mfd: wm8350-i2c: Make sure the i2c regmap functions are compiled
[linux/fpc-iii.git] / arch / x86 / kvm / mmu.c
blobcaff13e0c993c84a96f4986ca1333b4b164d0d37
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * MMU support
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
26 #include <linux/kvm_host.h>
27 #include <linux/types.h>
28 #include <linux/string.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/module.h>
32 #include <linux/swap.h>
33 #include <linux/hugetlb.h>
34 #include <linux/compiler.h>
35 #include <linux/srcu.h>
36 #include <linux/slab.h>
37 #include <linux/uaccess.h>
39 #include <asm/page.h>
40 #include <asm/cmpxchg.h>
41 #include <asm/io.h>
42 #include <asm/vmx.h>
45 * When setting this variable to true it enables Two-Dimensional-Paging
46 * where the hardware walks 2 page tables:
47 * 1. the guest-virtual to guest-physical
48 * 2. while doing 1. it walks guest-physical to host-physical
49 * If the hardware supports that we don't need to do shadow paging.
51 bool tdp_enabled = false;
53 enum {
54 AUDIT_PRE_PAGE_FAULT,
55 AUDIT_POST_PAGE_FAULT,
56 AUDIT_PRE_PTE_WRITE,
57 AUDIT_POST_PTE_WRITE,
58 AUDIT_PRE_SYNC,
59 AUDIT_POST_SYNC
62 #undef MMU_DEBUG
64 #ifdef MMU_DEBUG
66 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
69 #else
71 #define pgprintk(x...) do { } while (0)
72 #define rmap_printk(x...) do { } while (0)
74 #endif
76 #ifdef MMU_DEBUG
77 static bool dbg = 0;
78 module_param(dbg, bool, 0644);
79 #endif
81 #ifndef MMU_DEBUG
82 #define ASSERT(x) do { } while (0)
83 #else
84 #define ASSERT(x) \
85 if (!(x)) { \
86 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
87 __FILE__, __LINE__, #x); \
89 #endif
91 #define PTE_PREFETCH_NUM 8
93 #define PT_FIRST_AVAIL_BITS_SHIFT 10
94 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
96 #define PT64_LEVEL_BITS 9
98 #define PT64_LEVEL_SHIFT(level) \
99 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
101 #define PT64_INDEX(address, level)\
102 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
105 #define PT32_LEVEL_BITS 10
107 #define PT32_LEVEL_SHIFT(level) \
108 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
110 #define PT32_LVL_OFFSET_MASK(level) \
111 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112 * PT32_LEVEL_BITS))) - 1))
114 #define PT32_INDEX(address, level)\
115 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
118 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
119 #define PT64_DIR_BASE_ADDR_MASK \
120 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
121 #define PT64_LVL_ADDR_MASK(level) \
122 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 * PT64_LEVEL_BITS))) - 1))
124 #define PT64_LVL_OFFSET_MASK(level) \
125 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 * PT64_LEVEL_BITS))) - 1))
128 #define PT32_BASE_ADDR_MASK PAGE_MASK
129 #define PT32_DIR_BASE_ADDR_MASK \
130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 #define PT32_LVL_ADDR_MASK(level) \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 * PT32_LEVEL_BITS))) - 1))
135 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
136 | shadow_x_mask | shadow_nx_mask)
138 #define ACC_EXEC_MASK 1
139 #define ACC_WRITE_MASK PT_WRITABLE_MASK
140 #define ACC_USER_MASK PT_USER_MASK
141 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
143 #include <trace/events/kvm.h>
145 #define CREATE_TRACE_POINTS
146 #include "mmutrace.h"
148 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149 #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
151 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
153 /* make pte_list_desc fit well in cache line */
154 #define PTE_LIST_EXT 3
156 struct pte_list_desc {
157 u64 *sptes[PTE_LIST_EXT];
158 struct pte_list_desc *more;
161 struct kvm_shadow_walk_iterator {
162 u64 addr;
163 hpa_t shadow_addr;
164 u64 *sptep;
165 int level;
166 unsigned index;
169 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
170 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
171 shadow_walk_okay(&(_walker)); \
172 shadow_walk_next(&(_walker)))
174 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
175 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
176 shadow_walk_okay(&(_walker)) && \
177 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
178 __shadow_walk_next(&(_walker), spte))
180 static struct kmem_cache *pte_list_desc_cache;
181 static struct kmem_cache *mmu_page_header_cache;
182 static struct percpu_counter kvm_total_used_mmu_pages;
184 static u64 __read_mostly shadow_nx_mask;
185 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
186 static u64 __read_mostly shadow_user_mask;
187 static u64 __read_mostly shadow_accessed_mask;
188 static u64 __read_mostly shadow_dirty_mask;
189 static u64 __read_mostly shadow_mmio_mask;
191 static void mmu_spte_set(u64 *sptep, u64 spte);
192 static void mmu_free_roots(struct kvm_vcpu *vcpu);
194 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
196 shadow_mmio_mask = mmio_mask;
198 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
201 * the low bit of the generation number is always presumed to be zero.
202 * This disables mmio caching during memslot updates. The concept is
203 * similar to a seqcount but instead of retrying the access we just punt
204 * and ignore the cache.
206 * spte bits 3-11 are used as bits 1-9 of the generation number,
207 * the bits 52-61 are used as bits 10-19 of the generation number.
209 #define MMIO_SPTE_GEN_LOW_SHIFT 2
210 #define MMIO_SPTE_GEN_HIGH_SHIFT 52
212 #define MMIO_GEN_SHIFT 20
213 #define MMIO_GEN_LOW_SHIFT 10
214 #define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
215 #define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
216 #define MMIO_MAX_GEN ((1 << MMIO_GEN_SHIFT) - 1)
218 static u64 generation_mmio_spte_mask(unsigned int gen)
220 u64 mask;
222 WARN_ON(gen > MMIO_MAX_GEN);
224 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
225 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
226 return mask;
229 static unsigned int get_mmio_spte_generation(u64 spte)
231 unsigned int gen;
233 spte &= ~shadow_mmio_mask;
235 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
236 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
237 return gen;
240 static unsigned int kvm_current_mmio_generation(struct kvm *kvm)
243 * Init kvm generation close to MMIO_MAX_GEN to easily test the
244 * code of handling generation number wrap-around.
246 return (kvm_memslots(kvm)->generation +
247 MMIO_MAX_GEN - 150) & MMIO_GEN_MASK;
250 static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
251 unsigned access)
253 unsigned int gen = kvm_current_mmio_generation(kvm);
254 u64 mask = generation_mmio_spte_mask(gen);
256 access &= ACC_WRITE_MASK | ACC_USER_MASK;
257 mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
259 trace_mark_mmio_spte(sptep, gfn, access, gen);
260 mmu_spte_set(sptep, mask);
263 static bool is_mmio_spte(u64 spte)
265 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
268 static gfn_t get_mmio_spte_gfn(u64 spte)
270 u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
271 return (spte & ~mask) >> PAGE_SHIFT;
274 static unsigned get_mmio_spte_access(u64 spte)
276 u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
277 return (spte & ~mask) & ~PAGE_MASK;
280 static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
281 pfn_t pfn, unsigned access)
283 if (unlikely(is_noslot_pfn(pfn))) {
284 mark_mmio_spte(kvm, sptep, gfn, access);
285 return true;
288 return false;
291 static bool check_mmio_spte(struct kvm *kvm, u64 spte)
293 unsigned int kvm_gen, spte_gen;
295 kvm_gen = kvm_current_mmio_generation(kvm);
296 spte_gen = get_mmio_spte_generation(spte);
298 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
299 return likely(kvm_gen == spte_gen);
302 static inline u64 rsvd_bits(int s, int e)
304 return ((1ULL << (e - s + 1)) - 1) << s;
307 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
308 u64 dirty_mask, u64 nx_mask, u64 x_mask)
310 shadow_user_mask = user_mask;
311 shadow_accessed_mask = accessed_mask;
312 shadow_dirty_mask = dirty_mask;
313 shadow_nx_mask = nx_mask;
314 shadow_x_mask = x_mask;
316 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
318 static int is_cpuid_PSE36(void)
320 return 1;
323 static int is_nx(struct kvm_vcpu *vcpu)
325 return vcpu->arch.efer & EFER_NX;
328 static int is_shadow_present_pte(u64 pte)
330 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
333 static int is_large_pte(u64 pte)
335 return pte & PT_PAGE_SIZE_MASK;
338 static int is_rmap_spte(u64 pte)
340 return is_shadow_present_pte(pte);
343 static int is_last_spte(u64 pte, int level)
345 if (level == PT_PAGE_TABLE_LEVEL)
346 return 1;
347 if (is_large_pte(pte))
348 return 1;
349 return 0;
352 static pfn_t spte_to_pfn(u64 pte)
354 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
357 static gfn_t pse36_gfn_delta(u32 gpte)
359 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
361 return (gpte & PT32_DIR_PSE36_MASK) << shift;
364 #ifdef CONFIG_X86_64
365 static void __set_spte(u64 *sptep, u64 spte)
367 *sptep = spte;
370 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
372 *sptep = spte;
375 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
377 return xchg(sptep, spte);
380 static u64 __get_spte_lockless(u64 *sptep)
382 return ACCESS_ONCE(*sptep);
384 #else
385 union split_spte {
386 struct {
387 u32 spte_low;
388 u32 spte_high;
390 u64 spte;
393 static void count_spte_clear(u64 *sptep, u64 spte)
395 struct kvm_mmu_page *sp = page_header(__pa(sptep));
397 if (is_shadow_present_pte(spte))
398 return;
400 /* Ensure the spte is completely set before we increase the count */
401 smp_wmb();
402 sp->clear_spte_count++;
405 static void __set_spte(u64 *sptep, u64 spte)
407 union split_spte *ssptep, sspte;
409 ssptep = (union split_spte *)sptep;
410 sspte = (union split_spte)spte;
412 ssptep->spte_high = sspte.spte_high;
415 * If we map the spte from nonpresent to present, We should store
416 * the high bits firstly, then set present bit, so cpu can not
417 * fetch this spte while we are setting the spte.
419 smp_wmb();
421 ssptep->spte_low = sspte.spte_low;
424 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
426 union split_spte *ssptep, sspte;
428 ssptep = (union split_spte *)sptep;
429 sspte = (union split_spte)spte;
431 ssptep->spte_low = sspte.spte_low;
434 * If we map the spte from present to nonpresent, we should clear
435 * present bit firstly to avoid vcpu fetch the old high bits.
437 smp_wmb();
439 ssptep->spte_high = sspte.spte_high;
440 count_spte_clear(sptep, spte);
443 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
445 union split_spte *ssptep, sspte, orig;
447 ssptep = (union split_spte *)sptep;
448 sspte = (union split_spte)spte;
450 /* xchg acts as a barrier before the setting of the high bits */
451 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
452 orig.spte_high = ssptep->spte_high;
453 ssptep->spte_high = sspte.spte_high;
454 count_spte_clear(sptep, spte);
456 return orig.spte;
460 * The idea using the light way get the spte on x86_32 guest is from
461 * gup_get_pte(arch/x86/mm/gup.c).
463 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
464 * coalesces them and we are running out of the MMU lock. Therefore
465 * we need to protect against in-progress updates of the spte.
467 * Reading the spte while an update is in progress may get the old value
468 * for the high part of the spte. The race is fine for a present->non-present
469 * change (because the high part of the spte is ignored for non-present spte),
470 * but for a present->present change we must reread the spte.
472 * All such changes are done in two steps (present->non-present and
473 * non-present->present), hence it is enough to count the number of
474 * present->non-present updates: if it changed while reading the spte,
475 * we might have hit the race. This is done using clear_spte_count.
477 static u64 __get_spte_lockless(u64 *sptep)
479 struct kvm_mmu_page *sp = page_header(__pa(sptep));
480 union split_spte spte, *orig = (union split_spte *)sptep;
481 int count;
483 retry:
484 count = sp->clear_spte_count;
485 smp_rmb();
487 spte.spte_low = orig->spte_low;
488 smp_rmb();
490 spte.spte_high = orig->spte_high;
491 smp_rmb();
493 if (unlikely(spte.spte_low != orig->spte_low ||
494 count != sp->clear_spte_count))
495 goto retry;
497 return spte.spte;
499 #endif
501 static bool spte_is_locklessly_modifiable(u64 spte)
503 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
504 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
507 static bool spte_has_volatile_bits(u64 spte)
510 * Always atomicly update spte if it can be updated
511 * out of mmu-lock, it can ensure dirty bit is not lost,
512 * also, it can help us to get a stable is_writable_pte()
513 * to ensure tlb flush is not missed.
515 if (spte_is_locklessly_modifiable(spte))
516 return true;
518 if (!shadow_accessed_mask)
519 return false;
521 if (!is_shadow_present_pte(spte))
522 return false;
524 if ((spte & shadow_accessed_mask) &&
525 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
526 return false;
528 return true;
531 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
533 return (old_spte & bit_mask) && !(new_spte & bit_mask);
536 /* Rules for using mmu_spte_set:
537 * Set the sptep from nonpresent to present.
538 * Note: the sptep being assigned *must* be either not present
539 * or in a state where the hardware will not attempt to update
540 * the spte.
542 static void mmu_spte_set(u64 *sptep, u64 new_spte)
544 WARN_ON(is_shadow_present_pte(*sptep));
545 __set_spte(sptep, new_spte);
548 /* Rules for using mmu_spte_update:
549 * Update the state bits, it means the mapped pfn is not changged.
551 * Whenever we overwrite a writable spte with a read-only one we
552 * should flush remote TLBs. Otherwise rmap_write_protect
553 * will find a read-only spte, even though the writable spte
554 * might be cached on a CPU's TLB, the return value indicates this
555 * case.
