2 * Kernel-based Virtual Machine driver for Linux
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 * Yaniv Kamay <yaniv@qumranet.com>
11 * Avi Kivity <avi@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
17 #include <linux/kvm_host.h>
21 #include "kvm_cache_regs.h"
25 #include <linux/module.h>
26 #include <linux/mod_devicetable.h>
27 #include <linux/kernel.h>
28 #include <linux/vmalloc.h>
29 #include <linux/highmem.h>
30 #include <linux/sched.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/slab.h>
34 #include <asm/perf_event.h>
35 #include <asm/tlbflush.h>
37 #include <asm/kvm_para.h>
39 #include <asm/virtext.h>
42 #define __ex(x) __kvm_handle_fault_on_reboot(x)
44 MODULE_AUTHOR("Qumranet");
45 MODULE_LICENSE("GPL");
47 static const struct x86_cpu_id svm_cpu_id
[] = {
48 X86_FEATURE_MATCH(X86_FEATURE_SVM
),
51 MODULE_DEVICE_TABLE(x86cpu
, svm_cpu_id
);
53 #define IOPM_ALLOC_ORDER 2
54 #define MSRPM_ALLOC_ORDER 1
56 #define SEG_TYPE_LDT 2
57 #define SEG_TYPE_BUSY_TSS16 3
59 #define SVM_FEATURE_NPT (1 << 0)
60 #define SVM_FEATURE_LBRV (1 << 1)
61 #define SVM_FEATURE_SVML (1 << 2)
62 #define SVM_FEATURE_NRIP (1 << 3)
63 #define SVM_FEATURE_TSC_RATE (1 << 4)
64 #define SVM_FEATURE_VMCB_CLEAN (1 << 5)
65 #define SVM_FEATURE_FLUSH_ASID (1 << 6)
66 #define SVM_FEATURE_DECODE_ASSIST (1 << 7)
67 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
69 #define NESTED_EXIT_HOST 0 /* Exit handled on host level */
70 #define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
71 #define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
73 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
75 #define TSC_RATIO_RSVD 0xffffff0000000000ULL
76 #define TSC_RATIO_MIN 0x0000000000000001ULL
77 #define TSC_RATIO_MAX 0x000000ffffffffffULL
79 static bool erratum_383_found __read_mostly
;
81 static const u32 host_save_user_msrs
[] = {
83 MSR_STAR
, MSR_LSTAR
, MSR_CSTAR
, MSR_SYSCALL_MASK
, MSR_KERNEL_GS_BASE
,
86 MSR_IA32_SYSENTER_CS
, MSR_IA32_SYSENTER_ESP
, MSR_IA32_SYSENTER_EIP
,
89 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
99 /* These are the merged vectors */
102 /* gpa pointers to the real vectors */
106 /* A VMEXIT is required but not yet emulated */
109 /* cache for intercepts of the guest */
112 u32 intercept_exceptions
;
115 /* Nested Paging related state */
119 #define MSRPM_OFFSETS 16
120 static u32 msrpm_offsets
[MSRPM_OFFSETS
] __read_mostly
;
123 * Set osvw_len to higher value when updated Revision Guides
124 * are published and we know what the new status bits are
126 static uint64_t osvw_len
= 4, osvw_status
;
129 struct kvm_vcpu vcpu
;
131 unsigned long vmcb_pa
;
132 struct svm_cpu_data
*svm_data
;
133 uint64_t asid_generation
;
134 uint64_t sysenter_esp
;
135 uint64_t sysenter_eip
;
139 u64 host_user_msrs
[NR_HOST_SAVE_USER_MSRS
];
151 struct nested_state nested
;
155 unsigned int3_injected
;
156 unsigned long int3_rip
;
162 static DEFINE_PER_CPU(u64
, current_tsc_ratio
);
163 #define TSC_RATIO_DEFAULT 0x0100000000ULL
165 #define MSR_INVALID 0xffffffffU
167 static const struct svm_direct_access_msrs
{
168 u32 index
; /* Index of the MSR */
169 bool always
; /* True if intercept is always on */
170 } direct_access_msrs
[] = {
171 { .index
= MSR_STAR
, .always
= true },
172 { .index
= MSR_IA32_SYSENTER_CS
, .always
= true },
174 { .index
= MSR_GS_BASE
, .always
= true },
175 { .index
= MSR_FS_BASE
, .always
= true },
176 { .index
= MSR_KERNEL_GS_BASE
, .always
= true },
177 { .index
= MSR_LSTAR
, .always
= true },
178 { .index
= MSR_CSTAR
, .always
= true },
179 { .index
= MSR_SYSCALL_MASK
, .always
= true },
181 { .index
= MSR_IA32_LASTBRANCHFROMIP
, .always
= false },
182 { .index
= MSR_IA32_LASTBRANCHTOIP
, .always
= false },
183 { .index
= MSR_IA32_LASTINTFROMIP
, .always
= false },
184 { .index
= MSR_IA32_LASTINTTOIP
, .always
= false },
185 { .index
= MSR_INVALID
, .always
= false },
188 /* enable NPT for AMD64 and X86 with PAE */
189 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
190 static bool npt_enabled
= true;
192 static bool npt_enabled
;
195 /* allow nested paging (virtualized MMU) for all guests */
196 static int npt
= true;
197 module_param(npt
, int, S_IRUGO
);
199 /* allow nested virtualization in KVM/SVM */
200 static int nested
= true;
201 module_param(nested
, int, S_IRUGO
);
203 static void svm_flush_tlb(struct kvm_vcpu
*vcpu
);
204 static void svm_complete_interrupts(struct vcpu_svm
*svm
);
206 static int nested_svm_exit_handled(struct vcpu_svm
*svm
);
207 static int nested_svm_intercept(struct vcpu_svm
*svm
);
208 static int nested_svm_vmexit(struct vcpu_svm
*svm
);
209 static int nested_svm_check_exception(struct vcpu_svm
*svm
, unsigned nr
,
210 bool has_error_code
, u32 error_code
);
211 static u64
__scale_tsc(u64 ratio
, u64 tsc
);
214 VMCB_INTERCEPTS
, /* Intercept vectors, TSC offset,
215 pause filter count */
216 VMCB_PERM_MAP
, /* IOPM Base and MSRPM Base */
217 VMCB_ASID
, /* ASID */
218 VMCB_INTR
, /* int_ctl, int_vector */
219 VMCB_NPT
, /* npt_en, nCR3, gPAT */
220 VMCB_CR
, /* CR0, CR3, CR4, EFER */
221 VMCB_DR
, /* DR6, DR7 */
222 VMCB_DT
, /* GDT, IDT */
223 VMCB_SEG
, /* CS, DS, SS, ES, CPL */
224 VMCB_CR2
, /* CR2 only */
225 VMCB_LBR
, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
229 /* TPR and CR2 are always written before VMRUN */
230 #define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
232 static inline void mark_all_dirty(struct vmcb
*vmcb
)
234 vmcb
->control
.clean
= 0;
237 static inline void mark_all_clean(struct vmcb
*vmcb
)
239 vmcb
->control
.clean
= ((1 << VMCB_DIRTY_MAX
) - 1)
240 & ~VMCB_ALWAYS_DIRTY_MASK
;
243 static inline void mark_dirty(struct vmcb
*vmcb
, int bit
)
245 vmcb
->control
.clean
&= ~(1 << bit
);
248 static inline struct vcpu_svm
*to_svm(struct kvm_vcpu
*vcpu
)
250 return container_of(vcpu
, struct vcpu_svm
, vcpu
);
253 static void recalc_intercepts(struct vcpu_svm
*svm
)
255 struct vmcb_control_area
*c
, *h
;
256 struct nested_state
*g
;
258 mark_dirty(svm
->vmcb
, VMCB_INTERCEPTS
);
260 if (!is_guest_mode(&svm
->vcpu
))
263 c
= &svm
->vmcb
->control
;
264 h
= &svm
->nested
.hsave
->control
;
267 c
->intercept_cr
= h
->intercept_cr
| g
->intercept_cr
;
268 c
->intercept_dr
= h
->intercept_dr
| g
->intercept_dr
;
269 c
->intercept_exceptions
= h
->intercept_exceptions
| g
->intercept_exceptions
;
270 c
->intercept
= h
->intercept
| g
->intercept
;
273 static inline struct vmcb
*get_host_vmcb(struct vcpu_svm
*svm
)
275 if (is_guest_mode(&svm
->vcpu
))
276 return svm
->nested
.hsave
;
281 static inline void set_cr_intercept(struct vcpu_svm
*svm
, int bit
)
283 struct vmcb
*vmcb
= get_host_vmcb(svm
);
285 vmcb
->control
.intercept_cr
|= (1U << bit
);
287 recalc_intercepts(svm
);
290 static inline void clr_cr_intercept(struct vcpu_svm
*svm
, int bit
)
292 struct vmcb
*vmcb
= get_host_vmcb(svm
);
294 vmcb
->control
.intercept_cr
&= ~(1U << bit
);
296 recalc_intercepts(svm
);
299 static inline bool is_cr_intercept(struct vcpu_svm
*svm
, int bit
)
301 struct vmcb
*vmcb
= get_host_vmcb(svm
);
303 return vmcb
->control
.intercept_cr
& (1U << bit
);
306 static inline void set_dr_intercept(struct vcpu_svm
*svm
, int bit
)
308 struct vmcb
*vmcb
= get_host_vmcb(svm
);
310 vmcb
->control
.intercept_dr
|= (1U << bit
);
312 recalc_intercepts(svm
);
315 static inline void clr_dr_intercept(struct vcpu_svm
*svm
, int bit
)
317 struct vmcb
*vmcb
= get_host_vmcb(svm
);
319 vmcb
->control
.intercept_dr
&= ~(1U << bit
);
321 recalc_intercepts(svm
);
324 static inline void set_exception_intercept(struct vcpu_svm
*svm
, int bit
)
326 struct vmcb
*vmcb
= get_host_vmcb(svm
);
328 vmcb
->control
.intercept_exceptions
|= (1U << bit
);
330 recalc_intercepts(svm
);
333 static inline void clr_exception_intercept(struct vcpu_svm
*svm
, int bit
)
335 struct vmcb
*vmcb
= get_host_vmcb(svm
);
337 vmcb
->control
.intercept_exceptions
&= ~(1U << bit
);
339 recalc_intercepts(svm
);
342 static inline void set_intercept(struct vcpu_svm
*svm
, int bit
)
344 struct vmcb
*vmcb
= get_host_vmcb(svm
);
346 vmcb
->control
.intercept
|= (1ULL << bit
);
348 recalc_intercepts(svm
);
351 static inline void clr_intercept(struct vcpu_svm
*svm
, int bit
)
353 struct vmcb
*vmcb
= get_host_vmcb(svm
);
355 vmcb
->control
.intercept
&= ~(1ULL << bit
);
357 recalc_intercepts(svm
);
360 static inline void enable_gif(struct vcpu_svm
*svm
)
362 svm
->vcpu
.arch
.hflags
|= HF_GIF_MASK
;
365 static inline void disable_gif(struct vcpu_svm
*svm
)
367 svm
->vcpu
.arch
.hflags
&= ~HF_GIF_MASK
;
370 static inline bool gif_set(struct vcpu_svm
*svm
)
372 return !!(svm
->vcpu
.arch
.hflags
& HF_GIF_MASK
);
375 static unsigned long iopm_base
;
377 struct kvm_ldttss_desc
{
380 unsigned base1
:8, type
:5, dpl
:2, p
:1;
381 unsigned limit1
:4, zero0
:3, g
:1, base2
:8;
384 } __attribute__((packed
));
386 struct svm_cpu_data
{
392 struct kvm_ldttss_desc
*tss_desc
;
394 struct page
*save_area
;
397 static DEFINE_PER_CPU(struct svm_cpu_data
*, svm_data
);
399 struct svm_init_data
{
404 static const u32 msrpm_ranges
[] = {0, 0xc0000000, 0xc0010000};
406 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
407 #define MSRS_RANGE_SIZE 2048
408 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
410 static u32
svm_msrpm_offset(u32 msr
)
415 for (i
= 0; i
< NUM_MSR_MAPS
; i
++) {
416 if (msr
< msrpm_ranges
[i
] ||
417 msr
>= msrpm_ranges
[i
] + MSRS_IN_RANGE
)
420 offset
= (msr
- msrpm_ranges
[i
]) / 4; /* 4 msrs per u8 */
421 offset
+= (i
* MSRS_RANGE_SIZE
); /* add range offset */
423 /* Now we have the u8 offset - but need the u32 offset */
427 /* MSR not in any range */
431 #define MAX_INST_SIZE 15
433 static inline void clgi(void)
435 asm volatile (__ex(SVM_CLGI
));
438 static inline void stgi(void)
440 asm volatile (__ex(SVM_STGI
));
443 static inline void invlpga(unsigned long addr
, u32 asid
)
445 asm volatile (__ex(SVM_INVLPGA
) : : "a"(addr
), "c"(asid
));
448 static int get_npt_level(void)
451 return PT64_ROOT_LEVEL
;
453 return PT32E_ROOT_LEVEL
;
457 static void svm_set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
459 vcpu
->arch
.efer
= efer
;
460 if (!npt_enabled
&& !(efer
& EFER_LMA
))
463 to_svm(vcpu
)->vmcb
->save
.efer
= efer
| EFER_SVME
;
464 mark_dirty(to_svm(vcpu
)->vmcb
, VMCB_CR
);
467 static int is_external_interrupt(u32 info
)
469 info
&= SVM_EVTINJ_TYPE_MASK
| SVM_EVTINJ_VALID
;
470 return info
== (SVM_EVTINJ_VALID
| SVM_EVTINJ_TYPE_INTR
);
473 static u32
svm_get_interrupt_shadow(struct kvm_vcpu
*vcpu
, int mask
)
475 struct vcpu_svm
*svm
= to_svm(vcpu
);
478 if (svm
->vmcb
->control
.int_state
& SVM_INTERRUPT_SHADOW_MASK
)
479 ret
|= KVM_X86_SHADOW_INT_STI
| KVM_X86_SHADOW_INT_MOV_SS
;
483 static void svm_set_interrupt_shadow(struct kvm_vcpu
*vcpu
, int mask
)
485 struct vcpu_svm
*svm
= to_svm(vcpu
);
488 svm
->vmcb
->control
.int_state
&= ~SVM_INTERRUPT_SHADOW_MASK
;
490 svm
->vmcb
->control
.int_state
|= SVM_INTERRUPT_SHADOW_MASK
;
494 static void skip_emulated_instruction(struct kvm_vcpu
*vcpu
)
496 struct vcpu_svm
*svm
= to_svm(vcpu
);
498 if (svm
->vmcb
->control
.next_rip
!= 0) {
499 WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS
));
500 svm
->next_rip
= svm
->vmcb
->control
.next_rip
;
503 if (!svm
->next_rip
) {
504 if (emulate_instruction(vcpu
, EMULTYPE_SKIP
) !=
506 printk(KERN_DEBUG
"%s: NOP\n", __func__
);
509 if (svm
->next_rip
- kvm_rip_read(vcpu
) > MAX_INST_SIZE
)
510 printk(KERN_ERR
"%s: ip 0x%lx next 0x%llx\n",
511 __func__
, kvm_rip_read(vcpu
), svm
->next_rip
);
513 kvm_rip_write(vcpu
, svm
->next_rip
);
514 svm_set_interrupt_shadow(vcpu
, 0);
517 static void svm_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
,
518 bool has_error_code
, u32 error_code
,
521 struct vcpu_svm
*svm
= to_svm(vcpu
);
524 * If we are within a nested VM we'd better #VMEXIT and let the guest
525 * handle the exception
528 nested_svm_check_exception(svm
, nr
, has_error_code
, error_code
))
531 if (nr
== BP_VECTOR
&& !static_cpu_has(X86_FEATURE_NRIPS
)) {
532 unsigned long rip
, old_rip
= kvm_rip_read(&svm
->vcpu
);
535 * For guest debugging where we have to reinject #BP if some
536 * INT3 is guest-owned:
537 * Emulate nRIP by moving RIP forward. Will fail if injection
538 * raises a fault that is not intercepted. Still better than
539 * failing in all cases.
541 skip_emulated_instruction(&svm
->vcpu
);
542 rip
= kvm_rip_read(&svm
->vcpu
);
543 svm
->int3_rip
= rip
+ svm
->vmcb
->save
.cs
.base
;
544 svm
->int3_injected
= rip
- old_rip
;
547 svm
->vmcb
->control
.event_inj
= nr
549 | (has_error_code
? SVM_EVTINJ_VALID_ERR
: 0)
550 | SVM_EVTINJ_TYPE_EXEPT
;
551 svm
->vmcb
->control
.event_inj_err
= error_code
;
554 static void svm_init_erratum_383(void)
560 if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH
))
563 /* Use _safe variants to not break nested virtualization */
564 val
= native_read_msr_safe(MSR_AMD64_DC_CFG
, &err
);
570 low
= lower_32_bits(val
);
571 high
= upper_32_bits(val
);
573 native_write_msr_safe(MSR_AMD64_DC_CFG
, low
, high
);
575 erratum_383_found
= true;
578 static void svm_init_osvw(struct kvm_vcpu
*vcpu
)
581 * Guests should see errata 400 and 415 as fixed (assuming that
582 * HLT and IO instructions are intercepted).
584 vcpu
->arch
.osvw
.length
= (osvw_len
>= 3) ? (osvw_len
) : 3;
585 vcpu
->arch
.osvw
.status
= osvw_status
& ~(6ULL);
588 * By increasing VCPU's osvw.length to 3 we are telling the guest that
589 * all osvw.status bits inside that length, including bit 0 (which is
590 * reserved for erratum 298), are valid. However, if host processor's
591 * osvw_len is 0 then osvw_status[0] carries no information. We need to
592 * be conservative here and therefore we tell the guest that erratum 298
593 * is present (because we really don't know).
595 if (osvw_len
== 0 && boot_cpu_data
.x86
== 0x10)
596 vcpu
->arch
.osvw
.status
|= 1;
599 static int has_svm(void)
603 if (!cpu_has_svm(&msg
)) {
604 printk(KERN_INFO
"has_svm: %s\n", msg
);
611 static void svm_hardware_disable(void *garbage
)
613 /* Make sure we clean up behind us */
614 if (static_cpu_has(X86_FEATURE_TSCRATEMSR
))
615 wrmsrl(MSR_AMD64_TSC_RATIO
, TSC_RATIO_DEFAULT
);
619 amd_pmu_disable_virt();
622 static int svm_hardware_enable(void *garbage
)
625 struct svm_cpu_data
*sd
;
627 struct desc_ptr gdt_descr
;
628 struct desc_struct
*gdt
;
629 int me
= raw_smp_processor_id();
631 rdmsrl(MSR_EFER
, efer
);
632 if (efer
& EFER_SVME
)
636 pr_err("%s: err EOPNOTSUPP on %d\n", __func__
, me
);
639 sd
= per_cpu(svm_data
, me
);
641 pr_err("%s: svm_data is NULL on %d\n", __func__
, me
);
645 sd
->asid_generation
= 1;
646 sd
->max_asid
= cpuid_ebx(SVM_CPUID_FUNC
) - 1;
647 sd
->next_asid
= sd
->max_asid
+ 1;
649 native_store_gdt(&gdt_descr
);
650 gdt
= (struct desc_struct
*)gdt_descr
.address
;
651 sd
->tss_desc
= (struct kvm_ldttss_desc
*)(gdt
+ GDT_ENTRY_TSS
);
653 wrmsrl(MSR_EFER
, efer
| EFER_SVME
);
655 wrmsrl(MSR_VM_HSAVE_PA
, page_to_pfn(sd
->save_area
) << PAGE_SHIFT
);
657 if (static_cpu_has(X86_FEATURE_TSCRATEMSR
)) {
658 wrmsrl(MSR_AMD64_TSC_RATIO
, TSC_RATIO_DEFAULT
);
659 __get_cpu_var(current_tsc_ratio
) = TSC_RATIO_DEFAULT
;
666 * Note that it is possible to have a system with mixed processor
667 * revisions and therefore different OSVW bits. If bits are not the same
668 * on different processors then choose the worst case (i.e. if erratum
669 * is present on one processor and not on another then assume that the
670 * erratum is present everywhere).
