mfd: wm8350-i2c: Make sure the i2c regmap functions are compiled
[linux/fpc-iii.git] / arch / x86 / kvm / vmx.c
blobb81c81bce181cfd27747c71418b4b28b69fc14d9
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/moduleparam.h>
30 #include <linux/mod_devicetable.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/slab.h>
33 #include <linux/tboot.h>
34 #include "kvm_cache_regs.h"
35 #include "x86.h"
37 #include <asm/io.h>
38 #include <asm/desc.h>
39 #include <asm/vmx.h>
40 #include <asm/virtext.h>
41 #include <asm/mce.h>
42 #include <asm/i387.h>
43 #include <asm/xcr.h>
44 #include <asm/perf_event.h>
45 #include <asm/kexec.h>
47 #include "trace.h"
49 #define __ex(x) __kvm_handle_fault_on_reboot(x)
50 #define __ex_clear(x, reg) \
51 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
53 MODULE_AUTHOR("Qumranet");
54 MODULE_LICENSE("GPL");
56 static const struct x86_cpu_id vmx_cpu_id[] = {
57 X86_FEATURE_MATCH(X86_FEATURE_VMX),
60 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
62 static bool __read_mostly enable_vpid = 1;
63 module_param_named(vpid, enable_vpid, bool, 0444);
65 static bool __read_mostly flexpriority_enabled = 1;
66 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
68 static bool __read_mostly enable_ept = 1;
69 module_param_named(ept, enable_ept, bool, S_IRUGO);
71 static bool __read_mostly enable_unrestricted_guest = 1;
72 module_param_named(unrestricted_guest,
73 enable_unrestricted_guest, bool, S_IRUGO);
75 static bool __read_mostly enable_ept_ad_bits = 1;
76 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
78 static bool __read_mostly emulate_invalid_guest_state = true;
79 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
81 static bool __read_mostly vmm_exclusive = 1;
82 module_param(vmm_exclusive, bool, S_IRUGO);
84 static bool __read_mostly fasteoi = 1;
85 module_param(fasteoi, bool, S_IRUGO);
87 static bool __read_mostly enable_apicv = 1;
88 module_param(enable_apicv, bool, S_IRUGO);
90 static bool __read_mostly enable_shadow_vmcs = 1;
91 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
93 * If nested=1, nested virtualization is supported, i.e., guests may use
94 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
95 * use VMX instructions.
97 static bool __read_mostly nested = 0;
98 module_param(nested, bool, S_IRUGO);
100 #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
101 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
102 #define KVM_VM_CR0_ALWAYS_ON \
103 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
104 #define KVM_CR4_GUEST_OWNED_BITS \
105 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
106 | X86_CR4_OSXMMEXCPT)
108 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
109 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
111 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
114 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
115 * ple_gap: upper bound on the amount of time between two successive
116 * executions of PAUSE in a loop. Also indicate if ple enabled.
117 * According to test, this time is usually smaller than 128 cycles.
118 * ple_window: upper bound on the amount of time a guest is allowed to execute
119 * in a PAUSE loop. Tests indicate that most spinlocks are held for
120 * less than 2^12 cycles
121 * Time is measured based on a counter that runs at the same rate as the TSC,
122 * refer SDM volume 3b section 21.6.13 & 22.1.3.
124 #define KVM_VMX_DEFAULT_PLE_GAP 128
125 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
126 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
127 module_param(ple_gap, int, S_IRUGO);
129 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
130 module_param(ple_window, int, S_IRUGO);
132 extern const ulong vmx_return;
134 #define NR_AUTOLOAD_MSRS 8
135 #define VMCS02_POOL_SIZE 1
137 struct vmcs {
138 u32 revision_id;
139 u32 abort;
140 char data[0];
144 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
145 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
146 * loaded on this CPU (so we can clear them if the CPU goes down).
148 struct loaded_vmcs {
149 struct vmcs *vmcs;
150 int cpu;
151 int launched;
152 struct list_head loaded_vmcss_on_cpu_link;
155 struct shared_msr_entry {
156 unsigned index;
157 u64 data;
158 u64 mask;
162 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
163 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
164 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
165 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
166 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
167 * More than one of these structures may exist, if L1 runs multiple L2 guests.
168 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
169 * underlying hardware which will be used to run L2.
170 * This structure is packed to ensure that its layout is identical across
171 * machines (necessary for live migration).
172 * If there are changes in this struct, VMCS12_REVISION must be changed.
174 typedef u64 natural_width;
175 struct __packed vmcs12 {
176 /* According to the Intel spec, a VMCS region must start with the
177 * following two fields. Then follow implementation-specific data.
179 u32 revision_id;
180 u32 abort;
182 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
183 u32 padding[7]; /* room for future expansion */
185 u64 io_bitmap_a;
186 u64 io_bitmap_b;
187 u64 msr_bitmap;
188 u64 vm_exit_msr_store_addr;
189 u64 vm_exit_msr_load_addr;
190 u64 vm_entry_msr_load_addr;
191 u64 tsc_offset;
192 u64 virtual_apic_page_addr;
193 u64 apic_access_addr;
194 u64 ept_pointer;
195 u64 guest_physical_address;
196 u64 vmcs_link_pointer;
197 u64 guest_ia32_debugctl;
198 u64 guest_ia32_pat;
199 u64 guest_ia32_efer;
200 u64 guest_ia32_perf_global_ctrl;
201 u64 guest_pdptr0;
202 u64 guest_pdptr1;
203 u64 guest_pdptr2;
204 u64 guest_pdptr3;
205 u64 host_ia32_pat;
206 u64 host_ia32_efer;
207 u64 host_ia32_perf_global_ctrl;
208 u64 padding64[8]; /* room for future expansion */
210 * To allow migration of L1 (complete with its L2 guests) between
211 * machines of different natural widths (32 or 64 bit), we cannot have
212 * unsigned long fields with no explict size. We use u64 (aliased
213 * natural_width) instead. Luckily, x86 is little-endian.
215 natural_width cr0_guest_host_mask;
216 natural_width cr4_guest_host_mask;
217 natural_width cr0_read_shadow;
218 natural_width cr4_read_shadow;
219 natural_width cr3_target_value0;
220 natural_width cr3_target_value1;
221 natural_width cr3_target_value2;
222 natural_width cr3_target_value3;
223 natural_width exit_qualification;
224 natural_width guest_linear_address;
225 natural_width guest_cr0;
226 natural_width guest_cr3;
227 natural_width guest_cr4;
228 natural_width guest_es_base;
229 natural_width guest_cs_base;
230 natural_width guest_ss_base;
231 natural_width guest_ds_base;
232 natural_width guest_fs_base;
233 natural_width guest_gs_base;
234 natural_width guest_ldtr_base;
235 natural_width guest_tr_base;
236 natural_width guest_gdtr_base;
237 natural_width guest_idtr_base;
238 natural_width guest_dr7;
239 natural_width guest_rsp;
240 natural_width guest_rip;
241 natural_width guest_rflags;
242 natural_width guest_pending_dbg_exceptions;
243 natural_width guest_sysenter_esp;
244 natural_width guest_sysenter_eip;
245 natural_width host_cr0;
246 natural_width host_cr3;
247 natural_width host_cr4;
248 natural_width host_fs_base;
249 natural_width host_gs_base;
250 natural_width host_tr_base;
251 natural_width host_gdtr_base;
252 natural_width host_idtr_base;
253 natural_width host_ia32_sysenter_esp;
254 natural_width host_ia32_sysenter_eip;
255 natural_width host_rsp;
256 natural_width host_rip;
257 natural_width paddingl[8]; /* room for future expansion */
258 u32 pin_based_vm_exec_control;
259 u32 cpu_based_vm_exec_control;
260 u32 exception_bitmap;
261 u32 page_fault_error_code_mask;
262 u32 page_fault_error_code_match;
263 u32 cr3_target_count;
264 u32 vm_exit_controls;
265 u32 vm_exit_msr_store_count;
266 u32 vm_exit_msr_load_count;
267 u32 vm_entry_controls;
268 u32 vm_entry_msr_load_count;
269 u32 vm_entry_intr_info_field;
270 u32 vm_entry_exception_error_code;
271 u32 vm_entry_instruction_len;
272 u32 tpr_threshold;
273 u32 secondary_vm_exec_control;
274 u32 vm_instruction_error;
275 u32 vm_exit_reason;
276 u32 vm_exit_intr_info;
277 u32 vm_exit_intr_error_code;
278 u32 idt_vectoring_info_field;
279 u32 idt_vectoring_error_code;
280 u32 vm_exit_instruction_len;
281 u32 vmx_instruction_info;
282 u32 guest_es_limit;
283 u32 guest_cs_limit;
284 u32 guest_ss_limit;
285 u32 guest_ds_limit;
286 u32 guest_fs_limit;
287 u32 guest_gs_limit;
288 u32 guest_ldtr_limit;
289 u32 guest_tr_limit;
290 u32 guest_gdtr_limit;
291 u32 guest_idtr_limit;
292 u32 guest_es_ar_bytes;
293 u32 guest_cs_ar_bytes;
294 u32 guest_ss_ar_bytes;
295 u32 guest_ds_ar_bytes;
296 u32 guest_fs_ar_bytes;
297 u32 guest_gs_ar_bytes;
298 u32 guest_ldtr_ar_bytes;
299 u32 guest_tr_ar_bytes;
300 u32 guest_interruptibility_info;
301 u32 guest_activity_state;
302 u32 guest_sysenter_cs;
303 u32 host_ia32_sysenter_cs;
304 u32 vmx_preemption_timer_value;
305 u32 padding32[7]; /* room for future expansion */
306 u16 virtual_processor_id;
307 u16 guest_es_selector;
308 u16 guest_cs_selector;
309 u16 guest_ss_selector;
310 u16 guest_ds_selector;
311 u16 guest_fs_selector;
312 u16 guest_gs_selector;
313 u16 guest_ldtr_selector;
314 u16 guest_tr_selector;
315 u16 host_es_selector;
316 u16 host_cs_selector;
317 u16 host_ss_selector;
318 u16 host_ds_selector;
319 u16 host_fs_selector;
320 u16 host_gs_selector;
321 u16 host_tr_selector;
325 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
326 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
327 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
329 #define VMCS12_REVISION 0x11e57ed0
332 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
333 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
334 * current implementation, 4K are reserved to avoid future complications.
336 #define VMCS12_SIZE 0x1000
338 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
339 struct vmcs02_list {
340 struct list_head list;
341 gpa_t vmptr;
342 struct loaded_vmcs vmcs02;
346 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
347 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
349 struct nested_vmx {
350 /* Has the level1 guest done vmxon? */
351 bool vmxon;
353 /* The guest-physical address of the current VMCS L1 keeps for L2 */
354 gpa_t current_vmptr;
355 /* The host-usable pointer to the above */
356 struct page *current_vmcs12_page;
357 struct vmcs12 *current_vmcs12;
358 struct vmcs *current_shadow_vmcs;
360 * Indicates if the shadow vmcs must be updated with the
361 * data hold by vmcs12
363 bool sync_shadow_vmcs;
365 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
366 struct list_head vmcs02_pool;
367 int vmcs02_num;
368 u64 vmcs01_tsc_offset;
369 bool change_vmcs01_virtual_x2apic_mode;
370 /* L2 must run next, and mustn't decide to exit to L1. */
371 bool nested_run_pending;
373 * Guest pages referred to in vmcs02 with host-physical pointers, so
374 * we must keep them pinned while L2 runs.
376 struct page *apic_access_page;
377 u64 msr_ia32_feature_control;
380 #define POSTED_INTR_ON 0
381 /* Posted-Interrupt Descriptor */
382 struct pi_desc {
383 u32 pir[8]; /* Posted interrupt requested */
384 u32 control; /* bit 0 of control is outstanding notification bit */
385 u32 rsvd[7];
386 } __aligned(64);
388 static bool pi_test_and_set_on(struct pi_desc *pi_desc)
390 return test_and_set_bit(POSTED_INTR_ON,
391 (unsigned long *)&pi_desc->control);
394 static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
396 return test_and_clear_bit(POSTED_INTR_ON,
397 (unsigned long *)&pi_desc->control);
400 static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
402 return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
405 struct vcpu_vmx {
406 struct kvm_vcpu vcpu;
407 unsigned long host_rsp;
408 u8 fail;
409 u8 cpl;
410 bool nmi_known_unmasked;
411 u32 exit_intr_info;
412 u32 idt_vectoring_info;
413 ulong rflags;
414 struct shared_msr_entry *guest_msrs;
415 int nmsrs;
416 int save_nmsrs;
417 unsigned long host_idt_base;
418 #ifdef CONFIG_X86_64
419 u64 msr_host_kernel_gs_base;
420 u64 msr_guest_kernel_gs_base;
421 #endif
423 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
424 * non-nested (L1) guest, it always points to vmcs01. For a nested
425 * guest (L2), it points to a different VMCS.
427 struct loaded_vmcs vmcs01;
428 struct loaded_vmcs *loaded_vmcs;
429 bool __launched; /* temporary, used in vmx_vcpu_run */
430 struct msr_autoload {
431 unsigned nr;
432 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
433 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
434 } msr_autoload;
435 struct {
436 int loaded;
437 u16 fs_sel, gs_sel, ldt_sel;
438 #ifdef CONFIG_X86_64
439 u16 ds_sel, es_sel;
440 #endif
441 int gs_ldt_reload_needed;
442 int fs_reload_needed;
443 unsigned long vmcs_host_cr4; /* May not match real cr4 */
444 } host_state;
445 struct {
446 int vm86_active;
447 ulong save_rflags;
448 struct kvm_segment segs[8];
449 } rmode;
450 struct {
451 u32 bitmask; /* 4 bits per segment (1 bit per field) */
452 struct kvm_save_segment {
453 u16 selector;
454 unsigned long base;
455 u32 limit;
456 u32 ar;
457 } seg[8];
458 } segment_cache;
459 int vpid;
460 bool emulation_required;
462 /* Support for vnmi-less CPUs */
463 int soft_vnmi_blocked;
464 ktime_t entry_time;
465 s64 vnmi_blocked_time;
466 u32 exit_reason;
468 bool rdtscp_enabled;
470 /* Posted interrupt descriptor */
471 struct pi_desc pi_desc;
473 /* Support for a guest hypervisor (nested VMX) */
474 struct nested_vmx nested;
477 enum segment_cache_field {
478 SEG_FIELD_SEL = 0,
479 SEG_FIELD_BASE = 1,
480 SEG_FIELD_LIMIT = 2,
481 SEG_FIELD_AR = 3,
483 SEG_FIELD_NR = 4
486 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
488 return container_of(vcpu, struct vcpu_vmx, vcpu);
491 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
492 #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
493 #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
494 [number##_HIGH] = VMCS12_OFFSET(name)+4
497 static const unsigned long shadow_read_only_fields[] = {
499 * We do NOT shadow fields that are modified when L0
500 * traps and emulates any vmx instruction (e.g. VMPTRLD,
501 * VMXON...) executed by L1.
502 * For example, VM_INSTRUCTION_ERROR is read
503 * by L1 if a vmx instruction fails (part of the error path).
504 * Note the code assumes this logic. If for some reason
505 * we start shadowing these fields then we need to
506 * force a shadow sync when L0 emulates vmx instructions
507 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
508 * by nested_vmx_failValid)
510 VM_EXIT_REASON,
511 VM_EXIT_INTR_INFO,
512 VM_EXIT_INSTRUCTION_LEN,
513 IDT_VECTORING_INFO_FIELD,
514 IDT_VECTORING_ERROR_CODE,
515 VM_EXIT_INTR_ERROR_CODE,
516 EXIT_QUALIFICATION,
517 GUEST_LINEAR_ADDRESS,
518 GUEST_PHYSICAL_ADDRESS
520 static const int max_shadow_read_only_fields =
521 ARRAY_SIZE(shadow_read_only_fields);
523 static const unsigned long shadow_read_write_fields[] = {
524 GUEST_RIP,
525 GUEST_RSP,
526 GUEST_CR0,
527 GUEST_CR3,
528 GUEST_CR4,
529 GUEST_INTERRUPTIBILITY_INFO,
530 GUEST_RFLAGS,
531 GUEST_CS_SELECTOR,
532 GUEST_CS_AR_BYTES,
533 GUEST_CS_LIMIT,
534 GUEST_CS_BASE,
535 GUEST_ES_BASE,
536 CR0_GUEST_HOST_MASK,
537 CR0_READ_SHADOW,
538 CR4_READ_SHADOW,
539 TSC_OFFSET,
540 EXCEPTION_BITMAP,
541 CPU_BASED_VM_EXEC_CONTROL,
542 VM_ENTRY_EXCEPTION_ERROR_CODE,
543 VM_ENTRY_INTR_INFO_FIELD,
544 VM_ENTRY_INSTRUCTION_LEN,
545 VM_ENTRY_EXCEPTION_ERROR_CODE,
546 HOST_FS_BASE,
547 HOST_GS_BASE,
548 HOST_FS_SELECTOR,
549 HOST_GS_SELECTOR
551 static const int max_shadow_read_write_fields =
552 ARRAY_SIZE(shadow_read_write_fields);
554 static const unsigned short vmcs_field_to_offset_table[] = {
555 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
556 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
557 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
558 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
559 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
560 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
561 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
562 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
563 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
564 FIELD(HOST_ES_SELECTOR, host_es_selector),
565 FIELD(HOST_CS_SELECTOR, host_cs_selector),
566 FIELD(HOST_SS_SELECTOR, host_ss_selector),
567 FIELD(HOST_DS_SELECTOR, host_ds_selector),
568 FIELD(HOST_FS_SELECTOR, host_fs_selector),
569 FIELD(HOST_GS_SELECTOR, host_gs_selector),
570 FIELD(HOST_TR_SELECTOR, host_tr_selector),
571 FIELD64(IO_BITMAP_A, io_bitmap_a),
572 FIELD64(IO_BITMAP_B, io_bitmap_b),
573 FIELD64(MSR_BITMAP, msr_bitmap),
574 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
575 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
576 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
577 FIELD64(TSC_OFFSET, tsc_offset),
578 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
579 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
580 FIELD64(EPT_POINTER, ept_pointer),
581 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
582 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
583 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
584 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
585 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
586 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
587 FIELD64(GUEST_PDPTR0, guest_pdptr0),
588 FIELD64(GUEST_PDPTR1, guest_pdptr1),
589 FIELD64(GUEST_PDPTR2, guest_pdptr2),
590 FIELD64(GUEST_PDPTR3, guest_pdptr3),
591 FIELD64(HOST_IA32_PAT, host_ia32_pat),
592 FIELD64(HOST_IA32_EFER, host_ia32_efer),
593 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
594 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
595 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
596 FIELD(EXCEPTION_BITMAP, exception_bitmap),
597 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
598 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
599 FIELD(CR3_TARGET_COUNT, cr3_target_count),
600 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
601 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
602 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
603 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
604 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
605 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
606 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
607 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
608 FIELD(TPR_THRESHOLD, tpr_threshold),
609 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
610 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
611 FIELD(VM_EXIT_REASON, vm_exit_reason),
612 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
613 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
614 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
615 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
616 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
617 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
618 FIELD(GUEST_ES_LIMIT, guest_es_limit),
619 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
620 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
621 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
622 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
623 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
624 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
625 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
626 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
627 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
628 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
629 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
630 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
631 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
632 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
633 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
634 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
635 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
636 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
637 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
638 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
639 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
640 FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
641 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
642 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
643 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
644 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
645 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
646 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
647 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
648 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
649 FIELD(EXIT_QUALIFICATION, exit_qualification),
650 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
651 FIELD(GUEST_CR0, guest_cr0),
652 FIELD(GUEST_CR3, guest_cr3),
653 FIELD(GUEST_CR4, guest_cr4),
654 FIELD(GUEST_ES_BASE, guest_es_base),
655 FIELD(GUEST_CS_BASE, guest_cs_base),
656 FIELD(GUEST_SS_BASE, guest_ss_base),
657 FIELD(GUEST_DS_BASE, guest_ds_base),
658 FIELD(GUEST_FS_BASE, guest_fs_base),
659 FIELD(GUEST_GS_BASE, guest_gs_base),
660 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
661 FIELD(GUEST_TR_BASE, guest_tr_base),
662 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
663 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
664 FIELD(GUEST_DR7, guest_dr7),
665 FIELD(GUEST_RSP, guest_rsp),
666 FIELD(GUEST_RIP, guest_rip),
667 FIELD(GUEST_RFLAGS, guest_rflags),
668 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
669 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
670 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
671 FIELD(HOST_CR0, host_cr0),
672 FIELD(HOST_CR3, host_cr3),
673 FIELD(HOST_CR4, host_cr4),
674 FIELD(HOST_FS_BASE, host_fs_base),
675 FIELD(HOST_GS_BASE, host_gs_base),
676 FIELD(HOST_TR_BASE, host_tr_base),
677 FIELD(HOST_GDTR_BASE, host_gdtr_base),
678 FIELD(HOST_IDTR_BASE, host_idtr_base),
679 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
680 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
681 FIELD(HOST_RSP, host_rsp),
682 FIELD(HOST_RIP, host_rip),
684 static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
686 static inline short vmcs_field_to_offset(unsigned long field)
688 if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
689 return -1;
690 return vmcs_field_to_offset_table[field];
693 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
695 return to_vmx(vcpu)->nested.current_vmcs12;
698 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
700 struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
701 if (is_error_page(page))
702 return NULL;
704 return page;
707 static void nested_release_page(struct page *page)
709 kvm_release_page_dirty(page);
712 static void nested_release_page_clean(struct page *page)
714 kvm_release_page_clean(page);
717 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
718 static u64 construct_eptp(unsigned long root_hpa);
719 static void kvm_cpu_vmxon(u64 addr);
720 static void kvm_cpu_vmxoff(void);
721 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
722 static void vmx_set_segment(struct kvm_vcpu *vcpu,
723 struct kvm_segment *var, int seg);
724 static void vmx_get_segment(struct kvm_vcpu *vcpu,
725 struct kvm_segment *var, int seg);
726 static bool guest_state_valid(struct kvm_vcpu *vcpu);
727 static u32 vmx_segment_access_rights(struct kvm_segment *var);
728 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu);
729 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
730 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
732 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
733 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
735 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
736 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
738 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
739 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
741 static unsigned long *vmx_io_bitmap_a;
742 static unsigned long *vmx_io_bitmap_b;
743 static unsigned long *vmx_msr_bitmap_legacy;
744 static unsigned long *vmx_msr_bitmap_longmode;
745 static unsigned long *vmx_msr_bitmap_legacy_x2apic;
746 static unsigned long *vmx_msr_bitmap_longmode_x2apic;
747 static unsigned long *vmx_vmread_bitmap;
748 static unsigned long *vmx_vmwrite_bitmap;
750 static bool cpu_has_load_ia32_efer;
751 static bool cpu_has_load_perf_global_ctrl;
753 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
754 static DEFINE_SPINLOCK(vmx_vpid_lock);
756 static struct vmcs_config {
757 int size;
758 int order;
759 u32 revision_id;
760 u32 pin_based_exec_ctrl;
761 u32 cpu_based_exec_ctrl;
762 u32 cpu_based_2nd_exec_ctrl;
763 u32 vmexit_ctrl;
764 u32 vmentry_ctrl;
765 } vmcs_config;
767 static struct vmx_capability {
768 u32 ept;
769 u32 vpid;
770 } vmx_capability;
772 #define VMX_SEGMENT_FIELD(seg) \
773 [VCPU_SREG_##seg] = { \
774 .selector = GUEST_##seg##_SELECTOR, \
775 .base = GUEST_##seg##_BASE, \
776 .limit = GUEST_##seg##_LIMIT, \
777 .ar_bytes = GUEST_##seg##_AR_BYTES, \
780 static const struct kvm_vmx_segment_field {
781 unsigned selector;
782 unsigned base;
783 unsigned limit;
784 unsigned ar_bytes;
785 } kvm_vmx_segment_fields[] = {
786 VMX_SEGMENT_FIELD(CS),
787 VMX_SEGMENT_FIELD(DS),
788 VMX_SEGMENT_FIELD(ES),
789 VMX_SEGMENT_FIELD(FS),
790 VMX_SEGMENT_FIELD(GS),
791 VMX_SEGMENT_FIELD(SS),
792 VMX_SEGMENT_FIELD(TR),
793 VMX_SEGMENT_FIELD(LDTR),
796 static u64 host_efer;
798 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
801 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
802 * away by decrementing the array size.