557 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
559 u64 old_spte = *sptep;
560 bool ret = false;
562 WARN_ON(!is_rmap_spte(new_spte));
564 if (!is_shadow_present_pte(old_spte)) {
565 mmu_spte_set(sptep, new_spte);
566 return ret;
569 if (!spte_has_volatile_bits(old_spte))
570 __update_clear_spte_fast(sptep, new_spte);
571 else
572 old_spte = __update_clear_spte_slow(sptep, new_spte);
575 * For the spte updated out of mmu-lock is safe, since
576 * we always atomicly update it, see the comments in
577 * spte_has_volatile_bits().
579 if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
580 ret = true;
582 if (!shadow_accessed_mask)
583 return ret;
585 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
586 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
587 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
588 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
590 return ret;
594 * Rules for using mmu_spte_clear_track_bits:
595 * It sets the sptep from present to nonpresent, and track the
596 * state bits, it is used to clear the last level sptep.
598 static int mmu_spte_clear_track_bits(u64 *sptep)
600 pfn_t pfn;
601 u64 old_spte = *sptep;
603 if (!spte_has_volatile_bits(old_spte))
604 __update_clear_spte_fast(sptep, 0ull);
605 else
606 old_spte = __update_clear_spte_slow(sptep, 0ull);
608 if (!is_rmap_spte(old_spte))
609 return 0;
611 pfn = spte_to_pfn(old_spte);
614 * KVM does not hold the refcount of the page used by
615 * kvm mmu, before reclaiming the page, we should
616 * unmap it from mmu first.
618 WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
620 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
621 kvm_set_pfn_accessed(pfn);
622 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
623 kvm_set_pfn_dirty(pfn);
624 return 1;
628 * Rules for using mmu_spte_clear_no_track:
629 * Directly clear spte without caring the state bits of sptep,
630 * it is used to set the upper level spte.
632 static void mmu_spte_clear_no_track(u64 *sptep)
634 __update_clear_spte_fast(sptep, 0ull);
637 static u64 mmu_spte_get_lockless(u64 *sptep)
639 return __get_spte_lockless(sptep);
642 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
645 * Prevent page table teardown by making any free-er wait during
646 * kvm_flush_remote_tlbs() IPI to all active vcpus.
648 local_irq_disable();
649 vcpu->mode = READING_SHADOW_PAGE_TABLES;
651 * Make sure a following spte read is not reordered ahead of the write
652 * to vcpu->mode.
654 smp_mb();
657 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
660 * Make sure the write to vcpu->mode is not reordered in front of
661 * reads to sptes. If it does, kvm_commit_zap_page() can see us
662 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
664 smp_mb();
665 vcpu->mode = OUTSIDE_GUEST_MODE;
666 local_irq_enable();
669 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
670 struct kmem_cache *base_cache, int min)
672 void *obj;
674 if (cache->nobjs >= min)
675 return 0;
676 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
677 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
678 if (!obj)
679 return -ENOMEM;
680 cache->objects[cache->nobjs++] = obj;
682 return 0;
685 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
687 return cache->nobjs;
690 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
691 struct kmem_cache *cache)
693 while (mc->nobjs)
694 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
697 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
698 int min)
700 void *page;
702 if (cache->nobjs >= min)
703 return 0;
704 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
705 page = (void *)__get_free_page(GFP_KERNEL);
706 if (!page)
707 return -ENOMEM;
708 cache->objects[cache->nobjs++] = page;
710 return 0;
713 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
715 while (mc->nobjs)
716 free_page((unsigned long)mc->objects[--mc->nobjs]);
719 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
721 int r;
723 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
724 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
725 if (r)
726 goto out;
727 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
728 if (r)
729 goto out;
730 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
731 mmu_page_header_cache, 4);
732 out:
733 return r;
736 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
738 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
739 pte_list_desc_cache);
740 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
741 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
742 mmu_page_header_cache);
745 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
747 void *p;
749 BUG_ON(!mc->nobjs);
750 p = mc->objects[--mc->nobjs];
751 return p;
754 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
756 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
759 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
761 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
764 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
766 if (!sp->role.direct)
767 return sp->gfns[index];
769 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
772 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
774 if (sp->role.direct)
775 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
776 else
777 sp->gfns[index] = gfn;
781 * Return the pointer to the large page information for a given gfn,
782 * handling slots that are not large page aligned.
784 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
785 struct kvm_memory_slot *slot,
786 int level)
788 unsigned long idx;
790 idx = gfn_to_index(gfn, slot->base_gfn, level);
791 return &slot->arch.lpage_info[level - 2][idx];
794 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
796 struct kvm_memory_slot *slot;
797 struct kvm_lpage_info *linfo;
798 int i;
800 slot = gfn_to_memslot(kvm, gfn);
801 for (i = PT_DIRECTORY_LEVEL;
802 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
803 linfo = lpage_info_slot(gfn, slot, i);
804 linfo->write_count += 1;
806 kvm->arch.indirect_shadow_pages++;
809 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
811 struct kvm_memory_slot *slot;
812 struct kvm_lpage_info *linfo;
813 int i;
815 slot = gfn_to_memslot(kvm, gfn);
816 for (i = PT_DIRECTORY_LEVEL;
817 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
818 linfo = lpage_info_slot(gfn, slot, i);
819 linfo->write_count -= 1;
820 WARN_ON(linfo->write_count < 0);
822 kvm->arch.indirect_shadow_pages--;
825 static int has_wrprotected_page(struct kvm *kvm,
826 gfn_t gfn,
827 int level)
829 struct kvm_memory_slot *slot;
830 struct kvm_lpage_info *linfo;
832 slot = gfn_to_memslot(kvm, gfn);
833 if (slot) {
834 linfo = lpage_info_slot(gfn, slot, level);
835 return linfo->write_count;
838 return 1;
841 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
843 unsigned long page_size;
844 int i, ret = 0;
846 page_size = kvm_host_page_size(kvm, gfn);
848 for (i = PT_PAGE_TABLE_LEVEL;
849 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
850 if (page_size >= KVM_HPAGE_SIZE(i))
851 ret = i;
852 else
853 break;
856 return ret;
859 static struct kvm_memory_slot *
860 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
861 bool no_dirty_log)
863 struct kvm_memory_slot *slot;
865 slot = gfn_to_memslot(vcpu->kvm, gfn);
866 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
867 (no_dirty_log && slot->dirty_bitmap))
868 slot = NULL;
870 return slot;
873 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
875 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
878 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
880 int host_level, level, max_level;
882 host_level = host_mapping_level(vcpu->kvm, large_gfn);
884 if (host_level == PT_PAGE_TABLE_LEVEL)
885 return host_level;
887 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
889 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
890 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
891 break;
893 return level - 1;
897 * Pte mapping structures:
899 * If pte_list bit zero is zero, then pte_list point to the spte.
901 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
902 * pte_list_desc containing more mappings.
904 * Returns the number of pte entries before the spte was added or zero if
905 * the spte was not added.
908 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
909 unsigned long *pte_list)
911 struct pte_list_desc *desc;
912 int i, count = 0;
914 if (!*pte_list) {
915 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
916 *pte_list = (unsigned long)spte;
917 } else if (!(*pte_list & 1)) {
918 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
919 desc = mmu_alloc_pte_list_desc(vcpu);
920 desc->sptes[0] = (u64 *)*pte_list;
921 desc->sptes[1] = spte;
922 *pte_list = (unsigned long)desc | 1;
923 ++count;
924 } else {
925 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
926 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
927 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
928 desc = desc->more;
929 count += PTE_LIST_EXT;
931 if (desc->sptes[PTE_LIST_EXT-1]) {
932 desc->more = mmu_alloc_pte_list_desc(vcpu);
933 desc = desc->more;
935 for (i = 0; desc->sptes[i]; ++i)
936 ++count;
937 desc->sptes[i] = spte;
939 return count;
942 static void
943 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
944 int i, struct pte_list_desc *prev_desc)
946 int j;
948 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
950 desc->sptes[i] = desc->sptes[j];
951 desc->sptes[j] = NULL;
952 if (j != 0)
953 return;
954 if (!prev_desc && !desc->more)
955 *pte_list = (unsigned long)desc->sptes[0];
956 else
957 if (prev_desc)
958 prev_desc->more = desc->more;
959 else
960 *pte_list = (unsigned long)desc->more | 1;
961 mmu_free_pte_list_desc(desc);
964 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
966 struct pte_list_desc *desc;
967 struct pte_list_desc *prev_desc;
968 int i;
970 if (!*pte_list) {
971 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
972 BUG();
973 } else if (!(*pte_list & 1)) {
974 rmap_printk("pte_list_remove: %p 1->0\n", spte);
975 if ((u64 *)*pte_list != spte) {
976 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
977 BUG();
979 *pte_list = 0;
980 } else {
981 rmap_printk("pte_list_remove: %p many->many\n", spte);
982 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
983 prev_desc = NULL;
984 while (desc) {
985 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
986 if (desc->sptes[i] == spte) {
987 pte_list_desc_remove_entry(pte_list,
988 desc, i,
989 prev_desc);
990 return;
992 prev_desc = desc;
993 desc = desc->more;
995 pr_err("pte_list_remove: %p many->many\n", spte);
996 BUG();
1000 typedef void (*pte_list_walk_fn) (u64 *spte);
1001 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
1003 struct pte_list_desc *desc;
1004 int i;
1006 if (!*pte_list)
1007 return;
1009 if (!(*pte_list & 1))
1010 return fn((u64 *)*pte_list);
1012 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1013 while (desc) {
1014 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1015 fn(desc->sptes[i]);
1016 desc = desc->more;
1020 static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
1021 struct kvm_memory_slot *slot)
1023 unsigned long idx;
1025 idx = gfn_to_index(gfn, slot->base_gfn, level);
1026 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1030 * Take gfn and return the reverse mapping to it.
1032 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
1034 struct kvm_memory_slot *slot;
1036 slot = gfn_to_memslot(kvm, gfn);
1037 return __gfn_to_rmap(gfn, level, slot);
1040 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1042 struct kvm_mmu_memory_cache *cache;
1044 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1045 return mmu_memory_cache_free_objects(cache);
1048 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1050 struct kvm_mmu_page *sp;
1051 unsigned long *rmapp;
1053 sp = page_header(__pa(spte));
1054 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1055 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1056 return pte_list_add(vcpu, spte, rmapp);
1059 static void rmap_remove(struct kvm *kvm, u64 *spte)
1061 struct kvm_mmu_page *sp;
1062 gfn_t gfn;
1063 unsigned long *rmapp;
1065 sp = page_header(__pa(spte));
1066 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1067 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1068 pte_list_remove(spte, rmapp);
1072 * Used by the following functions to iterate through the sptes linked by a
1073 * rmap. All fields are private and not assumed to be used outside.
1075 struct rmap_iterator {
1076 /* private fields */
1077 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1078 int pos; /* index of the sptep */
1082 * Iteration must be started by this function. This should also be used after
1083 * removing/dropping sptes from the rmap link because in such cases the
1084 * information in the itererator may not be valid.
1086 * Returns sptep if found, NULL otherwise.
1088 static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1090 if (!rmap)
1091 return NULL;
1093 if (!(rmap & 1)) {
1094 iter->desc = NULL;
1095 return (u64 *)rmap;
1098 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1099 iter->pos = 0;
1100 return iter->desc->sptes[iter->pos];
1104 * Must be used with a valid iterator: e.g. after rmap_get_first().
1106 * Returns sptep if found, NULL otherwise.
1108 static u64 *rmap_get_next(struct rmap_iterator *iter)
1110 if (iter->desc) {
1111 if (iter->pos < PTE_LIST_EXT - 1) {
1112 u64 *sptep;
1114 ++iter->pos;
1115 sptep = iter->desc->sptes[iter->pos];
1116 if (sptep)
1117 return sptep;
1120 iter->desc = iter->desc->more;
1122 if (iter->desc) {
1123 iter->pos = 0;
1124 /* desc->sptes[0] cannot be NULL */
1125 return iter->desc->sptes[iter->pos];
1129 return NULL;
1132 static void drop_spte(struct kvm *kvm, u64 *sptep)
1134 if (mmu_spte_clear_track_bits(sptep))
1135 rmap_remove(kvm, sptep);
1139 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1141 if (is_large_pte(*sptep)) {
1142 WARN_ON(page_header(__pa(sptep))->role.level ==
1143 PT_PAGE_TABLE_LEVEL);
1144 drop_spte(kvm, sptep);
1145 --kvm->stat.lpages;
1146 return true;
1149 return false;
1152 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1154 if (__drop_large_spte(vcpu->kvm, sptep))
1155 kvm_flush_remote_tlbs(vcpu->kvm);
1159 * Write-protect on the specified @sptep, @pt_protect indicates whether
1160 * spte writ-protection is caused by protecting shadow page table.
1161 * @flush indicates whether tlb need be flushed.
1163 * Note: write protection is difference between drity logging and spte
1164 * protection:
1165 * - for dirty logging, the spte can be set to writable at anytime if
1166 * its dirty bitmap is properly set.
1167 * - for spte protection, the spte can be writable only after unsync-ing
1168 * shadow page.
1170 * Return true if the spte is dropped.