672 if (cpu_has(&boot_cpu_data
, X86_FEATURE_OSVW
)) {
673 uint64_t len
, status
= 0;
676 len
= native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH
, &err
);
678 status
= native_read_msr_safe(MSR_AMD64_OSVW_STATUS
,
682 osvw_status
= osvw_len
= 0;
686 osvw_status
|= status
;
687 osvw_status
&= (1ULL << osvw_len
) - 1;
690 osvw_status
= osvw_len
= 0;
692 svm_init_erratum_383();
694 amd_pmu_enable_virt();
699 static void svm_cpu_uninit(int cpu
)
701 struct svm_cpu_data
*sd
= per_cpu(svm_data
, raw_smp_processor_id());
706 per_cpu(svm_data
, raw_smp_processor_id()) = NULL
;
707 __free_page(sd
->save_area
);
711 static int svm_cpu_init(int cpu
)
713 struct svm_cpu_data
*sd
;
716 sd
= kzalloc(sizeof(struct svm_cpu_data
), GFP_KERNEL
);
720 sd
->save_area
= alloc_page(GFP_KERNEL
);
725 per_cpu(svm_data
, cpu
) = sd
;
735 static bool valid_msr_intercept(u32 index
)
739 for (i
= 0; direct_access_msrs
[i
].index
!= MSR_INVALID
; i
++)
740 if (direct_access_msrs
[i
].index
== index
)
746 static void set_msr_interception(u32
*msrpm
, unsigned msr
,
749 u8 bit_read
, bit_write
;
754 * If this warning triggers extend the direct_access_msrs list at the
755 * beginning of the file
757 WARN_ON(!valid_msr_intercept(msr
));
759 offset
= svm_msrpm_offset(msr
);
760 bit_read
= 2 * (msr
& 0x0f);
761 bit_write
= 2 * (msr
& 0x0f) + 1;
764 BUG_ON(offset
== MSR_INVALID
);
766 read
? clear_bit(bit_read
, &tmp
) : set_bit(bit_read
, &tmp
);
767 write
? clear_bit(bit_write
, &tmp
) : set_bit(bit_write
, &tmp
);
772 static void svm_vcpu_init_msrpm(u32
*msrpm
)
776 memset(msrpm
, 0xff, PAGE_SIZE
* (1 << MSRPM_ALLOC_ORDER
));
778 for (i
= 0; direct_access_msrs
[i
].index
!= MSR_INVALID
; i
++) {
779 if (!direct_access_msrs
[i
].always
)
782 set_msr_interception(msrpm
, direct_access_msrs
[i
].index
, 1, 1);
786 static void add_msr_offset(u32 offset
)
790 for (i
= 0; i
< MSRPM_OFFSETS
; ++i
) {
792 /* Offset already in list? */
793 if (msrpm_offsets
[i
] == offset
)
796 /* Slot used by another offset? */
797 if (msrpm_offsets
[i
] != MSR_INVALID
)
800 /* Add offset to list */
801 msrpm_offsets
[i
] = offset
;
807 * If this BUG triggers the msrpm_offsets table has an overflow. Just
808 * increase MSRPM_OFFSETS in this case.
813 static void init_msrpm_offsets(void)
817 memset(msrpm_offsets
, 0xff, sizeof(msrpm_offsets
));
819 for (i
= 0; direct_access_msrs
[i
].index
!= MSR_INVALID
; i
++) {
822 offset
= svm_msrpm_offset(direct_access_msrs
[i
].index
);
823 BUG_ON(offset
== MSR_INVALID
);
825 add_msr_offset(offset
);
829 static void svm_enable_lbrv(struct vcpu_svm
*svm
)
831 u32
*msrpm
= svm
->msrpm
;
833 svm
->vmcb
->control
.lbr_ctl
= 1;
834 set_msr_interception(msrpm
, MSR_IA32_LASTBRANCHFROMIP
, 1, 1);
835 set_msr_interception(msrpm
, MSR_IA32_LASTBRANCHTOIP
, 1, 1);
836 set_msr_interception(msrpm
, MSR_IA32_LASTINTFROMIP
, 1, 1);
837 set_msr_interception(msrpm
, MSR_IA32_LASTINTTOIP
, 1, 1);
840 static void svm_disable_lbrv(struct vcpu_svm
*svm
)
842 u32
*msrpm
= svm
->msrpm
;
844 svm
->vmcb
->control
.lbr_ctl
= 0;
845 set_msr_interception(msrpm
, MSR_IA32_LASTBRANCHFROMIP
, 0, 0);
846 set_msr_interception(msrpm
, MSR_IA32_LASTBRANCHTOIP
, 0, 0);
847 set_msr_interception(msrpm
, MSR_IA32_LASTINTFROMIP
, 0, 0);
848 set_msr_interception(msrpm
, MSR_IA32_LASTINTTOIP
, 0, 0);
851 static __init
int svm_hardware_setup(void)
854 struct page
*iopm_pages
;
858 iopm_pages
= alloc_pages(GFP_KERNEL
, IOPM_ALLOC_ORDER
);
863 iopm_va
= page_address(iopm_pages
);
864 memset(iopm_va
, 0xff, PAGE_SIZE
* (1 << IOPM_ALLOC_ORDER
));
865 iopm_base
= page_to_pfn(iopm_pages
) << PAGE_SHIFT
;
867 init_msrpm_offsets();
869 if (boot_cpu_has(X86_FEATURE_NX
))
870 kvm_enable_efer_bits(EFER_NX
);
872 if (boot_cpu_has(X86_FEATURE_FXSR_OPT
))
873 kvm_enable_efer_bits(EFER_FFXSR
);
875 if (boot_cpu_has(X86_FEATURE_TSCRATEMSR
)) {
878 kvm_has_tsc_control
= true;
881 * Make sure the user can only configure tsc_khz values that
882 * fit into a signed integer.
883 * A min value is not calculated needed because it will always
884 * be 1 on all machines and a value of 0 is used to disable
885 * tsc-scaling for the vcpu.
887 max
= min(0x7fffffffULL
, __scale_tsc(tsc_khz
, TSC_RATIO_MAX
));
889 kvm_max_guest_tsc_khz
= max
;
893 printk(KERN_INFO
"kvm: Nested Virtualization enabled\n");
894 kvm_enable_efer_bits(EFER_SVME
| EFER_LMSLE
);
897 for_each_possible_cpu(cpu
) {
898 r
= svm_cpu_init(cpu
);
903 if (!boot_cpu_has(X86_FEATURE_NPT
))
906 if (npt_enabled
&& !npt
) {
907 printk(KERN_INFO
"kvm: Nested Paging disabled\n");
912 printk(KERN_INFO
"kvm: Nested Paging enabled\n");
920 __free_pages(iopm_pages
, IOPM_ALLOC_ORDER
);
925 static __exit
void svm_hardware_unsetup(void)
929 for_each_possible_cpu(cpu
)
932 __free_pages(pfn_to_page(iopm_base
>> PAGE_SHIFT
), IOPM_ALLOC_ORDER
);
936 static void init_seg(struct vmcb_seg
*seg
)
939 seg
->attrib
= SVM_SELECTOR_P_MASK
| SVM_SELECTOR_S_MASK
|
940 SVM_SELECTOR_WRITE_MASK
; /* Read/Write Data Segment */
945 static void init_sys_seg(struct vmcb_seg
*seg
, uint32_t type
)
948 seg
->attrib
= SVM_SELECTOR_P_MASK
| type
;
953 static u64
__scale_tsc(u64 ratio
, u64 tsc
)
955 u64 mult
, frac
, _tsc
;
958 frac
= ratio
& ((1ULL << 32) - 1);
962 _tsc
+= (tsc
>> 32) * frac
;
963 _tsc
+= ((tsc
& ((1ULL << 32) - 1)) * frac
) >> 32;
968 static u64
svm_scale_tsc(struct kvm_vcpu
*vcpu
, u64 tsc
)
970 struct vcpu_svm
*svm
= to_svm(vcpu
);
973 if (svm
->tsc_ratio
!= TSC_RATIO_DEFAULT
)
974 _tsc
= __scale_tsc(svm
->tsc_ratio
, tsc
);
979 static void svm_set_tsc_khz(struct kvm_vcpu
*vcpu
, u32 user_tsc_khz
, bool scale
)
981 struct vcpu_svm
*svm
= to_svm(vcpu
);
985 /* Guest TSC same frequency as host TSC? */
987 svm
->tsc_ratio
= TSC_RATIO_DEFAULT
;
991 /* TSC scaling supported? */
992 if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR
)) {
993 if (user_tsc_khz
> tsc_khz
) {
994 vcpu
->arch
.tsc_catchup
= 1;
995 vcpu
->arch
.tsc_always_catchup
= 1;
997 WARN(1, "user requested TSC rate below hardware speed\n");
1003 /* TSC scaling required - calculate ratio */
1005 do_div(ratio
, tsc_khz
);
1007 if (ratio
== 0 || ratio
& TSC_RATIO_RSVD
) {
1008 WARN_ONCE(1, "Invalid TSC ratio - virtual-tsc-khz=%u\n",
1012 svm
->tsc_ratio
= ratio
;
1015 static u64
svm_read_tsc_offset(struct kvm_vcpu
*vcpu
)
1017 struct vcpu_svm
*svm
= to_svm(vcpu
);
1019 return svm
->vmcb
->control
.tsc_offset
;
1022 static void svm_write_tsc_offset(struct kvm_vcpu
*vcpu
, u64 offset
)
1024 struct vcpu_svm
*svm
= to_svm(vcpu
);
1025 u64 g_tsc_offset
= 0;
1027 if (is_guest_mode(vcpu
)) {
1028 g_tsc_offset
= svm
->vmcb
->control
.tsc_offset
-
1029 svm
->nested
.hsave
->control
.tsc_offset
;
1030 svm
->nested
.hsave
->control
.tsc_offset
= offset
;
1032 trace_kvm_write_tsc_offset(vcpu
->vcpu_id
,
1033 svm
->vmcb
->control
.tsc_offset
,
1036 svm
->vmcb
->control
.tsc_offset
= offset
+ g_tsc_offset
;
1038 mark_dirty(svm
->vmcb
, VMCB_INTERCEPTS
);
1041 static void svm_adjust_tsc_offset(struct kvm_vcpu
*vcpu
, s64 adjustment
, bool host
)
1043 struct vcpu_svm
*svm
= to_svm(vcpu
);
1045 WARN_ON(adjustment
< 0);
1047 adjustment
= svm_scale_tsc(vcpu
, adjustment
);
1049 svm
->vmcb
->control
.tsc_offset
+= adjustment
;
1050 if (is_guest_mode(vcpu
))
1051 svm
->nested
.hsave
->control
.tsc_offset
+= adjustment
;
1053 trace_kvm_write_tsc_offset(vcpu
->vcpu_id
,
1054 svm
->vmcb
->control
.tsc_offset
- adjustment
,
1055 svm
->vmcb
->control
.tsc_offset
);
1057 mark_dirty(svm
->vmcb
, VMCB_INTERCEPTS
);
1060 static u64
svm_compute_tsc_offset(struct kvm_vcpu
*vcpu
, u64 target_tsc
)
1064 tsc
= svm_scale_tsc(vcpu
, native_read_tsc());
1066 return target_tsc
- tsc
;
1069 static void init_vmcb(struct vcpu_svm
*svm
)
1071 struct vmcb_control_area
*control
= &svm
->vmcb
->control
;
1072 struct vmcb_save_area
*save
= &svm
->vmcb
->save
;
1074 svm
->vcpu
.fpu_active
= 1;
1075 svm
->vcpu
.arch
.hflags
= 0;
1077 set_cr_intercept(svm
, INTERCEPT_CR0_READ
);
1078 set_cr_intercept(svm
, INTERCEPT_CR3_READ
);
1079 set_cr_intercept(svm
, INTERCEPT_CR4_READ
);
1080 set_cr_intercept(svm
, INTERCEPT_CR0_WRITE
);
1081 set_cr_intercept(svm
, INTERCEPT_CR3_WRITE
);
1082 set_cr_intercept(svm
, INTERCEPT_CR4_WRITE
);
1083 set_cr_intercept(svm
, INTERCEPT_CR8_WRITE
);
1085 set_dr_intercept(svm
, INTERCEPT_DR0_READ
);
1086 set_dr_intercept(svm
, INTERCEPT_DR1_READ
);
1087 set_dr_intercept(svm
, INTERCEPT_DR2_READ
);
1088 set_dr_intercept(svm
, INTERCEPT_DR3_READ
);
1089 set_dr_intercept(svm
, INTERCEPT_DR4_READ
);
1090 set_dr_intercept(svm
, INTERCEPT_DR5_READ
);
1091 set_dr_intercept(svm
, INTERCEPT_DR6_READ
);
1092 set_dr_intercept(svm
, INTERCEPT_DR7_READ
);
1094 set_dr_intercept(svm
, INTERCEPT_DR0_WRITE
);
1095 set_dr_intercept(svm
, INTERCEPT_DR1_WRITE
);
1096 set_dr_intercept(svm
, INTERCEPT_DR2_WRITE
);
1097 set_dr_intercept(svm
, INTERCEPT_DR3_WRITE
);
1098 set_dr_intercept(svm
, INTERCEPT_DR4_WRITE
);
1099 set_dr_intercept(svm
, INTERCEPT_DR5_WRITE
);
1100 set_dr_intercept(svm
, INTERCEPT_DR6_WRITE
);
1101 set_dr_intercept(svm
, INTERCEPT_DR7_WRITE
);
1103 set_exception_intercept(svm
, PF_VECTOR
);
1104 set_exception_intercept(svm
, UD_VECTOR
);
1105 set_exception_intercept(svm
, MC_VECTOR
);
1106 set_exception_intercept(svm
, AC_VECTOR
);
1107 set_exception_intercept(svm
, DB_VECTOR
);
1109 set_intercept(svm
, INTERCEPT_INTR
);
1110 set_intercept(svm
, INTERCEPT_NMI
);
1111 set_intercept(svm
, INTERCEPT_SMI
);
1112 set_intercept(svm
, INTERCEPT_SELECTIVE_CR0
);
1113 set_intercept(svm
, INTERCEPT_RDPMC
);
1114 set_intercept(svm
, INTERCEPT_CPUID
);
1115 set_intercept(svm
, INTERCEPT_INVD
);
1116 set_intercept(svm
, INTERCEPT_HLT
);
1117 set_intercept(svm
, INTERCEPT_INVLPG
);
1118 set_intercept(svm
, INTERCEPT_INVLPGA
);
1119 set_intercept(svm
, INTERCEPT_IOIO_PROT
);
1120 set_intercept(svm
, INTERCEPT_MSR_PROT
);
1121 set_intercept(svm
, INTERCEPT_TASK_SWITCH
);
1122 set_intercept(svm
, INTERCEPT_SHUTDOWN
);
1123 set_intercept(svm
, INTERCEPT_VMRUN
);
1124 set_intercept(svm
, INTERCEPT_VMMCALL
);
1125 set_intercept(svm
, INTERCEPT_VMLOAD
);
1126 set_intercept(svm
, INTERCEPT_VMSAVE
);
1127 set_intercept(svm
, INTERCEPT_STGI
);
1128 set_intercept(svm
, INTERCEPT_CLGI
);
1129 set_intercept(svm
, INTERCEPT_SKINIT
);
1130 set_intercept(svm
, INTERCEPT_WBINVD
);
1131 set_intercept(svm
, INTERCEPT_MONITOR
);
1132 set_intercept(svm
, INTERCEPT_MWAIT
);
1133 set_intercept(svm
, INTERCEPT_XSETBV
);
1135 control
->iopm_base_pa
= iopm_base
;
1136 control
->msrpm_base_pa
= __pa(svm
->msrpm
);
1137 control
->int_ctl
= V_INTR_MASKING_MASK
;
1139 init_seg(&save
->es
);
1140 init_seg(&save
->ss
);
1141 init_seg(&save
->ds
);
1142 init_seg(&save
->fs
);
1143 init_seg(&save
->gs
);
1145 save
->cs
.selector
= 0xf000;
1146 save
->cs
.base
= 0xffff0000;
1147 /* Executable/Readable Code Segment */
1148 save
->cs
.attrib
= SVM_SELECTOR_READ_MASK
| SVM_SELECTOR_P_MASK
|
1149 SVM_SELECTOR_S_MASK
| SVM_SELECTOR_CODE_MASK
;
1150 save
->cs
.limit
= 0xffff;
1152 save
->gdtr
.limit
= 0xffff;
1153 save
->idtr
.limit
= 0xffff;
1155 init_sys_seg(&save
->ldtr
, SEG_TYPE_LDT
);
1156 init_sys_seg(&save
->tr
, SEG_TYPE_BUSY_TSS16
);
1158 svm_set_efer(&svm
->vcpu
, 0);
1159 save
->dr6
= 0xffff0ff0;
1160 kvm_set_rflags(&svm
->vcpu
, 2);
1161 save
->rip
= 0x0000fff0;
1162 svm
->vcpu
.arch
.regs
[VCPU_REGS_RIP
] = save
->rip
;
1165 * This is the guest-visible cr0 value.
