2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
24 #include "kvm_cache_regs.h"
26 #include <linux/kvm_host.h>
27 #include <linux/types.h>
28 #include <linux/string.h>
30 #include <linux/highmem.h>
31 #include <linux/module.h>
32 #include <linux/swap.h>
33 #include <linux/hugetlb.h>
34 #include <linux/compiler.h>
35 #include <linux/srcu.h>
36 #include <linux/slab.h>
37 #include <linux/uaccess.h>
40 #include <asm/cmpxchg.h>
45 * When setting this variable to true it enables Two-Dimensional-Paging
46 * where the hardware walks 2 page tables:
47 * 1. the guest-virtual to guest-physical
48 * 2. while doing 1. it walks guest-physical to host-physical
49 * If the hardware supports that we don't need to do shadow paging.
51 bool tdp_enabled
= false;
55 AUDIT_POST_PAGE_FAULT
,
66 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
71 #define pgprintk(x...) do { } while (0)
72 #define rmap_printk(x...) do { } while (0)
78 module_param(dbg
, bool, 0644);
82 #define ASSERT(x) do { } while (0)
86 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
87 __FILE__, __LINE__, #x); \
91 #define PTE_PREFETCH_NUM 8
93 #define PT_FIRST_AVAIL_BITS_SHIFT 10
94 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
96 #define PT64_LEVEL_BITS 9
98 #define PT64_LEVEL_SHIFT(level) \
99 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
101 #define PT64_INDEX(address, level)\
102 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
105 #define PT32_LEVEL_BITS 10
107 #define PT32_LEVEL_SHIFT(level) \
108 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
110 #define PT32_LVL_OFFSET_MASK(level) \
111 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112 * PT32_LEVEL_BITS))) - 1))
114 #define PT32_INDEX(address, level)\
115 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
118 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
119 #define PT64_DIR_BASE_ADDR_MASK \
120 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
121 #define PT64_LVL_ADDR_MASK(level) \
122 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 * PT64_LEVEL_BITS))) - 1))
124 #define PT64_LVL_OFFSET_MASK(level) \
125 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 * PT64_LEVEL_BITS))) - 1))
128 #define PT32_BASE_ADDR_MASK PAGE_MASK
129 #define PT32_DIR_BASE_ADDR_MASK \
130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 #define PT32_LVL_ADDR_MASK(level) \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 * PT32_LEVEL_BITS))) - 1))
135 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
136 | shadow_x_mask | shadow_nx_mask)
138 #define ACC_EXEC_MASK 1
139 #define ACC_WRITE_MASK PT_WRITABLE_MASK
140 #define ACC_USER_MASK PT_USER_MASK
141 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
143 #include <trace/events/kvm.h>
145 #define CREATE_TRACE_POINTS
146 #include "mmutrace.h"
148 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149 #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
151 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
153 /* make pte_list_desc fit well in cache line */
154 #define PTE_LIST_EXT 3
156 struct pte_list_desc
{
157 u64
*sptes
[PTE_LIST_EXT
];
158 struct pte_list_desc
*more
;
161 struct kvm_shadow_walk_iterator
{
169 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
170 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
171 shadow_walk_okay(&(_walker)); \
172 shadow_walk_next(&(_walker)))
174 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
175 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
176 shadow_walk_okay(&(_walker)) && \
177 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
178 __shadow_walk_next(&(_walker), spte))
180 static struct kmem_cache
*pte_list_desc_cache
;
181 static struct kmem_cache
*mmu_page_header_cache
;
182 static struct percpu_counter kvm_total_used_mmu_pages
;
184 static u64 __read_mostly shadow_nx_mask
;
185 static u64 __read_mostly shadow_x_mask
; /* mutual exclusive with nx_mask */
186 static u64 __read_mostly shadow_user_mask
;
187 static u64 __read_mostly shadow_accessed_mask
;
188 static u64 __read_mostly shadow_dirty_mask
;
189 static u64 __read_mostly shadow_mmio_mask
;
191 static void mmu_spte_set(u64
*sptep
, u64 spte
);
192 static void mmu_free_roots(struct kvm_vcpu
*vcpu
);
194 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask
)
196 shadow_mmio_mask
= mmio_mask
;
198 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask
);
201 * the low bit of the generation number is always presumed to be zero.
202 * This disables mmio caching during memslot updates. The concept is
203 * similar to a seqcount but instead of retrying the access we just punt
204 * and ignore the cache.
206 * spte bits 3-11 are used as bits 1-9 of the generation number,
207 * the bits 52-61 are used as bits 10-19 of the generation number.
209 #define MMIO_SPTE_GEN_LOW_SHIFT 2
210 #define MMIO_SPTE_GEN_HIGH_SHIFT 52
212 #define MMIO_GEN_SHIFT 20
213 #define MMIO_GEN_LOW_SHIFT 10
214 #define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
215 #define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
216 #define MMIO_MAX_GEN ((1 << MMIO_GEN_SHIFT) - 1)
218 static u64
generation_mmio_spte_mask(unsigned int gen
)
222 WARN_ON(gen
> MMIO_MAX_GEN
);
224 mask
= (gen
& MMIO_GEN_LOW_MASK
) << MMIO_SPTE_GEN_LOW_SHIFT
;
225 mask
|= ((u64
)gen
>> MMIO_GEN_LOW_SHIFT
) << MMIO_SPTE_GEN_HIGH_SHIFT
;
229 static unsigned int get_mmio_spte_generation(u64 spte
)
233 spte
&= ~shadow_mmio_mask
;
235 gen
= (spte
>> MMIO_SPTE_GEN_LOW_SHIFT
) & MMIO_GEN_LOW_MASK
;
236 gen
|= (spte
>> MMIO_SPTE_GEN_HIGH_SHIFT
) << MMIO_GEN_LOW_SHIFT
;
240 static unsigned int kvm_current_mmio_generation(struct kvm
*kvm
)
243 * Init kvm generation close to MMIO_MAX_GEN to easily test the
244 * code of handling generation number wrap-around.
246 return (kvm_memslots(kvm
)->generation
+
247 MMIO_MAX_GEN
- 150) & MMIO_GEN_MASK
;
250 static void mark_mmio_spte(struct kvm
*kvm
, u64
*sptep
, u64 gfn
,
253 unsigned int gen
= kvm_current_mmio_generation(kvm
);
254 u64 mask
= generation_mmio_spte_mask(gen
);
256 access
&= ACC_WRITE_MASK
| ACC_USER_MASK
;
257 mask
|= shadow_mmio_mask
| access
| gfn
<< PAGE_SHIFT
;
259 trace_mark_mmio_spte(sptep
, gfn
, access
, gen
);
260 mmu_spte_set(sptep
, mask
);
263 static bool is_mmio_spte(u64 spte
)
265 return (spte
& shadow_mmio_mask
) == shadow_mmio_mask
;
268 static gfn_t
get_mmio_spte_gfn(u64 spte
)
270 u64 mask
= generation_mmio_spte_mask(MMIO_MAX_GEN
) | shadow_mmio_mask
;
271 return (spte
& ~mask
) >> PAGE_SHIFT
;
274 static unsigned get_mmio_spte_access(u64 spte
)
276 u64 mask
= generation_mmio_spte_mask(MMIO_MAX_GEN
) | shadow_mmio_mask
;
277 return (spte
& ~mask
) & ~PAGE_MASK
;
280 static bool set_mmio_spte(struct kvm
*kvm
, u64
*sptep
, gfn_t gfn
,
281 pfn_t pfn
, unsigned access
)
283 if (unlikely(is_noslot_pfn(pfn
))) {
284 mark_mmio_spte(kvm
, sptep
, gfn
, access
);
291 static bool check_mmio_spte(struct kvm
*kvm
, u64 spte
)
293 unsigned int kvm_gen
, spte_gen
;
295 kvm_gen
= kvm_current_mmio_generation(kvm
);
296 spte_gen
= get_mmio_spte_generation(spte
);
298 trace_check_mmio_spte(spte
, kvm_gen
, spte_gen
);
299 return likely(kvm_gen
== spte_gen
);
302 static inline u64
rsvd_bits(int s
, int e
)
304 return ((1ULL << (e
- s
+ 1)) - 1) << s
;
307 void kvm_mmu_set_mask_ptes(u64 user_mask
, u64 accessed_mask
,
308 u64 dirty_mask
, u64 nx_mask
, u64 x_mask
)
310 shadow_user_mask
= user_mask
;
311 shadow_accessed_mask
= accessed_mask
;
312 shadow_dirty_mask
= dirty_mask
;
313 shadow_nx_mask
= nx_mask
;
314 shadow_x_mask
= x_mask
;
316 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes
);
318 static int is_cpuid_PSE36(void)
323 static int is_nx(struct kvm_vcpu
*vcpu
)
325 return vcpu
->arch
.efer
& EFER_NX
;
328 static int is_shadow_present_pte(u64 pte
)
330 return pte
& PT_PRESENT_MASK
&& !is_mmio_spte(pte
);
333 static int is_large_pte(u64 pte
)
335 return pte
& PT_PAGE_SIZE_MASK
;
338 static int is_rmap_spte(u64 pte
)
340 return is_shadow_present_pte(pte
);
343 static int is_last_spte(u64 pte
, int level
)
345 if (level
== PT_PAGE_TABLE_LEVEL
)
347 if (is_large_pte(pte
))
352 static pfn_t
spte_to_pfn(u64 pte
)
354 return (pte
& PT64_BASE_ADDR_MASK
) >> PAGE_SHIFT
;
357 static gfn_t
pse36_gfn_delta(u32 gpte
)
359 int shift
= 32 - PT32_DIR_PSE36_SHIFT
- PAGE_SHIFT
;
361 return (gpte
& PT32_DIR_PSE36_MASK
) << shift
;
365 static void __set_spte(u64
*sptep
, u64 spte
)
370 static void __update_clear_spte_fast(u64
*sptep
, u64 spte
)
375 static u64
__update_clear_spte_slow(u64
*sptep
, u64 spte
)
377 return xchg(sptep
, spte
);
380 static u64
__get_spte_lockless(u64
*sptep
)
382 return ACCESS_ONCE(*sptep
);
393 static void count_spte_clear(u64
*sptep
, u64 spte
)
395 struct kvm_mmu_page
*sp
= page_header(__pa(sptep
));
397 if (is_shadow_present_pte(spte
))
400 /* Ensure the spte is completely set before we increase the count */
402 sp
->clear_spte_count
++;
405 static void __set_spte(u64
*sptep
, u64 spte
)
407 union split_spte
*ssptep
, sspte
;
409 ssptep
= (union split_spte
*)sptep
;
410 sspte
= (union split_spte
)spte
;
412 ssptep
->spte_high
= sspte
.spte_high
;
415 * If we map the spte from nonpresent to present, We should store
416 * the high bits firstly, then set present bit, so cpu can not
417 * fetch this spte while we are setting the spte.
421 ssptep
->spte_low
= sspte
.spte_low
;
424 static void __update_clear_spte_fast(u64
*sptep
, u64 spte
)
426 union split_spte
*ssptep
, sspte
;
428 ssptep
= (union split_spte
*)sptep
;
429 sspte
= (union split_spte
)spte
;
431 ssptep
->spte_low
= sspte
.spte_low
;
434 * If we map the spte from present to nonpresent, we should clear
435 * present bit firstly to avoid vcpu fetch the old high bits.
439 ssptep
->spte_high
= sspte
.spte_high
;
440 count_spte_clear(sptep
, spte
);
443 static u64
__update_clear_spte_slow(u64
*sptep
, u64 spte
)
445 union split_spte
*ssptep
, sspte
, orig
;
447 ssptep
= (union split_spte
*)sptep
;
448 sspte
= (union split_spte
)spte
;
450 /* xchg acts as a barrier before the setting of the high bits */
451 orig
.spte_low
= xchg(&ssptep
->spte_low
, sspte
.spte_low
);
452 orig
.spte_high
= ssptep
->spte_high
;
453 ssptep
->spte_high
= sspte
.spte_high
;
454 count_spte_clear(sptep
, spte
);
460 * The idea using the light way get the spte on x86_32 guest is from
461 * gup_get_pte(arch/x86/mm/gup.c).
463 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
464 * coalesces them and we are running out of the MMU lock. Therefore
465 * we need to protect against in-progress updates of the spte.
467 * Reading the spte while an update is in progress may get the old value
468 * for the high part of the spte. The race is fine for a present->non-present
469 * change (because the high part of the spte is ignored for non-present spte),
470 * but for a present->present change we must reread the spte.
472 * All such changes are done in two steps (present->non-present and
473 * non-present->present), hence it is enough to count the number of
474 * present->non-present updates: if it changed while reading the spte,
475 * we might have hit the race. This is done using clear_spte_count.
477 static u64
__get_spte_lockless(u64
*sptep
)
479 struct kvm_mmu_page
*sp
= page_header(__pa(sptep
));
480 union split_spte spte
, *orig
= (union split_spte
*)sptep
;
484 count
= sp
->clear_spte_count
;
487 spte
.spte_low
= orig
->spte_low
;
490 spte
.spte_high
= orig
->spte_high
;
493 if (unlikely(spte
.spte_low
!= orig
->spte_low
||
494 count
!= sp
->clear_spte_count
))
501 static bool spte_is_locklessly_modifiable(u64 spte
)
503 return (spte
& (SPTE_HOST_WRITEABLE
| SPTE_MMU_WRITEABLE
)) ==
504 (SPTE_HOST_WRITEABLE
| SPTE_MMU_WRITEABLE
);
507 static bool spte_has_volatile_bits(u64 spte
)
510 * Always atomicly update spte if it can be updated
511 * out of mmu-lock, it can ensure dirty bit is not lost,
512 * also, it can help us to get a stable is_writable_pte()
513 * to ensure tlb flush is not missed.
515 if (spte_is_locklessly_modifiable(spte
))
518 if (!shadow_accessed_mask
)
521 if (!is_shadow_present_pte(spte
))
524 if ((spte
& shadow_accessed_mask
) &&
525 (!is_writable_pte(spte
) || (spte
& shadow_dirty_mask
)))
531 static bool spte_is_bit_cleared(u64 old_spte
, u64 new_spte
, u64 bit_mask
)
533 return (old_spte
& bit_mask
) && !(new_spte
& bit_mask
);
536 /* Rules for using mmu_spte_set:
537 * Set the sptep from nonpresent to present.
538 * Note: the sptep being assigned *must* be either not present
539 * or in a state where the hardware will not attempt to update
542 static void mmu_spte_set(u64
*sptep
, u64 new_spte
)
544 WARN_ON(is_shadow_present_pte(*sptep
));
545 __set_spte(sptep
, new_spte
);
548 /* Rules for using mmu_spte_update:
549 * Update the state bits, it means the mapped pfn is not changged.
551 * Whenever we overwrite a writable spte with a read-only one we
552 * should flush remote TLBs. Otherwise rmap_write_protect
553 * will find a read-only spte, even though the writable spte
554 * might be cached on a CPU's TLB, the return value indicates this
557 static bool mmu_spte_update(u64
*sptep
, u64 new_spte
)
559 u64 old_spte
= *sptep
;
562 WARN_ON(!is_rmap_spte(new_spte
));
564 if (!is_shadow_present_pte(old_spte
)) {
565 mmu_spte_set(sptep
, new_spte
);
569 if (!spte_has_volatile_bits(old_spte
))
570 __update_clear_spte_fast(sptep
, new_spte
);
572 old_spte
= __update_clear_spte_slow(sptep
, new_spte
);
575 * For the spte updated out of mmu-lock is safe, since
576 * we always atomicly update it, see the comments in
577 * spte_has_volatile_bits().
579 if (is_writable_pte(old_spte
) && !is_writable_pte(new_spte
))
582 if (!shadow_accessed_mask
)
585 if (spte_is_bit_cleared(old_spte
, new_spte
, shadow_accessed_mask
))
586 kvm_set_pfn_accessed(spte_to_pfn(old_spte
));
587 if (spte_is_bit_cleared(old_spte
, new_spte
, shadow_dirty_mask
))
588 kvm_set_pfn_dirty(spte_to_pfn(old_spte
));
594 * Rules for using mmu_spte_clear_track_bits:
595 * It sets the sptep from present to nonpresent, and track the
596 * state bits, it is used to clear the last level sptep.
598 static int mmu_spte_clear_track_bits(u64
*sptep
)
601 u64 old_spte
= *sptep
;
603 if (!spte_has_volatile_bits(old_spte
))
604 __update_clear_spte_fast(sptep
, 0ull);
606 old_spte
= __update_clear_spte_slow(sptep
, 0ull);
608 if (!is_rmap_spte(old_spte
))
611 pfn
= spte_to_pfn(old_spte
);
614 * KVM does not hold the refcount of the page used by
615 * kvm mmu, before reclaiming the page, we should
616 * unmap it from mmu first.
618 WARN_ON(!kvm_is_mmio_pfn(pfn
) && !page_count(pfn_to_page(pfn
)));
620 if (!shadow_accessed_mask
|| old_spte
& shadow_accessed_mask
)
621 kvm_set_pfn_accessed(pfn
);
622 if (!shadow_dirty_mask
|| (old_spte
& shadow_dirty_mask
))
623 kvm_set_pfn_dirty(pfn
);
628 * Rules for using mmu_spte_clear_no_track:
629 * Directly clear spte without caring the state bits of sptep,
630 * it is used to set the upper level spte.
632 static void mmu_spte_clear_no_track(u64
*sptep
)
634 __update_clear_spte_fast(sptep
, 0ull);
637 static u64
mmu_spte_get_lockless(u64
*sptep
)
639 return __get_spte_lockless(sptep
);
642 static void walk_shadow_page_lockless_begin(struct kvm_vcpu
*vcpu
)
645 * Prevent page table teardown by making any free-er wait during
646 * kvm_flush_remote_tlbs() IPI to all active vcpus.
