[] = {
3650 F(DstMem
| SrcNone
| Lock
, em_inc
),
3651 F(DstMem
| SrcNone
| Lock
, em_dec
),
3652 I(SrcMem
| NearBranch
, em_call_near_abs
),
3653 I(SrcMemFAddr
| ImplicitOps
| Stack
, em_call_far
),
3654 I(SrcMem
| NearBranch
, em_jmp_abs
),
3655 I(SrcMemFAddr
| ImplicitOps
, em_jmp_far
),
3656 I(SrcMem
| Stack
, em_push
), D(Undefined
),
3659 static const struct opcode group6
[] = {
3662 II(Prot
| Priv
| SrcMem16
, em_lldt
, lldt
),
3663 II(Prot
| Priv
| SrcMem16
, em_ltr
, ltr
),
3667 static const struct group_dual group7
= { {
3668 II(Mov
| DstMem
| Priv
, em_sgdt
, sgdt
),
3669 II(Mov
| DstMem
| Priv
, em_sidt
, sidt
),
3670 II(SrcMem
| Priv
, em_lgdt
, lgdt
),
3671 II(SrcMem
| Priv
, em_lidt
, lidt
),
3672 II(SrcNone
| DstMem
| Mov
, em_smsw
, smsw
), N
,
3673 II(SrcMem16
| Mov
| Priv
, em_lmsw
, lmsw
),
3674 II(SrcMem
| ByteOp
| Priv
| NoAccess
, em_invlpg
, invlpg
),
3676 I(SrcNone
| Priv
| VendorSpecific
, em_vmcall
),
3678 N
, EXT(0, group7_rm3
),
3679 II(SrcNone
| DstMem
| Mov
, em_smsw
, smsw
), N
,
3680 II(SrcMem16
| Mov
| Priv
, em_lmsw
, lmsw
),
3684 static const struct opcode group8
[] = {
3686 F(DstMem
| SrcImmByte
| NoWrite
, em_bt
),
3687 F(DstMem
| SrcImmByte
| Lock
| PageTable
, em_bts
),
3688 F(DstMem
| SrcImmByte
| Lock
, em_btr
),
3689 F(DstMem
| SrcImmByte
| Lock
| PageTable
, em_btc
),
3692 static const struct group_dual group9
= { {
3693 N
, I(DstMem64
| Lock
| PageTable
, em_cmpxchg8b
), N
, N
, N
, N
, N
, N
,
3695 N
, N
, N
, N
, N
, N
, N
, N
,
3698 static const struct opcode group11
[] = {
3699 I(DstMem
| SrcImm
| Mov
| PageTable
, em_mov
),
3703 static const struct gprefix pfx_0f_6f_0f_7f
= {
3704 I(Mmx
, em_mov
), I(Sse
| Aligned
, em_mov
), N
, I(Sse
| Unaligned
, em_mov
),
3707 static const struct gprefix pfx_vmovntpx
= {
3708 I(0, em_mov
), N
, N
, N
,
3711 static const struct escape escape_d9
= { {
3712 N
, N
, N
, N
, N
, N
, N
, I(DstMem
, em_fnstcw
),
3715 N
, N
, N
, N
, N
, N
, N
, N
,
3717 N
, N
, N
, N
, N
, N
, N
, N
,
3719 N
, N
, N
, N
, N
, N
, N
, N
,
3721 N
, N
, N
, N
, N
, N
, N
, N
,
3723 N
, N
, N
, N
, N
, N
, N
, N
,
3725 N
, N
, N
, N
, N
, N
, N
, N
,
3727 N
, N
, N
, N
, N
, N
, N
, N
,
3729 N
, N
, N
, N
, N
, N
, N
, N
,
3732 static const struct escape escape_db
= { {
3733 N
, N
, N
, N
, N
, N
, N
, N
,
3736 N
, N
, N
, N
, N
, N
, N
, N
,
3738 N
, N
, N
, N
, N
, N
, N
, N
,
3740 N
, N
, N
, N
, N
, N
, N
, N
,
3742 N
, N
, N
, N
, N
, N
, N
, N
,
3744 N
, N
, N
, I(ImplicitOps
, em_fninit
), N
, N
, N
, N
,
3746 N
, N
, N
, N
, N
, N
, N
, N
,
3748 N
, N
, N
, N
, N
, N
, N
, N
,
3750 N
, N
, N
, N
, N
, N
, N
, N
,
3753 static const struct escape escape_dd
= { {
3754 N
, N
, N
, N
, N
, N
, N
, I(DstMem
, em_fnstsw
),
3757 N
, N
, N
, N
, N
, N
, N
, N
,
3759 N
, N
, N
, N
, N
, N
, N
, N
,
3761 N
, N
, N
, N
, N
, N
, N
, N
,
3763 N
, N
, N
, N
, N
, N
, N
, N
,
3765 N
, N
, N
, N
, N
, N
, N
, N
,
3767 N
, N
, N
, N
, N
, N
, N
, N
,
3769 N
, N
, N
, N
, N
, N
, N
, N
,
3771 N
, N
, N
, N
, N
, N
, N
, N
,
3774 static const struct opcode opcode_table
[256] = {
3776 F6ALU(Lock
, em_add
),
3777 I(ImplicitOps
| Stack
| No64
| Src2ES
, em_push_sreg
),
3778 I(ImplicitOps
| Stack
| No64
| Src2ES
, em_pop_sreg
),
3780 F6ALU(Lock
| PageTable
, em_or
),
3781 I(ImplicitOps
| Stack
| No64
| Src2CS
, em_push_sreg
),
3784 F6ALU(Lock
, em_adc
),
3785 I(ImplicitOps
| Stack
| No64
| Src2SS
, em_push_sreg
),
3786 I(ImplicitOps
| Stack
| No64
| Src2SS
, em_pop_sreg
),
3788 F6ALU(Lock
, em_sbb
),
3789 I(ImplicitOps
| Stack
| No64
| Src2DS
, em_push_sreg
),
3790 I(ImplicitOps
| Stack
| No64
| Src2DS
, em_pop_sreg
),
3792 F6ALU(Lock
| PageTable
, em_and
), N
, N
,
3794 F6ALU(Lock
, em_sub
), N
, I(ByteOp
| DstAcc
| No64
, em_das
),
3796 F6ALU(Lock
, em_xor
), N
, N
,
3798 F6ALU(NoWrite