1166 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1168 svm
->vcpu
.arch
.cr0
= 0;
1169 (void)kvm_set_cr0(&svm
->vcpu
, X86_CR0_NW
| X86_CR0_CD
| X86_CR0_ET
);
1171 save
->cr4
= X86_CR4_PAE
;
1175 /* Setup VMCB for Nested Paging */
1176 control
->nested_ctl
= 1;
1177 clr_intercept(svm
, INTERCEPT_INVLPG
);
1178 clr_exception_intercept(svm
, PF_VECTOR
);
1179 clr_cr_intercept(svm
, INTERCEPT_CR3_READ
);
1180 clr_cr_intercept(svm
, INTERCEPT_CR3_WRITE
);
1181 save
->g_pat
= 0x0007040600070406ULL
;
1185 svm
->asid_generation
= 0;
1187 svm
->nested
.vmcb
= 0;
1188 svm
->vcpu
.arch
.hflags
= 0;
1190 if (boot_cpu_has(X86_FEATURE_PAUSEFILTER
)) {
1191 control
->pause_filter_count
= 3000;
1192 set_intercept(svm
, INTERCEPT_PAUSE
);
1195 mark_all_dirty(svm
->vmcb
);
1200 static void svm_vcpu_reset(struct kvm_vcpu
*vcpu
)
1202 struct vcpu_svm
*svm
= to_svm(vcpu
);
1208 kvm_cpuid(vcpu
, &eax
, &dummy
, &dummy
, &dummy
);
1209 kvm_register_write(vcpu
, VCPU_REGS_RDX
, eax
);
1212 static struct kvm_vcpu
*svm_create_vcpu(struct kvm
*kvm
, unsigned int id
)
1214 struct vcpu_svm
*svm
;
1216 struct page
*msrpm_pages
;
1217 struct page
*hsave_page
;
1218 struct page
*nested_msrpm_pages
;
1221 svm
= kmem_cache_zalloc(kvm_vcpu_cache
, GFP_KERNEL
);
1227 svm
->tsc_ratio
= TSC_RATIO_DEFAULT
;
1229 err
= kvm_vcpu_init(&svm
->vcpu
, kvm
, id
);
1234 page
= alloc_page(GFP_KERNEL
);
1238 msrpm_pages
= alloc_pages(GFP_KERNEL
, MSRPM_ALLOC_ORDER
);
1242 nested_msrpm_pages
= alloc_pages(GFP_KERNEL
, MSRPM_ALLOC_ORDER
);
1243 if (!nested_msrpm_pages
)
1246 hsave_page
= alloc_page(GFP_KERNEL
);
1250 svm
->nested
.hsave
= page_address(hsave_page
);
1252 svm
->msrpm
= page_address(msrpm_pages
);
1253 svm_vcpu_init_msrpm(svm
->msrpm
);
1255 svm
->nested
.msrpm
= page_address(nested_msrpm_pages
);
1256 svm_vcpu_init_msrpm(svm
->nested
.msrpm
);
1258 svm
->vmcb
= page_address(page
);
1259 clear_page(svm
->vmcb
);
1260 svm
->vmcb_pa
= page_to_pfn(page
) << PAGE_SHIFT
;
1261 svm
->asid_generation
= 0;
1264 svm
->vcpu
.arch
.apic_base
= 0xfee00000 | MSR_IA32_APICBASE_ENABLE
;
1265 if (kvm_vcpu_is_bsp(&svm
->vcpu
))
1266 svm
->vcpu
.arch
.apic_base
|= MSR_IA32_APICBASE_BSP
;
1268 svm_init_osvw(&svm
->vcpu
);
1273 __free_pages(nested_msrpm_pages
, MSRPM_ALLOC_ORDER
);
1275 __free_pages(msrpm_pages
, MSRPM_ALLOC_ORDER
);
1279 kvm_vcpu_uninit(&svm
->vcpu
);
1281 kmem_cache_free(kvm_vcpu_cache
, svm
);
1283 return ERR_PTR(err
);
1286 static void svm_free_vcpu(struct kvm_vcpu
*vcpu
)
1288 struct vcpu_svm
*svm
= to_svm(vcpu
);
1290 __free_page(pfn_to_page(svm
->vmcb_pa
>> PAGE_SHIFT
));
1291 __free_pages(virt_to_page(svm
->msrpm
), MSRPM_ALLOC_ORDER
);
1292 __free_page(virt_to_page(svm
->nested
.hsave
));
1293 __free_pages(virt_to_page(svm
->nested
.msrpm
), MSRPM_ALLOC_ORDER
);
1294 kvm_vcpu_uninit(vcpu
);
1295 kmem_cache_free(kvm_vcpu_cache
, svm
);
1298 static void svm_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
1300 struct vcpu_svm
*svm
= to_svm(vcpu
);
1303 if (unlikely(cpu
!= vcpu
->cpu
)) {
1304 svm
->asid_generation
= 0;
1305 mark_all_dirty(svm
->vmcb
);
1308 #ifdef CONFIG_X86_64
1309 rdmsrl(MSR_GS_BASE
, to_svm(vcpu
)->host
.gs_base
);
1311 savesegment(fs
, svm
->host
.fs
);
1312 savesegment(gs
, svm
->host
.gs
);
1313 svm
->host
.ldt
= kvm_read_ldt();
1315 for (i
= 0; i
< NR_HOST_SAVE_USER_MSRS
; i
++)
1316 rdmsrl(host_save_user_msrs
[i
], svm
->host_user_msrs
[i
]);
1318 if (static_cpu_has(X86_FEATURE_TSCRATEMSR
) &&
1319 svm
->tsc_ratio
!= __get_cpu_var(current_tsc_ratio
)) {
1320 __get_cpu_var(current_tsc_ratio
) = svm
->tsc_ratio
;
1321 wrmsrl(MSR_AMD64_TSC_RATIO
, svm
->tsc_ratio
);
1325 static void svm_vcpu_put(struct kvm_vcpu
*vcpu
)
1327 struct vcpu_svm
*svm
= to_svm(vcpu
);
1330 ++vcpu
->stat
.host_state_reload
;
1331 kvm_load_ldt(svm
->host
.ldt
);
1332 #ifdef CONFIG_X86_64
1333 loadsegment(fs
, svm
->host
.fs
);
1334 wrmsrl(MSR_KERNEL_GS_BASE
, current
->thread
.gs
);
1335 load_gs_index(svm
->host
.gs
);
1337 #ifdef CONFIG_X86_32_LAZY_GS
1338 loadsegment(gs
, svm
->host
.gs
);
1341 for (i
= 0; i
< NR_HOST_SAVE_USER_MSRS
; i
++)
1342 wrmsrl(host_save_user_msrs
[i
], svm
->host_user_msrs
[i
]);
1345 static void svm_update_cpl(struct kvm_vcpu
*vcpu
)
1347 struct vcpu_svm
*svm
= to_svm(vcpu
);
1350 if (!is_protmode(vcpu
))
1352 else if (svm
->vmcb
->save
.rflags
& X86_EFLAGS_VM
)
1355 cpl
= svm
->vmcb
->save
.cs
.selector
& 0x3;
1357 svm
->vmcb
->save
.cpl
= cpl
;
1360 static unsigned long svm_get_rflags(struct kvm_vcpu
*vcpu
)
1362 return to_svm(vcpu
)->vmcb
->save
.rflags
;
1365 static void svm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
1367 unsigned long old_rflags
= to_svm(vcpu
)->vmcb
->save
.rflags
;
1369 to_svm(vcpu
)->vmcb
->save
.rflags
= rflags
;
1370 if ((old_rflags
^ rflags
) & X86_EFLAGS_VM
)
1371 svm_update_cpl(vcpu
);
1374 static void svm_cache_reg(struct kvm_vcpu
*vcpu
, enum kvm_reg reg
)
1377 case VCPU_EXREG_PDPTR
:
1378 BUG_ON(!npt_enabled
);
1379 load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, kvm_read_cr3(vcpu
));
1386 static void svm_set_vintr(struct vcpu_svm
*svm
)
1388 set_intercept(svm
, INTERCEPT_VINTR
);
1391 static void svm_clear_vintr(struct vcpu_svm
*svm
)
1393 clr_intercept(svm
, INTERCEPT_VINTR
);
1396 static struct vmcb_seg
*svm_seg(struct kvm_vcpu
*vcpu
, int seg
)
1398 struct vmcb_save_area
*save
= &to_svm(vcpu
)->vmcb
->save
;
1401 case VCPU_SREG_CS
: return &save
->cs
;
1402 case VCPU_SREG_DS
: return &save
->ds
;
1403 case VCPU_SREG_ES
: return &save
->es
;
1404 case VCPU_SREG_FS
: return &save
->fs
;
1405 case VCPU_SREG_GS
: return &save
->gs
;
1406 case VCPU_SREG_SS
: return &save
->ss
;
1407 case VCPU_SREG_TR
: return &save
->tr
;
1408 case VCPU_SREG_LDTR
: return &save
->ldtr
;
1414 static u64
svm_get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
1416 struct vmcb_seg
*s
= svm_seg(vcpu
, seg
);
1421 static void svm_get_segment(struct kvm_vcpu
*vcpu
,
1422 struct kvm_segment
*var
, int seg
)
1424 struct vmcb_seg
*s
= svm_seg(vcpu
, seg
);
1426 var
->base
= s
->base
;
1427 var
->limit
= s
->limit
;
1428 var
->selector
= s
->selector
;
1429 var
->type
= s
->attrib
& SVM_SELECTOR_TYPE_MASK
;
1430 var
->s
= (s
->attrib
>> SVM_SELECTOR_S_SHIFT
) & 1;
1431 var
->dpl
= (s
->attrib
>> SVM_SELECTOR_DPL_SHIFT
) & 3;
1432 var
->present
= (s
->attrib
>> SVM_SELECTOR_P_SHIFT
) & 1;
1433 var
->avl
= (s
->attrib
>> SVM_SELECTOR_AVL_SHIFT
) & 1;
1434 var
->l
= (s
->attrib
>> SVM_SELECTOR_L_SHIFT
) & 1;
1435 var
->db
= (s
->attrib
>> SVM_SELECTOR_DB_SHIFT
) & 1;
1436 var
->g
= (s
->attrib
>> SVM_SELECTOR_G_SHIFT
) & 1;
1439 * AMD's VMCB does not have an explicit unusable field, so emulate it
1440 * for cross vendor migration purposes by "not present"
1442 var
->unusable
= !var
->present
|| (var
->type
== 0);
1447 * SVM always stores 0 for the 'G' bit in the CS selector in
1448 * the VMCB on a VMEXIT. This hurts cross-vendor migration:
1449 * Intel's VMENTRY has a check on the 'G' bit.
1451 var
->g
= s
->limit
> 0xfffff;
1455 * Work around a bug where the busy flag in the tr selector
1465 * The accessed bit must always be set in the segment
1466 * descriptor cache, although it can be cleared in the
1467 * descriptor, the cached bit always remains at 1. Since
1468 * Intel has a check on this, set it here to support
1469 * cross-vendor migration.
1476 * On AMD CPUs sometimes the DB bit in the segment
1477 * descriptor is left as 1, although the whole segment has
1478 * been made unusable. Clear it here to pass an Intel VMX
1479 * entry check when cross vendor migrating.
1487 static int svm_get_cpl(struct kvm_vcpu
*vcpu
)
1489 struct vmcb_save_area
*save
= &to_svm(vcpu
)->vmcb
->save
;
1494 static void svm_get_idt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
1496 struct vcpu_svm
*svm
= to_svm(vcpu
);
1498 dt
->size
= svm
->vmcb
->save
.idtr
.limit
;
1499 dt
->address
= svm
->vmcb
->save
.idtr
.base
;
1502 static void svm_set_idt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
1504 struct vcpu_svm
*svm
= to_svm(vcpu
);
1506 svm
->vmcb
->save
.idtr
.limit
= dt
->size
;
1507 svm
->vmcb
->save
.idtr
.base
= dt
->address
;
1508 mark_dirty(svm
->vmcb
, VMCB_DT
);
1511 static void svm_get_gdt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
1513 struct vcpu_svm
*svm
= to_svm(vcpu
);
1515 dt
->size
= svm
->vmcb
->save
.gdtr
.limit
;
1516 dt
->address
= svm
->vmcb
->save
.gdtr
.base
;
1519 static void svm_set_gdt(struct kvm_vcpu
*vcpu
, struct desc_ptr
*dt
)
1521 struct vcpu_svm
*svm
= to_svm(vcpu
);
1523 svm
->vmcb
->save
.gdtr
.limit
= dt
->size
;
1524 svm
->vmcb
->save
.gdtr
.base
= dt
->address
;
1525 mark_dirty(svm
->vmcb
, VMCB_DT
);
1528 static void svm_decache_cr0_guest_bits(struct kvm_vcpu
*vcpu
)
1532 static void svm_decache_cr3(struct kvm_vcpu
*vcpu
)
1536 static void svm_decache_cr4_guest_bits(struct kvm_vcpu
*vcpu
)
1540 static void update_cr0_intercept(struct vcpu_svm
*svm
)
1542 ulong gcr0
= svm
->vcpu
.arch
.cr0
;
1543 u64
*hcr0
= &svm
->vmcb
->save
.cr0
;
1545 if (!svm
->vcpu
.fpu_active
)
1546 *hcr0
|= SVM_CR0_SELECTIVE_MASK
;
1548 *hcr0
= (*hcr0
& ~SVM_CR0_SELECTIVE_MASK
)
1549 | (gcr0
& SVM_CR0_SELECTIVE_MASK
);
1551 mark_dirty(svm
->vmcb
, VMCB_CR
);
1553 if (gcr0
== *hcr0
&& svm
->vcpu
.fpu_active
) {
1554 clr_cr_intercept(svm
, INTERCEPT_CR0_READ
);
1555 clr_cr_intercept(svm
, INTERCEPT_CR0_WRITE
);
1557 set_cr_intercept(svm
, INTERCEPT_CR0_READ
);
1558 set_cr_intercept(svm
, INTERCEPT_CR0_WRITE
);
1562 static void svm_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
1564 struct vcpu_svm
*svm
= to_svm(vcpu
);
1566 #ifdef CONFIG_X86_64
1567 if (vcpu
->arch
.efer
& EFER_LME
) {
1568 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
)) {
1569 vcpu
->arch
.efer
|= EFER_LMA
;
1570 svm
->vmcb
->save
.efer
|= EFER_LMA
| EFER_LME
;
1573 if (is_paging(vcpu
) && !(cr0
& X86_CR0_PG
)) {
1574 vcpu
->arch
.efer
&= ~EFER_LMA
;
1575 svm
->vmcb
->save
.efer
&= ~(EFER_LMA
| EFER_LME
);
1579 vcpu
->arch
.cr0
= cr0
;
1582 cr0
|= X86_CR0_PG
| X86_CR0_WP
;
1584 if (!vcpu
->fpu_active
)
1587 * re-enable caching here because the QEMU bios
1588 * does not do it - this results in some delay at
1591 cr0
&= ~(X86_CR0_CD
| X86_CR0_NW
);
1592 svm
->vmcb
->save
.cr0
= cr0
;
1593 mark_dirty(svm
->vmcb
, VMCB_CR
);
1594 update_cr0_intercept(svm
);
1597 static int svm_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
1599 unsigned long host_cr4_mce
= read_cr4() & X86_CR4_MCE
;
1600 unsigned long old_cr4
= to_svm(vcpu
)->vmcb
->save
.cr4
;
1602 if (cr4
& X86_CR4_VMXE
)
1605 if (npt_enabled
&& ((old_cr4
^ cr4
) & X86_CR4_PGE
))
1606 svm_flush_tlb(vcpu
);
1608 vcpu
->arch
.cr4
= cr4
;
1611 cr4
|= host_cr4_mce
;
1612 to_svm(vcpu
)->vmcb
->save
.cr4
= cr4
;
1613 mark_dirty(to_svm(vcpu
)->vmcb
, VMCB_CR
);
1617 static void svm_set_segment(struct kvm_vcpu
*vcpu
,
1618 struct kvm_segment
*var
, int seg
)
1620 struct vcpu_svm
*svm
= to_svm(vcpu
);
1621 struct vmcb_seg
*s
= svm_seg(vcpu
, seg
);
1623 s
->base
= var
->base
;
1624 s
->limit
= var
->limit
;
1625 s
->selector
= var
->selector
;
1629 s
->attrib
= (var
->type
& SVM_SELECTOR_TYPE_MASK
);
1630 s
->attrib
|= (var
->s
& 1) << SVM_SELECTOR_S_SHIFT
;
1631 s
->attrib
|= (var
->dpl
& 3) << SVM_SELECTOR_DPL_SHIFT
;
1632 s
->attrib
|= (var
->present
& 1) << SVM_SELECTOR_P_SHIFT
;
1633 s
->attrib
|= (var
->avl
& 1) << SVM_SELECTOR_AVL_SHIFT
;
1634 s
->attrib
|= (var
->l
& 1) << SVM_SELECTOR_L_SHIFT
;
1635 s
->attrib
|= (var
->db
& 1) << SVM_SELECTOR_DB_SHIFT
;
1636 s
->attrib
|= (var
->g
& 1) << SVM_SELECTOR_G_SHIFT
;
1638 if (seg
== VCPU_SREG_CS
)
1639 svm_update_cpl(vcpu
);
1641 mark_dirty(svm
->vmcb
, VMCB_SEG
);
1644 static void update_bp_intercept(struct kvm_vcpu
*vcpu
)
1646 struct vcpu_svm
*svm
= to_svm(vcpu
);
1648 clr_exception_intercept(svm
, BP_VECTOR
);
1650 if (vcpu
->guest_debug
& KVM_GUESTDBG_ENABLE
) {
1651 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_SW_BP
)
1652 set_exception_intercept(svm
, BP_VECTOR
);
1654 vcpu
->guest_debug
= 0;
1657 static void new_asid(struct vcpu_svm
*svm
, struct svm_cpu_data
*sd
)
1659 if (sd
->next_asid
> sd
->max_asid
) {
1660 ++sd
->asid_generation
;
1662 svm
->vmcb
->control
.tlb_ctl
= TLB_CONTROL_FLUSH_ALL_ASID
;
1665 svm
->asid_generation
= sd
->asid_generation
;
1666 svm
->vmcb
->control
.asid
= sd
->next_asid
++;
1668 mark_dirty(svm
->vmcb
, VMCB_ASID
);
1671 static void svm_set_dr7(struct kvm_vcpu
*vcpu
, unsigned long value
)
1673 struct vcpu_svm
*svm
= to_svm(vcpu
);
1675 svm
->vmcb
->save
.dr7
= value
;
1676 mark_dirty(svm
->vmcb
, VMCB_DR
);
1679 static int pf_interception(struct vcpu_svm
*svm
)
1681 u64 fault_address
= svm
->vmcb
->control
.exit_info_2
;
1685 switch (svm
->apf_reason
) {
1687 error_code
= svm
->vmcb
->control
.exit_info_1
;
1689 trace_kvm_page_fault(fault_address
, error_code
);
1690 if (!npt_enabled
&& kvm_event_needs_reinjection(&svm
->vcpu
))
1691 kvm_mmu_unprotect_page_virt(&svm
->vcpu
, fault_address
);
1692 r
= kvm_mmu_page_fault(&svm
->vcpu
, fault_address
, error_code
,
1693 svm
->vmcb
->control
.insn_bytes
,
1694 svm
->vmcb
->control
.insn_len
);
1696 case KVM_PV_REASON_PAGE_NOT_PRESENT
:
1697 svm
->apf_reason
= 0;
1698 local_irq_disable();
1699 kvm_async_pf_task_wait(fault_address
);
1702 case KVM_PV_REASON_PAGE_READY
:
1703 svm
->apf_reason
= 0;
1704 local_irq_disable();
1705 kvm_async_pf_task_wake(fault_address
);
1712 static int db_interception(struct vcpu_svm
*svm
)
1714 struct kvm_run
*kvm_run
= svm
->vcpu
.run
;
1716 if (!(svm
->vcpu
.guest_debug
&
1717 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
)) &&
1718 !svm
->nmi_singlestep
) {
1719 kvm_queue_exception(&svm
->vcpu
, DB_VECTOR
);
1723 if (svm
->nmi_singlestep
) {
1724 svm
->nmi_singlestep
= false;
1725 if (!(svm
->vcpu
.guest_debug
& KVM_GUESTDBG_SINGLESTEP
))
1726 svm
->vmcb
->save
.rflags
&=
1727 ~(X86_EFLAGS_TF
| X86_EFLAGS_RF
);
1730 if (svm
->vcpu
.guest_debug
&
1731 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
)) {
1732 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
1733 kvm_run
->debug
.arch
.pc
=
1734 svm
->vmcb
->save
.cs
.base
+ svm
->vmcb
->save
.rip
;
1735 kvm_run
->debug
.arch
.exception
= DB_VECTOR
;
1742 static int bp_interception(struct vcpu_svm
*svm
)
1744 struct kvm_run
*kvm_run
= svm
->vcpu
.run
;
1746 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
1747 kvm_run
->debug
.arch
.pc
= svm
->vmcb
->save
.cs
.base
+ svm
->vmcb
->save
.rip
;
1748 kvm_run
->debug
.arch
.exception
= BP_VECTOR
;
1752 static int ud_interception(struct vcpu_svm
*svm
)
1756 er
= emulate_instruction(&svm
->vcpu
, EMULTYPE_TRAP_UD
);
1757 if (er
!= EMULATE_DONE
)
1758 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
1762 static int ac_interception(struct vcpu_svm
*svm
)
1764 kvm_queue_exception_e(&svm
->vcpu
, AC_VECTOR
, 0);
1768 static void svm_fpu_activate(struct kvm_vcpu
*vcpu
)
1770 struct vcpu_svm
*svm
= to_svm(vcpu
);
1772 clr_exception_intercept(svm
, NM_VECTOR
);
1774 svm
->vcpu
.fpu_active
= 1;
1775 update_cr0_intercept(svm
);
1778 static int nm_interception(struct vcpu_svm
*svm
)
1780 svm_fpu_activate(&svm
->vcpu
);
1784 static bool is_erratum_383(void)
1789 if (!erratum_383_found
)
1792 value
= native_read_msr_safe(MSR_IA32_MC0_STATUS
, &err
);
1796 /* Bit 62 may or may not be set for this mce */
1797 value
&= ~(1ULL << 62);
1799 if (value
!= 0xb600000000010015ULL
)
1802 /* Clear MCi_STATUS registers */
1803 for (i
= 0; i
< 6; ++i
)
1804 native_write_msr_safe(MSR_IA32_MCx_STATUS(i
), 0, 0);
1806 value
= native_read_msr_safe(MSR_IA32_MCG_STATUS
, &err
);
1810 value
&= ~(1ULL << 2);
1811 low
= lower_32_bits(value
);
1812 high
= upper_32_bits(value
);
1814 native_write_msr_safe(MSR_IA32_MCG_STATUS
, low
, high
);
1817 /* Flush tlb to evict multi-match entries */
1823 static void svm_handle_mce(struct vcpu_svm
*svm
)
1825 if (is_erratum_383()) {
1827 * Erratum 383 triggered. Guest state is corrupt so kill the
1830 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1832 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, &svm
->vcpu
);
1838 * On an #MC intercept the MCE handler is not called automatically in
1839 * the host. So do it by hand here.
1843 /* not sure if we ever come back to this point */
1848 static int mc_interception(struct vcpu_svm
*svm
)
1853 static int shutdown_interception(struct vcpu_svm
*svm
)
1855 struct kvm_run
*kvm_run
= svm
->vcpu
.run
;
1858 * VMCB is undefined after a SHUTDOWN intercept
1859 * so reinitialize it.