649 vcpu
->mode
= READING_SHADOW_PAGE_TABLES
;
651 * Make sure a following spte read is not reordered ahead of the write
657 static void walk_shadow_page_lockless_end(struct kvm_vcpu
*vcpu
)
660 * Make sure the write to vcpu->mode is not reordered in front of
661 * reads to sptes. If it does, kvm_commit_zap_page() can see us
662 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
665 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
669 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache
*cache
,
670 struct kmem_cache
*base_cache
, int min
)
674 if (cache
->nobjs
>= min
)
676 while (cache
->nobjs
< ARRAY_SIZE(cache
->objects
)) {
677 obj
= kmem_cache_zalloc(base_cache
, GFP_KERNEL
);
680 cache
->objects
[cache
->nobjs
++] = obj
;
685 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache
*cache
)
690 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache
*mc
,
691 struct kmem_cache
*cache
)
694 kmem_cache_free(cache
, mc
->objects
[--mc
->nobjs
]);
697 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache
*cache
,
702 if (cache
->nobjs
>= min
)
704 while (cache
->nobjs
< ARRAY_SIZE(cache
->objects
)) {
705 page
= (void *)__get_free_page(GFP_KERNEL
);
708 cache
->objects
[cache
->nobjs
++] = page
;
713 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache
*mc
)
716 free_page((unsigned long)mc
->objects
[--mc
->nobjs
]);
719 static int mmu_topup_memory_caches(struct kvm_vcpu
*vcpu
)
723 r
= mmu_topup_memory_cache(&vcpu
->arch
.mmu_pte_list_desc_cache
,
724 pte_list_desc_cache
, 8 + PTE_PREFETCH_NUM
);
727 r
= mmu_topup_memory_cache_page(&vcpu
->arch
.mmu_page_cache
, 8);
730 r
= mmu_topup_memory_cache(&vcpu
->arch
.mmu_page_header_cache
,
731 mmu_page_header_cache
, 4);
736 static void mmu_free_memory_caches(struct kvm_vcpu
*vcpu
)
738 mmu_free_memory_cache(&vcpu
->arch
.mmu_pte_list_desc_cache
,
739 pte_list_desc_cache
);
740 mmu_free_memory_cache_page(&vcpu
->arch
.mmu_page_cache
);
741 mmu_free_memory_cache(&vcpu
->arch
.mmu_page_header_cache
,
742 mmu_page_header_cache
);
745 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache
*mc
)
750 p
= mc
->objects
[--mc
->nobjs
];
754 static struct pte_list_desc
*mmu_alloc_pte_list_desc(struct kvm_vcpu
*vcpu
)
756 return mmu_memory_cache_alloc(&vcpu
->arch
.mmu_pte_list_desc_cache
);
759 static void mmu_free_pte_list_desc(struct pte_list_desc
*pte_list_desc
)
761 kmem_cache_free(pte_list_desc_cache
, pte_list_desc
);
764 static gfn_t
kvm_mmu_page_get_gfn(struct kvm_mmu_page
*sp
, int index
)
766 if (!sp
->role
.direct
)
767 return sp
->gfns
[index
];
769 return sp
->gfn
+ (index
<< ((sp
->role
.level
- 1) * PT64_LEVEL_BITS
));
772 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page
*sp
, int index
, gfn_t gfn
)
775 BUG_ON(gfn
!= kvm_mmu_page_get_gfn(sp
, index
));
777 sp
->gfns
[index
] = gfn
;
781 * Return the pointer to the large page information for a given gfn,
782 * handling slots that are not large page aligned.
784 static struct kvm_lpage_info
*lpage_info_slot(gfn_t gfn
,
785 struct kvm_memory_slot
*slot
,
790 idx
= gfn_to_index(gfn
, slot
->base_gfn
, level
);
791 return &slot
->arch
.lpage_info
[level
- 2][idx
];
794 static void account_shadowed(struct kvm
*kvm
, gfn_t gfn
)
796 struct kvm_memory_slot
*slot
;
797 struct kvm_lpage_info
*linfo
;
800 slot
= gfn_to_memslot(kvm
, gfn
);
801 for (i
= PT_DIRECTORY_LEVEL
;
802 i
< PT_PAGE_TABLE_LEVEL
+ KVM_NR_PAGE_SIZES
; ++i
) {
803 linfo
= lpage_info_slot(gfn
, slot
, i
);
804 linfo
->write_count
+= 1;
806 kvm
->arch
.indirect_shadow_pages
++;
809 static void unaccount_shadowed(struct kvm
*kvm
, gfn_t gfn
)
811 struct kvm_memory_slot
*slot
;
812 struct kvm_lpage_info
*linfo
;
815 slot
= gfn_to_memslot(kvm
, gfn
);
816 for (i
= PT_DIRECTORY_LEVEL
;
817 i
< PT_PAGE_TABLE_LEVEL
+ KVM_NR_PAGE_SIZES
; ++i
) {
818 linfo
= lpage_info_slot(gfn
, slot
, i
);
819 linfo
->write_count
-= 1;
820 WARN_ON(linfo
->write_count
< 0);
822 kvm
->arch
.indirect_shadow_pages
--;
825 static int has_wrprotected_page(struct kvm
*kvm
,
829 struct kvm_memory_slot
*slot
;
830 struct kvm_lpage_info
*linfo
;
832 slot
= gfn_to_memslot(kvm
, gfn
);
834 linfo
= lpage_info_slot(gfn
, slot
, level
);
835 return linfo
->write_count
;
841 static int host_mapping_level(struct kvm
*kvm
, gfn_t gfn
)
843 unsigned long page_size
;
846 page_size
= kvm_host_page_size(kvm
, gfn
);
848 for (i
= PT_PAGE_TABLE_LEVEL
;
849 i
< (PT_PAGE_TABLE_LEVEL
+ KVM_NR_PAGE_SIZES
); ++i
) {
850 if (page_size
>= KVM_HPAGE_SIZE(i
))
859 static struct kvm_memory_slot
*
860 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
863 struct kvm_memory_slot
*slot
;
865 slot
= gfn_to_memslot(vcpu
->kvm
, gfn
);
866 if (!slot
|| slot
->flags
& KVM_MEMSLOT_INVALID
||
867 (no_dirty_log
&& slot
->dirty_bitmap
))
873 static bool mapping_level_dirty_bitmap(struct kvm_vcpu
*vcpu
, gfn_t large_gfn
)
875 return !gfn_to_memslot_dirty_bitmap(vcpu
, large_gfn
, true);
878 static int mapping_level(struct kvm_vcpu
*vcpu
, gfn_t large_gfn
)
880 int host_level
, level
, max_level
;
882 host_level
= host_mapping_level(vcpu
->kvm
, large_gfn
);
884 if (host_level
== PT_PAGE_TABLE_LEVEL
)
887 max_level
= min(kvm_x86_ops
->get_lpage_level(), host_level
);
889 for (level
= PT_DIRECTORY_LEVEL
; level
<= max_level
; ++level
)
890 if (has_wrprotected_page(vcpu
->kvm
, large_gfn
, level
))
897 * Pte mapping structures:
899 * If pte_list bit zero is zero, then pte_list point to the spte.
901 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
902 * pte_list_desc containing more mappings.
904 * Returns the number of pte entries before the spte was added or zero if
905 * the spte was not added.
908 static int pte_list_add(struct kvm_vcpu
*vcpu
, u64
*spte
,
909 unsigned long *pte_list
)
911 struct pte_list_desc
*desc
;
915 rmap_printk("pte_list_add: %p %llx 0->1\n", spte
, *spte
);
916 *pte_list
= (unsigned long)spte
;
917 } else if (!(*pte_list
& 1)) {
918 rmap_printk("pte_list_add: %p %llx 1->many\n", spte
, *spte
);
919 desc
= mmu_alloc_pte_list_desc(vcpu
);
920 desc
->sptes
[0] = (u64
*)*pte_list
;
921 desc
->sptes
[1] = spte
;
922 *pte_list
= (unsigned long)desc
| 1;
925 rmap_printk("pte_list_add: %p %llx many->many\n", spte
, *spte
);
926 desc
= (struct pte_list_desc
*)(*pte_list
& ~1ul);
927 while (desc
->sptes
[PTE_LIST_EXT
-1] && desc
->more
) {
929 count
+= PTE_LIST_EXT
;
931 if (desc
->sptes
[PTE_LIST_EXT
-1]) {
932 desc
->more
= mmu_alloc_pte_list_desc(vcpu
);
935 for (i
= 0; desc
->sptes
[i
]; ++i
)
937 desc
->sptes
[i
] = spte
;
943 pte_list_desc_remove_entry(unsigned long *pte_list
, struct pte_list_desc
*desc
,
944 int i
, struct pte_list_desc
*prev_desc
)
948 for (j
= PTE_LIST_EXT
- 1; !desc
->sptes
[j
] && j
> i
; --j
)
950 desc
->sptes
[i
] = desc
->sptes
[j
];
951 desc
->sptes
[j
] = NULL
;
954 if (!prev_desc
&& !desc
->more
)
955 *pte_list
= (unsigned long)desc
->sptes
[0];
958 prev_desc
->more
= desc
->more
;
960 *pte_list
= (unsigned long)desc
->more
| 1;
961 mmu_free_pte_list_desc(desc
);
964 static void pte_list_remove(u64
*spte
, unsigned long *pte_list
)
966 struct pte_list_desc
*desc
;
967 struct pte_list_desc
*prev_desc
;
971 printk(KERN_ERR
"pte_list_remove: %p 0->BUG\n", spte
);
973 } else if (!(*pte_list
& 1)) {
974 rmap_printk("pte_list_remove: %p 1->0\n", spte
);
975 if ((u64
*)*pte_list
!= spte
) {
976 printk(KERN_ERR
"pte_list_remove: %p 1->BUG\n", spte
);
981 rmap_printk("pte_list_remove: %p many->many\n", spte
);
982 desc
= (struct pte_list_desc
*)(*pte_list
& ~1ul);
985 for (i
= 0; i
< PTE_LIST_EXT
&& desc
->sptes
[i
]; ++i
)
986 if (desc
->sptes
[i
] == spte
) {
987 pte_list_desc_remove_entry(pte_list
,
995 pr_err("pte_list_remove: %p many->many\n", spte
);
1000 typedef void (*pte_list_walk_fn
) (u64
*spte
);
1001 static void pte_list_walk(unsigned long *pte_list
, pte_list_walk_fn fn
)
1003 struct pte_list_desc
*desc
;
1009 if (!(*pte_list
& 1))
1010 return fn((u64
*)*pte_list
);
1012 desc
= (struct pte_list_desc
*)(*pte_list
& ~1ul);
1014 for (i
= 0; i
< PTE_LIST_EXT
&& desc
->sptes
[i
]; ++i
)
1020 static unsigned long *__gfn_to_rmap(gfn_t gfn
, int level
,
1021 struct kvm_memory_slot
*slot
)
1025 idx
= gfn_to_index(gfn
, slot
->base_gfn
, level
);
1026 return &slot
->arch
.rmap
[level
- PT_PAGE_TABLE_LEVEL
][idx
];
1030 * Take gfn and return the reverse mapping to it.
1032 static unsigned long *gfn_to_rmap(struct kvm
*kvm
, gfn_t gfn
, int level
)
1034 struct kvm_memory_slot
*slot
;
1036 slot
= gfn_to_memslot(kvm
, gfn
);
1037 return __gfn_to_rmap(gfn
, level
, slot
);
1040 static bool rmap_can_add(struct kvm_vcpu
*vcpu
)
1042 struct kvm_mmu_memory_cache
*cache
;
1044 cache
= &vcpu
->arch
.mmu_pte_list_desc_cache
;
1045 return mmu_memory_cache_free_objects(cache
);
1048 static int rmap_add(struct kvm_vcpu
*vcpu
, u64
*spte
, gfn_t gfn
)
1050 struct kvm_mmu_page
*sp
;
1051 unsigned long *rmapp
;
1053 sp
= page_header(__pa(spte
));
1054 kvm_mmu_page_set_gfn(sp
, spte
- sp
->spt
, gfn
);
1055 rmapp
= gfn_to_rmap(vcpu
->kvm
, gfn
, sp
->role
.level
);
1056 return pte_list_add(vcpu
, spte
, rmapp
);
1059 static void rmap_remove(struct kvm
*kvm
, u64
*spte
)
1061 struct kvm_mmu_page
*sp
;
1063 unsigned long *rmapp
;
1065 sp
= page_header(__pa(spte
));
1066 gfn
= kvm_mmu_page_get_gfn(sp
, spte
- sp
->spt
);
1067 rmapp
= gfn_to_rmap(kvm
, gfn
, sp
->role
.level
);
1068 pte_list_remove(spte
, rmapp
);
1072 * Used by the following functions to iterate through the sptes linked by a
1073 * rmap. All fields are private and not assumed to be used outside.
1075 struct rmap_iterator
{
1076 /* private fields */
1077 struct pte_list_desc
*desc
; /* holds the sptep if not NULL */
1078 int pos
; /* index of the sptep */
1082 * Iteration must be started by this function. This should also be used after
1083 * removing/dropping sptes from the rmap link because in such cases the
1084 * information in the itererator may not be valid.
1086 * Returns sptep if found, NULL otherwise.
1088 static u64
*rmap_get_first(unsigned long rmap
, struct rmap_iterator
*iter
)
1098 iter
->desc
= (struct pte_list_desc
*)(rmap
& ~1ul);
1100 return iter
->desc
->sptes
[iter
->pos
];
1104 * Must be used with a valid iterator: e.g. after rmap_get_first().
1106 * Returns sptep if found, NULL otherwise.
1108 static u64
*rmap_get_next(struct rmap_iterator
*iter
)
1111 if (iter
->pos
< PTE_LIST_EXT
- 1) {
1115 sptep
= iter
->desc
->sptes
[iter
->pos
];
1120 iter
->desc
= iter
->desc
->more
;
1124 /* desc->sptes[0] cannot be NULL */
1125 return iter
->desc
->sptes
[iter
->pos
];
1132 static void drop_spte(struct kvm
*kvm
, u64
*sptep
)
1134 if (mmu_spte_clear_track_bits(sptep
))
1135 rmap_remove(kvm
, sptep
);
1139 static bool __drop_large_spte(struct kvm
*kvm
, u64
*sptep
)
1141 if (is_large_pte(*sptep
)) {
1142 WARN_ON(page_header(__pa(sptep
))->role
.level
==
1143 PT_PAGE_TABLE_LEVEL
);
1144 drop_spte(kvm
, sptep
);
1152 static void drop_large_spte(struct kvm_vcpu
*vcpu
, u64
*sptep
)
1154 if (__drop_large_spte(vcpu
->kvm
, sptep
))
1155 kvm_flush_remote_tlbs(vcpu
->kvm
);
1159 * Write-protect on the specified @sptep, @pt_protect indicates whether
1160 * spte writ-protection is caused by protecting shadow page table.
1161 * @flush indicates whether tlb need be flushed.
1163 * Note: write protection is difference between drity logging and spte
1165 * - for dirty logging, the spte can be set to writable at anytime if
1166 * its dirty bitmap is properly set.
1167 * - for spte protection, the spte can be writable only after unsync-ing
1170 * Return true if the spte is dropped.
1173 spte_write_protect(struct kvm
*kvm
, u64
*sptep
, bool *flush
, bool pt_protect
)
1177 if (!is_writable_pte(spte
) &&
1178 !(pt_protect
&& spte_is_locklessly_modifiable(spte
)))
1181 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep
, *sptep
);
1183 if (__drop_large_spte(kvm
, sptep
)) {
1189 spte
&= ~SPTE_MMU_WRITEABLE
;
1190 spte
= spte
& ~PT_WRITABLE_MASK
;
1192 *flush
|= mmu_spte_update(sptep
, spte
);
1196 static bool __rmap_write_protect(struct kvm
*kvm
, unsigned long *rmapp
,
1200 struct rmap_iterator iter
;
1203 for (sptep
= rmap_get_first(*rmapp
, &iter
); sptep
;) {
1204 BUG_ON(!(*sptep
& PT_PRESENT_MASK
));
1205 if (spte_write_protect(kvm
, sptep
, &flush
, pt_protect
)) {
1206 sptep
= rmap_get_first(*rmapp
, &iter
);
1210 sptep
= rmap_get_next(&iter
);
1217 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1218 * @kvm: kvm instance
1219 * @slot: slot to protect
1220 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1221 * @mask: indicates which pages we should protect
1223 * Used when we do not need to care about huge page mappings: e.g. during dirty
1224 * logging we do not have any such mappings.