, em_cmp
), N
, N
,
3800 X8(F(DstReg
, em_inc
)), X8(F(DstReg
, em_dec
)),
3802 X8(I(SrcReg
| Stack
, em_push
)),
3804 X8(I(DstReg
| Stack
, em_pop
)),
3806 I(ImplicitOps
| Stack
| No64
, em_pusha
),
3807 I(ImplicitOps
| Stack
| No64
, em_popa
),
3808 N
, D(DstReg
| SrcMem32
| ModRM
| Mov
) /* movsxd (x86/64) */ ,
3811 I(SrcImm
| Mov
| Stack
, em_push
),
3812 I(DstReg
| SrcMem
| ModRM
| Src2Imm
, em_imul_3op
),
3813 I(SrcImmByte
| Mov
| Stack
, em_push
),
3814 I(DstReg
| SrcMem
| ModRM
| Src2ImmByte
, em_imul_3op
),
3815 I2bvIP(DstDI
| SrcDX
| Mov
| String
| Unaligned
, em_in
, ins
, check_perm_in
), /* insb, insw/insd */
3816 I2bvIP(SrcSI
| DstDX
| String
, em_out
, outs
, check_perm_out
), /* outsb, outsw/outsd */
3818 X16(D(SrcImmByte
| NearBranch
)),
3820 G(ByteOp
| DstMem
| SrcImm
, group1
),
3821 G(DstMem
| SrcImm
, group1
),
3822 G(ByteOp
| DstMem
| SrcImm
| No64
, group1
),
3823 G(DstMem
| SrcImmByte
, group1
),
3824 F2bv(DstMem
| SrcReg
| ModRM
| NoWrite
, em_test
),
3825 I2bv(DstMem
| SrcReg
| ModRM
| Lock
| PageTable
, em_xchg
),
3827 I2bv(DstMem
| SrcReg
| ModRM
| Mov
| PageTable
, em_mov
),
3828 I2bv(DstReg
| SrcMem
| ModRM
| Mov
, em_mov
),
3829 I(DstMem
| SrcNone
| ModRM
| Mov
| PageTable
, em_mov_rm_sreg
),
3830 D(ModRM
| SrcMem
| NoAccess
| DstReg
),
3831 I(ImplicitOps
| SrcMem16
| ModRM
, em_mov_sreg_rm
),
3834 DI(SrcAcc
| DstReg
, pause
), X7(D(SrcAcc
| DstReg
)),
3836 D(DstAcc
| SrcNone
), I(ImplicitOps
| SrcAcc
, em_cwd
),
3837 I(SrcImmFAddr
| No64
, em_call_far
), N
,
3838 II(ImplicitOps
| Stack
, em_pushf
, pushf
),
3839 II(ImplicitOps
| Stack
, em_popf
, popf
), N
, I(ImplicitOps
, em_lahf
),
3841 I2bv(DstAcc
| SrcMem
| Mov
| MemAbs
, em_mov
),
3842 I2bv(DstMem
| SrcAcc
| Mov
| MemAbs
| PageTable
, em_mov
),
3843 I2bv(SrcSI
| DstDI
| Mov
| String
, em_mov
),
3844 F2bv(SrcSI
| DstDI
| String
| NoWrite
, em_cmp
),
3846 F2bv(DstAcc
| SrcImm
| NoWrite
, em_test
),
3847 I2bv(SrcAcc
| DstDI
| Mov
| String
, em_mov
),
3848 I2bv(SrcSI
| DstAcc
| Mov
| String
, em_mov
),
3849 F2bv(SrcAcc
| DstDI
| String
| NoWrite
, em_cmp
),
3851 X8(I(ByteOp
| DstReg
| SrcImm
| Mov
, em_mov
)),
3853 X8(I(DstReg
| SrcImm64
| Mov
, em_mov
)),
3855 G(ByteOp
| Src2ImmByte
, group2
), G(Src2ImmByte
, group2
),
3856 I(ImplicitOps
| NearBranch
| SrcImmU16
, em_ret_near_imm
),
3857 I(ImplicitOps
| NearBranch
, em_ret
),
3858 I(DstReg
| SrcMemFAddr
| ModRM
| No64
| Src2ES
, em_lseg
),
3859 I(DstReg
| SrcMemFAddr
| ModRM
| No64
| Src2DS
, em_lseg
),
3860 G(ByteOp
, group11
), G(0, group11
),
3862 I(Stack
| SrcImmU16
| Src2ImmByte
, em_enter
), I(Stack
, em_leave
),
3863 I(ImplicitOps
| Stack
| SrcImmU16
, em_ret_far_imm
),
3864 I(ImplicitOps
| Stack
, em_ret_far
),
3865 D(ImplicitOps
), DI(SrcImmByte
, intn
),
3866 D(ImplicitOps
| No64
), II(ImplicitOps
, em_iret
, iret
),
3868 G(Src2One
| ByteOp
, group2
), G(Src2One
, group2
),
3869 G(Src2CL
| ByteOp
, group2
), G(Src2CL
, group2
),
3870 I(DstAcc
| SrcImmUByte
| No64
, em_aam
),
3871 I(DstAcc
| SrcImmUByte
| No64
, em_aad
),
3872 F(DstAcc
| ByteOp
| No64
, em_salc
),
3873 I(DstAcc
| SrcXLat
| ByteOp
, em_mov
),
3875 N
, E(0, &escape_d9
), N
, E(0, &escape_db
), N
, E(0, &escape_dd
), N
, N
,
3877 X3(I(SrcImmByte
, em_loop
)),
3878 I(SrcImmByte
| NearBranch
, em_jcxz
),
3879 I2bvIP(SrcImmUByte
| DstAcc
, em_in
, in
, check_perm_in
),
3880 I2bvIP(SrcAcc
| DstImmUByte
, em_out
, out
, check_perm_out
),
3882 I(SrcImm
| NearBranch
, em_call
), D(SrcImm
| ImplicitOps
),
3883 I(SrcImmFAddr
| No64
, em_jmp_far
), D(SrcImmByte
| ImplicitOps
),
3884 I2bvIP(SrcDX
| DstAcc
, em_in
, in
, check_perm_in
),
3885 I2bvIP(SrcAcc
| DstDX
, em_out
, out
, check_perm_out
),
3887 N
, DI(ImplicitOps
, icebp
), N
, N
,
3888 DI(ImplicitOps
| Priv
, hlt
), D(ImplicitOps
),
3889 G(ByteOp
, group3
