2 * 8253/8254 interval timer emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 * Copyright (c) 2006 Intel Corporation
6 * Copyright (c) 2007 Keir Fraser, XenSource Inc
7 * Copyright (c) 2008 Intel Corporation
8 * Copyright 2009 Red Hat, Inc. and/or its affiliates.
10 * Permission is hereby granted, free of charge, to any person obtaining a copy
11 * of this software and associated documentation files (the "Software"), to deal
12 * in the Software without restriction, including without limitation the rights
13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the Software is
15 * furnished to do so, subject to the following conditions:
17 * The above copyright notice and this permission notice shall be included in
18 * all copies or substantial portions of the Software.
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
29 * Sheng Yang <sheng.yang@intel.com>
30 * Based on QEMU and Xen.
33 #define pr_fmt(fmt) "pit: " fmt
35 #include <linux/kvm_host.h>
36 #include <linux/slab.h>
43 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
45 #define mod_64(x, y) ((x) % (y))
48 #define RW_STATE_LSB 1
49 #define RW_STATE_MSB 2
50 #define RW_STATE_WORD0 3
51 #define RW_STATE_WORD1 4
53 /* Compute with 96 bit intermediate result: (a*b)/c */
54 static u64
muldiv64(u64 a
, u32 b
, u32 c
)
65 rl
= (u64
)u
.l
.low
* (u64
)b
;
66 rh
= (u64
)u
.l
.high
* (u64
)b
;
68 res
.l
.high
= div64_u64(rh
, c
);
69 res
.l
.low
= div64_u64(((mod_64(rh
, c
) << 32) + (rl
& 0xffffffff)), c
);
73 static void pit_set_gate(struct kvm
*kvm
, int channel
, u32 val
)
75 struct kvm_kpit_channel_state
*c
=
76 &kvm
->arch
.vpit
->pit_state
.channels
[channel
];
78 WARN_ON(!mutex_is_locked(&kvm
->arch
.vpit
->pit_state
.lock
));
84 /* XXX: just disable/enable counting */
90 /* Restart counting on rising edge. */
92 c
->count_load_time
= ktime_get();
99 static int pit_get_gate(struct kvm
*kvm
, int channel
)
101 WARN_ON(!mutex_is_locked(&kvm
->arch
.vpit
->pit_state
.lock
));
103 return kvm
->arch
.vpit
->pit_state
.channels
[channel
].gate
;
106 static s64
__kpit_elapsed(struct kvm
*kvm
)
110 struct kvm_kpit_state
*ps
= &kvm
->arch
.vpit
->pit_state
;
116 * The Counter does not stop when it reaches zero. In
117 * Modes 0, 1, 4, and 5 the Counter ``wraps around'' to
118 * the highest count, either FFFF hex for binary counting
119 * or 9999 for BCD counting, and continues counting.
120 * Modes 2 and 3 are periodic; the Counter reloads
121 * itself with the initial count and continues counting
124 remaining
= hrtimer_get_remaining(&ps
->timer
);
125 elapsed
= ps
->period
- ktime_to_ns(remaining
);
130 static s64
kpit_elapsed(struct kvm
*kvm
, struct kvm_kpit_channel_state
*c
,
134 return __kpit_elapsed(kvm
);
136 return ktime_to_ns(ktime_sub(ktime_get(), c
->count_load_time
));
139 static int pit_get_count(struct kvm
*kvm
, int channel
)
141 struct kvm_kpit_channel_state
*c
=
142 &kvm
->arch
.vpit
->pit_state
.channels
[channel
];
146 WARN_ON(!mutex_is_locked(&kvm
->arch
.vpit
->pit_state
.lock
));