1226 void kvm_mmu_write_protect_pt_masked(struct kvm
*kvm
,
1227 struct kvm_memory_slot
*slot
,
1228 gfn_t gfn_offset
, unsigned long mask
)
1230 unsigned long *rmapp
;
1233 rmapp
= __gfn_to_rmap(slot
->base_gfn
+ gfn_offset
+ __ffs(mask
),
1234 PT_PAGE_TABLE_LEVEL
, slot
);
1235 __rmap_write_protect(kvm
, rmapp
, false);
1237 /* clear the first set bit */
1242 static bool rmap_write_protect(struct kvm
*kvm
, u64 gfn
)
1244 struct kvm_memory_slot
*slot
;
1245 unsigned long *rmapp
;
1247 bool write_protected
= false;
1249 slot
= gfn_to_memslot(kvm
, gfn
);
1251 for (i
= PT_PAGE_TABLE_LEVEL
;
1252 i
< PT_PAGE_TABLE_LEVEL
+ KVM_NR_PAGE_SIZES
; ++i
) {
1253 rmapp
= __gfn_to_rmap(gfn
, i
, slot
);
1254 write_protected
|= __rmap_write_protect(kvm
, rmapp
, true);
1257 return write_protected
;
1260 static int kvm_unmap_rmapp(struct kvm
*kvm
, unsigned long *rmapp
,
1261 struct kvm_memory_slot
*slot
, unsigned long data
)
1264 struct rmap_iterator iter
;
1265 int need_tlb_flush
= 0;
1267 while ((sptep
= rmap_get_first(*rmapp
, &iter
))) {
1268 BUG_ON(!(*sptep
& PT_PRESENT_MASK
));
1269 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep
, *sptep
);
1271 drop_spte(kvm
, sptep
);
1275 return need_tlb_flush
;
1278 static int kvm_set_pte_rmapp(struct kvm
*kvm
, unsigned long *rmapp
,
1279 struct kvm_memory_slot
*slot
, unsigned long data
)
1282 struct rmap_iterator iter
;
1285 pte_t
*ptep
= (pte_t
*)data
;
1288 WARN_ON(pte_huge(*ptep
));
1289 new_pfn
= pte_pfn(*ptep
);
1291 for (sptep
= rmap_get_first(*rmapp
, &iter
); sptep
;) {
1292 BUG_ON(!is_shadow_present_pte(*sptep
));
1293 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep
, *sptep
);
1297 if (pte_write(*ptep
)) {
1298 drop_spte(kvm
, sptep
);
1299 sptep
= rmap_get_first(*rmapp
, &iter
);
1301 new_spte
= *sptep
& ~PT64_BASE_ADDR_MASK
;
1302 new_spte
|= (u64
)new_pfn
<< PAGE_SHIFT
;
1304 new_spte
&= ~PT_WRITABLE_MASK
;
1305 new_spte
&= ~SPTE_HOST_WRITEABLE
;
1306 new_spte
&= ~shadow_accessed_mask
;
1308 mmu_spte_clear_track_bits(sptep
);
1309 mmu_spte_set(sptep
, new_spte
);
1310 sptep
= rmap_get_next(&iter
);
1315 kvm_flush_remote_tlbs(kvm
);
1320 static int kvm_handle_hva_range(struct kvm
*kvm
,
1321 unsigned long start
,
1324 int (*handler
)(struct kvm
*kvm
,
1325 unsigned long *rmapp
,
1326 struct kvm_memory_slot
*slot
,
1327 unsigned long data
))
1331 struct kvm_memslots
*slots
;
1332 struct kvm_memory_slot
*memslot
;
1334 slots
= kvm_memslots(kvm
);
1336 kvm_for_each_memslot(memslot
, slots
) {
1337 unsigned long hva_start
, hva_end
;
1338 gfn_t gfn_start
, gfn_end
;
1340 hva_start
= max(start
, memslot
->userspace_addr
);
1341 hva_end
= min(end
, memslot
->userspace_addr
+
1342 (memslot
->npages
<< PAGE_SHIFT
));
1343 if (hva_start
>= hva_end
)
1346 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1347 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1349 gfn_start
= hva_to_gfn_memslot(hva_start
, memslot
);
1350 gfn_end
= hva_to_gfn_memslot(hva_end
+ PAGE_SIZE
- 1, memslot
);
1352 for (j
= PT_PAGE_TABLE_LEVEL
;
1353 j
< PT_PAGE_TABLE_LEVEL
+ KVM_NR_PAGE_SIZES
; ++j
) {
1354 unsigned long idx
, idx_end
;
1355 unsigned long *rmapp
;
1358 * {idx(page_j) | page_j intersects with
1359 * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1361 idx
= gfn_to_index(gfn_start
, memslot
->base_gfn
, j
);
1362 idx_end
= gfn_to_index(gfn_end
- 1, memslot
->base_gfn
, j
);
1364 rmapp
= __gfn_to_rmap(gfn_start
, j
, memslot
);
1366 for (; idx
<= idx_end
; ++idx
)
1367 ret
|= handler(kvm
, rmapp
++, memslot
, data
);
1374 static int kvm_handle_hva(struct kvm
*kvm
, unsigned long hva
,
1376 int (*handler
)(struct kvm
*kvm
, unsigned long *rmapp
,
1377 struct kvm_memory_slot
*slot
,
1378 unsigned long data
))
1380 return kvm_handle_hva_range(kvm
, hva
, hva
+ 1, data
, handler
);
1383 int kvm_unmap_hva(struct kvm
*kvm
, unsigned long hva
)
1385 return kvm_handle_hva(kvm
, hva
, 0, kvm_unmap_rmapp
);
1388 int kvm_unmap_hva_range(struct kvm
*kvm
, unsigned long start
, unsigned long end
)
1390 return kvm_handle_hva_range(kvm
, start
, end
, 0, kvm_unmap_rmapp
);
1393 void kvm_set_spte_hva(struct kvm
*kvm
, unsigned long hva
, pte_t pte
)
1395 kvm_handle_hva(kvm
, hva
, (unsigned long)&pte
, kvm_set_pte_rmapp
);
1398 static int kvm_age_rmapp(struct kvm
*kvm
, unsigned long *rmapp
,
1399 struct kvm_memory_slot
*slot
, unsigned long data
)
1402 struct rmap_iterator
uninitialized_var(iter
);
1406 * In case of absence of EPT Access and Dirty Bits supports,
1407 * emulate the accessed bit for EPT, by checking if this page has
1408 * an EPT mapping, and clearing it if it does. On the next access,
1409 * a new EPT mapping will be established.
1410 * This has some overhead, but not as much as the cost of swapping
1411 * out actively used pages or breaking up actively used hugepages.
1413 if (!shadow_accessed_mask
) {
1414 young
= kvm_unmap_rmapp(kvm
, rmapp
, slot
, data
);
1418 for (sptep
= rmap_get_first(*rmapp
, &iter
); sptep
;
1419 sptep
= rmap_get_next(&iter
)) {
1420 BUG_ON(!is_shadow_present_pte(*sptep
));
1422 if (*sptep
& shadow_accessed_mask
) {
1424 clear_bit((ffs(shadow_accessed_mask
) - 1),
1425 (unsigned long *)sptep
);
1429 /* @data has hva passed to kvm_age_hva(). */
1430 trace_kvm_age_page(data
, slot
, young
);
1434 static int kvm_test_age_rmapp(struct kvm
*kvm
, unsigned long *rmapp
,
1435 struct kvm_memory_slot
*slot
, unsigned long data
)
1438 struct rmap_iterator iter
;
1442 * If there's no access bit in the secondary pte set by the
1443 * hardware it's up to gup-fast/gup to set the access bit in
1444 * the primary pte or in the page structure.
1446 if (!shadow_accessed_mask
)
1449 for (sptep
= rmap_get_first(*rmapp
, &iter
); sptep
;
1450 sptep
= rmap_get_next(&iter
)) {
1451 BUG_ON(!is_shadow_present_pte(*sptep
));
1453 if (*sptep
& shadow_accessed_mask
) {
1462 #define RMAP_RECYCLE_THRESHOLD 1000
1464 static void rmap_recycle(struct kvm_vcpu
*vcpu
, u64
*spte
, gfn_t gfn
)
1466 unsigned long *rmapp
;
1467 struct kvm_mmu_page
*sp
;
1469 sp
= page_header(__pa(spte
));
1471 rmapp
= gfn_to_rmap(vcpu
->kvm
, gfn
, sp
->role
.level
);
1473 kvm_unmap_rmapp(vcpu
->kvm
, rmapp
, NULL
, 0);
1474 kvm_flush_remote_tlbs(vcpu
->kvm
);
1477 int kvm_age_hva(struct kvm
*kvm
, unsigned long hva
)
1479 return kvm_handle_hva(kvm
, hva
, hva
, kvm_age_rmapp
);
1482 int kvm_test_age_hva(struct kvm
*kvm
, unsigned long hva
)
1484 return kvm_handle_hva(kvm
, hva
, 0, kvm_test_age_rmapp
);
1488 static int is_empty_shadow_page(u64
*spt
)
1493 for (pos
= spt
, end
= pos
+ PAGE_SIZE
/ sizeof(u64
); pos
!= end
; pos
++)
1494 if (is_shadow_present_pte(*pos
)) {
1495 printk(KERN_ERR
"%s: %p %llx\n", __func__
,
1504 * This value is the sum of all of the kvm instances's
1505 * kvm->arch.n_used_mmu_pages values. We need a global,
1506 * aggregate version in order to make the slab shrinker
1509 static inline void kvm_mod_used_mmu_pages(struct kvm
*kvm
, int nr
)
1511 kvm
->arch
.n_used_mmu_pages
+= nr
;
1512 percpu_counter_add(&kvm_total_used_mmu_pages
, nr
);
1515 static void kvm_mmu_free_page(struct kvm_mmu_page
*sp
)
1517 ASSERT(is_empty_shadow_page(sp
->spt
));
1518 hlist_del(&sp
->hash_link
);
1519 list_del(&sp
->link
);
1520 free_page((unsigned long)sp
->spt
);
1521 if (!sp
->role
.direct
)
1522 free_page((unsigned long)sp
->gfns
);
1523 kmem_cache_free(mmu_page_header_cache
, sp
);
1526 static unsigned kvm_page_table_hashfn(gfn_t gfn
)
1528 return gfn
& ((1 << KVM_MMU_HASH_SHIFT
) - 1);
1531 static void mmu_page_add_parent_pte(struct kvm_vcpu
*vcpu
,
1532 struct kvm_mmu_page
*sp
, u64
*parent_pte
)
1537 pte_list_add(vcpu
, parent_pte
, &sp
->parent_ptes
);
1540 static void mmu_page_remove_parent_pte(struct kvm_mmu_page
*sp
,
1543 pte_list_remove(parent_pte
, &sp
->parent_ptes
);
1546 static void drop_parent_pte(struct kvm_mmu_page
*sp
,
1549 mmu_page_remove_parent_pte(sp
, parent_pte
);
1550 mmu_spte_clear_no_track(parent_pte
);
1553 static struct kvm_mmu_page
*kvm_mmu_alloc_page(struct kvm_vcpu
*vcpu
,
1554 u64
*parent_pte
, int direct
)
1556 struct kvm_mmu_page
*sp
;
1558 sp
= mmu_memory_cache_alloc(&vcpu
->arch
.mmu_page_header_cache
);
1559 sp
->spt
= mmu_memory_cache_alloc(&vcpu
->arch
.mmu_page_cache
);
1561 sp
->gfns
= mmu_memory_cache_alloc(&vcpu
->arch
.mmu_page_cache
);
1562 set_page_private(virt_to_page(sp
->spt
), (unsigned long)sp
);
1565 * The active_mmu_pages list is the FIFO list, do not move the
1566 * page until it is zapped. kvm_zap_obsolete_pages depends on
1567 * this feature. See the comments in kvm_zap_obsolete_pages().
1569 list_add(&sp
->link
, &vcpu
->kvm
->arch
.active_mmu_pages
);
1570 sp
->parent_ptes
= 0;
1571 mmu_page_add_parent_pte(vcpu
, sp
, parent_pte
);
1572 kvm_mod_used_mmu_pages(vcpu
->kvm
, +1);
1576 static void mark_unsync(u64
*spte
);
1577 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page
*sp
)
1579 pte_list_walk(&sp
->parent_ptes
, mark_unsync
);
1582 static void mark_unsync(u64
*spte
)
1584 struct kvm_mmu_page
*sp
;
1587 sp
= page_header(__pa(spte
));
1588 index
= spte
- sp
->spt
;
1589 if (__test_and_set_bit(index
, sp
->unsync_child_bitmap
))
1591 if (sp
->unsync_children
++)
1593 kvm_mmu_mark_parents_unsync(sp
);
1596 static int nonpaging_sync_page(struct kvm_vcpu
*vcpu
,
1597 struct kvm_mmu_page
*sp
)
1602 static void nonpaging_invlpg(struct kvm_vcpu
*vcpu
, gva_t gva
)
1606 static void nonpaging_update_pte(struct kvm_vcpu
*vcpu
,
1607 struct kvm_mmu_page
*sp
, u64
*spte
,
1613 #define KVM_PAGE_ARRAY_NR 16
1615 struct kvm_mmu_pages
{
1616 struct mmu_page_and_offset
{
1617 struct kvm_mmu_page
*sp
;
1619 } page
[KVM_PAGE_ARRAY_NR
];
1623 static int mmu_pages_add(struct kvm_mmu_pages
*pvec
, struct kvm_mmu_page
*sp
,
1629 for (i
=0; i
< pvec
->nr
; i
++)
1630 if (pvec
->page
[i
].sp
== sp
)
1633 pvec
->page
[pvec
->nr
].sp
= sp
;
1634 pvec
->page
[pvec
->nr
].idx
= idx
;
1636 return (pvec
->nr
== KVM_PAGE_ARRAY_NR
);
1639 static int __mmu_unsync_walk(struct kvm_mmu_page
*sp
,
1640 struct kvm_mmu_pages
*pvec
)
1642 int i
, ret
, nr_unsync_leaf
= 0;
1644 for_each_set_bit(i
, sp
->unsync_child_bitmap
, 512) {
1645 struct kvm_mmu_page
*child
;
1646 u64 ent
= sp
->spt
[i
];
1648 if (!is_shadow_present_pte(ent
) || is_large_pte(ent
))
1649 goto clear_child_bitmap
;
1651 child
= page_header(ent
& PT64_BASE_ADDR_MASK
);
1653 if (child
->unsync_children
) {
1654 if (mmu_pages_add(pvec
, child
, i
))
1657 ret
= __mmu_unsync_walk(child
, pvec
);
1659 goto clear_child_bitmap
;
1661 nr_unsync_leaf
+= ret
;
1664 } else if (child
->unsync
) {
1666 if (mmu_pages_add(pvec
, child
, i
))
1669 goto clear_child_bitmap
;
1674 __clear_bit(i
, sp
->unsync_child_bitmap
);
1675 sp
->unsync_children
--;
1676 WARN_ON((int)sp
->unsync_children
< 0);
1680 return nr_unsync_leaf
;
1683 static int mmu_unsync_walk(struct kvm_mmu_page
*sp
,
1684 struct kvm_mmu_pages
*pvec
)
1686 if (!sp
->unsync_children
)
1689 mmu_pages_add(pvec
, sp
, 0);
1690 return __mmu_unsync_walk(sp
, pvec
);
1693 static void kvm_unlink_unsync_page(struct kvm
*kvm
, struct kvm_mmu_page
*sp
)
1695 WARN_ON(!sp
->unsync
);
1696 trace_kvm_mmu_sync_page(sp
);
1698 --kvm
->stat
.mmu_unsync
;
1701 static int kvm_mmu_prepare_zap_page(struct kvm
*kvm
, struct kvm_mmu_page
*sp
,
1702 struct list_head
*invalid_list
);
1703 static void kvm_mmu_commit_zap_page(struct kvm
*kvm
,
1704 struct list_head
*invalid_list
);
1707 * NOTE: we should pay more attention on the zapped-obsolete page
1708 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1709 * since it has been deleted from active_mmu_pages but still can be found
1712 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1713 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1714 * all the obsolete pages.