1172 static bool
1173 spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
1175 u64 spte = *sptep;
1177 if (!is_writable_pte(spte) &&
1178 !(pt_protect && spte_is_locklessly_modifiable(spte)))
1179 return false;
1181 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1183 if (__drop_large_spte(kvm, sptep)) {
1184 *flush |= true;
1185 return true;
1188 if (pt_protect)
1189 spte &= ~SPTE_MMU_WRITEABLE;
1190 spte = spte & ~PT_WRITABLE_MASK;
1192 *flush |= mmu_spte_update(sptep, spte);
1193 return false;
1196 static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1197 bool pt_protect)
1199 u64 *sptep;
1200 struct rmap_iterator iter;
1201 bool flush = false;
1203 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1204 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1205 if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
1206 sptep = rmap_get_first(*rmapp, &iter);
1207 continue;
1210 sptep = rmap_get_next(&iter);
1213 return flush;
1217 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1218 * @kvm: kvm instance
1219 * @slot: slot to protect
1220 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1221 * @mask: indicates which pages we should protect
1223 * Used when we do not need to care about huge page mappings: e.g. during dirty
1224 * logging we do not have any such mappings.
1226 void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1227 struct kvm_memory_slot *slot,
1228 gfn_t gfn_offset, unsigned long mask)
1230 unsigned long *rmapp;
1232 while (mask) {
1233 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1234 PT_PAGE_TABLE_LEVEL, slot);
1235 __rmap_write_protect(kvm, rmapp, false);
1237 /* clear the first set bit */
1238 mask &= mask - 1;
1242 static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
1244 struct kvm_memory_slot *slot;
1245 unsigned long *rmapp;
1246 int i;
1247 bool write_protected = false;
1249 slot = gfn_to_memslot(kvm, gfn);
1251 for (i = PT_PAGE_TABLE_LEVEL;
1252 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1253 rmapp = __gfn_to_rmap(gfn, i, slot);
1254 write_protected |= __rmap_write_protect(kvm, rmapp, true);
1257 return write_protected;
1260 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1261 struct kvm_memory_slot *slot, unsigned long data)
1263 u64 *sptep;
1264 struct rmap_iterator iter;
1265 int need_tlb_flush = 0;
1267 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1268 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1269 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1271 drop_spte(kvm, sptep);
1272 need_tlb_flush = 1;
1275 return need_tlb_flush;
1278 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1279 struct kvm_memory_slot *slot, unsigned long data)
1281 u64 *sptep;
1282 struct rmap_iterator iter;
1283 int need_flush = 0;
1284 u64 new_spte;
1285 pte_t *ptep = (pte_t *)data;
1286 pfn_t new_pfn;
1288 WARN_ON(pte_huge(*ptep));
1289 new_pfn = pte_pfn(*ptep);
1291 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1292 BUG_ON(!is_shadow_present_pte(*sptep));
1293 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1295 need_flush = 1;
1297 if (pte_write(*ptep)) {
1298 drop_spte(kvm, sptep);
1299 sptep = rmap_get_first(*rmapp, &iter);
1300 } else {
1301 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1302 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1304 new_spte &= ~PT_WRITABLE_MASK;
1305 new_spte &= ~SPTE_HOST_WRITEABLE;
1306 new_spte &= ~shadow_accessed_mask;
1308 mmu_spte_clear_track_bits(sptep);
1309 mmu_spte_set(sptep, new_spte);
1310 sptep = rmap_get_next(&iter);
1314 if (need_flush)
1315 kvm_flush_remote_tlbs(kvm);
1317 return 0;
1320 static int kvm_handle_hva_range(struct kvm *kvm,
1321 unsigned long start,
1322 unsigned long end,
1323 unsigned long data,
1324 int (*handler)(struct kvm *kvm,
1325 unsigned long *rmapp,
1326 struct kvm_memory_slot *slot,
1327 unsigned long data))
1329 int j;
1330 int ret = 0;
1331 struct kvm_memslots *slots;
1332 struct kvm_memory_slot *memslot;
1334 slots = kvm_memslots(kvm);
1336 kvm_for_each_memslot(memslot, slots) {
1337 unsigned long hva_start, hva_end;
1338 gfn_t gfn_start, gfn_end;
1340 hva_start = max(start, memslot->userspace_addr);
1341 hva_end = min(end, memslot->userspace_addr +
1342 (memslot->npages << PAGE_SHIFT));
1343 if (hva_start >= hva_end)
1344 continue;
1346 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1347 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1349 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1350 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1352 for (j = PT_PAGE_TABLE_LEVEL;
1353 j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1354 unsigned long idx, idx_end;
1355 unsigned long *rmapp;
1358 * {idx(page_j) | page_j intersects with
1359 * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1361 idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1362 idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
1364 rmapp = __gfn_to_rmap(gfn_start, j, memslot);
1366 for (; idx <= idx_end; ++idx)
1367 ret |= handler(kvm, rmapp++, memslot, data);
1371 return ret;
1374 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1375 unsigned long data,
1376 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1377 struct kvm_memory_slot *slot,
1378 unsigned long data))
1380 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1383 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1385 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1388 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1390 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1393 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1395 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1398 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1399 struct kvm_memory_slot *slot, unsigned long data)
1401 u64 *sptep;
1402 struct rmap_iterator uninitialized_var(iter);
1403 int young = 0;
1406 * In case of absence of EPT Access and Dirty Bits supports,
1407 * emulate the accessed bit for EPT, by checking if this page has
1408 * an EPT mapping, and clearing it if it does. On the next access,
1409 * a new EPT mapping will be established.
1410 * This has some overhead, but not as much as the cost of swapping
1411 * out actively used pages or breaking up actively used hugepages.
1413 if (!shadow_accessed_mask) {
1414 young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
1415 goto out;
1418 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1419 sptep = rmap_get_next(&iter)) {
1420 BUG_ON(!is_shadow_present_pte(*sptep));
1422 if (*sptep & shadow_accessed_mask) {
1423 young = 1;
1424 clear_bit((ffs(shadow_accessed_mask) - 1),
1425 (unsigned long *)sptep);
1428 out:
1429 /* @data has hva passed to kvm_age_hva(). */
1430 trace_kvm_age_page(data, slot, young);
1431 return young;
1434 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1435 struct kvm_memory_slot *slot, unsigned long data)
1437 u64 *sptep;
1438 struct rmap_iterator iter;
1439 int young = 0;
1442 * If there's no access bit in the secondary pte set by the
1443 * hardware it's up to gup-fast/gup to set the access bit in
1444 * the primary pte or in the page structure.
1446 if (!shadow_accessed_mask)
1447 goto out;
1449 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1450 sptep = rmap_get_next(&iter)) {
1451 BUG_ON(!is_shadow_present_pte(*sptep));
1453 if (*sptep & shadow_accessed_mask) {
1454 young = 1;
1455 break;
1458 out:
1459 return young;
1462 #define RMAP_RECYCLE_THRESHOLD 1000
1464 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1466 unsigned long *rmapp;
1467 struct kvm_mmu_page *sp;
1469 sp = page_header(__pa(spte));
1471 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1473 kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
1474 kvm_flush_remote_tlbs(vcpu->kvm);
1477 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1479 return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
1482 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1484 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1487 #ifdef MMU_DEBUG
1488 static int is_empty_shadow_page(u64 *spt)
1490 u64 *pos;
1491 u64 *end;
1493 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1494 if (is_shadow_present_pte(*pos)) {
1495 printk(KERN_ERR "%s: %p %llx\n", __func__,
1496 pos, *pos);
1497 return 0;
1499 return 1;
1501 #endif
1504 * This value is the sum of all of the kvm instances's
1505 * kvm->arch.n_used_mmu_pages values. We need a global,
1506 * aggregate version in order to make the slab shrinker
1507 * faster
1509 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1511 kvm->arch.n_used_mmu_pages += nr;
1512 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1515 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1517 ASSERT(is_empty_shadow_page(sp->spt));
1518 hlist_del(&sp->hash_link);
1519 list_del(&sp->link);
1520 free_page((unsigned long)sp->spt);
1521 if (!sp->role.direct)
1522 free_page((unsigned long)sp->gfns);
1523 kmem_cache_free(mmu_page_header_cache, sp);
1526 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1528 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1531 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1532 struct kvm_mmu_page *sp, u64 *parent_pte)
1534 if (!parent_pte)
1535 return;
1537 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1540 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1541 u64 *parent_pte)
1543 pte_list_remove(parent_pte, &sp->parent_ptes);
1546 static void drop_parent_pte(struct kvm_mmu_page *sp,
1547 u64 *parent_pte)
1549 mmu_page_remove_parent_pte(sp, parent_pte);
1550 mmu_spte_clear_no_track(parent_pte);
1553 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1554 u64 *parent_pte, int direct)
1556 struct kvm_mmu_page *sp;
1558 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1559 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1560 if (!direct)
1561 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1562 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1565 * The active_mmu_pages list is the FIFO list, do not move the
1566 * page until it is zapped. kvm_zap_obsolete_pages depends on
1567 * this feature. See the comments in kvm_zap_obsolete_pages().
1569 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1570 sp->parent_ptes = 0;
1571 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1572 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1573 return sp;
1576 static void mark_unsync(u64 *spte);
1577 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1579 pte_list_walk(&sp->parent_ptes, mark_unsync);
1582 static void mark_unsync(u64 *spte)
1584 struct kvm_mmu_page *sp;
1585 unsigned int index;
1587 sp = page_header(__pa(spte));
1588 index = spte - sp->spt;
1589 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1590 return;
1591 if (sp->unsync_children++)
1592 return;
1593 kvm_mmu_mark_parents_unsync(sp);
1596 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1597 struct kvm_mmu_page *sp)
1599 return 1;
1602 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1606 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1607 struct kvm_mmu_page *sp, u64 *spte,
1608 const void *pte)
1610 WARN_ON(1);
1613 #define KVM_PAGE_ARRAY_NR 16
1615 struct kvm_mmu_pages {
1616 struct mmu_page_and_offset {
1617 struct kvm_mmu_page *sp;
1618 unsigned int idx;
1619 } page[KVM_PAGE_ARRAY_NR];
1620 unsigned int nr;
1623 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1624 int idx)
1626 int i;
1628 if (sp->unsync)
1629 for (i=0; i < pvec->nr; i++)
1630 if (pvec->page[i].sp == sp)
1631 return 0;
1633 pvec->page[pvec->nr].sp = sp;
1634 pvec->page[pvec->nr].idx = idx;
1635 pvec->nr++;
1636 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1639 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1640 struct kvm_mmu_pages *pvec)
1642 int i, ret, nr_unsync_leaf = 0;
1644 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1645 struct kvm_mmu_page *child;
1646 u64 ent = sp->spt[i];
1648 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1649 goto clear_child_bitmap;
1651 child = page_header(ent & PT64_BASE_ADDR_MASK);
1653 if (child->unsync_children) {
1654 if (mmu_pages_add(pvec, child, i))
1655 return -ENOSPC;
1657 ret = __mmu_unsync_walk(child, pvec);
1658 if (!ret)
1659 goto clear_child_bitmap;
1660 else if (ret > 0)
1661 nr_unsync_leaf += ret;
1662 else
1663 return ret;
1664 } else if (child->unsync) {
1665 nr_unsync_leaf++;
1666 if (mmu_pages_add(pvec, child, i))
1667 return -ENOSPC;
1668 } else
1669 goto clear_child_bitmap;
1671 continue;
1673 clear_child_bitmap:
1674 __clear_bit(i, sp->unsync_child_bitmap);
1675 sp->unsync_children--;
1676 WARN_ON((int)sp->unsync_children < 0);
1680 return nr_unsync_leaf;
1683 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1684 struct kvm_mmu_pages *pvec)
1686 if (!sp->unsync_children)
1687 return 0;
1689 mmu_pages_add(pvec, sp, 0);
1690 return __mmu_unsync_walk(sp, pvec);
1693 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1695 WARN_ON(!sp->unsync);
1696 trace_kvm_mmu_sync_page(sp);
1697 sp->unsync = 0;
1698 --kvm->stat.mmu_unsync;
1701 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1702 struct list_head *invalid_list);
1703 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1704 struct list_head *invalid_list);
1707 * NOTE: we should pay more attention on the zapped-obsolete page
1708 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1709 * since it has been deleted from active_mmu_pages but still can be found
1710 * at hast list.
1712 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1713 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1714 * all the obsolete pages.