804 static const u32 vmx_msr_index[] = {
805 #ifdef CONFIG_X86_64
806 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
807 #endif
808 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
810 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
812 static inline bool is_page_fault(u32 intr_info)
814 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
815 INTR_INFO_VALID_MASK)) ==
816 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
819 static inline bool is_no_device(u32 intr_info)
821 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
822 INTR_INFO_VALID_MASK)) ==
823 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
826 static inline bool is_invalid_opcode(u32 intr_info)
828 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
829 INTR_INFO_VALID_MASK)) ==
830 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
833 static inline bool is_external_interrupt(u32 intr_info)
835 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
836 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
839 static inline bool is_machine_check(u32 intr_info)
841 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
842 INTR_INFO_VALID_MASK)) ==
843 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
846 static inline bool cpu_has_vmx_msr_bitmap(void)
848 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
851 static inline bool cpu_has_vmx_tpr_shadow(void)
853 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
856 static inline bool vm_need_tpr_shadow(struct kvm *kvm)
858 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
861 static inline bool cpu_has_secondary_exec_ctrls(void)
863 return vmcs_config.cpu_based_exec_ctrl &
864 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
867 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
869 return vmcs_config.cpu_based_2nd_exec_ctrl &
870 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
873 static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
875 return vmcs_config.cpu_based_2nd_exec_ctrl &
876 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
879 static inline bool cpu_has_vmx_apic_register_virt(void)
881 return vmcs_config.cpu_based_2nd_exec_ctrl &
882 SECONDARY_EXEC_APIC_REGISTER_VIRT;
885 static inline bool cpu_has_vmx_virtual_intr_delivery(void)
887 return vmcs_config.cpu_based_2nd_exec_ctrl &
888 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
891 static inline bool cpu_has_vmx_posted_intr(void)
893 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
896 static inline bool cpu_has_vmx_apicv(void)
898 return cpu_has_vmx_apic_register_virt() &&
899 cpu_has_vmx_virtual_intr_delivery() &&
900 cpu_has_vmx_posted_intr();
903 static inline bool cpu_has_vmx_flexpriority(void)
905 return cpu_has_vmx_tpr_shadow() &&
906 cpu_has_vmx_virtualize_apic_accesses();
909 static inline bool cpu_has_vmx_ept_execute_only(void)
911 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
914 static inline bool cpu_has_vmx_eptp_uncacheable(void)
916 return vmx_capability.ept & VMX_EPTP_UC_BIT;
919 static inline bool cpu_has_vmx_eptp_writeback(void)
921 return vmx_capability.ept & VMX_EPTP_WB_BIT;
924 static inline bool cpu_has_vmx_ept_2m_page(void)
926 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
929 static inline bool cpu_has_vmx_ept_1g_page(void)
931 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
934 static inline bool cpu_has_vmx_ept_4levels(void)
936 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
939 static inline bool cpu_has_vmx_ept_ad_bits(void)
941 return vmx_capability.ept & VMX_EPT_AD_BIT;
944 static inline bool cpu_has_vmx_invept_context(void)
946 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
949 static inline bool cpu_has_vmx_invept_global(void)
951 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
954 static inline bool cpu_has_vmx_invvpid_single(void)
956 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
959 static inline bool cpu_has_vmx_invvpid_global(void)
961 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
964 static inline bool cpu_has_vmx_ept(void)
966 return vmcs_config.cpu_based_2nd_exec_ctrl &
967 SECONDARY_EXEC_ENABLE_EPT;
970 static inline bool cpu_has_vmx_unrestricted_guest(void)
972 return vmcs_config.cpu_based_2nd_exec_ctrl &
973 SECONDARY_EXEC_UNRESTRICTED_GUEST;
976 static inline bool cpu_has_vmx_ple(void)
978 return vmcs_config.cpu_based_2nd_exec_ctrl &
979 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
982 static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
984 return flexpriority_enabled && irqchip_in_kernel(kvm);
987 static inline bool cpu_has_vmx_vpid(void)
989 return vmcs_config.cpu_based_2nd_exec_ctrl &
990 SECONDARY_EXEC_ENABLE_VPID;
993 static inline bool cpu_has_vmx_rdtscp(void)
995 return vmcs_config.cpu_based_2nd_exec_ctrl &
996 SECONDARY_EXEC_RDTSCP;
999 static inline bool cpu_has_vmx_invpcid(void)
1001 return vmcs_config.cpu_based_2nd_exec_ctrl &
1002 SECONDARY_EXEC_ENABLE_INVPCID;
1005 static inline bool cpu_has_virtual_nmis(void)
1007 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1010 static inline bool cpu_has_vmx_wbinvd_exit(void)
1012 return vmcs_config.cpu_based_2nd_exec_ctrl &
1013 SECONDARY_EXEC_WBINVD_EXITING;
1016 static inline bool cpu_has_vmx_shadow_vmcs(void)
1018 u64 vmx_msr;
1019 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1020 /* check if the cpu supports writing r/o exit information fields */
1021 if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1022 return false;
1024 return vmcs_config.cpu_based_2nd_exec_ctrl &
1025 SECONDARY_EXEC_SHADOW_VMCS;
1028 static inline bool report_flexpriority(void)
1030 return flexpriority_enabled;
1033 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1035 return vmcs12->cpu_based_vm_exec_control & bit;
1038 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1040 return (vmcs12->cpu_based_vm_exec_control &
1041 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1042 (vmcs12->secondary_vm_exec_control & bit);
1045 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
1047 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1050 static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1052 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1055 static inline bool is_exception(u32 intr_info)
1057 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1058 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
1061 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu);
1062 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1063 struct vmcs12 *vmcs12,
1064 u32 reason, unsigned long qualification);
1066 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1068 int i;
1070 for (i = 0; i < vmx->nmsrs; ++i)
1071 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1072 return i;
1073 return -1;
1076 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1078 struct {
1079 u64 vpid : 16;
1080 u64 rsvd : 48;
1081 u64 gva;
1082 } operand = { vpid, 0, gva };
1084 asm volatile (__ex(ASM_VMX_INVVPID)
1085 /* CF==1 or ZF==1 --> rc = -1 */
1086 "; ja 1f ; ud2 ; 1:"
1087 : : "a"(&operand), "c"(ext) : "cc", "memory");
1090 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1092 struct {
1093 u64 eptp, gpa;
1094 } operand = {eptp, gpa};
1096 asm volatile (__ex(ASM_VMX_INVEPT)
1097 /* CF==1 or ZF==1 --> rc = -1 */
1098 "; ja 1f ; ud2 ; 1:\n"
1099 : : "a" (&operand), "c" (ext) : "cc", "memory");
1102 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1104 int i;
1106 i = __find_msr_index(vmx, msr);
1107 if (i >= 0)
1108 return &vmx->guest_msrs[i];
1109 return NULL;
1112 static void vmcs_clear(struct vmcs *vmcs)
1114 u64 phys_addr = __pa(vmcs);
1115 u8 error;
1117 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1118 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1119 : "cc", "memory");
1120 if (error)
1121 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1122 vmcs, phys_addr);
1125 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1127 vmcs_clear(loaded_vmcs->vmcs);
1128 loaded_vmcs->cpu = -1;
1129 loaded_vmcs->launched = 0;
1132 static void vmcs_load(struct vmcs *vmcs)
1134 u64 phys_addr = __pa(vmcs);
1135 u8 error;
1137 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1138 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1139 : "cc", "memory");
1140 if (error)
1141 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1142 vmcs, phys_addr);
1145 #ifdef CONFIG_KEXEC
1147 * This bitmap is used to indicate whether the vmclear
1148 * operation is enabled on all cpus. All disabled by
1149 * default.
1151 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1153 static inline void crash_enable_local_vmclear(int cpu)
1155 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1158 static inline void crash_disable_local_vmclear(int cpu)
1160 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1163 static inline int crash_local_vmclear_enabled(int cpu)
1165 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1168 static void crash_vmclear_local_loaded_vmcss(void)
1170 int cpu = raw_smp_processor_id();
1171 struct loaded_vmcs *v;
1173 if (!crash_local_vmclear_enabled(cpu))
1174 return;
1176 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1177 loaded_vmcss_on_cpu_link)
1178 vmcs_clear(v->vmcs);
1180 #else
1181 static inline void crash_enable_local_vmclear(int cpu) { }
1182 static inline void crash_disable_local_vmclear(int cpu) { }
1183 #endif /* CONFIG_KEXEC */
1185 static void __loaded_vmcs_clear(void *arg)
1187 struct loaded_vmcs *loaded_vmcs = arg;
1188 int cpu = raw_smp_processor_id();
1190 if (loaded_vmcs->cpu != cpu)
1191 return; /* vcpu migration can race with cpu offline */
1192 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1193 per_cpu(current_vmcs, cpu) = NULL;
1194 crash_disable_local_vmclear(cpu);
1195 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1198 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1199 * is before setting loaded_vmcs->vcpu to -1 which is done in
1200 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1201 * then adds the vmcs into percpu list before it is deleted.
1203 smp_wmb();
1205 loaded_vmcs_init(loaded_vmcs);
1206 crash_enable_local_vmclear(cpu);
1209 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1211 int cpu = loaded_vmcs->cpu;
1213 if (cpu != -1)
1214 smp_call_function_single(cpu,
1215 __loaded_vmcs_clear, loaded_vmcs, 1);
1218 static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
1220 if (vmx->vpid == 0)
1221 return;
1223 if (cpu_has_vmx_invvpid_single())
1224 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
1227 static inline void vpid_sync_vcpu_global(void)
1229 if (cpu_has_vmx_invvpid_global())
1230 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1233 static inline void vpid_sync_context(struct vcpu_vmx *vmx)
1235 if (cpu_has_vmx_invvpid_single())
1236 vpid_sync_vcpu_single(vmx);
1237 else
1238 vpid_sync_vcpu_global();
1241 static inline void ept_sync_global(void)
1243 if (cpu_has_vmx_invept_global())
1244 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1247 static inline void ept_sync_context(u64 eptp)
1249 if (enable_ept) {
1250 if (cpu_has_vmx_invept_context())
1251 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1252 else
1253 ept_sync_global();
1257 static __always_inline unsigned long vmcs_readl(unsigned long field)
1259 unsigned long value;
1261 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1262 : "=a"(value) : "d"(field) : "cc");
1263 return value;
1266 static __always_inline u16 vmcs_read16(unsigned long field)
1268 return vmcs_readl(field);
1271 static __always_inline u32 vmcs_read32(unsigned long field)
1273 return vmcs_readl(field);
1276 static __always_inline u64 vmcs_read64(unsigned long field)
1278 #ifdef CONFIG_X86_64
1279 return vmcs_readl(field);
1280 #else
1281 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1282 #endif
1285 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1287 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1288 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1289 dump_stack();
1292 static void vmcs_writel(unsigned long field, unsigned long value)
1294 u8 error;
1296 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1297 : "=q"(error) : "a"(value), "d"(field) : "cc");
1298 if (unlikely(error))
1299 vmwrite_error(field, value);
1302 static void vmcs_write16(unsigned long field, u16 value)
1304 vmcs_writel(field, value);
1307 static void vmcs_write32(unsigned long field, u32 value)
1309 vmcs_writel(field, value);
1312 static void vmcs_write64(unsigned long field, u64 value)
1314 vmcs_writel(field, value);
1315 #ifndef CONFIG_X86_64
1316 asm volatile ("");
1317 vmcs_writel(field+1, value >> 32);
1318 #endif
1321 static void vmcs_clear_bits(unsigned long field, u32 mask)
1323 vmcs_writel(field, vmcs_readl(field) & ~mask);
1326 static void vmcs_set_bits(unsigned long field, u32 mask)
1328 vmcs_writel(field, vmcs_readl(field) | mask);
1331 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1333 vmx->segment_cache.bitmask = 0;
1336 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1337 unsigned field)
1339 bool ret;
1340 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1342 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1343 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1344 vmx->segment_cache.bitmask = 0;
1346 ret = vmx->segment_cache.bitmask & mask;
1347 vmx->segment_cache.bitmask |= mask;
1348 return ret;
1351 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1353 u16 *p = &vmx->segment_cache.seg[seg].selector;
1355 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1356 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1357 return *p;
1360 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1362 ulong *p = &vmx->segment_cache.seg[seg].base;
1364 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1365 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1366 return *p;
1369 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1371 u32 *p = &vmx->segment_cache.seg[seg].limit;
1373 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1374 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1375 return *p;
1378 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1380 u32 *p = &vmx->segment_cache.seg[seg].ar;
1382 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1383 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1384 return *p;
1387 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1389 u32 eb;
1391 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1392 (1u << NM_VECTOR) | (1u << DB_VECTOR) | (1u << AC_VECTOR);
1393 if ((vcpu->guest_debug &
1394 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1395 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1396 eb |= 1u << BP_VECTOR;
1397 if (to_vmx(vcpu)->rmode.vm86_active)
1398 eb = ~0;
1399 if (enable_ept)
1400 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1401 if (vcpu->fpu_active)
1402 eb &= ~(1u << NM_VECTOR);
1404 /* When we are running a nested L2 guest and L1 specified for it a
1405 * certain exception bitmap, we must trap the same exceptions and pass
1406 * them to L1. When running L2, we will only handle the exceptions
1407 * specified above if L1 did not want them.
1409 if (is_guest_mode(vcpu))
1410 eb |= get_vmcs12(vcpu)->exception_bitmap;
1412 vmcs_write32(EXCEPTION_BITMAP, eb);
1415 static void clear_atomic_switch_msr_special(unsigned long entry,
1416 unsigned long exit)
1418 vmcs_clear_bits(VM_ENTRY_CONTROLS, entry);
1419 vmcs_clear_bits(VM_EXIT_CONTROLS, exit);
1422 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1424 unsigned i;
1425 struct msr_autoload *m = &vmx->msr_autoload;
1427 switch (msr) {
1428 case MSR_EFER:
1429 if (cpu_has_load_ia32_efer) {
1430 clear_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1431 VM_EXIT_LOAD_IA32_EFER);
1432 return;
1434 break;
1435 case MSR_CORE_PERF_GLOBAL_CTRL:
1436 if (cpu_has_load_perf_global_ctrl) {
1437 clear_atomic_switch_msr_special(
1438 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1439 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1440 return;
1442 break;
1445 for (i = 0; i < m->nr; ++i)
1446 if (m->guest[i].index == msr)
1447 break;
1449 if (i == m->nr)
1450 return;
1451 --m->nr;
1452 m->guest[i] = m->guest[m->nr];
1453 m->host[i] = m->host[m->nr];
1454 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1455 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1458 static void add_atomic_switch_msr_special(unsigned long entry,
1459 unsigned long exit, unsigned long guest_val_vmcs,
1460 unsigned long host_val_vmcs, u64 guest_val, u64 host_val)
1462 vmcs_write64(guest_val_vmcs, guest_val);
1463 vmcs_write64(host_val_vmcs, host_val);
1464 vmcs_set_bits(VM_ENTRY_CONTROLS, entry);
1465 vmcs_set_bits(VM_EXIT_CONTROLS, exit);
1468 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1469 u64 guest_val, u64 host_val)
1471 unsigned i;
1472 struct msr_autoload *m = &vmx->msr_autoload;
1474 switch (msr) {
1475 case MSR_EFER:
1476 if (cpu_has_load_ia32_efer) {
1477 add_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1478 VM_EXIT_LOAD_IA32_EFER,
1479 GUEST_IA32_EFER,
1480 HOST_IA32_EFER,
1481 guest_val, host_val);
1482 return;
1484 break;
1485 case MSR_CORE_PERF_GLOBAL_CTRL:
1486 if (cpu_has_load_perf_global_ctrl) {
1487 add_atomic_switch_msr_special(
1488 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1489 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1490 GUEST_IA32_PERF_GLOBAL_CTRL,
1491 HOST_IA32_PERF_GLOBAL_CTRL,
1492 guest_val, host_val);
1493 return;
1495 break;
1496 case MSR_IA32_PEBS_ENABLE:
1497 /* PEBS needs a quiescent period after being disabled (to write
1498 * a record). Disabling PEBS through VMX MSR swapping doesn't
1499 * provide that period, so a CPU could write host's record into
1500 * guest's memory.
1502 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1505 for (i = 0; i < m->nr; ++i)
1506 if (m->guest[i].index == msr)
1507 break;
1509 if (i == NR_AUTOLOAD_MSRS) {
1510 printk_once(KERN_WARNING"Not enough mst switch entries. "
1511 "Can't add msr %x\n", msr);
1512 return;
1513 } else if (i == m->nr) {
1514 ++m->nr;
1515 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1516 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1519 m->guest[i].index = msr;
1520 m->guest[i].value = guest_val;
1521 m->host[i].index = msr;
1522 m->host[i].value = host_val;
1525 static void reload_tss(void)
1528 * VT restores TR but not its size. Useless.
1530 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1531 struct desc_struct *descs;
1533 descs = (void *)gdt->address;
1534 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1535 load_TR_desc();
1538 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1540 u64 guest_efer;
1541 u64 ignore_bits;
1543 guest_efer = vmx->vcpu.arch.efer;
1546 * NX is emulated; LMA and LME handled by hardware; SCE meaningless
1547 * outside long mode
1549 ignore_bits = EFER_NX | EFER_SCE;
1550 #ifdef CONFIG_X86_64
1551 ignore_bits |= EFER_LMA | EFER_LME;
1552 /* SCE is meaningful only in long mode on Intel */
1553 if (guest_efer & EFER_LMA)
1554 ignore_bits &= ~(u64)EFER_SCE;
1555 #endif
1556 guest_efer &= ~ignore_bits;
1557 guest_efer |= host_efer & ignore_bits;
1558 vmx->guest_msrs[efer_offset].data = guest_efer;
1559 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1561 clear_atomic_switch_msr(vmx, MSR_EFER);
1562 /* On ept, can't emulate nx, and must switch nx atomically */
1563 if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
1564 guest_efer = vmx->vcpu.arch.efer;
1565 if (!(guest_efer & EFER_LMA))
1566 guest_efer &= ~EFER_LME;
1567 add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
1568 return false;
1571 return true;
1574 static unsigned long segment_base(u16 selector)
1576 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1577 struct desc_struct *d;
1578 unsigned long table_base;
1579 unsigned long v;
1581 if (!(selector & ~3))
1582 return 0;
1584 table_base = gdt->address;
1586 if (selector & 4) { /* from ldt */
1587 u16 ldt_selector = kvm_read_ldt();
1589 if (!(ldt_selector & ~3))
1590 return 0;
1592 table_base = segment_base(ldt_selector);
1594 d = (struct desc_struct *)(table_base + (selector & ~7));
1595 v = get_desc_base(d);
1596 #ifdef CONFIG_X86_64
1597 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1598 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1599 #endif
1600 return v;
1603 static inline unsigned long kvm_read_tr_base(void)
1605 u16 tr;
1606 asm("str %0" : "=g"(tr));
1607 return segment_base(tr);
1610 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
1612 struct vcpu_vmx *vmx = to_vmx(vcpu);
1613 int i;
1615 if (vmx->host_state.loaded)
1616 return;
1618 vmx->host_state.loaded = 1;
1620 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1621 * allow segment selectors with cpl > 0 or ti == 1.
1623 vmx->host_state.ldt_sel = kvm_read_ldt();
1624 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1625 savesegment(fs, vmx->host_state.fs_sel);
1626 if (!(vmx->host_state.fs_sel & 7)) {
1627 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1628 vmx->host_state.fs_reload_needed = 0;
1629 } else {
1630 vmcs_write16(HOST_FS_SELECTOR, 0);
1631 vmx->host_state.fs_reload_needed = 1;
1633 savesegment(gs, vmx->host_state.gs_sel);
1634 if (!(vmx->host_state.gs_sel & 7))
1635 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1636 else {
1637 vmcs_write16(HOST_GS_SELECTOR, 0);
1638 vmx->host_state.gs_ldt_reload_needed = 1;
1641 #ifdef CONFIG_X86_64
1642 savesegment(ds, vmx->host_state.ds_sel);
1643 savesegment(es, vmx->host_state.es_sel);
1644 #endif
1646 #ifdef CONFIG_X86_64
1647 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1648 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1649 #else
1650 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1651 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
1652 #endif
1654 #ifdef CONFIG_X86_64
1655 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1656 if (is_long_mode(&vmx->vcpu))
1657 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1658 #endif
1659 for (i = 0; i < vmx->save_nmsrs; ++i)
1660 kvm_set_shared_msr(vmx->guest_msrs[i].index,
1661 vmx->guest_msrs[i].data,
1662 vmx->guest_msrs[i].mask);
1665 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
1667 if (!vmx->host_state.loaded)
1668 return;
1670 ++vmx->vcpu.stat.host_state_reload;
1671 vmx->host_state.loaded = 0;
1672 #ifdef CONFIG_X86_64
1673 if (is_long_mode(&vmx->vcpu))
1674 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1675 #endif
1676 if (vmx->host_state.gs_ldt_reload_needed) {
1677 kvm_load_ldt(vmx->host_state.ldt_sel);
1678 #ifdef CONFIG_X86_64
1679 load_gs_index(vmx->host_state.gs_sel);
1680 #else
1681 loadsegment(gs, vmx->host_state.gs_sel);
1682 #endif
1684 if (vmx->host_state.fs_reload_needed)
1685 loadsegment(fs, vmx->host_state.fs_sel);
1686 #ifdef CONFIG_X86_64
1687 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
1688 loadsegment(ds, vmx->host_state.ds_sel);
1689 loadsegment(es, vmx->host_state.es_sel);
1691 #endif
1692 reload_tss();
1693 #ifdef CONFIG_X86_64
1694 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1695 #endif
1697 * If the FPU is not active (through the host task or
1698 * the guest vcpu), then restore the cr0.TS bit.
1700 if (!user_has_fpu() && !vmx->vcpu.guest_fpu_loaded)
1701 stts();
1702 load_gdt(&__get_cpu_var(host_gdt));
1705 static void vmx_load_host_state(struct vcpu_vmx *vmx)
1707 preempt_disable();
1708 __vmx_load_host_state(vmx);
1709 preempt_enable();
1713 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1714 * vcpu mutex is already taken.
1716 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1718 struct vcpu_vmx *vmx = to_vmx(vcpu);
1719 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1721 if (!vmm_exclusive)
1722 kvm_cpu_vmxon(phys_addr);
1723 else if (vmx->loaded_vmcs->cpu != cpu)
1724 loaded_vmcs_clear(vmx->loaded_vmcs);
1726 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1727 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1728 vmcs_load(vmx->loaded_vmcs->vmcs);
1731 if (vmx->loaded_vmcs->cpu != cpu) {
1732 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1733 unsigned long sysenter_esp;
1735 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1736 local_irq_disable();
1737 crash_disable_local_vmclear(cpu);
1740 * Read loaded_vmcs->cpu should be before fetching
1741 * loaded_vmcs->loaded_vmcss_on_cpu_link.
1742 * See the comments in __loaded_vmcs_clear().
1744 smp_rmb();
1746 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1747 &per_cpu(loaded_vmcss_on_cpu, cpu));
1748 crash_enable_local_vmclear(cpu);
1749 local_irq_enable();
1752 * Linux uses per-cpu TSS and GDT, so set these when switching
1753 * processors.
1755 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
1756 vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
1758 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1759 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1760 vmx->loaded_vmcs->cpu = cpu;
1764 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1766 __vmx_load_host_state(to_vmx(vcpu));
1767 if (!vmm_exclusive) {
1768 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1769 vcpu->cpu = -1;
1770 kvm_cpu_vmxoff();
1774 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1776 ulong cr0;
1778 if (vcpu->fpu_active)
1779 return;
1780 vcpu->fpu_active = 1;
1781 cr0 = vmcs_readl(GUEST_CR0);
1782 cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1783 cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1784 vmcs_writel(GUEST_CR0, cr0);
1785 update_exception_bitmap(vcpu);
1786 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
1787 if (is_guest_mode(vcpu))
1788 vcpu->arch.cr0_guest_owned_bits &=
1789 ~get_vmcs12(vcpu)->cr0_guest_host_mask;
1790 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1793 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1796 * Return the cr0 value that a nested guest would read. This is a combination
1797 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1798 * its hypervisor (cr0_read_shadow).
1800 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1802 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1803 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1805 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1807 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1808 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1811 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1813 /* Note that there is no vcpu->fpu_active = 0 here. The caller must
1814 * set this *before* calling this function.
1816 vmx_decache_cr0_guest_bits(vcpu);
1817 vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
1818 update_exception_bitmap(vcpu);
1819 vcpu->arch.cr0_guest_owned_bits = 0;
1820 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1821 if (is_guest_mode(vcpu)) {
1823 * L1's specified read shadow might not contain the TS bit,
1824 * so now that we turned on shadowing of this bit, we need to
1825 * set this bit of the shadow. Like in nested_vmx_run we need
1826 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
1827 * up-to-date here because we just decached cr0.TS (and we'll
1828 * only update vmcs12->guest_cr0 on nested exit).
1830 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1831 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
1832 (vcpu->arch.cr0 & X86_CR0_TS);
1833 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
1834 } else
1835 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
1838 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1840 unsigned long rflags, save_rflags;
1842 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1843 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1844 rflags = vmcs_readl(GUEST_RFLAGS);
1845 if (to_vmx(vcpu)->rmode.vm86_active) {
1846 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1847 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1848 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1850 to_vmx(vcpu)->rflags = rflags;
1852 return to_vmx(vcpu)->rflags;
1855 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1857 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1858 to_vmx(vcpu)->rflags = rflags;
1859 if (to_vmx(vcpu)->rmode.vm86_active) {
1860 to_vmx(vcpu)->rmode.save_rflags = rflags;
1861 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1863 vmcs_writel(GUEST_RFLAGS, rflags);
1866 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1868 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1869 int ret = 0;
1871 if (interruptibility & GUEST_INTR_STATE_STI)
1872 ret |= KVM_X86_SHADOW_INT_STI;
1873 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1874 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1876 return ret & mask;
1879 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1881 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1882 u32 interruptibility = interruptibility_old;
1884 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1886 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1887 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1888 else if (mask & KVM_X86_SHADOW_INT_STI)
1889 interruptibility |= GUEST_INTR_STATE_STI;
1891 if ((interruptibility != interruptibility_old))
1892 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1895 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1897 unsigned long rip;
1899 rip = kvm_rip_read(vcpu);
1900 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1901 kvm_rip_write(vcpu, rip);
1903 /* skipping an emulated instruction also counts */
1904 vmx_set_interrupt_shadow(vcpu, 0);
1908 * KVM wants to inject page-faults which it got to the guest. This function
1909 * checks whether in a nested guest, we need to inject them to L1 or L2.
1910 * This function assumes it is called with the exit reason in vmcs02 being
1911 * a #PF exception (this is the only case in which KVM injects a #PF when L2
1912 * is running).
1914 static int nested_pf_handled(struct kvm_vcpu *vcpu)
1916 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1918 /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
1919 if (!(vmcs12->exception_bitmap & (1u << PF_VECTOR)))
1920 return 0;
1922 nested_vmx_vmexit(vcpu);
1923 return 1;
1926 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
1927 bool has_error_code, u32 error_code,
1928 bool reinject)
1930 struct vcpu_vmx *vmx = to_vmx(vcpu);
1931 u32 intr_info = nr | INTR_INFO_VALID_MASK;
1933 if (nr == PF_VECTOR && is_guest_mode(vcpu) &&
1934 !vmx->nested.nested_run_pending && nested_pf_handled(vcpu))
1935 return;
1937 if (has_error_code) {
1938 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1939 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1942 if (vmx->rmode.vm86_active) {
1943 int inc_eip = 0;
1944 if (kvm_exception_is_soft(nr))
1945 inc_eip = vcpu->arch.event_exit_inst_len;
1946 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
1947 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1948 return;
1951 if (kvm_exception_is_soft(nr)) {
1952 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1953 vmx->vcpu.arch.event_exit_inst_len);
1954 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1955 } else
1956 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1958 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1961 static bool vmx_rdtscp_supported(void)
1963 return cpu_has_vmx_rdtscp();
1966 static bool vmx_invpcid_supported(void)
1968 return cpu_has_vmx_invpcid() && enable_ept;
1972 * Swap MSR entry in host/guest MSR entry array.
1974 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1976 struct shared_msr_entry tmp;
1978 tmp = vmx->guest_msrs[to];
1979 vmx->guest_msrs[to] = vmx->guest_msrs[from];
1980 vmx->guest_msrs[from] = tmp;
1983 static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
1985 unsigned long *msr_bitmap;
1987 if (irqchip_in_kernel(vcpu->kvm) && apic_x2apic_mode(vcpu->arch.apic)) {
1988 if (is_long_mode(vcpu))
1989 msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
1990 else
1991 msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
1992 } else {
1993 if (is_long_mode(vcpu))
1994 msr_bitmap = vmx_msr_bitmap_longmode;
1995 else
1996 msr_bitmap = vmx_msr_bitmap_legacy;
1999 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2003 * Set up the vmcs to automatically save and restore system
2004 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
2005 * mode, as fiddling with msrs is very expensive.
2007 static void setup_msrs(struct vcpu_vmx *vmx)
2009 int save_nmsrs, index;
2011 save_nmsrs = 0;
2012 #ifdef CONFIG_X86_64
2013 if (is_long_mode(&vmx->vcpu)) {
2014 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2015 if (index >= 0)
2016 move_msr_up(vmx, index, save_nmsrs++);
2017 index = __find_msr_index(vmx, MSR_LSTAR);
2018 if (index >= 0)
2019 move_msr_up(vmx, index, save_nmsrs++);
2020 index = __find_msr_index(vmx, MSR_CSTAR);
2021 if (index >= 0)
2022 move_msr_up(vmx, index, save_nmsrs++);
2023 index = __find_msr_index(vmx, MSR_TSC_AUX);
2024 if (index >= 0 && vmx->rdtscp_enabled)
2025 move_msr_up(vmx, index, save_nmsrs++);
2027 * MSR_STAR is only needed on long mode guests, and only
2028 * if efer.sce is enabled.
2030 index = __find_msr_index(vmx, MSR_STAR);
2031 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2032 move_msr_up(vmx, index, save_nmsrs++);
2034 #endif
2035 index = __find_msr_index(vmx, MSR_EFER);
2036 if (index >= 0 && update_transition_efer(vmx, index))
2037 move_msr_up(vmx, index, save_nmsrs++);
2039 vmx->save_nmsrs = save_nmsrs;
2041 if (cpu_has_vmx_msr_bitmap())
2042 vmx_set_msr_bitmap(&vmx->vcpu);
2046 * reads and returns guest's timestamp counter "register"
2047 * guest_tsc = host_tsc + tsc_offset -- 21.3
2049 static u64 guest_read_tsc(void)
2051 u64 host_tsc, tsc_offset;
2053 rdtscll(host_tsc);
2054 tsc_offset = vmcs_read64(TSC_OFFSET);
2055 return host_tsc + tsc_offset;
2059 * Like guest_read_tsc, but always returns L1's notion of the timestamp
2060 * counter, even if a nested guest (L2) is currently running.
2062 u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2064 u64 tsc_offset;
2066 tsc_offset = is_guest_mode(vcpu) ?