1861 clear_page(svm
->vmcb
);
1864 kvm_run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
1868 static int io_interception(struct vcpu_svm
*svm
)
1870 struct kvm_vcpu
*vcpu
= &svm
->vcpu
;
1871 u32 io_info
= svm
->vmcb
->control
.exit_info_1
; /* address size bug? */
1872 int size
, in
, string
;
1875 ++svm
->vcpu
.stat
.io_exits
;
1876 string
= (io_info
& SVM_IOIO_STR_MASK
) != 0;
1877 in
= (io_info
& SVM_IOIO_TYPE_MASK
) != 0;
1879 return emulate_instruction(vcpu
, 0) == EMULATE_DONE
;
1881 port
= io_info
>> 16;
1882 size
= (io_info
& SVM_IOIO_SIZE_MASK
) >> SVM_IOIO_SIZE_SHIFT
;
1883 svm
->next_rip
= svm
->vmcb
->control
.exit_info_2
;
1884 skip_emulated_instruction(&svm
->vcpu
);
1886 return kvm_fast_pio_out(vcpu
, size
, port
);
1889 static int nmi_interception(struct vcpu_svm
*svm
)
1894 static int intr_interception(struct vcpu_svm
*svm
)
1896 ++svm
->vcpu
.stat
.irq_exits
;
1900 static int nop_on_interception(struct vcpu_svm
*svm
)
1905 static int halt_interception(struct vcpu_svm
*svm
)
1907 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 1;
1908 skip_emulated_instruction(&svm
->vcpu
);
1909 return kvm_emulate_halt(&svm
->vcpu
);
1912 static int vmmcall_interception(struct vcpu_svm
*svm
)
1914 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
1915 skip_emulated_instruction(&svm
->vcpu
);
1916 kvm_emulate_hypercall(&svm
->vcpu
);
1920 static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu
*vcpu
)
1922 struct vcpu_svm
*svm
= to_svm(vcpu
);
1924 return svm
->nested
.nested_cr3
;
1927 static u64
nested_svm_get_tdp_pdptr(struct kvm_vcpu
*vcpu
, int index
)
1929 struct vcpu_svm
*svm
= to_svm(vcpu
);
1930 u64 cr3
= svm
->nested
.nested_cr3
;
1934 ret
= kvm_read_guest_page(vcpu
->kvm
, gpa_to_gfn(cr3
), &pdpte
,
1935 offset_in_page(cr3
) + index
* 8, 8);
1941 static void nested_svm_set_tdp_cr3(struct kvm_vcpu
*vcpu
,
1944 struct vcpu_svm
*svm
= to_svm(vcpu
);
1946 svm
->vmcb
->control
.nested_cr3
= root
;
1947 mark_dirty(svm
->vmcb
, VMCB_NPT
);
1948 svm_flush_tlb(vcpu
);
1951 static void nested_svm_inject_npf_exit(struct kvm_vcpu
*vcpu
,
1952 struct x86_exception
*fault
)
1954 struct vcpu_svm
*svm
= to_svm(vcpu
);
1956 svm
->vmcb
->control
.exit_code
= SVM_EXIT_NPF
;
1957 svm
->vmcb
->control
.exit_code_hi
= 0;
1958 svm
->vmcb
->control
.exit_info_1
= fault
->error_code
;
1959 svm
->vmcb
->control
.exit_info_2
= fault
->address
;
1961 nested_svm_vmexit(svm
);
1964 static int nested_svm_init_mmu_context(struct kvm_vcpu
*vcpu
)
1968 r
= kvm_init_shadow_mmu(vcpu
, &vcpu
->arch
.mmu
);
1970 vcpu
->arch
.mmu
.set_cr3
= nested_svm_set_tdp_cr3
;
1971 vcpu
->arch
.mmu
.get_cr3
= nested_svm_get_tdp_cr3
;
1972 vcpu
->arch
.mmu
.get_pdptr
= nested_svm_get_tdp_pdptr
;
1973 vcpu
->arch
.mmu
.inject_page_fault
= nested_svm_inject_npf_exit
;
1974 vcpu
->arch
.mmu
.shadow_root_level
= get_npt_level();
1975 vcpu
->arch
.walk_mmu
= &vcpu
->arch
.nested_mmu
;
1980 static void nested_svm_uninit_mmu_context(struct kvm_vcpu
*vcpu
)
1982 vcpu
->arch
.walk_mmu
= &vcpu
->arch
.mmu
;
1985 static int nested_svm_check_permissions(struct vcpu_svm
*svm
)
1987 if (!(svm
->vcpu
.arch
.efer
& EFER_SVME
)
1988 || !is_paging(&svm
->vcpu
)) {
1989 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
1993 if (svm
->vmcb
->save
.cpl
) {
1994 kvm_inject_gp(&svm
->vcpu
, 0);
2001 static int nested_svm_check_exception(struct vcpu_svm
*svm
, unsigned nr
,
2002 bool has_error_code
, u32 error_code
)
2006 if (!is_guest_mode(&svm
->vcpu
))
2009 svm
->vmcb
->control
.exit_code
= SVM_EXIT_EXCP_BASE
+ nr
;
2010 svm
->vmcb
->control
.exit_code_hi
= 0;
2011 svm
->vmcb
->control
.exit_info_1
= error_code
;
2012 svm
->vmcb
->control
.exit_info_2
= svm
->vcpu
.arch
.cr2
;
2014 vmexit
= nested_svm_intercept(svm
);
2015 if (vmexit
== NESTED_EXIT_DONE
)
2016 svm
->nested
.exit_required
= true;
2021 /* This function returns true if it is save to enable the irq window */
2022 static inline bool nested_svm_intr(struct vcpu_svm
*svm
)
2024 if (!is_guest_mode(&svm
->vcpu
))
2027 if (!(svm
->vcpu
.arch
.hflags
& HF_VINTR_MASK
))
2030 if (!(svm
->vcpu
.arch
.hflags
& HF_HIF_MASK
))
2034 * if vmexit was already requested (by intercepted exception
2035 * for instance) do not overwrite it with "external interrupt"
2038 if (svm
->nested
.exit_required
)
2041 svm
->vmcb
->control
.exit_code
= SVM_EXIT_INTR
;
2042 svm
->vmcb
->control
.exit_info_1
= 0;
2043 svm
->vmcb
->control
.exit_info_2
= 0;
2045 if (svm
->nested
.intercept
& 1ULL) {
2047 * The #vmexit can't be emulated here directly because this
2048 * code path runs with irqs and preemption disabled. A
2049 * #vmexit emulation might sleep. Only signal request for
2052 svm
->nested
.exit_required
= true;
2053 trace_kvm_nested_intr_vmexit(svm
->vmcb
->save
.rip
);
2060 /* This function returns true if it is save to enable the nmi window */
2061 static inline bool nested_svm_nmi(struct vcpu_svm
*svm
)
2063 if (!is_guest_mode(&svm
->vcpu
))
2066 if (!(svm
->nested
.intercept
& (1ULL << INTERCEPT_NMI
)))
2069 svm
->vmcb
->control
.exit_code
= SVM_EXIT_NMI
;
2070 svm
->nested
.exit_required
= true;
2075 static void *nested_svm_map(struct vcpu_svm
*svm
, u64 gpa
, struct page
**_page
)
2081 page
= gfn_to_page(svm
->vcpu
.kvm
, gpa
>> PAGE_SHIFT
);
2082 if (is_error_page(page
))
2090 kvm_inject_gp(&svm
->vcpu
, 0);
2095 static void nested_svm_unmap(struct page
*page
)
2098 kvm_release_page_dirty(page
);
2101 static int nested_svm_intercept_ioio(struct vcpu_svm
*svm
)
2107 if (!(svm
->nested
.intercept
& (1ULL << INTERCEPT_IOIO_PROT
)))
2108 return NESTED_EXIT_HOST
;
2110 port
= svm
->vmcb
->control
.exit_info_1
>> 16;
2111 gpa
= svm
->nested
.vmcb_iopm
+ (port
/ 8);
2115 if (kvm_read_guest(svm
->vcpu
.kvm
, gpa
, &val
, 1))
2118 return val
? NESTED_EXIT_DONE
: NESTED_EXIT_HOST
;
2121 static int nested_svm_exit_handled_msr(struct vcpu_svm
*svm
)
2123 u32 offset
, msr
, value
;
2126 if (!(svm
->nested
.intercept
& (1ULL << INTERCEPT_MSR_PROT
)))
2127 return NESTED_EXIT_HOST
;
2129 msr
= svm
->vcpu
.arch
.regs
[VCPU_REGS_RCX
];
2130 offset
= svm_msrpm_offset(msr
);
2131 write
= svm
->vmcb
->control
.exit_info_1
& 1;
2132 mask
= 1 << ((2 * (msr
& 0xf)) + write
);
2134 if (offset
== MSR_INVALID
)
2135 return NESTED_EXIT_DONE
;
2137 /* Offset is in 32 bit units but need in 8 bit units */
2140 if (kvm_read_guest(svm
->vcpu
.kvm
, svm
->nested
.vmcb_msrpm
+ offset
, &value
, 4))
2141 return NESTED_EXIT_DONE
;
2143 return (value
& mask
) ? NESTED_EXIT_DONE
: NESTED_EXIT_HOST
;
2146 static int nested_svm_exit_special(struct vcpu_svm
*svm
)
2148 u32 exit_code
= svm
->vmcb
->control
.exit_code
;
2150 switch (exit_code
) {
2153 case SVM_EXIT_EXCP_BASE
+ MC_VECTOR
:
2154 return NESTED_EXIT_HOST
;
2156 /* For now we are always handling NPFs when using them */
2158 return NESTED_EXIT_HOST
;
2160 case SVM_EXIT_EXCP_BASE
+ PF_VECTOR
:
2161 /* When we're shadowing, trap PFs, but not async PF */
2162 if (!npt_enabled
&& svm
->apf_reason
== 0)
2163 return NESTED_EXIT_HOST
;
2165 case SVM_EXIT_EXCP_BASE
+ NM_VECTOR
:
2166 nm_interception(svm
);
2172 return NESTED_EXIT_CONTINUE
;
2176 * If this function returns true, this #vmexit was already handled
2178 static int nested_svm_intercept(struct vcpu_svm
*svm
)
2180 u32 exit_code
= svm
->vmcb
->control
.exit_code
;
2181 int vmexit
= NESTED_EXIT_HOST
;
2183 switch (exit_code
) {
2185 vmexit
= nested_svm_exit_handled_msr(svm
);
2188 vmexit
= nested_svm_intercept_ioio(svm
);
2190 case SVM_EXIT_READ_CR0
... SVM_EXIT_WRITE_CR8
: {
2191 u32 bit
= 1U << (exit_code
- SVM_EXIT_READ_CR0
);
2192 if (svm
->nested
.intercept_cr
& bit
)
2193 vmexit
= NESTED_EXIT_DONE
;
2196 case SVM_EXIT_READ_DR0
... SVM_EXIT_WRITE_DR7
: {
2197 u32 bit
= 1U << (exit_code
- SVM_EXIT_READ_DR0
);
2198 if (svm
->nested
.intercept_dr
& bit
)
2199 vmexit
= NESTED_EXIT_DONE
;
2202 case SVM_EXIT_EXCP_BASE
... SVM_EXIT_EXCP_BASE
+ 0x1f: {
2203 u32 excp_bits
= 1 << (exit_code
- SVM_EXIT_EXCP_BASE
);
2204 if (svm
->nested
.intercept_exceptions
& excp_bits
)
2205 vmexit
= NESTED_EXIT_DONE
;
2206 /* async page fault always cause vmexit */
2207 else if ((exit_code
== SVM_EXIT_EXCP_BASE
+ PF_VECTOR
) &&
2208 svm
->apf_reason
!= 0)
2209 vmexit
= NESTED_EXIT_DONE
;
2212 case SVM_EXIT_ERR
: {
2213 vmexit
= NESTED_EXIT_DONE
;
2217 u64 exit_bits
= 1ULL << (exit_code
- SVM_EXIT_INTR
);
2218 if (svm
->nested
.intercept
& exit_bits
)
2219 vmexit
= NESTED_EXIT_DONE
;
2226 static int nested_svm_exit_handled(struct vcpu_svm
*svm
)
2230 vmexit
= nested_svm_intercept(svm
);
2232 if (vmexit
== NESTED_EXIT_DONE
)
2233 nested_svm_vmexit(svm
);
2238 static inline void copy_vmcb_control_area(struct vmcb
*dst_vmcb
, struct vmcb
*from_vmcb
)
2240 struct vmcb_control_area
*dst
= &dst_vmcb
->control
;
2241 struct vmcb_control_area
*from
= &from_vmcb
->control
;
2243 dst
->intercept_cr
= from
->intercept_cr
;
2244 dst
->intercept_dr
= from
->intercept_dr
;
2245 dst
->intercept_exceptions
= from
->intercept_exceptions
;
2246 dst
->intercept
= from
->intercept
;
2247 dst
->iopm_base_pa
= from
->iopm_base_pa
;
2248 dst
->msrpm_base_pa
= from
->msrpm_base_pa
;
2249 dst
->tsc_offset
= from
->tsc_offset
;
2250 dst
->asid
= from
->asid
;
2251 dst
->tlb_ctl
= from
->tlb_ctl
;
2252 dst
->int_ctl
= from
->int_ctl
;
2253 dst
->int_vector
= from
->int_vector
;
2254 dst
->int_state
= from
->int_state
;
2255 dst
->exit_code
= from
->exit_code
;
2256 dst
->exit_code_hi
= from
->exit_code_hi
;
2257 dst
->exit_info_1
= from
->exit_info_1
;
2258 dst
->exit_info_2
= from
->exit_info_2
;
2259 dst
->exit_int_info
= from
->exit_int_info
;
2260 dst
->exit_int_info_err
= from
->exit_int_info_err
;
2261 dst
->nested_ctl
= from
->nested_ctl
;
2262 dst
->event_inj
= from
->event_inj
;
2263 dst
->event_inj_err
= from
->event_inj_err
;
2264 dst
->nested_cr3
= from
->nested_cr3
;
2265 dst
->lbr_ctl
= from
->lbr_ctl
;
2268 static int nested_svm_vmexit(struct vcpu_svm
*svm
)
2270 struct vmcb
*nested_vmcb
;
2271 struct vmcb
*hsave
= svm
->nested
.hsave
;
2272 struct vmcb
*vmcb
= svm
->vmcb
;
2275 trace_kvm_nested_vmexit_inject(vmcb
->control
.exit_code
,
2276 vmcb
->control
.exit_info_1
,
2277 vmcb
->control
.exit_info_2
,
2278 vmcb
->control
.exit_int_info
,
2279 vmcb
->control
.exit_int_info_err
,
2282 nested_vmcb
= nested_svm_map(svm
, svm
->nested
.vmcb
, &page
);
2286 /* Exit Guest-Mode */
2287 leave_guest_mode(&svm
->vcpu
);
2288 svm
->nested
.vmcb
= 0;
2290 /* Give the current vmcb to the guest */
2293 nested_vmcb
->save
.es
= vmcb
->save
.es
;
2294 nested_vmcb
->save
.cs
= vmcb
->save
.cs
;
2295 nested_vmcb
->save
.ss
= vmcb
->save
.ss
;
2296 nested_vmcb
->save
.ds
= vmcb
->save
.ds
;
2297 nested_vmcb
->save
.gdtr
= vmcb
->save
.gdtr
;
2298 nested_vmcb
->save
.idtr
= vmcb
->save
.idtr
;
2299 nested_vmcb
->save
.efer
= svm
->vcpu
.arch
.efer
;
2300 nested_vmcb
->save
.cr0
= kvm_read_cr0(&svm
->vcpu
);
2301 nested_vmcb
->save
.cr3
= kvm_read_cr3(&svm
->vcpu
);
2302 nested_vmcb
->save
.cr2
= vmcb
->save
.cr2
;
2303 nested_vmcb
->save
.cr4
= svm
->vcpu
.arch
.cr4
;
2304 nested_vmcb
->save
.rflags
= kvm_get_rflags(&svm
->vcpu
);
2305 nested_vmcb
->save
.rip
= vmcb
->save
.rip
;
2306 nested_vmcb
->save
.rsp
= vmcb
->save
.rsp
;
2307 nested_vmcb
->save
.rax
= vmcb
->save
.rax
;
2308 nested_vmcb
->save
.dr7
= vmcb
->save
.dr7
;
2309 nested_vmcb
->save
.dr6
= vmcb
->save
.dr6
;
2310 nested_vmcb
->save
.cpl
= vmcb
->save
.cpl
;
2312 nested_vmcb
->control
.int_ctl
= vmcb
->control
.int_ctl
;
2313 nested_vmcb
->control
.int_vector
= vmcb
->control
.int_vector
;
2314 nested_vmcb
->control
.int_state
= vmcb
->control
.int_state
;
2315 nested_vmcb
->control
.exit_code
= vmcb
->control
.exit_code
;
2316 nested_vmcb
->control
.exit_code_hi
= vmcb
->control
.exit_code_hi
;
2317 nested_vmcb
->control
.exit_info_1
= vmcb
->control
.exit_info_1
;
2318 nested_vmcb
->control
.exit_info_2
= vmcb
->control
.exit_info_2
;
2319 nested_vmcb
->control
.exit_int_info
= vmcb
->control
.exit_int_info
;
2320 nested_vmcb
->control
.exit_int_info_err
= vmcb
->control
.exit_int_info_err
;
2321 nested_vmcb
->control
.next_rip
= vmcb
->control
.next_rip
;
2324 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2325 * to make sure that we do not lose injected events. So check event_inj
2326 * here and copy it to exit_int_info if it is valid.
2327 * Exit_int_info and event_inj can't be both valid because the case
2328 * below only happens on a VMRUN instruction intercept which has
2329 * no valid exit_int_info set.