148 t
= kpit_elapsed(kvm
, c
, channel
);
149 d
= muldiv64(t
, KVM_PIT_FREQ
, NSEC_PER_SEC
);
156 counter
= (c
->count
- d
) & 0xffff;
159 /* XXX: may be incorrect for odd counts */
160 counter
= c
->count
- (mod_64((2 * d
), c
->count
));
163 counter
= c
->count
- mod_64(d
, c
->count
);
169 static int pit_get_out(struct kvm
*kvm
, int channel
)
171 struct kvm_kpit_channel_state
*c
=
172 &kvm
->arch
.vpit
->pit_state
.channels
[channel
];
176 WARN_ON(!mutex_is_locked(&kvm
->arch
.vpit
->pit_state
.lock
));
178 t
= kpit_elapsed(kvm
, c
, channel
);
179 d
= muldiv64(t
, KVM_PIT_FREQ
, NSEC_PER_SEC
);
184 out
= (d
>= c
->count
);
187 out
= (d
< c
->count
);
190 out
= ((mod_64(d
, c
->count
) == 0) && (d
!= 0));
193 out
= (mod_64(d
, c
->count
) < ((c
->count
+ 1) >> 1));
197 out
= (d
== c
->count
);
204 static void pit_latch_count(struct kvm
*kvm
, int channel
)
206 struct kvm_kpit_channel_state
*c
=
207 &kvm
->arch
.vpit
->pit_state
.channels
[channel
];
209 WARN_ON(!mutex_is_locked(&kvm
->arch
.vpit
->pit_state
.lock
));
211 if (!c
->count_latched
) {
212 c
->latched_count
= pit_get_count(kvm
, channel
);
213 c
->count_latched
= c
->rw_mode
;
217 static void pit_latch_status(struct kvm
*kvm
, int channel
)
219 struct kvm_kpit_channel_state
*c
=
220 &kvm
->arch
.vpit
->pit_state
.channels
[channel
];
222 WARN_ON(!mutex_is_locked(&kvm
->arch
.vpit
->pit_state
.lock
));
224 if (!c
->status_latched
) {
225 /* TODO: Return NULL COUNT (bit 6). */
226 c
->status
= ((pit_get_out(kvm
, channel
) << 7) |
230 c
->status_latched
= 1;
234 static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier
*kian
)
236 struct kvm_kpit_state
*ps
= container_of(kian
, struct kvm_kpit_state
,
240 spin_lock(&ps
->inject_lock
);
241 value
= atomic_dec_return(&ps
->pending
);
243 /* spurious acks can be generated if, for example, the
244 * PIC is being reset. Handle it gracefully here
246 atomic_inc(&ps
->pending
);
247 else if (value
> 0 && ps
->reinject
)
248 /* in this case, we had multiple outstanding pit interrupts
249 * that we needed to inject. Reinject
251 queue_kthread_work(&ps
->pit
->worker
, &ps
->pit
->expired
);
253 spin_unlock(&ps
->inject_lock
);
256 void __kvm_migrate_pit_timer(struct kvm_vcpu
*vcpu
)
258 struct kvm_pit
*pit
= vcpu
->kvm
->arch
.vpit
;
259 struct hrtimer
*timer
;
261 if (!kvm_vcpu_is_bsp(vcpu
) || !pit
)
264 timer
= &pit
->pit_state
.timer
;
265 mutex_lock(&pit
->pit_state
.lock
);
266 if (hrtimer_cancel(timer
))
267 hrtimer_start_expires(timer
, HRTIMER_MODE_ABS
);
268 mutex_unlock(&pit
->pit_state
.lock
);
271 static void destroy_pit_timer(struct kvm_pit
*pit
)
273 hrtimer_cancel(&pit
->pit_state
.timer
);
274 flush_kthread_work(&pit
->expired
);
277 static void pit_do_work(struct kthread_work
*work
)
279 struct kvm_pit
*pit
= container_of(work
, struct kvm_pit
, expired
);
280 struct kvm
*kvm
= pit
->kvm
;
281 struct kvm_vcpu
*vcpu
;
283 struct kvm_kpit_state
*ps
= &pit
->pit_state
;
286 /* Try to inject pending interrupts when
287 * last one has been acked.