), G(0, group3
),
3891 D(ImplicitOps
), D(ImplicitOps
),
3892 I(ImplicitOps
, em_cli
), I(ImplicitOps
, em_sti
),
3893 D(ImplicitOps
), D(ImplicitOps
), G(0, group4
), G(0, group5
),
3896 static const struct opcode twobyte_table
[256] = {
3898 G(0, group6
), GD(0, &group7
), N
, N
,
3899 N
, I(ImplicitOps
| VendorSpecific
, em_syscall
),
3900 II(ImplicitOps
| Priv
, em_clts
, clts
), N
,
3901 DI(ImplicitOps
| Priv
, invd
), DI(ImplicitOps
| Priv
, wbinvd
), N
, N
,
3902 N
, D(ImplicitOps
| ModRM
), N
, N
,
3904 N
, N
, N
, N
, N
, N
, N
, N
,
3905 D(ImplicitOps
| ModRM
), N
, N
, N
, N
, N
, N
, D(ImplicitOps
| ModRM
),
3907 DIP(ModRM
| DstMem
| Priv
| Op3264
, cr_read
, check_cr_read
),
3908 DIP(ModRM
| DstMem
| Priv
| Op3264
, dr_read
, check_dr_read
),
3909 IIP(ModRM
| SrcMem
| Priv
| Op3264
, em_cr_write
, cr_write
, check_cr_write
),
3910 IIP(ModRM
| SrcMem
| Priv
| Op3264
, em_dr_write
, dr_write
, check_dr_write
),
3912 N
, N
, N
, GP(ModRM
| DstMem
| SrcReg
| Sse
| Mov
| Aligned
, &pfx_vmovntpx
),
3915 II(ImplicitOps
| Priv
, em_wrmsr
, wrmsr
),
3916 IIP(ImplicitOps
, em_rdtsc
, rdtsc
, check_rdtsc
),
3917 II(ImplicitOps
| Priv
, em_rdmsr
, rdmsr
),
3918 IIP(ImplicitOps
, em_rdpmc
, rdpmc
, check_rdpmc
),
3919 I(ImplicitOps
| VendorSpecific
, em_sysenter
),
3920 I(ImplicitOps
| Priv
| VendorSpecific
, em_sysexit
),
3922 N
, N
, N
, N
, N
, N
, N
, N
,
3924 X16(D(DstReg
| SrcMem
| ModRM
| Mov
)),
3926 N
, N
, N
, N
, N
, N
, N
, N
, N
, N
, N
, N
, N
, N
, N
, N
,
3931 N
, N
, N
, GP(SrcMem
| DstReg
| ModRM
| Mov
, &pfx_0f_6f_0f_7f
),
3936 N
, N
, N
, GP(SrcReg
| DstMem
| ModRM
| Mov
, &pfx_0f_6f_0f_7f
),
3940 X16(D(ByteOp
| DstMem
| SrcNone
| ModRM
| Mov
)),
3942 I(Stack
| Src2FS
, em_push_sreg
), I(Stack
| Src2FS
, em_pop_sreg
),
3943 II(ImplicitOps
, em_cpuid
, cpuid
),
3944 F(DstMem
| SrcReg
| ModRM
| BitOp
| NoWrite
, em_bt
),
3945 F(DstMem
| SrcReg
| Src2ImmByte
| ModRM
, em_shld
),
3946 F(DstMem
| SrcReg
| Src2CL
| ModRM
, em_shld
), N
, N
,
3948 I(Stack
| Src2GS
, em_push_sreg
), I(Stack
| Src2GS
, em_pop_sreg
),
3949 DI(ImplicitOps
, rsm
),
3950 F(DstMem
| SrcReg
| ModRM
| BitOp
| Lock
| PageTable
, em_bts
),
3951 F(DstMem
| SrcReg
| Src2ImmByte
| ModRM
, em_shrd
),
3952 F(DstMem
| SrcReg
| Src2CL
| ModRM
, em_shrd
),
3953 D(ModRM
), F(DstReg
| SrcMem
| ModRM
, em_imul
),
3955 I2bv(DstMem
| SrcReg
| ModRM
| Lock
| PageTable
, em_cmpxchg
),
3956 I(DstReg
| SrcMemFAddr
| ModRM
| Src2SS
, em_lseg
),
3957 F(DstMem
| SrcReg
| ModRM
| BitOp
| Lock
, em_btr
),
3958 I(DstReg
| SrcMemFAddr
| ModRM
| Src2FS
, em_lseg
),
3959 I(DstReg
| SrcMemFAddr
| ModRM
| Src2GS
, em_lseg
),
3960 D(DstReg
| SrcMem8
| ModRM
| Mov
), D(DstReg
| SrcMem16
| ModRM
| Mov
),
3964 F(DstMem
| SrcReg
| ModRM
| BitOp
| Lock
| PageTable
, em_btc
),
3965 F(DstReg
| SrcMem
| ModRM
, em_bsf
), F(DstReg
| SrcMem
| ModRM
, em_bsr
),
3966 D(DstReg
| SrcMem8
| ModRM
| Mov
), D(DstReg
| SrcMem16
| ModRM
| Mov
),
3968 F2bv(DstMem
| SrcReg
| ModRM
| SrcWrite
| Lock
, em_xadd
),
3969 N
, D(DstMem
| SrcReg
| ModRM
| Mov
),
3970 N
, N
, N
, GD(0, &group9
),
3972 X8(I(DstReg
, em_bswap
)),
3974 N
, N
, N
, N
, N
, N
, N
, N
, N
, N
, N
, N
, N
, N
, N
, N
,
3976 N
, N
, N
, N
, N
, N
, N
, N
, N
, N
, N
, N
, N
, N
, N
, N
,
3978 N
, N
, N
, N
, N
, N
, N
, N
, N
, N
, N
, N
, N
, N
, N
, N
3995 static unsigned imm_size(struct x86_emulate_ctxt
*ctxt
)
3999 size
= (ctxt
->d
& ByteOp
) ? 1 : ctxt
->op_bytes
;
4005 static int decode_imm(struct x86_emulate_ctxt
*ctxt
, struct operand
*op
,
4006 unsigned size
, bool sign_extension
)
4008 int rc
= X86EMUL_CONTINUE
;
4012 op
->addr
.mem
.ea
= ctxt
->_eip
;
4013 /* NB. Immediates are sign-extended as necessary. */
4014 switch (op
->bytes
) {
4016 op
->val
= insn_fetch(s8
, ctxt
);
4019 op
->val
= insn_fetch(s16
, ctxt