2331 if (vmcb
->control
.event_inj
& SVM_EVTINJ_VALID
) {
2332 struct vmcb_control_area
*nc
= &nested_vmcb
->control
;
2334 nc
->exit_int_info
= vmcb
->control
.event_inj
;
2335 nc
->exit_int_info_err
= vmcb
->control
.event_inj_err
;
2338 nested_vmcb
->control
.tlb_ctl
= 0;
2339 nested_vmcb
->control
.event_inj
= 0;
2340 nested_vmcb
->control
.event_inj_err
= 0;
2342 /* We always set V_INTR_MASKING and remember the old value in hflags */
2343 if (!(svm
->vcpu
.arch
.hflags
& HF_VINTR_MASK
))
2344 nested_vmcb
->control
.int_ctl
&= ~V_INTR_MASKING_MASK
;
2346 /* Restore the original control entries */
2347 copy_vmcb_control_area(vmcb
, hsave
);
2349 kvm_clear_exception_queue(&svm
->vcpu
);
2350 kvm_clear_interrupt_queue(&svm
->vcpu
);
2352 svm
->nested
.nested_cr3
= 0;
2354 /* Restore selected save entries */
2355 svm
->vmcb
->save
.es
= hsave
->save
.es
;
2356 svm
->vmcb
->save
.cs
= hsave
->save
.cs
;
2357 svm
->vmcb
->save
.ss
= hsave
->save
.ss
;
2358 svm
->vmcb
->save
.ds
= hsave
->save
.ds
;
2359 svm
->vmcb
->save
.gdtr
= hsave
->save
.gdtr
;
2360 svm
->vmcb
->save
.idtr
= hsave
->save
.idtr
;
2361 kvm_set_rflags(&svm
->vcpu
, hsave
->save
.rflags
);
2362 svm_set_efer(&svm
->vcpu
, hsave
->save
.efer
);
2363 svm_set_cr0(&svm
->vcpu
, hsave
->save
.cr0
| X86_CR0_PE
);
2364 svm_set_cr4(&svm
->vcpu
, hsave
->save
.cr4
);
2366 svm
->vmcb
->save
.cr3
= hsave
->save
.cr3
;
2367 svm
->vcpu
.arch
.cr3
= hsave
->save
.cr3
;
2369 (void)kvm_set_cr3(&svm
->vcpu
, hsave
->save
.cr3
);
2371 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RAX
, hsave
->save
.rax
);
2372 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RSP
, hsave
->save
.rsp
);
2373 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RIP
, hsave
->save
.rip
);
2374 svm
->vmcb
->save
.dr7
= 0;
2375 svm
->vmcb
->save
.cpl
= 0;
2376 svm
->vmcb
->control
.exit_int_info
= 0;
2378 mark_all_dirty(svm
->vmcb
);
2380 nested_svm_unmap(page
);
2382 nested_svm_uninit_mmu_context(&svm
->vcpu
);
2383 kvm_mmu_reset_context(&svm
->vcpu
);
2384 kvm_mmu_load(&svm
->vcpu
);
2389 static bool nested_svm_vmrun_msrpm(struct vcpu_svm
*svm
)
2392 * This function merges the msr permission bitmaps of kvm and the
2393 * nested vmcb. It is optimized in that it only merges the parts where
2394 * the kvm msr permission bitmap may contain zero bits
2398 if (!(svm
->nested
.intercept
& (1ULL << INTERCEPT_MSR_PROT
)))
2401 for (i
= 0; i
< MSRPM_OFFSETS
; i
++) {
2405 if (msrpm_offsets
[i
] == 0xffffffff)
2408 p
= msrpm_offsets
[i
];
2409 offset
= svm
->nested
.vmcb_msrpm
+ (p
* 4);
2411 if (kvm_read_guest(svm
->vcpu
.kvm
, offset
, &value
, 4))
2414 svm
->nested
.msrpm
[p
] = svm
->msrpm
[p
] | value
;
2417 svm
->vmcb
->control
.msrpm_base_pa
= __pa(svm
->nested
.msrpm
);
2422 static bool nested_vmcb_checks(struct vmcb
*vmcb
)
2424 if ((vmcb
->control
.intercept
& (1ULL << INTERCEPT_VMRUN
)) == 0)
2427 if (vmcb
->control
.asid
== 0)
2430 if (vmcb
->control
.nested_ctl
&& !npt_enabled
)
2436 static bool nested_svm_vmrun(struct vcpu_svm
*svm
)
2438 struct vmcb
*nested_vmcb
;
2439 struct vmcb
*hsave
= svm
->nested
.hsave
;
2440 struct vmcb
*vmcb
= svm
->vmcb
;
2444 vmcb_gpa
= svm
->vmcb
->save
.rax
;
2446 nested_vmcb
= nested_svm_map(svm
, svm
->vmcb
->save
.rax
, &page
);
2450 if (!nested_vmcb_checks(nested_vmcb
)) {
2451 nested_vmcb
->control
.exit_code
= SVM_EXIT_ERR
;
2452 nested_vmcb
->control
.exit_code_hi
= 0;
2453 nested_vmcb
->control
.exit_info_1
= 0;
2454 nested_vmcb
->control
.exit_info_2
= 0;
2456 nested_svm_unmap(page
);
2461 trace_kvm_nested_vmrun(svm
->vmcb
->save
.rip
, vmcb_gpa
,
2462 nested_vmcb
->save
.rip
,
2463 nested_vmcb
->control
.int_ctl
,
2464 nested_vmcb
->control
.event_inj
,
2465 nested_vmcb
->control
.nested_ctl
);
2467 trace_kvm_nested_intercepts(nested_vmcb
->control
.intercept_cr
& 0xffff,
2468 nested_vmcb
->control
.intercept_cr
>> 16,
2469 nested_vmcb
->control
.intercept_exceptions
,
2470 nested_vmcb
->control
.intercept
);
2472 /* Clear internal status */
2473 kvm_clear_exception_queue(&svm
->vcpu
);
2474 kvm_clear_interrupt_queue(&svm
->vcpu
);
2477 * Save the old vmcb, so we don't need to pick what we save, but can
2478 * restore everything when a VMEXIT occurs
2480 hsave
->save
.es
= vmcb
->save
.es
;
2481 hsave
->save
.cs
= vmcb
->save
.cs
;
2482 hsave
->save
.ss
= vmcb
->save
.ss
;
2483 hsave
->save
.ds
= vmcb
->save
.ds
;
2484 hsave
->save
.gdtr
= vmcb
->save
.gdtr
;
2485 hsave
->save
.idtr
= vmcb
->save
.idtr
;
2486 hsave
->save
.efer
= svm
->vcpu
.arch
.efer
;
2487 hsave
->save
.cr0
= kvm_read_cr0(&svm
->vcpu
);
2488 hsave
->save
.cr4
= svm
->vcpu
.arch
.cr4
;
2489 hsave
->save
.rflags
= kvm_get_rflags(&svm
->vcpu
);
2490 hsave
->save
.rip
= kvm_rip_read(&svm
->vcpu
);
2491 hsave
->save
.rsp
= vmcb
->save
.rsp
;
2492 hsave
->save
.rax
= vmcb
->save
.rax
;
2494 hsave
->save
.cr3
= vmcb
->save
.cr3
;
2496 hsave
->save
.cr3
= kvm_read_cr3(&svm
->vcpu
);
2498 copy_vmcb_control_area(hsave
, vmcb
);
2500 if (kvm_get_rflags(&svm
->vcpu
) & X86_EFLAGS_IF
)
2501 svm
->vcpu
.arch
.hflags
|= HF_HIF_MASK
;
2503 svm
->vcpu
.arch
.hflags
&= ~HF_HIF_MASK
;
2505 if (nested_vmcb
->control
.nested_ctl
) {
2506 kvm_mmu_unload(&svm
->vcpu
);
2507 svm
->nested
.nested_cr3
= nested_vmcb
->control
.nested_cr3
;
2508 nested_svm_init_mmu_context(&svm
->vcpu
);
2511 /* Load the nested guest state */
2512 svm
->vmcb
->save
.es
= nested_vmcb
->save
.es
;
2513 svm
->vmcb
->save
.cs
= nested_vmcb
->save
.cs
;
2514 svm
->vmcb
->save
.ss
= nested_vmcb
->save
.ss
;
2515 svm
->vmcb
->save
.ds
= nested_vmcb
->save
.ds
;
2516 svm
->vmcb
->save
.gdtr
= nested_vmcb
->save
.gdtr
;
2517 svm
->vmcb
->save
.idtr
= nested_vmcb
->save
.idtr
;
2518 kvm_set_rflags(&svm
->vcpu
, nested_vmcb
->save
.rflags
);
2519 svm_set_efer(&svm
->vcpu
, nested_vmcb
->save
.efer
);
2520 svm_set_cr0(&svm
->vcpu
, nested_vmcb
->save
.cr0
);
2521 svm_set_cr4(&svm
->vcpu
, nested_vmcb
->save
.cr4
);
2523 svm
->vmcb
->save
.cr3
= nested_vmcb
->save
.cr3
;
2524 svm
->vcpu
.arch
.cr3
= nested_vmcb
->save
.cr3
;
2526 (void)kvm_set_cr3(&svm
->vcpu
, nested_vmcb
->save
.cr3
);
2528 /* Guest paging mode is active - reset mmu */
2529 kvm_mmu_reset_context(&svm
->vcpu
);
2531 svm
->vmcb
->save
.cr2
= svm
->vcpu
.arch
.cr2
= nested_vmcb
->save
.cr2
;
2532 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RAX
, nested_vmcb
->save
.rax
);
2533 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RSP
, nested_vmcb
->save
.rsp
);
2534 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RIP
, nested_vmcb
->save
.rip
);
2536 /* In case we don't even reach vcpu_run, the fields are not updated */
2537 svm
->vmcb
->save
.rax
= nested_vmcb
->save
.rax
;
2538 svm
->vmcb
->save
.rsp
= nested_vmcb
->save
.rsp
;
2539 svm
->vmcb
->save
.rip
= nested_vmcb
->save
.rip
;
2540 svm
->vmcb
->save
.dr7
= nested_vmcb
->save
.dr7
;
2541 svm
->vmcb
->save
.dr6
= nested_vmcb
->save
.dr6
;
2542 svm
->vmcb
->save
.cpl
= nested_vmcb
->save
.cpl
;
2544 svm
->nested
.vmcb_msrpm
= nested_vmcb
->control
.msrpm_base_pa
& ~0x0fffULL
;
2545 svm
->nested
.vmcb_iopm
= nested_vmcb
->control
.iopm_base_pa
& ~0x0fffULL
;
2547 /* cache intercepts */
2548 svm
->nested
.intercept_cr
= nested_vmcb
->control
.intercept_cr
;
2549 svm
->nested
.intercept_dr
= nested_vmcb
->control
.intercept_dr
;
2550 svm
->nested
.intercept_exceptions
= nested_vmcb
->control
.intercept_exceptions
;
2551 svm
->nested
.intercept
= nested_vmcb
->control
.intercept
;
2553 svm_flush_tlb(&svm
->vcpu
);
2554 svm
->vmcb
->control
.int_ctl
= nested_vmcb
->control
.int_ctl
| V_INTR_MASKING_MASK
;
2555 if (nested_vmcb
->control
.int_ctl
& V_INTR_MASKING_MASK
)
2556 svm
->vcpu
.arch
.hflags
|= HF_VINTR_MASK
;
2558 svm
->vcpu
.arch
.hflags
&= ~HF_VINTR_MASK
;
2560 if (svm
->vcpu
.arch
.hflags
& HF_VINTR_MASK
) {
2561 /* We only want the cr8 intercept bits of the guest */
2562 clr_cr_intercept(svm
, INTERCEPT_CR8_READ
);
2563 clr_cr_intercept(svm
, INTERCEPT_CR8_WRITE
);
2566 /* We don't want to see VMMCALLs from a nested guest */
2567 clr_intercept(svm
, INTERCEPT_VMMCALL
);
2569 svm
->vmcb
->control
.lbr_ctl
= nested_vmcb
->control
.lbr_ctl
;
2570 svm
->vmcb
->control
.int_vector
= nested_vmcb
->control
.int_vector
;
2571 svm
->vmcb
->control
.int_state
= nested_vmcb
->control
.int_state
;
2572 svm
->vmcb
->control
.tsc_offset
+= nested_vmcb
->control
.tsc_offset
;
2573 svm
->vmcb
->control
.event_inj
= nested_vmcb
->control
.event_inj
;
2574 svm
->vmcb
->control
.event_inj_err
= nested_vmcb
->control
.event_inj_err
;
2576 nested_svm_unmap(page
);
2578 /* Enter Guest-Mode */
2579 enter_guest_mode(&svm
->vcpu
);
2582 * Merge guest and host intercepts - must be called with vcpu in
2583 * guest-mode to take affect here
2585 recalc_intercepts(svm
);
2587 svm
->nested
.vmcb
= vmcb_gpa
;
2591 mark_all_dirty(svm
->vmcb
);
2596 static void nested_svm_vmloadsave(struct vmcb
*from_vmcb
, struct vmcb
*to_vmcb
)
2598 to_vmcb
->save
.fs
= from_vmcb
->save
.fs
;
2599 to_vmcb
->save
.gs
= from_vmcb
->save
.gs
;
2600 to_vmcb
->save
.tr
= from_vmcb
->save
.tr
;
2601 to_vmcb
->save
.ldtr
= from_vmcb
->save
.ldtr
;
2602 to_vmcb
->save
.kernel_gs_base
= from_vmcb
->save
.kernel_gs_base
;
2603 to_vmcb
->save
.star
= from_vmcb
->save
.star
;
2604 to_vmcb
->save
.lstar
= from_vmcb
->save
.lstar
;
2605 to_vmcb
->save
.cstar
= from_vmcb
->save
.cstar
;
2606 to_vmcb
->save
.sfmask
= from_vmcb
->save
.sfmask
;
2607 to_vmcb
->save
.sysenter_cs
= from_vmcb
->save
.sysenter_cs
;
2608 to_vmcb
->save
.sysenter_esp
= from_vmcb
->save
.sysenter_esp
;
2609 to_vmcb
->save
.sysenter_eip
= from_vmcb
->save
.sysenter_eip
;
2612 static int vmload_interception(struct vcpu_svm
*svm
)
2614 struct vmcb
*nested_vmcb
;
2617 if (nested_svm_check_permissions(svm
))
2620 nested_vmcb
= nested_svm_map(svm
, svm
->vmcb
->save
.rax
, &page
);
2624 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
2625 skip_emulated_instruction(&svm
->vcpu
);
2627 nested_svm_vmloadsave(nested_vmcb
, svm
->vmcb
);
2628 nested_svm_unmap(page
);
2633 static int vmsave_interception(struct vcpu_svm
*svm
)
2635 struct vmcb
*nested_vmcb
;
2638 if (nested_svm_check_permissions(svm
))
2641 nested_vmcb
= nested_svm_map(svm
, svm
->vmcb
->save
.rax
, &page
);
2645 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
2646 skip_emulated_instruction(&svm
->vcpu
);
2648 nested_svm_vmloadsave(svm
->vmcb
, nested_vmcb
);
2649 nested_svm_unmap(page
);
2654 static int vmrun_interception(struct vcpu_svm
*svm
)
2656 if (nested_svm_check_permissions(svm
))
2659 /* Save rip after vmrun instruction */
2660 kvm_rip_write(&svm
->vcpu
, kvm_rip_read(&svm
->vcpu
) + 3);
2662 if (!nested_svm_vmrun(svm
))
2665 if (!nested_svm_vmrun_msrpm(svm
))
2672 svm
->vmcb
->control
.exit_code
= SVM_EXIT_ERR
;
2673 svm
->vmcb
->control
.exit_code_hi
= 0;
2674 svm
->vmcb
->control
.exit_info_1
= 0;
2675 svm
->vmcb
->control
.exit_info_2
= 0;
2677 nested_svm_vmexit(svm
);
2682 static int stgi_interception(struct vcpu_svm
*svm
)
2684 if (nested_svm_check_permissions(svm
))
2687 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
2688 skip_emulated_instruction(&svm
->vcpu
);
2689 kvm_make_request(KVM_REQ_EVENT
, &svm
->vcpu
);
2696 static int clgi_interception(struct vcpu_svm
*svm
)
2698 if (nested_svm_check_permissions(svm
))
2701 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
2702 skip_emulated_instruction(&svm
->vcpu
);
2706 /* After a CLGI no interrupts should come */
2707 svm_clear_vintr(svm
);
2708 svm
->vmcb
->control
.int_ctl
&= ~V_IRQ_MASK
;
2710 mark_dirty(svm
->vmcb
, VMCB_INTR
);
2715 static int invlpga_interception(struct vcpu_svm
*svm
)
2717 struct kvm_vcpu
*vcpu
= &svm
->vcpu
;
2719 trace_kvm_invlpga(svm
->vmcb
->save
.rip
, vcpu
->arch
.regs
[VCPU_REGS_RCX
],
2720 vcpu
->arch
.regs
[VCPU_REGS_RAX
]);
2722 /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2723 kvm_mmu_invlpg(vcpu
, vcpu
->arch
.regs
[VCPU_REGS_RAX
]);
2725 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
2726 skip_emulated_instruction(&svm
->vcpu
);
2730 static int skinit_interception(struct vcpu_svm
*svm
)
2732 trace_kvm_skinit(svm
->vmcb
->save
.rip
, svm
->vcpu
.arch
.regs
[VCPU_REGS_RAX
]);
2734 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
2738 static int xsetbv_interception(struct vcpu_svm
*svm
)
2740 u64 new_bv
= kvm_read_edx_eax(&svm
->vcpu
);
2741 u32 index
= kvm_register_read(&svm
->vcpu
, VCPU_REGS_RCX
);
2743 if (kvm_set_xcr(&svm
->vcpu
, index
, new_bv
) == 0) {
2744 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
2745 skip_emulated_instruction(&svm
->vcpu
);
2751 static int invalid_op_interception(struct vcpu_svm
*svm
)
2753 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
2757 static int task_switch_interception(struct vcpu_svm
*svm
)
2761 int int_type
= svm
->vmcb
->control
.exit_int_info
&
2762 SVM_EXITINTINFO_TYPE_MASK
;
2763 int int_vec
= svm
->vmcb
->control
.exit_int_info
& SVM_EVTINJ_VEC_MASK
;
2765 svm
->vmcb
->control
.exit_int_info
& SVM_EXITINTINFO_TYPE_MASK
;
2767 svm
->vmcb
->control
.exit_int_info
& SVM_EXITINTINFO_VALID
;
2768 bool has_error_code
= false;
2771 tss_selector
= (u16
)svm
->vmcb
->control
.exit_info_1
;
2773 if (svm
->vmcb
->control
.exit_info_2
&
2774 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET
))
2775 reason
= TASK_SWITCH_IRET
;
2776 else if (svm
->vmcb
->control
.exit_info_2
&
2777 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP
))
2778 reason
= TASK_SWITCH_JMP
;
2780 reason
= TASK_SWITCH_GATE
;
2782 reason
= TASK_SWITCH_CALL