2067 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
2068 vmcs_read64(TSC_OFFSET);
2069 return host_tsc + tsc_offset;
2073 * Engage any workarounds for mis-matched TSC rates. Currently limited to
2074 * software catchup for faster rates on slower CPUs.
2076 static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2078 if (!scale)
2079 return;
2081 if (user_tsc_khz > tsc_khz) {
2082 vcpu->arch.tsc_catchup = 1;
2083 vcpu->arch.tsc_always_catchup = 1;
2084 } else
2085 WARN(1, "user requested TSC rate below hardware speed\n");
2088 static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
2090 return vmcs_read64(TSC_OFFSET);
2094 * writes 'offset' into guest's timestamp counter offset register
2096 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2098 if (is_guest_mode(vcpu)) {
2100 * We're here if L1 chose not to trap WRMSR to TSC. According
2101 * to the spec, this should set L1's TSC; The offset that L1
2102 * set for L2 remains unchanged, and still needs to be added
2103 * to the newly set TSC to get L2's TSC.
2105 struct vmcs12 *vmcs12;
2106 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
2107 /* recalculate vmcs02.TSC_OFFSET: */
2108 vmcs12 = get_vmcs12(vcpu);
2109 vmcs_write64(TSC_OFFSET, offset +
2110 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2111 vmcs12->tsc_offset : 0));
2112 } else {
2113 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2114 vmcs_read64(TSC_OFFSET), offset);
2115 vmcs_write64(TSC_OFFSET, offset);
2119 static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
2121 u64 offset = vmcs_read64(TSC_OFFSET);
2123 vmcs_write64(TSC_OFFSET, offset + adjustment);
2124 if (is_guest_mode(vcpu)) {
2125 /* Even when running L2, the adjustment needs to apply to L1 */
2126 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
2127 } else
2128 trace_kvm_write_tsc_offset(vcpu->vcpu_id, offset,
2129 offset + adjustment);
2132 static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2134 return target_tsc - native_read_tsc();
2137 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2139 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2140 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2144 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2145 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2146 * all guests if the "nested" module option is off, and can also be disabled
2147 * for a single guest by disabling its VMX cpuid bit.
2149 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2151 return nested && guest_cpuid_has_vmx(vcpu);
2155 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2156 * returned for the various VMX controls MSRs when nested VMX is enabled.
2157 * The same values should also be used to verify that vmcs12 control fields are
2158 * valid during nested entry from L1 to L2.
2159 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2160 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2161 * bit in the high half is on if the corresponding bit in the control field
2162 * may be on. See also vmx_control_verify().
2163 * TODO: allow these variables to be modified (downgraded) by module options
2164 * or other means.
2166 static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
2167 static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
2168 static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
2169 static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
2170 static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
2171 static u32 nested_vmx_misc_low, nested_vmx_misc_high;
2172 static u32 nested_vmx_ept_caps;
2173 static __init void nested_vmx_setup_ctls_msrs(void)
2176 * Note that as a general rule, the high half of the MSRs (bits in
2177 * the control fields which may be 1) should be initialized by the
2178 * intersection of the underlying hardware's MSR (i.e., features which
2179 * can be supported) and the list of features we want to expose -
2180 * because they are known to be properly supported in our code.
2181 * Also, usually, the low half of the MSRs (bits which must be 1) can
2182 * be set to 0, meaning that L1 may turn off any of these bits. The
2183 * reason is that if one of these bits is necessary, it will appear
2184 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2185 * fields of vmcs01 and vmcs02, will turn these bits off - and
2186 * nested_vmx_exit_handled() will not pass related exits to L1.
2187 * These rules have exceptions below.
2190 /* pin-based controls */
2191 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2192 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high);
2194 * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
2195 * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
2197 nested_vmx_pinbased_ctls_low |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2198 nested_vmx_pinbased_ctls_high &= PIN_BASED_EXT_INTR_MASK |
2199 PIN_BASED_NMI_EXITING | PIN_BASED_VIRTUAL_NMIS |
2200 PIN_BASED_VMX_PREEMPTION_TIMER;
2201 nested_vmx_pinbased_ctls_high |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2204 * Exit controls
2205 * If bit 55 of VMX_BASIC is off, bits 0-8 and 10, 11, 13, 14, 16 and
2206 * 17 must be 1.
2208 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2209 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high);
2210 nested_vmx_exit_ctls_low = VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2211 /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
2212 nested_vmx_exit_ctls_high &=
2213 #ifdef CONFIG_X86_64
2214 VM_EXIT_HOST_ADDR_SPACE_SIZE |
2215 #endif
2216 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
2217 nested_vmx_exit_ctls_high |= (VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2218 VM_EXIT_LOAD_IA32_EFER);
2220 /* entry controls */
2221 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2222 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
2223 /* If bit 55 of VMX_BASIC is off, bits 0-8 and 12 must be 1. */
2224 nested_vmx_entry_ctls_low = VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2225 nested_vmx_entry_ctls_high &=
2226 #ifdef CONFIG_X86_64
2227 VM_ENTRY_IA32E_MODE |
2228 #endif
2229 VM_ENTRY_LOAD_IA32_PAT;
2230 nested_vmx_entry_ctls_high |= (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR |
2231 VM_ENTRY_LOAD_IA32_EFER);
2233 /* cpu-based controls */
2234 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2235 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
2236 nested_vmx_procbased_ctls_low = 0;
2237 nested_vmx_procbased_ctls_high &=
2238 CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2239 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2240 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2241 CPU_BASED_CR3_STORE_EXITING |
2242 #ifdef CONFIG_X86_64
2243 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2244 #endif
2245 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2246 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
2247 CPU_BASED_RDPMC_EXITING | CPU_BASED_RDTSC_EXITING |
2248 CPU_BASED_PAUSE_EXITING |
2249 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2251 * We can allow some features even when not supported by the
2252 * hardware. For example, L1 can specify an MSR bitmap - and we
2253 * can use it to avoid exits to L1 - even when L0 runs L2
2254 * without MSR bitmaps.
2256 nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
2258 /* secondary cpu-based controls */
2259 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2260 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
2261 nested_vmx_secondary_ctls_low = 0;
2262 nested_vmx_secondary_ctls_high &=
2263 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2264 SECONDARY_EXEC_WBINVD_EXITING;
2266 if (enable_ept) {
2267 /* nested EPT: emulate EPT also to L1 */
2268 nested_vmx_secondary_ctls_high |= SECONDARY_EXEC_ENABLE_EPT;
2269 nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
2270 VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
2271 nested_vmx_ept_caps &= vmx_capability.ept;
2273 * Since invept is completely emulated we support both global
2274 * and context invalidation independent of what host cpu
2275 * supports
2277 nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
2278 VMX_EPT_EXTENT_CONTEXT_BIT;
2279 } else
2280 nested_vmx_ept_caps = 0;
2282 /* miscellaneous data */
2283 rdmsr(MSR_IA32_VMX_MISC, nested_vmx_misc_low, nested_vmx_misc_high);
2284 nested_vmx_misc_low &= VMX_MISC_PREEMPTION_TIMER_RATE_MASK |
2285 VMX_MISC_SAVE_EFER_LMA;
2286 nested_vmx_misc_high = 0;
2289 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2292 * Bits 0 in high must be 0, and bits 1 in low must be 1.
2294 return ((control & high) | low) == control;
2297 static inline u64 vmx_control_msr(u32 low, u32 high)
2299 return low | ((u64)high << 32);
2303 * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
2304 * also let it use VMX-specific MSRs.
2305 * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
2306 * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
2307 * like all other MSRs).
2309 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2311 if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
2312 msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
2314 * According to the spec, processors which do not support VMX
2315 * should throw a #GP(0) when VMX capability MSRs are read.
2317 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
2318 return 1;
2321 switch (msr_index) {
2322 case MSR_IA32_FEATURE_CONTROL:
2323 if (nested_vmx_allowed(vcpu)) {
2324 *pdata = to_vmx(vcpu)->nested.msr_ia32_feature_control;
2325 break;
2327 return 0;
2328 case MSR_IA32_VMX_BASIC:
2330 * This MSR reports some information about VMX support. We
2331 * should return information about the VMX we emulate for the
2332 * guest, and the VMCS structure we give it - not about the
2333 * VMX support of the underlying hardware.
2335 *pdata = VMCS12_REVISION |
2336 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2337 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2338 break;
2339 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2340 case MSR_IA32_VMX_PINBASED_CTLS:
2341 *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
2342 nested_vmx_pinbased_ctls_high);
2343 break;
2344 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2345 case MSR_IA32_VMX_PROCBASED_CTLS:
2346 *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
2347 nested_vmx_procbased_ctls_high);
2348 break;
2349 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2350 case MSR_IA32_VMX_EXIT_CTLS:
2351 *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
2352 nested_vmx_exit_ctls_high);
2353 break;
2354 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2355 case MSR_IA32_VMX_ENTRY_CTLS:
2356 *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
2357 nested_vmx_entry_ctls_high);
2358 break;
2359 case MSR_IA32_VMX_MISC:
2360 *pdata = vmx_control_msr(nested_vmx_misc_low,
2361 nested_vmx_misc_high);
2362 break;
2364 * These MSRs specify bits which the guest must keep fixed (on or off)
2365 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2366 * We picked the standard core2 setting.
2368 #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2369 #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2370 case MSR_IA32_VMX_CR0_FIXED0:
2371 *pdata = VMXON_CR0_ALWAYSON;
2372 break;
2373 case MSR_IA32_VMX_CR0_FIXED1:
2374 *pdata = -1ULL;
2375 break;
2376 case MSR_IA32_VMX_CR4_FIXED0:
2377 *pdata = VMXON_CR4_ALWAYSON;
2378 break;
2379 case MSR_IA32_VMX_CR4_FIXED1:
2380 *pdata = -1ULL;
2381 break;
2382 case MSR_IA32_VMX_VMCS_ENUM:
2383 *pdata = 0x1f;
2384 break;
2385 case MSR_IA32_VMX_PROCBASED_CTLS2:
2386 *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
2387 nested_vmx_secondary_ctls_high);
2388 break;
2389 case MSR_IA32_VMX_EPT_VPID_CAP:
2390 /* Currently, no nested vpid support */
2391 *pdata = nested_vmx_ept_caps;
2392 break;
2393 default:
2394 return 0;
2397 return 1;
2400 static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2402 u32 msr_index = msr_info->index;
2403 u64 data = msr_info->data;
2404 bool host_initialized = msr_info->host_initiated;
2406 if (!nested_vmx_allowed(vcpu))
2407 return 0;
2409 if (msr_index == MSR_IA32_FEATURE_CONTROL) {
2410 if (!host_initialized &&
2411 to_vmx(vcpu)->nested.msr_ia32_feature_control
2412 & FEATURE_CONTROL_LOCKED)
2413 return 0;
2414 to_vmx(vcpu)->nested.msr_ia32_feature_control = data;
2415 return 1;
2419 * No need to treat VMX capability MSRs specially: If we don't handle
2420 * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
2422 return 0;
2426 * Reads an msr value (of 'msr_index') into 'pdata'.
2427 * Returns 0 on success, non-0 otherwise.
2428 * Assumes vcpu_load() was already called.
2430 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2432 u64 data;
2433 struct shared_msr_entry *msr;
2435 if (!pdata) {
2436 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
2437 return -EINVAL;
2440 switch (msr_index) {
2441 #ifdef CONFIG_X86_64
2442 case MSR_FS_BASE:
2443 data = vmcs_readl(GUEST_FS_BASE);
2444 break;
2445 case MSR_GS_BASE:
2446 data = vmcs_readl(GUEST_GS_BASE);
2447 break;
2448 case MSR_KERNEL_GS_BASE:
2449 vmx_load_host_state(to_vmx(vcpu));
2450 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2451 break;
2452 #endif
2453 case MSR_EFER:
2454 return kvm_get_msr_common(vcpu, msr_index, pdata);
2455 case MSR_IA32_TSC:
2456 data = guest_read_tsc();
2457 break;
2458 case MSR_IA32_SYSENTER_CS:
2459 data = vmcs_read32(GUEST_SYSENTER_CS);
2460 break;
2461 case MSR_IA32_SYSENTER_EIP:
2462 data = vmcs_readl(GUEST_SYSENTER_EIP);
2463 break;
2464 case MSR_IA32_SYSENTER_ESP:
2465 data = vmcs_readl(GUEST_SYSENTER_ESP);
2466 break;
2467 case MSR_TSC_AUX:
2468 if (!to_vmx(vcpu)->rdtscp_enabled)
2469 return 1;
2470 /* Otherwise falls through */
2471 default:
2472 if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
2473 return 0;
2474 msr = find_msr_entry(to_vmx(vcpu), msr_index);
2475 if (msr) {
2476 data = msr->data;
2477 break;
2479 return kvm_get_msr_common(vcpu, msr_index, pdata);
2482 *pdata = data;
2483 return 0;
2487 * Writes msr value into into the appropriate "register".
2488 * Returns 0 on success, non-0 otherwise.
2489 * Assumes vcpu_load() was already called.
2491 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2493 struct vcpu_vmx *vmx = to_vmx(vcpu);
2494 struct shared_msr_entry *msr;
2495 int ret = 0;
2496 u32 msr_index = msr_info->index;
2497 u64 data = msr_info->data;
2499 switch (msr_index) {
2500 case MSR_EFER:
2501 ret = kvm_set_msr_common(vcpu, msr_info);
2502 break;
2503 #ifdef CONFIG_X86_64
2504 case MSR_FS_BASE:
2505 vmx_segment_cache_clear(vmx);
2506 vmcs_writel(GUEST_FS_BASE, data);
2507 break;
2508 case MSR_GS_BASE:
2509 vmx_segment_cache_clear(vmx);
2510 vmcs_writel(GUEST_GS_BASE, data);
2511 break;
2512 case MSR_KERNEL_GS_BASE:
2513 vmx_load_host_state(vmx);
2514 vmx->msr_guest_kernel_gs_base = data;
2515 break;
2516 #endif
2517 case MSR_IA32_SYSENTER_CS:
2518 vmcs_write32(GUEST_SYSENTER_CS, data);
2519 break;
2520 case MSR_IA32_SYSENTER_EIP:
2521 vmcs_writel(GUEST_SYSENTER_EIP, data);
2522 break;
2523 case MSR_IA32_SYSENTER_ESP:
2524 vmcs_writel(GUEST_SYSENTER_ESP, data);
2525 break;
2526 case MSR_IA32_TSC:
2527 kvm_write_tsc(vcpu, msr_info);
2528 break;
2529 case MSR_IA32_CR_PAT:
2530 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2531 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2532 return 1;
2533 vmcs_write64(GUEST_IA32_PAT, data);
2534 vcpu->arch.pat = data;
2535 break;
2537 ret = kvm_set_msr_common(vcpu, msr_info);
2538 break;
2539 case MSR_IA32_TSC_ADJUST:
2540 ret = kvm_set_msr_common(vcpu, msr_info);
2541 break;
2542 case MSR_TSC_AUX:
2543 if (!vmx->rdtscp_enabled)
2544 return 1;
2545 /* Check reserved bit, higher 32 bits should be zero */
2546 if ((data >> 32) != 0)
2547 return 1;
2548 /* Otherwise falls through */
2549 default:
2550 if (vmx_set_vmx_msr(vcpu, msr_info))
2551 break;
2552 msr = find_msr_entry(vmx, msr_index);
2553 if (msr) {
2554 u64 old_msr_data = msr->data;
2555 msr->data = data;
2556 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2557 preempt_disable();
2558 ret = kvm_set_shared_msr(msr->index, msr->data,
2559 msr->mask);
2560 preempt_enable();
2561 if (ret)
2562 msr->data = old_msr_data;
2564 break;
2566 ret = kvm_set_msr_common(vcpu, msr_info);
2569 return ret;
2572 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2574 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2575 switch (reg) {
2576 case VCPU_REGS_RSP:
2577 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2578 break;
2579 case VCPU_REGS_RIP:
2580 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2581 break;
2582 case VCPU_EXREG_PDPTR:
2583 if (enable_ept)
2584 ept_save_pdptrs(vcpu);
2585 break;
2586 default:
2587 break;
2591 static __init int cpu_has_kvm_support(void)
2593 return cpu_has_vmx();
2596 static __init int vmx_disabled_by_bios(void)
2598 u64 msr;
2600 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2601 if (msr & FEATURE_CONTROL_LOCKED) {
2602 /* launched w/ TXT and VMX disabled */
2603 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2604 && tboot_enabled())
2605 return 1;
2606 /* launched w/o TXT and VMX only enabled w/ TXT */
2607 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2608 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2609 && !tboot_enabled()) {
2610 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2611 "activate TXT before enabling KVM\n");
2612 return 1;
2614 /* launched w/o TXT and VMX disabled */
2615 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2616 && !tboot_enabled())
2617 return 1;
2620 return 0;
2623 static void kvm_cpu_vmxon(u64 addr)
2625 asm volatile (ASM_VMX_VMXON_RAX
2626 : : "a"(&addr), "m"(addr)
2627 : "memory", "cc");
2630 static int hardware_enable(void *garbage)
2632 int cpu = raw_smp_processor_id();
2633 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2634 u64 old, test_bits;
2636 if (read_cr4() & X86_CR4_VMXE)
2637 return -EBUSY;
2639 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2642 * Now we can enable the vmclear operation in kdump
2643 * since the loaded_vmcss_on_cpu list on this cpu
2644 * has been initialized.
2646 * Though the cpu is not in VMX operation now, there
2647 * is no problem to enable the vmclear operation
2648 * for the loaded_vmcss_on_cpu list is empty!
2650 crash_enable_local_vmclear(cpu);
2652 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2654 test_bits = FEATURE_CONTROL_LOCKED;
2655 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2656 if (tboot_enabled())
2657 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2659 if ((old & test_bits) != test_bits) {
2660 /* enable and lock */
2661 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2663 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
2665 if (vmm_exclusive) {
2666 kvm_cpu_vmxon(phys_addr);
2667 ept_sync_global();
2670 native_store_gdt(&__get_cpu_var(host_gdt));
2672 return 0;
2675 static void vmclear_local_loaded_vmcss(void)
2677 int cpu = raw_smp_processor_id();
2678 struct loaded_vmcs *v, *n;
2680 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2681 loaded_vmcss_on_cpu_link)
2682 __loaded_vmcs_clear(v);
2686 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2687 * tricks.
2689 static void kvm_cpu_vmxoff(void)
2691 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
2694 static void hardware_disable(void *garbage)
2696 if (vmm_exclusive) {
2697 vmclear_local_loaded_vmcss();
2698 kvm_cpu_vmxoff();
2700 write_cr4(read_cr4() & ~X86_CR4_VMXE);
2703 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2704 u32 msr, u32 *result)
2706 u32 vmx_msr_low, vmx_msr_high;
2707 u32 ctl = ctl_min | ctl_opt;
2709 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2711 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2712 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2714 /* Ensure minimum (required) set of control bits are supported. */
2715 if (ctl_min & ~ctl)
2716 return -EIO;
2718 *result = ctl;
2719 return 0;
2722 static __init bool allow_1_setting(u32 msr, u32 ctl)
2724 u32 vmx_msr_low, vmx_msr_high;
2726 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2727 return vmx_msr_high & ctl;
2730 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
2732 u32 vmx_msr_low, vmx_msr_high;
2733 u32 min, opt, min2, opt2;
2734 u32 _pin_based_exec_control = 0;
2735 u32 _cpu_based_exec_control = 0;
2736 u32 _cpu_based_2nd_exec_control = 0;
2737 u32 _vmexit_control = 0;
2738 u32 _vmentry_control = 0;
2740 min = CPU_BASED_HLT_EXITING |
2741 #ifdef CONFIG_X86_64
2742 CPU_BASED_CR8_LOAD_EXITING |
2743 CPU_BASED_CR8_STORE_EXITING |
2744 #endif
2745 CPU_BASED_CR3_LOAD_EXITING |
2746 CPU_BASED_CR3_STORE_EXITING |
2747 CPU_BASED_USE_IO_BITMAPS |
2748 CPU_BASED_MOV_DR_EXITING |
2749 CPU_BASED_USE_TSC_OFFSETING |
2750 CPU_BASED_MWAIT_EXITING |
2751 CPU_BASED_MONITOR_EXITING |
2752 CPU_BASED_INVLPG_EXITING |
2753 CPU_BASED_RDPMC_EXITING;
2755 opt = CPU_BASED_TPR_SHADOW |
2756 CPU_BASED_USE_MSR_BITMAPS |
2757 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2758 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2759 &_cpu_based_exec_control) < 0)
2760 return -EIO;
2761 #ifdef CONFIG_X86_64
2762 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2763 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2764 ~CPU_BASED_CR8_STORE_EXITING;
2765 #endif
2766 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2767 min2 = 0;
2768 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2769 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2770 SECONDARY_EXEC_WBINVD_EXITING |
2771 SECONDARY_EXEC_ENABLE_VPID |
2772 SECONDARY_EXEC_ENABLE_EPT |
2773 SECONDARY_EXEC_UNRESTRICTED_GUEST |
2774 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2775 SECONDARY_EXEC_RDTSCP |
2776 SECONDARY_EXEC_ENABLE_INVPCID |
2777 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2778 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2779 SECONDARY_EXEC_SHADOW_VMCS;
2780 if (adjust_vmx_controls(min2, opt2,
2781 MSR_IA32_VMX_PROCBASED_CTLS2,
2782 &_cpu_based_2nd_exec_control) < 0)
2783 return -EIO;
2785 #ifndef CONFIG_X86_64
2786 if (!(_cpu_based_2nd_exec_control &
2787 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2788 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2789 #endif
2791 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2792 _cpu_based_2nd_exec_control &= ~(
2793 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2794 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2795 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2797 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2798 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2799 enabled */
2800 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2801 CPU_BASED_CR3_STORE_EXITING |
2802 CPU_BASED_INVLPG_EXITING);
2803 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
2804 vmx_capability.ept, vmx_capability.vpid);
2807 min = 0;
2808 #ifdef CONFIG_X86_64
2809 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2810 #endif
2811 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
2812 VM_EXIT_ACK_INTR_ON_EXIT;
2813 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2814 &_vmexit_control) < 0)
2815 return -EIO;
2817 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2818 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
2819 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2820 &_pin_based_exec_control) < 0)
2821 return -EIO;
2823 if (!(_cpu_based_2nd_exec_control &
2824 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
2825 !(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
2826 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2828 min = 0;
2829 opt = VM_ENTRY_LOAD_IA32_PAT;
2830 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2831 &_vmentry_control) < 0)
2832 return -EIO;
2834 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2836 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2837 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2838 return -EIO;
2840 #ifdef CONFIG_X86_64
2841 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2842 if (vmx_msr_high & (1u<<16))
2843 return -EIO;
2844 #endif
2846 /* Require Write-Back (WB) memory type for VMCS accesses. */
2847 if (((vmx_msr_high >> 18) & 15) != 6)
2848 return -EIO;
2850 vmcs_conf->size = vmx_msr_high & 0x1fff;
2851 vmcs_conf->order = get_order(vmcs_config.size);
2852 vmcs_conf->revision_id = vmx_msr_low;
2854 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2855 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2856 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2857 vmcs_conf->vmexit_ctrl = _vmexit_control;
2858 vmcs_conf->vmentry_ctrl = _vmentry_control;
2860 cpu_has_load_ia32_efer =
2861 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2862 VM_ENTRY_LOAD_IA32_EFER)
2863 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2864 VM_EXIT_LOAD_IA32_EFER);
2866 cpu_has_load_perf_global_ctrl =
2867 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2868 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
2869 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2870 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
2873 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
2874 * but due to arrata below it can't be used. Workaround is to use
2875 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2877 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
2879 * AAK155 (model 26)
2880 * AAP115 (model 30)
2881 * AAT100 (model 37)
2882 * BC86,AAY89,BD102 (model 44)
2883 * BA97 (model 46)
2886 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
2887 switch (boot_cpu_data.x86_model) {
2888 case 26:
2889 case 30:
2890 case 37:
2891 case 44:
2892 case 46:
2893 cpu_has_load_perf_global_ctrl = false;
2894 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2895 "does not work properly. Using workaround\n");
2896 break;
2897 default:
2898 break;
2902 return 0;
2905 static struct vmcs *alloc_vmcs_cpu(int cpu)
2907 int node = cpu_to_node(cpu);
2908 struct page *pages;
2909 struct vmcs *vmcs;
2911 pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
2912 if (!pages)
2913 return NULL;
2914 vmcs = page_address(pages);
2915 memset(vmcs, 0, vmcs_config.size);
2916 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
2917 return vmcs;
2920 static struct vmcs *alloc_vmcs(void)
2922 return alloc_vmcs_cpu(raw_smp_processor_id());
2925 static void free_vmcs(struct vmcs *vmcs)
2927 free_pages((unsigned long)vmcs, vmcs_config.order);
2931 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2933 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2935 if (!loaded_vmcs->vmcs)
2936 return;
2937 loaded_vmcs_clear(loaded_vmcs);
2938 free_vmcs(loaded_vmcs->vmcs);
2939 loaded_vmcs->vmcs = NULL;
2942 static void free_kvm_area(void)
2944 int cpu;
2946 for_each_possible_cpu(cpu) {
2947 free_vmcs(per_cpu(vmxarea, cpu));
2948 per_cpu(vmxarea, cpu) = NULL;
2952 static __init int alloc_kvm_area(void)
2954 int cpu;
2956 for_each_possible_cpu(cpu) {
2957 struct vmcs *vmcs;
2959 vmcs = alloc_vmcs_cpu(cpu);
2960 if (!vmcs) {
2961 free_kvm_area();
2962 return -ENOMEM;
2965 per_cpu(vmxarea, cpu) = vmcs;
2967 return 0;
2970 static __init int hardware_setup(void)
2972 if (setup_vmcs_config(&vmcs_config) < 0)
2973 return -EIO;
2975 if (boot_cpu_has(X86_FEATURE_NX))
2976 kvm_enable_efer_bits(EFER_NX);
2978 if (!cpu_has_vmx_vpid())
2979 enable_vpid = 0;
2980 if (!cpu_has_vmx_shadow_vmcs())
2981 enable_shadow_vmcs = 0;
2983 if (!cpu_has_vmx_ept() ||
2984 !cpu_has_vmx_ept_4levels()) {
2985 enable_ept = 0;
2986 enable_unrestricted_guest = 0;
2987 enable_ept_ad_bits = 0;
2990 if (!cpu_has_vmx_ept_ad_bits())
2991 enable_ept_ad_bits = 0;
2993 if (!cpu_has_vmx_unrestricted_guest())
2994 enable_unrestricted_guest = 0;
2996 if (!cpu_has_vmx_flexpriority())
2997 flexpriority_enabled = 0;
2999 if (!cpu_has_vmx_tpr_shadow())
3000 kvm_x86_ops->update_cr8_intercept = NULL;
3002 if (enable_ept && !cpu_has_vmx_ept_2m_page())
3003 kvm_disable_largepages();
3005 if (!cpu_has_vmx_ple())
3006 ple_gap = 0;
3008 if (!cpu_has_vmx_apicv())
3009 enable_apicv = 0;
3011 if (enable_apicv)
3012 kvm_x86_ops->update_cr8_intercept = NULL;
3013 else {
3014 kvm_x86_ops->hwapic_irr_update = NULL;
3015 kvm_x86_ops->deliver_posted_interrupt = NULL;
3016 kvm_x86_ops->sync_pir_to_irr = vmx_sync_pir_to_irr_dummy;
3019 if (nested)
3020 nested_vmx_setup_ctls_msrs();
3022 return alloc_kvm_area();
3025 static __exit void hardware_unsetup(void)
3027 free_kvm_area();
3030 static bool emulation_required(struct kvm_vcpu *vcpu)
3032 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3035 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3036 struct kvm_segment *save)
3038 if (!emulate_invalid_guest_state) {
3040 * CS and SS RPL should be equal during guest entry according
3041 * to VMX spec, but in reality it is not always so. Since vcpu
3042 * is in the middle of the transition from real mode to
3043 * protected mode it is safe to assume that RPL 0 is a good
3044 * default value.