1716 #define for_each_gfn_sp(_kvm, _sp, _gfn) \
1717 hlist_for_each_entry(_sp, \
1718 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1719 if ((_sp)->gfn != (_gfn)) {} else
1721 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1722 for_each_gfn_sp(_kvm, _sp, _gfn) \
1723 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1725 /* @sp->gfn should be write-protected at the call site */
1726 static int __kvm_sync_page(struct kvm_vcpu
*vcpu
, struct kvm_mmu_page
*sp
,
1727 struct list_head
*invalid_list
, bool clear_unsync
)
1729 if (sp
->role
.cr4_pae
!= !!is_pae(vcpu
)) {
1730 kvm_mmu_prepare_zap_page(vcpu
->kvm
, sp
, invalid_list
);
1735 kvm_unlink_unsync_page(vcpu
->kvm
, sp
);
1737 if (vcpu
->arch
.mmu
.sync_page(vcpu
, sp
)) {
1738 kvm_mmu_prepare_zap_page(vcpu
->kvm
, sp
, invalid_list
);
1742 kvm_mmu_flush_tlb(vcpu
);
1746 static int kvm_sync_page_transient(struct kvm_vcpu
*vcpu
,
1747 struct kvm_mmu_page
*sp
)
1749 LIST_HEAD(invalid_list
);
1752 ret
= __kvm_sync_page(vcpu
, sp
, &invalid_list
, false);
1754 kvm_mmu_commit_zap_page(vcpu
->kvm
, &invalid_list
);
1759 #ifdef CONFIG_KVM_MMU_AUDIT
1760 #include "mmu_audit.c"
1762 static void kvm_mmu_audit(struct kvm_vcpu
*vcpu
, int point
) { }
1763 static void mmu_audit_disable(void) { }
1766 static int kvm_sync_page(struct kvm_vcpu
*vcpu
, struct kvm_mmu_page
*sp
,
1767 struct list_head
*invalid_list
)
1769 return __kvm_sync_page(vcpu
, sp
, invalid_list
, true);
1772 /* @gfn should be write-protected at the call site */
1773 static void kvm_sync_pages(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
1775 struct kvm_mmu_page
*s
;
1776 LIST_HEAD(invalid_list
);
1779 for_each_gfn_indirect_valid_sp(vcpu
->kvm
, s
, gfn
) {
1783 WARN_ON(s
->role
.level
!= PT_PAGE_TABLE_LEVEL
);
1784 kvm_unlink_unsync_page(vcpu
->kvm
, s
);
1785 if ((s
->role
.cr4_pae
!= !!is_pae(vcpu
)) ||
1786 (vcpu
->arch
.mmu
.sync_page(vcpu
, s
))) {
1787 kvm_mmu_prepare_zap_page(vcpu
->kvm
, s
, &invalid_list
);
1793 kvm_mmu_commit_zap_page(vcpu
->kvm
, &invalid_list
);
1795 kvm_mmu_flush_tlb(vcpu
);
1798 struct mmu_page_path
{
1799 struct kvm_mmu_page
*parent
[PT64_ROOT_LEVEL
-1];
1800 unsigned int idx
[PT64_ROOT_LEVEL
-1];
1803 #define for_each_sp(pvec, sp, parents, i) \
1804 for (i = mmu_pages_next(&pvec, &parents, -1), \
1805 sp = pvec.page[i].sp; \
1806 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1807 i = mmu_pages_next(&pvec, &parents, i))
1809 static int mmu_pages_next(struct kvm_mmu_pages
*pvec
,
1810 struct mmu_page_path
*parents
,
1815 for (n
= i
+1; n
< pvec
->nr
; n
++) {
1816 struct kvm_mmu_page
*sp
= pvec
->page
[n
].sp
;
1818 if (sp
->role
.level
== PT_PAGE_TABLE_LEVEL
) {
1819 parents
->idx
[0] = pvec
->page
[n
].idx
;
1823 parents
->parent
[sp
->role
.level
-2] = sp
;
1824 parents
->idx
[sp
->role
.level
-1] = pvec
->page
[n
].idx
;
1830 static void mmu_pages_clear_parents(struct mmu_page_path
*parents
)
1832 struct kvm_mmu_page
*sp
;
1833 unsigned int level
= 0;
1836 unsigned int idx
= parents
->idx
[level
];
1838 sp
= parents
->parent
[level
];
1842 --sp
->unsync_children
;
1843 WARN_ON((int)sp
->unsync_children
< 0);
1844 __clear_bit(idx
, sp
->unsync_child_bitmap
);
1846 } while (level
< PT64_ROOT_LEVEL
-1 && !sp
->unsync_children
);
1849 static void kvm_mmu_pages_init(struct kvm_mmu_page
*parent
,
1850 struct mmu_page_path
*parents
,
1851 struct kvm_mmu_pages
*pvec
)
1853 parents
->parent
[parent
->role
.level
-1] = NULL
;
1857 static void mmu_sync_children(struct kvm_vcpu
*vcpu
,
1858 struct kvm_mmu_page
*parent
)
1861 struct kvm_mmu_page
*sp
;
1862 struct mmu_page_path parents
;
1863 struct kvm_mmu_pages pages
;
1864 LIST_HEAD(invalid_list
);
1866 kvm_mmu_pages_init(parent
, &parents
, &pages
);
1867 while (mmu_unsync_walk(parent
, &pages
)) {
1868 bool protected = false;
1870 for_each_sp(pages
, sp
, parents
, i
)
1871 protected |= rmap_write_protect(vcpu
->kvm
, sp
->gfn
);
1874 kvm_flush_remote_tlbs(vcpu
->kvm
);
1876 for_each_sp(pages
, sp
, parents
, i
) {
1877 kvm_sync_page(vcpu
, sp
, &invalid_list
);
1878 mmu_pages_clear_parents(&parents
);
1880 kvm_mmu_commit_zap_page(vcpu
->kvm
, &invalid_list
);
1881 cond_resched_lock(&vcpu
->kvm
->mmu_lock
);
1882 kvm_mmu_pages_init(parent
, &parents
, &pages
);
1886 static void init_shadow_page_table(struct kvm_mmu_page
*sp
)
1890 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
)
1894 static void __clear_sp_write_flooding_count(struct kvm_mmu_page
*sp
)
1896 sp
->write_flooding_count
= 0;
1899 static void clear_sp_write_flooding_count(u64
*spte
)
1901 struct kvm_mmu_page
*sp
= page_header(__pa(spte
));
1903 __clear_sp_write_flooding_count(sp
);
1906 static bool is_obsolete_sp(struct kvm
*kvm
, struct kvm_mmu_page
*sp
)
1908 return unlikely(sp
->mmu_valid_gen
!= kvm
->arch
.mmu_valid_gen
);
1911 static struct kvm_mmu_page
*kvm_mmu_get_page(struct kvm_vcpu
*vcpu
,
1919 union kvm_mmu_page_role role
;
1921 struct kvm_mmu_page
*sp
;
1922 bool need_sync
= false;
1924 role
= vcpu
->arch
.mmu
.base_role
;
1926 role
.direct
= direct
;
1929 role
.access
= access
;
1930 if (!vcpu
->arch
.mmu
.direct_map
1931 && vcpu
->arch
.mmu
.root_level
<= PT32_ROOT_LEVEL
) {
1932 quadrant
= gaddr
>> (PAGE_SHIFT
+ (PT64_PT_BITS
* level
));
1933 quadrant
&= (1 << ((PT32_PT_BITS
- PT64_PT_BITS
) * level
)) - 1;
1934 role
.quadrant
= quadrant
;
1936 for_each_gfn_sp(vcpu
->kvm
, sp
, gfn
) {
1937 if (is_obsolete_sp(vcpu
->kvm
, sp
))
1940 if (!need_sync
&& sp
->unsync
)
1943 if (sp
->role
.word
!= role
.word
)
1946 if (sp
->unsync
&& kvm_sync_page_transient(vcpu
, sp
))
1949 mmu_page_add_parent_pte(vcpu
, sp
, parent_pte
);
1950 if (sp
->unsync_children
) {
1951 kvm_make_request(KVM_REQ_MMU_SYNC
, vcpu
);
1952 kvm_mmu_mark_parents_unsync(sp
);
1953 } else if (sp
->unsync
)
1954 kvm_mmu_mark_parents_unsync(sp
);
1956 __clear_sp_write_flooding_count(sp
);
1957 trace_kvm_mmu_get_page(sp
, false);
1960 ++vcpu
->kvm
->stat
.mmu_cache_miss
;
1961 sp
= kvm_mmu_alloc_page(vcpu
, parent_pte
, direct
);
1966 hlist_add_head(&sp
->hash_link
,
1967 &vcpu
->kvm
->arch
.mmu_page_hash
[kvm_page_table_hashfn(gfn
)]);
1969 if (rmap_write_protect(vcpu
->kvm
, gfn
))
1970 kvm_flush_remote_tlbs(vcpu
->kvm
);
1971 if (level
> PT_PAGE_TABLE_LEVEL
&& need_sync
)
1972 kvm_sync_pages(vcpu
, gfn
);
1974 account_shadowed(vcpu
->kvm
, gfn
);
1976 sp
->mmu_valid_gen
= vcpu
->kvm
->arch
.mmu_valid_gen
;
1977 init_shadow_page_table(sp
);
1978 trace_kvm_mmu_get_page(sp
, true);
1982 static void shadow_walk_init(struct kvm_shadow_walk_iterator
*iterator
,
1983 struct kvm_vcpu
*vcpu
, u64 addr
)
1985 iterator
->addr
= addr
;
1986 iterator
->shadow_addr
= vcpu
->arch
.mmu
.root_hpa
;
1987 iterator
->level
= vcpu
->arch
.mmu
.shadow_root_level
;
1989 if (iterator
->level
== PT64_ROOT_LEVEL
&&
1990 vcpu
->arch
.mmu
.root_level
< PT64_ROOT_LEVEL
&&
1991 !vcpu
->arch
.mmu
.direct_map
)
1994 if (iterator
->level
== PT32E_ROOT_LEVEL
) {
1995 iterator
->shadow_addr
1996 = vcpu
->arch
.mmu
.pae_root
[(addr
>> 30) & 3];
1997 iterator
->shadow_addr
&= PT64_BASE_ADDR_MASK
;
1999 if (!iterator
->shadow_addr
)
2000 iterator
->level
= 0;
2004 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator
*iterator
)
2006 if (iterator
->level
< PT_PAGE_TABLE_LEVEL
)
2009 iterator
->index
= SHADOW_PT_INDEX(iterator
->addr
, iterator
->level
);
2010 iterator
->sptep
= ((u64
*)__va(iterator
->shadow_addr
)) + iterator
->index
;
2014 static void __shadow_walk_next(struct kvm_shadow_walk_iterator
*iterator
,
2017 if (is_last_spte(spte
, iterator
->level
)) {
2018 iterator
->level
= 0;
2022 iterator
->shadow_addr
= spte
& PT64_BASE_ADDR_MASK
;
2026 static void shadow_walk_next(struct kvm_shadow_walk_iterator
*iterator
)
2028 return __shadow_walk_next(iterator
, *iterator
->sptep
);
2031 static void link_shadow_page(u64
*sptep
, struct kvm_mmu_page
*sp
, bool accessed
)
2035 BUILD_BUG_ON(VMX_EPT_READABLE_MASK
!= PT_PRESENT_MASK
||
2036 VMX_EPT_WRITABLE_MASK
!= PT_WRITABLE_MASK
);
2038 spte
= __pa(sp
->spt
) | PT_PRESENT_MASK
| PT_WRITABLE_MASK
|
2039 shadow_user_mask
| shadow_x_mask
;
2042 spte
|= shadow_accessed_mask
;
2044 mmu_spte_set(sptep
, spte
);
2047 static void validate_direct_spte(struct kvm_vcpu
*vcpu
, u64
*sptep
,
2048 unsigned direct_access
)
2050 if (is_shadow_present_pte(*sptep
) && !is_large_pte(*sptep
)) {
2051 struct kvm_mmu_page
*child
;
2054 * For the direct sp, if the guest pte's dirty bit
2055 * changed form clean to dirty, it will corrupt the
2056 * sp's access: allow writable in the read-only sp,
2057 * so we should update the spte at this point to get
2058 * a new sp with the correct access.
2060 child
= page_header(*sptep
& PT64_BASE_ADDR_MASK
);
2061 if (child
->role
.access
== direct_access
)
2064 drop_parent_pte(child
, sptep
);
2065 kvm_flush_remote_tlbs(vcpu
->kvm
);
2069 static bool mmu_page_zap_pte(struct kvm
*kvm
, struct kvm_mmu_page
*sp
,
2073 struct kvm_mmu_page
*child
;
2076 if (is_shadow_present_pte(pte
)) {
2077 if (is_last_spte(pte
, sp
->role
.level
)) {
2078 drop_spte(kvm
, spte
);
2079 if (is_large_pte(pte
))
2082 child
= page_header(pte
& PT64_BASE_ADDR_MASK
);
2083 drop_parent_pte(child
, spte
);
2088 if (is_mmio_spte(pte
))
2089 mmu_spte_clear_no_track(spte
);
2094 static void kvm_mmu_page_unlink_children(struct kvm
*kvm
,
2095 struct kvm_mmu_page
*sp
)
2099 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
)
2100 mmu_page_zap_pte(kvm
, sp
, sp
->spt
+ i
);
2103 static void kvm_mmu_put_page(struct kvm_mmu_page
*sp
, u64
*parent_pte
)
2105 mmu_page_remove_parent_pte(sp
, parent_pte
);
2108 static void kvm_mmu_unlink_parents(struct kvm
*kvm
, struct kvm_mmu_page
*sp
)
2111 struct rmap_iterator iter
;
2113 while ((sptep
= rmap_get_first(sp
->parent_ptes
, &iter
)))
2114 drop_parent_pte(sp
, sptep
);
2117 static int mmu_zap_unsync_children(struct kvm
*kvm
,
2118 struct kvm_mmu_page
*parent
,
2119 struct list_head
*invalid_list
)
2122 struct mmu_page_path parents
;
2123 struct kvm_mmu_pages pages
;
2125 if (parent
->role
.level
== PT_PAGE_TABLE_LEVEL
)
2128 kvm_mmu_pages_init(parent
, &parents
, &pages
);
2129 while (mmu_unsync_walk(parent
, &pages
)) {
2130 struct kvm_mmu_page
*sp
;
2132 for_each_sp(pages
, sp
, parents
, i
) {
2133 kvm_mmu_prepare_zap_page(kvm
, sp
, invalid_list
);
2134 mmu_pages_clear_parents(&parents
);
2137 kvm_mmu_pages_init(parent
, &parents
, &pages
);
2143 static int kvm_mmu_prepare_zap_page(struct kvm
*kvm
, struct kvm_mmu_page
*sp
,
2144 struct list_head
*invalid_list
)
2148 trace_kvm_mmu_prepare_zap_page(sp
);
2149 ++kvm
->stat
.mmu_shadow_zapped
;
2150 ret
= mmu_zap_unsync_children(kvm
, sp
, invalid_list
);
2151 kvm_mmu_page_unlink_children(kvm
, sp
);
2152 kvm_mmu_unlink_parents(kvm
, sp
);
2154 if (!sp
->role
.invalid
&& !sp
->role
.direct
)
2155 unaccount_shadowed(kvm
, sp
->gfn
);
2158 kvm_unlink_unsync_page(kvm
, sp
);
2159 if (!sp
->root_count
) {
2162 list_move(&sp
->link
, invalid_list
);
2163 kvm_mod_used_mmu_pages(kvm
, -1);
2165 list_move(&sp
->link
, &kvm
->arch
.active_mmu_pages
);
2168 * The obsolete pages can not be used on any vcpus.
2169 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2171 if (!sp
->role
.invalid
&& !is_obsolete_sp(kvm
, sp
))
2172 kvm_reload_remote_mmus(kvm
);
2175 sp
->role
.invalid
= 1;
2179 static void kvm_mmu_commit_zap_page(struct kvm
*kvm
,
2180 struct list_head
*invalid_list
)
2182 struct kvm_mmu_page
*sp
, *nsp
;
2184 if (list_empty(invalid_list
))
2188 * wmb: make sure everyone sees our modifications to the page tables
2189 * rmb: make sure we see changes to vcpu->mode
2194 * Wait for all vcpus to exit guest mode and/or lockless shadow
2197 kvm_flush_remote_tlbs(kvm
);
2199 list_for_each_entry_safe(sp
, nsp
, invalid_list
, link
) {
2200 WARN_ON(!sp
->role
.invalid
|| sp
->root_count
);
2201 kvm_mmu_free_page(sp
);
2205 static bool prepare_zap_oldest_mmu_page(struct kvm
*kvm
,
2206 struct list_head
*invalid_list
)
2208 struct kvm_mmu_page
*sp
;
2210 if (list_empty(&kvm
->arch
.active_mmu_pages
))
2213 sp
= list_entry(kvm
->arch
.active_mmu_pages
.prev
,
2214 struct kvm_mmu_page
, link
);
2215 kvm_mmu_prepare_zap_page(kvm
, sp
, invalid_list
);
2221 * Changing the number of mmu pages allocated to the vm
2222 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2224 void kvm_mmu_change_mmu_pages(struct kvm
*kvm
, unsigned int goal_nr_mmu_pages
)
2226 LIST_HEAD(invalid_list
);
2228 spin_lock(&kvm
->mmu_lock
);
2230 if (kvm
->arch
.n_used_mmu_pages
> goal_nr_mmu_pages
) {
2231 /* Need to free some mmu pages to achieve the goal. */
2232 while (kvm
->arch
.n_used_mmu_pages
> goal_nr_mmu_pages
)
2233 if (!prepare_zap_oldest_mmu_page(kvm
, &invalid_list
))
2236 kvm_mmu_commit_zap_page(kvm
, &invalid_list
);
2237 goal_nr_mmu_pages
= kvm
->arch
.n_used_mmu_pages
;
2240 kvm
->arch
.n_max_mmu_pages
= goal_nr_mmu_pages
;
2242 spin_unlock(&kvm
->mmu_lock
);
2245 int kvm_mmu_unprotect_page(struct kvm
*kvm
, gfn_t gfn
)
2247 struct kvm_mmu_page
*sp
;
2248 LIST_HEAD(invalid_list
);
2251 pgprintk("%s: looking for gfn %llx\n", __func__
, gfn
);
2253 spin_lock(&kvm
->mmu_lock
);
2254 for_each_gfn_indirect_valid_sp(kvm
, sp
, gfn
) {
2255 pgprintk("%s: gfn %llx role %x\n", __func__
, gfn
,
2258 kvm_mmu_prepare_zap_page(kvm
, sp
, &invalid_list
);
2260 kvm_mmu_commit_zap_page(kvm
, &invalid_list
);
2261 spin_unlock(&kvm
->mmu_lock
);
2265 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page
);
2268 * The function is based on mtrr_type_lookup() in
2269 * arch/x86/kernel/cpu/mtrr/generic.c
2271 static int get_mtrr_type(struct mtrr_state_type
*mtrr_state
,
2276 u8 prev_match
, curr_match
;
2277 int num_var_ranges
= KVM_NR_VAR_MTRR
;
2279 if (!mtrr_state
->enabled
)
2282 /* Make end inclusive end, instead of exclusive */
2285 /* Look in fixed ranges. Just return the type as per start */
2286 if (mtrr_state
->have_fixed
&& (start
< 0x100000)) {
2289 if (start
< 0x80000) {
2291 idx
+= (start
>> 16);
2292 return mtrr_state
->fixed_ranges
[idx
];
2293 } else if (start
< 0xC0000) {
2295 idx
+= ((start
- 0x80000) >> 14);
2296 return mtrr_state
->fixed_ranges
[idx
];
2297 } else if (start
< 0x1000000) {
2299 idx
+= ((start
- 0xC0000) >> 12);
2300 return mtrr_state
->fixed_ranges
[idx
];
2305 * Look in variable ranges
2306 * Look of multiple ranges matching this address and pick type
2307 * as per MTRR precedence
2309 if (!(mtrr_state
->enabled
& 2))
2310 return mtrr_state
->def_type
;
2313 for (i
= 0; i
< num_var_ranges
; ++i
) {
2314 unsigned short start_state
, end_state
;
2316 if (!(mtrr_state
->var_ranges
[i
].mask_lo
& (1 << 11)))
2319 base
= (((u64
)mtrr_state
->var_ranges
[i
].base_hi
) << 32) +
2320 (mtrr_state
->var_ranges
[i
].base_lo
& PAGE_MASK
);
2321 mask
= (((u64
)mtrr_state
->var_ranges
[i
].mask_hi
) << 32) +
2322 (mtrr_state
->var_ranges
[i
].mask_lo
& PAGE_MASK
);
2324 start_state
= ((start
& mask
) == (base
& mask
));
2325 end_state
= ((end
& mask
) == (base
& mask
));
2326 if (start_state
!= end_state
)
2329 if ((start
& mask
) != (base
& mask
))
2332 curr_match
= mtrr_state
->var_ranges
[i
].base_lo
& 0xff;
2333 if (prev_match
== 0xFF) {
2334 prev_match
= curr_match
;
2338 if (prev_match
== MTRR_TYPE_UNCACHABLE
||
2339 curr_match
== MTRR_TYPE_UNCACHABLE
)
2340 return MTRR_TYPE_UNCACHABLE
;
2342 if ((prev_match
== MTRR_TYPE_WRBACK
&&
2343 curr_match
== MTRR_TYPE_WRTHROUGH
) ||
2344 (prev_match
== MTRR_TYPE_WRTHROUGH
&&
2345 curr_match
== MTRR_TYPE_WRBACK
)) {
2346 prev_match
= MTRR_TYPE_WRTHROUGH
;
2347 curr_match
= MTRR_TYPE_WRTHROUGH
;
2350 if (prev_match
!= curr_match
)
2351 return MTRR_TYPE_UNCACHABLE
;
2354 if (prev_match
!= 0xFF)
2357 return mtrr_state
->def_type
;
2360 u8
kvm_get_guest_memory_type(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
2364 mtrr
= get_mtrr_type(&vcpu
->arch
.mtrr_state
, gfn
<< PAGE_SHIFT
,
2365 (gfn
<< PAGE_SHIFT
) + PAGE_SIZE
);
2366 if (mtrr
== 0xfe || mtrr
== 0xff)
2367 mtrr
= MTRR_TYPE_WRBACK
;
2370 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type
);
2372 static void __kvm_unsync_page(struct kvm_vcpu
*vcpu
, struct kvm_mmu_page
*sp
)
2374 trace_kvm_mmu_unsync_page(sp
);
2375 ++vcpu
->kvm
->stat
.mmu_unsync
;
2378 kvm_mmu_mark_parents_unsync(sp
);
2381 static void kvm_unsync_pages(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
2383 struct kvm_mmu_page
*s
;
2385 for_each_gfn_indirect_valid_sp(vcpu
->kvm
, s
, gfn
) {
2388 WARN_ON(s
->role
.level
!= PT_PAGE_TABLE_LEVEL
);
2389 __kvm_unsync_page(vcpu
, s
);
2393 static int mmu_need_write_protect(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
2396 struct kvm_mmu_page
*s
;
2397 bool need_unsync
= false;
2399 for_each_gfn_indirect_valid_sp(vcpu
->kvm
, s
, gfn
) {
2403 if (s
->role
.level
!= PT_PAGE_TABLE_LEVEL
)
2410 kvm_unsync_pages(vcpu
, gfn
);
2414 static int set_spte(struct kvm_vcpu
*vcpu
, u64
*sptep
,
2415 unsigned pte_access
, int level
,
2416 gfn_t gfn
, pfn_t pfn
, bool speculative
,
2417 bool can_unsync
, bool host_writable
)
2422 if (set_mmio_spte(vcpu
->kvm
, sptep
, gfn
, pfn
, pte_access
))
2425 spte
= PT_PRESENT_MASK
;
2427 spte
|= shadow_accessed_mask
;
2429 if (pte_access
& ACC_EXEC_MASK
)
2430 spte
|= shadow_x_mask
;
2432 spte
|= shadow_nx_mask
;
2434 if (pte_access
& ACC_USER_MASK
)
2435 spte
|= shadow_user_mask
;
2437 if (level
> PT_PAGE_TABLE_LEVEL
)
2438 spte
|= PT_PAGE_SIZE_MASK
;
2440 spte
|= kvm_x86_ops
->get_mt_mask(vcpu
, gfn
,
2441 kvm_is_mmio_pfn(pfn
));
2444 spte
|= SPTE_HOST_WRITEABLE
;
2446 pte_access
&= ~ACC_WRITE_MASK
;
2448 spte
|= (u64
)pfn
<< PAGE_SHIFT
;
2450 if (pte_access
& ACC_WRITE_MASK
) {
2453 * Other vcpu creates new sp in the window between
2454 * mapping_level() and acquiring mmu-lock. We can
2455 * allow guest to retry the access, the mapping can
2456 * be fixed if guest refault.