;
2784 if (reason
== TASK_SWITCH_GATE
) {
2786 case SVM_EXITINTINFO_TYPE_NMI
:
2787 svm
->vcpu
.arch
.nmi_injected
= false;
2789 case SVM_EXITINTINFO_TYPE_EXEPT
:
2790 if (svm
->vmcb
->control
.exit_info_2
&
2791 (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE
)) {
2792 has_error_code
= true;
2794 (u32
)svm
->vmcb
->control
.exit_info_2
;
2796 kvm_clear_exception_queue(&svm
->vcpu
);
2798 case SVM_EXITINTINFO_TYPE_INTR
:
2799 kvm_clear_interrupt_queue(&svm
->vcpu
);
2806 if (reason
!= TASK_SWITCH_GATE
||
2807 int_type
== SVM_EXITINTINFO_TYPE_SOFT
||
2808 (int_type
== SVM_EXITINTINFO_TYPE_EXEPT
&&
2809 (int_vec
== OF_VECTOR
|| int_vec
== BP_VECTOR
)))
2810 skip_emulated_instruction(&svm
->vcpu
);
2812 if (int_type
!= SVM_EXITINTINFO_TYPE_SOFT
)
2815 if (kvm_task_switch(&svm
->vcpu
, tss_selector
, int_vec
, reason
,
2816 has_error_code
, error_code
) == EMULATE_FAIL
) {
2817 svm
->vcpu
.run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
2818 svm
->vcpu
.run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
2819 svm
->vcpu
.run
->internal
.ndata
= 0;
2825 static int cpuid_interception(struct vcpu_svm
*svm
)
2827 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 2;
2828 kvm_emulate_cpuid(&svm
->vcpu
);
2832 static int iret_interception(struct vcpu_svm
*svm
)
2834 ++svm
->vcpu
.stat
.nmi_window_exits
;
2835 clr_intercept(svm
, INTERCEPT_IRET
);
2836 svm
->vcpu
.arch
.hflags
|= HF_IRET_MASK
;
2837 svm
->nmi_iret_rip
= kvm_rip_read(&svm
->vcpu
);
2841 static int invlpg_interception(struct vcpu_svm
*svm
)
2843 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS
))
2844 return emulate_instruction(&svm
->vcpu
, 0) == EMULATE_DONE
;
2846 kvm_mmu_invlpg(&svm
->vcpu
, svm
->vmcb
->control
.exit_info_1
);
2847 skip_emulated_instruction(&svm
->vcpu
);
2851 static int emulate_on_interception(struct vcpu_svm
*svm
)
2853 return emulate_instruction(&svm
->vcpu
, 0) == EMULATE_DONE
;
2856 static int rdpmc_interception(struct vcpu_svm
*svm
)
2860 if (!static_cpu_has(X86_FEATURE_NRIPS
))
2861 return emulate_on_interception(svm
);
2863 err
= kvm_rdpmc(&svm
->vcpu
);
2864 kvm_complete_insn_gp(&svm
->vcpu
, err
);
2869 bool check_selective_cr0_intercepted(struct vcpu_svm
*svm
, unsigned long val
)
2871 unsigned long cr0
= svm
->vcpu
.arch
.cr0
;
2875 intercept
= svm
->nested
.intercept
;
2877 if (!is_guest_mode(&svm
->vcpu
) ||
2878 (!(intercept
& (1ULL << INTERCEPT_SELECTIVE_CR0
))))
2881 cr0
&= ~SVM_CR0_SELECTIVE_MASK
;
2882 val
&= ~SVM_CR0_SELECTIVE_MASK
;
2885 svm
->vmcb
->control
.exit_code
= SVM_EXIT_CR0_SEL_WRITE
;
2886 ret
= (nested_svm_exit_handled(svm
) == NESTED_EXIT_DONE
);
2892 #define CR_VALID (1ULL << 63)
2894 static int cr_interception(struct vcpu_svm
*svm
)
2900 if (!static_cpu_has(X86_FEATURE_DECODEASSISTS
))
2901 return emulate_on_interception(svm
);
2903 if (unlikely((svm
->vmcb
->control
.exit_info_1
& CR_VALID
) == 0))
2904 return emulate_on_interception(svm
);
2906 reg
= svm
->vmcb
->control
.exit_info_1
& SVM_EXITINFO_REG_MASK
;
2907 cr
= svm
->vmcb
->control
.exit_code
- SVM_EXIT_READ_CR0
;
2910 if (cr
>= 16) { /* mov to cr */
2912 val
= kvm_register_read(&svm
->vcpu
, reg
);
2915 if (!check_selective_cr0_intercepted(svm
, val
))
2916 err
= kvm_set_cr0(&svm
->vcpu
, val
);
2922 err
= kvm_set_cr3(&svm
->vcpu
, val
);
2925 err
= kvm_set_cr4(&svm
->vcpu
, val
);
2928 err
= kvm_set_cr8(&svm
->vcpu
, val
);
2931 WARN(1, "unhandled write to CR%d", cr
);
2932 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
2935 } else { /* mov from cr */
2938 val
= kvm_read_cr0(&svm
->vcpu
);
2941 val
= svm
->vcpu
.arch
.cr2
;
2944 val
= kvm_read_cr3(&svm
->vcpu
);
2947 val
= kvm_read_cr4(&svm
->vcpu
);
2950 val
= kvm_get_cr8(&svm
->vcpu
);
2953 WARN(1, "unhandled read from CR%d", cr
);
2954 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
2957 kvm_register_write(&svm
->vcpu
, reg
, val
);
2959 kvm_complete_insn_gp(&svm
->vcpu
, err
);
2964 static int dr_interception(struct vcpu_svm
*svm
)
2970 if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS
))
2971 return emulate_on_interception(svm
);
2973 reg
= svm
->vmcb
->control
.exit_info_1
& SVM_EXITINFO_REG_MASK
;
2974 dr
= svm
->vmcb
->control
.exit_code
- SVM_EXIT_READ_DR0
;
2976 if (dr
>= 16) { /* mov to DRn */
2977 val
= kvm_register_read(&svm
->vcpu
, reg
);
2978 kvm_set_dr(&svm
->vcpu
, dr
- 16, val
);
2980 err
= kvm_get_dr(&svm
->vcpu
, dr
, &val
);
2982 kvm_register_write(&svm
->vcpu
, reg
, val
);
2985 skip_emulated_instruction(&svm
->vcpu
);
2990 static int cr8_write_interception(struct vcpu_svm
*svm
)
2992 struct kvm_run
*kvm_run
= svm
->vcpu
.run
;
2995 u8 cr8_prev
= kvm_get_cr8(&svm
->vcpu
);
2996 /* instruction emulation calls kvm_set_cr8() */
2997 r
= cr_interception(svm
);
2998 if (irqchip_in_kernel(svm
->vcpu
.kvm
))
3000 if (cr8_prev
<= kvm_get_cr8(&svm
->vcpu
))
3002 kvm_run
->exit_reason
= KVM_EXIT_SET_TPR
;
3006 u64
svm_read_l1_tsc(struct kvm_vcpu
*vcpu
, u64 host_tsc
)
3008 struct vmcb
*vmcb
= get_host_vmcb(to_svm(vcpu
));
3009 return vmcb
->control
.tsc_offset
+
3010 svm_scale_tsc(vcpu
, host_tsc
);
3013 static int svm_get_msr(struct kvm_vcpu
*vcpu
, unsigned ecx
, u64
*data
)
3015 struct vcpu_svm
*svm
= to_svm(vcpu
);
3018 case MSR_IA32_TSC
: {
3019 *data
= svm
->vmcb
->control
.tsc_offset
+
3020 svm_scale_tsc(vcpu
, native_read_tsc());
3025 *data
= svm
->vmcb
->save
.star
;
3027 #ifdef CONFIG_X86_64
3029 *data
= svm
->vmcb
->save
.lstar
;
3032 *data
= svm
->vmcb
->save
.cstar
;
3034 case MSR_KERNEL_GS_BASE
:
3035 *data
= svm
->vmcb
->save
.kernel_gs_base
;
3037 case MSR_SYSCALL_MASK
:
3038 *data
= svm
->vmcb
->save
.sfmask
;
3041 case MSR_IA32_SYSENTER_CS
:
3042 *data
= svm
->vmcb
->save
.sysenter_cs
;
3044 case MSR_IA32_SYSENTER_EIP
:
3045 *data
= svm
->sysenter_eip
;
3047 case MSR_IA32_SYSENTER_ESP
:
3048 *data
= svm
->sysenter_esp
;
3051 * Nobody will change the following 5 values in the VMCB so we can
3052 * safely return them on rdmsr. They will always be 0 until LBRV is
3055 case MSR_IA32_DEBUGCTLMSR
:
3056 *data
= svm
->vmcb
->save
.dbgctl
;
3058 case MSR_IA32_LASTBRANCHFROMIP
:
3059 *data
= svm
->vmcb
->save
.br_from
;
3061 case MSR_IA32_LASTBRANCHTOIP
:
3062 *data
= svm
->vmcb
->save
.br_to
;
3064 case MSR_IA32_LASTINTFROMIP
:
3065 *data
= svm
->vmcb
->save
.last_excp_from
;
3067 case MSR_IA32_LASTINTTOIP
:
3068 *data
= svm
->vmcb
->save
.last_excp_to
;
3070 case MSR_VM_HSAVE_PA
:
3071 *data
= svm
->nested
.hsave_msr
;
3074 *data
= svm
->nested
.vm_cr_msr
;
3076 case MSR_IA32_UCODE_REV
:
3080 return kvm_get_msr_common(vcpu
, ecx
, data
);
3085 static int rdmsr_interception(struct vcpu_svm
*svm
)
3087 u32 ecx
= svm
->vcpu
.arch
.regs
[VCPU_REGS_RCX
];
3090 if (svm_get_msr(&svm
->vcpu
, ecx
, &data
)) {
3091 trace_kvm_msr_read_ex(ecx
);
3092 kvm_inject_gp(&svm
->vcpu
, 0);
3094 trace_kvm_msr_read(ecx
, data
);
3096 svm
->vcpu
.arch
.regs
[VCPU_REGS_RAX
] = data
& 0xffffffff;
3097 svm
->vcpu
.arch
.regs
[VCPU_REGS_RDX
] = data
>> 32;
3098 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 2;
3099 skip_emulated_instruction(&svm
->vcpu
);
3104 static int svm_set_vm_cr(struct kvm_vcpu
*vcpu
, u64 data
)
3106 struct vcpu_svm
*svm
= to_svm(vcpu
);
3107 int svm_dis
, chg_mask
;
3109 if (data
& ~SVM_VM_CR_VALID_MASK
)
3112 chg_mask
= SVM_VM_CR_VALID_MASK
;
3114 if (svm
->nested
.vm_cr_msr
& SVM_VM_CR_SVM_DIS_MASK
)
3115 chg_mask
&= ~(SVM_VM_CR_SVM_LOCK_MASK
| SVM_VM_CR_SVM_DIS_MASK
);
3117 svm
->nested
.vm_cr_msr
&= ~chg_mask
;
3118 svm
->nested
.vm_cr_msr
|= (data
& chg_mask
);
3120 svm_dis
= svm
->nested
.vm_cr_msr
& SVM_VM_CR_SVM_DIS_MASK
;
3122 /* check for svm_disable while efer.svme is set */
3123 if (svm_dis
&& (vcpu
->arch
.efer
& EFER_SVME
))
3129 static int svm_set_msr(struct kvm_vcpu
*vcpu
, struct msr_data
*msr
)
3131 struct vcpu_svm
*svm
= to_svm(vcpu
);
3133 u32 ecx
= msr
->index
;
3134 u64 data
= msr
->data
;
3137 kvm_write_tsc(vcpu
, msr
);
3140 svm
->vmcb
->save
.star
= data
;
3142 #ifdef CONFIG_X86_64
3144 svm
->vmcb
->save
.lstar
= data
;
3147 svm
->vmcb
->save
.cstar
= data
;
3149 case MSR_KERNEL_GS_BASE
:
3150 svm
->vmcb
->save
.kernel_gs_base
= data
;
3152 case MSR_SYSCALL_MASK
:
3153 svm
->vmcb
->save
.sfmask
= data
;
3156 case MSR_IA32_SYSENTER_CS
:
3157 svm
->vmcb
->save
.sysenter_cs
= data
;
3159 case MSR_IA32_SYSENTER_EIP
:
3160 svm
->sysenter_eip
= data
;
3161 svm
->vmcb
->save
.sysenter_eip
= data
;
3163 case MSR_IA32_SYSENTER_ESP
:
3164 svm
->sysenter_esp
= data
;
3165 svm
->vmcb
->save
.sysenter_esp
= data
;
3167 case MSR_IA32_DEBUGCTLMSR
:
3168 if (!boot_cpu_has(X86_FEATURE_LBRV
)) {
3169 vcpu_unimpl(vcpu
, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3173 if (data
& DEBUGCTL_RESERVED_BITS
)
3176 svm
->vmcb
->save
.dbgctl
= data
;
3177 mark_dirty(svm
->vmcb
, VMCB_LBR
);
3178 if (data
& (1ULL<<0))
3179 svm_enable_lbrv(svm
);
3181 svm_disable_lbrv(svm
);
3183 case MSR_VM_HSAVE_PA
:
3184 svm
->nested
.hsave_msr
= data
;
3187 return svm_set_vm_cr(vcpu
, data
);
3189 vcpu_unimpl(vcpu
, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx
, data
);
3192 return kvm_set_msr_common(vcpu
, msr
);
3197 static int wrmsr_interception(struct vcpu_svm
*svm
)
3199 struct msr_data msr
;
3200 u32 ecx
= svm
->vcpu
.arch
.regs
[VCPU_REGS_RCX
];
3201 u64 data
= (svm
->vcpu
.arch
.regs
[VCPU_REGS_RAX
] & -1u)
3202 | ((u64
)(svm
->vcpu
.arch
.regs
[VCPU_REGS_RDX
] & -1u) << 32);
3206 msr
.host_initiated
= false;
3208 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 2;
3209 if (kvm_set_msr(&svm
->vcpu
, &msr
)) {
3210 trace_kvm_msr_write_ex(ecx
, data
);
3211 kvm_inject_gp(&svm
->vcpu
, 0);
3213 trace_kvm_msr_write(ecx
, data
);
3214 skip_emulated_instruction(&svm
->vcpu
);
3219 static int msr_interception(struct vcpu_svm
*svm
)
3221 if (svm
->vmcb
->control
.exit_info_1
)
3222 return wrmsr_interception(svm
);
3224 return rdmsr_interception(svm
);
3227 static int interrupt_window_interception(struct vcpu_svm
*svm
)
3229 struct kvm_run
*kvm_run
= svm
->vcpu
.run
;
3231 kvm_make_request(KVM_REQ_EVENT
, &svm
->vcpu
);
3232 svm_clear_vintr(svm
);
3233 svm
->vmcb
->control
.int_ctl
&= ~V_IRQ_MASK
;
3234 mark_dirty(svm
->vmcb
, VMCB_INTR
);
3235 ++svm
->vcpu
.stat
.irq_window_exits
;
3237 * If the user space waits to inject interrupts, exit as soon as
3240 if (!irqchip_in_kernel(svm
->vcpu
.kvm
) &&
3241 kvm_run
->request_interrupt_window
&&
3242 !kvm_cpu_has_interrupt(&svm
->vcpu
)) {
3243 kvm_run
->exit_reason
= KVM_EXIT_IRQ_WINDOW_OPEN
;
3250 static int pause_interception(struct vcpu_svm
*svm
)
3252 kvm_vcpu_on_spin(&(svm
->vcpu
));
3256 static int (*const svm_exit_handlers
[])(struct vcpu_svm
*svm
) = {
3257 [SVM_EXIT_READ_CR0
] = cr_interception
,
3258 [SVM_EXIT_READ_CR3
] = cr_interception
,
3259 [SVM_EXIT_READ_CR4
] = cr_interception
,
3260 [SVM_EXIT_READ_CR8
] = cr_interception
,
3261 [SVM_EXIT_CR0_SEL_WRITE
] = emulate_on_interception
,
3262 [SVM_EXIT_WRITE_CR0
] = cr_interception
,
3263 [SVM_EXIT_WRITE_CR3
] = cr_interception
,
3264 [SVM_EXIT_WRITE_CR4
] = cr_interception
,
3265 [SVM_EXIT_WRITE_CR8
] = cr8_write_interception
,
3266 [SVM_EXIT_READ_DR0
] = dr_interception
,
3267 [SVM_EXIT_READ_DR1
] = dr_interception
,
3268 [SVM_EXIT_READ_DR2
] = dr_interception
,
3269 [SVM_EXIT_READ_DR3
] = dr_interception
,
3270 [SVM_EXIT_READ_DR4
] = dr_interception
,
3271 [SVM_EXIT_READ_DR5
] = dr_interception
,
3272 [SVM_EXIT_READ_DR6
] = dr_interception
,
3273 [SVM_EXIT_READ_DR7
] = dr_interception
,
3274 [SVM_EXIT_WRITE_DR0
] = dr_interception
,
3275 [SVM_EXIT_WRITE_DR1
] = dr_interception
,
3276 [SVM_EXIT_WRITE_DR2
] = dr_interception
,
3277 [SVM_EXIT_WRITE_DR3
] = dr_interception
,
3278 [SVM_EXIT_WRITE_DR4
] = dr_interception
,
3279 [SVM_EXIT_WRITE_DR5
] = dr_interception
,
3280 [SVM_EXIT_WRITE_DR6
] = dr_interception
,
3281 [SVM_EXIT_WRITE_DR7
] = dr_interception
,
3282 [SVM_EXIT_EXCP_BASE
+ DB_VECTOR
] = db_interception
,
3283 [SVM_EXIT_EXCP_BASE
+ BP_VECTOR
] = bp_interception
,
3284 [SVM_EXIT_EXCP_BASE
+ UD_VECTOR
] = ud_interception
,
3285 [SVM_EXIT_EXCP_BASE
+ PF_VECTOR
] = pf_interception
,
3286 [SVM_EXIT_EXCP_BASE
+ NM_VECTOR
] = nm_interception
,
3287 [SVM_EXIT_EXCP_BASE
+ MC_VECTOR
] = mc_interception
,
3288 [SVM_EXIT_EXCP_BASE
+ AC_VECTOR
] = ac_interception
,
3289 [SVM_EXIT_INTR
] = intr_interception
,
3290 [SVM_EXIT_NMI
] = nmi_interception
,
3291 [SVM_EXIT_SMI
] = nop_on_interception
,
3292 [SVM_EXIT_INIT
] = nop_on_interception
,
3293 [SVM_EXIT_VINTR
] = interrupt_window_interception
,
3294 [SVM_EXIT_RDPMC
] = rdpmc_interception
,
3295 [SVM_EXIT_CPUID
] = cpuid_interception
,
3296 [SVM_EXIT_IRET
] = iret_interception
,
3297 [SVM_EXIT_INVD
] = emulate_on_interception
,
3298 [SVM_EXIT_PAUSE
] = pause_interception
,
3299 [SVM_EXIT_HLT
] = halt_interception
,
3300 [SVM_EXIT_INVLPG
] = invlpg_interception
,
3301 [SVM_EXIT_INVLPGA
] = invlpga_interception
,
3302 [SVM_EXIT_IOIO
] = io_interception
,
3303 [SVM_EXIT_MSR
] = msr_interception
,
3304 [SVM_EXIT_TASK_SWITCH
] = task_switch_interception
,
3305 [SVM_EXIT_SHUTDOWN
] = shutdown_interception
,
3306 [SVM_EXIT_VMRUN
] = vmrun_interception
,
3307 [SVM_EXIT_VMMCALL
] = vmmcall_interception
,
3308 [SVM_EXIT_VMLOAD
] = vmload_interception
,
3309 [SVM_EXIT_VMSAVE
] = vmsave_interception
,
3310 [SVM_EXIT_STGI
] = stgi_interception
,
3311 [SVM_EXIT_CLGI
] = clgi_interception
,
3312 [SVM_EXIT_SKINIT
] = skinit_interception
,
3313 [SVM_EXIT_WBINVD
] = emulate_on_interception
,
3314 [SVM_EXIT_MONITOR
] = invalid_op_interception
,
3315 [SVM_EXIT_MWAIT
] = invalid_op_interception