289 spin_lock(&ps
->inject_lock
);
292 else if (ps
->irq_ack
) {
296 spin_unlock(&ps
->inject_lock
);
298 kvm_set_irq(kvm
, kvm
->arch
.vpit
->irq_source_id
, 0, 1, false);
299 kvm_set_irq(kvm
, kvm
->arch
.vpit
->irq_source_id
, 0, 0, false);
302 * Provides NMI watchdog support via Virtual Wire mode.
303 * The route is: PIT -> PIC -> LVT0 in NMI mode.
305 * Note: Our Virtual Wire implementation is simplified, only
306 * propagating PIT interrupts to all VCPUs when they have set
307 * LVT0 to NMI delivery. Other PIC interrupts are just sent to
308 * VCPU0, and only if its LVT0 is in EXTINT mode.
310 if (atomic_read(&kvm
->arch
.vapics_in_nmi_mode
) > 0)
311 kvm_for_each_vcpu(i
, vcpu
, kvm
)
312 kvm_apic_nmi_wd_deliver(vcpu
);
316 static enum hrtimer_restart
pit_timer_fn(struct hrtimer
*data
)
318 struct kvm_kpit_state
*ps
= container_of(data
, struct kvm_kpit_state
, timer
);
319 struct kvm_pit
*pt
= ps
->kvm
->arch
.vpit
;
322 atomic_inc(&ps
->pending
);
324 queue_kthread_work(&pt
->worker
, &pt
->expired
);
326 if (ps
->is_periodic
) {
327 hrtimer_add_expires_ns(&ps
->timer
, ps
->period
);
328 return HRTIMER_RESTART
;
330 return HRTIMER_NORESTART
;
333 static void create_pit_timer(struct kvm
*kvm
, u32 val
, int is_period
)
335 struct kvm_kpit_state
*ps
= &kvm
->arch
.vpit
->pit_state
;
338 if (!irqchip_in_kernel(kvm
) || ps
->flags
& KVM_PIT_FLAGS_HPET_LEGACY
)
341 interval
= muldiv64(val
, NSEC_PER_SEC
, KVM_PIT_FREQ
);
343 pr_debug("create pit timer, interval is %llu nsec\n", interval
);
345 /* TODO The new value only affected after the retriggered */
346 hrtimer_cancel(&ps
->timer
);
347 flush_kthread_work(&ps
->pit
->expired
);
348 ps
->period
= interval
;
349 ps
->is_periodic
= is_period
;
351 ps
->timer
.function
= pit_timer_fn
;
352 ps
->kvm
= ps
->pit
->kvm
;
354 atomic_set(&ps
->pending
, 0);
358 * Do not allow the guest to program periodic timers with small
359 * interval, since the hrtimers are not throttled by the host
362 if (ps
->is_periodic
) {
363 s64 min_period
= min_timer_period_us
* 1000LL;
365 if (ps
->period
< min_period
) {
367 "kvm: requested %lld ns "
368 "i8254 timer period limited to %lld ns\n",
369 ps
->period
, min_period
);
370 ps
->period
= min_period
;
374 hrtimer_start(&ps
->timer
, ktime_add_ns(ktime_get(), interval
),
378 static void pit_load_count(struct kvm
*kvm
, int channel
, u32 val
)
380 struct kvm_kpit_state
*ps
= &kvm
->arch
.vpit
->pit_state
;
382 WARN_ON(!mutex_is_locked(&ps
->lock
));
384 pr_debug("load_count val is %d, channel is %d\n", val
, channel
);
387 * The largest possible initial count is 0; this is equivalent
388 * to 216 for binary counting and 104 for BCD counting.