2458 if (level
> PT_PAGE_TABLE_LEVEL
&&
2459 has_wrprotected_page(vcpu
->kvm
, gfn
, level
))
2462 spte
|= PT_WRITABLE_MASK
| SPTE_MMU_WRITEABLE
;
2465 * Optimization: for pte sync, if spte was writable the hash
2466 * lookup is unnecessary (and expensive). Write protection
2467 * is responsibility of mmu_get_page / kvm_sync_page.
2468 * Same reasoning can be applied to dirty page accounting.
2470 if (!can_unsync
&& is_writable_pte(*sptep
))
2473 if (mmu_need_write_protect(vcpu
, gfn
, can_unsync
)) {
2474 pgprintk("%s: found shadow page for %llx, marking ro\n",
2477 pte_access
&= ~ACC_WRITE_MASK
;
2478 spte
&= ~(PT_WRITABLE_MASK
| SPTE_MMU_WRITEABLE
);
2482 if (pte_access
& ACC_WRITE_MASK
)
2483 mark_page_dirty(vcpu
->kvm
, gfn
);
2486 if (mmu_spte_update(sptep
, spte
))
2487 kvm_flush_remote_tlbs(vcpu
->kvm
);
2492 static void mmu_set_spte(struct kvm_vcpu
*vcpu
, u64
*sptep
,
2493 unsigned pte_access
, int write_fault
, int *emulate
,
2494 int level
, gfn_t gfn
, pfn_t pfn
, bool speculative
,
2497 int was_rmapped
= 0;
2500 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__
,
2501 *sptep
, write_fault
, gfn
);
2503 if (is_rmap_spte(*sptep
)) {
2505 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2506 * the parent of the now unreachable PTE.
2508 if (level
> PT_PAGE_TABLE_LEVEL
&&
2509 !is_large_pte(*sptep
)) {
2510 struct kvm_mmu_page
*child
;
2513 child
= page_header(pte
& PT64_BASE_ADDR_MASK
);
2514 drop_parent_pte(child
, sptep
);
2515 kvm_flush_remote_tlbs(vcpu
->kvm
);
2516 } else if (pfn
!= spte_to_pfn(*sptep
)) {
2517 pgprintk("hfn old %llx new %llx\n",
2518 spte_to_pfn(*sptep
), pfn
);
2519 drop_spte(vcpu
->kvm
, sptep
);
2520 kvm_flush_remote_tlbs(vcpu
->kvm
);
2525 if (set_spte(vcpu
, sptep
, pte_access
, level
, gfn
, pfn
, speculative
,
2526 true, host_writable
)) {
2529 kvm_mmu_flush_tlb(vcpu
);
2532 if (unlikely(is_mmio_spte(*sptep
) && emulate
))
2535 pgprintk("%s: setting spte %llx\n", __func__
, *sptep
);
2536 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2537 is_large_pte(*sptep
)? "2MB" : "4kB",
2538 *sptep
& PT_PRESENT_MASK
?"RW":"R", gfn
,
2540 if (!was_rmapped
&& is_large_pte(*sptep
))
2541 ++vcpu
->kvm
->stat
.lpages
;
2543 if (is_shadow_present_pte(*sptep
)) {
2545 rmap_count
= rmap_add(vcpu
, sptep
, gfn
);
2546 if (rmap_count
> RMAP_RECYCLE_THRESHOLD
)
2547 rmap_recycle(vcpu
, sptep
, gfn
);
2551 kvm_release_pfn_clean(pfn
);
2554 static void nonpaging_new_cr3(struct kvm_vcpu
*vcpu
)
2556 mmu_free_roots(vcpu
);
2559 static pfn_t
pte_prefetch_gfn_to_pfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
2562 struct kvm_memory_slot
*slot
;
2564 slot
= gfn_to_memslot_dirty_bitmap(vcpu
, gfn
, no_dirty_log
);
2566 return KVM_PFN_ERR_FAULT
;
2568 return gfn_to_pfn_memslot_atomic(slot
, gfn
);
2571 static int direct_pte_prefetch_many(struct kvm_vcpu
*vcpu
,
2572 struct kvm_mmu_page
*sp
,
2573 u64
*start
, u64
*end
)
2575 struct page
*pages
[PTE_PREFETCH_NUM
];
2576 unsigned access
= sp
->role
.access
;
2580 gfn
= kvm_mmu_page_get_gfn(sp
, start
- sp
->spt
);
2581 if (!gfn_to_memslot_dirty_bitmap(vcpu
, gfn
, access
& ACC_WRITE_MASK
))
2584 ret
= gfn_to_page_many_atomic(vcpu
->kvm
, gfn
, pages
, end
- start
);
2588 for (i
= 0; i
< ret
; i
++, gfn
++, start
++)
2589 mmu_set_spte(vcpu
, start
, access
, 0, NULL
,
2590 sp
->role
.level
, gfn
, page_to_pfn(pages
[i
]),
2596 static void __direct_pte_prefetch(struct kvm_vcpu
*vcpu
,
2597 struct kvm_mmu_page
*sp
, u64
*sptep
)
2599 u64
*spte
, *start
= NULL
;
2602 WARN_ON(!sp
->role
.direct
);
2604 i
= (sptep
- sp
->spt
) & ~(PTE_PREFETCH_NUM
- 1);
2607 for (i
= 0; i
< PTE_PREFETCH_NUM
; i
++, spte
++) {
2608 if (is_shadow_present_pte(*spte
) || spte
== sptep
) {
2611 if (direct_pte_prefetch_many(vcpu
, sp
, start
, spte
) < 0)
2619 static void direct_pte_prefetch(struct kvm_vcpu
*vcpu
, u64
*sptep
)
2621 struct kvm_mmu_page
*sp
;
2624 * Since it's no accessed bit on EPT, it's no way to
2625 * distinguish between actually accessed translations
2626 * and prefetched, so disable pte prefetch if EPT is
2629 if (!shadow_accessed_mask
)
2632 sp
= page_header(__pa(sptep
));
2633 if (sp
->role
.level
> PT_PAGE_TABLE_LEVEL
)
2636 __direct_pte_prefetch(vcpu
, sp
, sptep
);
2639 static int __direct_map(struct kvm_vcpu
*vcpu
, gpa_t v
, int write
,
2640 int map_writable
, int level
, gfn_t gfn
, pfn_t pfn
,
2643 struct kvm_shadow_walk_iterator iterator
;
2644 struct kvm_mmu_page
*sp
;
2648 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
2651 for_each_shadow_entry(vcpu
, (u64
)gfn
<< PAGE_SHIFT
, iterator
) {
2652 if (iterator
.level
== level
) {
2653 mmu_set_spte(vcpu
, iterator
.sptep
, ACC_ALL
,
2654 write
, &emulate
, level
, gfn
, pfn
,
2655 prefault
, map_writable
);
2656 direct_pte_prefetch(vcpu
, iterator
.sptep
);
2657 ++vcpu
->stat
.pf_fixed
;
2661 if (!is_shadow_present_pte(*iterator
.sptep
)) {
2662 u64 base_addr
= iterator
.addr
;
2664 base_addr
&= PT64_LVL_ADDR_MASK(iterator
.level
);
2665 pseudo_gfn
= base_addr
>> PAGE_SHIFT
;
2666 sp
= kvm_mmu_get_page(vcpu
, pseudo_gfn
, iterator
.addr
,
2668 1, ACC_ALL
, iterator
.sptep
);
2670 link_shadow_page(iterator
.sptep
, sp
, true);
2676 static void kvm_send_hwpoison_signal(unsigned long address
, struct task_struct
*tsk
)
2680 info
.si_signo
= SIGBUS
;
2682 info
.si_code
= BUS_MCEERR_AR
;
2683 info
.si_addr
= (void __user
*)address
;
2684 info
.si_addr_lsb
= PAGE_SHIFT
;
2686 send_sig_info(SIGBUS
, &info
, tsk
);
2689 static int kvm_handle_bad_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
, pfn_t pfn
)
2692 * Do not cache the mmio info caused by writing the readonly gfn
2693 * into the spte otherwise read access on readonly gfn also can
2694 * caused mmio page fault and treat it as mmio access.
2695 * Return 1 to tell kvm to emulate it.
2697 if (pfn
== KVM_PFN_ERR_RO_FAULT
)
2700 if (pfn
== KVM_PFN_ERR_HWPOISON
) {
2701 kvm_send_hwpoison_signal(gfn_to_hva(vcpu
->kvm
, gfn
), current
);
2708 static void transparent_hugepage_adjust(struct kvm_vcpu
*vcpu
,
2709 gfn_t
*gfnp
, pfn_t
*pfnp
, int *levelp
)
2713 int level
= *levelp
;
2716 * Check if it's a transparent hugepage. If this would be an
2717 * hugetlbfs page, level wouldn't be set to
2718 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2721 if (!is_error_noslot_pfn(pfn
) && !kvm_is_mmio_pfn(pfn
) &&
2722 level
== PT_PAGE_TABLE_LEVEL
&&
2723 PageTransCompound(pfn_to_page(pfn
)) &&
2724 !has_wrprotected_page(vcpu
->kvm
, gfn
, PT_DIRECTORY_LEVEL
)) {
2727 * mmu_notifier_retry was successful and we hold the
2728 * mmu_lock here, so the pmd can't become splitting
2729 * from under us, and in turn
2730 * __split_huge_page_refcount() can't run from under
2731 * us and we can safely transfer the refcount from
2732 * PG_tail to PG_head as we switch the pfn to tail to
2735 *levelp
= level
= PT_DIRECTORY_LEVEL
;
2736 mask
= KVM_PAGES_PER_HPAGE(level
) - 1;
2737 VM_BUG_ON((gfn
& mask
) != (pfn
& mask
));
2741 kvm_release_pfn_clean(pfn
);
2749 static bool handle_abnormal_pfn(struct kvm_vcpu
*vcpu
, gva_t gva
, gfn_t gfn
,
2750 pfn_t pfn
, unsigned access
, int *ret_val
)
2754 /* The pfn is invalid, report the error! */
2755 if (unlikely(is_error_pfn(pfn
))) {
2756 *ret_val
= kvm_handle_bad_page(vcpu
, gfn
, pfn
);
2760 if (unlikely(is_noslot_pfn(pfn
)))
2761 vcpu_cache_mmio_info(vcpu
, gva
, gfn
, access
);
2768 static bool page_fault_can_be_fast(u32 error_code
)
2771 * Do not fix the mmio spte with invalid generation number which
2772 * need to be updated by slow page fault path.
2774 if (unlikely(error_code
& PFERR_RSVD_MASK
))
2778 * #PF can be fast only if the shadow page table is present and it
2779 * is caused by write-protect, that means we just need change the
2780 * W bit of the spte which can be done out of mmu-lock.
2782 if (!(error_code
& PFERR_PRESENT_MASK
) ||
2783 !(error_code
& PFERR_WRITE_MASK
))
2790 fast_pf_fix_direct_spte(struct kvm_vcpu
*vcpu
, u64
*sptep
, u64 spte
)
2792 struct kvm_mmu_page
*sp
= page_header(__pa(sptep
));
2795 WARN_ON(!sp
->role
.direct
);
2798 * The gfn of direct spte is stable since it is calculated
2801 gfn
= kvm_mmu_page_get_gfn(sp
, sptep
- sp
->spt
);
2803 if (cmpxchg64(sptep
, spte
, spte
| PT_WRITABLE_MASK
) == spte
)
2804 mark_page_dirty(vcpu
->kvm
, gfn
);
2811 * - true: let the vcpu to access on the same address again.
2812 * - false: let the real page fault path to fix it.
2814 static bool fast_page_fault(struct kvm_vcpu
*vcpu
, gva_t gva
, int level
,
2817 struct kvm_shadow_walk_iterator iterator
;
2821 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
2824 if (!page_fault_can_be_fast(error_code
))
2827 walk_shadow_page_lockless_begin(vcpu
);
2828 for_each_shadow_entry_lockless(vcpu
, gva
, iterator
, spte
)
2829 if (!is_shadow_present_pte(spte
) || iterator
.level
< level
)
2833 * If the mapping has been changed, let the vcpu fault on the
2834 * same address again.
2836 if (!is_rmap_spte(spte
)) {
2841 if (!is_last_spte(spte
, level
))
2845 * Check if it is a spurious fault caused by TLB lazily flushed.
2847 * Need not check the access of upper level table entries since
2848 * they are always ACC_ALL.
2850 if (is_writable_pte(spte
)) {
2856 * Currently, to simplify the code, only the spte write-protected
2857 * by dirty-log can be fast fixed.
2859 if (!spte_is_locklessly_modifiable(spte
))
2863 * Currently, fast page fault only works for direct mapping since
2864 * the gfn is not stable for indirect shadow page.
2865 * See Documentation/virtual/kvm/locking.txt to get more detail.
2867 ret
= fast_pf_fix_direct_spte(vcpu
, iterator
.sptep
, spte
);
2869 trace_fast_page_fault(vcpu
, gva
, error_code
, iterator
.sptep
,
2871 walk_shadow_page_lockless_end(vcpu
);
2876 static bool try_async_pf(struct kvm_vcpu
*vcpu
, bool prefault
, gfn_t gfn
,
2877 gva_t gva
, pfn_t
*pfn
, bool write
, bool *writable
);
2878 static void make_mmu_pages_available(struct kvm_vcpu
*vcpu
);
2880 static int nonpaging_map(struct kvm_vcpu
*vcpu
, gva_t v
, u32 error_code
,
2881 gfn_t gfn
, bool prefault
)
2887 unsigned long mmu_seq
;
2888 bool map_writable
, write
= error_code
& PFERR_WRITE_MASK
;
2890 force_pt_level
= mapping_level_dirty_bitmap(vcpu
, gfn
);
2891 if (likely(!force_pt_level
)) {
2892 level
= mapping_level(vcpu
, gfn
);
2894 * This path builds a PAE pagetable - so we can map
2895 * 2mb pages at maximum. Therefore check if the level
2896 * is larger than that.
2898 if (level
> PT_DIRECTORY_LEVEL
)
2899 level
= PT_DIRECTORY_LEVEL
;
2901 gfn
&= ~(KVM_PAGES_PER_HPAGE(level
) - 1);
2903 level
= PT_PAGE_TABLE_LEVEL
;
2905 if (fast_page_fault(vcpu
, v
, level
, error_code
))
2908 mmu_seq
= vcpu
->kvm
->mmu_notifier_seq
;
2911 if (try_async_pf(vcpu
, prefault
, gfn
, v
, &pfn
, write
, &map_writable
))
2914 if (handle_abnormal_pfn(vcpu
, v
, gfn
, pfn
, ACC_ALL
, &r
))
2917 spin_lock(&vcpu
->kvm
->mmu_lock
);
2918 if (mmu_notifier_retry(vcpu
->kvm
, mmu_seq
))
2920 make_mmu_pages_available(vcpu
);
2921 if (likely(!force_pt_level
))
2922 transparent_hugepage_adjust(vcpu
, &gfn
, &pfn
, &level
);
2923 r
= __direct_map(vcpu
, v
, write
, map_writable
, level
, gfn
, pfn
,
2925 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2931 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2932 kvm_release_pfn_clean(pfn
);
2937 static void mmu_free_roots(struct kvm_vcpu
*vcpu
)
2940 struct kvm_mmu_page
*sp
;
2941 LIST_HEAD(invalid_list
);
2943 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
2946 if (vcpu
->arch
.mmu
.shadow_root_level
== PT64_ROOT_LEVEL
&&
2947 (vcpu
->arch
.mmu
.root_level
== PT64_ROOT_LEVEL
||
2948 vcpu
->arch
.mmu
.direct_map
)) {
2949 hpa_t root
= vcpu
->arch
.mmu
.root_hpa
;
2951 spin_lock(&vcpu
->kvm
->mmu_lock
);
2952 sp
= page_header(root
);
2954 if (!sp
->root_count
&& sp
->role
.invalid
) {
2955 kvm_mmu_prepare_zap_page(vcpu
->kvm
, sp
, &invalid_list
);
2956 kvm_mmu_commit_zap_page(vcpu
->kvm
, &invalid_list
);
2958 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2959 vcpu
->arch
.mmu
.root_hpa
= INVALID_PAGE
;
2963 spin_lock(&vcpu
->kvm
->mmu_lock
);
2964 for (i
= 0; i
< 4; ++i
) {
2965 hpa_t root
= vcpu
->arch
.mmu
.pae_root
[i
];
2968 root
&= PT64_BASE_ADDR_MASK
;
2969 sp
= page_header(root
);
2971 if (!sp
->root_count
&& sp
->role
.invalid
)
2972 kvm_mmu_prepare_zap_page(vcpu
->kvm
, sp
,
2975 vcpu
->arch
.mmu
.pae_root
[i
] = INVALID_PAGE
;
2977 kvm_mmu_commit_zap_page(vcpu
->kvm
, &invalid_list
);
2978 spin_unlock(&vcpu
->kvm
->mmu_lock
);
2979 vcpu
->arch
.mmu
.root_hpa
= INVALID_PAGE
;
2982 static int mmu_check_root(struct kvm_vcpu
*vcpu
, gfn_t root_gfn
)
2986 if (!kvm_is_visible_gfn(vcpu
->kvm
, root_gfn
)) {
2987 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
2994 static int mmu_alloc_direct_roots(struct kvm_vcpu
*vcpu
)
2996 struct kvm_mmu_page
*sp
;
2999 if (vcpu
->arch
.mmu
.shadow_root_level
== PT64_ROOT_LEVEL
) {
3000 spin_lock(&vcpu
->kvm
->mmu_lock
);
3001 make_mmu_pages_available(vcpu
);
3002 sp
= kvm_mmu_get_page(vcpu
, 0, 0, PT64_ROOT_LEVEL
,
3005 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3006 vcpu
->arch
.mmu
.root_hpa
= __pa(sp
->spt
);
3007 } else if (vcpu
->arch
.mmu
.shadow_root_level
== PT32E_ROOT_LEVEL
) {
3008 for (i
= 0; i
< 4; ++i
) {
3009 hpa_t root
= vcpu
->arch
.mmu
.pae_root
[i
];
3011 ASSERT(!VALID_PAGE(root
));
3012 spin_lock(&vcpu
->kvm
->mmu_lock
);
3013 make_mmu_pages_available(vcpu
);
3014 sp
= kvm_mmu_get_page(vcpu
, i
<< (30 - PAGE_SHIFT
),
3016 PT32_ROOT_LEVEL
, 1, ACC_ALL
,
3018 root
= __pa(sp
->spt
);
3020 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3021 vcpu
->arch
.mmu
.pae_root
[i
] = root
| PT_PRESENT_MASK
;
3023 vcpu
->arch
.mmu
.root_hpa
= __pa(vcpu
->arch
.mmu
.pae_root
);
3030 static int mmu_alloc_shadow_roots(struct kvm_vcpu
*vcpu
)
3032 struct kvm_mmu_page
*sp
;
3037 root_gfn
= vcpu
->arch
.mmu
.get_cr3(vcpu
) >> PAGE_SHIFT
;
3039 if (mmu_check_root(vcpu
, root_gfn
))
3043 * Do we shadow a long mode page table? If so we need to
3044 * write-protect the guests page table root.