3046 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3047 save->selector &= ~SELECTOR_RPL_MASK;
3048 save->dpl = save->selector & SELECTOR_RPL_MASK;
3049 save->s = 1;
3051 vmx_set_segment(vcpu, save, seg);
3054 static void enter_pmode(struct kvm_vcpu *vcpu)
3056 unsigned long flags;
3057 struct vcpu_vmx *vmx = to_vmx(vcpu);
3060 * Update real mode segment cache. It may be not up-to-date if sement
3061 * register was written while vcpu was in a guest mode.
3063 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3064 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3065 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3066 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3067 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3068 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3070 vmx->rmode.vm86_active = 0;
3072 vmx_segment_cache_clear(vmx);
3074 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3076 flags = vmcs_readl(GUEST_RFLAGS);
3077 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3078 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3079 vmcs_writel(GUEST_RFLAGS, flags);
3081 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3082 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3084 update_exception_bitmap(vcpu);
3086 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3087 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3088 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3089 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3090 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3091 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3093 /* CPL is always 0 when CPU enters protected mode */
3094 __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3095 vmx->cpl = 0;
3098 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3100 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3101 struct kvm_segment var = *save;
3103 var.dpl = 0x3;
3104 if (seg == VCPU_SREG_CS)
3105 var.type = 0x3;
3107 if (!emulate_invalid_guest_state) {
3108 var.selector = var.base >> 4;
3109 var.base = var.base & 0xffff0;
3110 var.limit = 0xffff;
3111 var.g = 0;
3112 var.db = 0;
3113 var.present = 1;
3114 var.s = 1;
3115 var.l = 0;
3116 var.unusable = 0;
3117 var.type = 0x3;
3118 var.avl = 0;
3119 if (save->base & 0xf)
3120 printk_once(KERN_WARNING "kvm: segment base is not "
3121 "paragraph aligned when entering "
3122 "protected mode (seg=%d)", seg);
3125 vmcs_write16(sf->selector, var.selector);
3126 vmcs_write32(sf->base, var.base);
3127 vmcs_write32(sf->limit, var.limit);
3128 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3131 static void enter_rmode(struct kvm_vcpu *vcpu)
3133 unsigned long flags;
3134 struct vcpu_vmx *vmx = to_vmx(vcpu);
3136 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3137 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3138 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3139 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3140 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3141 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3142 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3144 vmx->rmode.vm86_active = 1;
3147 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3148 * vcpu. Warn the user that an update is overdue.
3150 if (!vcpu->kvm->arch.tss_addr)
3151 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3152 "called before entering vcpu\n");
3154 vmx_segment_cache_clear(vmx);
3156 vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
3157 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3158 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3160 flags = vmcs_readl(GUEST_RFLAGS);
3161 vmx->rmode.save_rflags = flags;
3163 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3165 vmcs_writel(GUEST_RFLAGS, flags);
3166 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3167 update_exception_bitmap(vcpu);
3169 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3170 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3171 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3172 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3173 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3174 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3176 kvm_mmu_reset_context(vcpu);
3179 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3181 struct vcpu_vmx *vmx = to_vmx(vcpu);
3182 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3184 if (!msr)
3185 return;
3188 * Force kernel_gs_base reloading before EFER changes, as control
3189 * of this msr depends on is_long_mode().
3191 vmx_load_host_state(to_vmx(vcpu));
3192 vcpu->arch.efer = efer;
3193 if (efer & EFER_LMA) {
3194 vmcs_write32(VM_ENTRY_CONTROLS,
3195 vmcs_read32(VM_ENTRY_CONTROLS) |
3196 VM_ENTRY_IA32E_MODE);
3197 msr->data = efer;
3198 } else {
3199 vmcs_write32(VM_ENTRY_CONTROLS,
3200 vmcs_read32(VM_ENTRY_CONTROLS) &
3201 ~VM_ENTRY_IA32E_MODE);
3203 msr->data = efer & ~EFER_LME;
3205 setup_msrs(vmx);
3208 #ifdef CONFIG_X86_64
3210 static void enter_lmode(struct kvm_vcpu *vcpu)
3212 u32 guest_tr_ar;
3214 vmx_segment_cache_clear(to_vmx(vcpu));
3216 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3217 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
3218 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3219 __func__);
3220 vmcs_write32(GUEST_TR_AR_BYTES,
3221 (guest_tr_ar & ~AR_TYPE_MASK)
3222 | AR_TYPE_BUSY_64_TSS);
3224 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3227 static void exit_lmode(struct kvm_vcpu *vcpu)
3229 vmcs_write32(VM_ENTRY_CONTROLS,
3230 vmcs_read32(VM_ENTRY_CONTROLS)
3231 & ~VM_ENTRY_IA32E_MODE);
3232 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3235 #endif
3237 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3239 vpid_sync_context(to_vmx(vcpu));
3240 if (enable_ept) {
3241 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3242 return;
3243 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
3247 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3249 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3251 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3252 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3255 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3257 if (enable_ept && is_paging(vcpu))
3258 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3259 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3262 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
3264 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3266 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3267 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
3270 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3272 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3274 if (!test_bit(VCPU_EXREG_PDPTR,
3275 (unsigned long *)&vcpu->arch.regs_dirty))
3276 return;
3278 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3279 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3280 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3281 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3282 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3286 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3288 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3290 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3291 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3292 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3293 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3294 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3297 __set_bit(VCPU_EXREG_PDPTR,
3298 (unsigned long *)&vcpu->arch.regs_avail);
3299 __set_bit(VCPU_EXREG_PDPTR,
3300 (unsigned long *)&vcpu->arch.regs_dirty);
3303 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
3305 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3306 unsigned long cr0,
3307 struct kvm_vcpu *vcpu)
3309 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3310 vmx_decache_cr3(vcpu);
3311 if (!(cr0 & X86_CR0_PG)) {
3312 /* From paging/starting to nonpaging */
3313 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3314 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
3315 (CPU_BASED_CR3_LOAD_EXITING |
3316 CPU_BASED_CR3_STORE_EXITING));
3317 vcpu->arch.cr0 = cr0;
3318 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3319 } else if (!is_paging(vcpu)) {
3320 /* From nonpaging to paging */
3321 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3322 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
3323 ~(CPU_BASED_CR3_LOAD_EXITING |
3324 CPU_BASED_CR3_STORE_EXITING));
3325 vcpu->arch.cr0 = cr0;
3326 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3329 if (!(cr0 & X86_CR0_WP))
3330 *hw_cr0 &= ~X86_CR0_WP;
3333 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3335 struct vcpu_vmx *vmx = to_vmx(vcpu);
3336 unsigned long hw_cr0;
3338 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3339 if (enable_unrestricted_guest)
3340 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3341 else {
3342 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3344 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3345 enter_pmode(vcpu);
3347 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3348 enter_rmode(vcpu);
3351 #ifdef CONFIG_X86_64
3352 if (vcpu->arch.efer & EFER_LME) {
3353 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3354 enter_lmode(vcpu);
3355 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3356 exit_lmode(vcpu);
3358 #endif
3360 if (enable_ept)
3361 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3363 if (!vcpu->fpu_active)
3364 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
3366 vmcs_writel(CR0_READ_SHADOW, cr0);
3367 vmcs_writel(GUEST_CR0, hw_cr0);
3368 vcpu->arch.cr0 = cr0;
3370 /* depends on vcpu->arch.cr0 to be set to a new value */
3371 vmx->emulation_required = emulation_required(vcpu);
3374 static u64 construct_eptp(unsigned long root_hpa)
3376 u64 eptp;
3378 /* TODO write the value reading from MSR */
3379 eptp = VMX_EPT_DEFAULT_MT |
3380 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
3381 if (enable_ept_ad_bits)
3382 eptp |= VMX_EPT_AD_ENABLE_BIT;
3383 eptp |= (root_hpa & PAGE_MASK);
3385 return eptp;
3388 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3390 unsigned long guest_cr3;
3391 u64 eptp;
3393 guest_cr3 = cr3;
3394 if (enable_ept) {
3395 eptp = construct_eptp(cr3);
3396 vmcs_write64(EPT_POINTER, eptp);
3397 guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
3398 vcpu->kvm->arch.ept_identity_map_addr;
3399 ept_load_pdptrs(vcpu);
3402 vmx_flush_tlb(vcpu);
3403 vmcs_writel(GUEST_CR3, guest_cr3);
3406 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3408 unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
3409 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3411 if (cr4 & X86_CR4_VMXE) {
3413 * To use VMXON (and later other VMX instructions), a guest
3414 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3415 * So basically the check on whether to allow nested VMX
3416 * is here.
3418 if (!nested_vmx_allowed(vcpu))
3419 return 1;
3421 if (to_vmx(vcpu)->nested.vmxon &&
3422 ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
3423 return 1;
3425 vcpu->arch.cr4 = cr4;
3426 if (enable_ept) {
3427 if (!is_paging(vcpu)) {
3428 hw_cr4 &= ~X86_CR4_PAE;
3429 hw_cr4 |= X86_CR4_PSE;
3431 * SMEP is disabled if CPU is in non-paging mode in
3432 * hardware. However KVM always uses paging mode to
3433 * emulate guest non-paging mode with TDP.
3434 * To emulate this behavior, SMEP needs to be manually
3435 * disabled when guest switches to non-paging mode.
3437 hw_cr4 &= ~X86_CR4_SMEP;
3438 } else if (!(cr4 & X86_CR4_PAE)) {
3439 hw_cr4 &= ~X86_CR4_PAE;
3443 vmcs_writel(CR4_READ_SHADOW, cr4);
3444 vmcs_writel(GUEST_CR4, hw_cr4);
3445 return 0;
3448 static void vmx_get_segment(struct kvm_vcpu *vcpu,
3449 struct kvm_segment *var, int seg)
3451 struct vcpu_vmx *vmx = to_vmx(vcpu);
3452 u32 ar;
3454 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3455 *var = vmx->rmode.segs[seg];
3456 if (seg == VCPU_SREG_TR
3457 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3458 return;
3459 var->base = vmx_read_guest_seg_base(vmx, seg);
3460 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3461 return;
3463 var->base = vmx_read_guest_seg_base(vmx, seg);
3464 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3465 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3466 ar = vmx_read_guest_seg_ar(vmx, seg);
3467 var->unusable = (ar >> 16) & 1;
3468 var->type = ar & 15;
3469 var->s = (ar >> 4) & 1;
3470 var->dpl = (ar >> 5) & 3;
3472 * Some userspaces do not preserve unusable property. Since usable
3473 * segment has to be present according to VMX spec we can use present
3474 * property to amend userspace bug by making unusable segment always
3475 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3476 * segment as unusable.
3478 var->present = !var->unusable;
3479 var->avl = (ar >> 12) & 1;
3480 var->l = (ar >> 13) & 1;
3481 var->db = (ar >> 14) & 1;
3482 var->g = (ar >> 15) & 1;
3485 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3487 struct kvm_segment s;
3489 if (to_vmx(vcpu)->rmode.vm86_active) {
3490 vmx_get_segment(vcpu, &s, seg);
3491 return s.base;
3493 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3496 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3498 struct vcpu_vmx *vmx = to_vmx(vcpu);
3500 if (!is_protmode(vcpu))
3501 return 0;
3503 if (!is_long_mode(vcpu)
3504 && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
3505 return 3;
3507 if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
3508 __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3509 vmx->cpl = vmx_read_guest_seg_selector(vmx, VCPU_SREG_CS) & 3;
3512 return vmx->cpl;
3516 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3518 u32 ar;
3520 if (var->unusable || !var->present)
3521 ar = 1 << 16;
3522 else {
3523 ar = var->type & 15;
3524 ar |= (var->s & 1) << 4;
3525 ar |= (var->dpl & 3) << 5;
3526 ar |= (var->present & 1) << 7;
3527 ar |= (var->avl & 1) << 12;
3528 ar |= (var->l & 1) << 13;
3529 ar |= (var->db & 1) << 14;
3530 ar |= (var->g & 1) << 15;
3533 return ar;
3536 static void vmx_set_segment(struct kvm_vcpu *vcpu,
3537 struct kvm_segment *var, int seg)
3539 struct vcpu_vmx *vmx = to_vmx(vcpu);
3540 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3542 vmx_segment_cache_clear(vmx);
3543 if (seg == VCPU_SREG_CS)
3544 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3546 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3547 vmx->rmode.segs[seg] = *var;
3548 if (seg == VCPU_SREG_TR)
3549 vmcs_write16(sf->selector, var->selector);
3550 else if (var->s)
3551 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3552 goto out;
3555 vmcs_writel(sf->base, var->base);
3556 vmcs_write32(sf->limit, var->limit);
3557 vmcs_write16(sf->selector, var->selector);
3560 * Fix the "Accessed" bit in AR field of segment registers for older
3561 * qemu binaries.
3562 * IA32 arch specifies that at the time of processor reset the
3563 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3564 * is setting it to 0 in the userland code. This causes invalid guest
3565 * state vmexit when "unrestricted guest" mode is turned on.
3566 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3567 * tree. Newer qemu binaries with that qemu fix would not need this
3568 * kvm hack.
3570 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3571 var->type |= 0x1; /* Accessed */
3573 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3575 out:
3576 vmx->emulation_required |= emulation_required(vcpu);
3579 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3581 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3583 *db = (ar >> 14) & 1;
3584 *l = (ar >> 13) & 1;
3587 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3589 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3590 dt->address = vmcs_readl(GUEST_IDTR_BASE);
3593 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3595 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3596 vmcs_writel(GUEST_IDTR_BASE, dt->address);
3599 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3601 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3602 dt->address = vmcs_readl(GUEST_GDTR_BASE);
3605 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3607 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3608 vmcs_writel(GUEST_GDTR_BASE, dt->address);
3611 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3613 struct kvm_segment var;
3614 u32 ar;
3616 vmx_get_segment(vcpu, &var, seg);
3617 var.dpl = 0x3;
3618 if (seg == VCPU_SREG_CS)
3619 var.type = 0x3;
3620 ar = vmx_segment_access_rights(&var);
3622 if (var.base != (var.selector << 4))
3623 return false;
3624 if (var.limit != 0xffff)
3625 return false;
3626 if (ar != 0xf3)
3627 return false;
3629 return true;
3632 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3634 struct kvm_segment cs;
3635 unsigned int cs_rpl;
3637 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3638 cs_rpl = cs.selector & SELECTOR_RPL_MASK;
3640 if (cs.unusable)
3641 return false;
3642 if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
3643 return false;
3644 if (!cs.s)
3645 return false;
3646 if (cs.type & AR_TYPE_WRITEABLE_MASK) {
3647 if (cs.dpl > cs_rpl)
3648 return false;
3649 } else {
3650 if (cs.dpl != cs_rpl)
3651 return false;
3653 if (!cs.present)
3654 return false;
3656 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3657 return true;
3660 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3662 struct kvm_segment ss;
3663 unsigned int ss_rpl;
3665 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3666 ss_rpl = ss.selector & SELECTOR_RPL_MASK;
3668 if (ss.unusable)
3669 return true;
3670 if (ss.type != 3 && ss.type != 7)
3671 return false;
3672 if (!ss.s)
3673 return false;
3674 if (ss.dpl != ss_rpl) /* DPL != RPL */
3675 return false;
3676 if (!ss.present)
3677 return false;
3679 return true;
3682 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3684 struct kvm_segment var;
3685 unsigned int rpl;
3687 vmx_get_segment(vcpu, &var, seg);
3688 rpl = var.selector & SELECTOR_RPL_MASK;
3690 if (var.unusable)
3691 return true;
3692 if (!var.s)
3693 return false;
3694 if (!var.present)
3695 return false;
3696 if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
3697 if (var.dpl < rpl) /* DPL < RPL */
3698 return false;
3701 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3702 * rights flags
3704 return true;
3707 static bool tr_valid(struct kvm_vcpu *vcpu)
3709 struct kvm_segment tr;
3711 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3713 if (tr.unusable)
3714 return false;
3715 if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3716 return false;
3717 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3718 return false;
3719 if (!tr.present)
3720 return false;
3722 return true;
3725 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3727 struct kvm_segment ldtr;
3729 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3731 if (ldtr.unusable)
3732 return true;
3733 if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3734 return false;
3735 if (ldtr.type != 2)
3736 return false;
3737 if (!ldtr.present)
3738 return false;
3740 return true;
3743 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3745 struct kvm_segment cs, ss;
3747 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3748 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3750 return ((cs.selector & SELECTOR_RPL_MASK) ==
3751 (ss.selector & SELECTOR_RPL_MASK));
3755 * Check if guest state is valid. Returns true if valid, false if
3756 * not.
3757 * We assume that registers are always usable
3759 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3761 if (enable_unrestricted_guest)
3762 return true;
3764 /* real mode guest state checks */
3765 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3766 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3767 return false;
3768 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3769 return false;
3770 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3771 return false;
3772 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3773 return false;
3774 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3775 return false;
3776 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3777 return false;
3778 } else {
3779 /* protected mode guest state checks */
3780 if (!cs_ss_rpl_check(vcpu))
3781 return false;
3782 if (!code_segment_valid(vcpu))
3783 return false;
3784 if (!stack_segment_valid(vcpu))
3785 return false;
3786 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3787 return false;
3788 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3789 return false;
3790 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3791 return false;
3792 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3793 return false;
3794 if (!tr_valid(vcpu))
3795 return false;
3796 if (!ldtr_valid(vcpu))
3797 return false;
3799 /* TODO:
3800 * - Add checks on RIP
3801 * - Add checks on RFLAGS
3804 return true;
3807 static int init_rmode_tss(struct kvm *kvm)
3809 gfn_t fn;
3810 u16 data = 0;
3811 int r, idx, ret = 0;
3813 idx = srcu_read_lock(&kvm->srcu);
3814 fn = kvm->arch.tss_addr >> PAGE_SHIFT;
3815 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3816 if (r < 0)
3817 goto out;
3818 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3819 r = kvm_write_guest_page(kvm, fn++, &data,
3820 TSS_IOPB_BASE_OFFSET, sizeof(u16));
3821 if (r < 0)
3822 goto out;
3823 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3824 if (r < 0)
3825 goto out;
3826 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3827 if (r < 0)
3828 goto out;
3829 data = ~0;
3830 r = kvm_write_guest_page(kvm, fn, &data,
3831 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3832 sizeof(u8));
3833 if (r < 0)
3834 goto out;
3836 ret = 1;
3837 out:
3838 srcu_read_unlock(&kvm->srcu, idx);
3839 return ret;
3842 static int init_rmode_identity_map(struct kvm *kvm)
3844 int i, idx, r, ret;
3845 pfn_t identity_map_pfn;
3846 u32 tmp;
3848 if (!enable_ept)
3849 return 1;
3850 if (unlikely(!kvm->arch.ept_identity_pagetable)) {
3851 printk(KERN_ERR "EPT: identity-mapping pagetable "
3852 "haven't been allocated!\n");
3853 return 0;
3855 if (likely(kvm->arch.ept_identity_pagetable_done))
3856 return 1;
3857 ret = 0;
3858 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
3859 idx = srcu_read_lock(&kvm->srcu);
3860 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3861 if (r < 0)
3862 goto out;
3863 /* Set up identity-mapping pagetable for EPT in real mode */
3864 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3865 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3866 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3867 r = kvm_write_guest_page(kvm, identity_map_pfn,
3868 &tmp, i * sizeof(tmp), sizeof(tmp));
3869 if (r < 0)
3870 goto out;
3872 kvm->arch.ept_identity_pagetable_done = true;
3873 ret = 1;
3874 out:
3875 srcu_read_unlock(&kvm->srcu, idx);
3876 return ret;
3879 static void seg_setup(int seg)
3881 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3882 unsigned int ar;
3884 vmcs_write16(sf->selector, 0);
3885 vmcs_writel(sf->base, 0);
3886 vmcs_write32(sf->limit, 0xffff);
3887 ar = 0x93;
3888 if (seg == VCPU_SREG_CS)
3889 ar |= 0x08; /* code segment */
3891 vmcs_write32(sf->ar_bytes, ar);
3894 static int alloc_apic_access_page(struct kvm *kvm)
3896 struct page *page;
3897 struct kvm_userspace_memory_region kvm_userspace_mem;
3898 int r = 0;
3900 mutex_lock(&kvm->slots_lock);
3901 if (kvm->arch.apic_access_page)
3902 goto out;
3903 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
3904 kvm_userspace_mem.flags = 0;
3905 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
3906 kvm_userspace_mem.memory_size = PAGE_SIZE;
3907 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
3908 if (r)
3909 goto out;
3911 page = gfn_to_page(kvm, 0xfee00);
3912 if (is_error_page(page)) {
3913 r = -EFAULT;
3914 goto out;
3917 kvm->arch.apic_access_page = page;
3918 out:
3919 mutex_unlock(&kvm->slots_lock);
3920 return r;
3923 static int alloc_identity_pagetable(struct kvm *kvm)
3925 struct page *page;
3926 struct kvm_userspace_memory_region kvm_userspace_mem;
3927 int r = 0;
3929 mutex_lock(&kvm->slots_lock);
3930 if (kvm->arch.ept_identity_pagetable)
3931 goto out;
3932 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
3933 kvm_userspace_mem.flags = 0;
3934 kvm_userspace_mem.guest_phys_addr =
3935 kvm->arch.ept_identity_map_addr;
3936 kvm_userspace_mem.memory_size = PAGE_SIZE;
3937 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
3938 if (r)
3939 goto out;
3941 page = gfn_to_page(kvm, kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
3942 if (is_error_page(page)) {
3943 r = -EFAULT;
3944 goto out;
3947 kvm->arch.ept_identity_pagetable = page;
3948 out:
3949 mutex_unlock(&kvm->slots_lock);
3950 return r;
3953 static void allocate_vpid(struct vcpu_vmx *vmx)
3955 int vpid;
3957 vmx->vpid = 0;
3958 if (!enable_vpid)
3959 return;
3960 spin_lock(&vmx_vpid_lock);
3961 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3962 if (vpid < VMX_NR_VPIDS) {
3963 vmx->vpid = vpid;
3964 __set_bit(vpid, vmx_vpid_bitmap);
3966 spin_unlock(&vmx_vpid_lock);
3969 static void free_vpid(struct vcpu_vmx *vmx)
3971 if (!enable_vpid)
3972 return;
3973 spin_lock(&vmx_vpid_lock);
3974 if (vmx->vpid != 0)
3975 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3976 spin_unlock(&vmx_vpid_lock);
3979 #define MSR_TYPE_R 1
3980 #define MSR_TYPE_W 2
3981 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
3982 u32 msr, int type)
3984 int f = sizeof(unsigned long);
3986 if (!cpu_has_vmx_msr_bitmap())
3987 return;
3990 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3991 * have the write-low and read-high bitmap offsets the wrong way round.
3992 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3994 if (msr <= 0x1fff) {
3995 if (type & MSR_TYPE_R)
3996 /* read-low */
3997 __clear_bit(msr, msr_bitmap + 0x000 / f);
3999 if (type & MSR_TYPE_W)
4000 /* write-low */
4001 __clear_bit(msr, msr_bitmap + 0x800 / f);
4003 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4004 msr &= 0x1fff;
4005 if (type & MSR_TYPE_R)
4006 /* read-high */
4007 __clear_bit(msr, msr_bitmap + 0x400 / f);
4009 if (type & MSR_TYPE_W)
4010 /* write-high */
4011 __clear_bit(msr, msr_bitmap + 0xc00 / f);
4016 static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
4017 u32 msr, int type)
4019 int f = sizeof(unsigned long);
4021 if (!cpu_has_vmx_msr_bitmap())
4022 return;
4025 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4026 * have the write-low and read-high bitmap offsets the wrong way round.
4027 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4029 if (msr <= 0x1fff) {
4030 if (type & MSR_TYPE_R)
4031 /* read-low */
4032 __set_bit(msr, msr_bitmap + 0x000 / f);
4034 if (type & MSR_TYPE_W)
4035 /* write-low */
4036 __set_bit(msr, msr_bitmap + 0x800 / f);
4038 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4039 msr &= 0x1fff;
4040 if (type & MSR_TYPE_R)
4041 /* read-high */
4042 __set_bit(msr, msr_bitmap + 0x400 / f);
4044 if (type & MSR_TYPE_W)
4045 /* write-high */
4046 __set_bit(msr, msr_bitmap + 0xc00 / f);
4051 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4053 if (!longmode_only)
4054 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4055 msr, MSR_TYPE_R | MSR_TYPE_W);
4056 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4057 msr, MSR_TYPE_R | MSR_TYPE_W);
4060 static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
4062 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4063 msr, MSR_TYPE_R);
4064 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4065 msr, MSR_TYPE_R);
4068 static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
4070 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4071 msr, MSR_TYPE_R);
4072 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4073 msr, MSR_TYPE_R);
4076 static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
4078 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4079 msr, MSR_TYPE_W);
4080 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4081 msr, MSR_TYPE_W);
4084 static int vmx_vm_has_apicv(struct kvm *kvm)
4086 return enable_apicv && irqchip_in_kernel(kvm);
4090 * Send interrupt to vcpu via posted interrupt way.
4091 * 1. If target vcpu is running(non-root mode), send posted interrupt
4092 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4093 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4094 * interrupt from PIR in next vmentry.
4096 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4098 struct vcpu_vmx *vmx = to_vmx(vcpu);
4099 int r;
4101 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4102 return;
4104 r = pi_test_and_set_on(&vmx->pi_desc);
4105 kvm_make_request(KVM_REQ_EVENT, vcpu);
4106 #ifdef CONFIG_SMP
4107 if (!r && (vcpu->mode == IN_GUEST_MODE))
4108 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4109 POSTED_INTR_VECTOR);
4110 else
4111 #endif
4112 kvm_vcpu_kick(vcpu);
4115 static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
4117 struct vcpu_vmx *vmx = to_vmx(vcpu);
4119 if (!pi_test_and_clear_on(&vmx->pi_desc))
4120 return;
4122 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
4125 static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu)
4127 return;
4131 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4132 * will not change in the lifetime of the guest.
4133 * Note that host-state that does change is set elsewhere. E.g., host-state
4134 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4136 static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4138 u32 low32, high32;
4139 unsigned long tmpl;
4140 struct desc_ptr dt;
4141 unsigned long cr4;
4143 vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS); /* 22.2.3 */
4144 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
4146 /* Save the most likely value for this task's CR4 in the VMCS. */
4147 cr4 = read_cr4();
4148 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
4149 vmx->host_state.vmcs_host_cr4 = cr4;
4151 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
4152 #ifdef CONFIG_X86_64
4154 * Load null selectors, so we can avoid reloading them in
4155 * __vmx_load_host_state(), in case userspace uses the null selectors
4156 * too (the expected case).