393 ps
->channels
[channel
].count
= val
;
396 ps
->channels
[channel
].count_load_time
= ktime_get();
400 /* Two types of timer
401 * mode 1 is one shot, mode 2 is period, otherwise del timer */
402 switch (ps
->channels
[0].mode
) {
405 /* FIXME: enhance mode 4 precision */
407 create_pit_timer(kvm
, val
, 0);
411 create_pit_timer(kvm
, val
, 1);
414 destroy_pit_timer(kvm
->arch
.vpit
);
418 void kvm_pit_load_count(struct kvm
*kvm
, int channel
, u32 val
, int hpet_legacy_start
)
421 if (hpet_legacy_start
) {
422 /* save existing mode for later reenablement */
423 saved_mode
= kvm
->arch
.vpit
->pit_state
.channels
[0].mode
;
424 kvm
->arch
.vpit
->pit_state
.channels
[0].mode
= 0xff; /* disable timer */
425 pit_load_count(kvm
, channel
, val
);
426 kvm
->arch
.vpit
->pit_state
.channels
[0].mode
= saved_mode
;
428 pit_load_count(kvm
, channel
, val
);
432 static inline struct kvm_pit
*dev_to_pit(struct kvm_io_device
*dev
)
434 return container_of(dev
, struct kvm_pit
, dev
);
437 static inline struct kvm_pit
*speaker_to_pit(struct kvm_io_device
*dev
)
439 return container_of(dev
, struct kvm_pit
, speaker_dev
);
442 static inline int pit_in_range(gpa_t addr
)
444 return ((addr
>= KVM_PIT_BASE_ADDRESS
) &&
445 (addr
< KVM_PIT_BASE_ADDRESS
+ KVM_PIT_MEM_LENGTH
));
448 static int pit_ioport_write(struct kvm_io_device
*this,
449 gpa_t addr
, int len
, const void *data
)
451 struct kvm_pit
*pit
= dev_to_pit(this);
452 struct kvm_kpit_state
*pit_state
= &pit
->pit_state
;
453 struct kvm
*kvm
= pit
->kvm
;
455 struct kvm_kpit_channel_state
*s
;
456 u32 val
= *(u32
*) data
;
457 if (!pit_in_range(addr
))
461 addr
&= KVM_PIT_CHANNEL_MASK
;
463 mutex_lock(&pit_state
->lock
);
466 pr_debug("write addr is 0x%x, len is %d, val is 0x%x\n",
467 (unsigned int)addr
, len
, val
);
472 /* Read-Back Command. */
473 for (channel
= 0; channel
< 3; channel
++) {
474 s
= &pit_state
->channels
[channel
];
475 if (val
& (2 << channel
)) {
477 pit_latch_count(kvm
, channel
);
479 pit_latch_status(kvm
, channel
);
483 /* Select Counter <channel>. */
484 s
= &pit_state
->channels
[channel
];
485 access
= (val
>> 4) & KVM_PIT_CHANNEL_MASK
;
487 pit_latch_count(kvm
, channel
);
490 s
->read_state
= access
;
491 s
->write_state
= access
;
492 s
->mode
= (val
>> 1) & 7;
500 s
= &pit_state
->channels
[addr
];
501 switch (s
->write_state
) {
504 pit_load_count(kvm
, addr
, val
);
507 pit_load_count(kvm
, addr
, val
<< 8);
510 s
->write_latch
= val
;
511 s
->write_state
= RW_STATE_WORD1
;
514 pit_load_count(kvm
, addr
, s
->write_latch
| (val
<< 8));
515 s
->write_state
= RW_STATE_WORD0
;
520 mutex_unlock(&pit_state
->lock
);
524 static int pit_ioport_read(struct kvm_io_device
*this,
525 gpa_t addr
, int len
, void *data
)
527 struct kvm_pit
*pit
= dev_to_pit(this);
528 struct kvm_kpit_state
*pit_state
= &pit
->pit_state
;
529 struct kvm
*kvm
= pit
->kvm
;
531 struct kvm_kpit_channel_state
*s
;
532 if (!pit_in_range(addr
))