3046 if (vcpu
->arch
.mmu
.root_level
== PT64_ROOT_LEVEL
) {
3047 hpa_t root
= vcpu
->arch
.mmu
.root_hpa
;
3049 ASSERT(!VALID_PAGE(root
));
3051 spin_lock(&vcpu
->kvm
->mmu_lock
);
3052 make_mmu_pages_available(vcpu
);
3053 sp
= kvm_mmu_get_page(vcpu
, root_gfn
, 0, PT64_ROOT_LEVEL
,
3055 root
= __pa(sp
->spt
);
3057 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3058 vcpu
->arch
.mmu
.root_hpa
= root
;
3063 * We shadow a 32 bit page table. This may be a legacy 2-level
3064 * or a PAE 3-level page table. In either case we need to be aware that
3065 * the shadow page table may be a PAE or a long mode page table.
3067 pm_mask
= PT_PRESENT_MASK
;
3068 if (vcpu
->arch
.mmu
.shadow_root_level
== PT64_ROOT_LEVEL
)
3069 pm_mask
|= PT_ACCESSED_MASK
| PT_WRITABLE_MASK
| PT_USER_MASK
;
3071 for (i
= 0; i
< 4; ++i
) {
3072 hpa_t root
= vcpu
->arch
.mmu
.pae_root
[i
];
3074 ASSERT(!VALID_PAGE(root
));
3075 if (vcpu
->arch
.mmu
.root_level
== PT32E_ROOT_LEVEL
) {
3076 pdptr
= vcpu
->arch
.mmu
.get_pdptr(vcpu
, i
);
3077 if (!is_present_gpte(pdptr
)) {
3078 vcpu
->arch
.mmu
.pae_root
[i
] = 0;
3081 root_gfn
= pdptr
>> PAGE_SHIFT
;
3082 if (mmu_check_root(vcpu
, root_gfn
))
3085 spin_lock(&vcpu
->kvm
->mmu_lock
);
3086 make_mmu_pages_available(vcpu
);
3087 sp
= kvm_mmu_get_page(vcpu
, root_gfn
, i
<< 30,
3090 root
= __pa(sp
->spt
);
3092 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3094 vcpu
->arch
.mmu
.pae_root
[i
] = root
| pm_mask
;
3096 vcpu
->arch
.mmu
.root_hpa
= __pa(vcpu
->arch
.mmu
.pae_root
);
3099 * If we shadow a 32 bit page table with a long mode page
3100 * table we enter this path.
3102 if (vcpu
->arch
.mmu
.shadow_root_level
== PT64_ROOT_LEVEL
) {
3103 if (vcpu
->arch
.mmu
.lm_root
== NULL
) {
3105 * The additional page necessary for this is only
3106 * allocated on demand.
3111 lm_root
= (void*)get_zeroed_page(GFP_KERNEL
);
3112 if (lm_root
== NULL
)
3115 lm_root
[0] = __pa(vcpu
->arch
.mmu
.pae_root
) | pm_mask
;
3117 vcpu
->arch
.mmu
.lm_root
= lm_root
;
3120 vcpu
->arch
.mmu
.root_hpa
= __pa(vcpu
->arch
.mmu
.lm_root
);
3126 static int mmu_alloc_roots(struct kvm_vcpu
*vcpu
)
3128 if (vcpu
->arch
.mmu
.direct_map
)
3129 return mmu_alloc_direct_roots(vcpu
);
3131 return mmu_alloc_shadow_roots(vcpu
);
3134 static void mmu_sync_roots(struct kvm_vcpu
*vcpu
)
3137 struct kvm_mmu_page
*sp
;
3139 if (vcpu
->arch
.mmu
.direct_map
)
3142 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
3145 vcpu_clear_mmio_info(vcpu
, MMIO_GVA_ANY
);
3146 kvm_mmu_audit(vcpu
, AUDIT_PRE_SYNC
);
3147 if (vcpu
->arch
.mmu
.root_level
== PT64_ROOT_LEVEL
) {
3148 hpa_t root
= vcpu
->arch
.mmu
.root_hpa
;
3149 sp
= page_header(root
);
3150 mmu_sync_children(vcpu
, sp
);
3151 kvm_mmu_audit(vcpu
, AUDIT_POST_SYNC
);
3154 for (i
= 0; i
< 4; ++i
) {
3155 hpa_t root
= vcpu
->arch
.mmu
.pae_root
[i
];
3157 if (root
&& VALID_PAGE(root
)) {
3158 root
&= PT64_BASE_ADDR_MASK
;
3159 sp
= page_header(root
);
3160 mmu_sync_children(vcpu
, sp
);
3163 kvm_mmu_audit(vcpu
, AUDIT_POST_SYNC
);
3166 void kvm_mmu_sync_roots(struct kvm_vcpu
*vcpu
)
3168 spin_lock(&vcpu
->kvm
->mmu_lock
);
3169 mmu_sync_roots(vcpu
);
3170 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3172 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots
);
3174 static gpa_t
nonpaging_gva_to_gpa(struct kvm_vcpu
*vcpu
, gva_t vaddr
,
3175 u32 access
, struct x86_exception
*exception
)
3178 exception
->error_code
= 0;
3182 static gpa_t
nonpaging_gva_to_gpa_nested(struct kvm_vcpu
*vcpu
, gva_t vaddr
,
3184 struct x86_exception
*exception
)
3187 exception
->error_code
= 0;
3188 return vcpu
->arch
.nested_mmu
.translate_gpa(vcpu
, vaddr
, access
);
3191 static bool quickly_check_mmio_pf(struct kvm_vcpu
*vcpu
, u64 addr
, bool direct
)
3194 return vcpu_match_mmio_gpa(vcpu
, addr
);
3196 return vcpu_match_mmio_gva(vcpu
, addr
);
3199 static u64
walk_shadow_page_get_mmio_spte(struct kvm_vcpu
*vcpu
, u64 addr
)
3201 struct kvm_shadow_walk_iterator iterator
;
3204 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
3207 walk_shadow_page_lockless_begin(vcpu
);
3208 for_each_shadow_entry_lockless(vcpu
, addr
, iterator
, spte
)
3209 if (!is_shadow_present_pte(spte
))
3211 walk_shadow_page_lockless_end(vcpu
);
3216 int handle_mmio_page_fault_common(struct kvm_vcpu
*vcpu
, u64 addr
, bool direct
)
3220 if (quickly_check_mmio_pf(vcpu
, addr
, direct
))
3221 return RET_MMIO_PF_EMULATE
;
3223 spte
= walk_shadow_page_get_mmio_spte(vcpu
, addr
);
3225 if (is_mmio_spte(spte
)) {
3226 gfn_t gfn
= get_mmio_spte_gfn(spte
);
3227 unsigned access
= get_mmio_spte_access(spte
);
3229 if (!check_mmio_spte(vcpu
->kvm
, spte
))
3230 return RET_MMIO_PF_INVALID
;
3235 trace_handle_mmio_page_fault(addr
, gfn
, access
);
3236 vcpu_cache_mmio_info(vcpu
, addr
, gfn
, access
);
3237 return RET_MMIO_PF_EMULATE
;
3241 * If the page table is zapped by other cpus, let CPU fault again on
3244 return RET_MMIO_PF_RETRY
;
3246 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common
);
3248 static int handle_mmio_page_fault(struct kvm_vcpu
*vcpu
, u64 addr
,
3249 u32 error_code
, bool direct
)
3253 ret
= handle_mmio_page_fault_common(vcpu
, addr
, direct
);
3254 WARN_ON(ret
== RET_MMIO_PF_BUG
);
3258 static int nonpaging_page_fault(struct kvm_vcpu
*vcpu
, gva_t gva
,
3259 u32 error_code
, bool prefault
)
3264 pgprintk("%s: gva %lx error %x\n", __func__
, gva
, error_code
);
3266 if (unlikely(error_code
& PFERR_RSVD_MASK
)) {
3267 r
= handle_mmio_page_fault(vcpu
, gva
, error_code
, true);
3269 if (likely(r
!= RET_MMIO_PF_INVALID
))
3273 r
= mmu_topup_memory_caches(vcpu
);
3278 ASSERT(VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
3280 gfn
= gva
>> PAGE_SHIFT
;
3282 return nonpaging_map(vcpu
, gva
& PAGE_MASK
,
3283 error_code
, gfn
, prefault
);
3286 static int kvm_arch_setup_async_pf(struct kvm_vcpu
*vcpu
, gva_t gva
, gfn_t gfn
)
3288 struct kvm_arch_async_pf arch
;
3290 arch
.token
= (vcpu
->arch
.apf
.id
++ << 12) | vcpu
->vcpu_id
;
3292 arch
.direct_map
= vcpu
->arch
.mmu
.direct_map
;
3293 arch
.cr3
= vcpu
->arch
.mmu
.get_cr3(vcpu
);
3295 return kvm_setup_async_pf(vcpu
, gva
, gfn
, &arch
);
3298 static bool can_do_async_pf(struct kvm_vcpu
*vcpu
)
3300 if (unlikely(!irqchip_in_kernel(vcpu
->kvm
) ||
3301 kvm_event_needs_reinjection(vcpu
)))
3304 return kvm_x86_ops
->interrupt_allowed(vcpu
);
3307 static bool try_async_pf(struct kvm_vcpu
*vcpu
, bool prefault
, gfn_t gfn
,
3308 gva_t gva
, pfn_t
*pfn
, bool write
, bool *writable
)
3312 *pfn
= gfn_to_pfn_async(vcpu
->kvm
, gfn
, &async
, write
, writable
);
3315 return false; /* *pfn has correct page already */
3317 if (!prefault
&& can_do_async_pf(vcpu
)) {
3318 trace_kvm_try_async_get_page(gva
, gfn
);
3319 if (kvm_find_async_pf_gfn(vcpu
, gfn
)) {
3320 trace_kvm_async_pf_doublefault(gva
, gfn
);
3321 kvm_make_request(KVM_REQ_APF_HALT
, vcpu
);
3323 } else if (kvm_arch_setup_async_pf(vcpu
, gva
, gfn
))
3327 *pfn
= gfn_to_pfn_prot(vcpu
->kvm
, gfn
, write
, writable
);
3332 static int tdp_page_fault(struct kvm_vcpu
*vcpu
, gva_t gpa
, u32 error_code
,
3339 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
3340 unsigned long mmu_seq
;
3341 int write
= error_code
& PFERR_WRITE_MASK
;
3345 ASSERT(VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
3347 if (unlikely(error_code
& PFERR_RSVD_MASK
)) {
3348 r
= handle_mmio_page_fault(vcpu
, gpa
, error_code
, true);
3350 if (likely(r
!= RET_MMIO_PF_INVALID
))
3354 r
= mmu_topup_memory_caches(vcpu
);
3358 force_pt_level
= mapping_level_dirty_bitmap(vcpu
, gfn
);
3359 if (likely(!force_pt_level
)) {
3360 level
= mapping_level(vcpu
, gfn
);
3361 gfn
&= ~(KVM_PAGES_PER_HPAGE(level
) - 1);
3363 level
= PT_PAGE_TABLE_LEVEL
;
3365 if (fast_page_fault(vcpu
, gpa
, level
, error_code
))
3368 mmu_seq
= vcpu
->kvm
->mmu_notifier_seq
;
3371 if (try_async_pf(vcpu
, prefault
, gfn
, gpa
, &pfn
, write
, &map_writable
))
3374 if (handle_abnormal_pfn(vcpu
, 0, gfn
, pfn
, ACC_ALL
, &r
))
3377 spin_lock(&vcpu
->kvm
->mmu_lock
);
3378 if (mmu_notifier_retry(vcpu
->kvm
, mmu_seq
))
3380 make_mmu_pages_available(vcpu
);
3381 if (likely(!force_pt_level
))
3382 transparent_hugepage_adjust(vcpu
, &gfn
, &pfn
, &level
);
3383 r
= __direct_map(vcpu
, gpa
, write
, map_writable
,
3384 level
, gfn
, pfn
, prefault
);
3385 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3390 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3391 kvm_release_pfn_clean(pfn
);
3395 static void nonpaging_free(struct kvm_vcpu
*vcpu
)
3397 mmu_free_roots(vcpu
);
3400 static int nonpaging_init_context(struct kvm_vcpu
*vcpu
,
3401 struct kvm_mmu
*context
)
3403 context
->new_cr3
= nonpaging_new_cr3
;
3404 context
->page_fault
= nonpaging_page_fault
;
3405 context
->gva_to_gpa
= nonpaging_gva_to_gpa
;
3406 context
->free
= nonpaging_free
;
3407 context
->sync_page
= nonpaging_sync_page
;
3408 context
->invlpg
= nonpaging_invlpg
;
3409 context
->update_pte
= nonpaging_update_pte
;
3410 context
->root_level
= 0;
3411 context
->shadow_root_level
= PT32E_ROOT_LEVEL
;
3412 context
->root_hpa
= INVALID_PAGE
;
3413 context
->direct_map
= true;
3414 context
->nx
= false;
3418 void kvm_mmu_flush_tlb(struct kvm_vcpu
*vcpu
)
3420 ++vcpu
->stat
.tlb_flush
;
3421 kvm_make_request(KVM_REQ_TLB_FLUSH
, vcpu
);
3423 EXPORT_SYMBOL_GPL(kvm_mmu_flush_tlb
);
3425 static void paging_new_cr3(struct kvm_vcpu
*vcpu
)
3427 pgprintk("%s: cr3 %lx\n", __func__
, kvm_read_cr3(vcpu
));
3428 mmu_free_roots(vcpu
);
3431 static unsigned long get_cr3(struct kvm_vcpu
*vcpu
)
3433 return kvm_read_cr3(vcpu
);
3436 static void inject_page_fault(struct kvm_vcpu
*vcpu
,
3437 struct x86_exception
*fault
)
3439 vcpu
->arch
.mmu
.inject_page_fault(vcpu
, fault
);
3442 static void paging_free(struct kvm_vcpu
*vcpu
)
3444 nonpaging_free(vcpu
);
3447 static bool sync_mmio_spte(struct kvm
*kvm
, u64
*sptep
, gfn_t gfn
,
3448 unsigned access
, int *nr_present
)
3450 if (unlikely(is_mmio_spte(*sptep
))) {
3451 if (gfn
!= get_mmio_spte_gfn(*sptep
)) {
3452 mmu_spte_clear_no_track(sptep
);
3457 mark_mmio_spte(kvm
, sptep
, gfn
, access
);
3464 static inline bool is_last_gpte(struct kvm_mmu
*mmu
, unsigned level
, unsigned gpte
)
3469 index
|= (gpte
& PT_PAGE_SIZE_MASK
) >> (PT_PAGE_SIZE_SHIFT
- 2);
3470 return mmu
->last_pte_bitmap
& (1 << index
);
3473 #define PTTYPE_EPT 18 /* arbitrary */
3474 #define PTTYPE PTTYPE_EPT
3475 #include "paging_tmpl.h"
3479 #include "paging_tmpl.h"
3483 #include "paging_tmpl.h"
3486 static void reset_rsvds_bits_mask(struct kvm_vcpu
*vcpu
,
3487 struct kvm_mmu
*context
)
3489 int maxphyaddr
= cpuid_maxphyaddr(vcpu
);
3490 u64 exb_bit_rsvd
= 0;
3492 context
->bad_mt_xwr
= 0;
3495 exb_bit_rsvd
= rsvd_bits(63, 63);
3496 switch (context
->root_level
) {
3497 case PT32_ROOT_LEVEL
:
3498 /* no rsvd bits for 2 level 4K page table entries */
3499 context
->rsvd_bits_mask
[0][1] = 0;
3500 context
->rsvd_bits_mask
[0][0] = 0;
3501 context
->rsvd_bits_mask
[1][0] = context
->rsvd_bits_mask
[0][0];
3503 if (!is_pse(vcpu
)) {
3504 context
->rsvd_bits_mask
[1][1] = 0;
3508 if (is_cpuid_PSE36())
3509 /* 36bits PSE 4MB page */
3510 context
->rsvd_bits_mask
[1][1] = rsvd_bits(17, 21);
3512 /* 32 bits PSE 4MB page */
3513 context
->rsvd_bits_mask
[1][1] = rsvd_bits(13, 21);
3515 case PT32E_ROOT_LEVEL
:
3516 context
->rsvd_bits_mask
[0][2] =
3517 rsvd_bits(maxphyaddr
, 63) |
3518 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
3519 context
->rsvd_bits_mask
[0][1] = exb_bit_rsvd
|
3520 rsvd_bits(maxphyaddr
, 62); /* PDE */
3521 context
->rsvd_bits_mask
[0][0] = exb_bit_rsvd
|
3522 rsvd_bits(maxphyaddr
, 62); /* PTE */
3523 context
->rsvd_bits_mask
[1][1] = exb_bit_rsvd
|
3524 rsvd_bits(maxphyaddr
, 62) |
3525 rsvd_bits(13, 20); /* large page */
3526 context
->rsvd_bits_mask
[1][0] = context
->rsvd_bits_mask
[0][0];
3528 case PT64_ROOT_LEVEL
:
3529 context
->rsvd_bits_mask
[0][3] = exb_bit_rsvd
|
3530 rsvd_bits(maxphyaddr
, 51) | rsvd_bits(7, 8);
3531 context
->rsvd_bits_mask
[0][2] = exb_bit_rsvd
|
3532 rsvd_bits(maxphyaddr
, 51) | rsvd_bits(7, 8);
3533 context
->rsvd_bits_mask
[0][1] = exb_bit_rsvd
|
3534 rsvd_bits(maxphyaddr
, 51);
3535 context
->rsvd_bits_mask