);
4022 op
->val
= insn_fetch(s32
, ctxt
);
4025 op
->val
= insn_fetch(s64
, ctxt
);
4028 if (!sign_extension
) {
4029 switch (op
->bytes
) {
4037 op
->val
&= 0xffffffff;
4045 static int decode_operand(struct x86_emulate_ctxt
*ctxt
, struct operand
*op
,
4048 int rc
= X86EMUL_CONTINUE
;
4052 decode_register_operand(ctxt
, op
);
4055 rc
= decode_imm(ctxt
, op
, 1, false);
4058 ctxt
->memop
.bytes
= (ctxt
->d
& ByteOp
) ? 1 : ctxt
->op_bytes
;
4062 if ((ctxt
->d
& BitOp
) && op
== &ctxt
->dst
)
4063 fetch_bit_operand(ctxt
);
4064 op
->orig_val
= op
->val
;
4067 ctxt
->memop
.bytes
= 8;
4071 op
->bytes
= (ctxt
->d
& ByteOp
) ? 1 : ctxt
->op_bytes
;
4072 op
->addr
.reg
= reg_rmw(ctxt
, VCPU_REGS_RAX
);
4073 fetch_register_operand(op
);
4074 op
->orig_val
= op
->val
;
4078 op
->bytes
= (ctxt
->d
& ByteOp
) ? 2 : ctxt
->op_bytes
;
4079 op
->addr
.reg
= reg_rmw(ctxt
, VCPU_REGS_RAX
);
4080 fetch_register_operand(op
);
4081 op
->orig_val
= op
->val
;
4084 if (ctxt
->d
& ByteOp
) {
4089 op
->bytes
= ctxt
->op_bytes
;
4090 op
->addr
.reg
= reg_rmw(ctxt
, VCPU_REGS_RDX
);
4091 fetch_register_operand(op
);
4092 op
->orig_val
= op
->val
;
4096 op
->bytes
= (ctxt
->d
& ByteOp
) ? 1 : ctxt
->op_bytes
;
4098 register_address(ctxt
, reg_read(ctxt
, VCPU_REGS_RDI
));
4099 op
->addr
.mem
.seg
= VCPU_SREG_ES
;
4106 op
->addr
.reg
= reg_rmw(ctxt
, VCPU_REGS_RDX
);
4107 fetch_register_operand(op
);
4111 op
->val
= reg_read(ctxt
, VCPU_REGS_RCX
) & 0xff;
4114 rc
= decode_imm(ctxt
, op
, 1, true);
4121 rc
= decode_imm(ctxt
, op
, imm_size(ctxt
), true);
4124 rc
= decode_imm(ctxt
, op
, ctxt
->op_bytes
, true);
4127 ctxt
->memop
.bytes
= 1;
4128 if (ctxt
->memop
.type
== OP_REG
) {
4129 int highbyte_regs
= ctxt
->rex_prefix
== 0;
4131 ctxt
->memop
.addr
.reg
= decode_register(ctxt
, ctxt
->modrm_rm
,
4133 fetch_register_operand(&ctxt
->memop
);
4137 ctxt
->memop
.bytes
= 2;
4140 ctxt
->memop
.bytes
= 4;
4143 rc
= decode_imm(ctxt
, op
, 2, false);
4146 rc
= decode_imm(ctxt
, op
, imm_size(ctxt
), false);
4150 op
->bytes
= (ctxt
->d
& ByteOp
) ? 1 : ctxt
->op_bytes
;
4152 register_address(ctxt
, reg_read(ctxt
, VCPU_REGS_RSI
));
4153 op
->addr
.mem
.seg
= seg_override(ctxt
);
4159 op
->bytes
= (ctxt
->d
& ByteOp
) ? 1 : ctxt
->op_bytes
;
4161 register_address(ctxt
,
4162 reg_read(ctxt
, VCPU_REGS_RBX
) +
4163 (reg_read(ctxt
, VCPU_REGS_RAX
) & 0xff));
4164 op
->addr
.mem
.seg
= seg_override(ctxt
);
4169 op
->addr
.mem
.ea
= ctxt
->_eip
;
4170 op
->bytes
= ctxt
->op_bytes
+ 2;
4171 insn_fetch_arr(op
->valptr
, op
->bytes
, ctxt
);
4174 ctxt
->memop
.bytes
= ctxt
->op_bytes
+ 2;
4177 op
->val
= VCPU_SREG_ES
;
4180 op
->val
= VCPU_SREG_CS
;
4183 op
->val
= VCPU_SREG_SS
;
4186 op
->val
= VCPU_SREG_DS
;
4189 op
->val
= VCPU_SREG_FS
;
4192 op
->val
= VCPU_SREG_GS
;
4195 /* Special instructions do their own operand decoding. */
4197 op
->type
= OP_NONE
; /* Disable writeback. */
4205 int x86_decode_insn(struct x86_emulate_ctxt
*ctxt
, void *insn
, int insn_len
)
4207 int rc
= X86EMUL_CONTINUE
;
4208 int mode
= ctxt
->mode
;
4209 int def_op_bytes
, def_ad_bytes
, goffset
, simd_prefix
;
4210 bool op_prefix
= false;
4211 struct opcode opcode
;
4213 ctxt
->memop
.type
= OP_NONE
;
4214 ctxt
->memopp
= NULL
;
4215 ctxt
->_eip
= ctxt
->eip
;
4216 ctxt
->fetch
.start
= ctxt
->_eip
;
4217 ctxt
->fetch
.end
= ctxt
->fetch
.start
+ insn_len
;
4219 memcpy(ctxt
->fetch
.data
, insn
, insn_len
);
4222 case X86EMUL_MODE_REAL
:
4223 case X86EMUL_MODE_VM86
:
4224 case X86EMUL_MODE_PROT16
:
4225 def_op_bytes
= def_ad_bytes
= 2;
4227 case X86EMUL_MODE_PROT32
:
4228 def_op_bytes
= def_ad_bytes
= 4;
4230 #ifdef CONFIG_X86_64
4231 case X86EMUL_MODE_PROT64
:
4237 return EMULATION_FAILED
;
4240 ctxt
->op_bytes
= def_op_bytes
;
4241 ctxt
->ad_bytes
= def_ad_bytes
;
4243 /* Legacy prefixes. */