535 addr
&= KVM_PIT_CHANNEL_MASK
;
539 s
= &pit_state
->channels
[addr
];
541 mutex_lock(&pit_state
->lock
);
543 if (s
->status_latched
) {
544 s
->status_latched
= 0;
546 } else if (s
->count_latched
) {
547 switch (s
->count_latched
) {
550 ret
= s
->latched_count
& 0xff;
551 s
->count_latched
= 0;
554 ret
= s
->latched_count
>> 8;
555 s
->count_latched
= 0;
558 ret
= s
->latched_count
& 0xff;
559 s
->count_latched
= RW_STATE_MSB
;
563 switch (s
->read_state
) {
566 count
= pit_get_count(kvm
, addr
);
570 count
= pit_get_count(kvm
, addr
);
571 ret
= (count
>> 8) & 0xff;
574 count
= pit_get_count(kvm
, addr
);
576 s
->read_state
= RW_STATE_WORD1
;
579 count
= pit_get_count(kvm
, addr
);
580 ret
= (count
>> 8) & 0xff;
581 s
->read_state
= RW_STATE_WORD0
;
586 if (len
> sizeof(ret
))
588 memcpy(data
, (char *)&ret
, len
);
590 mutex_unlock(&pit_state
->lock
);
594 static int speaker_ioport_write(struct kvm_io_device
*this,
595 gpa_t addr
, int len
, const void *data
)
597 struct kvm_pit
*pit
= speaker_to_pit(this);
598 struct kvm_kpit_state
*pit_state
= &pit
->pit_state
;
599 struct kvm
*kvm
= pit
->kvm
;
600 u32 val
= *(u32
*) data
;
601 if (addr
!= KVM_SPEAKER_BASE_ADDRESS
)
604 mutex_lock(&pit_state
->lock
);
605 pit_state
->speaker_data_on
= (val
>> 1) & 1;
606 pit_set_gate(kvm
, 2, val
& 1);
607 mutex_unlock(&pit_state
->lock
);
611 static int speaker_ioport_read(struct kvm_io_device
*this,
612 gpa_t addr
, int len
, void *data
)
614 struct kvm_pit
*pit
= speaker_to_pit(this);
615 struct kvm_kpit_state
*pit_state
= &pit
->pit_state
;
616 struct kvm
*kvm
= pit
->kvm
;
617 unsigned int refresh_clock
;
619 if (addr
!= KVM_SPEAKER_BASE_ADDRESS
)
622 /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
623 refresh_clock
= ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
625 mutex_lock(&pit_state
->lock
);
626 ret
= ((pit_state
->speaker_data_on
<< 1) | pit_get_gate(kvm
, 2) |
627 (pit_get_out(kvm
, 2) << 5) | (refresh_clock
<< 4));
628 if (len
> sizeof(ret
))
630 memcpy(data
, (char *)&ret
, len
);
631 mutex_unlock(&pit_state
->lock
);
635 void kvm_pit_reset(struct kvm_pit
*pit
)
638 struct kvm_kpit_channel_state
*c
;
640 mutex_lock(&pit
->pit_state
.lock
);
641 pit
->pit_state
.flags
= 0;
642 for (i
= 0; i
< 3; i
++) {
643 c
= &pit
->pit_state
.channels
[i
];
646 pit_load_count(pit
->kvm
, i
, 0);
648 mutex_unlock(&pit
->pit_state
.lock
);
650 atomic_set(&pit
->pit_state
.pending
, 0);
651 pit
->pit_state
.irq_ack
= 1;
654 static void pit_mask_notifer(struct kvm_irq_mask_notifier
*kimn
, bool mask
)
656 struct kvm_pit
*pit
= container_of(kimn
, struct kvm_pit
, mask_notifier
);
659 atomic_set(&pit
->pit_state
.pending
, 0);
660 pit
->pit_state
.irq_ack
= 1;
664 static const struct kvm_io_device_ops pit_dev_ops
= {
665 .read
= pit_ioport_read
,
666 .write
= pit_ioport_write
,
669 static const struct kvm_io_device_ops speaker_dev_ops
= {
670 .read
= speaker_ioport_read
,
671 .write