[0][0] = exb_bit_rsvd
|
3536 rsvd_bits(maxphyaddr
, 51);
3537 context
->rsvd_bits_mask
[1][3] = context
->rsvd_bits_mask
[0][3];
3538 context
->rsvd_bits_mask
[1][2] = exb_bit_rsvd
|
3539 rsvd_bits(maxphyaddr
, 51) |
3541 context
->rsvd_bits_mask
[1][1] = exb_bit_rsvd
|
3542 rsvd_bits(maxphyaddr
, 51) |
3543 rsvd_bits(13, 20); /* large page */
3544 context
->rsvd_bits_mask
[1][0] = context
->rsvd_bits_mask
[0][0];
3549 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu
*vcpu
,
3550 struct kvm_mmu
*context
, bool execonly
)
3552 int maxphyaddr
= cpuid_maxphyaddr(vcpu
);
3555 context
->rsvd_bits_mask
[0][3] =
3556 rsvd_bits(maxphyaddr
, 51) | rsvd_bits(3, 7);
3557 context
->rsvd_bits_mask
[0][2] =
3558 rsvd_bits(maxphyaddr
, 51) | rsvd_bits(3, 6);
3559 context
->rsvd_bits_mask
[0][1] =
3560 rsvd_bits(maxphyaddr
, 51) | rsvd_bits(3, 6);
3561 context
->rsvd_bits_mask
[0][0] = rsvd_bits(maxphyaddr
, 51);
3564 context
->rsvd_bits_mask
[1][3] = context
->rsvd_bits_mask
[0][3];
3565 context
->rsvd_bits_mask
[1][2] =
3566 rsvd_bits(maxphyaddr
, 51) | rsvd_bits(12, 29);
3567 context
->rsvd_bits_mask
[1][1] =
3568 rsvd_bits(maxphyaddr
, 51) | rsvd_bits(12, 20);
3569 context
->rsvd_bits_mask
[1][0] = context
->rsvd_bits_mask
[0][0];
3571 for (pte
= 0; pte
< 64; pte
++) {
3572 int rwx_bits
= pte
& 7;
3574 if (mt
== 0x2 || mt
== 0x3 || mt
== 0x7 ||
3575 rwx_bits
== 0x2 || rwx_bits
== 0x6 ||
3576 (rwx_bits
== 0x4 && !execonly
))
3577 context
->bad_mt_xwr
|= (1ull << pte
);
3581 static void update_permission_bitmask(struct kvm_vcpu
*vcpu
,
3582 struct kvm_mmu
*mmu
, bool ept
)
3584 unsigned bit
, byte
, pfec
;
3586 bool fault
, x
, w
, u
, wf
, uf
, ff
, smep
;
3588 smep
= kvm_read_cr4_bits(vcpu
, X86_CR4_SMEP
);
3589 for (byte
= 0; byte
< ARRAY_SIZE(mmu
->permissions
); ++byte
) {
3592 wf
= pfec
& PFERR_WRITE_MASK
;
3593 uf
= pfec
& PFERR_USER_MASK
;
3594 ff
= pfec
& PFERR_FETCH_MASK
;
3595 for (bit
= 0; bit
< 8; ++bit
) {
3596 x
= bit
& ACC_EXEC_MASK
;
3597 w
= bit
& ACC_WRITE_MASK
;
3598 u
= bit
& ACC_USER_MASK
;
3601 /* Not really needed: !nx will cause pte.nx to fault */
3603 /* Allow supervisor writes if !cr0.wp */
3604 w
|= !is_write_protection(vcpu
) && !uf
;
3605 /* Disallow supervisor fetches of user code if cr4.smep */
3606 x
&= !(smep
&& u
&& !uf
);
3608 /* Not really needed: no U/S accesses on ept */
3611 fault
= (ff
&& !x
) || (uf
&& !u
) || (wf
&& !w
);
3612 map
|= fault
<< bit
;
3614 mmu
->permissions
[byte
] = map
;
3618 static void update_last_pte_bitmap(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
)
3621 unsigned level
, root_level
= mmu
->root_level
;
3622 const unsigned ps_set_index
= 1 << 2; /* bit 2 of index: ps */
3624 if (root_level
== PT32E_ROOT_LEVEL
)
3626 /* PT_PAGE_TABLE_LEVEL always terminates */
3627 map
= 1 | (1 << ps_set_index
);
3628 for (level
= PT_DIRECTORY_LEVEL
; level
<= root_level
; ++level
) {
3629 if (level
<= PT_PDPE_LEVEL
3630 && (mmu
->root_level
>= PT32E_ROOT_LEVEL
|| is_pse(vcpu
)))
3631 map
|= 1 << (ps_set_index
| (level
- 1));
3633 mmu
->last_pte_bitmap
= map
;
3636 static int paging64_init_context_common(struct kvm_vcpu
*vcpu
,
3637 struct kvm_mmu
*context
,
3640 context
->nx
= is_nx(vcpu
);
3641 context
->root_level
= level
;
3643 reset_rsvds_bits_mask(vcpu
, context
);
3644 update_permission_bitmask(vcpu
, context
, false);
3645 update_last_pte_bitmap(vcpu
, context
);
3647 ASSERT(is_pae(vcpu
));
3648 context
->new_cr3
= paging_new_cr3
;
3649 context
->page_fault
= paging64_page_fault
;
3650 context
->gva_to_gpa
= paging64_gva_to_gpa
;
3651 context
->sync_page
= paging64_sync_page
;
3652 context
->invlpg
= paging64_invlpg
;
3653 context
->update_pte
= paging64_update_pte
;
3654 context
->free
= paging_free
;
3655 context
->shadow_root_level
= level
;
3656 context
->root_hpa
= INVALID_PAGE
;
3657 context
->direct_map
= false;
3661 static int paging64_init_context(struct kvm_vcpu
*vcpu
,
3662 struct kvm_mmu
*context
)
3664 return paging64_init_context_common(vcpu
, context
, PT64_ROOT_LEVEL
);
3667 static int paging32_init_context(struct kvm_vcpu
*vcpu
,
3668 struct kvm_mmu
*context
)
3670 context
->nx
= false;
3671 context
->root_level
= PT32_ROOT_LEVEL
;
3673 reset_rsvds_bits_mask(vcpu
, context
);
3674 update_permission_bitmask(vcpu
, context
, false);
3675 update_last_pte_bitmap(vcpu
, context
);
3677 context
->new_cr3
= paging_new_cr3
;
3678 context
->page_fault
= paging32_page_fault
;
3679 context
->gva_to_gpa
= paging32_gva_to_gpa
;
3680 context
->free
= paging_free
;
3681 context
->sync_page
= paging32_sync_page
;
3682 context
->invlpg
= paging32_invlpg
;
3683 context
->update_pte
= paging32_update_pte
;
3684 context
->shadow_root_level
= PT32E_ROOT_LEVEL
;
3685 context
->root_hpa
= INVALID_PAGE
;
3686 context
->direct_map
= false;
3690 static int paging32E_init_context(struct kvm_vcpu
*vcpu
,
3691 struct kvm_mmu
*context
)
3693 return paging64_init_context_common(vcpu
, context
, PT32E_ROOT_LEVEL
);
3696 static int init_kvm_tdp_mmu(struct kvm_vcpu
*vcpu
)
3698 struct kvm_mmu
*context
= vcpu
->arch
.walk_mmu
;
3700 context
->base_role
.word
= 0;
3701 context
->new_cr3
= nonpaging_new_cr3
;
3702 context
->page_fault
= tdp_page_fault
;
3703 context
->free
= nonpaging_free
;
3704 context
->sync_page
= nonpaging_sync_page
;
3705 context
->invlpg
= nonpaging_invlpg
;
3706 context
->update_pte
= nonpaging_update_pte
;
3707 context
->shadow_root_level
= kvm_x86_ops
->get_tdp_level();
3708 context
->root_hpa
= INVALID_PAGE
;
3709 context
->direct_map
= true;
3710 context
->set_cr3
= kvm_x86_ops
->set_tdp_cr3
;
3711 context
->get_cr3
= get_cr3
;
3712 context
->get_pdptr
= kvm_pdptr_read
;
3713 context
->inject_page_fault
= kvm_inject_page_fault
;
3715 if (!is_paging(vcpu
)) {
3716 context
->nx
= false;
3717 context
->gva_to_gpa
= nonpaging_gva_to_gpa
;
3718 context
->root_level
= 0;
3719 } else if (is_long_mode(vcpu
)) {
3720 context
->nx
= is_nx(vcpu
);
3721 context
->root_level
= PT64_ROOT_LEVEL
;
3722 reset_rsvds_bits_mask(vcpu
, context
);
3723 context
->gva_to_gpa
= paging64_gva_to_gpa
;
3724 } else if (is_pae(vcpu
)) {
3725 context
->nx
= is_nx(vcpu
);
3726 context
->root_level
= PT32E_ROOT_LEVEL
;
3727 reset_rsvds_bits_mask(vcpu
, context
);
3728 context
->gva_to_gpa
= paging64_gva_to_gpa
;
3730 context
->nx
= false;
3731 context
->root_level
= PT32_ROOT_LEVEL
;
3732 reset_rsvds_bits_mask(vcpu
, context
);
3733 context
->gva_to_gpa
= paging32_gva_to_gpa
;
3736 update_permission_bitmask(vcpu
, context
, false);
3737 update_last_pte_bitmap(vcpu
, context
);
3742 int kvm_init_shadow_mmu(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*context
)
3745 bool smep
= kvm_read_cr4_bits(vcpu
, X86_CR4_SMEP
);
3747 ASSERT(!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
3749 if (!is_paging(vcpu
))
3750 r
= nonpaging_init_context(vcpu
, context
);
3751 else if (is_long_mode(vcpu
))
3752 r
= paging64_init_context(vcpu
, context
);
3753 else if (is_pae(vcpu
))
3754 r
= paging32E_init_context(vcpu
, context
);
3756 r
= paging32_init_context(vcpu
, context
);
3758 vcpu
->arch
.mmu
.base_role
.nxe
= is_nx(vcpu
);
3759 vcpu
->arch
.mmu
.base_role
.cr4_pae
= !!is_pae(vcpu
);
3760 vcpu
->arch
.mmu
.base_role
.cr0_wp
= is_write_protection(vcpu
);
3761 vcpu
->arch
.mmu
.base_role
.smep_andnot_wp
3762 = smep
&& !is_write_protection(vcpu
);
3766 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu
);
3768 int kvm_init_shadow_ept_mmu(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*context
,
3772 ASSERT(!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
3774 context
->shadow_root_level
= kvm_x86_ops
->get_tdp_level();
3777 context
->new_cr3
= paging_new_cr3
;
3778 context
->page_fault
= ept_page_fault
;
3779 context
->gva_to_gpa
= ept_gva_to_gpa
;
3780 context
->sync_page
= ept_sync_page
;
3781 context
->invlpg
= ept_invlpg
;
3782 context
->update_pte
= ept_update_pte
;
3783 context
->free
= paging_free
;
3784 context
->root_level
= context
->shadow_root_level
;
3785 context
->root_hpa
= INVALID_PAGE
;
3786 context
->direct_map
= false;
3788 update_permission_bitmask(vcpu
, context
, true);
3789 reset_rsvds_bits_mask_ept(vcpu
, context
, execonly
);
3793 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu
);
3795 static int init_kvm_softmmu(struct kvm_vcpu
*vcpu
)
3797 int r
= kvm_init_shadow_mmu(vcpu
, vcpu
->arch
.walk_mmu
);
3799 vcpu
->arch
.walk_mmu
->set_cr3
= kvm_x86_ops
->set_cr3
;
3800 vcpu
->arch
.walk_mmu
->get_cr3
= get_cr3
;
3801 vcpu
->arch
.walk_mmu
->get_pdptr
= kvm_pdptr_read
;
3802 vcpu
->arch
.walk_mmu
->inject_page_fault
= kvm_inject_page_fault
;
3807 static int init_kvm_nested_mmu(struct kvm_vcpu
*vcpu
)
3809 struct kvm_mmu
*g_context
= &vcpu
->arch
.nested_mmu
;
3811 g_context
->get_cr3
= get_cr3
;
3812 g_context
->get_pdptr
= kvm_pdptr_read
;
3813 g_context
->inject_page_fault
= kvm_inject_page_fault
;
3816 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3817 * translation of l2_gpa to l1_gpa addresses is done using the
3818 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3819 * functions between mmu and nested_mmu are swapped.
3821 if (!is_paging(vcpu
)) {
3822 g_context
->nx
= false;
3823 g_context
->root_level
= 0;
3824 g_context
->gva_to_gpa
= nonpaging_gva_to_gpa_nested
;
3825 } else if (is_long_mode(vcpu
)) {
3826 g_context
->nx
= is_nx(vcpu
);
3827 g_context
->root_level
= PT64_ROOT_LEVEL
;
3828 reset_rsvds_bits_mask(vcpu
, g_context
);
3829 g_context
->gva_to_gpa
= paging64_gva_to_gpa_nested
;
3830 } else if (is_pae(vcpu
)) {
3831 g_context
->nx
= is_nx(vcpu
);
3832 g_context
->root_level
= PT32E_ROOT_LEVEL
;
3833 reset_rsvds_bits_mask(vcpu
, g_context
);
3834 g_context
->gva_to_gpa
= paging64_gva_to_gpa_nested
;
3836 g_context
->nx
= false;
3837 g_context
->root_level
= PT32_ROOT_LEVEL
;
3838 reset_rsvds_bits_mask(vcpu
, g_context
);
3839 g_context
->gva_to_gpa
= paging32_gva_to_gpa_nested
;
3842 update_permission_bitmask(vcpu
, g_context
, false);
3843 update_last_pte_bitmap(vcpu
, g_context
);
3848 static int init_kvm_mmu(struct kvm_vcpu
*vcpu
)
3850 if (mmu_is_nested(vcpu
))
3851 return init_kvm_nested_mmu(vcpu
);
3852 else if (tdp_enabled
)
3853 return init_kvm_tdp_mmu(vcpu
);
3855 return init_kvm_softmmu(vcpu
);
3858 static void destroy_kvm_mmu(struct kvm_vcpu
*vcpu
)
3861 if (VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
3862 /* mmu.free() should set root_hpa = INVALID_PAGE */
3863 vcpu
->arch
.mmu
.free(vcpu
);
3866 int kvm_mmu_reset_context(struct kvm_vcpu
*vcpu
)
3868 destroy_kvm_mmu(vcpu
);
3869 return init_kvm_mmu(vcpu
);
3871 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context
);
3873 int kvm_mmu_load(struct kvm_vcpu
*vcpu
)
3877 r
= mmu_topup_memory_caches(vcpu
);
3880 r
= mmu_alloc_roots(vcpu
);
3881 kvm_mmu_sync_roots(vcpu
);
3884 /* set_cr3() should ensure TLB has been flushed */
3885 vcpu
->arch
.mmu
.set_cr3(vcpu
, vcpu
->arch
.mmu
.root_hpa
);
3889 EXPORT_SYMBOL_GPL(kvm_mmu_load
);
3891 void kvm_mmu_unload(struct kvm_vcpu
*vcpu
)
3893 mmu_free_roots(vcpu
);
3895 EXPORT_SYMBOL_GPL(kvm_mmu_unload
);
3897 static void mmu_pte_write_new_pte(struct kvm_vcpu
*vcpu
,
3898 struct kvm_mmu_page
*sp
, u64
*spte
,
3901 if (sp
->role
.level
!= PT_PAGE_TABLE_LEVEL
) {
3902 ++vcpu
->kvm
->stat
.mmu_pde_zapped
;
3906 ++vcpu
->kvm
->stat
.mmu_pte_updated
;
3907 vcpu
->arch
.mmu
.update_pte(vcpu
, sp
, spte
, new);
3910 static bool need_remote_flush(u64 old
, u64
new)
3912 if (!is_shadow_present_pte(old
))
3914 if (!is_shadow_present_pte(new))
3916 if ((old
^ new) & PT64_BASE_ADDR_MASK
)
3918 old
^= shadow_nx_mask
;
3919 new ^= shadow_nx_mask
;
3920 return (old
& ~new & PT64_PERM_MASK
) != 0;
3923 static void mmu_pte_write_flush_tlb(struct kvm_vcpu
*vcpu
, bool zap_page
,
3924 bool remote_flush
, bool local_flush
)
3930 kvm_flush_remote_tlbs(vcpu
->kvm
);
3931 else if (local_flush
)
3932 kvm_mmu_flush_tlb(vcpu
);
3935 static u64
mmu_pte_write_fetch_gpte(struct kvm_vcpu
*vcpu
, gpa_t
*gpa
,
3936 const u8
*new, int *bytes
)
3942 * Assume that the pte write on a page table of the same type
3943 * as the current vcpu paging mode since we update the sptes only
3944 * when they have the same mode.