4245 switch (ctxt
->b
= insn_fetch(u8
, ctxt
)) {
4246 case 0x66: /* operand-size override */
4248 /* switch between 2/4 bytes */
4249 ctxt
->op_bytes
= def_op_bytes
^ 6;
4251 case 0x67: /* address-size override */
4252 if (mode
== X86EMUL_MODE_PROT64
)
4253 /* switch between 4/8 bytes */
4254 ctxt
->ad_bytes
= def_ad_bytes
^ 12;
4256 /* switch between 2/4 bytes */
4257 ctxt
->ad_bytes
= def_ad_bytes
^ 6;
4259 case 0x26: /* ES override */
4260 case 0x2e: /* CS override */
4261 case 0x36: /* SS override */
4262 case 0x3e: /* DS override */
4263 set_seg_override(ctxt
, (ctxt
->b
>> 3) & 3);
4265 case 0x64: /* FS override */
4266 case 0x65: /* GS override */
4267 set_seg_override(ctxt
, ctxt
->b
& 7);
4269 case 0x40 ... 0x4f: /* REX */
4270 if (mode
!= X86EMUL_MODE_PROT64
)
4272 ctxt
->rex_prefix
= ctxt
->b
;
4274 case 0xf0: /* LOCK */
4275 ctxt
->lock_prefix
= 1;
4277 case 0xf2: /* REPNE/REPNZ */
4278 case 0xf3: /* REP/REPE/REPZ */
4279 ctxt
->rep_prefix
= ctxt
->b
;
4285 /* Any legacy prefix after a REX prefix nullifies its effect. */
4287 ctxt
->rex_prefix
= 0;
4293 if (ctxt
->rex_prefix
& 8)
4294 ctxt
->op_bytes
= 8; /* REX.W */
4296 /* Opcode byte(s). */
4297 opcode
= opcode_table
[ctxt
->b
];
4298 /* Two-byte opcode? */
4299 if (ctxt
->b
== 0x0f) {
4301 ctxt
->b
= insn_fetch(u8
, ctxt
);
4302 opcode
= twobyte_table
[ctxt
->b
];
4304 ctxt
->d
= opcode
.flags
;
4306 if (ctxt
->d
& ModRM
)
4307 ctxt
->modrm
= insn_fetch(u8
, ctxt
);
4309 while (ctxt
->d
& GroupMask
) {
4310 switch (ctxt
->d
& GroupMask
) {
4312 goffset
= (ctxt
->modrm
>> 3) & 7;
4313 opcode
= opcode
.u
.group
[goffset
];
4316 goffset
= (ctxt
->modrm
>> 3) & 7;
4317 if ((ctxt
->modrm
>> 6) == 3)
4318 opcode
= opcode
.u
.gdual
->mod3
[goffset
];
4320 opcode
= opcode
.u
.gdual
->mod012
[goffset
];
4323 goffset
= ctxt
->modrm
& 7;
4324 opcode
= opcode
.u
.group
[goffset
];
4327 if (ctxt
->rep_prefix
&& op_prefix
)
4328 return EMULATION_FAILED
;
4329 simd_prefix
= op_prefix
? 0x66 : ctxt
->rep_prefix
;
4330 switch (simd_prefix
) {
4331 case 0x00: opcode
= opcode
.u
.gprefix
->pfx_no
; break;
4332 case 0x66: opcode
= opcode
.u
.gprefix
->pfx_66
; break;
4333 case 0xf2: opcode
= opcode
.u
.gprefix
->pfx_f2
; break;
4334 case 0xf3: opcode
= opcode
.u
.gprefix
->pfx_f3
; break;
4338 if (ctxt
->modrm
> 0xbf)
4339 opcode
= opcode
.u
.esc
->high
[ctxt
->modrm
- 0xc0];
4341 opcode
= opcode
.u
.esc
->op
[(ctxt
->modrm
>> 3) & 7];
4344 return EMULATION_FAILED
;
4347 ctxt
->d
&= ~(u64
)GroupMask
;
4348 ctxt
->d
|= opcode
.flags
;
4351 ctxt
->execute
= opcode
.u
.execute
;
4352 ctxt
->check_perm
= opcode
.check_perm
;
4353 ctxt
->intercept
= opcode
.intercept
;
4356 if (ctxt
->d
== 0 || (ctxt
->d
& NotImpl
))
4357 return EMULATION_FAILED
;
4359 if (!(ctxt
->d
& VendorSpecific
) && ctxt
->only_vendor_specific_insn
)
4360 return EMULATION_FAILED
;
4362 if (mode
== X86EMUL_MODE_PROT64
) {
4363 if (ctxt
->op_bytes
== 4 && (ctxt
->d
& Stack
))
4365 else if (ctxt
->d
& NearBranch
)
4369 if (ctxt
->d
& Op3264
) {
4370 if (mode
== X86EMUL_MODE_PROT64
)
4377 ctxt
->op_bytes
= 16;
4378 else if (ctxt
->d
& Mmx
)
4381 /* ModRM and SIB bytes. */
4382 if (ctxt
->d
& ModRM
) {
4383 rc
= decode_modrm(ctxt
, &ctxt
->memop
);
4384 if (!ctxt
->has_seg_override
)
4385 set_seg_override(ctxt
, ctxt
->modrm_seg
);
4386 } else if (ctxt
->d
& MemAbs
)
4387 rc
= decode_abs(ctxt
, &ctxt
->memop
);
4388 if (rc
!= X86EMUL_CONTINUE
)
4391 if (!ctxt
->has_seg_override
)
4392 set_seg_override(ctxt
, VCPU_SREG_DS
);
4394 ctxt
->memop
.addr
.mem
.seg
= seg_override(ctxt
);
4396 if (ctxt
->memop
.type
== OP_MEM
&& ctxt
->ad_bytes
!= 8)
4397 ctxt
->memop
.addr
.mem
.ea
= (u32
)ctxt
->memop
.addr
.mem
.ea
;
4400 * Decode and fetch the source operand: register, memory
4403 rc
= decode_operand(ctxt