= speaker_ioport_write
,
674 /* Caller must hold slots_lock */
675 struct kvm_pit
*kvm_create_pit(struct kvm
*kvm
, u32 flags
)
678 struct kvm_kpit_state
*pit_state
;
683 pit
= kzalloc(sizeof(struct kvm_pit
), GFP_KERNEL
);
687 pit
->irq_source_id
= kvm_request_irq_source_id(kvm
);
688 if (pit
->irq_source_id
< 0) {
693 mutex_init(&pit
->pit_state
.lock
);
694 mutex_lock(&pit
->pit_state
.lock
);
695 spin_lock_init(&pit
->pit_state
.inject_lock
);
697 pid
= get_pid(task_tgid(current
));
698 pid_nr
= pid_vnr(pid
);
701 init_kthread_worker(&pit
->worker
);
702 pit
->worker_task
= kthread_run(kthread_worker_fn
, &pit
->worker
,
703 "kvm-pit/%d", pid_nr
);
704 if (IS_ERR(pit
->worker_task
)) {
705 mutex_unlock(&pit
->pit_state
.lock
);
706 kvm_free_irq_source_id(kvm
, pit
->irq_source_id
);
710 init_kthread_work(&pit
->expired
, pit_do_work
);
712 kvm
->arch
.vpit
= pit
;
715 pit_state
= &pit
->pit_state
;
716 pit_state
->pit
= pit
;
717 hrtimer_init(&pit_state
->timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS
);
718 pit_state
->irq_ack_notifier
.gsi
= 0;
719 pit_state
->irq_ack_notifier
.irq_acked
= kvm_pit_ack_irq
;
720 kvm_register_irq_ack_notifier(kvm
, &pit_state
->irq_ack_notifier
);
721 pit_state
->reinject
= true;
722 mutex_unlock(&pit
->pit_state
.lock
);
726 pit
->mask_notifier
.func
= pit_mask_notifer
;
727 kvm_register_irq_mask_notifier(kvm
, 0, &pit
->mask_notifier
);
729 kvm_iodevice_init(&pit
->dev
, &pit_dev_ops
);
730 ret
= kvm_io_bus_register_dev(kvm
, KVM_PIO_BUS
, KVM_PIT_BASE_ADDRESS
,
731 KVM_PIT_MEM_LENGTH
, &pit
->dev
);
735 if (flags
& KVM_PIT_SPEAKER_DUMMY
) {
736 kvm_iodevice_init(&pit
->speaker_dev
, &speaker_dev_ops
);
737 ret
= kvm_io_bus_register_dev(kvm
, KVM_PIO_BUS
,
738 KVM_SPEAKER_BASE_ADDRESS
, 4,
741 goto fail_unregister
;
747 kvm_io_bus_unregister_dev(kvm
, KVM_PIO_BUS
, &pit
->dev
);
750 kvm_unregister_irq_mask_notifier(kvm
, 0, &pit
->mask_notifier
);
751 kvm_unregister_irq_ack_notifier(kvm
, &pit_state
->irq_ack_notifier
);
752 kvm_free_irq_source_id(kvm
, pit
->irq_source_id
);
753 kthread_stop(pit
->worker_task
);
758 void kvm_free_pit(struct kvm
*kvm
)
760 struct hrtimer
*timer
;
762 if (kvm
->arch
.vpit
) {
763 kvm_io_bus_unregister_dev(kvm
, KVM_PIO_BUS
, &kvm
->arch
.vpit
->dev
);
764 kvm_io_bus_unregister_dev(kvm
, KVM_PIO_BUS
,
765 &kvm
->arch
.vpit
->speaker_dev
);
766 kvm_unregister_irq_mask_notifier(kvm
, 0,
767 &kvm
->arch
.vpit
->mask_notifier
);
768 kvm_unregister_irq_ack_notifier(kvm
,
769 &kvm
->arch
.vpit
->pit_state
.irq_ack_notifier
);
770 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
771 timer
= &kvm
->arch
.vpit
->pit_state
.timer
;
772 hrtimer_cancel(timer
);
773 flush_kthread_work(&kvm
->arch
.vpit
->expired
);
774 kthread_stop(kvm
->arch
.vpit
->worker_task
);
775 kvm_free_irq_source_id(kvm
, kvm
->arch
.vpit
->irq_source_id
);
776 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
777 kfree(kvm
->arch
.vpit
);