3946 if (is_pae(vcpu
) && *bytes
== 4) {
3947 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3950 r
= kvm_read_guest(vcpu
->kvm
, *gpa
, &gentry
, 8);
3953 new = (const u8
*)&gentry
;
3958 gentry
= *(const u32
*)new;
3961 gentry
= *(const u64
*)new;
3972 * If we're seeing too many writes to a page, it may no longer be a page table,
3973 * or we may be forking, in which case it is better to unmap the page.
3975 static bool detect_write_flooding(struct kvm_mmu_page
*sp
)
3978 * Skip write-flooding detected for the sp whose level is 1, because
3979 * it can become unsync, then the guest page is not write-protected.
3981 if (sp
->role
.level
== PT_PAGE_TABLE_LEVEL
)
3984 return ++sp
->write_flooding_count
>= 3;
3988 * Misaligned accesses are too much trouble to fix up; also, they usually
3989 * indicate a page is not used as a page table.
3991 static bool detect_write_misaligned(struct kvm_mmu_page
*sp
, gpa_t gpa
,
3994 unsigned offset
, pte_size
, misaligned
;
3996 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3997 gpa
, bytes
, sp
->role
.word
);
3999 offset
= offset_in_page(gpa
);
4000 pte_size
= sp
->role
.cr4_pae
? 8 : 4;
4003 * Sometimes, the OS only writes the last one bytes to update status
4004 * bits, for example, in linux, andb instruction is used in clear_bit().
4006 if (!(offset
& (pte_size
- 1)) && bytes
== 1)
4009 misaligned
= (offset
^ (offset
+ bytes
- 1)) & ~(pte_size
- 1);
4010 misaligned
|= bytes
< 4;
4015 static u64
*get_written_sptes(struct kvm_mmu_page
*sp
, gpa_t gpa
, int *nspte
)
4017 unsigned page_offset
, quadrant
;
4021 page_offset
= offset_in_page(gpa
);
4022 level
= sp
->role
.level
;
4024 if (!sp
->role
.cr4_pae
) {
4025 page_offset
<<= 1; /* 32->64 */
4027 * A 32-bit pde maps 4MB while the shadow pdes map
4028 * only 2MB. So we need to double the offset again
4029 * and zap two pdes instead of one.
4031 if (level
== PT32_ROOT_LEVEL
) {
4032 page_offset
&= ~7; /* kill rounding error */
4036 quadrant
= page_offset
>> PAGE_SHIFT
;
4037 page_offset
&= ~PAGE_MASK
;
4038 if (quadrant
!= sp
->role
.quadrant
)
4042 spte
= &sp
->spt
[page_offset
/ sizeof(*spte
)];
4046 void kvm_mmu_pte_write(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4047 const u8
*new, int bytes
)
4049 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
4050 union kvm_mmu_page_role mask
= { .word
= 0 };
4051 struct kvm_mmu_page
*sp
;
4052 LIST_HEAD(invalid_list
);
4053 u64 entry
, gentry
, *spte
;
4055 bool remote_flush
, local_flush
, zap_page
;
4058 * If we don't have indirect shadow pages, it means no page is
4059 * write-protected, so we can exit simply.
4061 if (!ACCESS_ONCE(vcpu
->kvm
->arch
.indirect_shadow_pages
))
4064 zap_page
= remote_flush
= local_flush
= false;
4066 pgprintk("%s: gpa %llx bytes %d\n", __func__
, gpa
, bytes
);
4068 gentry
= mmu_pte_write_fetch_gpte(vcpu
, &gpa
, new, &bytes
);
4071 * No need to care whether allocation memory is successful
4072 * or not since pte prefetch is skiped if it does not have
4073 * enough objects in the cache.
4075 mmu_topup_memory_caches(vcpu
);
4077 spin_lock(&vcpu
->kvm
->mmu_lock
);
4078 ++vcpu
->kvm
->stat
.mmu_pte_write
;
4079 kvm_mmu_audit(vcpu
, AUDIT_PRE_PTE_WRITE
);
4081 mask
.cr0_wp
= mask
.cr4_pae
= mask
.nxe
= mask
.smep_andnot_wp
= 1;
4082 for_each_gfn_indirect_valid_sp(vcpu
->kvm
, sp
, gfn
) {
4083 if (detect_write_misaligned(sp
, gpa
, bytes
) ||
4084 detect_write_flooding(sp
)) {
4085 zap_page
|= !!kvm_mmu_prepare_zap_page(vcpu
->kvm
, sp
,
4087 ++vcpu
->kvm
->stat
.mmu_flooded
;
4091 spte
= get_written_sptes(sp
, gpa
, &npte
);
4098 mmu_page_zap_pte(vcpu
->kvm
, sp
, spte
);
4100 !((sp
->role
.word
^ vcpu
->arch
.mmu
.base_role
.word
)
4101 & mask
.word
) && rmap_can_add(vcpu
))
4102 mmu_pte_write_new_pte(vcpu
, sp
, spte
, &gentry
);
4103 if (need_remote_flush(entry
, *spte
))
4104 remote_flush
= true;
4108 mmu_pte_write_flush_tlb(vcpu
, zap_page
, remote_flush
, local_flush
);
4109 kvm_mmu_commit_zap_page(vcpu
->kvm
, &invalid_list
);
4110 kvm_mmu_audit(vcpu
, AUDIT_POST_PTE_WRITE
);
4111 spin_unlock(&vcpu
->kvm
->mmu_lock
);
4114 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu
*vcpu
, gva_t gva
)
4119 if (vcpu
->arch
.mmu
.direct_map
)
4122 gpa
= kvm_mmu_gva_to_gpa_read(vcpu
, gva
, NULL
);
4124 r
= kvm_mmu_unprotect_page(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
4128 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt
);
4130 static void make_mmu_pages_available(struct kvm_vcpu
*vcpu
)
4132 LIST_HEAD(invalid_list
);
4134 if (likely(kvm_mmu_available_pages(vcpu
->kvm
) >= KVM_MIN_FREE_MMU_PAGES
))
4137 while (kvm_mmu_available_pages(vcpu
->kvm
) < KVM_REFILL_PAGES
) {
4138 if (!prepare_zap_oldest_mmu_page(vcpu
->kvm
, &invalid_list
))
4141 ++vcpu
->kvm
->stat
.mmu_recycled
;
4143 kvm_mmu_commit_zap_page(vcpu
->kvm
, &invalid_list
);
4146 static bool is_mmio_page_fault(struct kvm_vcpu
*vcpu
, gva_t addr
)
4148 if (vcpu
->arch
.mmu
.direct_map
|| mmu_is_nested(vcpu
))
4149 return vcpu_match_mmio_gpa(vcpu
, addr
);
4151 return vcpu_match_mmio_gva(vcpu
, addr
);
4154 int kvm_mmu_page_fault(struct kvm_vcpu
*vcpu
, gva_t cr2
, u32 error_code
,
4155 void *insn
, int insn_len
)
4157 int r
, emulation_type
= EMULTYPE_RETRY
;
4158 enum emulation_result er
;
4160 r
= vcpu
->arch
.mmu
.page_fault(vcpu
, cr2
, error_code
, false);
4169 if (is_mmio_page_fault(vcpu
, cr2
))
4172 er
= x86_emulate_instruction(vcpu
, cr2
, emulation_type
, insn
, insn_len
);
4177 case EMULATE_USER_EXIT
:
4178 ++vcpu
->stat
.mmio_exits
;
4188 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault
);
4190 void kvm_mmu_invlpg(struct kvm_vcpu
*vcpu
, gva_t gva
)
4192 vcpu
->arch
.mmu
.invlpg(vcpu
, gva
);
4193 kvm_mmu_flush_tlb(vcpu
);
4194 ++vcpu
->stat
.invlpg
;
4196 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg
);
4198 void kvm_enable_tdp(void)
4202 EXPORT_SYMBOL_GPL(kvm_enable_tdp
);
4204 void kvm_disable_tdp(void)
4206 tdp_enabled
= false;
4208 EXPORT_SYMBOL_GPL(kvm_disable_tdp
);
4210 static void free_mmu_pages(struct kvm_vcpu
*vcpu
)
4212 free_page((unsigned long)vcpu
->arch
.mmu
.pae_root
);
4213 if (vcpu
->arch
.mmu
.lm_root
!= NULL
)
4214 free_page((unsigned long)vcpu
->arch
.mmu
.lm_root
);
4217 static int alloc_mmu_pages(struct kvm_vcpu
*vcpu
)
4225 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4226 * Therefore we need to allocate shadow page tables in the first
4227 * 4GB of memory, which happens to fit the DMA32 zone.
4229 page
= alloc_page(GFP_KERNEL
| __GFP_DMA32
);
4233 vcpu
->arch
.mmu
.pae_root
= page_address(page
);
4234 for (i
= 0; i
< 4; ++i
)
4235 vcpu
->arch
.mmu
.pae_root
[i
] = INVALID_PAGE
;
4240 int kvm_mmu_create(struct kvm_vcpu
*vcpu
)
4244 vcpu
->arch
.walk_mmu
= &vcpu
->arch
.mmu
;
4245 vcpu
->arch
.mmu
.root_hpa
= INVALID_PAGE
;
4246 vcpu
->arch
.mmu
.translate_gpa
= translate_gpa
;
4247 vcpu
->arch
.nested_mmu
.translate_gpa
= translate_nested_gpa
;
4249 return alloc_mmu_pages(vcpu
);
4252 int kvm_mmu_setup(struct kvm_vcpu
*vcpu
)
4255 ASSERT(!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
4257 return init_kvm_mmu(vcpu
);
4260 void kvm_mmu_slot_remove_write_access(struct kvm
*kvm
, int slot
)
4262 struct kvm_memory_slot
*memslot
;
4266 memslot
= id_to_memslot(kvm
->memslots
, slot
);
4267 last_gfn
= memslot
->base_gfn
+ memslot
->npages
- 1;
4269 spin_lock(&kvm
->mmu_lock
);
4271 for (i
= PT_PAGE_TABLE_LEVEL
;
4272 i
< PT_PAGE_TABLE_LEVEL
+ KVM_NR_PAGE_SIZES
; ++i
) {
4273 unsigned long *rmapp
;
4274 unsigned long last_index
, index
;
4276 rmapp
= memslot
->arch
.rmap
[i
- PT_PAGE_TABLE_LEVEL
];
4277 last_index
= gfn_to_index(last_gfn
, memslot
->base_gfn
, i
);
4279 for (index
= 0; index
<= last_index
; ++index
, ++rmapp
) {
4281 __rmap_write_protect(kvm
, rmapp
, false);
4283 if (need_resched() || spin_needbreak(&kvm
->mmu_lock
)) {
4284 kvm_flush_remote_tlbs(kvm
);
4285 cond_resched_lock(&kvm
->mmu_lock
);
4290 kvm_flush_remote_tlbs(kvm
);
4291 spin_unlock(&kvm
->mmu_lock
);
4294 #define BATCH_ZAP_PAGES 10
4295 static void kvm_zap_obsolete_pages(struct kvm
*kvm
)
4297 struct kvm_mmu_page
*sp
, *node
;
4301 list_for_each_entry_safe_reverse(sp
, node
,
4302 &kvm
->arch
.active_mmu_pages
, link
) {
4306 * No obsolete page exists before new created page since
4307 * active_mmu_pages is the FIFO list.
4309 if (!is_obsolete_sp(kvm
, sp
))
4313 * Since we are reversely walking the list and the invalid
4314 * list will be moved to the head, skip the invalid page
4315 * can help us to avoid the infinity list walking.
4317 if (sp
->role
.invalid
)
4321 * Need not flush tlb since we only zap the sp with invalid
4322 * generation number.
4324 if (batch
>= BATCH_ZAP_PAGES
&&
4325 cond_resched_lock(&kvm
->mmu_lock
)) {
4330 ret
= kvm_mmu_prepare_zap_page(kvm
, sp
,
4331 &kvm
->arch
.zapped_obsolete_pages
);
4339 * Should flush tlb before free page tables since lockless-walking
4340 * may use the pages.
4342 kvm_mmu_commit_zap_page(kvm
, &kvm
->arch
.zapped_obsolete_pages
);
4346 * Fast invalidate all shadow pages and use lock-break technique
4347 * to zap obsolete pages.
4349 * It's required when memslot is being deleted or VM is being
4350 * destroyed, in these cases, we should ensure that KVM MMU does
4351 * not use any resource of the being-deleted slot or all slots
4352 * after calling the function.
4354 void kvm_mmu_invalidate_zap_all_pages(struct kvm
*kvm
)
4356 spin_lock(&kvm
->mmu_lock
);
4357 trace_kvm_mmu_invalidate_zap_all_pages(kvm
);
4358 kvm
->arch
.mmu_valid_gen
++;
4361 * Notify all vcpus to reload its shadow page table
4362 * and flush TLB. Then all vcpus will switch to new
4363 * shadow page table with the new mmu_valid_gen.
4365 * Note: we should do this under the protection of
4366 * mmu-lock, otherwise, vcpu would purge shadow page
4367 * but miss tlb flush.
4369 kvm_reload_remote_mmus(kvm
);
4371 kvm_zap_obsolete_pages(kvm
);
4372 spin_unlock(&kvm
->mmu_lock
);
4375 static bool kvm_has_zapped_obsolete_pages(struct kvm
*kvm
)
4377 return unlikely(!list_empty_careful(&kvm
->arch
.zapped_obsolete_pages
));
4380 void kvm_mmu_invalidate_mmio_sptes(struct kvm
*kvm
)
4383 * The very rare case: if the generation-number is round,
4384 * zap all shadow pages.
4386 if (unlikely(kvm_current_mmio_generation(kvm
) == 0)) {
4387 printk_ratelimited(KERN_DEBUG
"kvm: zapping shadow pages for mmio generation wraparound\n");
4388 kvm_mmu_invalidate_zap_all_pages(kvm
);
4392 static unsigned long
4393 mmu_shrink_scan(struct shrinker
*shrink
, struct shrink_control
*sc
)
4396 int nr_to_scan
= sc
->nr_to_scan
;
4397 unsigned long freed
= 0;
4399 raw_spin_lock(&kvm_lock
);
4401 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
4403 LIST_HEAD(invalid_list
);
4406 * Never scan more than sc->nr_to_scan VM instances.
4407 * Will not hit this condition practically since we do not try
4408 * to shrink more than one VM and it is very unlikely to see
4409 * !n_used_mmu_pages so many times.
4414 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4415 * here. We may skip a VM instance errorneosly, but we do not
4416 * want to shrink a VM that only started to populate its MMU
4419 if (!kvm
->arch
.n_used_mmu_pages
&&
4420 !kvm_has_zapped_obsolete_pages(kvm
))
4423 idx
= srcu_read_lock(&kvm
->srcu
);
4424 spin_lock(&kvm
->mmu_lock
);
4426 if (kvm_has_zapped_obsolete_pages(kvm
)) {
4427 kvm_mmu_commit_zap_page(kvm
,
4428 &kvm
->arch
.zapped_obsolete_pages
);
4432 if (prepare_zap_oldest_mmu_page(kvm
, &invalid_list
))
4434 kvm_mmu_commit_zap_page(kvm
, &invalid_list
);
4437 spin_unlock(&kvm
->mmu_lock
);
4438 srcu_read_unlock(&kvm
->srcu
, idx
);
4441 * unfair on small ones
4442 * per-vm shrinkers cry out
4443 * sadness comes quickly
4445 list_move_tail(&kvm
->vm_list
, &vm_list
);
4449 raw_spin_unlock(&kvm_lock
);
4454 static unsigned long
4455 mmu_shrink_count(struct shrinker
*shrink
, struct shrink_control
*sc
)
4457 return percpu_counter_read_positive(&kvm_total_used_mmu_pages
);
4460 static struct shrinker mmu_shrinker
= {
4461 .count_objects
= mmu_shrink_count
,
4462 .scan_objects
= mmu_shrink_scan
,
4463 .seeks
= DEFAULT_SEEKS
* 10,
4466 static void mmu_destroy_caches(void)
4468 if (pte_list_desc_cache
)
4469 kmem_cache_destroy(pte_list_desc_cache
);
4470 if (mmu_page_header_cache
)
4471 kmem_cache_destroy(mmu_page_header_cache
);
4474 int kvm_mmu_module_init(void)
4476 pte_list_desc_cache
= kmem_cache_create("pte_list_desc",
4477 sizeof(struct pte_list_desc
),
4479 if (!pte_list_desc_cache
)
4482 mmu_page_header_cache
= kmem_cache_create("kvm_mmu_page_header",
4483 sizeof(struct kvm_mmu_page
),
4485 if (!mmu_page_header_cache
)
4488 if (percpu_counter_init(&kvm_total_used_mmu_pages
, 0))
4491 register_shrinker(&mmu_shrinker
);
4496 mmu_destroy_caches();
4501 * Caculate mmu pages needed for kvm.
4503 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm
*kvm
)
4505 unsigned int nr_mmu_pages
;
4506 unsigned int nr_pages
= 0;
4507 struct kvm_memslots
*slots
;
4508 struct kvm_memory_slot
*memslot
;
4510 slots
= kvm_memslots(kvm
);
4512 kvm_for_each_memslot(memslot
, slots
)
4513 nr_pages
+= memslot
->npages
;
4515 nr_mmu_pages
= nr_pages
* KVM_PERMILLE_MMU_PAGES
/ 1000;
4516 nr_mmu_pages
= max(nr_mmu_pages
,
4517 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES
);
4519 return nr_mmu_pages
;
4522 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu
*vcpu
, u64 addr
, u64 sptes
[4])
4524 struct kvm_shadow_walk_iterator iterator
;
4528 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
4531 walk_shadow_page_lockless_begin(vcpu
);
4532 for_each_shadow_entry_lockless(vcpu
, addr
, iterator
, spte
) {
4533 sptes
[iterator
.level
-1] = spte
;
4535 if (!is_shadow_present_pte(spte
))
4538 walk_shadow_page_lockless_end(vcpu
);
4542 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy
);
4544 void kvm_mmu_destroy(struct kvm_vcpu
*vcpu
)
4548 destroy_kvm_mmu(vcpu
);
4549 free_mmu_pages(vcpu
);
4550 mmu_free_memory_caches(vcpu
);
4553 void kvm_mmu_module_exit(void)
4555 mmu_destroy_caches();
4556 percpu_counter_destroy(&kvm_total_used_mmu_pages
);
4557 unregister_shrinker(&mmu_shrinker
);
4558 mmu_audit_disable();