, &ctxt
->src
, (ctxt
->d
>> SrcShift
) & OpMask
);
4404 if (rc
!= X86EMUL_CONTINUE
)
4408 * Decode and fetch the second source operand: register, memory
4411 rc
= decode_operand(ctxt
, &ctxt
->src2
, (ctxt
->d
>> Src2Shift
) & OpMask
);
4412 if (rc
!= X86EMUL_CONTINUE
)
4415 /* Decode and fetch the destination operand: register or memory. */
4416 rc
= decode_operand(ctxt
, &ctxt
->dst
, (ctxt
->d
>> DstShift
) & OpMask
);
4419 if (ctxt
->memopp
&& ctxt
->memopp
->type
== OP_MEM
&& ctxt
->rip_relative
)
4420 ctxt
->memopp
->addr
.mem
.ea
+= ctxt
->_eip
;
4422 return (rc
!= X86EMUL_CONTINUE
) ? EMULATION_FAILED
: EMULATION_OK
;
4425 bool x86_page_table_writing_insn(struct x86_emulate_ctxt
*ctxt
)
4427 return ctxt
->d
& PageTable
;
4430 static bool string_insn_completed(struct x86_emulate_ctxt
*ctxt
)
4432 /* The second termination condition only applies for REPE
4433 * and REPNE. Test if the repeat string operation prefix is
4434 * REPE/REPZ or REPNE/REPNZ and if it's the case it tests the
4435 * corresponding termination condition according to:
4436 * - if REPE/REPZ and ZF = 0 then done
4437 * - if REPNE/REPNZ and ZF = 1 then done
4439 if (((ctxt
->b
== 0xa6) || (ctxt
->b
== 0xa7) ||
4440 (ctxt
->b
== 0xae) || (ctxt
->b
== 0xaf))
4441 && (((ctxt
->rep_prefix
== REPE_PREFIX
) &&
4442 ((ctxt
->eflags
& EFLG_ZF
) == 0))
4443 || ((ctxt
->rep_prefix
== REPNE_PREFIX
) &&
4444 ((ctxt
->eflags
& EFLG_ZF
) == EFLG_ZF
))))
4450 static int flush_pending_x87_faults(struct x86_emulate_ctxt
*ctxt
)
4454 ctxt
->ops
->get_fpu(ctxt
);
4455 asm volatile("1: fwait \n\t"
4457 ".pushsection .fixup,\"ax\" \n\t"
4459 "movb $1, %[fault] \n\t"
4462 _ASM_EXTABLE(1b
, 3b
)
4463 : [fault
]"+qm"(fault
));
4464 ctxt
->ops
->put_fpu(ctxt
);
4466 if (unlikely(fault
))
4467 return emulate_exception(ctxt
, MF_VECTOR
, 0, false);
4469 return X86EMUL_CONTINUE
;
4472 static void fetch_possible_mmx_operand(struct x86_emulate_ctxt
*ctxt
,
4475 if (op
->type
== OP_MM
)
4476 read_mmx_reg(ctxt
, &op
->mm_val
, op
->addr
.mm
);
4479 static int fastop(struct x86_emulate_ctxt
*ctxt
, void (*fop
)(struct fastop
*))
4481 ulong flags
= (ctxt
->eflags
& EFLAGS_MASK
) | X86_EFLAGS_IF
;
4482 if (!(ctxt
->d
& ByteOp
))
4483 fop
+= __ffs(ctxt
->dst
.bytes
) * FASTOP_SIZE
;
4484 asm("push %[flags]; popf; call *%[fastop]; pushf; pop %[flags]\n"
4485 : "+a"(ctxt
->dst
.val
), "+d"(ctxt
->src
.val
), [flags
]"+D"(flags
),
4487 : "c"(ctxt
->src2
.val
));
4488 ctxt
->eflags
= (ctxt
->eflags
& ~EFLAGS_MASK
) | (flags
& EFLAGS_MASK
);
4489 if (!fop
) /* exception is returned in fop variable */
4490 return emulate_de(ctxt
);
4491 return X86EMUL_CONTINUE
;
4494 int x86_emulate_insn(struct x86_emulate_ctxt
*ctxt
)
4496 const struct x86_emulate_ops
*ops
= ctxt
->ops
;
4497 int rc
= X86EMUL_CONTINUE
;
4498 int saved_dst_type
= ctxt
->dst
.type
;
4500 ctxt
->mem_read
.pos
= 0;
4502 if ((ctxt
->mode
== X86EMUL_MODE_PROT64
&& (ctxt
->d
& No64
)) ||
4503 (ctxt
->d
& Undefined
)) {
4504 rc
= emulate_ud(ctxt
);
4508 /* LOCK prefix is allowed only with some instructions */
4509 if (ctxt
->lock_prefix
&& (!(ctxt
->d
& Lock
) || ctxt
->dst
.type
!= OP_MEM
)) {
4510 rc
= emulate_ud(ctxt
);
4514 if ((ctxt
->d
& SrcMask
) == SrcMemFAddr
&& ctxt
->src
.type
!= OP_MEM
) {
4515 rc
= emulate_ud(ctxt
);
4519 if (((ctxt
->d
& (Sse
|Mmx
)) && ((ops
->get_cr(ctxt
, 0) & X86_CR0_EM
)))
4520 || ((ctxt
->d
& Sse
) && !(ops
->get_cr(ctxt
, 4) & X86_CR4_OSFXSR
))) {
4521 rc
= emulate_ud(ctxt
);
4525 if ((ctxt
->d
& (Sse
|Mmx
)) && (ops
->get_cr(ctxt
, 0) & X86_CR0_TS
)) {
4526 rc
= emulate_nm(ctxt
);
4530 if (ctxt
->d
& Mmx
) {
4531 rc
= flush_pending_x87_faults(ctxt
);
4532 if (rc
!= X86EMUL_CONTINUE
)
4535 * Now that we know the fpu is exception safe, we can fetch
4538 fetch_possible_mmx_operand(ctxt
, &ctxt