,
3316 [SVM_EXIT_XSETBV
] = xsetbv_interception
,
3317 [SVM_EXIT_NPF
] = pf_interception
,
3320 static void dump_vmcb(struct kvm_vcpu
*vcpu
)
3322 struct vcpu_svm
*svm
= to_svm(vcpu
);
3323 struct vmcb_control_area
*control
= &svm
->vmcb
->control
;
3324 struct vmcb_save_area
*save
= &svm
->vmcb
->save
;
3326 pr_err("VMCB Control Area:\n");
3327 pr_err("%-20s%04x\n", "cr_read:", control
->intercept_cr
& 0xffff);
3328 pr_err("%-20s%04x\n", "cr_write:", control
->intercept_cr
>> 16);
3329 pr_err("%-20s%04x\n", "dr_read:", control
->intercept_dr
& 0xffff);
3330 pr_err("%-20s%04x\n", "dr_write:", control
->intercept_dr
>> 16);
3331 pr_err("%-20s%08x\n", "exceptions:", control
->intercept_exceptions
);
3332 pr_err("%-20s%016llx\n", "intercepts:", control
->intercept
);
3333 pr_err("%-20s%d\n", "pause filter count:", control
->pause_filter_count
);
3334 pr_err("%-20s%016llx\n", "iopm_base_pa:", control
->iopm_base_pa
);
3335 pr_err("%-20s%016llx\n", "msrpm_base_pa:", control
->msrpm_base_pa
);
3336 pr_err("%-20s%016llx\n", "tsc_offset:", control
->tsc_offset
);
3337 pr_err("%-20s%d\n", "asid:", control
->asid
);
3338 pr_err("%-20s%d\n", "tlb_ctl:", control
->tlb_ctl
);
3339 pr_err("%-20s%08x\n", "int_ctl:", control
->int_ctl
);
3340 pr_err("%-20s%08x\n", "int_vector:", control
->int_vector
);
3341 pr_err("%-20s%08x\n", "int_state:", control
->int_state
);
3342 pr_err("%-20s%08x\n", "exit_code:", control
->exit_code
);
3343 pr_err("%-20s%016llx\n", "exit_info1:", control
->exit_info_1
);
3344 pr_err("%-20s%016llx\n", "exit_info2:", control
->exit_info_2
);
3345 pr_err("%-20s%08x\n", "exit_int_info:", control
->exit_int_info
);
3346 pr_err("%-20s%08x\n", "exit_int_info_err:", control
->exit_int_info_err
);
3347 pr_err("%-20s%lld\n", "nested_ctl:", control
->nested_ctl
);
3348 pr_err("%-20s%016llx\n", "nested_cr3:", control
->nested_cr3
);
3349 pr_err("%-20s%08x\n", "event_inj:", control
->event_inj
);
3350 pr_err("%-20s%08x\n", "event_inj_err:", control
->event_inj_err
);
3351 pr_err("%-20s%lld\n", "lbr_ctl:", control
->lbr_ctl
);
3352 pr_err("%-20s%016llx\n", "next_rip:", control
->next_rip
);
3353 pr_err("VMCB State Save Area:\n");
3354 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3356 save
->es
.selector
, save
->es
.attrib
,
3357 save
->es
.limit
, save
->es
.base
);
3358 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3360 save
->cs
.selector
, save
->cs
.attrib
,
3361 save
->cs
.limit
, save
->cs
.base
);
3362 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3364 save
->ss
.selector
, save
->ss
.attrib
,
3365 save
->ss
.limit
, save
->ss
.base
);
3366 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3368 save
->ds
.selector
, save
->ds
.attrib
,
3369 save
->ds
.limit
, save
->ds
.base
);
3370 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3372 save
->fs
.selector
, save
->fs
.attrib
,
3373 save
->fs
.limit
, save
->fs
.base
);
3374 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3376 save
->gs
.selector
, save
->gs
.attrib
,
3377 save
->gs
.limit
, save
->gs
.base
);
3378 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3380 save
->gdtr
.selector
, save
->gdtr
.attrib
,
3381 save
->gdtr
.limit
, save
->gdtr
.base
);
3382 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3384 save
->ldtr
.selector
, save
->ldtr
.attrib
,
3385 save
->ldtr
.limit
, save
->ldtr
.base
);
3386 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3388 save
->idtr
.selector
, save
->idtr
.attrib
,
3389 save
->idtr
.limit
, save
->idtr
.base
);
3390 pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3392 save
->tr
.selector
, save
->tr
.attrib
,
3393 save
->tr
.limit
, save
->tr
.base
);
3394 pr_err("cpl: %d efer: %016llx\n",
3395 save
->cpl
, save
->efer
);
3396 pr_err("%-15s %016llx %-13s %016llx\n",
3397 "cr0:", save
->cr0
, "cr2:", save
->cr2
);
3398 pr_err("%-15s %016llx %-13s %016llx\n",
3399 "cr3:", save
->cr3
, "cr4:", save
->cr4
);
3400 pr_err("%-15s %016llx %-13s %016llx\n",
3401 "dr6:", save
->dr6
, "dr7:", save
->dr7
);
3402 pr_err("%-15s %016llx %-13s %016llx\n",
3403 "rip:", save
->rip
, "rflags:", save
->rflags
);
3404 pr_err("%-15s %016llx %-13s %016llx\n",
3405 "rsp:", save
->rsp
, "rax:", save
->rax
);
3406 pr_err("%-15s %016llx %-13s %016llx\n",
3407 "star:", save
->star
, "lstar:", save
->lstar
);
3408 pr_err("%-15s %016llx %-13s %016llx\n",
3409 "cstar:", save
->cstar
, "sfmask:", save
->sfmask
);
3410 pr_err("%-15s %016llx %-13s %016llx\n",
3411 "kernel_gs_base:", save
->kernel_gs_base
,
3412 "sysenter_cs:", save
->sysenter_cs
);
3413 pr_err("%-15s %016llx %-13s %016llx\n",
3414 "sysenter_esp:", save
->sysenter_esp
,
3415 "sysenter_eip:", save
->sysenter_eip
);
3416 pr_err("%-15s %016llx %-13s %016llx\n",
3417 "gpat:", save
->g_pat
, "dbgctl:", save
->dbgctl
);
3418 pr_err("%-15s %016llx %-13s %016llx\n",
3419 "br_from:", save
->br_from
, "br_to:", save
->br_to
);
3420 pr_err("%-15s %016llx %-13s %016llx\n",
3421 "excp_from:", save
->last_excp_from
,
3422 "excp_to:", save
->last_excp_to
);
3425 static void svm_get_exit_info(struct kvm_vcpu
*vcpu
, u64
*info1
, u64
*info2
)
3427 struct vmcb_control_area
*control
= &to_svm(vcpu
)->vmcb
->control
;
3429 *info1
= control
->exit_info_1
;
3430 *info2
= control
->exit_info_2
;
3433 static int handle_exit(struct kvm_vcpu
*vcpu
)
3435 struct vcpu_svm
*svm
= to_svm(vcpu
);
3436 struct kvm_run
*kvm_run
= vcpu
->run
;
3437 u32 exit_code
= svm
->vmcb
->control
.exit_code
;
3439 if (!is_cr_intercept(svm
, INTERCEPT_CR0_WRITE
))
3440 vcpu
->arch
.cr0
= svm
->vmcb
->save
.cr0
;
3442 vcpu
->arch
.cr3
= svm
->vmcb
->save
.cr3
;
3444 if (unlikely(svm
->nested
.exit_required
)) {
3445 nested_svm_vmexit(svm
);
3446 svm
->nested
.exit_required
= false;
3451 if (is_guest_mode(vcpu
)) {
3454 trace_kvm_nested_vmexit(svm
->vmcb
->save
.rip
, exit_code
,
3455 svm
->vmcb
->control
.exit_info_1
,
3456 svm
->vmcb
->control
.exit_info_2
,
3457 svm
->vmcb
->control
.exit_int_info
,
3458 svm
->vmcb
->control
.exit_int_info_err
,
3461 vmexit
= nested_svm_exit_special(svm
);
3463 if (vmexit
== NESTED_EXIT_CONTINUE
)
3464 vmexit
= nested_svm_exit_handled(svm
);
3466 if (vmexit
== NESTED_EXIT_DONE
)
3470 svm_complete_interrupts(svm
);
3472 if (svm
->vmcb
->control
.exit_code
== SVM_EXIT_ERR
) {
3473 kvm_run
->exit_reason
= KVM_EXIT_FAIL_ENTRY
;
3474 kvm_run
->fail_entry
.hardware_entry_failure_reason
3475 = svm
->vmcb
->control
.exit_code
;
3476 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
3481 if (is_external_interrupt(svm
->vmcb
->control
.exit_int_info
) &&
3482 exit_code
!= SVM_EXIT_EXCP_BASE
+ PF_VECTOR
&&
3483 exit_code
!= SVM_EXIT_NPF
&& exit_code
!= SVM_EXIT_TASK_SWITCH
&&
3484 exit_code
!= SVM_EXIT_INTR
&& exit_code
!= SVM_EXIT_NMI
)
3485 printk(KERN_ERR
"%s: unexpected exit_int_info 0x%x "
3487 __func__
, svm
->vmcb
->control
.exit_int_info
,
3490 if (exit_code
>= ARRAY_SIZE(svm_exit_handlers
)
3491 || !svm_exit_handlers
[exit_code
]) {
3492 WARN_ONCE(1, "vmx: unexpected exit reason 0x%x\n", exit_code
);
3493 kvm_queue_exception(vcpu
, UD_VECTOR
);
3497 return svm_exit_handlers
[exit_code
](svm
);
3500 static void reload_tss(struct kvm_vcpu
*vcpu
)
3502 int cpu
= raw_smp_processor_id();
3504 struct svm_cpu_data
*sd
= per_cpu(svm_data
, cpu
);
3505 sd
->tss_desc
->type
= 9; /* available 32/64-bit TSS */
3509 static void pre_svm_run(struct vcpu_svm
*svm
)
3511 int cpu
= raw_smp_processor_id();
3513 struct svm_cpu_data
*sd
= per_cpu(svm_data
, cpu
);
3515 /* FIXME: handle wraparound of asid_generation */
3516 if (svm
->asid_generation
!= sd
->asid_generation
)
3520 static void svm_inject_nmi(struct kvm_vcpu
*vcpu
)
3522 struct vcpu_svm
*svm
= to_svm(vcpu
);
3524 svm
->vmcb
->control
.event_inj
= SVM_EVTINJ_VALID
| SVM_EVTINJ_TYPE_NMI
;
3525 vcpu
->arch
.hflags
|= HF_NMI_MASK
;
3526 set_intercept(svm
, INTERCEPT_IRET
);
3527 ++vcpu
->stat
.nmi_injections
;
3530 static inline void svm_inject_irq(struct vcpu_svm
*svm
, int irq
)
3532 struct vmcb_control_area
*control
;
3534 control
= &svm
->vmcb
->control
;
3535 control
->int_vector
= irq
;
3536 control
->int_ctl
&= ~V_INTR_PRIO_MASK
;
3537 control
->int_ctl
|= V_IRQ_MASK
|
3538 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT
);
3539 mark_dirty(svm
->vmcb
, VMCB_INTR
);
3542 static void svm_set_irq(struct kvm_vcpu
*vcpu
)
3544 struct vcpu_svm
*svm
= to_svm(vcpu
);
3546 BUG_ON(!(gif_set(svm
)));
3548 trace_kvm_inj_virq(vcpu
->arch
.interrupt
.nr
);
3549 ++vcpu
->stat
.irq_injections
;
3551 svm
->vmcb
->control
.event_inj
= vcpu
->arch
.interrupt
.nr
|
3552 SVM_EVTINJ_VALID
| SVM_EVTINJ_TYPE_INTR
;
3555 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
, int tpr
, int irr
)
3557 struct vcpu_svm
*svm
= to_svm(vcpu
);
3559 if (is_guest_mode(vcpu
) && (vcpu
->arch
.hflags
& HF_VINTR_MASK
))
3562 clr_cr_intercept(svm
, INTERCEPT_CR8_WRITE
);
3568 set_cr_intercept(svm
, INTERCEPT_CR8_WRITE
);
3571 static void svm_set_virtual_x2apic_mode(struct kvm_vcpu
*vcpu
, bool set
)
3576 static int svm_vm_has_apicv(struct kvm
*kvm
)
3581 static void svm_load_eoi_exitmap(struct kvm_vcpu
*vcpu
, u64
*eoi_exit_bitmap
)
3586 static void svm_hwapic_isr_update(struct kvm
*kvm
, int isr
)
3591 static void svm_sync_pir_to_irr(struct kvm_vcpu
*vcpu
)
3596 static int svm_nmi_allowed(struct kvm_vcpu
*vcpu
)
3598 struct vcpu_svm
*svm
= to_svm(vcpu
);
3599 struct vmcb
*vmcb
= svm
->vmcb
;
3601 ret
= !(vmcb
->control
.int_state
& SVM_INTERRUPT_SHADOW_MASK
) &&
3602 !(svm
->vcpu
.arch
.hflags
& HF_NMI_MASK
);
3603 ret
= ret
&& gif_set(svm
) && nested_svm_nmi(svm
);
3608 static bool svm_get_nmi_mask(struct kvm_vcpu
*vcpu
)
3610 struct vcpu_svm
*svm
= to_svm(vcpu
);
3612 return !!(svm
->vcpu
.arch
.hflags
& HF_NMI_MASK
);
3615 static void svm_set_nmi_mask(struct kvm_vcpu
*vcpu
, bool masked
)
3617 struct vcpu_svm
*svm
= to_svm(vcpu
);
3620 svm
->vcpu
.arch
.hflags
|= HF_NMI_MASK
;
3621 set_intercept(svm
, INTERCEPT_IRET
);
3623 svm
->vcpu
.arch
.hflags
&= ~HF_NMI_MASK
;
3624 clr_intercept(svm
, INTERCEPT_IRET
);
3628 static int svm_interrupt_allowed(struct kvm_vcpu
*vcpu
)
3630 struct vcpu_svm
*svm
= to_svm(vcpu
);
3631 struct vmcb
*vmcb
= svm
->vmcb
;
3634 if (!gif_set(svm
) ||
3635 (vmcb
->control
.int_state
& SVM_INTERRUPT_SHADOW_MASK
))
3638 ret
= !!(kvm_get_rflags(vcpu
) & X86_EFLAGS_IF
);
3640 if (is_guest_mode(vcpu
))
3641 return ret
&& !(svm
->vcpu
.arch
.hflags
& HF_VINTR_MASK
);
3646 static int enable_irq_window(struct kvm_vcpu
*vcpu
)
3648 struct vcpu_svm
*svm
= to_svm(vcpu
);
3651 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3652 * 1, because that's a separate STGI/VMRUN intercept. The next time we
3653 * get that intercept, this function will be called again though and
3654 * we'll get the vintr intercept.
3656 if (gif_set(svm
) && nested_svm_intr(svm
)) {
3658 svm_inject_irq(svm
, 0x0);
3663 static int enable_nmi_window(struct kvm_vcpu
*vcpu
)
3665 struct vcpu_svm
*svm
= to_svm(vcpu
);
3667 if ((svm
->vcpu
.arch
.hflags
& (HF_NMI_MASK
| HF_IRET_MASK
))
3669 return 0; /* IRET will cause a vm exit */
3672 * Something prevents NMI from been injected. Single step over possible
3673 * problem (IRET or exception injection or interrupt shadow)
3675 svm
->nmi_singlestep
= true;
3676 svm
->vmcb
->save
.rflags
|= (X86_EFLAGS_TF
| X86_EFLAGS_RF
);
3680 static int svm_set_tss_addr(struct kvm
*kvm
, unsigned int addr
)
3685 static void svm_flush_tlb(struct kvm_vcpu
*vcpu
)
3687 struct vcpu_svm
*svm
= to_svm(vcpu
);
3689 if (static_cpu_has(X86_FEATURE_FLUSHBYASID
))
3690 svm
->vmcb
->control
.tlb_ctl
= TLB_CONTROL_FLUSH_ASID
;
3692 svm
->asid_generation
--;
3695 static void svm_prepare_guest_switch(struct kvm_vcpu
*vcpu
)
3699 static inline void sync_cr8_to_lapic(struct kvm_vcpu
*vcpu
)
3701 struct vcpu_svm
*svm
= to_svm(vcpu
);
3703 if (is_guest_mode(vcpu
) && (vcpu
->arch
.hflags
& HF_VINTR_MASK
))
3706 if (!is_cr_intercept(svm
, INTERCEPT_CR8_WRITE
)) {
3707 int cr8
= svm
->vmcb
->control
.int_ctl
& V_TPR_MASK
;
3708 kvm_set_cr8(vcpu
, cr8
);
3712 static inline void sync_lapic_to_cr8(struct kvm_vcpu
*vcpu
)
3714 struct vcpu_svm
*svm
= to_svm(vcpu
);
3717 if (is_guest_mode(vcpu
) && (vcpu
->arch
.hflags
& HF_VINTR_MASK
))
3720 cr8
= kvm_get_cr8(vcpu
);
3721 svm
->vmcb
->control
.int_ctl
&= ~V_TPR_MASK
;
3722 svm
->vmcb
->control
.int_ctl
|= cr8
& V_TPR_MASK
;
3725 static void svm_complete_interrupts(struct vcpu_svm
*svm
)
3729 u32 exitintinfo
= svm
->vmcb
->control
.exit_int_info
;
3730 unsigned int3_injected
= svm
->int3_injected
;
3732 svm
->int3_injected
= 0;
3735 * If we've made progress since setting HF_IRET_MASK, we've
3736 * executed an IRET and can allow NMI injection.
3738 if ((svm
->vcpu
.arch
.hflags
& HF_IRET_MASK
)
3739 && kvm_rip_read(&svm
->vcpu
) != svm
->nmi_iret_rip
) {
3740 svm
->vcpu
.arch
.hflags
&= ~(HF_NMI_MASK
| HF_IRET_MASK
);
3741 kvm_make_request(KVM_REQ_EVENT
, &svm
->vcpu
);
3744 svm
->vcpu
.arch
.nmi_injected
= false;
3745 kvm_clear_exception_queue(&svm
->vcpu
);
3746 kvm_clear_interrupt_queue(&svm
->vcpu
);
3748 if (!(exitintinfo
& SVM_EXITINTINFO_VALID
))
3751 kvm_make_request(KVM_REQ_EVENT
, &svm
->vcpu
);
3753 vector
= exitintinfo
& SVM_EXITINTINFO_VEC_MASK
;
3754 type
= exitintinfo
& SVM_EXITINTINFO_TYPE_MASK
;
3757 case SVM_EXITINTINFO_TYPE_NMI
:
3758 svm
->vcpu
.arch
.nmi_injected
= true;
3760 case SVM_EXITINTINFO_TYPE_EXEPT
:
3762 * In case of software exceptions, do not reinject the vector,
3763 * but re-execute the instruction instead. Rewind RIP first
3764 * if we emulated INT3 before.