1716 #define for_each_gfn_sp(_kvm, _sp, _gfn) \
1717 hlist_for_each_entry(_sp, \
1718 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1719 if ((_sp)->gfn != (_gfn)) {} else
1721 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1722 for_each_gfn_sp(_kvm, _sp, _gfn) \
1723 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1725 /* @sp->gfn should be write-protected at the call site */
1726 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1727 struct list_head *invalid_list, bool clear_unsync)
1729 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1730 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1731 return 1;
1734 if (clear_unsync)
1735 kvm_unlink_unsync_page(vcpu->kvm, sp);
1737 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1738 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1739 return 1;
1742 kvm_mmu_flush_tlb(vcpu);
1743 return 0;
1746 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1747 struct kvm_mmu_page *sp)
1749 LIST_HEAD(invalid_list);
1750 int ret;
1752 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1753 if (ret)
1754 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1756 return ret;
1759 #ifdef CONFIG_KVM_MMU_AUDIT
1760 #include "mmu_audit.c"
1761 #else
1762 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1763 static void mmu_audit_disable(void) { }
1764 #endif
1766 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1767 struct list_head *invalid_list)
1769 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1772 /* @gfn should be write-protected at the call site */
1773 static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1775 struct kvm_mmu_page *s;
1776 LIST_HEAD(invalid_list);
1777 bool flush = false;
1779 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1780 if (!s->unsync)
1781 continue;
1783 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1784 kvm_unlink_unsync_page(vcpu->kvm, s);
1785 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1786 (vcpu->arch.mmu.sync_page(vcpu, s))) {
1787 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1788 continue;
1790 flush = true;
1793 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1794 if (flush)
1795 kvm_mmu_flush_tlb(vcpu);
1798 struct mmu_page_path {
1799 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1800 unsigned int idx[PT64_ROOT_LEVEL-1];
1803 #define for_each_sp(pvec, sp, parents, i) \
1804 for (i = mmu_pages_next(&pvec, &parents, -1), \
1805 sp = pvec.page[i].sp; \
1806 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1807 i = mmu_pages_next(&pvec, &parents, i))
1809 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1810 struct mmu_page_path *parents,
1811 int i)
1813 int n;
1815 for (n = i+1; n < pvec->nr; n++) {
1816 struct kvm_mmu_page *sp = pvec->page[n].sp;
1818 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1819 parents->idx[0] = pvec->page[n].idx;
1820 return n;
1823 parents->parent[sp->role.level-2] = sp;
1824 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1827 return n;
1830 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1832 struct kvm_mmu_page *sp;
1833 unsigned int level = 0;
1835 do {
1836 unsigned int idx = parents->idx[level];
1838 sp = parents->parent[level];
1839 if (!sp)
1840 return;
1842 --sp->unsync_children;
1843 WARN_ON((int)sp->unsync_children < 0);
1844 __clear_bit(idx, sp->unsync_child_bitmap);
1845 level++;
1846 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1849 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1850 struct mmu_page_path *parents,
1851 struct kvm_mmu_pages *pvec)
1853 parents->parent[parent->role.level-1] = NULL;
1854 pvec->nr = 0;
1857 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1858 struct kvm_mmu_page *parent)
1860 int i;
1861 struct kvm_mmu_page *sp;
1862 struct mmu_page_path parents;
1863 struct kvm_mmu_pages pages;
1864 LIST_HEAD(invalid_list);
1866 kvm_mmu_pages_init(parent, &parents, &pages);
1867 while (mmu_unsync_walk(parent, &pages)) {
1868 bool protected = false;
1870 for_each_sp(pages, sp, parents, i)
1871 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1873 if (protected)
1874 kvm_flush_remote_tlbs(vcpu->kvm);
1876 for_each_sp(pages, sp, parents, i) {
1877 kvm_sync_page(vcpu, sp, &invalid_list);
1878 mmu_pages_clear_parents(&parents);
1880 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1881 cond_resched_lock(&vcpu->kvm->mmu_lock);
1882 kvm_mmu_pages_init(parent, &parents, &pages);
1886 static void init_shadow_page_table(struct kvm_mmu_page *sp)
1888 int i;
1890 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1891 sp->spt[i] = 0ull;
1894 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1896 sp->write_flooding_count = 0;
1899 static void clear_sp_write_flooding_count(u64 *spte)
1901 struct kvm_mmu_page *sp = page_header(__pa(spte));
1903 __clear_sp_write_flooding_count(sp);
1906 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1908 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1911 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1912 gfn_t gfn,
1913 gva_t gaddr,
1914 unsigned level,
1915 int direct,
1916 unsigned access,
1917 u64 *parent_pte)
1919 union kvm_mmu_page_role role;
1920 unsigned quadrant;
1921 struct kvm_mmu_page *sp;
1922 bool need_sync = false;
1924 role = vcpu->arch.mmu.base_role;
1925 role.level = level;
1926 role.direct = direct;
1927 if (role.direct)
1928 role.cr4_pae = 0;
1929 role.access = access;
1930 if (!vcpu->arch.mmu.direct_map
1931 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1932 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1933 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1934 role.quadrant = quadrant;
1936 for_each_gfn_sp(vcpu->kvm, sp, gfn) {
1937 if (is_obsolete_sp(vcpu->kvm, sp))
1938 continue;
1940 if (!need_sync && sp->unsync)
1941 need_sync = true;
1943 if (sp->role.word != role.word)
1944 continue;
1946 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1947 break;
1949 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1950 if (sp->unsync_children) {
1951 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1952 kvm_mmu_mark_parents_unsync(sp);
1953 } else if (sp->unsync)
1954 kvm_mmu_mark_parents_unsync(sp);
1956 __clear_sp_write_flooding_count(sp);
1957 trace_kvm_mmu_get_page(sp, false);
1958 return sp;
1960 ++vcpu->kvm->stat.mmu_cache_miss;
1961 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1962 if (!sp)
1963 return sp;
1964 sp->gfn = gfn;
1965 sp->role = role;
1966 hlist_add_head(&sp->hash_link,
1967 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1968 if (!direct) {
1969 if (rmap_write_protect(vcpu->kvm, gfn))
1970 kvm_flush_remote_tlbs(vcpu->kvm);
1971 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1972 kvm_sync_pages(vcpu, gfn);
1974 account_shadowed(vcpu->kvm, gfn);
1976 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1977 init_shadow_page_table(sp);
1978 trace_kvm_mmu_get_page(sp, true);
1979 return sp;
1982 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1983 struct kvm_vcpu *vcpu, u64 addr)
1985 iterator->addr = addr;
1986 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1987 iterator->level = vcpu->arch.mmu.shadow_root_level;
1989 if (iterator->level == PT64_ROOT_LEVEL &&
1990 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1991 !vcpu->arch.mmu.direct_map)
1992 --iterator->level;
1994 if (iterator->level == PT32E_ROOT_LEVEL) {
1995 iterator->shadow_addr
1996 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1997 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1998 --iterator->level;
1999 if (!iterator->shadow_addr)
2000 iterator->level = 0;
2004 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2006 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2007 return false;
2009 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2010 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2011 return true;
2014 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2015 u64 spte)
2017 if (is_last_spte(spte, iterator->level)) {
2018 iterator->level = 0;
2019 return;
2022 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2023 --iterator->level;
2026 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2028 return __shadow_walk_next(iterator, *iterator->sptep);
2031 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
2033 u64 spte;
2035 BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
2036 VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2038 spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2039 shadow_user_mask | shadow_x_mask;
2041 if (accessed)
2042 spte |= shadow_accessed_mask;
2044 mmu_spte_set(sptep, spte);
2047 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2048 unsigned direct_access)
2050 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2051 struct kvm_mmu_page *child;
2054 * For the direct sp, if the guest pte's dirty bit
2055 * changed form clean to dirty, it will corrupt the
2056 * sp's access: allow writable in the read-only sp,
2057 * so we should update the spte at this point to get
2058 * a new sp with the correct access.
2060 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2061 if (child->role.access == direct_access)
2062 return;
2064 drop_parent_pte(child, sptep);
2065 kvm_flush_remote_tlbs(vcpu->kvm);
2069 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2070 u64 *spte)
2072 u64 pte;
2073 struct kvm_mmu_page *child;
2075 pte = *spte;
2076 if (is_shadow_present_pte(pte)) {
2077 if (is_last_spte(pte, sp->role.level)) {
2078 drop_spte(kvm, spte);
2079 if (is_large_pte(pte))
2080 --kvm->stat.lpages;
2081 } else {
2082 child = page_header(pte & PT64_BASE_ADDR_MASK);
2083 drop_parent_pte(child, spte);
2085 return true;
2088 if (is_mmio_spte(pte))
2089 mmu_spte_clear_no_track(spte);
2091 return false;
2094 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2095 struct kvm_mmu_page *sp)
2097 unsigned i;
2099 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2100 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2103 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2105 mmu_page_remove_parent_pte(sp, parent_pte);
2108 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2110 u64 *sptep;
2111 struct rmap_iterator iter;
2113 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2114 drop_parent_pte(sp, sptep);
2117 static int mmu_zap_unsync_children(struct kvm *kvm,
2118 struct kvm_mmu_page *parent,
2119 struct list_head *invalid_list)
2121 int i, zapped = 0;
2122 struct mmu_page_path parents;
2123 struct kvm_mmu_pages pages;
2125 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2126 return 0;
2128 kvm_mmu_pages_init(parent, &parents, &pages);
2129 while (mmu_unsync_walk(parent, &pages)) {
2130 struct kvm_mmu_page *sp;
2132 for_each_sp(pages, sp, parents, i) {
2133 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2134 mmu_pages_clear_parents(&parents);
2135 zapped++;
2137 kvm_mmu_pages_init(parent, &parents, &pages);
2140 return zapped;
2143 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2144 struct list_head *invalid_list)
2146 int ret;
2148 trace_kvm_mmu_prepare_zap_page(sp);
2149 ++kvm->stat.mmu_shadow_zapped;
2150 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2151 kvm_mmu_page_unlink_children(kvm, sp);
2152 kvm_mmu_unlink_parents(kvm, sp);
2154 if (!sp->role.invalid && !sp->role.direct)
2155 unaccount_shadowed(kvm, sp->gfn);
2157 if (sp->unsync)
2158 kvm_unlink_unsync_page(kvm, sp);
2159 if (!sp->root_count) {
2160 /* Count self */
2161 ret++;
2162 list_move(&sp->link, invalid_list);
2163 kvm_mod_used_mmu_pages(kvm, -1);
2164 } else {
2165 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2168 * The obsolete pages can not be used on any vcpus.
2169 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2171 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2172 kvm_reload_remote_mmus(kvm);
2175 sp->role.invalid = 1;
2176 return ret;
2179 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2180 struct list_head *invalid_list)
2182 struct kvm_mmu_page *sp, *nsp;
2184 if (list_empty(invalid_list))
2185 return;
2188 * wmb: make sure everyone sees our modifications to the page tables
2189 * rmb: make sure we see changes to vcpu->mode
2191 smp_mb();
2194 * Wait for all vcpus to exit guest mode and/or lockless shadow
2195 * page table walks.
2197 kvm_flush_remote_tlbs(kvm);
2199 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2200 WARN_ON(!sp->role.invalid || sp->root_count);
2201 kvm_mmu_free_page(sp);
2205 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2206 struct list_head *invalid_list)
2208 struct kvm_mmu_page *sp;
2210 if (list_empty(&kvm->arch.active_mmu_pages))
2211 return false;
2213 sp = list_entry(kvm->arch.active_mmu_pages.prev,
2214 struct kvm_mmu_page, link);
2215 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2217 return true;
2221 * Changing the number of mmu pages allocated to the vm
2222 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2224 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2226 LIST_HEAD(invalid_list);
2228 spin_lock(&kvm->mmu_lock);
2230 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2231 /* Need to free some mmu pages to achieve the goal. */
2232 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2233 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2234 break;
2236 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2237 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2240 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2242 spin_unlock(&kvm->mmu_lock);
2245 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2247 struct kvm_mmu_page *sp;
2248 LIST_HEAD(invalid_list);
2249 int r;
2251 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2252 r = 0;
2253 spin_lock(&kvm->mmu_lock);
2254 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2255 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2256 sp->role.word);
2257 r = 1;
2258 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2260 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2261 spin_unlock(&kvm->mmu_lock);
2263 return r;
2265 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2268 * The function is based on mtrr_type_lookup() in
2269 * arch/x86/kernel/cpu/mtrr/generic.c
2271 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2272 u64 start, u64 end)
2274 int i;
2275 u64 base, mask;
2276 u8 prev_match, curr_match;
2277 int num_var_ranges = KVM_NR_VAR_MTRR;
2279 if (!mtrr_state->enabled)
2280 return 0xFF;
2282 /* Make end inclusive end, instead of exclusive */
2283 end--;
2285 /* Look in fixed ranges. Just return the type as per start */
2286 if (mtrr_state->have_fixed && (start < 0x100000)) {
2287 int idx;
2289 if (start < 0x80000) {
2290 idx = 0;
2291 idx += (start >> 16);
2292 return mtrr_state->fixed_ranges[idx];
2293 } else if (start < 0xC0000) {
2294 idx = 1 * 8;
2295 idx += ((start - 0x80000) >> 14);
2296 return mtrr_state->fixed_ranges[idx];
2297 } else if (start < 0x1000000) {
2298 idx = 3 * 8;
2299 idx += ((start - 0xC0000) >> 12);
2300 return mtrr_state->fixed_ranges[idx];
2305 * Look in variable ranges
2306 * Look of multiple ranges matching this address and pick type
2307 * as per MTRR precedence
2309 if (!(mtrr_state->enabled & 2))
2310 return mtrr_state->def_type;
2312 prev_match = 0xFF;
2313 for (i = 0; i < num_var_ranges; ++i) {
2314 unsigned short start_state, end_state;
2316 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2317 continue;
2319 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2320 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2321 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2322 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2324 start_state = ((start & mask) == (base & mask));
2325 end_state = ((end & mask) == (base & mask));
2326 if (start_state != end_state)
2327 return 0xFE;
2329 if ((start & mask) != (base & mask))
2330 continue;
2332 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2333 if (prev_match == 0xFF) {
2334 prev_match = curr_match;
2335 continue;
2338 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2339 curr_match == MTRR_TYPE_UNCACHABLE)
2340 return MTRR_TYPE_UNCACHABLE;
2342 if ((prev_match == MTRR_TYPE_WRBACK &&
2343 curr_match == MTRR_TYPE_WRTHROUGH) ||
2344 (prev_match == MTRR_TYPE_WRTHROUGH &&
2345 curr_match == MTRR_TYPE_WRBACK)) {
2346 prev_match = MTRR_TYPE_WRTHROUGH;
2347 curr_match = MTRR_TYPE_WRTHROUGH;
2350 if (prev_match != curr_match)
2351 return MTRR_TYPE_UNCACHABLE;
2354 if (prev_match != 0xFF)
2355 return prev_match;
2357 return mtrr_state->def_type;
2360 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2362 u8 mtrr;
2364 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2365 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2366 if (mtrr == 0xfe || mtrr == 0xff)
2367 mtrr = MTRR_TYPE_WRBACK;
2368 return mtrr;
2370 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2372 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2374 trace_kvm_mmu_unsync_page(sp);
2375 ++vcpu->kvm->stat.mmu_unsync;
2376 sp->unsync = 1;
2378 kvm_mmu_mark_parents_unsync(sp);
2381 static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
2383 struct kvm_mmu_page *s;
2385 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2386 if (s->unsync)
2387 continue;
2388 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2389 __kvm_unsync_page(vcpu, s);
2393 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2394 bool can_unsync)
2396 struct kvm_mmu_page *s;
2397 bool need_unsync = false;
2399 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
2400 if (!can_unsync)
2401 return 1;
2403 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2404 return 1;
2406 if (!s->unsync)
2407 need_unsync = true;
2409 if (need_unsync)
2410 kvm_unsync_pages(vcpu, gfn);
2411 return 0;
2414 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2415 unsigned pte_access, int level,
2416 gfn_t gfn, pfn_t pfn, bool speculative,
2417 bool can_unsync, bool host_writable)
2419 u64 spte;
2420 int ret = 0;
2422 if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access))
2423 return 0;
2425 spte = PT_PRESENT_MASK;
2426 if (!speculative)
2427 spte |= shadow_accessed_mask;
2429 if (pte_access & ACC_EXEC_MASK)
2430 spte |= shadow_x_mask;
2431 else
2432 spte |= shadow_nx_mask;
2434 if (pte_access & ACC_USER_MASK)
2435 spte |= shadow_user_mask;
2437 if (level > PT_PAGE_TABLE_LEVEL)
2438 spte |= PT_PAGE_SIZE_MASK;
2439 if (tdp_enabled)
2440 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2441 kvm_is_mmio_pfn(pfn));
2443 if (host_writable)
2444 spte |= SPTE_HOST_WRITEABLE;
2445 else
2446 pte_access &= ~ACC_WRITE_MASK;
2448 spte |= (u64)pfn << PAGE_SHIFT;
2450 if (pte_access & ACC_WRITE_MASK) {
2453 * Other vcpu creates new sp in the window between
2454 * mapping_level() and acquiring mmu-lock. We can
2455 * allow guest to retry the access, the mapping can
2456 * be fixed if guest refault.