->src
);
4539 fetch_possible_mmx_operand(ctxt
, &ctxt
->src2
);
4540 if (!(ctxt
->d
& Mov
))
4541 fetch_possible_mmx_operand(ctxt
, &ctxt
->dst
);
4544 if (unlikely(ctxt
->guest_mode
) && ctxt
->intercept
) {
4545 rc
= emulator_check_intercept(ctxt
, ctxt
->intercept
,
4546 X86_ICPT_PRE_EXCEPT
);
4547 if (rc
!= X86EMUL_CONTINUE
)
4551 /* Privileged instruction can be executed only in CPL=0 */
4552 if ((ctxt
->d
& Priv
) && ops
->cpl(ctxt
)) {
4553 rc
= emulate_gp(ctxt
, 0);
4557 /* Instruction can only be executed in protected mode */
4558 if ((ctxt
->d
& Prot
) && ctxt
->mode
< X86EMUL_MODE_PROT16
) {
4559 rc
= emulate_ud(ctxt
);
4563 /* Do instruction specific permission checks */
4564 if (ctxt
->check_perm
) {
4565 rc
= ctxt
->check_perm(ctxt
);
4566 if (rc
!= X86EMUL_CONTINUE
)
4570 if (unlikely(ctxt
->guest_mode
) && ctxt
->intercept
) {
4571 rc
= emulator_check_intercept(ctxt
, ctxt
->intercept
,
4572 X86_ICPT_POST_EXCEPT
);
4573 if (rc
!= X86EMUL_CONTINUE
)
4577 if (ctxt
->rep_prefix
&& (ctxt
->d
& String
)) {
4578 /* All REP prefixes have the same first termination condition */
4579 if (address_mask(ctxt
, reg_read(ctxt
, VCPU_REGS_RCX
)) == 0) {
4580 ctxt
->eip
= ctxt
->_eip
;
4585 if ((ctxt
->src
.type
== OP_MEM
) && !(ctxt
->d
& NoAccess
)) {
4586 rc
= segmented_read(ctxt
, ctxt
->src
.addr
.mem
,
4587 ctxt
->src
.valptr
, ctxt
->src
.bytes
);
4588 if (rc
!= X86EMUL_CONTINUE
)
4590 ctxt
->src
.orig_val64
= ctxt
->src
.val64
;
4593 if (ctxt
->src2
.type
== OP_MEM
) {
4594 rc
= segmented_read(ctxt
, ctxt
->src2
.addr
.mem
,
4595 &ctxt
->src2
.val
, ctxt
->src2
.bytes
);
4596 if (rc
!= X86EMUL_CONTINUE
)
4600 if ((ctxt
->d
& DstMask
) == ImplicitOps
)
4604 if ((ctxt
->dst
.type
== OP_MEM
) && !(ctxt
->d
& Mov
)) {
4605 /* optimisation - avoid slow emulated read if Mov */
4606 rc
= segmented_read(ctxt
, ctxt
->dst
.addr
.mem
,
4607 &ctxt
->dst
.val
, ctxt
->dst
.bytes
);
4608 if (rc
!= X86EMUL_CONTINUE
)
4611 /* Copy full 64-bit value for CMPXCHG8B. */
4612 ctxt
->dst
.orig_val64
= ctxt
->dst
.val64
;
4616 if (unlikely(ctxt
->guest_mode
) && ctxt
->intercept
) {
4617 rc
= emulator_check_intercept(ctxt
, ctxt
->intercept
,
4618 X86_ICPT_POST_MEMACCESS
);
4619 if (rc
!= X86EMUL_CONTINUE
)
4623 if (ctxt
->execute
) {
4624 if (ctxt
->d
& Fastop
) {
4625 void (*fop
)(struct fastop
*) = (void *)ctxt
->execute
;
4626 rc
= fastop(ctxt
, fop
);
4627 if (rc
!= X86EMUL_CONTINUE
)
4631 rc
= ctxt
->execute(ctxt
);
4632 if (rc
!= X86EMUL_CONTINUE
)
4641 case 0x63: /* movsxd */
4642 if (ctxt
->mode
!= X86EMUL_MODE_PROT64
)
4643 goto cannot_emulate
;
4644 ctxt
->dst
.val
= (s32
) ctxt
->src
.val
;
4646 case 0x70 ... 0x7f: /* jcc (short) */
4647 if (test_cc(ctxt
->b
, ctxt
->eflags
))
4648 rc
= jmp_rel(ctxt
, ctxt
->src
.val
);
4650 case 0x8d: /* lea r16/r32, m */
4651 ctxt
->dst
.val
= ctxt
->src
.addr
.mem
.ea
;
4653 case 0x90 ... 0x97: /* nop / xchg reg, rax */
4654 if (ctxt
->dst
.addr
.reg
== reg_rmw(ctxt
, VCPU_REGS_RAX
))
4658 case 0x98: /* cbw/cwde/cdqe */
4659 switch (ctxt
->op_bytes
) {
4660 case 2: ctxt
->dst
.val
= (s8
)ctxt
->dst
.val
; break;
4661 case 4: ctxt
->dst
.val
= (s16
)ctxt
->dst
.val
; break;
4662 case 8: ctxt
->dst
.val
= (s32
)ctxt
->dst
.val
; break;
4665 case 0xcc: /* int3 */
4666 rc
= emulate_int(ctxt
, 3);
4668 case 0xcd: /* int n */
4669 rc
= emulate_int(ctxt
, ctxt
->src
.val
);
4671 case 0xce: /* into */
4672 if (ctxt
->eflags
& EFLG_OF
)
4673 rc
= emulate_int(ctxt
, 4);
4675 case 0xe9: /* jmp rel */
4676 case 0xeb: /* jmp rel short */
4677 rc
= jmp_rel(ctxt
, ctxt
->src
.val
);
4678 ctxt
->dst
.type
= OP_NONE
; /* Disable writeback. */
4680 case 0xf4: /* hlt */
4681 ctxt
->ops
->halt(ctxt
);
4683 case 0xf5: /* cmc */
4684 /* complement carry flag from eflags reg */
4685 ctxt
->eflags
^= EFLG_CF
;