4158 vmcs_write16(HOST_DS_SELECTOR, 0);
4159 vmcs_write16(HOST_ES_SELECTOR, 0);
4160 #else
4161 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4162 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4163 #endif
4164 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4165 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
4167 native_store_idt(&dt);
4168 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
4169 vmx->host_idt_base = dt.address;
4171 vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
4173 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4174 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4175 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4176 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
4178 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4179 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4180 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4184 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4186 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
4187 if (enable_ept)
4188 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
4189 if (is_guest_mode(&vmx->vcpu))
4190 vmx->vcpu.arch.cr4_guest_owned_bits &=
4191 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
4192 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4195 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4197 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4199 if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4200 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4201 return pin_based_exec_ctrl;
4204 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4206 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4207 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
4208 exec_control &= ~CPU_BASED_TPR_SHADOW;
4209 #ifdef CONFIG_X86_64
4210 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4211 CPU_BASED_CR8_LOAD_EXITING;
4212 #endif
4214 if (!enable_ept)
4215 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4216 CPU_BASED_CR3_LOAD_EXITING |
4217 CPU_BASED_INVLPG_EXITING;
4218 return exec_control;
4221 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4223 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4224 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4225 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4226 if (vmx->vpid == 0)
4227 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4228 if (!enable_ept) {
4229 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4230 enable_unrestricted_guest = 0;
4231 /* Enable INVPCID for non-ept guests may cause performance regression. */
4232 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4234 if (!enable_unrestricted_guest)
4235 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4236 if (!ple_gap)
4237 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4238 if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4239 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4240 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4241 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4242 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4243 (handle_vmptrld).
4244 We can NOT enable shadow_vmcs here because we don't have yet
4245 a current VMCS12
4247 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4248 return exec_control;
4251 static void ept_set_mmio_spte_mask(void)
4254 * EPT Misconfigurations can be generated if the value of bits 2:0
4255 * of an EPT paging-structure entry is 110b (write/execute).
4256 * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
4257 * spte.
4259 kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
4263 * Sets up the vmcs for emulated real mode.
4265 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
4267 #ifdef CONFIG_X86_64
4268 unsigned long a;
4269 #endif
4270 int i;
4272 /* I/O */
4273 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
4274 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
4276 if (enable_shadow_vmcs) {
4277 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
4278 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
4280 if (cpu_has_vmx_msr_bitmap())
4281 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
4283 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4285 /* Control */
4286 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
4288 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
4290 if (cpu_has_secondary_exec_ctrls()) {
4291 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4292 vmx_secondary_exec_control(vmx));
4295 if (vmx_vm_has_apicv(vmx->vcpu.kvm)) {
4296 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4297 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4298 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4299 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4301 vmcs_write16(GUEST_INTR_STATUS, 0);
4303 vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4304 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4307 if (ple_gap) {
4308 vmcs_write32(PLE_GAP, ple_gap);
4309 vmcs_write32(PLE_WINDOW, ple_window);
4312 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4313 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4314 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4316 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4317 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
4318 vmx_set_constant_host_state(vmx);
4319 #ifdef CONFIG_X86_64
4320 rdmsrl(MSR_FS_BASE, a);
4321 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
4322 rdmsrl(MSR_GS_BASE, a);
4323 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
4324 #else
4325 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4326 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4327 #endif
4329 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4330 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4331 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
4332 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4333 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
4335 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
4336 u32 msr_low, msr_high;
4337 u64 host_pat;
4338 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
4339 host_pat = msr_low | ((u64) msr_high << 32);
4340 /* Write the default value follow host pat */
4341 vmcs_write64(GUEST_IA32_PAT, host_pat);
4342 /* Keep arch.pat sync with GUEST_IA32_PAT */
4343 vmx->vcpu.arch.pat = host_pat;
4346 for (i = 0; i < NR_VMX_MSR; ++i) {
4347 u32 index = vmx_msr_index[i];
4348 u32 data_low, data_high;
4349 int j = vmx->nmsrs;
4351 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4352 continue;
4353 if (wrmsr_safe(index, data_low, data_high) < 0)
4354 continue;
4355 vmx->guest_msrs[j].index = i;
4356 vmx->guest_msrs[j].data = 0;
4357 vmx->guest_msrs[j].mask = -1ull;
4358 ++vmx->nmsrs;
4361 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
4363 /* 22.2.1, 20.8.1 */
4364 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
4366 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
4367 set_cr4_guest_host_mask(vmx);
4369 return 0;
4372 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4374 struct vcpu_vmx *vmx = to_vmx(vcpu);
4375 u64 msr;
4377 vmx->rmode.vm86_active = 0;
4379 vmx->soft_vnmi_blocked = 0;
4381 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4382 kvm_set_cr8(&vmx->vcpu, 0);
4383 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
4384 if (kvm_vcpu_is_bsp(&vmx->vcpu))
4385 msr |= MSR_IA32_APICBASE_BSP;
4386 kvm_set_apic_base(&vmx->vcpu, msr);
4388 vmx_segment_cache_clear(vmx);
4390 seg_setup(VCPU_SREG_CS);
4391 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4392 vmcs_write32(GUEST_CS_BASE, 0xffff0000);
4394 seg_setup(VCPU_SREG_DS);
4395 seg_setup(VCPU_SREG_ES);
4396 seg_setup(VCPU_SREG_FS);
4397 seg_setup(VCPU_SREG_GS);
4398 seg_setup(VCPU_SREG_SS);
4400 vmcs_write16(GUEST_TR_SELECTOR, 0);
4401 vmcs_writel(GUEST_TR_BASE, 0);
4402 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4403 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4405 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4406 vmcs_writel(GUEST_LDTR_BASE, 0);
4407 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4408 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4410 vmcs_write32(GUEST_SYSENTER_CS, 0);
4411 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4412 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4414 vmcs_writel(GUEST_RFLAGS, 0x02);
4415 kvm_rip_write(vcpu, 0xfff0);
4417 vmcs_writel(GUEST_GDTR_BASE, 0);
4418 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4420 vmcs_writel(GUEST_IDTR_BASE, 0);
4421 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4423 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4424 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4425 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4427 /* Special registers */
4428 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4430 setup_msrs(vmx);
4432 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
4434 if (cpu_has_vmx_tpr_shadow()) {
4435 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4436 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
4437 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4438 __pa(vmx->vcpu.arch.apic->regs));
4439 vmcs_write32(TPR_THRESHOLD, 0);
4442 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4443 vmcs_write64(APIC_ACCESS_ADDR,
4444 page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
4446 if (vmx_vm_has_apicv(vcpu->kvm))
4447 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
4449 if (vmx->vpid != 0)
4450 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4452 vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4453 vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
4454 vmx_set_cr4(&vmx->vcpu, 0);
4455 vmx_set_efer(&vmx->vcpu, 0);
4456 vmx_fpu_activate(&vmx->vcpu);
4457 update_exception_bitmap(&vmx->vcpu);
4459 vpid_sync_context(vmx);
4463 * In nested virtualization, check if L1 asked to exit on external interrupts.
4464 * For most existing hypervisors, this will always return true.
4466 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
4468 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4469 PIN_BASED_EXT_INTR_MASK;
4472 static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
4474 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4475 PIN_BASED_NMI_EXITING;
4478 static int enable_irq_window(struct kvm_vcpu *vcpu)
4480 u32 cpu_based_vm_exec_control;
4482 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4484 * We get here if vmx_interrupt_allowed() said we can't
4485 * inject to L1 now because L2 must run. The caller will have
4486 * to make L2 exit right after entry, so we can inject to L1
4487 * more promptly.
4489 return -EBUSY;
4491 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4492 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
4493 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4494 return 0;
4497 static int enable_nmi_window(struct kvm_vcpu *vcpu)
4499 u32 cpu_based_vm_exec_control;
4501 if (!cpu_has_virtual_nmis())
4502 return enable_irq_window(vcpu);
4504 if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI)
4505 return enable_irq_window(vcpu);
4507 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4508 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
4509 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4510 return 0;
4513 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4515 struct vcpu_vmx *vmx = to_vmx(vcpu);
4516 uint32_t intr;
4517 int irq = vcpu->arch.interrupt.nr;
4519 trace_kvm_inj_virq(irq);
4521 ++vcpu->stat.irq_injections;
4522 if (vmx->rmode.vm86_active) {
4523 int inc_eip = 0;
4524 if (vcpu->arch.interrupt.soft)
4525 inc_eip = vcpu->arch.event_exit_inst_len;
4526 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
4527 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4528 return;
4530 intr = irq | INTR_INFO_VALID_MASK;
4531 if (vcpu->arch.interrupt.soft) {
4532 intr |= INTR_TYPE_SOFT_INTR;
4533 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4534 vmx->vcpu.arch.event_exit_inst_len);
4535 } else
4536 intr |= INTR_TYPE_EXT_INTR;
4537 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4540 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4542 struct vcpu_vmx *vmx = to_vmx(vcpu);
4544 if (is_guest_mode(vcpu))
4545 return;
4547 if (!cpu_has_virtual_nmis()) {
4549 * Tracking the NMI-blocked state in software is built upon
4550 * finding the next open IRQ window. This, in turn, depends on
4551 * well-behaving guests: They have to keep IRQs disabled at
4552 * least as long as the NMI handler runs. Otherwise we may
4553 * cause NMI nesting, maybe breaking the guest. But as this is
4554 * highly unlikely, we can live with the residual risk.
4556 vmx->soft_vnmi_blocked = 1;
4557 vmx->vnmi_blocked_time = 0;
4560 ++vcpu->stat.nmi_injections;
4561 vmx->nmi_known_unmasked = false;
4562 if (vmx->rmode.vm86_active) {
4563 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
4564 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4565 return;
4567 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4568 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4571 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4573 if (!cpu_has_virtual_nmis())
4574 return to_vmx(vcpu)->soft_vnmi_blocked;
4575 if (to_vmx(vcpu)->nmi_known_unmasked)
4576 return false;
4577 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4580 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4582 struct vcpu_vmx *vmx = to_vmx(vcpu);
4584 if (!cpu_has_virtual_nmis()) {
4585 if (vmx->soft_vnmi_blocked != masked) {
4586 vmx->soft_vnmi_blocked = masked;
4587 vmx->vnmi_blocked_time = 0;
4589 } else {
4590 vmx->nmi_known_unmasked = !masked;
4591 if (masked)
4592 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4593 GUEST_INTR_STATE_NMI);
4594 else
4595 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4596 GUEST_INTR_STATE_NMI);
4600 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4602 if (is_guest_mode(vcpu)) {
4603 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4605 if (to_vmx(vcpu)->nested.nested_run_pending)
4606 return 0;
4607 if (nested_exit_on_nmi(vcpu)) {
4608 nested_vmx_vmexit(vcpu);
4609 vmcs12->vm_exit_reason = EXIT_REASON_EXCEPTION_NMI;
4610 vmcs12->vm_exit_intr_info = NMI_VECTOR |
4611 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK;
4613 * The NMI-triggered VM exit counts as injection:
4614 * clear this one and block further NMIs.
4616 vcpu->arch.nmi_pending = 0;
4617 vmx_set_nmi_mask(vcpu, true);
4618 return 0;
4622 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
4623 return 0;
4625 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4626 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4627 | GUEST_INTR_STATE_NMI));
4630 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4632 if (is_guest_mode(vcpu)) {
4633 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4635 if (to_vmx(vcpu)->nested.nested_run_pending)
4636 return 0;
4637 if (nested_exit_on_intr(vcpu)) {
4638 nested_vmx_vmexit(vcpu);
4639 vmcs12->vm_exit_reason =
4640 EXIT_REASON_EXTERNAL_INTERRUPT;
4641 vmcs12->vm_exit_intr_info = 0;
4643 * fall through to normal code, but now in L1, not L2
4648 return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4649 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4650 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4653 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4655 int ret;
4656 struct kvm_userspace_memory_region tss_mem = {
4657 .slot = TSS_PRIVATE_MEMSLOT,
4658 .guest_phys_addr = addr,
4659 .memory_size = PAGE_SIZE * 3,
4660 .flags = 0,
4663 ret = kvm_set_memory_region(kvm, &tss_mem);
4664 if (ret)
4665 return ret;
4666 kvm->arch.tss_addr = addr;
4667 if (!init_rmode_tss(kvm))
4668 return -ENOMEM;
4670 return 0;
4673 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4675 switch (vec) {
4676 case BP_VECTOR:
4678 * Update instruction length as we may reinject the exception
4679 * from user space while in guest debugging mode.
4681 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4682 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4683 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4684 return false;
4685 /* fall through */
4686 case DB_VECTOR:
4687 if (vcpu->guest_debug &
4688 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4689 return false;
4690 /* fall through */
4691 case DE_VECTOR:
4692 case OF_VECTOR:
4693 case BR_VECTOR:
4694 case UD_VECTOR:
4695 case DF_VECTOR:
4696 case SS_VECTOR:
4697 case GP_VECTOR:
4698 case MF_VECTOR:
4699 return true;
4700 break;
4702 return false;
4705 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4706 int vec, u32 err_code)
4709 * Instruction with address size override prefix opcode 0x67
4710 * Cause the #SS fault with 0 error code in VM86 mode.
4712 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4713 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
4714 if (vcpu->arch.halt_request) {
4715 vcpu->arch.halt_request = 0;
4716 return kvm_emulate_halt(vcpu);
4718 return 1;
4720 return 0;
4724 * Forward all other exceptions that are valid in real mode.
4725 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4726 * the required debugging infrastructure rework.
4728 kvm_queue_exception(vcpu, vec);
4729 return 1;
4733 * Trigger machine check on the host. We assume all the MSRs are already set up
4734 * by the CPU and that we still run on the same CPU as the MCE occurred on.
4735 * We pass a fake environment to the machine check handler because we want
4736 * the guest to be always treated like user space, no matter what context
4737 * it used internally.
4739 static void kvm_machine_check(void)
4741 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4742 struct pt_regs regs = {
4743 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4744 .flags = X86_EFLAGS_IF,
4747 do_machine_check(&regs, 0);
4748 #endif
4751 static int handle_machine_check(struct kvm_vcpu *vcpu)
4753 /* already handled by vcpu_run */
4754 return 1;
4757 static int handle_exception(struct kvm_vcpu *vcpu)
4759 struct vcpu_vmx *vmx = to_vmx(vcpu);
4760 struct kvm_run *kvm_run = vcpu->run;
4761 u32 intr_info, ex_no, error_code;
4762 unsigned long cr2, rip, dr6;
4763 u32 vect_info;
4764 enum emulation_result er;
4766 vect_info = vmx->idt_vectoring_info;
4767 intr_info = vmx->exit_intr_info;
4769 if (is_machine_check(intr_info))
4770 return handle_machine_check(vcpu);
4772 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
4773 return 1; /* already handled by vmx_vcpu_run() */
4775 if (is_no_device(intr_info)) {
4776 vmx_fpu_activate(vcpu);
4777 return 1;
4780 if (is_invalid_opcode(intr_info)) {
4781 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
4782 if (er != EMULATE_DONE)
4783 kvm_queue_exception(vcpu, UD_VECTOR);
4784 return 1;
4787 error_code = 0;
4788 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4789 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4792 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4793 * MMIO, it is better to report an internal error.
4794 * See the comments in vmx_handle_exit.
4796 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4797 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4798 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4799 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4800 vcpu->run->internal.ndata = 2;
4801 vcpu->run->internal.data[0] = vect_info;
4802 vcpu->run->internal.data[1] = intr_info;
4803 return 0;
4806 if (is_page_fault(intr_info)) {
4807 /* EPT won't cause page fault directly */
4808 BUG_ON(enable_ept);
4809 cr2 = vmcs_readl(EXIT_QUALIFICATION);
4810 trace_kvm_page_fault(cr2, error_code);
4812 if (kvm_event_needs_reinjection(vcpu))
4813 kvm_mmu_unprotect_page_virt(vcpu, cr2);
4814 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
4817 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4819 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4820 return handle_rmode_exception(vcpu, ex_no, error_code);
4822 switch (ex_no) {
4823 case AC_VECTOR:
4824 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4825 return 1;
4826 case DB_VECTOR:
4827 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4828 if (!(vcpu->guest_debug &
4829 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4830 vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
4831 kvm_queue_exception(vcpu, DB_VECTOR);
4832 return 1;
4834 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4835 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4836 /* fall through */
4837 case BP_VECTOR:
4839 * Update instruction length as we may reinject #BP from
4840 * user space while in guest debugging mode. Reading it for
4841 * #DB as well causes no harm, it is not used in that case.
4843 vmx->vcpu.arch.event_exit_inst_len =
4844 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4845 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4846 rip = kvm_rip_read(vcpu);
4847 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4848 kvm_run->debug.arch.exception = ex_no;
4849 break;
4850 default:
4851 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4852 kvm_run->ex.exception = ex_no;
4853 kvm_run->ex.error_code = error_code;
4854 break;
4856 return 0;
4859 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
4861 ++vcpu->stat.irq_exits;
4862 return 1;
4865 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4867 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4868 return 0;
4871 static int handle_io(struct kvm_vcpu *vcpu)
4873 unsigned long exit_qualification;
4874 int size, in, string;
4875 unsigned port;
4877 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4878 string = (exit_qualification & 16) != 0;
4879 in = (exit_qualification & 8) != 0;
4881 ++vcpu->stat.io_exits;
4883 if (string || in)
4884 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4886 port = exit_qualification >> 16;
4887 size = (exit_qualification & 7) + 1;
4888 skip_emulated_instruction(vcpu);
4890 return kvm_fast_pio_out(vcpu, size, port);
4893 static void
4894 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4897 * Patch in the VMCALL instruction:
4899 hypercall[0] = 0x0f;
4900 hypercall[1] = 0x01;
4901 hypercall[2] = 0xc1;
4904 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4905 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4907 if (is_guest_mode(vcpu)) {
4908 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4909 unsigned long orig_val = val;
4912 * We get here when L2 changed cr0 in a way that did not change
4913 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4914 * but did change L0 shadowed bits. So we first calculate the
4915 * effective cr0 value that L1 would like to write into the
4916 * hardware. It consists of the L2-owned bits from the new
4917 * value combined with the L1-owned bits from L1's guest_cr0.
4919 val = (val & ~vmcs12->cr0_guest_host_mask) |
4920 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4922 /* TODO: will have to take unrestricted guest mode into
4923 * account */
4924 if ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON)
4925 return 1;
4927 if (kvm_set_cr0(vcpu, val))
4928 return 1;
4929 vmcs_writel(CR0_READ_SHADOW, orig_val);
4930 return 0;
4931 } else {
4932 if (to_vmx(vcpu)->nested.vmxon &&
4933 ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
4934 return 1;
4935 return kvm_set_cr0(vcpu, val);
4939 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4941 if (is_guest_mode(vcpu)) {
4942 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4943 unsigned long orig_val = val;
4945 /* analogously to handle_set_cr0 */
4946 val = (val & ~vmcs12->cr4_guest_host_mask) |
4947 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4948 if (kvm_set_cr4(vcpu, val))
4949 return 1;
4950 vmcs_writel(CR4_READ_SHADOW, orig_val);
4951 return 0;
4952 } else
4953 return kvm_set_cr4(vcpu, val);
4956 /* called to set cr0 as approriate for clts instruction exit. */
4957 static void handle_clts(struct kvm_vcpu *vcpu)
4959 if (is_guest_mode(vcpu)) {
4961 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
4962 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
4963 * just pretend it's off (also in arch.cr0 for fpu_activate).
4965 vmcs_writel(CR0_READ_SHADOW,
4966 vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
4967 vcpu->arch.cr0 &= ~X86_CR0_TS;
4968 } else
4969 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4972 static int handle_cr(struct kvm_vcpu *vcpu)
4974 unsigned long exit_qualification, val;
4975 int cr;
4976 int reg;
4977 int err;
4979 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4980 cr = exit_qualification & 15;
4981 reg = (exit_qualification >> 8) & 15;
4982 switch ((exit_qualification >> 4) & 3) {
4983 case 0: /* mov to cr */
4984 val = kvm_register_read(vcpu, reg);
4985 trace_kvm_cr_write(cr, val);
4986 switch (cr) {
4987 case 0:
4988 err = handle_set_cr0(vcpu, val);
4989 kvm_complete_insn_gp(vcpu, err);
4990 return 1;
4991 case 3:
4992 err = kvm_set_cr3(vcpu, val);
4993 kvm_complete_insn_gp(vcpu, err);
4994 return 1;
4995 case 4:
4996 err = handle_set_cr4(vcpu, val);
4997 kvm_complete_insn_gp(vcpu, err);
4998 return 1;
4999 case 8: {
5000 u8 cr8_prev = kvm_get_cr8(vcpu);
5001 u8 cr8 = kvm_register_read(vcpu, reg);
5002 err = kvm_set_cr8(vcpu, cr8);
5003 kvm_complete_insn_gp(vcpu, err);
5004 if (irqchip_in_kernel(vcpu->kvm))
5005 return 1;
5006 if (cr8_prev <= cr8)
5007 return 1;
5008 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5009 return 0;
5012 break;
5013 case 2: /* clts */
5014 handle_clts(vcpu);
5015 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5016 skip_emulated_instruction(vcpu);
5017 vmx_fpu_activate(vcpu);
5018 return 1;
5019 case 1: /*mov from cr*/
5020 switch (cr) {
5021 case 3:
5022 val = kvm_read_cr3(vcpu);
5023 kvm_register_write(vcpu, reg, val);
5024 trace_kvm_cr_read(cr, val);
5025 skip_emulated_instruction(vcpu);
5026 return 1;
5027 case 8:
5028 val = kvm_get_cr8(vcpu);
5029 kvm_register_write(vcpu, reg, val);
5030 trace_kvm_cr_read(cr, val);
5031 skip_emulated_instruction(vcpu);
5032 return 1;
5034 break;
5035 case 3: /* lmsw */
5036 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5037 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5038 kvm_lmsw(vcpu, val);
5040 skip_emulated_instruction(vcpu);
5041 return 1;
5042 default:
5043 break;
5045 vcpu->run->exit_reason = 0;
5046 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5047 (int)(exit_qualification >> 4) & 3, cr);
5048 return 0;
5051 static int handle_dr(struct kvm_vcpu *vcpu)
5053 unsigned long exit_qualification;
5054 int dr, reg;
5056 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5057 if (!kvm_require_cpl(vcpu, 0))
5058 return 1;
5059 dr = vmcs_readl(GUEST_DR7);
5060 if (dr & DR7_GD) {
5062 * As the vm-exit takes precedence over the debug trap, we
5063 * need to emulate the latter, either for the host or the
5064 * guest debugging itself.
5066 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5067 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
5068 vcpu->run->debug.arch.dr7 = dr;
5069 vcpu->run->debug.arch.pc =
5070 vmcs_readl(GUEST_CS_BASE) +
5071 vmcs_readl(GUEST_RIP);
5072 vcpu->run->debug.arch.exception = DB_VECTOR;
5073 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5074 return 0;
5075 } else {
5076 vcpu->arch.dr7 &= ~DR7_GD;
5077 vcpu->arch.dr6 |= DR6_BD;
5078 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
5079 kvm_queue_exception(vcpu, DB_VECTOR);
5080 return 1;
5084 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5085 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5086 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5087 if (exit_qualification & TYPE_MOV_FROM_DR) {
5088 unsigned long val;
5089 if (!kvm_get_dr(vcpu, dr, &val))
5090 kvm_register_write(vcpu, reg, val);
5091 } else
5092 kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
5093 skip_emulated_instruction(vcpu);
5094 return 1;
5097 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5099 vmcs_writel(GUEST_DR7, val);
5102 static int handle_cpuid(struct kvm_vcpu *vcpu)
5104 kvm_emulate_cpuid(vcpu);
5105 return 1;
5108 static int handle_rdmsr(struct kvm_vcpu *vcpu)
5110 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5111 u64 data;
5113 if (vmx_get_msr(vcpu, ecx, &data)) {
5114 trace_kvm_msr_read_ex(ecx);
5115 kvm_inject_gp(vcpu, 0);
5116 return 1;
5119 trace_kvm_msr_read(ecx, data);
5121 /* FIXME: handling of bits 32:63 of rax, rdx */
5122 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
5123 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
5124 skip_emulated_instruction(vcpu);
5125 return 1;
5128 static int handle_wrmsr(struct kvm_vcpu *vcpu)
5130 struct msr_data msr;
5131 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5132 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
5133 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
5135 msr.data = data;
5136 msr.index = ecx;
5137 msr.host_initiated = false;
5138 if (kvm_set_msr(vcpu, &msr) != 0) {
5139 trace_kvm_msr_write_ex(ecx, data);
5140 kvm_inject_gp(vcpu, 0);
5141 return 1;
5144 trace_kvm_msr_write(ecx, data);
5145 skip_emulated_instruction(vcpu);
5146 return 1;
5149 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5151 kvm_make_request(KVM_REQ_EVENT, vcpu);
5152 return 1;
5155 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5157 u32 cpu_based_vm_exec_control;
5159 /* clear pending irq */
5160 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5161 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
5162 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5164 kvm_make_request(KVM_REQ_EVENT, vcpu);
5166 ++vcpu->stat.irq_window_exits;
5169 * If the user space waits to inject interrupts, exit as soon as
5170 * possible
5172 if (!irqchip_in_kernel(vcpu->kvm) &&
5173 vcpu->run->request_interrupt_window &&
5174 !kvm_cpu_has_interrupt(vcpu)) {
5175 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
5176 return 0;
5178 return 1;
5181 static int handle_halt(struct kvm_vcpu *vcpu)
5183 skip_emulated_instruction(vcpu);
5184 return kvm_emulate_halt(vcpu);
5187 static int handle_vmcall(struct kvm_vcpu *vcpu)
5189 skip_emulated_instruction(vcpu);
5190 kvm_emulate_hypercall(vcpu);
5191 return 1;
5194 static int handle_invd(struct kvm_vcpu *vcpu)
5196 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5199 static int handle_invlpg(struct kvm_vcpu *vcpu)
5201 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5203 kvm_mmu_invlpg(vcpu, exit_qualification);
5204 skip_emulated_instruction(vcpu);
5205 return 1;
5208 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5210 int err;
5212 err = kvm_rdpmc(vcpu);
5213 kvm_complete_insn_gp(vcpu, err);
5215 return 1;
5218 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5220 skip_emulated_instruction(vcpu);
5221 kvm_emulate_wbinvd(vcpu);
5222 return 1;
5225 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5227 u64 new_bv = kvm_read_edx_eax(vcpu);
5228 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5230 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5231 skip_emulated_instruction(vcpu);
5232 return 1;
5235 static int handle_apic_access(struct kvm_vcpu *vcpu)
5237 if (likely(fasteoi)) {
5238 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5239 int access_type, offset;
5241 access_type = exit_qualification & APIC_ACCESS_TYPE;
5242 offset = exit_qualification & APIC_ACCESS_OFFSET;
5244 * Sane guest uses MOV to write EOI, with written value
5245 * not cared. So make a short-circuit here by avoiding
5246 * heavy instruction emulation.
5248 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5249 (offset == APIC_EOI)) {
5250 kvm_lapic_set_eoi(vcpu);
5251 skip_emulated_instruction(vcpu);
5252 return 1;
5255 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5258 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5260 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5261 int vector = exit_qualification & 0xff;
5263 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5264 kvm_apic_set_eoi_accelerated(vcpu, vector);
5265 return 1;
5268 static int handle_apic_write(struct kvm_vcpu *vcpu)
5270 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5271 u32 offset = exit_qualification & 0xfff;
5273 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5274 kvm_apic_write_nodecode(vcpu, offset);
5275 return 1;
5278 static int handle_task_switch(struct kvm_vcpu *vcpu)
5280 struct vcpu_vmx *vmx = to_vmx(vcpu);
5281 unsigned long exit_qualification;
5282 bool has_error_code = false;
5283 u32 error_code = 0;
5284 u16 tss_selector;
5285 int reason, type, idt_v, idt_index;
5287 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5288 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5289 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5291 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5293 reason = (u32)exit_qualification >> 30;
5294 if (reason == TASK_SWITCH_GATE && idt_v) {
5295 switch (type) {
5296 case INTR_TYPE_NMI_INTR:
5297 vcpu->arch.nmi_injected = false;
5298 vmx_set_nmi_mask(vcpu, true);
5299 break;
5300 case INTR_TYPE_EXT_INTR:
5301 case INTR_TYPE_SOFT_INTR:
5302 kvm_clear_interrupt_queue(vcpu);
5303 break;
5304 case INTR_TYPE_HARD_EXCEPTION:
5305 if (vmx->idt_vectoring_info &
5306 VECTORING_INFO_DELIVER_CODE_MASK) {
5307 has_error_code = true;
5308 error_code =
5309 vmcs_read32(IDT_VECTORING_ERROR_CODE);
5311 /* fall through */
5312 case INTR_TYPE_SOFT_EXCEPTION:
5313 kvm_clear_exception_queue(vcpu);
5314 break;
5315 default:
5316 break;
5319 tss_selector = exit_qualification;
5321 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5322 type != INTR_TYPE_EXT_INTR &&
5323 type != INTR_TYPE_NMI_INTR))
5324 skip_emulated_instruction(vcpu);
5326 if (kvm_task_switch(vcpu, tss_selector,
5327 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5328 has_error_code, error_code) == EMULATE_FAIL) {
5329 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5330 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5331 vcpu->run->internal.ndata = 0;
5332 return 0;
5335 /* clear all local breakpoint enable flags */
5336 vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
5339 * TODO: What about debug traps on tss switch?