2458 if (level > PT_PAGE_TABLE_LEVEL &&
2459 has_wrprotected_page(vcpu->kvm, gfn, level))
2460 goto done;
2462 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2465 * Optimization: for pte sync, if spte was writable the hash
2466 * lookup is unnecessary (and expensive). Write protection
2467 * is responsibility of mmu_get_page / kvm_sync_page.
2468 * Same reasoning can be applied to dirty page accounting.
2470 if (!can_unsync && is_writable_pte(*sptep))
2471 goto set_pte;
2473 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2474 pgprintk("%s: found shadow page for %llx, marking ro\n",
2475 __func__, gfn);
2476 ret = 1;
2477 pte_access &= ~ACC_WRITE_MASK;
2478 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2482 if (pte_access & ACC_WRITE_MASK)
2483 mark_page_dirty(vcpu->kvm, gfn);
2485 set_pte:
2486 if (mmu_spte_update(sptep, spte))
2487 kvm_flush_remote_tlbs(vcpu->kvm);
2488 done:
2489 return ret;
2492 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2493 unsigned pte_access, int write_fault, int *emulate,
2494 int level, gfn_t gfn, pfn_t pfn, bool speculative,
2495 bool host_writable)
2497 int was_rmapped = 0;
2498 int rmap_count;
2500 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2501 *sptep, write_fault, gfn);
2503 if (is_rmap_spte(*sptep)) {
2505 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2506 * the parent of the now unreachable PTE.
2508 if (level > PT_PAGE_TABLE_LEVEL &&
2509 !is_large_pte(*sptep)) {
2510 struct kvm_mmu_page *child;
2511 u64 pte = *sptep;
2513 child = page_header(pte & PT64_BASE_ADDR_MASK);
2514 drop_parent_pte(child, sptep);
2515 kvm_flush_remote_tlbs(vcpu->kvm);
2516 } else if (pfn != spte_to_pfn(*sptep)) {
2517 pgprintk("hfn old %llx new %llx\n",
2518 spte_to_pfn(*sptep), pfn);
2519 drop_spte(vcpu->kvm, sptep);
2520 kvm_flush_remote_tlbs(vcpu->kvm);
2521 } else
2522 was_rmapped = 1;
2525 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2526 true, host_writable)) {
2527 if (write_fault)
2528 *emulate = 1;
2529 kvm_mmu_flush_tlb(vcpu);
2532 if (unlikely(is_mmio_spte(*sptep) && emulate))
2533 *emulate = 1;
2535 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2536 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2537 is_large_pte(*sptep)? "2MB" : "4kB",
2538 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2539 *sptep, sptep);
2540 if (!was_rmapped && is_large_pte(*sptep))
2541 ++vcpu->kvm->stat.lpages;
2543 if (is_shadow_present_pte(*sptep)) {
2544 if (!was_rmapped) {
2545 rmap_count = rmap_add(vcpu, sptep, gfn);
2546 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2547 rmap_recycle(vcpu, sptep, gfn);
2551 kvm_release_pfn_clean(pfn);
2554 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2556 mmu_free_roots(vcpu);
2559 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2560 bool no_dirty_log)
2562 struct kvm_memory_slot *slot;
2564 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2565 if (!slot)
2566 return KVM_PFN_ERR_FAULT;
2568 return gfn_to_pfn_memslot_atomic(slot, gfn);
2571 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2572 struct kvm_mmu_page *sp,
2573 u64 *start, u64 *end)
2575 struct page *pages[PTE_PREFETCH_NUM];
2576 unsigned access = sp->role.access;
2577 int i, ret;
2578 gfn_t gfn;
2580 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2581 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2582 return -1;
2584 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2585 if (ret <= 0)
2586 return -1;
2588 for (i = 0; i < ret; i++, gfn++, start++)
2589 mmu_set_spte(vcpu, start, access, 0, NULL,
2590 sp->role.level, gfn, page_to_pfn(pages[i]),
2591 true, true);
2593 return 0;
2596 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2597 struct kvm_mmu_page *sp, u64 *sptep)
2599 u64 *spte, *start = NULL;
2600 int i;
2602 WARN_ON(!sp->role.direct);
2604 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2605 spte = sp->spt + i;
2607 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2608 if (is_shadow_present_pte(*spte) || spte == sptep) {
2609 if (!start)
2610 continue;
2611 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2612 break;
2613 start = NULL;
2614 } else if (!start)
2615 start = spte;
2619 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2621 struct kvm_mmu_page *sp;
2624 * Since it's no accessed bit on EPT, it's no way to
2625 * distinguish between actually accessed translations
2626 * and prefetched, so disable pte prefetch if EPT is
2627 * enabled.
2629 if (!shadow_accessed_mask)
2630 return;
2632 sp = page_header(__pa(sptep));
2633 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2634 return;
2636 __direct_pte_prefetch(vcpu, sp, sptep);
2639 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2640 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2641 bool prefault)
2643 struct kvm_shadow_walk_iterator iterator;
2644 struct kvm_mmu_page *sp;
2645 int emulate = 0;
2646 gfn_t pseudo_gfn;
2648 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2649 return 0;
2651 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2652 if (iterator.level == level) {
2653 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2654 write, &emulate, level, gfn, pfn,
2655 prefault, map_writable);
2656 direct_pte_prefetch(vcpu, iterator.sptep);
2657 ++vcpu->stat.pf_fixed;
2658 break;
2661 if (!is_shadow_present_pte(*iterator.sptep)) {
2662 u64 base_addr = iterator.addr;
2664 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2665 pseudo_gfn = base_addr >> PAGE_SHIFT;
2666 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2667 iterator.level - 1,
2668 1, ACC_ALL, iterator.sptep);
2670 link_shadow_page(iterator.sptep, sp, true);
2673 return emulate;
2676 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2678 siginfo_t info;
2680 info.si_signo = SIGBUS;
2681 info.si_errno = 0;
2682 info.si_code = BUS_MCEERR_AR;
2683 info.si_addr = (void __user *)address;
2684 info.si_addr_lsb = PAGE_SHIFT;
2686 send_sig_info(SIGBUS, &info, tsk);
2689 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2692 * Do not cache the mmio info caused by writing the readonly gfn
2693 * into the spte otherwise read access on readonly gfn also can
2694 * caused mmio page fault and treat it as mmio access.
2695 * Return 1 to tell kvm to emulate it.
2697 if (pfn == KVM_PFN_ERR_RO_FAULT)
2698 return 1;
2700 if (pfn == KVM_PFN_ERR_HWPOISON) {
2701 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2702 return 0;
2705 return -EFAULT;
2708 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2709 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2711 pfn_t pfn = *pfnp;
2712 gfn_t gfn = *gfnp;
2713 int level = *levelp;
2716 * Check if it's a transparent hugepage. If this would be an
2717 * hugetlbfs page, level wouldn't be set to
2718 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2719 * here.
2721 if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2722 level == PT_PAGE_TABLE_LEVEL &&
2723 PageTransCompound(pfn_to_page(pfn)) &&
2724 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2725 unsigned long mask;
2727 * mmu_notifier_retry was successful and we hold the
2728 * mmu_lock here, so the pmd can't become splitting
2729 * from under us, and in turn
2730 * __split_huge_page_refcount() can't run from under
2731 * us and we can safely transfer the refcount from
2732 * PG_tail to PG_head as we switch the pfn to tail to
2733 * head.
2735 *levelp = level = PT_DIRECTORY_LEVEL;
2736 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2737 VM_BUG_ON((gfn & mask) != (pfn & mask));
2738 if (pfn & mask) {
2739 gfn &= ~mask;
2740 *gfnp = gfn;
2741 kvm_release_pfn_clean(pfn);
2742 pfn &= ~mask;
2743 kvm_get_pfn(pfn);
2744 *pfnp = pfn;
2749 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2750 pfn_t pfn, unsigned access, int *ret_val)
2752 bool ret = true;
2754 /* The pfn is invalid, report the error! */
2755 if (unlikely(is_error_pfn(pfn))) {
2756 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2757 goto exit;
2760 if (unlikely(is_noslot_pfn(pfn)))
2761 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2763 ret = false;
2764 exit:
2765 return ret;
2768 static bool page_fault_can_be_fast(u32 error_code)
2771 * Do not fix the mmio spte with invalid generation number which
2772 * need to be updated by slow page fault path.
2774 if (unlikely(error_code & PFERR_RSVD_MASK))
2775 return false;
2778 * #PF can be fast only if the shadow page table is present and it
2779 * is caused by write-protect, that means we just need change the
2780 * W bit of the spte which can be done out of mmu-lock.
2782 if (!(error_code & PFERR_PRESENT_MASK) ||
2783 !(error_code & PFERR_WRITE_MASK))
2784 return false;
2786 return true;
2789 static bool
2790 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
2792 struct kvm_mmu_page *sp = page_header(__pa(sptep));
2793 gfn_t gfn;
2795 WARN_ON(!sp->role.direct);
2798 * The gfn of direct spte is stable since it is calculated
2799 * by sp->gfn.
2801 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2803 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2804 mark_page_dirty(vcpu->kvm, gfn);
2806 return true;
2810 * Return value:
2811 * - true: let the vcpu to access on the same address again.
2812 * - false: let the real page fault path to fix it.
2814 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2815 u32 error_code)
2817 struct kvm_shadow_walk_iterator iterator;
2818 bool ret = false;
2819 u64 spte = 0ull;
2821 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2822 return false;
2824 if (!page_fault_can_be_fast(error_code))
2825 return false;
2827 walk_shadow_page_lockless_begin(vcpu);
2828 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2829 if (!is_shadow_present_pte(spte) || iterator.level < level)
2830 break;
2833 * If the mapping has been changed, let the vcpu fault on the
2834 * same address again.
2836 if (!is_rmap_spte(spte)) {
2837 ret = true;
2838 goto exit;
2841 if (!is_last_spte(spte, level))
2842 goto exit;
2845 * Check if it is a spurious fault caused by TLB lazily flushed.
2847 * Need not check the access of upper level table entries since
2848 * they are always ACC_ALL.
2850 if (is_writable_pte(spte)) {
2851 ret = true;
2852 goto exit;
2856 * Currently, to simplify the code, only the spte write-protected
2857 * by dirty-log can be fast fixed.
2859 if (!spte_is_locklessly_modifiable(spte))
2860 goto exit;
2863 * Currently, fast page fault only works for direct mapping since
2864 * the gfn is not stable for indirect shadow page.
2865 * See Documentation/virtual/kvm/locking.txt to get more detail.
2867 ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
2868 exit:
2869 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2870 spte, ret);
2871 walk_shadow_page_lockless_end(vcpu);
2873 return ret;
2876 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2877 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2878 static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
2880 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2881 gfn_t gfn, bool prefault)
2883 int r;
2884 int level;
2885 int force_pt_level;
2886 pfn_t pfn;
2887 unsigned long mmu_seq;
2888 bool map_writable, write = error_code & PFERR_WRITE_MASK;
2890 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2891 if (likely(!force_pt_level)) {
2892 level = mapping_level(vcpu, gfn);
2894 * This path builds a PAE pagetable - so we can map
2895 * 2mb pages at maximum. Therefore check if the level
2896 * is larger than that.