4687 case 0xf8: /* clc */
4688 ctxt
->eflags
&= ~EFLG_CF
;
4690 case 0xf9: /* stc */
4691 ctxt
->eflags
|= EFLG_CF
;
4693 case 0xfc: /* cld */
4694 ctxt
->eflags
&= ~EFLG_DF
;
4696 case 0xfd: /* std */
4697 ctxt
->eflags
|= EFLG_DF
;
4700 goto cannot_emulate
;
4703 if (rc
!= X86EMUL_CONTINUE
)
4707 if (!(ctxt
->d
& NoWrite
)) {
4708 rc
= writeback(ctxt
, &ctxt
->dst
);
4709 if (rc
!= X86EMUL_CONTINUE
)
4712 if (ctxt
->d
& SrcWrite
) {
4713 BUG_ON(ctxt
->src
.type
== OP_MEM
|| ctxt
->src
.type
== OP_MEM_STR
);
4714 rc
= writeback(ctxt
, &ctxt
->src
);
4715 if (rc
!= X86EMUL_CONTINUE
)
4720 * restore dst type in case the decoding will be reused
4721 * (happens for string instruction )
4723 ctxt
->dst
.type
= saved_dst_type
;
4725 if ((ctxt
->d
& SrcMask
) == SrcSI
)
4726 string_addr_inc(ctxt
, VCPU_REGS_RSI
, &ctxt
->src
);
4728 if ((ctxt
->d
& DstMask
) == DstDI
)
4729 string_addr_inc(ctxt
, VCPU_REGS_RDI
, &ctxt
->dst
);
4731 if (ctxt
->rep_prefix
&& (ctxt
->d
& String
)) {
4733 struct read_cache
*r
= &ctxt
->io_read
;
4734 if ((ctxt
->d
& SrcMask
) == SrcSI
)
4735 count
= ctxt
->src
.count
;
4737 count
= ctxt
->dst
.count
;
4738 register_address_increment(ctxt
, reg_rmw(ctxt
, VCPU_REGS_RCX
),
4741 if (!string_insn_completed(ctxt
)) {
4743 * Re-enter guest when pio read ahead buffer is empty
4744 * or, if it is not used, after each 1024 iteration.
4746 if ((r
->end
!= 0 || reg_read(ctxt
, VCPU_REGS_RCX
) & 0x3ff) &&
4747 (r
->end
== 0 || r
->end
!= r
->pos
)) {
4749 * Reset read cache. Usually happens before
4750 * decode, but since instruction is restarted
4751 * we have to do it here.
4753 ctxt
->mem_read
.end
= 0;
4754 writeback_registers(ctxt
);
4755 return EMULATION_RESTART
;
4757 goto done
; /* skip rip writeback */
4761 ctxt
->eip
= ctxt
->_eip
;
4764 if (rc
== X86EMUL_PROPAGATE_FAULT
)
4765 ctxt
->have_exception
= true;
4766 if (rc
== X86EMUL_INTERCEPTED
)
4767 return EMULATION_INTERCEPTED
;
4769 if (rc
== X86EMUL_CONTINUE
)
4770 writeback_registers(ctxt
);
4772 return (rc
== X86EMUL_UNHANDLEABLE
) ? EMULATION_FAILED
: EMULATION_OK
;
4776 case 0x09: /* wbinvd */
4777 (ctxt
->ops
->wbinvd
)(ctxt
);
4779 case 0x08: /* invd */
4780 case 0x0d: /* GrpP (prefetch) */
4781 case 0x18: /* Grp16 (prefetch/nop) */
4782 case 0x1f: /* nop */
4784 case 0x20: /* mov cr, reg */
4785 ctxt
->dst
.val
= ops
->get_cr(ctxt
, ctxt
->modrm_reg
);
4787 case 0x21: /* mov from dr to reg */
4788 ops
->get_dr(ctxt
, ctxt
->modrm_reg
, &ctxt
->dst
.val
);
4790 case 0x40 ... 0x4f: /* cmov */
4791 ctxt
->dst
.val
= ctxt
->dst
.orig_val
= ctxt
->src
.val
;
4792 if (!test_cc(ctxt
->b
, ctxt
->eflags
))
4793 ctxt
->dst
.type
= OP_NONE
; /* no writeback */
4795 case 0x80 ... 0x8f: /* jnz rel, etc*/
4796 if (test_cc(ctxt
->b
, ctxt
->eflags
))
4797 rc
= jmp_rel(ctxt
, ctxt
->src
.val
);
4799 case 0x90 ... 0x9f: /* setcc r/m8 */
4800 ctxt
->dst
.val
= test_cc(ctxt
->b
, ctxt
->eflags
);
4802 case 0xae: /* clflush */
4804 case 0xb6 ... 0xb7: /* movzx */
4805 ctxt
->dst
.bytes
= ctxt
->op_bytes
;
4806 ctxt
->dst
.val
= (ctxt
->src
.bytes
== 1) ? (u8
) ctxt
->src
.val
4807 : (u16
) ctxt
->src
.val
;
4809 case 0xbe ... 0xbf: /* movsx */
4810 ctxt
->dst
.bytes
= ctxt
->op_bytes
;
4811 ctxt
->dst
.val
= (ctxt
->src
.bytes
== 1) ? (s8
) ctxt
->src
.val
:
4812 (s16
) ctxt
->src
.val
;
4814 case 0xc3: /* movnti */
4815 ctxt
->dst
.bytes
= ctxt
->op_bytes
;
4816 ctxt
->dst
.val
= (ctxt
->op_bytes
== 4) ? (u32
) ctxt
->src
.val
:
4817 (u64
) ctxt
->src
.val
;
4820 goto cannot_emulate
;
4823 if (rc
!= X86EMUL_CONTINUE
)
4829 return EMULATION_FAILED
;
4832 void emulator_invalidate_register_cache(struct x86_emulate_ctxt
*ctxt
)
4834 invalidate_registers(ctxt
);
4837 void emulator_writeback_register_cache(struct x86_emulate_ctxt
*ctxt
)
4839 writeback_registers(ctxt
);