5340 * Are we supposed to inject them and update dr6?
5343 return 1;
5346 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5348 unsigned long exit_qualification;
5349 gpa_t gpa;
5350 u32 error_code;
5351 int gla_validity;
5353 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5355 gla_validity = (exit_qualification >> 7) & 0x3;
5356 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
5357 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
5358 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
5359 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
5360 vmcs_readl(GUEST_LINEAR_ADDRESS));
5361 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
5362 (long unsigned int)exit_qualification);
5363 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5364 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
5365 return 0;
5369 * EPT violation happened while executing iret from NMI,
5370 * "blocked by NMI" bit has to be set before next VM entry.
5371 * There are errata that may cause this bit to not be set:
5372 * AAK134, BY25.
5374 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5375 cpu_has_virtual_nmis() &&
5376 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5377 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5379 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5380 trace_kvm_page_fault(gpa, exit_qualification);
5382 /* It is a write fault? */
5383 error_code = exit_qualification & (1U << 1);
5384 /* It is a fetch fault? */
5385 error_code |= (exit_qualification & (1U << 2)) << 2;
5386 /* ept page table is present? */
5387 error_code |= (exit_qualification >> 3) & 0x1;
5389 vcpu->arch.exit_qualification = exit_qualification;
5391 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5394 static u64 ept_rsvd_mask(u64 spte, int level)
5396 int i;
5397 u64 mask = 0;
5399 for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
5400 mask |= (1ULL << i);
5402 if (level > 2)
5403 /* bits 7:3 reserved */
5404 mask |= 0xf8;
5405 else if (level == 2) {
5406 if (spte & (1ULL << 7))
5407 /* 2MB ref, bits 20:12 reserved */
5408 mask |= 0x1ff000;
5409 else
5410 /* bits 6:3 reserved */
5411 mask |= 0x78;
5414 return mask;
5417 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
5418 int level)
5420 printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
5422 /* 010b (write-only) */
5423 WARN_ON((spte & 0x7) == 0x2);
5425 /* 110b (write/execute) */
5426 WARN_ON((spte & 0x7) == 0x6);
5428 /* 100b (execute-only) and value not supported by logical processor */
5429 if (!cpu_has_vmx_ept_execute_only())
5430 WARN_ON((spte & 0x7) == 0x4);
5432 /* not 000b */
5433 if ((spte & 0x7)) {
5434 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
5436 if (rsvd_bits != 0) {
5437 printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
5438 __func__, rsvd_bits);
5439 WARN_ON(1);
5442 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
5443 u64 ept_mem_type = (spte & 0x38) >> 3;
5445 if (ept_mem_type == 2 || ept_mem_type == 3 ||
5446 ept_mem_type == 7) {
5447 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
5448 __func__, ept_mem_type);
5449 WARN_ON(1);
5455 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5457 u64 sptes[4];
5458 int nr_sptes, i, ret;
5459 gpa_t gpa;
5461 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5463 ret = handle_mmio_page_fault_common(vcpu, gpa, true);
5464 if (likely(ret == RET_MMIO_PF_EMULATE))
5465 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
5466 EMULATE_DONE;
5468 if (unlikely(ret == RET_MMIO_PF_INVALID))
5469 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
5471 if (unlikely(ret == RET_MMIO_PF_RETRY))
5472 return 1;
5474 /* It is the real ept misconfig */
5475 printk(KERN_ERR "EPT: Misconfiguration.\n");
5476 printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
5478 nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
5480 for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
5481 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
5483 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5484 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
5486 return 0;
5489 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5491 u32 cpu_based_vm_exec_control;
5493 /* clear pending NMI */
5494 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5495 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
5496 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5497 ++vcpu->stat.nmi_window_exits;
5498 kvm_make_request(KVM_REQ_EVENT, vcpu);
5500 return 1;
5503 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5505 struct vcpu_vmx *vmx = to_vmx(vcpu);
5506 enum emulation_result err = EMULATE_DONE;
5507 int ret = 1;
5508 u32 cpu_exec_ctrl;
5509 bool intr_window_requested;
5510 unsigned count = 130;
5512 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5513 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
5515 while (!guest_state_valid(vcpu) && count-- != 0) {
5516 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5517 return handle_interrupt_window(&vmx->vcpu);
5519 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
5520 return 1;
5522 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
5524 if (err == EMULATE_USER_EXIT) {
5525 ++vcpu->stat.mmio_exits;
5526 ret = 0;
5527 goto out;
5530 if (err != EMULATE_DONE) {
5531 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5532 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5533 vcpu->run->internal.ndata = 0;
5534 return 0;
5537 if (vcpu->arch.halt_request) {
5538 vcpu->arch.halt_request = 0;
5539 ret = kvm_emulate_halt(vcpu);
5540 goto out;
5543 if (signal_pending(current))
5544 goto out;
5545 if (need_resched())
5546 schedule();
5549 vmx->emulation_required = emulation_required(vcpu);
5550 out:
5551 return ret;
5555 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5556 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5558 static int handle_pause(struct kvm_vcpu *vcpu)
5560 skip_emulated_instruction(vcpu);
5561 kvm_vcpu_on_spin(vcpu);
5563 return 1;
5566 static int handle_invalid_op(struct kvm_vcpu *vcpu)
5568 kvm_queue_exception(vcpu, UD_VECTOR);
5569 return 1;
5573 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
5574 * We could reuse a single VMCS for all the L2 guests, but we also want the
5575 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
5576 * allows keeping them loaded on the processor, and in the future will allow
5577 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
5578 * every entry if they never change.
5579 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
5580 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
5582 * The following functions allocate and free a vmcs02 in this pool.
5585 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
5586 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
5588 struct vmcs02_list *item;
5589 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5590 if (item->vmptr == vmx->nested.current_vmptr) {
5591 list_move(&item->list, &vmx->nested.vmcs02_pool);
5592 return &item->vmcs02;
5595 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
5596 /* Recycle the least recently used VMCS. */
5597 item = list_entry(vmx->nested.vmcs02_pool.prev,
5598 struct vmcs02_list, list);
5599 item->vmptr = vmx->nested.current_vmptr;
5600 list_move(&item->list, &vmx->nested.vmcs02_pool);
5601 return &item->vmcs02;
5604 /* Create a new VMCS */
5605 item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
5606 if (!item)
5607 return NULL;
5608 item->vmcs02.vmcs = alloc_vmcs();
5609 if (!item->vmcs02.vmcs) {
5610 kfree(item);
5611 return NULL;
5613 loaded_vmcs_init(&item->vmcs02);
5614 item->vmptr = vmx->nested.current_vmptr;
5615 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
5616 vmx->nested.vmcs02_num++;
5617 return &item->vmcs02;
5620 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
5621 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
5623 struct vmcs02_list *item;
5624 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5625 if (item->vmptr == vmptr) {
5626 free_loaded_vmcs(&item->vmcs02);
5627 list_del(&item->list);
5628 kfree(item);
5629 vmx->nested.vmcs02_num--;
5630 return;
5635 * Free all VMCSs saved for this vcpu, except the one pointed by
5636 * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
5637 * currently used, if running L2), and vmcs01 when running L2.
5639 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
5641 struct vmcs02_list *item, *n;
5642 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
5643 if (vmx->loaded_vmcs != &item->vmcs02)
5644 free_loaded_vmcs(&item->vmcs02);
5645 list_del(&item->list);
5646 kfree(item);
5648 vmx->nested.vmcs02_num = 0;
5650 if (vmx->loaded_vmcs != &vmx->vmcs01)
5651 free_loaded_vmcs(&vmx->vmcs01);
5655 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
5656 * set the success or error code of an emulated VMX instruction, as specified
5657 * by Vol 2B, VMX Instruction Reference, "Conventions".
5659 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
5661 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
5662 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5663 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
5666 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
5668 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5669 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
5670 X86_EFLAGS_SF | X86_EFLAGS_OF))
5671 | X86_EFLAGS_CF);
5674 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
5675 u32 vm_instruction_error)
5677 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
5679 * failValid writes the error number to the current VMCS, which
5680 * can't be done there isn't a current VMCS.
5682 nested_vmx_failInvalid(vcpu);
5683 return;
5685 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5686 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5687 X86_EFLAGS_SF | X86_EFLAGS_OF))
5688 | X86_EFLAGS_ZF);
5689 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
5691 * We don't need to force a shadow sync because
5692 * VM_INSTRUCTION_ERROR is not shadowed
5697 * Emulate the VMXON instruction.
5698 * Currently, we just remember that VMX is active, and do not save or even
5699 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
5700 * do not currently need to store anything in that guest-allocated memory
5701 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
5702 * argument is different from the VMXON pointer (which the spec says they do).
5704 static int handle_vmon(struct kvm_vcpu *vcpu)
5706 struct kvm_segment cs;
5707 struct vcpu_vmx *vmx = to_vmx(vcpu);
5708 struct vmcs *shadow_vmcs;
5709 const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
5710 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
5712 /* The Intel VMX Instruction Reference lists a bunch of bits that
5713 * are prerequisite to running VMXON, most notably cr4.VMXE must be
5714 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
5715 * Otherwise, we should fail with #UD. We test these now:
5717 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
5718 !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
5719 (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
5720 kvm_queue_exception(vcpu, UD_VECTOR);
5721 return 1;
5724 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5725 if (is_long_mode(vcpu) && !cs.l) {
5726 kvm_queue_exception(vcpu, UD_VECTOR);
5727 return 1;
5730 if (vmx_get_cpl(vcpu)) {
5731 kvm_inject_gp(vcpu, 0);
5732 return 1;
5734 if (vmx->nested.vmxon) {
5735 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
5736 skip_emulated_instruction(vcpu);
5737 return 1;
5740 if ((vmx->nested.msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
5741 != VMXON_NEEDED_FEATURES) {
5742 kvm_inject_gp(vcpu, 0);
5743 return 1;
5746 if (enable_shadow_vmcs) {
5747 shadow_vmcs = alloc_vmcs();
5748 if (!shadow_vmcs)
5749 return -ENOMEM;
5750 /* mark vmcs as shadow */
5751 shadow_vmcs->revision_id |= (1u << 31);
5752 /* init shadow vmcs */
5753 vmcs_clear(shadow_vmcs);
5754 vmx->nested.current_shadow_vmcs = shadow_vmcs;
5757 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
5758 vmx->nested.vmcs02_num = 0;
5760 vmx->nested.vmxon = true;
5762 skip_emulated_instruction(vcpu);
5763 nested_vmx_succeed(vcpu);
5764 return 1;
5768 * Intel's VMX Instruction Reference specifies a common set of prerequisites
5769 * for running VMX instructions (except VMXON, whose prerequisites are
5770 * slightly different). It also specifies what exception to inject otherwise.
5772 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
5774 struct kvm_segment cs;
5775 struct vcpu_vmx *vmx = to_vmx(vcpu);
5777 if (!vmx->nested.vmxon) {
5778 kvm_queue_exception(vcpu, UD_VECTOR);
5779 return 0;
5782 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5783 if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
5784 (is_long_mode(vcpu) && !cs.l)) {
5785 kvm_queue_exception(vcpu, UD_VECTOR);
5786 return 0;
5789 if (vmx_get_cpl(vcpu)) {
5790 kvm_inject_gp(vcpu, 0);
5791 return 0;
5794 return 1;
5797 static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
5799 u32 exec_control;
5800 if (enable_shadow_vmcs) {
5801 if (vmx->nested.current_vmcs12 != NULL) {
5802 /* copy to memory all shadowed fields in case
5803 they were modified */
5804 copy_shadow_to_vmcs12(vmx);
5805 vmx->nested.sync_shadow_vmcs = false;
5806 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5807 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
5808 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
5809 vmcs_write64(VMCS_LINK_POINTER, -1ull);
5812 kunmap(vmx->nested.current_vmcs12_page);
5813 nested_release_page(vmx->nested.current_vmcs12_page);
5817 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
5818 * just stops using VMX.
5820 static void free_nested(struct vcpu_vmx *vmx)
5822 if (!vmx->nested.vmxon)
5823 return;
5824 vmx->nested.vmxon = false;
5825 if (vmx->nested.current_vmptr != -1ull) {
5826 nested_release_vmcs12(vmx);
5827 vmx->nested.current_vmptr = -1ull;
5828 vmx->nested.current_vmcs12 = NULL;
5830 if (enable_shadow_vmcs)
5831 free_vmcs(vmx->nested.current_shadow_vmcs);
5832 /* Unpin physical memory we referred to in current vmcs02 */
5833 if (vmx->nested.apic_access_page) {
5834 nested_release_page(vmx->nested.apic_access_page);
5835 vmx->nested.apic_access_page = 0;
5838 nested_free_all_saved_vmcss(vmx);
5841 /* Emulate the VMXOFF instruction */
5842 static int handle_vmoff(struct kvm_vcpu *vcpu)
5844 if (!nested_vmx_check_permission(vcpu))
5845 return 1;
5846 free_nested(to_vmx(vcpu));
5847 skip_emulated_instruction(vcpu);
5848 nested_vmx_succeed(vcpu);
5849 return 1;
5853 * Decode the memory-address operand of a vmx instruction, as recorded on an
5854 * exit caused by such an instruction (run by a guest hypervisor).
5855 * On success, returns 0. When the operand is invalid, returns 1 and throws
5856 * #UD or #GP.
5858 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
5859 unsigned long exit_qualification,
5860 u32 vmx_instruction_info, gva_t *ret)
5863 * According to Vol. 3B, "Information for VM Exits Due to Instruction
5864 * Execution", on an exit, vmx_instruction_info holds most of the
5865 * addressing components of the operand. Only the displacement part
5866 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5867 * For how an actual address is calculated from all these components,
5868 * refer to Vol. 1, "Operand Addressing".
5870 int scaling = vmx_instruction_info & 3;
5871 int addr_size = (vmx_instruction_info >> 7) & 7;
5872 bool is_reg = vmx_instruction_info & (1u << 10);
5873 int seg_reg = (vmx_instruction_info >> 15) & 7;
5874 int index_reg = (vmx_instruction_info >> 18) & 0xf;
5875 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
5876 int base_reg = (vmx_instruction_info >> 23) & 0xf;
5877 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
5879 if (is_reg) {
5880 kvm_queue_exception(vcpu, UD_VECTOR);
5881 return 1;
5884 /* Addr = segment_base + offset */
5885 /* offset = base + [index * scale] + displacement */
5886 *ret = vmx_get_segment_base(vcpu, seg_reg);
5887 if (base_is_valid)
5888 *ret += kvm_register_read(vcpu, base_reg);
5889 if (index_is_valid)
5890 *ret += kvm_register_read(vcpu, index_reg)<<scaling;
5891 *ret += exit_qualification; /* holds the displacement */
5893 if (addr_size == 1) /* 32 bit */
5894 *ret &= 0xffffffff;
5897 * TODO: throw #GP (and return 1) in various cases that the VM*
5898 * instructions require it - e.g., offset beyond segment limit,
5899 * unusable or unreadable/unwritable segment, non-canonical 64-bit
5900 * address, and so on. Currently these are not checked.
5902 return 0;
5905 /* Emulate the VMCLEAR instruction */
5906 static int handle_vmclear(struct kvm_vcpu *vcpu)
5908 struct vcpu_vmx *vmx = to_vmx(vcpu);
5909 gva_t gva;
5910 gpa_t vmptr;
5911 struct vmcs12 *vmcs12;
5912 struct page *page;
5913 struct x86_exception e;
5915 if (!nested_vmx_check_permission(vcpu))
5916 return 1;
5918 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5919 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5920 return 1;
5922 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5923 sizeof(vmptr), &e)) {
5924 kvm_inject_page_fault(vcpu, &e);
5925 return 1;
5928 if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5929 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5930 skip_emulated_instruction(vcpu);
5931 return 1;
5934 if (vmptr == vmx->nested.current_vmptr) {
5935 nested_release_vmcs12(vmx);
5936 vmx->nested.current_vmptr = -1ull;
5937 vmx->nested.current_vmcs12 = NULL;
5940 page = nested_get_page(vcpu, vmptr);
5941 if (page == NULL) {
5943 * For accurate processor emulation, VMCLEAR beyond available
5944 * physical memory should do nothing at all. However, it is
5945 * possible that a nested vmx bug, not a guest hypervisor bug,
5946 * resulted in this case, so let's shut down before doing any
5947 * more damage:
5949 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5950 return 1;
5952 vmcs12 = kmap(page);
5953 vmcs12->launch_state = 0;
5954 kunmap(page);
5955 nested_release_page(page);
5957 nested_free_vmcs02(vmx, vmptr);
5959 skip_emulated_instruction(vcpu);
5960 nested_vmx_succeed(vcpu);
5961 return 1;
5964 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
5966 /* Emulate the VMLAUNCH instruction */
5967 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5969 return nested_vmx_run(vcpu, true);
5972 /* Emulate the VMRESUME instruction */
5973 static int handle_vmresume(struct kvm_vcpu *vcpu)
5976 return nested_vmx_run(vcpu, false);
5979 enum vmcs_field_type {
5980 VMCS_FIELD_TYPE_U16 = 0,
5981 VMCS_FIELD_TYPE_U64 = 1,
5982 VMCS_FIELD_TYPE_U32 = 2,
5983 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
5986 static inline int vmcs_field_type(unsigned long field)
5988 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
5989 return VMCS_FIELD_TYPE_U32;
5990 return (field >> 13) & 0x3 ;
5993 static inline int vmcs_field_readonly(unsigned long field)
5995 return (((field >> 10) & 0x3) == 1);
5999 * Read a vmcs12 field. Since these can have varying lengths and we return
6000 * one type, we chose the biggest type (u64) and zero-extend the return value
6001 * to that size. Note that the caller, handle_vmread, might need to use only
6002 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
6003 * 64-bit fields are to be returned).
6005 static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
6006 unsigned long field, u64 *ret)
6008 short offset = vmcs_field_to_offset(field);
6009 char *p;
6011 if (offset < 0)
6012 return 0;
6014 p = ((char *)(get_vmcs12(vcpu))) + offset;
6016 switch (vmcs_field_type(field)) {
6017 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6018 *ret = *((natural_width *)p);
6019 return 1;
6020 case VMCS_FIELD_TYPE_U16:
6021 *ret = *((u16 *)p);
6022 return 1;
6023 case VMCS_FIELD_TYPE_U32:
6024 *ret = *((u32 *)p);
6025 return 1;
6026 case VMCS_FIELD_TYPE_U64:
6027 *ret = *((u64 *)p);
6028 return 1;
6029 default:
6030 return 0; /* can never happen. */
6035 static inline bool vmcs12_write_any(struct kvm_vcpu *vcpu,
6036 unsigned long field, u64 field_value){
6037 short offset = vmcs_field_to_offset(field);
6038 char *p = ((char *) get_vmcs12(vcpu)) + offset;
6039 if (offset < 0)
6040 return false;
6042 switch (vmcs_field_type(field)) {
6043 case VMCS_FIELD_TYPE_U16:
6044 *(u16 *)p = field_value;
6045 return true;
6046 case VMCS_FIELD_TYPE_U32:
6047 *(u32 *)p = field_value;
6048 return true;
6049 case VMCS_FIELD_TYPE_U64:
6050 *(u64 *)p = field_value;
6051 return true;
6052 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6053 *(natural_width *)p = field_value;
6054 return true;
6055 default:
6056 return false; /* can never happen. */
6061 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
6063 int i;
6064 unsigned long field;
6065 u64 field_value;
6066 struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6067 const unsigned long *fields = shadow_read_write_fields;
6068 const int num_fields = max_shadow_read_write_fields;
6070 vmcs_load(shadow_vmcs);
6072 for (i = 0; i < num_fields; i++) {
6073 field = fields[i];
6074 switch (vmcs_field_type(field)) {
6075 case VMCS_FIELD_TYPE_U16:
6076 field_value = vmcs_read16(field);
6077 break;
6078 case VMCS_FIELD_TYPE_U32:
6079 field_value = vmcs_read32(field);
6080 break;
6081 case VMCS_FIELD_TYPE_U64:
6082 field_value = vmcs_read64(field);
6083 break;
6084 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6085 field_value = vmcs_readl(field);
6086 break;
6088 vmcs12_write_any(&vmx->vcpu, field, field_value);
6091 vmcs_clear(shadow_vmcs);
6092 vmcs_load(vmx->loaded_vmcs->vmcs);
6095 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
6097 const unsigned long *fields[] = {
6098 shadow_read_write_fields,
6099 shadow_read_only_fields
6101 const int max_fields[] = {
6102 max_shadow_read_write_fields,
6103 max_shadow_read_only_fields
6105 int i, q;
6106 unsigned long field;
6107 u64 field_value = 0;
6108 struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6110 vmcs_load(shadow_vmcs);
6112 for (q = 0; q < ARRAY_SIZE(fields); q++) {
6113 for (i = 0; i < max_fields[q]; i++) {
6114 field = fields[q][i];
6115 vmcs12_read_any(&vmx->vcpu, field, &field_value);
6117 switch (vmcs_field_type(field)) {
6118 case VMCS_FIELD_TYPE_U16:
6119 vmcs_write16(field, (u16)field_value);
6120 break;
6121 case VMCS_FIELD_TYPE_U32:
6122 vmcs_write32(field, (u32)field_value);
6123 break;
6124 case VMCS_FIELD_TYPE_U64:
6125 vmcs_write64(field, (u64)field_value);
6126 break;
6127 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6128 vmcs_writel(field, (long)field_value);
6129 break;
6134 vmcs_clear(shadow_vmcs);
6135 vmcs_load(vmx->loaded_vmcs->vmcs);
6139 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
6140 * used before) all generate the same failure when it is missing.
6142 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
6144 struct vcpu_vmx *vmx = to_vmx(vcpu);
6145 if (vmx->nested.current_vmptr == -1ull) {
6146 nested_vmx_failInvalid(vcpu);
6147 skip_emulated_instruction(vcpu);
6148 return 0;
6150 return 1;
6153 static int handle_vmread(struct kvm_vcpu *vcpu)
6155 unsigned long field;
6156 u64 field_value;
6157 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6158 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6159 gva_t gva = 0;
6161 if (!nested_vmx_check_permission(vcpu) ||
6162 !nested_vmx_check_vmcs12(vcpu))
6163 return 1;
6165 /* Decode instruction info and find the field to read */
6166 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6167 /* Read the field, zero-extended to a u64 field_value */
6168 if (!vmcs12_read_any(vcpu, field, &field_value)) {
6169 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6170 skip_emulated_instruction(vcpu);
6171 return 1;
6174 * Now copy part of this value to register or memory, as requested.
6175 * Note that the number of bits actually copied is 32 or 64 depending
6176 * on the guest's mode (32 or 64 bit), not on the given field's length.
6178 if (vmx_instruction_info & (1u << 10)) {
6179 kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
6180 field_value);
6181 } else {
6182 if (get_vmx_mem_address(vcpu, exit_qualification,
6183 vmx_instruction_info, &gva))
6184 return 1;
6185 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
6186 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
6187 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
6190 nested_vmx_succeed(vcpu);
6191 skip_emulated_instruction(vcpu);
6192 return 1;
6196 static int handle_vmwrite(struct kvm_vcpu *vcpu)
6198 unsigned long field;
6199 gva_t gva;
6200 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6201 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6202 /* The value to write might be 32 or 64 bits, depending on L1's long
6203 * mode, and eventually we need to write that into a field of several
6204 * possible lengths. The code below first zero-extends the value to 64
6205 * bit (field_value), and then copies only the approriate number of
6206 * bits into the vmcs12 field.
6208 u64 field_value = 0;
6209 struct x86_exception e;
6211 if (!nested_vmx_check_permission(vcpu) ||
6212 !nested_vmx_check_vmcs12(vcpu))
6213 return 1;
6215 if (vmx_instruction_info & (1u << 10))
6216 field_value = kvm_register_read(vcpu,
6217 (((vmx_instruction_info) >> 3) & 0xf));
6218 else {
6219 if (get_vmx_mem_address(vcpu, exit_qualification,
6220 vmx_instruction_info, &gva))
6221 return 1;
6222 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
6223 &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
6224 kvm_inject_page_fault(vcpu, &e);
6225 return 1;
6230 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6231 if (vmcs_field_readonly(field)) {
6232 nested_vmx_failValid(vcpu,
6233 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
6234 skip_emulated_instruction(vcpu);
6235 return 1;
6238 if (!vmcs12_write_any(vcpu, field, field_value)) {
6239 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6240 skip_emulated_instruction(vcpu);
6241 return 1;
6244 nested_vmx_succeed(vcpu);
6245 skip_emulated_instruction(vcpu);
6246 return 1;
6249 /* Emulate the VMPTRLD instruction */
6250 static int handle_vmptrld(struct kvm_vcpu *vcpu)
6252 struct vcpu_vmx *vmx = to_vmx(vcpu);
6253 gva_t gva;
6254 gpa_t vmptr;
6255 struct x86_exception e;
6256 u32 exec_control;
6258 if (!nested_vmx_check_permission(vcpu))
6259 return 1;
6261 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6262 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
6263 return 1;
6265 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
6266 sizeof(vmptr), &e)) {
6267 kvm_inject_page_fault(vcpu, &e);
6268 return 1;
6271 if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
6272 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
6273 skip_emulated_instruction(vcpu);
6274 return 1;
6277 if (vmx->nested.current_vmptr != vmptr) {
6278 struct vmcs12 *new_vmcs12;
6279 struct page *page;
6280 page = nested_get_page(vcpu, vmptr);
6281 if (page == NULL) {
6282 nested_vmx_failInvalid(vcpu);
6283 skip_emulated_instruction(vcpu);
6284 return 1;
6286 new_vmcs12 = kmap(page);
6287 if (new_vmcs12->revision_id != VMCS12_REVISION) {
6288 kunmap(page);
6289 nested_release_page_clean(page);
6290 nested_vmx_failValid(vcpu,
6291 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
6292 skip_emulated_instruction(vcpu);
6293 return 1;
6295 if (vmx->nested.current_vmptr != -1ull)
6296 nested_release_vmcs12(vmx);
6298 vmx->nested.current_vmptr = vmptr;
6299 vmx->nested.current_vmcs12 = new_vmcs12;
6300 vmx->nested.current_vmcs12_page = page;
6301 if (enable_shadow_vmcs) {
6302 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6303 exec_control |= SECONDARY_EXEC_SHADOW_VMCS;
6304 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6305 vmcs_write64(VMCS_LINK_POINTER,
6306 __pa(vmx->nested.current_shadow_vmcs));
6307 vmx->nested.sync_shadow_vmcs = true;
6311 nested_vmx_succeed(vcpu);
6312 skip_emulated_instruction(vcpu);
6313 return 1;
6316 /* Emulate the VMPTRST instruction */
6317 static int handle_vmptrst(struct kvm_vcpu *vcpu)
6319 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6320 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6321 gva_t vmcs_gva;
6322 struct x86_exception e;
6324 if (!nested_vmx_check_permission(vcpu))
6325 return 1;
6327 if (get_vmx_mem_address(vcpu, exit_qualification,
6328 vmx_instruction_info, &vmcs_gva))
6329 return 1;
6330 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
6331 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
6332 (void *)&to_vmx(vcpu)->nested.current_vmptr,
6333 sizeof(u64), &e)) {
6334 kvm_inject_page_fault(vcpu, &e);
6335 return 1;
6337 nested_vmx_succeed(vcpu);
6338 skip_emulated_instruction(vcpu);
6339 return 1;
6342 /* Emulate the INVEPT instruction */
6343 static int handle_invept(struct kvm_vcpu *vcpu)
6345 u32 vmx_instruction_info, types;
6346 unsigned long type;
6347 gva_t gva;
6348 struct x86_exception e;
6349 struct {
6350 u64 eptp, gpa;
6351 } operand;
6352 u64 eptp_mask = ((1ull << 51) - 1) & PAGE_MASK;
6354 if (!(nested_vmx_secondary_ctls_high & SECONDARY_EXEC_ENABLE_EPT) ||
6355 !(nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
6356 kvm_queue_exception(vcpu, UD_VECTOR);
6357 return 1;
6360 if (!nested_vmx_check_permission(vcpu))
6361 return 1;
6363 if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
6364 kvm_queue_exception(vcpu, UD_VECTOR);
6365 return 1;
6368 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6369 type = kvm_register_read(vcpu, (vmx_instruction_info >> 28) & 0xf);
6371 types = (nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
6373 if (!(types & (1UL << type))) {
6374 nested_vmx_failValid(vcpu,
6375 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6376 skip_emulated_instruction(vcpu);
6377 return 1;
6380 /* According to the Intel VMX instruction reference, the memory
6381 * operand is read even if it isn't needed (e.g., for type==global)
6383 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6384 vmx_instruction_info, &gva))
6385 return 1;
6386 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
6387 sizeof(operand), &e)) {
6388 kvm_inject_page_fault(vcpu, &e);
6389 return 1;
6392 switch (type) {
6393 case VMX_EPT_EXTENT_CONTEXT:
6394 if ((operand.eptp & eptp_mask) !=
6395 (nested_ept_get_cr3(vcpu) & eptp_mask))
6396 break;
6397 case VMX_EPT_EXTENT_GLOBAL:
6398 kvm_mmu_sync_roots(vcpu);
6399 kvm_mmu_flush_tlb(vcpu);
6400 nested_vmx_succeed(vcpu);
6401 break;
6402 default:
6403 BUG_ON(1);
6404 break;
6407 skip_emulated_instruction(vcpu);
6408 return 1;
6411 static int handle_invvpid(struct kvm_vcpu *vcpu)
6413 kvm_queue_exception(vcpu, UD_VECTOR);
6414 return 1;
6418 * The exit handlers return 1 if the exit was handled fully and guest execution
6419 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
6420 * to be done to userspace and return 0.