2898 if (level > PT_DIRECTORY_LEVEL)
2899 level = PT_DIRECTORY_LEVEL;
2901 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2902 } else
2903 level = PT_PAGE_TABLE_LEVEL;
2905 if (fast_page_fault(vcpu, v, level, error_code))
2906 return 0;
2908 mmu_seq = vcpu->kvm->mmu_notifier_seq;
2909 smp_rmb();
2911 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2912 return 0;
2914 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2915 return r;
2917 spin_lock(&vcpu->kvm->mmu_lock);
2918 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
2919 goto out_unlock;
2920 make_mmu_pages_available(vcpu);
2921 if (likely(!force_pt_level))
2922 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2923 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2924 prefault);
2925 spin_unlock(&vcpu->kvm->mmu_lock);
2928 return r;
2930 out_unlock:
2931 spin_unlock(&vcpu->kvm->mmu_lock);
2932 kvm_release_pfn_clean(pfn);
2933 return 0;
2937 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2939 int i;
2940 struct kvm_mmu_page *sp;
2941 LIST_HEAD(invalid_list);
2943 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2944 return;
2946 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2947 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2948 vcpu->arch.mmu.direct_map)) {
2949 hpa_t root = vcpu->arch.mmu.root_hpa;
2951 spin_lock(&vcpu->kvm->mmu_lock);
2952 sp = page_header(root);
2953 --sp->root_count;
2954 if (!sp->root_count && sp->role.invalid) {
2955 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2956 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2958 spin_unlock(&vcpu->kvm->mmu_lock);
2959 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2960 return;
2963 spin_lock(&vcpu->kvm->mmu_lock);
2964 for (i = 0; i < 4; ++i) {
2965 hpa_t root = vcpu->arch.mmu.pae_root[i];
2967 if (root) {
2968 root &= PT64_BASE_ADDR_MASK;
2969 sp = page_header(root);
2970 --sp->root_count;
2971 if (!sp->root_count && sp->role.invalid)
2972 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2973 &invalid_list);
2975 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2977 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2978 spin_unlock(&vcpu->kvm->mmu_lock);
2979 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2982 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2984 int ret = 0;
2986 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2987 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2988 ret = 1;
2991 return ret;
2994 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2996 struct kvm_mmu_page *sp;
2997 unsigned i;
2999 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3000 spin_lock(&vcpu->kvm->mmu_lock);
3001 make_mmu_pages_available(vcpu);
3002 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
3003 1, ACC_ALL, NULL);
3004 ++sp->root_count;
3005 spin_unlock(&vcpu->kvm->mmu_lock);
3006 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3007 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3008 for (i = 0; i < 4; ++i) {
3009 hpa_t root = vcpu->arch.mmu.pae_root[i];
3011 ASSERT(!VALID_PAGE(root));
3012 spin_lock(&vcpu->kvm->mmu_lock);
3013 make_mmu_pages_available(vcpu);
3014 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3015 i << 30,
3016 PT32_ROOT_LEVEL, 1, ACC_ALL,
3017 NULL);
3018 root = __pa(sp->spt);
3019 ++sp->root_count;
3020 spin_unlock(&vcpu->kvm->mmu_lock);
3021 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3023 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3024 } else
3025 BUG();
3027 return 0;
3030 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3032 struct kvm_mmu_page *sp;
3033 u64 pdptr, pm_mask;
3034 gfn_t root_gfn;
3035 int i;
3037 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3039 if (mmu_check_root(vcpu, root_gfn))
3040 return 1;
3043 * Do we shadow a long mode page table? If so we need to
3044 * write-protect the guests page table root.
3046 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3047 hpa_t root = vcpu->arch.mmu.root_hpa;
3049 ASSERT(!VALID_PAGE(root));
3051 spin_lock(&vcpu->kvm->mmu_lock);
3052 make_mmu_pages_available(vcpu);
3053 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3054 0, ACC_ALL, NULL);
3055 root = __pa(sp->spt);
3056 ++sp->root_count;
3057 spin_unlock(&vcpu->kvm->mmu_lock);
3058 vcpu->arch.mmu.root_hpa = root;
3059 return 0;
3063 * We shadow a 32 bit page table. This may be a legacy 2-level
3064 * or a PAE 3-level page table. In either case we need to be aware that
3065 * the shadow page table may be a PAE or a long mode page table.
3067 pm_mask = PT_PRESENT_MASK;
3068 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3069 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3071 for (i = 0; i < 4; ++i) {
3072 hpa_t root = vcpu->arch.mmu.pae_root[i];
3074 ASSERT(!VALID_PAGE(root));
3075 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3076 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3077 if (!is_present_gpte(pdptr)) {
3078 vcpu->arch.mmu.pae_root[i] = 0;
3079 continue;
3081 root_gfn = pdptr >> PAGE_SHIFT;
3082 if (mmu_check_root(vcpu, root_gfn))
3083 return 1;
3085 spin_lock(&vcpu->kvm->mmu_lock);
3086 make_mmu_pages_available(vcpu);
3087 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3088 PT32_ROOT_LEVEL, 0,
3089 ACC_ALL, NULL);
3090 root = __pa(sp->spt);
3091 ++sp->root_count;
3092 spin_unlock(&vcpu->kvm->mmu_lock);
3094 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3096 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3099 * If we shadow a 32 bit page table with a long mode page
3100 * table we enter this path.
3102 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3103 if (vcpu->arch.mmu.lm_root == NULL) {
3105 * The additional page necessary for this is only
3106 * allocated on demand.
3109 u64 *lm_root;
3111 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3112 if (lm_root == NULL)
3113 return 1;
3115 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3117 vcpu->arch.mmu.lm_root = lm_root;
3120 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3123 return 0;
3126 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3128 if (vcpu->arch.mmu.direct_map)
3129 return mmu_alloc_direct_roots(vcpu);
3130 else
3131 return mmu_alloc_shadow_roots(vcpu);
3134 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3136 int i;
3137 struct kvm_mmu_page *sp;
3139 if (vcpu->arch.mmu.direct_map)
3140 return;
3142 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3143 return;
3145 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3146 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3147 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3148 hpa_t root = vcpu->arch.mmu.root_hpa;
3149 sp = page_header(root);
3150 mmu_sync_children(vcpu, sp);
3151 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3152 return;
3154 for (i = 0; i < 4; ++i) {
3155 hpa_t root = vcpu->arch.mmu.pae_root[i];
3157 if (root && VALID_PAGE(root)) {
3158 root &= PT64_BASE_ADDR_MASK;
3159 sp = page_header(root);
3160 mmu_sync_children(vcpu, sp);
3163 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3166 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3168 spin_lock(&vcpu->kvm->mmu_lock);
3169 mmu_sync_roots(vcpu);
3170 spin_unlock(&vcpu->kvm->mmu_lock);
3172 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3174 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3175 u32 access, struct x86_exception *exception)
3177 if (exception)
3178 exception->error_code = 0;
3179 return vaddr;
3182 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3183 u32 access,
3184 struct x86_exception *exception)
3186 if (exception)
3187 exception->error_code = 0;
3188 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
3191 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3193 if (direct)
3194 return vcpu_match_mmio_gpa(vcpu, addr);
3196 return vcpu_match_mmio_gva(vcpu, addr);
3199 static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3201 struct kvm_shadow_walk_iterator iterator;
3202 u64 spte = 0ull;
3204 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3205 return spte;
3207 walk_shadow_page_lockless_begin(vcpu);
3208 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3209 if (!is_shadow_present_pte(spte))
3210 break;
3211 walk_shadow_page_lockless_end(vcpu);
3213 return spte;
3216 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3218 u64 spte;
3220 if (quickly_check_mmio_pf(vcpu, addr, direct))
3221 return RET_MMIO_PF_EMULATE;
3223 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3225 if (is_mmio_spte(spte)) {
3226 gfn_t gfn = get_mmio_spte_gfn(spte);
3227 unsigned access = get_mmio_spte_access(spte);
3229 if (!check_mmio_spte(vcpu->kvm, spte))
3230 return RET_MMIO_PF_INVALID;
3232 if (direct)
3233 addr = 0;
3235 trace_handle_mmio_page_fault(addr, gfn, access);
3236 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3237 return RET_MMIO_PF_EMULATE;
3241 * If the page table is zapped by other cpus, let CPU fault again on
3242 * the address.
3244 return RET_MMIO_PF_RETRY;
3246 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3248 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3249 u32 error_code, bool direct)
3251 int ret;
3253 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3254 WARN_ON(ret == RET_MMIO_PF_BUG);
3255 return ret;
3258 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3259 u32 error_code, bool prefault)
3261 gfn_t gfn;
3262 int r;
3264 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3266 if (unlikely(error_code & PFERR_RSVD_MASK)) {
3267 r = handle_mmio_page_fault(vcpu, gva, error_code, true);
3269 if (likely(r != RET_MMIO_PF_INVALID))
3270 return r;
3273 r = mmu_topup_memory_caches(vcpu);
3274 if (r)
3275 return r;
3277 ASSERT(vcpu);
3278 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3280 gfn = gva >> PAGE_SHIFT;
3282 return nonpaging_map(vcpu, gva & PAGE_MASK,
3283 error_code, gfn, prefault);
3286 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3288 struct kvm_arch_async_pf arch;
3290 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3291 arch.gfn = gfn;
3292 arch.direct_map = vcpu->arch.mmu.direct_map;
3293 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3295 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3298 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3300 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3301 kvm_event_needs_reinjection(vcpu)))
3302 return false;
3304 return kvm_x86_ops->interrupt_allowed(vcpu);
3307 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3308 gva_t gva, pfn_t *pfn, bool write, bool *writable)
3310 bool async;
3312 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3314 if (!async)
3315 return false; /* *pfn has correct page already */
3317 if (!prefault && can_do_async_pf(vcpu)) {
3318 trace_kvm_try_async_get_page(gva, gfn);
3319 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3320 trace_kvm_async_pf_doublefault(gva, gfn);
3321 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3322 return true;
3323 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3324 return true;
3327 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3329 return false;
3332 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3333 bool prefault)
3335 pfn_t pfn;
3336 int r;
3337 int level;
3338 int force_pt_level;
3339 gfn_t gfn = gpa >> PAGE_SHIFT;
3340 unsigned long mmu_seq;
3341 int write = error_code & PFERR_WRITE_MASK;
3342 bool map_writable;
3344 ASSERT(vcpu);
3345 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3347 if (unlikely(error_code & PFERR_RSVD_MASK)) {
3348 r = handle_mmio_page_fault(vcpu, gpa, error_code, true);
3350 if (likely(r != RET_MMIO_PF_INVALID))
3351 return r;
3354 r = mmu_topup_memory_caches(vcpu);
3355 if (r)
3356 return r;
3358 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3359 if (likely(!force_pt_level)) {
3360 level = mapping_level(vcpu, gfn);
3361 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3362 } else
3363 level = PT_PAGE_TABLE_LEVEL;
3365 if (fast_page_fault(vcpu, gpa, level, error_code))
3366 return 0;
3368 mmu_seq = vcpu->kvm->mmu_notifier_seq;
3369 smp_rmb();
3371 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3372 return 0;
3374 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3375 return r;
3377 spin_lock(&vcpu->kvm->mmu_lock);
3378 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3379 goto out_unlock;
3380 make_mmu_pages_available(vcpu);
3381 if (likely(!force_pt_level))
3382 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3383 r = __direct_map(vcpu, gpa, write, map_writable,
3384 level, gfn, pfn, prefault);
3385 spin_unlock(&vcpu->kvm->mmu_lock);
3387 return r;
3389 out_unlock:
3390 spin_unlock(&vcpu->kvm->mmu_lock);
3391 kvm_release_pfn_clean(pfn);
3392 return 0;
3395 static void nonpaging_free(struct kvm_vcpu *vcpu)
3397 mmu_free_roots(vcpu);
3400 static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3401 struct kvm_mmu *context)
3403 context->new_cr3 = nonpaging_new_cr3;
3404 context->page_fault = nonpaging_page_fault;
3405 context->gva_to_gpa = nonpaging_gva_to_gpa;
3406 context->free = nonpaging_free;
3407 context->sync_page = nonpaging_sync_page;
3408 context->invlpg = nonpaging_invlpg;
3409 context->update_pte = nonpaging_update_pte;
3410 context->root_level = 0;
3411 context->shadow_root_level = PT32E_ROOT_LEVEL;
3412 context->root_hpa = INVALID_PAGE;
3413 context->direct_map = true;
3414 context->nx = false;
3415 return 0;
3418 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3420 ++vcpu->stat.tlb_flush;
3421 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3423 EXPORT_SYMBOL_GPL(kvm_mmu_flush_tlb);
3425 static void paging_new_cr3(struct kvm_vcpu *vcpu)
3427 pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
3428 mmu_free_roots(vcpu);
3431 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3433 return kvm_read_cr3(vcpu);
3436 static void inject_page_fault(struct kvm_vcpu *vcpu,
3437 struct x86_exception *fault)
3439 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3442 static void paging_free(struct kvm_vcpu *vcpu)
3444 nonpaging_free(vcpu);
3447 static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
3448 unsigned access, int *nr_present)
3450 if (unlikely(is_mmio_spte(*sptep))) {
3451 if (gfn != get_mmio_spte_gfn(*sptep)) {
3452 mmu_spte_clear_no_track(sptep);
3453 return true;
3456 (*nr_present)++;
3457 mark_mmio_spte(kvm, sptep, gfn, access);
3458 return true;
3461 return false;
3464 static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3466 unsigned index;
3468 index = level - 1;
3469 index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3470 return mmu->last_pte_bitmap & (1 << index);
3473 #define PTTYPE_EPT 18 /* arbitrary */
3474 #define PTTYPE PTTYPE_EPT
3475 #include "paging_tmpl.h"
3476 #undef PTTYPE
3478 #define PTTYPE 64
3479 #include "paging_tmpl.h"
3480 #undef PTTYPE