3766 if (kvm_exception_is_soft(vector
)) {
3767 if (vector
== BP_VECTOR
&& int3_injected
&&
3768 kvm_is_linear_rip(&svm
->vcpu
, svm
->int3_rip
))
3769 kvm_rip_write(&svm
->vcpu
,
3770 kvm_rip_read(&svm
->vcpu
) -
3774 if (exitintinfo
& SVM_EXITINTINFO_VALID_ERR
) {
3775 u32 err
= svm
->vmcb
->control
.exit_int_info_err
;
3776 kvm_requeue_exception_e(&svm
->vcpu
, vector
, err
);
3779 kvm_requeue_exception(&svm
->vcpu
, vector
);
3781 case SVM_EXITINTINFO_TYPE_INTR
:
3782 kvm_queue_interrupt(&svm
->vcpu
, vector
, false);
3789 static void svm_cancel_injection(struct kvm_vcpu
*vcpu
)
3791 struct vcpu_svm
*svm
= to_svm(vcpu
);
3792 struct vmcb_control_area
*control
= &svm
->vmcb
->control
;
3794 control
->exit_int_info
= control
->event_inj
;
3795 control
->exit_int_info_err
= control
->event_inj_err
;
3796 control
->event_inj
= 0;
3797 svm_complete_interrupts(svm
);
3800 static void svm_vcpu_run(struct kvm_vcpu
*vcpu
)
3802 struct vcpu_svm
*svm
= to_svm(vcpu
);
3804 svm
->vmcb
->save
.rax
= vcpu
->arch
.regs
[VCPU_REGS_RAX
];
3805 svm
->vmcb
->save
.rsp
= vcpu
->arch
.regs
[VCPU_REGS_RSP
];
3806 svm
->vmcb
->save
.rip
= vcpu
->arch
.regs
[VCPU_REGS_RIP
];
3809 * A vmexit emulation is required before the vcpu can be executed
3812 if (unlikely(svm
->nested
.exit_required
))
3817 sync_lapic_to_cr8(vcpu
);
3819 svm
->vmcb
->save
.cr2
= vcpu
->arch
.cr2
;
3826 "push %%" _ASM_BP
"; \n\t"
3827 "mov %c[rbx](%[svm]), %%" _ASM_BX
" \n\t"
3828 "mov %c[rcx](%[svm]), %%" _ASM_CX
" \n\t"
3829 "mov %c[rdx](%[svm]), %%" _ASM_DX
" \n\t"
3830 "mov %c[rsi](%[svm]), %%" _ASM_SI
" \n\t"
3831 "mov %c[rdi](%[svm]), %%" _ASM_DI
" \n\t"
3832 "mov %c[rbp](%[svm]), %%" _ASM_BP
" \n\t"
3833 #ifdef CONFIG_X86_64
3834 "mov %c[r8](%[svm]), %%r8 \n\t"
3835 "mov %c[r9](%[svm]), %%r9 \n\t"
3836 "mov %c[r10](%[svm]), %%r10 \n\t"
3837 "mov %c[r11](%[svm]), %%r11 \n\t"
3838 "mov %c[r12](%[svm]), %%r12 \n\t"
3839 "mov %c[r13](%[svm]), %%r13 \n\t"
3840 "mov %c[r14](%[svm]), %%r14 \n\t"
3841 "mov %c[r15](%[svm]), %%r15 \n\t"
3844 /* Enter guest mode */
3845 "push %%" _ASM_AX
" \n\t"
3846 "mov %c[vmcb](%[svm]), %%" _ASM_AX
" \n\t"
3847 __ex(SVM_VMLOAD
) "\n\t"
3848 __ex(SVM_VMRUN
) "\n\t"
3849 __ex(SVM_VMSAVE
) "\n\t"
3850 "pop %%" _ASM_AX
" \n\t"
3852 /* Save guest registers, load host registers */
3853 "mov %%" _ASM_BX
", %c[rbx](%[svm]) \n\t"
3854 "mov %%" _ASM_CX
", %c[rcx](%[svm]) \n\t"
3855 "mov %%" _ASM_DX
", %c[rdx](%[svm]) \n\t"
3856 "mov %%" _ASM_SI
", %c[rsi](%[svm]) \n\t"
3857 "mov %%" _ASM_DI
", %c[rdi](%[svm]) \n\t"
3858 "mov %%" _ASM_BP
", %c[rbp](%[svm]) \n\t"
3859 #ifdef CONFIG_X86_64
3860 "mov %%r8, %c[r8](%[svm]) \n\t"
3861 "mov %%r9, %c[r9](%[svm]) \n\t"
3862 "mov %%r10, %c[r10](%[svm]) \n\t"
3863 "mov %%r11, %c[r11](%[svm]) \n\t"
3864 "mov %%r12, %c[r12](%[svm]) \n\t"
3865 "mov %%r13, %c[r13](%[svm]) \n\t"
3866 "mov %%r14, %c[r14](%[svm]) \n\t"
3867 "mov %%r15, %c[r15](%[svm]) \n\t"
3872 [vmcb
]"i"(offsetof(struct vcpu_svm
, vmcb_pa
)),
3873 [rbx
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RBX
])),
3874 [rcx
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RCX
])),
3875 [rdx
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RDX
])),
3876 [rsi
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RSI
])),
3877 [rdi
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RDI
])),
3878 [rbp
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RBP
]))
3879 #ifdef CONFIG_X86_64
3880 , [r8
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R8
])),
3881 [r9
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R9
])),
3882 [r10
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R10
])),
3883 [r11
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R11
])),
3884 [r12
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R12
])),
3885 [r13
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R13
])),
3886 [r14
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R14
])),
3887 [r15
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R15
]))
3890 #ifdef CONFIG_X86_64
3891 , "rbx", "rcx", "rdx", "rsi", "rdi"
3892 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
3894 , "ebx", "ecx", "edx", "esi", "edi"
3898 #ifdef CONFIG_X86_64
3899 wrmsrl(MSR_GS_BASE
, svm
->host
.gs_base
);
3901 loadsegment(fs
, svm
->host
.fs
);
3902 #ifndef CONFIG_X86_32_LAZY_GS
3903 loadsegment(gs
, svm
->host
.gs
);
3909 local_irq_disable();
3911 vcpu
->arch
.cr2
= svm
->vmcb
->save
.cr2
;
3912 vcpu
->arch
.regs
[VCPU_REGS_RAX
] = svm
->vmcb
->save
.rax
;
3913 vcpu
->arch
.regs
[VCPU_REGS_RSP
] = svm
->vmcb
->save
.rsp
;
3914 vcpu
->arch
.regs
[VCPU_REGS_RIP
] = svm
->vmcb
->save
.rip
;
3916 trace_kvm_exit(svm
->vmcb
->control
.exit_code
, vcpu
, KVM_ISA_SVM
);
3918 if (unlikely(svm
->vmcb
->control
.exit_code
== SVM_EXIT_NMI
))
3919 kvm_before_handle_nmi(&svm
->vcpu
);
3923 /* Any pending NMI will happen here */
3925 if (unlikely(svm
->vmcb
->control
.exit_code
== SVM_EXIT_NMI
))
3926 kvm_after_handle_nmi(&svm
->vcpu
);
3928 sync_cr8_to_lapic(vcpu
);
3932 svm
->vmcb
->control
.tlb_ctl
= TLB_CONTROL_DO_NOTHING
;
3934 /* if exit due to PF check for async PF */
3935 if (svm
->vmcb
->control
.exit_code
== SVM_EXIT_EXCP_BASE
+ PF_VECTOR
)
3936 svm
->apf_reason
= kvm_read_and_reset_pf_reason();
3939 vcpu
->arch
.regs_avail
&= ~(1 << VCPU_EXREG_PDPTR
);
3940 vcpu
->arch
.regs_dirty
&= ~(1 << VCPU_EXREG_PDPTR
);
3944 * We need to handle MC intercepts here before the vcpu has a chance to
3945 * change the physical cpu
3947 if (unlikely(svm
->vmcb
->control
.exit_code
==
3948 SVM_EXIT_EXCP_BASE
+ MC_VECTOR
))
3949 svm_handle_mce(svm
);
3951 mark_all_clean(svm
->vmcb
);
3954 static void svm_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long root
)
3956 struct vcpu_svm
*svm
= to_svm(vcpu
);
3958 svm
->vmcb
->save
.cr3
= root
;
3959 mark_dirty(svm
->vmcb
, VMCB_CR
);
3960 svm_flush_tlb(vcpu
);
3963 static void set_tdp_cr3(struct kvm_vcpu
*vcpu
, unsigned long root
)
3965 struct vcpu_svm
*svm
= to_svm(vcpu
);
3967 svm
->vmcb
->control
.nested_cr3
= root
;
3968 mark_dirty(svm
->vmcb
, VMCB_NPT
);
3970 /* Also sync guest cr3 here in case we live migrate */
3971 svm
->vmcb
->save
.cr3
= kvm_read_cr3(vcpu
);
3972 mark_dirty(svm
->vmcb
, VMCB_CR
);
3974 svm_flush_tlb(vcpu
);
3977 static int is_disabled(void)
3981 rdmsrl(MSR_VM_CR
, vm_cr
);
3982 if (vm_cr
& (1 << SVM_VM_CR_SVM_DISABLE
))
3989 svm_patch_hypercall(struct kvm_vcpu
*vcpu
, unsigned char *hypercall
)
3992 * Patch in the VMMCALL instruction:
3994 hypercall
[0] = 0x0f;
3995 hypercall
[1] = 0x01;
3996 hypercall
[2] = 0xd9;
3999 static void svm_check_processor_compat(void *rtn
)
4004 static bool svm_cpu_has_accelerated_tpr(void)
4009 static u64
svm_get_mt_mask(struct kvm_vcpu
*vcpu
, gfn_t gfn
, bool is_mmio
)
4014 static void svm_cpuid_update(struct kvm_vcpu
*vcpu
)
4018 static void svm_set_supported_cpuid(u32 func
, struct kvm_cpuid_entry2
*entry
)
4023 entry
->ecx
|= (1 << 2); /* Set SVM bit */
4026 entry
->eax
= 1; /* SVM revision 1 */
4027 entry
->ebx
= 8; /* Lets support 8 ASIDs in case we add proper
4028 ASID emulation to nested SVM */
4029 entry
->ecx
= 0; /* Reserved */
4030 entry
->edx
= 0; /* Per default do not support any
4031 additional features */
4033 /* Support next_rip if host supports it */
4034 if (boot_cpu_has(X86_FEATURE_NRIPS
))
4035 entry
->edx
|= SVM_FEATURE_NRIP
;
4037 /* Support NPT for the guest if enabled */
4039 entry
->edx
|= SVM_FEATURE_NPT
;
4045 static int svm_get_lpage_level(void)
4047 return PT_PDPE_LEVEL
;
4050 static bool svm_rdtscp_supported(void)
4055 static bool svm_invpcid_supported(void)
4060 static bool svm_has_wbinvd_exit(void)
4065 static void svm_fpu_deactivate(struct kvm_vcpu
*vcpu
)
4067 struct vcpu_svm
*svm
= to_svm(vcpu
);
4069 set_exception_intercept(svm
, NM_VECTOR
);
4070 update_cr0_intercept(svm
);
4073 #define PRE_EX(exit) { .exit_code = (exit), \
4074 .stage = X86_ICPT_PRE_EXCEPT, }
4075 #define POST_EX(exit) { .exit_code = (exit), \
4076 .stage = X86_ICPT_POST_EXCEPT, }
4077 #define POST_MEM(exit) { .exit_code = (exit), \
4078 .stage = X86_ICPT_POST_MEMACCESS, }
4080 static const struct __x86_intercept
{
4082 enum x86_intercept_stage stage
;
4083 } x86_intercept_map
[] = {
4084 [x86_intercept_cr_read
] = POST_EX(SVM_EXIT_READ_CR0
),
4085 [x86_intercept_cr_write
] = POST_EX(SVM_EXIT_WRITE_CR0
),
4086 [x86_intercept_clts
] = POST_EX(SVM_EXIT_WRITE_CR0
),
4087 [x86_intercept_lmsw
] = POST_EX(SVM_EXIT_WRITE_CR0
),
4088 [x86_intercept_smsw
] = POST_EX(SVM_EXIT_READ_CR0
),
4089 [x86_intercept_dr_read
] = POST_EX(SVM_EXIT_READ_DR0
),
4090 [x86_intercept_dr_write
] = POST_EX(SVM_EXIT_WRITE_DR0
),
4091 [x86_intercept_sldt
] = POST_EX(SVM_EXIT_LDTR_READ
),
4092 [x86_intercept_str
] = POST_EX(SVM_EXIT_TR_READ
),
4093 [x86_intercept_lldt
] = POST_EX(SVM_EXIT_LDTR_WRITE
),
4094 [x86_intercept_ltr
] = POST_EX(SVM_EXIT_TR_WRITE
),
4095 [x86_intercept_sgdt
] = POST_EX(SVM_EXIT_GDTR_READ
),
4096 [x86_intercept_sidt
] = POST_EX(SVM_EXIT_IDTR_READ
),
4097 [x86_intercept_lgdt
] = POST_EX(SVM_EXIT_GDTR_WRITE
),
4098 [x86_intercept_lidt
] = POST_EX(SVM_EXIT_IDTR_WRITE
),
4099 [x86_intercept_vmrun
] = POST_EX(SVM_EXIT_VMRUN
),
4100 [x86_intercept_vmmcall
] = POST_EX(SVM_EXIT_VMMCALL
),
4101 [x86_intercept_vmload
] = POST_EX(SVM_EXIT_VMLOAD
),
4102 [x86_intercept_vmsave
] = POST_EX(SVM_EXIT_VMSAVE
),
4103 [x86_intercept_stgi
] = POST_EX(SVM_EXIT_STGI
),
4104 [x86_intercept_clgi
] = POST_EX(SVM_EXIT_CLGI
),
4105 [x86_intercept_skinit
] = POST_EX(SVM_EXIT_SKINIT
),
4106 [x86_intercept_invlpga
] = POST_EX(SVM_EXIT_INVLPGA
),
4107 [x86_intercept_rdtscp
] = POST_EX(SVM_EXIT_RDTSCP
),
4108 [x86_intercept_monitor
] = POST_MEM(SVM_EXIT_MONITOR
),
4109 [x86_intercept_mwait
] = POST_EX(SVM_EXIT_MWAIT
),
4110 [x86_intercept_invlpg
] = POST_EX(SVM_EXIT_INVLPG
),
4111 [x86_intercept_invd
] = POST_EX(SVM_EXIT_INVD
),
4112 [x86_intercept_wbinvd
] = POST_EX(SVM_EXIT_WBINVD
),
4113 [x86_intercept_wrmsr
] = POST_EX(SVM_EXIT_MSR
),
4114 [x86_intercept_rdtsc
] = POST_EX(SVM_EXIT_RDTSC
),
4115 [x86_intercept_rdmsr
] = POST_EX(SVM_EXIT_MSR
),
4116 [x86_intercept_rdpmc
] = POST_EX(SVM_EXIT_RDPMC
),
4117 [x86_intercept_cpuid
] = PRE_EX(SVM_EXIT_CPUID
),
4118 [x86_intercept_rsm
] = PRE_EX(SVM_EXIT_RSM
),
4119 [x86_intercept_pause
] = PRE_EX(SVM_EXIT_PAUSE
),
4120 [x86_intercept_pushf
] = PRE_EX(SVM_EXIT_PUSHF
),
4121 [x86_intercept_popf
] = PRE_EX(SVM_EXIT_POPF
),
4122 [x86_intercept_intn
] = PRE_EX(SVM_EXIT_SWINT
),
4123 [x86_intercept_iret
] = PRE_EX(SVM_EXIT_IRET
),
4124 [x86_intercept_icebp
] = PRE_EX(SVM_EXIT_ICEBP
),
4125 [x86_intercept_hlt
] = POST_EX(SVM_EXIT_HLT
),
4126 [x86_intercept_in
] = POST_EX(SVM_EXIT_IOIO
),
4127 [x86_intercept_ins
] = POST_EX(SVM_EXIT_IOIO
),
4128 [x86_intercept_out
] = POST_EX(SVM_EXIT_IOIO
),
4129 [x86_intercept_outs
] = POST_EX(SVM_EXIT_IOIO
),
4136 static int svm_check_intercept(struct kvm_vcpu
*vcpu
,
4137 struct x86_instruction_info
*info
,
4138 enum x86_intercept_stage stage
)
4140 struct vcpu_svm
*svm
= to_svm(vcpu
);
4141 int vmexit
, ret
= X86EMUL_CONTINUE
;
4142 struct __x86_intercept icpt_info
;
4143 struct vmcb
*vmcb
= svm
->vmcb
;
4145 if (info
->intercept
>= ARRAY_SIZE(x86_intercept_map
))
4148 icpt_info
= x86_intercept_map
[info
->intercept
];
4150 if (stage
!= icpt_info
.stage
)
4153 switch (icpt_info
.exit_code
) {
4154 case SVM_EXIT_READ_CR0
:
4155 if (info
->intercept
== x86_intercept_cr_read
)
4156 icpt_info
.exit_code
+= info
->modrm_reg
;
4158 case SVM_EXIT_WRITE_CR0
: {
4159 unsigned long cr0
, val
;
4162 if (info
->intercept
== x86_intercept_cr_write
)
4163 icpt_info
.exit_code
+= info
->modrm_reg
;
4165 if (icpt_info
.exit_code
!= SVM_EXIT_WRITE_CR0
)
4168 intercept
= svm
->nested
.intercept
;
4170 if (!(intercept
& (1ULL << INTERCEPT_SELECTIVE_CR0
)))
4173 cr0
= vcpu
->arch
.cr0
& ~SVM_CR0_SELECTIVE_MASK
;
4174 val
= info
->src_val
& ~SVM_CR0_SELECTIVE_MASK
;
4176 if (info
->intercept
== x86_intercept_lmsw
) {
4179 /* lmsw can't clear PE - catch this here */
4180 if (cr0
& X86_CR0_PE
)
4185 icpt_info
.exit_code
= SVM_EXIT_CR0_SEL_WRITE
;
4189 case SVM_EXIT_READ_DR0
:
4190 case SVM_EXIT_WRITE_DR0
:
4191 icpt_info
.exit_code
+= info
->modrm_reg
;
4194 if (info
->intercept
== x86_intercept_wrmsr
)
4195 vmcb
->control
.exit_info_1
= 1;
4197 vmcb
->control
.exit_info_1
= 0;
4199 case SVM_EXIT_PAUSE
:
4201 * We get this for NOP only, but pause
4202 * is rep not, check this here
4204 if (info
->rep_prefix
!= REPE_PREFIX
)
4206 case SVM_EXIT_IOIO
: {
4210 exit_info
= (vcpu
->arch
.regs
[VCPU_REGS_RDX
] & 0xffff) << 16;
4212 if (info
->intercept
== x86_intercept_in
||
4213 info
->intercept
== x86_intercept_ins
) {
4214 exit_info
|= SVM_IOIO_TYPE_MASK
;
4215 bytes
= info
->src_bytes
;
4217 bytes
= info
->dst_bytes
;
4220 if (info
->intercept
== x86_intercept_outs
||
4221 info
->intercept
== x86_intercept_ins
)
4222 exit_info
|= SVM_IOIO_STR_MASK
;
4224 if (info
->rep_prefix
)
4225 exit_info
|= SVM_IOIO_REP_MASK
;
4227 bytes
= min(bytes
, 4u);
4229 exit_info
|= bytes
<< SVM_IOIO_SIZE_SHIFT
;
4231 exit_info
|= (u32
)info
->ad_bytes
<< (SVM_IOIO_ASIZE_SHIFT
- 1);
4233 vmcb
->control
.exit_info_1
= exit_info
;
4234 vmcb
->control
.exit_info_2
= info
->next_rip
;
4242 /* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4243 if (static_cpu_has(X86_FEATURE_NRIPS
))
4244 vmcb
->control
.next_rip
= info
->next_rip
;
4245 vmcb
->control
.exit_code
= icpt_info
.exit_code
;
4246 vmexit
= nested_svm_exit_handled(svm
);
4248 ret
= (vmexit
== NESTED_EXIT_DONE
) ? X86EMUL_INTERCEPTED
4255 static void svm_handle_external_intr(struct kvm_vcpu
*vcpu
)
4260 static struct kvm_x86_ops svm_x86_ops
= {
4261 .cpu_has_kvm_support
= has_svm
,
4262 .disabled_by_bios
= is_disabled
,
4263 .hardware_setup
= svm_hardware_setup
,
4264 .hardware_unsetup
= svm_hardware_unsetup
,
4265 .check_processor_compatibility
= svm_check_processor_compat
,
4266 .hardware_enable
= svm_hardware_enable
,
4267 .hardware_disable
= svm_hardware_disable
,
4268 .cpu_has_accelerated_tpr
= svm_cpu_has_accelerated_tpr
,
4270 .vcpu_create
= svm_create_vcpu
,
4271 .vcpu_free
= svm_free_vcpu
,
4272 .vcpu_reset
= svm_vcpu_reset
,
4274 .prepare_guest_switch
= svm_prepare_guest_switch
,
4275 .vcpu_load
= svm_vcpu_load
,
4276 .vcpu_put
= svm_vcpu_put
,
4278 .update_db_bp_intercept
= update_bp_intercept
,
4279 .get_msr
= svm_get_msr
,
4280 .set_msr
= svm_set_msr
,
4281 .get_segment_base
= svm_get_segment_base
,
4282 .get_segment
= svm_get_segment
,
4283 .set_segment
= svm_set_segment
,
4284 .get_cpl
= svm_get_cpl
,
4285 .get_cs_db_l_bits
= kvm_get_cs_db_l_bits
,
4286 .decache_cr0_guest_bits
= svm_decache_cr0_guest_bits
,
4287 .decache_cr3
= svm_decache_cr3
,
4288 .decache_cr4_guest_bits
= svm_decache_cr4_guest_bits
,
4289 .set_cr0
= svm_set_cr0
,
4290 .set_cr3
= svm_set_cr3
,
4291 .set_cr4
= svm_set_cr4
,
4292 .set_efer
= svm_set_efer
,
4293 .get_idt
= svm_get_idt
,
4294 .set_idt
= svm_set_idt
,
4295 .get_gdt
= svm_get_gdt
,
4296 .set_gdt
= svm_set_gdt
,
4297 .set_dr7
= svm_set_dr7
,
4298 .cache_reg
= svm_cache_reg
,
4299 .get_rflags
= svm_get_rflags
,
4300 .set_rflags
= svm_set_rflags
,
4301 .fpu_activate
= svm_fpu_activate
,
4302 .fpu_deactivate
= svm_fpu_deactivate
,
4304 .tlb_flush
= svm_flush_tlb
,
4306 .run
= svm_vcpu_run
,
4307 .handle_exit
= handle_exit
,
4308 .skip_emulated_instruction
= skip_emulated_instruction
,
4309 .set_interrupt_shadow
= svm_set_interrupt_shadow
,
4310 .get_interrupt_shadow
= svm_get_interrupt_shadow
,
4311 .patch_hypercall
= svm_patch_hypercall
,
4312 .set_irq
= svm_set_irq
,
4313 .set_nmi
= svm_inject_nmi
,
4314 .queue_exception
= svm_queue_exception
,
4315 .cancel_injection
= svm_cancel_injection
,
4316 .interrupt_allowed
= svm_interrupt_allowed
,
4317 .nmi_allowed
= svm_nmi_allowed
,
4318 .get_nmi_mask
= svm_get_nmi_mask
,
4319 .set_nmi_mask
= svm_set_nmi_mask
,
4320 .enable_nmi_window
= enable_nmi_window
,
4321 .enable_irq_window
= enable_irq_window
,
4322 .update_cr8_intercept
= update_cr8_intercept
,
4323 .set_virtual_x2apic_mode
= svm_set_virtual_x2apic_mode
,
4324 .vm_has_apicv
= svm_vm_has_apicv
,
4325 .load_eoi_exitmap
= svm_load_eoi_exitmap
,
4326 .hwapic_isr_update
= svm_hwapic_isr_update
,
4327 .sync_pir_to_irr
= svm_sync_pir_to_irr
,
4329 .set_tss_addr
= svm_set_tss_addr
,
4330 .get_tdp_level
= get_npt_level
,
4331 .get_mt_mask
= svm_get_mt_mask
,
4333 .get_exit_info
= svm_get_exit_info
,
4335 .get_lpage_level
= svm_get_lpage_level
,
4337 .cpuid_update
= svm_cpuid_update
,
4339 .rdtscp_supported
= svm_rdtscp_supported
,
4340 .invpcid_supported
= svm_invpcid_supported
,
4342 .set_supported_cpuid
= svm_set_supported_cpuid
,
4344 .has_wbinvd_exit
= svm_has_wbinvd_exit
,
4346 .set_tsc_khz
= svm_set_tsc_khz
,
4347 .read_tsc_offset
= svm_read_tsc_offset
,
4348 .write_tsc_offset
= svm_write_tsc_offset
,
4349 .adjust_tsc_offset
= svm_adjust_tsc_offset
,
4350 .compute_tsc_offset
= svm_compute_tsc_offset
,
4351 .read_l1_tsc
= svm_read_l1_tsc
,
4353 .set_tdp_cr3
= set_tdp_cr3
,
4355 .check_intercept
= svm_check_intercept
,
4356 .handle_external_intr
= svm_handle_external_intr
,
4359 static int __init
svm_init(void)
4361 return kvm_init(&svm_x86_ops
, sizeof(struct vcpu_svm
),
4362 __alignof__(struct vcpu_svm
), THIS_MODULE
);
4365 static void __exit
svm_exit(void)
4370 module_init(svm_init
)
4371 module_exit(svm_exit
)