6422 static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6423 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
6424 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
6425 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
6426 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
6427 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
6428 [EXIT_REASON_CR_ACCESS] = handle_cr,
6429 [EXIT_REASON_DR_ACCESS] = handle_dr,
6430 [EXIT_REASON_CPUID] = handle_cpuid,
6431 [EXIT_REASON_MSR_READ] = handle_rdmsr,
6432 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
6433 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
6434 [EXIT_REASON_HLT] = handle_halt,
6435 [EXIT_REASON_INVD] = handle_invd,
6436 [EXIT_REASON_INVLPG] = handle_invlpg,
6437 [EXIT_REASON_RDPMC] = handle_rdpmc,
6438 [EXIT_REASON_VMCALL] = handle_vmcall,
6439 [EXIT_REASON_VMCLEAR] = handle_vmclear,
6440 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
6441 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
6442 [EXIT_REASON_VMPTRST] = handle_vmptrst,
6443 [EXIT_REASON_VMREAD] = handle_vmread,
6444 [EXIT_REASON_VMRESUME] = handle_vmresume,
6445 [EXIT_REASON_VMWRITE] = handle_vmwrite,
6446 [EXIT_REASON_VMOFF] = handle_vmoff,
6447 [EXIT_REASON_VMON] = handle_vmon,
6448 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
6449 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
6450 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
6451 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
6452 [EXIT_REASON_WBINVD] = handle_wbinvd,
6453 [EXIT_REASON_XSETBV] = handle_xsetbv,
6454 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
6455 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
6456 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
6457 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
6458 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
6459 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
6460 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
6461 [EXIT_REASON_INVEPT] = handle_invept,
6462 [EXIT_REASON_INVVPID] = handle_invvpid,
6465 static const int kvm_vmx_max_exit_handlers =
6466 ARRAY_SIZE(kvm_vmx_exit_handlers);
6468 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
6469 struct vmcs12 *vmcs12)
6471 unsigned long exit_qualification;
6472 gpa_t bitmap, last_bitmap;
6473 unsigned int port;
6474 int size;
6475 u8 b;
6477 if (nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING))
6478 return 1;
6480 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
6481 return 0;
6483 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6485 port = exit_qualification >> 16;
6486 size = (exit_qualification & 7) + 1;
6488 last_bitmap = (gpa_t)-1;
6489 b = -1;
6491 while (size > 0) {
6492 if (port < 0x8000)
6493 bitmap = vmcs12->io_bitmap_a;
6494 else if (port < 0x10000)
6495 bitmap = vmcs12->io_bitmap_b;
6496 else
6497 return 1;
6498 bitmap += (port & 0x7fff) / 8;
6500 if (last_bitmap != bitmap)
6501 if (kvm_read_guest(vcpu->kvm, bitmap, &b, 1))
6502 return 1;
6503 if (b & (1 << (port & 7)))
6504 return 1;
6506 port++;
6507 size--;
6508 last_bitmap = bitmap;
6511 return 0;
6515 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
6516 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
6517 * disinterest in the current event (read or write a specific MSR) by using an
6518 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
6520 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
6521 struct vmcs12 *vmcs12, u32 exit_reason)
6523 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
6524 gpa_t bitmap;
6526 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
6527 return 1;
6530 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
6531 * for the four combinations of read/write and low/high MSR numbers.
6532 * First we need to figure out which of the four to use:
6534 bitmap = vmcs12->msr_bitmap;
6535 if (exit_reason == EXIT_REASON_MSR_WRITE)
6536 bitmap += 2048;
6537 if (msr_index >= 0xc0000000) {
6538 msr_index -= 0xc0000000;
6539 bitmap += 1024;
6542 /* Then read the msr_index'th bit from this bitmap: */
6543 if (msr_index < 1024*8) {
6544 unsigned char b;
6545 if (kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1))
6546 return 1;
6547 return 1 & (b >> (msr_index & 7));
6548 } else
6549 return 1; /* let L1 handle the wrong parameter */
6553 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
6554 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
6555 * intercept (via guest_host_mask etc.) the current event.
6557 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
6558 struct vmcs12 *vmcs12)
6560 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6561 int cr = exit_qualification & 15;
6562 int reg = (exit_qualification >> 8) & 15;
6563 unsigned long val = kvm_register_read(vcpu, reg);
6565 switch ((exit_qualification >> 4) & 3) {
6566 case 0: /* mov to cr */
6567 switch (cr) {
6568 case 0:
6569 if (vmcs12->cr0_guest_host_mask &
6570 (val ^ vmcs12->cr0_read_shadow))
6571 return 1;
6572 break;
6573 case 3:
6574 if ((vmcs12->cr3_target_count >= 1 &&
6575 vmcs12->cr3_target_value0 == val) ||
6576 (vmcs12->cr3_target_count >= 2 &&
6577 vmcs12->cr3_target_value1 == val) ||
6578 (vmcs12->cr3_target_count >= 3 &&
6579 vmcs12->cr3_target_value2 == val) ||
6580 (vmcs12->cr3_target_count >= 4 &&
6581 vmcs12->cr3_target_value3 == val))
6582 return 0;
6583 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
6584 return 1;
6585 break;
6586 case 4:
6587 if (vmcs12->cr4_guest_host_mask &
6588 (vmcs12->cr4_read_shadow ^ val))
6589 return 1;
6590 break;
6591 case 8:
6592 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
6593 return 1;
6594 break;
6596 break;
6597 case 2: /* clts */
6598 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
6599 (vmcs12->cr0_read_shadow & X86_CR0_TS))
6600 return 1;
6601 break;
6602 case 1: /* mov from cr */
6603 switch (cr) {
6604 case 3:
6605 if (vmcs12->cpu_based_vm_exec_control &
6606 CPU_BASED_CR3_STORE_EXITING)
6607 return 1;
6608 break;
6609 case 8:
6610 if (vmcs12->cpu_based_vm_exec_control &
6611 CPU_BASED_CR8_STORE_EXITING)
6612 return 1;
6613 break;
6615 break;
6616 case 3: /* lmsw */
6618 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
6619 * cr0. Other attempted changes are ignored, with no exit.
6621 if (vmcs12->cr0_guest_host_mask & 0xe &
6622 (val ^ vmcs12->cr0_read_shadow))
6623 return 1;
6624 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
6625 !(vmcs12->cr0_read_shadow & 0x1) &&
6626 (val & 0x1))
6627 return 1;
6628 break;
6630 return 0;
6634 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
6635 * should handle it ourselves in L0 (and then continue L2). Only call this
6636 * when in is_guest_mode (L2).
6638 static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
6640 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6641 struct vcpu_vmx *vmx = to_vmx(vcpu);
6642 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6643 u32 exit_reason = vmx->exit_reason;
6645 if (vmx->nested.nested_run_pending)
6646 return 0;
6648 if (unlikely(vmx->fail)) {
6649 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
6650 vmcs_read32(VM_INSTRUCTION_ERROR));
6651 return 1;
6654 switch (exit_reason) {
6655 case EXIT_REASON_EXCEPTION_NMI:
6656 if (!is_exception(intr_info))
6657 return 0;
6658 else if (is_page_fault(intr_info))
6659 return enable_ept;
6660 return vmcs12->exception_bitmap &
6661 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
6662 case EXIT_REASON_EXTERNAL_INTERRUPT:
6663 return 0;
6664 case EXIT_REASON_TRIPLE_FAULT:
6665 return 1;
6666 case EXIT_REASON_PENDING_INTERRUPT:
6667 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
6668 case EXIT_REASON_NMI_WINDOW:
6669 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
6670 case EXIT_REASON_TASK_SWITCH:
6671 return 1;
6672 case EXIT_REASON_CPUID:
6673 return 1;
6674 case EXIT_REASON_HLT:
6675 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
6676 case EXIT_REASON_INVD:
6677 return 1;
6678 case EXIT_REASON_INVLPG:
6679 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6680 case EXIT_REASON_RDPMC:
6681 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
6682 case EXIT_REASON_RDTSC:
6683 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
6684 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
6685 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
6686 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
6687 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
6688 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
6689 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
6691 * VMX instructions trap unconditionally. This allows L1 to
6692 * emulate them for its L2 guest, i.e., allows 3-level nesting!
6694 return 1;
6695 case EXIT_REASON_CR_ACCESS:
6696 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
6697 case EXIT_REASON_DR_ACCESS:
6698 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
6699 case EXIT_REASON_IO_INSTRUCTION:
6700 return nested_vmx_exit_handled_io(vcpu, vmcs12);
6701 case EXIT_REASON_MSR_READ:
6702 case EXIT_REASON_MSR_WRITE:
6703 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
6704 case EXIT_REASON_INVALID_STATE:
6705 return 1;
6706 case EXIT_REASON_MWAIT_INSTRUCTION:
6707 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
6708 case EXIT_REASON_MONITOR_INSTRUCTION:
6709 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
6710 case EXIT_REASON_PAUSE_INSTRUCTION:
6711 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
6712 nested_cpu_has2(vmcs12,
6713 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
6714 case EXIT_REASON_MCE_DURING_VMENTRY:
6715 return 0;
6716 case EXIT_REASON_TPR_BELOW_THRESHOLD:
6717 return 1;
6718 case EXIT_REASON_APIC_ACCESS:
6719 return nested_cpu_has2(vmcs12,
6720 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
6721 case EXIT_REASON_EPT_VIOLATION:
6723 * L0 always deals with the EPT violation. If nested EPT is
6724 * used, and the nested mmu code discovers that the address is
6725 * missing in the guest EPT table (EPT12), the EPT violation
6726 * will be injected with nested_ept_inject_page_fault()
6728 return 0;
6729 case EXIT_REASON_EPT_MISCONFIG:
6731 * L2 never uses directly L1's EPT, but rather L0's own EPT
6732 * table (shadow on EPT) or a merged EPT table that L0 built
6733 * (EPT on EPT). So any problems with the structure of the
6734 * table is L0's fault.
6736 return 0;
6737 case EXIT_REASON_PREEMPTION_TIMER:
6738 return vmcs12->pin_based_vm_exec_control &
6739 PIN_BASED_VMX_PREEMPTION_TIMER;
6740 case EXIT_REASON_WBINVD:
6741 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
6742 case EXIT_REASON_XSETBV:
6743 return 1;
6744 default:
6745 return 1;
6749 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
6751 *info1 = vmcs_readl(EXIT_QUALIFICATION);
6752 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
6756 * The guest has exited. See if we can fix it or if we need userspace
6757 * assistance.
6759 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
6761 struct vcpu_vmx *vmx = to_vmx(vcpu);
6762 u32 exit_reason = vmx->exit_reason;
6763 u32 vectoring_info = vmx->idt_vectoring_info;
6765 /* If guest state is invalid, start emulating */
6766 if (vmx->emulation_required)
6767 return handle_invalid_guest_state(vcpu);
6770 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
6771 * we did not inject a still-pending event to L1 now because of
6772 * nested_run_pending, we need to re-enable this bit.
6774 if (vmx->nested.nested_run_pending)
6775 kvm_make_request(KVM_REQ_EVENT, vcpu);
6777 if (!is_guest_mode(vcpu) && (exit_reason == EXIT_REASON_VMLAUNCH ||
6778 exit_reason == EXIT_REASON_VMRESUME))
6779 vmx->nested.nested_run_pending = 1;
6780 else
6781 vmx->nested.nested_run_pending = 0;
6783 if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
6784 nested_vmx_vmexit(vcpu);
6785 return 1;
6788 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
6789 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6790 vcpu->run->fail_entry.hardware_entry_failure_reason
6791 = exit_reason;
6792 return 0;
6795 if (unlikely(vmx->fail)) {
6796 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6797 vcpu->run->fail_entry.hardware_entry_failure_reason
6798 = vmcs_read32(VM_INSTRUCTION_ERROR);
6799 return 0;
6803 * Note:
6804 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6805 * delivery event since it indicates guest is accessing MMIO.
6806 * The vm-exit can be triggered again after return to guest that
6807 * will cause infinite loop.
6809 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6810 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
6811 exit_reason != EXIT_REASON_EPT_VIOLATION &&
6812 exit_reason != EXIT_REASON_TASK_SWITCH)) {
6813 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6814 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6815 vcpu->run->internal.ndata = 2;
6816 vcpu->run->internal.data[0] = vectoring_info;
6817 vcpu->run->internal.data[1] = exit_reason;
6818 return 0;
6821 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
6822 !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
6823 get_vmcs12(vcpu))))) {
6824 if (vmx_interrupt_allowed(vcpu)) {
6825 vmx->soft_vnmi_blocked = 0;
6826 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
6827 vcpu->arch.nmi_pending) {
6829 * This CPU don't support us in finding the end of an
6830 * NMI-blocked window if the guest runs with IRQs
6831 * disabled. So we pull the trigger after 1 s of
6832 * futile waiting, but inform the user about this.
6834 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6835 "state on VCPU %d after 1 s timeout\n",
6836 __func__, vcpu->vcpu_id);
6837 vmx->soft_vnmi_blocked = 0;
6841 if (exit_reason < kvm_vmx_max_exit_handlers
6842 && kvm_vmx_exit_handlers[exit_reason])
6843 return kvm_vmx_exit_handlers[exit_reason](vcpu);
6844 else {
6845 WARN_ONCE(1, "vmx: unexpected exit reason 0x%x\n", exit_reason);
6846 kvm_queue_exception(vcpu, UD_VECTOR);
6847 return 1;
6851 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6853 if (irr == -1 || tpr < irr) {
6854 vmcs_write32(TPR_THRESHOLD, 0);
6855 return;
6858 vmcs_write32(TPR_THRESHOLD, irr);
6861 static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
6863 u32 sec_exec_control;
6865 /* Postpone execution until vmcs01 is the current VMCS. */
6866 if (is_guest_mode(vcpu)) {
6867 to_vmx(vcpu)->nested.change_vmcs01_virtual_x2apic_mode = true;
6868 return;
6872 * There is not point to enable virtualize x2apic without enable
6873 * apicv
6875 if (!cpu_has_vmx_virtualize_x2apic_mode() ||
6876 !vmx_vm_has_apicv(vcpu->kvm))
6877 return;
6879 if (!vm_need_tpr_shadow(vcpu->kvm))
6880 return;
6882 sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6884 if (set) {
6885 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6886 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6887 } else {
6888 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6889 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6891 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
6893 vmx_set_msr_bitmap(vcpu);
6896 static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
6898 u16 status;
6899 u8 old;
6901 if (!vmx_vm_has_apicv(kvm))
6902 return;
6904 if (isr == -1)
6905 isr = 0;
6907 status = vmcs_read16(GUEST_INTR_STATUS);
6908 old = status >> 8;
6909 if (isr != old) {
6910 status &= 0xff;
6911 status |= isr << 8;
6912 vmcs_write16(GUEST_INTR_STATUS, status);
6916 static void vmx_set_rvi(int vector)
6918 u16 status;
6919 u8 old;
6921 status = vmcs_read16(GUEST_INTR_STATUS);
6922 old = (u8)status & 0xff;
6923 if ((u8)vector != old) {
6924 status &= ~0xff;
6925 status |= (u8)vector;
6926 vmcs_write16(GUEST_INTR_STATUS, status);
6930 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6932 if (max_irr == -1)
6933 return;
6935 vmx_set_rvi(max_irr);
6938 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6940 if (!vmx_vm_has_apicv(vcpu->kvm))
6941 return;
6943 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6944 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6945 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6946 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6949 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
6951 u32 exit_intr_info;
6953 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
6954 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
6955 return;
6957 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6958 exit_intr_info = vmx->exit_intr_info;
6960 /* Handle machine checks before interrupts are enabled */
6961 if (is_machine_check(exit_intr_info))
6962 kvm_machine_check();
6964 /* We need to handle NMIs before interrupts are enabled */
6965 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
6966 (exit_intr_info & INTR_INFO_VALID_MASK)) {
6967 kvm_before_handle_nmi(&vmx->vcpu);
6968 asm("int $2");
6969 kvm_after_handle_nmi(&vmx->vcpu);
6973 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
6975 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6978 * If external interrupt exists, IF bit is set in rflags/eflags on the
6979 * interrupt stack frame, and interrupt will be enabled on a return
6980 * from interrupt handler.
6982 if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
6983 == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
6984 unsigned int vector;
6985 unsigned long entry;
6986 gate_desc *desc;
6987 struct vcpu_vmx *vmx = to_vmx(vcpu);
6988 #ifdef CONFIG_X86_64
6989 unsigned long tmp;
6990 #endif
6992 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6993 desc = (gate_desc *)vmx->host_idt_base + vector;
6994 entry = gate_offset(*desc);
6995 asm volatile(
6996 #ifdef CONFIG_X86_64
6997 "mov %%" _ASM_SP ", %[sp]\n\t"
6998 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
6999 "push $%c[ss]\n\t"
7000 "push %[sp]\n\t"
7001 #endif
7002 "pushf\n\t"
7003 "orl $0x200, (%%" _ASM_SP ")\n\t"
7004 __ASM_SIZE(push) " $%c[cs]\n\t"
7005 "call *%[entry]\n\t"
7007 #ifdef CONFIG_X86_64
7008 [sp]"=&r"(tmp)
7009 #endif
7011 [entry]"r"(entry),
7012 [ss]"i"(__KERNEL_DS),
7013 [cs]"i"(__KERNEL_CS)
7015 } else
7016 local_irq_enable();
7019 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
7021 u32 exit_intr_info;
7022 bool unblock_nmi;
7023 u8 vector;
7024 bool idtv_info_valid;
7026 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7028 if (cpu_has_virtual_nmis()) {
7029 if (vmx->nmi_known_unmasked)
7030 return;
7032 * Can't use vmx->exit_intr_info since we're not sure what
7033 * the exit reason is.
7035 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7036 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
7037 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7039 * SDM 3: 27.7.1.2 (September 2008)
7040 * Re-set bit "block by NMI" before VM entry if vmexit caused by
7041 * a guest IRET fault.
7042 * SDM 3: 23.2.2 (September 2008)
7043 * Bit 12 is undefined in any of the following cases:
7044 * If the VM exit sets the valid bit in the IDT-vectoring
7045 * information field.
7046 * If the VM exit is due to a double fault.
7048 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
7049 vector != DF_VECTOR && !idtv_info_valid)
7050 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7051 GUEST_INTR_STATE_NMI);
7052 else
7053 vmx->nmi_known_unmasked =
7054 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
7055 & GUEST_INTR_STATE_NMI);
7056 } else if (unlikely(vmx->soft_vnmi_blocked))
7057 vmx->vnmi_blocked_time +=
7058 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
7061 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
7062 u32 idt_vectoring_info,
7063 int instr_len_field,
7064 int error_code_field)
7066 u8 vector;
7067 int type;
7068 bool idtv_info_valid;
7070 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7072 vcpu->arch.nmi_injected = false;
7073 kvm_clear_exception_queue(vcpu);
7074 kvm_clear_interrupt_queue(vcpu);
7076 if (!idtv_info_valid)
7077 return;
7079 kvm_make_request(KVM_REQ_EVENT, vcpu);
7081 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
7082 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
7084 switch (type) {
7085 case INTR_TYPE_NMI_INTR:
7086 vcpu->arch.nmi_injected = true;
7088 * SDM 3: 27.7.1.2 (September 2008)
7089 * Clear bit "block by NMI" before VM entry if a NMI
7090 * delivery faulted.
7092 vmx_set_nmi_mask(vcpu, false);
7093 break;
7094 case INTR_TYPE_SOFT_EXCEPTION:
7095 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7096 /* fall through */
7097 case INTR_TYPE_HARD_EXCEPTION:
7098 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
7099 u32 err = vmcs_read32(error_code_field);
7100 kvm_queue_exception_e(vcpu, vector, err);
7101 } else
7102 kvm_queue_exception(vcpu, vector);
7103 break;
7104 case INTR_TYPE_SOFT_INTR:
7105 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7106 /* fall through */
7107 case INTR_TYPE_EXT_INTR:
7108 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
7109 break;
7110 default:
7111 break;
7115 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
7117 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
7118 VM_EXIT_INSTRUCTION_LEN,
7119 IDT_VECTORING_ERROR_CODE);
7122 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
7124 __vmx_complete_interrupts(vcpu,
7125 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7126 VM_ENTRY_INSTRUCTION_LEN,
7127 VM_ENTRY_EXCEPTION_ERROR_CODE);
7129 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
7132 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
7134 int i, nr_msrs;
7135 struct perf_guest_switch_msr *msrs;
7137 msrs = perf_guest_get_msrs(&nr_msrs);
7139 if (!msrs)
7140 return;
7142 for (i = 0; i < nr_msrs; i++)
7143 if (msrs[i].host == msrs[i].guest)
7144 clear_atomic_switch_msr(vmx, msrs[i].msr);
7145 else
7146 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
7147 msrs[i].host);
7150 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
7152 struct vcpu_vmx *vmx = to_vmx(vcpu);
7153 unsigned long debugctlmsr, cr4;
7155 /* Record the guest's net vcpu time for enforced NMI injections. */
7156 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
7157 vmx->entry_time = ktime_get();
7159 /* Don't enter VMX if guest state is invalid, let the exit handler
7160 start emulation until we arrive back to a valid state */
7161 if (vmx->emulation_required)
7162 return;
7164 if (vmx->nested.sync_shadow_vmcs) {
7165 copy_vmcs12_to_shadow(vmx);
7166 vmx->nested.sync_shadow_vmcs = false;
7169 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
7170 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7171 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
7172 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7174 cr4 = read_cr4();
7175 if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
7176 vmcs_writel(HOST_CR4, cr4);
7177 vmx->host_state.vmcs_host_cr4 = cr4;
7180 /* When single-stepping over STI and MOV SS, we must clear the
7181 * corresponding interruptibility bits in the guest state. Otherwise
7182 * vmentry fails as it then expects bit 14 (BS) in pending debug
7183 * exceptions being set, but that's not correct for the guest debugging
7184 * case. */
7185 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7186 vmx_set_interrupt_shadow(vcpu, 0);
7188 atomic_switch_perf_msrs(vmx);
7189 debugctlmsr = get_debugctlmsr();
7191 vmx->__launched = vmx->loaded_vmcs->launched;
7192 asm(
7193 /* Store host registers */
7194 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
7195 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
7196 "push %%" _ASM_CX " \n\t"
7197 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
7198 "je 1f \n\t"
7199 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
7200 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
7201 "1: \n\t"
7202 /* Reload cr2 if changed */
7203 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
7204 "mov %%cr2, %%" _ASM_DX " \n\t"
7205 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
7206 "je 2f \n\t"
7207 "mov %%" _ASM_AX", %%cr2 \n\t"
7208 "2: \n\t"
7209 /* Check if vmlaunch of vmresume is needed */
7210 "cmpl $0, %c[launched](%0) \n\t"
7211 /* Load guest registers. Don't clobber flags. */
7212 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
7213 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
7214 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
7215 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
7216 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
7217 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
7218 #ifdef CONFIG_X86_64
7219 "mov %c[r8](%0), %%r8 \n\t"
7220 "mov %c[r9](%0), %%r9 \n\t"
7221 "mov %c[r10](%0), %%r10 \n\t"
7222 "mov %c[r11](%0), %%r11 \n\t"
7223 "mov %c[r12](%0), %%r12 \n\t"
7224 "mov %c[r13](%0), %%r13 \n\t"
7225 "mov %c[r14](%0), %%r14 \n\t"
7226 "mov %c[r15](%0), %%r15 \n\t"
7227 #endif
7228 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
7230 /* Enter guest mode */
7231 "jne 1f \n\t"
7232 __ex(ASM_VMX_VMLAUNCH) "\n\t"
7233 "jmp 2f \n\t"
7234 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
7235 "2: "
7236 /* Save guest registers, load host registers, keep flags */
7237 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
7238 "pop %0 \n\t"
7239 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
7240 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
7241 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
7242 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
7243 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
7244 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
7245 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
7246 #ifdef CONFIG_X86_64
7247 "mov %%r8, %c[r8](%0) \n\t"
7248 "mov %%r9, %c[r9](%0) \n\t"
7249 "mov %%r10, %c[r10](%0) \n\t"
7250 "mov %%r11, %c[r11](%0) \n\t"
7251 "mov %%r12, %c[r12](%0) \n\t"
7252 "mov %%r13, %c[r13](%0) \n\t"
7253 "mov %%r14, %c[r14](%0) \n\t"
7254 "mov %%r15, %c[r15](%0) \n\t"
7255 #endif
7256 "mov %%cr2, %%" _ASM_AX " \n\t"
7257 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
7259 "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
7260 "setbe %c[fail](%0) \n\t"
7261 ".pushsection .rodata \n\t"
7262 ".global vmx_return \n\t"
7263 "vmx_return: " _ASM_PTR " 2b \n\t"
7264 ".popsection"
7265 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
7266 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
7267 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
7268 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
7269 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
7270 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
7271 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
7272 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
7273 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
7274 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
7275 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
7276 #ifdef CONFIG_X86_64
7277 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
7278 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
7279 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
7280 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
7281 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
7282 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
7283 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
7284 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
7285 #endif
7286 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
7287 [wordsize]"i"(sizeof(ulong))
7288 : "cc", "memory"
7289 #ifdef CONFIG_X86_64
7290 , "rax", "rbx", "rdi", "rsi"
7291 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
7292 #else
7293 , "eax", "ebx", "edi", "esi"
7294 #endif
7297 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7298 if (debugctlmsr)
7299 update_debugctlmsr(debugctlmsr);
7301 #ifndef CONFIG_X86_64
7303 * The sysexit path does not restore ds/es, so we must set them to
7304 * a reasonable value ourselves.