3482 #define PTTYPE 32
3483 #include "paging_tmpl.h"
3484 #undef PTTYPE
3486 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3487 struct kvm_mmu *context)
3489 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3490 u64 exb_bit_rsvd = 0;
3492 context->bad_mt_xwr = 0;
3494 if (!context->nx)
3495 exb_bit_rsvd = rsvd_bits(63, 63);
3496 switch (context->root_level) {
3497 case PT32_ROOT_LEVEL:
3498 /* no rsvd bits for 2 level 4K page table entries */
3499 context->rsvd_bits_mask[0][1] = 0;
3500 context->rsvd_bits_mask[0][0] = 0;
3501 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3503 if (!is_pse(vcpu)) {
3504 context->rsvd_bits_mask[1][1] = 0;
3505 break;
3508 if (is_cpuid_PSE36())
3509 /* 36bits PSE 4MB page */
3510 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3511 else
3512 /* 32 bits PSE 4MB page */
3513 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3514 break;
3515 case PT32E_ROOT_LEVEL:
3516 context->rsvd_bits_mask[0][2] =
3517 rsvd_bits(maxphyaddr, 63) |
3518 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
3519 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3520 rsvd_bits(maxphyaddr, 62); /* PDE */
3521 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3522 rsvd_bits(maxphyaddr, 62); /* PTE */
3523 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3524 rsvd_bits(maxphyaddr, 62) |
3525 rsvd_bits(13, 20); /* large page */
3526 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3527 break;
3528 case PT64_ROOT_LEVEL:
3529 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3530 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3531 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3532 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3533 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3534 rsvd_bits(maxphyaddr, 51);
3535 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3536 rsvd_bits(maxphyaddr, 51);
3537 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3538 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3539 rsvd_bits(maxphyaddr, 51) |
3540 rsvd_bits(13, 29);
3541 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3542 rsvd_bits(maxphyaddr, 51) |
3543 rsvd_bits(13, 20); /* large page */
3544 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3545 break;
3549 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3550 struct kvm_mmu *context, bool execonly)
3552 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3553 int pte;
3555 context->rsvd_bits_mask[0][3] =
3556 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3557 context->rsvd_bits_mask[0][2] =
3558 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3559 context->rsvd_bits_mask[0][1] =
3560 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3561 context->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3563 /* large page */
3564 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3565 context->rsvd_bits_mask[1][2] =
3566 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3567 context->rsvd_bits_mask[1][1] =
3568 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3569 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3571 for (pte = 0; pte < 64; pte++) {
3572 int rwx_bits = pte & 7;
3573 int mt = pte >> 3;
3574 if (mt == 0x2 || mt == 0x3 || mt == 0x7 ||
3575 rwx_bits == 0x2 || rwx_bits == 0x6 ||
3576 (rwx_bits == 0x4 && !execonly))
3577 context->bad_mt_xwr |= (1ull << pte);
3581 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
3582 struct kvm_mmu *mmu, bool ept)
3584 unsigned bit, byte, pfec;
3585 u8 map;
3586 bool fault, x, w, u, wf, uf, ff, smep;
3588 smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3589 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3590 pfec = byte << 1;
3591 map = 0;
3592 wf = pfec & PFERR_WRITE_MASK;
3593 uf = pfec & PFERR_USER_MASK;
3594 ff = pfec & PFERR_FETCH_MASK;
3595 for (bit = 0; bit < 8; ++bit) {
3596 x = bit & ACC_EXEC_MASK;
3597 w = bit & ACC_WRITE_MASK;
3598 u = bit & ACC_USER_MASK;
3600 if (!ept) {
3601 /* Not really needed: !nx will cause pte.nx to fault */
3602 x |= !mmu->nx;
3603 /* Allow supervisor writes if !cr0.wp */
3604 w |= !is_write_protection(vcpu) && !uf;
3605 /* Disallow supervisor fetches of user code if cr4.smep */
3606 x &= !(smep && u && !uf);
3607 } else
3608 /* Not really needed: no U/S accesses on ept */
3609 u = 1;
3611 fault = (ff && !x) || (uf && !u) || (wf && !w);
3612 map |= fault << bit;
3614 mmu->permissions[byte] = map;
3618 static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3620 u8 map;
3621 unsigned level, root_level = mmu->root_level;
3622 const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
3624 if (root_level == PT32E_ROOT_LEVEL)
3625 --root_level;
3626 /* PT_PAGE_TABLE_LEVEL always terminates */
3627 map = 1 | (1 << ps_set_index);
3628 for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3629 if (level <= PT_PDPE_LEVEL
3630 && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3631 map |= 1 << (ps_set_index | (level - 1));
3633 mmu->last_pte_bitmap = map;
3636 static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3637 struct kvm_mmu *context,
3638 int level)
3640 context->nx = is_nx(vcpu);
3641 context->root_level = level;
3643 reset_rsvds_bits_mask(vcpu, context);
3644 update_permission_bitmask(vcpu, context, false);
3645 update_last_pte_bitmap(vcpu, context);
3647 ASSERT(is_pae(vcpu));
3648 context->new_cr3 = paging_new_cr3;
3649 context->page_fault = paging64_page_fault;
3650 context->gva_to_gpa = paging64_gva_to_gpa;
3651 context->sync_page = paging64_sync_page;
3652 context->invlpg = paging64_invlpg;
3653 context->update_pte = paging64_update_pte;
3654 context->free = paging_free;
3655 context->shadow_root_level = level;
3656 context->root_hpa = INVALID_PAGE;
3657 context->direct_map = false;
3658 return 0;
3661 static int paging64_init_context(struct kvm_vcpu *vcpu,
3662 struct kvm_mmu *context)
3664 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3667 static int paging32_init_context(struct kvm_vcpu *vcpu,
3668 struct kvm_mmu *context)
3670 context->nx = false;
3671 context->root_level = PT32_ROOT_LEVEL;
3673 reset_rsvds_bits_mask(vcpu, context);
3674 update_permission_bitmask(vcpu, context, false);
3675 update_last_pte_bitmap(vcpu, context);
3677 context->new_cr3 = paging_new_cr3;
3678 context->page_fault = paging32_page_fault;
3679 context->gva_to_gpa = paging32_gva_to_gpa;
3680 context->free = paging_free;
3681 context->sync_page = paging32_sync_page;
3682 context->invlpg = paging32_invlpg;
3683 context->update_pte = paging32_update_pte;
3684 context->shadow_root_level = PT32E_ROOT_LEVEL;
3685 context->root_hpa = INVALID_PAGE;
3686 context->direct_map = false;
3687 return 0;
3690 static int paging32E_init_context(struct kvm_vcpu *vcpu,
3691 struct kvm_mmu *context)
3693 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3696 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3698 struct kvm_mmu *context = vcpu->arch.walk_mmu;
3700 context->base_role.word = 0;
3701 context->new_cr3 = nonpaging_new_cr3;
3702 context->page_fault = tdp_page_fault;
3703 context->free = nonpaging_free;
3704 context->sync_page = nonpaging_sync_page;
3705 context->invlpg = nonpaging_invlpg;
3706 context->update_pte = nonpaging_update_pte;
3707 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3708 context->root_hpa = INVALID_PAGE;
3709 context->direct_map = true;
3710 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3711 context->get_cr3 = get_cr3;
3712 context->get_pdptr = kvm_pdptr_read;
3713 context->inject_page_fault = kvm_inject_page_fault;
3715 if (!is_paging(vcpu)) {
3716 context->nx = false;
3717 context->gva_to_gpa = nonpaging_gva_to_gpa;
3718 context->root_level = 0;
3719 } else if (is_long_mode(vcpu)) {
3720 context->nx = is_nx(vcpu);
3721 context->root_level = PT64_ROOT_LEVEL;
3722 reset_rsvds_bits_mask(vcpu, context);
3723 context->gva_to_gpa = paging64_gva_to_gpa;
3724 } else if (is_pae(vcpu)) {
3725 context->nx = is_nx(vcpu);
3726 context->root_level = PT32E_ROOT_LEVEL;
3727 reset_rsvds_bits_mask(vcpu, context);
3728 context->gva_to_gpa = paging64_gva_to_gpa;
3729 } else {
3730 context->nx = false;
3731 context->root_level = PT32_ROOT_LEVEL;
3732 reset_rsvds_bits_mask(vcpu, context);
3733 context->gva_to_gpa = paging32_gva_to_gpa;
3736 update_permission_bitmask(vcpu, context, false);
3737 update_last_pte_bitmap(vcpu, context);
3739 return 0;
3742 int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3744 int r;
3745 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3746 ASSERT(vcpu);
3747 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3749 if (!is_paging(vcpu))
3750 r = nonpaging_init_context(vcpu, context);
3751 else if (is_long_mode(vcpu))
3752 r = paging64_init_context(vcpu, context);
3753 else if (is_pae(vcpu))
3754 r = paging32E_init_context(vcpu, context);
3755 else
3756 r = paging32_init_context(vcpu, context);
3758 vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
3759 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3760 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
3761 vcpu->arch.mmu.base_role.smep_andnot_wp
3762 = smep && !is_write_protection(vcpu);
3764 return r;
3766 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3768 int kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
3769 bool execonly)
3771 ASSERT(vcpu);
3772 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3774 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3776 context->nx = true;
3777 context->new_cr3 = paging_new_cr3;
3778 context->page_fault = ept_page_fault;
3779 context->gva_to_gpa = ept_gva_to_gpa;
3780 context->sync_page = ept_sync_page;
3781 context->invlpg = ept_invlpg;
3782 context->update_pte = ept_update_pte;
3783 context->free = paging_free;
3784 context->root_level = context->shadow_root_level;
3785 context->root_hpa = INVALID_PAGE;
3786 context->direct_map = false;
3788 update_permission_bitmask(vcpu, context, true);
3789 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
3791 return 0;
3793 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
3795 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3797 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3799 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3800 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
3801 vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
3802 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3804 return r;
3807 static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3809 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3811 g_context->get_cr3 = get_cr3;
3812 g_context->get_pdptr = kvm_pdptr_read;
3813 g_context->inject_page_fault = kvm_inject_page_fault;
3816 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3817 * translation of l2_gpa to l1_gpa addresses is done using the
3818 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3819 * functions between mmu and nested_mmu are swapped.
3821 if (!is_paging(vcpu)) {
3822 g_context->nx = false;
3823 g_context->root_level = 0;
3824 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3825 } else if (is_long_mode(vcpu)) {
3826 g_context->nx = is_nx(vcpu);
3827 g_context->root_level = PT64_ROOT_LEVEL;
3828 reset_rsvds_bits_mask(vcpu, g_context);
3829 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3830 } else if (is_pae(vcpu)) {
3831 g_context->nx = is_nx(vcpu);
3832 g_context->root_level = PT32E_ROOT_LEVEL;
3833 reset_rsvds_bits_mask(vcpu, g_context);
3834 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3835 } else {
3836 g_context->nx = false;
3837 g_context->root_level = PT32_ROOT_LEVEL;
3838 reset_rsvds_bits_mask(vcpu, g_context);
3839 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3842 update_permission_bitmask(vcpu, g_context, false);
3843 update_last_pte_bitmap(vcpu, g_context);
3845 return 0;
3848 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3850 if (mmu_is_nested(vcpu))
3851 return init_kvm_nested_mmu(vcpu);
3852 else if (tdp_enabled)
3853 return init_kvm_tdp_mmu(vcpu);
3854 else
3855 return init_kvm_softmmu(vcpu);
3858 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3860 ASSERT(vcpu);
3861 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3862 /* mmu.free() should set root_hpa = INVALID_PAGE */
3863 vcpu->arch.mmu.free(vcpu);
3866 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3868 destroy_kvm_mmu(vcpu);
3869 return init_kvm_mmu(vcpu);
3871 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3873 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3875 int r;
3877 r = mmu_topup_memory_caches(vcpu);
3878 if (r)
3879 goto out;
3880 r = mmu_alloc_roots(vcpu);
3881 kvm_mmu_sync_roots(vcpu);
3882 if (r)
3883 goto out;
3884 /* set_cr3() should ensure TLB has been flushed */
3885 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3886 out:
3887 return r;
3889 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3891 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3893 mmu_free_roots(vcpu);
3895 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3897 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3898 struct kvm_mmu_page *sp, u64 *spte,
3899 const void *new)
3901 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3902 ++vcpu->kvm->stat.mmu_pde_zapped;
3903 return;
3906 ++vcpu->kvm->stat.mmu_pte_updated;
3907 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3910 static bool need_remote_flush(u64 old, u64 new)
3912 if (!is_shadow_present_pte(old))
3913 return false;
3914 if (!is_shadow_present_pte(new))
3915 return true;
3916 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3917 return true;
3918 old ^= shadow_nx_mask;
3919 new ^= shadow_nx_mask;
3920 return (old & ~new & PT64_PERM_MASK) != 0;
3923 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3924 bool remote_flush, bool local_flush)
3926 if (zap_page)
3927 return;
3929 if (remote_flush)
3930 kvm_flush_remote_tlbs(vcpu->kvm);
3931 else if (local_flush)
3932 kvm_mmu_flush_tlb(vcpu);
3935 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3936 const u8 *new, int *bytes)
3938 u64 gentry;
3939 int r;
3942 * Assume that the pte write on a page table of the same type
3943 * as the current vcpu paging mode since we update the sptes only
3944 * when they have the same mode.
3946 if (is_pae(vcpu) && *bytes == 4) {
3947 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3948 *gpa &= ~(gpa_t)7;
3949 *bytes = 8;
3950 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
3951 if (r)
3952 gentry = 0;
3953 new = (const u8 *)&gentry;
3956 switch (*bytes) {
3957 case 4:
3958 gentry = *(const u32 *)new;
3959 break;
3960 case 8:
3961 gentry = *(const u64 *)new;
3962 break;
3963 default:
3964 gentry = 0;
3965 break;
3968 return gentry;
3972 * If we're seeing too many writes to a page, it may no longer be a page table,
3973 * or we may be forking, in which case it is better to unmap the page.
3975 static bool detect_write_flooding(struct kvm_mmu_page *sp)
3978 * Skip write-flooding detected for the sp whose level is 1, because
3979 * it can become unsync, then the guest page is not write-protected.
3981 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
3982 return false;
3984 return ++sp->write_flooding_count >= 3;
3988 * Misaligned accesses are too much trouble to fix up; also, they usually
3989 * indicate a page is not used as a page table.
3991 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3992 int bytes)
3994 unsigned offset, pte_size, misaligned;
3996 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3997 gpa, bytes, sp->role.word);
3999 offset = offset_in_page(gpa);
4000 pte_size = sp->role.cr4_pae ? 8 : 4;
4003 * Sometimes, the OS only writes the last one bytes to update status
4004 * bits, for example, in linux, andb instruction is used in clear_bit().
4006 if (!(offset & (pte_size - 1)) && bytes == 1)
4007 return false;
4009 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4010 misaligned |= bytes < 4;
4012 return misaligned;
4015 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4017 unsigned page_offset, quadrant;
4018 u64 *spte;
4019 int level;
4021 page_offset = offset_in_page(gpa);
4022 level = sp->role.level;
4023 *nspte = 1;
4024 if (!sp->role.cr4_pae) {
4025 page_offset <<= 1; /* 32->64 */
4027 * A 32-bit pde maps 4MB while the shadow pdes map
4028 * only 2MB. So we need to double the offset again
4029 * and zap two pdes instead of one.
4031 if (level == PT32_ROOT_LEVEL) {
4032 page_offset &= ~7; /* kill rounding error */
4033 page_offset <<= 1;
4034 *nspte = 2;
4036 quadrant = page_offset >> PAGE_SHIFT;
4037 page_offset &= ~PAGE_MASK;
4038 if (quadrant != sp->role.quadrant)
4039 return NULL;
4042 spte = &sp->spt[page_offset / sizeof(*spte)];
4043 return spte;
4046 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4047 const u8 *new, int bytes)
4049 gfn_t gfn = gpa >> PAGE_SHIFT;
4050 union kvm_mmu_page_role mask = { .word = 0 };
4051 struct kvm_mmu_page *sp;
4052 LIST_HEAD(invalid_list);
4053 u64 entry, gentry, *spte;
4054 int npte;
4055 bool remote_flush, local_flush, zap_page;
4058 * If we don't have indirect shadow pages, it means no page is
4059 * write-protected, so we can exit simply.
4061 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4062 return;
4064 zap_page = remote_flush = local_flush = false;
4066 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4068 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4071 * No need to care whether allocation memory is successful
4072 * or not since pte prefetch is skiped if it does not have
4073 * enough objects in the cache.
4075 mmu_topup_memory_caches(vcpu);
4077 spin_lock(&vcpu->kvm->mmu_lock);
4078 ++vcpu->kvm->stat.mmu_pte_write;
4079 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4081 mask.cr0_wp = mask.cr4_pae = mask.nxe = mask.smep_andnot_wp = 1;
4082 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4083 if (detect_write_misaligned(sp, gpa, bytes) ||
4084 detect_write_flooding(sp)) {
4085 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
4086 &invalid_list);
4087 ++vcpu->kvm->stat.mmu_flooded;
4088 continue;
4091 spte = get_written_sptes(sp, gpa, &npte);
4092 if (!spte)
4093 continue;
4095 local_flush = true;
4096 while (npte--) {
4097 entry = *spte;
4098 mmu_page_zap_pte(vcpu->kvm, sp, spte);
4099 if (gentry &&
4100 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4101 & mask.word) && rmap_can_add(vcpu))
4102 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4103 if (need_remote_flush(entry, *spte))
4104 remote_flush = true;
4105 ++spte;
4108 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4109 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4110 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4111 spin_unlock(&vcpu->kvm->mmu_lock);
4114 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4116 gpa_t gpa;
4117 int r;
4119 if (vcpu->arch.mmu.direct_map)
4120 return 0;
4122 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4124 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4126 return r;
4128 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4130 static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4132 LIST_HEAD(invalid_list);
4134 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4135 return;
4137 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4138 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4139 break;
4141 ++vcpu->kvm->stat.mmu_recycled;
4143 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4146 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4148 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4149 return vcpu_match_mmio_gpa(vcpu, addr);
4151 return vcpu_match_mmio_gva(vcpu, addr);
4154 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4155 void *insn, int insn_len)
4157 int r, emulation_type = EMULTYPE_RETRY;
4158 enum emulation_result er;
4160 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4161 if (r < 0)
4162 goto out;
4164 if (!r) {
4165 r = 1;
4166 goto out;
4169 if (is_mmio_page_fault(vcpu, cr2))
4170 emulation_type = 0;
4172 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4174 switch (er) {
4175 case EMULATE_DONE:
4176 return 1;
4177 case EMULATE_USER_EXIT:
4178 ++vcpu->stat.mmio_exits;
4179 /* fall through */
4180 case EMULATE_FAIL:
4181 return 0;
4182 default:
4183 BUG();
4185 out:
4186 return r;
4188 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4190 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4192 vcpu->arch.mmu.invlpg(vcpu, gva);
4193 kvm_mmu_flush_tlb(vcpu);
4194 ++vcpu->stat.invlpg;
4196 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4198 void kvm_enable_tdp(void)
4200 tdp_enabled = true;
4202 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4204 void kvm_disable_tdp(void)
4206 tdp_enabled = false;
4208 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4210 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4212 free_page((unsigned long)vcpu->arch.mmu.pae_root);
4213 if (vcpu->arch.mmu.lm_root != NULL)
4214 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4217 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4219 struct page *page;
4220 int i;
4222 ASSERT(vcpu);
4225 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4226 * Therefore we need to allocate shadow page tables in the first
4227 * 4GB of memory, which happens to fit the DMA32 zone.
4229 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4230 if (!page)
4231 return -ENOMEM;
4233 vcpu->arch.mmu.pae_root = page_address(page);
4234 for (i = 0; i < 4; ++i)
4235 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4237 return 0;
4240 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4242 ASSERT(vcpu);
4244 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4245 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4246 vcpu->arch.mmu.translate_gpa = translate_gpa;
4247 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4249 return alloc_mmu_pages(vcpu);
4252 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
4254 ASSERT(vcpu);
4255 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
4257 return init_kvm_mmu(vcpu);
4260 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
4262 struct kvm_memory_slot *memslot;
4263 gfn_t last_gfn;
4264 int i;
4266 memslot = id_to_memslot(kvm->memslots, slot);
4267 last_gfn = memslot->base_gfn + memslot->npages - 1;
4269 spin_lock(&kvm->mmu_lock);
4271 for (i = PT_PAGE_TABLE_LEVEL;
4272 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4273 unsigned long *rmapp;
4274 unsigned long last_index, index;
4276 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4277 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
4279 for (index = 0; index <= last_index; ++index, ++rmapp) {
4280 if (*rmapp)
4281 __rmap_write_protect(kvm, rmapp, false);
4283 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4284 kvm_flush_remote_tlbs(kvm);
4285 cond_resched_lock(&kvm->mmu_lock);
4290 kvm_flush_remote_tlbs(kvm);
4291 spin_unlock(&kvm->mmu_lock);
4294 #define BATCH_ZAP_PAGES 10
4295 static void kvm_zap_obsolete_pages(struct kvm *kvm)
4297 struct kvm_mmu_page *sp, *node;
4298 int batch = 0;
4300 restart:
4301 list_for_each_entry_safe_reverse(sp, node,
4302 &kvm->arch.active_mmu_pages, link) {
4303 int ret;
4306 * No obsolete page exists before new created page since
4307 * active_mmu_pages is the FIFO list.
4309 if (!is_obsolete_sp(kvm, sp))
4310 break;
4313 * Since we are reversely walking the list and the invalid
4314 * list will be moved to the head, skip the invalid page
4315 * can help us to avoid the infinity list walking.
4317 if (sp->role.invalid)
4318 continue;
4321 * Need not flush tlb since we only zap the sp with invalid
4322 * generation number.
4324 if (batch >= BATCH_ZAP_PAGES &&
4325 cond_resched_lock(&kvm->mmu_lock)) {
4326 batch = 0;
4327 goto restart;
4330 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4331 &kvm->arch.zapped_obsolete_pages);
4332 batch += ret;
4334 if (ret)
4335 goto restart;
4339 * Should flush tlb before free page tables since lockless-walking
4340 * may use the pages.
4342 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4346 * Fast invalidate all shadow pages and use lock-break technique
4347 * to zap obsolete pages.
4349 * It's required when memslot is being deleted or VM is being
4350 * destroyed, in these cases, we should ensure that KVM MMU does
4351 * not use any resource of the being-deleted slot or all slots
4352 * after calling the function.
4354 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4356 spin_lock(&kvm->mmu_lock);
4357 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4358 kvm->arch.mmu_valid_gen++;
4361 * Notify all vcpus to reload its shadow page table
4362 * and flush TLB. Then all vcpus will switch to new
4363 * shadow page table with the new mmu_valid_gen.
4365 * Note: we should do this under the protection of
4366 * mmu-lock, otherwise, vcpu would purge shadow page
4367 * but miss tlb flush.
4369 kvm_reload_remote_mmus(kvm);
4371 kvm_zap_obsolete_pages(kvm);
4372 spin_unlock(&kvm->mmu_lock);
4375 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4377 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4380 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm)
4383 * The very rare case: if the generation-number is round,
4384 * zap all shadow pages.
4386 if (unlikely(kvm_current_mmio_generation(kvm) == 0)) {
4387 printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
4388 kvm_mmu_invalidate_zap_all_pages(kvm);
4392 static unsigned long
4393 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4395 struct kvm *kvm;
4396 int nr_to_scan = sc->nr_to_scan;
4397 unsigned long freed = 0;
4399 raw_spin_lock(&kvm_lock);
4401 list_for_each_entry(kvm, &vm_list, vm_list) {
4402 int idx;
4403 LIST_HEAD(invalid_list);
4406 * Never scan more than sc->nr_to_scan VM instances.
4407 * Will not hit this condition practically since we do not try
4408 * to shrink more than one VM and it is very unlikely to see
4409 * !n_used_mmu_pages so many times.
4411 if (!nr_to_scan--)
4412 break;
4414 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4415 * here. We may skip a VM instance errorneosly, but we do not
4416 * want to shrink a VM that only started to populate its MMU
4417 * anyway.
4419 if (!kvm->arch.n_used_mmu_pages &&
4420 !kvm_has_zapped_obsolete_pages(kvm))
4421 continue;
4423 idx = srcu_read_lock(&kvm->srcu);
4424 spin_lock(&kvm->mmu_lock);
4426 if (kvm_has_zapped_obsolete_pages(kvm)) {
4427 kvm_mmu_commit_zap_page(kvm,
4428 &kvm->arch.zapped_obsolete_pages);
4429 goto unlock;
4432 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
4433 freed++;
4434 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4436 unlock:
4437 spin_unlock(&kvm->mmu_lock);
4438 srcu_read_unlock(&kvm->srcu, idx);
4441 * unfair on small ones
4442 * per-vm shrinkers cry out
4443 * sadness comes quickly
4445 list_move_tail(&kvm->vm_list, &vm_list);
4446 break;
4449 raw_spin_unlock(&kvm_lock);
4450 return freed;
4454 static unsigned long
4455 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
4457 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4460 static struct shrinker mmu_shrinker = {
4461 .count_objects = mmu_shrink_count,
4462 .scan_objects = mmu_shrink_scan,
4463 .seeks = DEFAULT_SEEKS * 10,
4466 static void mmu_destroy_caches(void)
4468 if (pte_list_desc_cache)
4469 kmem_cache_destroy(pte_list_desc_cache);
4470 if (mmu_page_header_cache)
4471 kmem_cache_destroy(mmu_page_header_cache);
4474 int kvm_mmu_module_init(void)
4476 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4477 sizeof(struct pte_list_desc),
4478 0, 0, NULL);
4479 if (!pte_list_desc_cache)
4480 goto nomem;
4482 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4483 sizeof(struct kvm_mmu_page),
4484 0, 0, NULL);
4485 if (!mmu_page_header_cache)
4486 goto nomem;
4488 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4489 goto nomem;
4491 register_shrinker(&mmu_shrinker);
4493 return 0;
4495 nomem:
4496 mmu_destroy_caches();
4497 return -ENOMEM;
4501 * Caculate mmu pages needed for kvm.
4503 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4505 unsigned int nr_mmu_pages;
4506 unsigned int nr_pages = 0;
4507 struct kvm_memslots *slots;
4508 struct kvm_memory_slot *memslot;
4510 slots = kvm_memslots(kvm);
4512 kvm_for_each_memslot(memslot, slots)
4513 nr_pages += memslot->npages;
4515 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4516 nr_mmu_pages = max(nr_mmu_pages,
4517 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4519 return nr_mmu_pages;
4522 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4524 struct kvm_shadow_walk_iterator iterator;
4525 u64 spte;
4526 int nr_sptes = 0;
4528 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
4529 return nr_sptes;
4531 walk_shadow_page_lockless_begin(vcpu);
4532 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4533 sptes[iterator.level-1] = spte;
4534 nr_sptes++;
4535 if (!is_shadow_present_pte(spte))
4536 break;
4538 walk_shadow_page_lockless_end(vcpu);
4540 return nr_sptes;
4542 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4544 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4546 ASSERT(vcpu);
4548 destroy_kvm_mmu(vcpu);
4549 free_mmu_pages(vcpu);
4550 mmu_free_memory_caches(vcpu);
4553 void kvm_mmu_module_exit(void)
4555 mmu_destroy_caches();
4556 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4557 unregister_shrinker(&mmu_shrinker);
4558 mmu_audit_disable();