7306 * We can't defer this to vmx_load_host_state() since that function
7307 * may be executed in interrupt context, which saves and restore segments
7308 * around it, nullifying its effect.
7310 loadsegment(ds, __USER_DS);
7311 loadsegment(es, __USER_DS);
7312 #endif
7314 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
7315 | (1 << VCPU_EXREG_RFLAGS)
7316 | (1 << VCPU_EXREG_CPL)
7317 | (1 << VCPU_EXREG_PDPTR)
7318 | (1 << VCPU_EXREG_SEGMENTS)
7319 | (1 << VCPU_EXREG_CR3));
7320 vcpu->arch.regs_dirty = 0;
7322 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7324 vmx->loaded_vmcs->launched = 1;
7326 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
7327 trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
7329 vmx_complete_atomic_exit(vmx);
7330 vmx_recover_nmi_blocking(vmx);
7331 vmx_complete_interrupts(vmx);
7334 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
7336 struct vcpu_vmx *vmx = to_vmx(vcpu);
7338 free_vpid(vmx);
7339 free_loaded_vmcs(vmx->loaded_vmcs);
7340 free_nested(vmx);
7341 kfree(vmx->guest_msrs);
7342 kvm_vcpu_uninit(vcpu);
7343 kmem_cache_free(kvm_vcpu_cache, vmx);
7346 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
7348 int err;
7349 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
7350 int cpu;
7352 if (!vmx)
7353 return ERR_PTR(-ENOMEM);
7355 allocate_vpid(vmx);
7357 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
7358 if (err)
7359 goto free_vcpu;
7361 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
7362 err = -ENOMEM;
7363 if (!vmx->guest_msrs) {
7364 goto uninit_vcpu;
7367 vmx->loaded_vmcs = &vmx->vmcs01;
7368 vmx->loaded_vmcs->vmcs = alloc_vmcs();
7369 if (!vmx->loaded_vmcs->vmcs)
7370 goto free_msrs;
7371 if (!vmm_exclusive)
7372 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
7373 loaded_vmcs_init(vmx->loaded_vmcs);
7374 if (!vmm_exclusive)
7375 kvm_cpu_vmxoff();
7377 cpu = get_cpu();
7378 vmx_vcpu_load(&vmx->vcpu, cpu);
7379 vmx->vcpu.cpu = cpu;
7380 err = vmx_vcpu_setup(vmx);
7381 vmx_vcpu_put(&vmx->vcpu);
7382 put_cpu();
7383 if (err)
7384 goto free_vmcs;
7385 if (vm_need_virtualize_apic_accesses(kvm)) {
7386 err = alloc_apic_access_page(kvm);
7387 if (err)
7388 goto free_vmcs;
7391 if (enable_ept) {
7392 if (!kvm->arch.ept_identity_map_addr)
7393 kvm->arch.ept_identity_map_addr =
7394 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
7395 err = -ENOMEM;
7396 if (alloc_identity_pagetable(kvm) != 0)
7397 goto free_vmcs;
7398 if (!init_rmode_identity_map(kvm))
7399 goto free_vmcs;
7402 vmx->nested.current_vmptr = -1ull;
7403 vmx->nested.current_vmcs12 = NULL;
7405 return &vmx->vcpu;
7407 free_vmcs:
7408 free_loaded_vmcs(vmx->loaded_vmcs);
7409 free_msrs:
7410 kfree(vmx->guest_msrs);
7411 uninit_vcpu:
7412 kvm_vcpu_uninit(&vmx->vcpu);
7413 free_vcpu:
7414 free_vpid(vmx);
7415 kmem_cache_free(kvm_vcpu_cache, vmx);
7416 return ERR_PTR(err);
7419 static void __init vmx_check_processor_compat(void *rtn)
7421 struct vmcs_config vmcs_conf;
7423 *(int *)rtn = 0;
7424 if (setup_vmcs_config(&vmcs_conf) < 0)
7425 *(int *)rtn = -EIO;
7426 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
7427 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
7428 smp_processor_id());
7429 *(int *)rtn = -EIO;
7433 static int get_ept_level(void)
7435 return VMX_EPT_DEFAULT_GAW + 1;
7438 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7440 u64 ret;
7442 /* For VT-d and EPT combination
7443 * 1. MMIO: always map as UC
7444 * 2. EPT with VT-d:
7445 * a. VT-d without snooping control feature: can't guarantee the
7446 * result, try to trust guest.
7447 * b. VT-d with snooping control feature: snooping control feature of
7448 * VT-d engine can guarantee the cache correctness. Just set it
7449 * to WB to keep consistent with host. So the same as item 3.
7450 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
7451 * consistent with host MTRR
7453 if (is_mmio)
7454 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7455 else if (vcpu->kvm->arch.iommu_domain &&
7456 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
7457 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
7458 VMX_EPT_MT_EPTE_SHIFT;
7459 else
7460 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
7461 | VMX_EPT_IPAT_BIT;
7463 return ret;
7466 static int vmx_get_lpage_level(void)
7468 if (enable_ept && !cpu_has_vmx_ept_1g_page())
7469 return PT_DIRECTORY_LEVEL;
7470 else
7471 /* For shadow and EPT supported 1GB page */
7472 return PT_PDPE_LEVEL;
7475 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
7477 struct kvm_cpuid_entry2 *best;
7478 struct vcpu_vmx *vmx = to_vmx(vcpu);
7479 u32 exec_control;
7481 vmx->rdtscp_enabled = false;
7482 if (vmx_rdtscp_supported()) {
7483 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7484 if (exec_control & SECONDARY_EXEC_RDTSCP) {
7485 best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
7486 if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
7487 vmx->rdtscp_enabled = true;
7488 else {
7489 exec_control &= ~SECONDARY_EXEC_RDTSCP;
7490 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7491 exec_control);
7496 /* Exposing INVPCID only when PCID is exposed */
7497 best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7498 if (vmx_invpcid_supported() &&
7499 best && (best->ebx & bit(X86_FEATURE_INVPCID)) &&
7500 guest_cpuid_has_pcid(vcpu)) {
7501 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7502 exec_control |= SECONDARY_EXEC_ENABLE_INVPCID;
7503 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7504 exec_control);
7505 } else {
7506 if (cpu_has_secondary_exec_ctrls()) {
7507 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7508 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
7509 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7510 exec_control);
7512 if (best)
7513 best->ebx &= ~bit(X86_FEATURE_INVPCID);
7517 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
7519 if (func == 1 && nested)
7520 entry->ecx |= bit(X86_FEATURE_VMX);
7523 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
7524 struct x86_exception *fault)
7526 struct vmcs12 *vmcs12;
7527 nested_vmx_vmexit(vcpu);
7528 vmcs12 = get_vmcs12(vcpu);
7530 if (fault->error_code & PFERR_RSVD_MASK)
7531 vmcs12->vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
7532 else
7533 vmcs12->vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
7534 vmcs12->exit_qualification = vcpu->arch.exit_qualification;
7535 vmcs12->guest_physical_address = fault->address;
7538 /* Callbacks for nested_ept_init_mmu_context: */
7540 static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
7542 /* return the page table to be shadowed - in our case, EPT12 */
7543 return get_vmcs12(vcpu)->ept_pointer;
7546 static int nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
7548 int r = kvm_init_shadow_ept_mmu(vcpu, &vcpu->arch.mmu,
7549 nested_vmx_ept_caps & VMX_EPT_EXECUTE_ONLY_BIT);
7551 vcpu->arch.mmu.set_cr3 = vmx_set_cr3;
7552 vcpu->arch.mmu.get_cr3 = nested_ept_get_cr3;
7553 vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
7555 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
7557 return r;
7560 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
7562 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
7566 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
7567 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
7568 * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
7569 * guest in a way that will both be appropriate to L1's requests, and our
7570 * needs. In addition to modifying the active vmcs (which is vmcs02), this
7571 * function also has additional necessary side-effects, like setting various
7572 * vcpu->arch fields.
7574 static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7576 struct vcpu_vmx *vmx = to_vmx(vcpu);
7577 u32 exec_control;
7579 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
7580 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
7581 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
7582 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
7583 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
7584 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
7585 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
7586 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
7587 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
7588 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
7589 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
7590 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
7591 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
7592 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
7593 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
7594 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
7595 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
7596 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
7597 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
7598 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
7599 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
7600 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
7601 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
7602 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
7603 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
7604 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
7605 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
7606 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
7607 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
7608 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
7609 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
7610 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
7611 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
7612 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
7613 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
7614 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
7616 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
7617 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
7618 vmcs12->vm_entry_intr_info_field);
7619 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
7620 vmcs12->vm_entry_exception_error_code);
7621 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
7622 vmcs12->vm_entry_instruction_len);
7623 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
7624 vmcs12->guest_interruptibility_info);
7625 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
7626 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
7627 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
7628 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
7629 vmcs12->guest_pending_dbg_exceptions);
7630 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
7631 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
7633 vmcs_write64(VMCS_LINK_POINTER, -1ull);
7635 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
7636 (vmcs_config.pin_based_exec_ctrl |
7637 vmcs12->pin_based_vm_exec_control));
7639 if (vmcs12->pin_based_vm_exec_control & PIN_BASED_VMX_PREEMPTION_TIMER)
7640 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE,
7641 vmcs12->vmx_preemption_timer_value);
7644 * Whether page-faults are trapped is determined by a combination of
7645 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
7646 * If enable_ept, L0 doesn't care about page faults and we should
7647 * set all of these to L1's desires. However, if !enable_ept, L0 does
7648 * care about (at least some) page faults, and because it is not easy
7649 * (if at all possible?) to merge L0 and L1's desires, we simply ask
7650 * to exit on each and every L2 page fault. This is done by setting
7651 * MASK=MATCH=0 and (see below) EB.PF=1.
7652 * Note that below we don't need special code to set EB.PF beyond the
7653 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
7654 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
7655 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
7657 * A problem with this approach (when !enable_ept) is that L1 may be
7658 * injected with more page faults than it asked for. This could have
7659 * caused problems, but in practice existing hypervisors don't care.
7660 * To fix this, we will need to emulate the PFEC checking (on the L1
7661 * page tables), using walk_addr(), when injecting PFs to L1.
7663 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
7664 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
7665 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
7666 enable_ept ? vmcs12->page_fault_error_code_match : 0);
7668 if (cpu_has_secondary_exec_ctrls()) {
7669 u32 exec_control = vmx_secondary_exec_control(vmx);
7670 if (!vmx->rdtscp_enabled)
7671 exec_control &= ~SECONDARY_EXEC_RDTSCP;
7672 /* Take the following fields only from vmcs12 */
7673 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7674 if (nested_cpu_has(vmcs12,
7675 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
7676 exec_control |= vmcs12->secondary_vm_exec_control;
7678 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
7680 * Translate L1 physical address to host physical
7681 * address for vmcs02. Keep the page pinned, so this
7682 * physical address remains valid. We keep a reference
7683 * to it so we can release it later.
7685 if (vmx->nested.apic_access_page) /* shouldn't happen */
7686 nested_release_page(vmx->nested.apic_access_page);
7687 vmx->nested.apic_access_page =
7688 nested_get_page(vcpu, vmcs12->apic_access_addr);
7690 * If translation failed, no matter: This feature asks
7691 * to exit when accessing the given address, and if it
7692 * can never be accessed, this feature won't do
7693 * anything anyway.
7695 if (!vmx->nested.apic_access_page)
7696 exec_control &=
7697 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7698 else
7699 vmcs_write64(APIC_ACCESS_ADDR,
7700 page_to_phys(vmx->nested.apic_access_page));
7703 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
7708 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
7709 * Some constant fields are set here by vmx_set_constant_host_state().
7710 * Other fields are different per CPU, and will be set later when
7711 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
7713 vmx_set_constant_host_state(vmx);
7716 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
7717 * entry, but only if the current (host) sp changed from the value
7718 * we wrote last (vmx->host_rsp). This cache is no longer relevant
7719 * if we switch vmcs, and rather than hold a separate cache per vmcs,
7720 * here we just force the write to happen on entry.
7722 vmx->host_rsp = 0;
7724 exec_control = vmx_exec_control(vmx); /* L0's desires */
7725 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
7726 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
7727 exec_control &= ~CPU_BASED_TPR_SHADOW;
7728 exec_control |= vmcs12->cpu_based_vm_exec_control;
7730 * Merging of IO and MSR bitmaps not currently supported.
7731 * Rather, exit every time.
7733 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
7734 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
7735 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
7737 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
7739 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
7740 * bitwise-or of what L1 wants to trap for L2, and what we want to
7741 * trap. Note that CR0.TS also needs updating - we do this later.
7743 update_exception_bitmap(vcpu);
7744 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
7745 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
7747 /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
7748 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
7749 * bits are further modified by vmx_set_efer() below.
7751 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
7753 /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
7754 * emulated by vmx_set_efer(), below.
7756 vmcs_write32(VM_ENTRY_CONTROLS,
7757 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
7758 ~VM_ENTRY_IA32E_MODE) |
7759 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
7761 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) {
7762 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
7763 vcpu->arch.pat = vmcs12->guest_ia32_pat;
7764 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
7765 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
7768 set_cr4_guest_host_mask(vmx);
7770 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
7771 vmcs_write64(TSC_OFFSET,
7772 vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
7773 else
7774 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
7776 if (enable_vpid) {
7778 * Trivially support vpid by letting L2s share their parent
7779 * L1's vpid. TODO: move to a more elaborate solution, giving
7780 * each L2 its own vpid and exposing the vpid feature to L1.
7782 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
7783 vmx_flush_tlb(vcpu);
7786 if (nested_cpu_has_ept(vmcs12)) {
7787 kvm_mmu_unload(vcpu);
7788 nested_ept_init_mmu_context(vcpu);
7791 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
7792 vcpu->arch.efer = vmcs12->guest_ia32_efer;
7793 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
7794 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
7795 else
7796 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
7797 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
7798 vmx_set_efer(vcpu, vcpu->arch.efer);
7801 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
7802 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
7803 * The CR0_READ_SHADOW is what L2 should have expected to read given
7804 * the specifications by L1; It's not enough to take
7805 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
7806 * have more bits than L1 expected.
7808 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
7809 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
7811 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
7812 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
7814 /* shadow page tables on either EPT or shadow page tables */
7815 kvm_set_cr3(vcpu, vmcs12->guest_cr3);
7816 kvm_mmu_reset_context(vcpu);
7819 * L1 may access the L2's PDPTR, so save them to construct vmcs12
7821 if (enable_ept) {
7822 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
7823 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
7824 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
7825 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
7828 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
7829 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
7833 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
7834 * for running an L2 nested guest.
7836 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
7838 struct vmcs12 *vmcs12;
7839 struct vcpu_vmx *vmx = to_vmx(vcpu);
7840 int cpu;
7841 struct loaded_vmcs *vmcs02;
7842 bool ia32e;
7844 if (!nested_vmx_check_permission(vcpu) ||
7845 !nested_vmx_check_vmcs12(vcpu))
7846 return 1;
7848 skip_emulated_instruction(vcpu);
7849 vmcs12 = get_vmcs12(vcpu);
7851 if (enable_shadow_vmcs)
7852 copy_shadow_to_vmcs12(vmx);
7855 * The nested entry process starts with enforcing various prerequisites
7856 * on vmcs12 as required by the Intel SDM, and act appropriately when
7857 * they fail: As the SDM explains, some conditions should cause the
7858 * instruction to fail, while others will cause the instruction to seem
7859 * to succeed, but return an EXIT_REASON_INVALID_STATE.
7860 * To speed up the normal (success) code path, we should avoid checking
7861 * for misconfigurations which will anyway be caught by the processor
7862 * when using the merged vmcs02.
7864 if (vmcs12->launch_state == launch) {
7865 nested_vmx_failValid(vcpu,
7866 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
7867 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
7868 return 1;
7871 if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE) {
7872 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7873 return 1;
7876 if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
7877 !IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
7878 /*TODO: Also verify bits beyond physical address width are 0*/
7879 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7880 return 1;
7883 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
7884 !IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
7885 /*TODO: Also verify bits beyond physical address width are 0*/
7886 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7887 return 1;
7890 if (vmcs12->vm_entry_msr_load_count > 0 ||
7891 vmcs12->vm_exit_msr_load_count > 0 ||
7892 vmcs12->vm_exit_msr_store_count > 0) {
7893 pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
7894 __func__);
7895 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7896 return 1;
7899 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
7900 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
7901 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
7902 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
7903 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
7904 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
7905 !vmx_control_verify(vmcs12->vm_exit_controls,
7906 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
7907 !vmx_control_verify(vmcs12->vm_entry_controls,
7908 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
7910 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7911 return 1;
7914 if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
7915 ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
7916 nested_vmx_failValid(vcpu,
7917 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
7918 return 1;
7921 if (((vmcs12->guest_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
7922 ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
7923 nested_vmx_entry_failure(vcpu, vmcs12,
7924 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
7925 return 1;
7927 if (vmcs12->vmcs_link_pointer != -1ull) {
7928 nested_vmx_entry_failure(vcpu, vmcs12,
7929 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
7930 return 1;
7934 * If the load IA32_EFER VM-entry control is 1, the following checks
7935 * are performed on the field for the IA32_EFER MSR:
7936 * - Bits reserved in the IA32_EFER MSR must be 0.
7937 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
7938 * the IA-32e mode guest VM-exit control. It must also be identical
7939 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
7940 * CR0.PG) is 1.
7942 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
7943 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
7944 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
7945 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
7946 ((vmcs12->guest_cr0 & X86_CR0_PG) &&
7947 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
7948 nested_vmx_entry_failure(vcpu, vmcs12,
7949 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
7950 return 1;
7955 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
7956 * IA32_EFER MSR must be 0 in the field for that register. In addition,
7957 * the values of the LMA and LME bits in the field must each be that of
7958 * the host address-space size VM-exit control.
7960 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
7961 ia32e = (vmcs12->vm_exit_controls &
7962 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
7963 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
7964 ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
7965 ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
7966 nested_vmx_entry_failure(vcpu, vmcs12,
7967 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
7968 return 1;
7973 * We're finally done with prerequisite checking, and can start with
7974 * the nested entry.
7977 vmcs02 = nested_get_current_vmcs02(vmx);
7978 if (!vmcs02)
7979 return -ENOMEM;
7981 enter_guest_mode(vcpu);
7983 vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
7985 cpu = get_cpu();
7986 vmx->loaded_vmcs = vmcs02;
7987 vmx_vcpu_put(vcpu);
7988 vmx_vcpu_load(vcpu, cpu);
7989 vcpu->cpu = cpu;
7990 put_cpu();
7992 vmx_segment_cache_clear(vmx);
7994 vmcs12->launch_state = 1;
7996 prepare_vmcs02(vcpu, vmcs12);
7999 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
8000 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
8001 * returned as far as L1 is concerned. It will only return (and set
8002 * the success flag) when L2 exits (see nested_vmx_vmexit()).
8004 return 1;
8008 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
8009 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
8010 * This function returns the new value we should put in vmcs12.guest_cr0.
8011 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
8012 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
8013 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
8014 * didn't trap the bit, because if L1 did, so would L0).
8015 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
8016 * been modified by L2, and L1 knows it. So just leave the old value of
8017 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
8018 * isn't relevant, because if L0 traps this bit it can set it to anything.
8019 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
8020 * changed these bits, and therefore they need to be updated, but L0
8021 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
8022 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
8024 static inline unsigned long
8025 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
8027 return
8028 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
8029 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
8030 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
8031 vcpu->arch.cr0_guest_owned_bits));
8034 static inline unsigned long
8035 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
8037 return
8038 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
8039 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
8040 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
8041 vcpu->arch.cr4_guest_owned_bits));
8044 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
8045 struct vmcs12 *vmcs12)
8047 u32 idt_vectoring;
8048 unsigned int nr;
8050 if (vcpu->arch.exception.pending) {
8051 nr = vcpu->arch.exception.nr;
8052 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
8054 if (kvm_exception_is_soft(nr)) {
8055 vmcs12->vm_exit_instruction_len =
8056 vcpu->arch.event_exit_inst_len;
8057 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
8058 } else
8059 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
8061 if (vcpu->arch.exception.has_error_code) {
8062 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
8063 vmcs12->idt_vectoring_error_code =
8064 vcpu->arch.exception.error_code;
8067 vmcs12->idt_vectoring_info_field = idt_vectoring;
8068 } else if (vcpu->arch.nmi_pending) {
8069 vmcs12->idt_vectoring_info_field =
8070 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
8071 } else if (vcpu->arch.interrupt.pending) {
8072 nr = vcpu->arch.interrupt.nr;
8073 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
8075 if (vcpu->arch.interrupt.soft) {
8076 idt_vectoring |= INTR_TYPE_SOFT_INTR;
8077 vmcs12->vm_entry_instruction_len =
8078 vcpu->arch.event_exit_inst_len;
8079 } else
8080 idt_vectoring |= INTR_TYPE_EXT_INTR;
8082 vmcs12->idt_vectoring_info_field = idt_vectoring;
8087 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
8088 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
8089 * and this function updates it to reflect the changes to the guest state while
8090 * L2 was running (and perhaps made some exits which were handled directly by L0
8091 * without going back to L1), and to reflect the exit reason.
8092 * Note that we do not have to copy here all VMCS fields, just those that
8093 * could have changed by the L2 guest or the exit - i.e., the guest-state and
8094 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
8095 * which already writes to vmcs12 directly.
8097 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
8099 /* update guest state fields: */
8100 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
8101 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
8103 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
8104 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
8105 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
8106 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
8108 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
8109 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
8110 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
8111 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
8112 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
8113 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
8114 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
8115 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
8116 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
8117 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
8118 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
8119 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
8120 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
8121 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
8122 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
8123 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
8124 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
8125 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
8126 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
8127 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
8128 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
8129 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
8130 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
8131 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
8132 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
8133 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
8134 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
8135 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
8136 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
8137 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
8138 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
8139 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
8140 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
8141 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
8142 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
8143 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
8145 vmcs12->guest_interruptibility_info =
8146 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
8147 vmcs12->guest_pending_dbg_exceptions =
8148 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
8151 * In some cases (usually, nested EPT), L2 is allowed to change its
8152 * own CR3 without exiting. If it has changed it, we must keep it.
8153 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
8154 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
8156 * Additionally, restore L2's PDPTR to vmcs12.
8158 if (enable_ept) {
8159 vmcs12->guest_cr3 = vmcs_read64(GUEST_CR3);
8160 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
8161 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
8162 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
8163 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
8166 vmcs12->vm_entry_controls =
8167 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
8168 (vmcs_read32(VM_ENTRY_CONTROLS) & VM_ENTRY_IA32E_MODE);
8170 /* TODO: These cannot have changed unless we have MSR bitmaps and
8171 * the relevant bit asks not to trap the change */
8172 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
8173 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
8174 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
8175 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
8176 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
8177 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
8179 /* update exit information fields: */
8181 vmcs12->vm_exit_reason = to_vmx(vcpu)->exit_reason;
8182 vmcs12->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8184 vmcs12->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8185 if ((vmcs12->vm_exit_intr_info &
8186 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
8187 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
8188 vmcs12->vm_exit_intr_error_code =
8189 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
8190 vmcs12->idt_vectoring_info_field = 0;
8191 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
8192 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
8194 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
8195 /* vm_entry_intr_info_field is cleared on exit. Emulate this
8196 * instead of reading the real value. */
8197 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
8200 * Transfer the event that L0 or L1 may wanted to inject into
8201 * L2 to IDT_VECTORING_INFO_FIELD.
8203 vmcs12_save_pending_event(vcpu, vmcs12);
8207 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
8208 * preserved above and would only end up incorrectly in L1.
8210 vcpu->arch.nmi_injected = false;
8211 kvm_clear_exception_queue(vcpu);
8212 kvm_clear_interrupt_queue(vcpu);
8216 * A part of what we need to when the nested L2 guest exits and we want to
8217 * run its L1 parent, is to reset L1's guest state to the host state specified
8218 * in vmcs12.
8219 * This function is to be called not only on normal nested exit, but also on
8220 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
8221 * Failures During or After Loading Guest State").
8222 * This function should be called when the active VMCS is L1's (vmcs01).
8224 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
8225 struct vmcs12 *vmcs12)
8227 struct kvm_segment seg;
8229 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
8230 vcpu->arch.efer = vmcs12->host_ia32_efer;
8231 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
8232 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
8233 else
8234 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
8235 vmx_set_efer(vcpu, vcpu->arch.efer);
8237 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
8238 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
8239 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
8241 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
8242 * actually changed, because it depends on the current state of
8243 * fpu_active (which may have changed).
8244 * Note that vmx_set_cr0 refers to efer set above.
8246 kvm_set_cr0(vcpu, vmcs12->host_cr0);
8248 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
8249 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
8250 * but we also need to update cr0_guest_host_mask and exception_bitmap.
8252 update_exception_bitmap(vcpu);
8253 vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
8254 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
8257 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
8258 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
8260 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
8261 kvm_set_cr4(vcpu, vmcs12->host_cr4);
8263 nested_ept_uninit_mmu_context(vcpu);
8265 kvm_set_cr3(vcpu, vmcs12->host_cr3);
8266 kvm_mmu_reset_context(vcpu);
8268 if (enable_vpid) {
8270 * Trivially support vpid by letting L2s share their parent
8271 * L1's vpid. TODO: move to a more elaborate solution, giving
8272 * each L2 its own vpid and exposing the vpid feature to L1.
8274 vmx_flush_tlb(vcpu);
8278 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
8279 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
8280 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
8281 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
8282 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
8284 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
8285 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
8286 vcpu->arch.pat = vmcs12->host_ia32_pat;
8288 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
8289 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
8290 vmcs12->host_ia32_perf_global_ctrl);
8292 /* Set L1 segment info according to Intel SDM
8293 27.5.2 Loading Host Segment and Descriptor-Table Registers */
8294 seg = (struct kvm_segment) {
8295 .base = 0,
8296 .limit = 0xFFFFFFFF,
8297 .selector = vmcs12->host_cs_selector,
8298 .type = 11,
8299 .present = 1,
8300 .s = 1,
8301 .g = 1
8303 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
8304 seg.l = 1;
8305 else
8306 seg.db = 1;
8307 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
8308 seg = (struct kvm_segment) {
8309 .base = 0,
8310 .limit = 0xFFFFFFFF,
8311 .type = 3,
8312 .present = 1,
8313 .s = 1,
8314 .db = 1,
8315 .g = 1
8317 seg.selector = vmcs12->host_ds_selector;
8318 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
8319 seg.selector = vmcs12->host_es_selector;
8320 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
8321 seg.selector = vmcs12->host_ss_selector;
8322 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
8323 seg.selector = vmcs12->host_fs_selector;
8324 seg.base = vmcs12->host_fs_base;
8325 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
8326 seg.selector = vmcs12->host_gs_selector;
8327 seg.base = vmcs12->host_gs_base;
8328 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
8329 seg = (struct kvm_segment) {
8330 .base = vmcs12->host_tr_base,
8331 .limit = 0x67,
8332 .selector = vmcs12->host_tr_selector,
8333 .type = 11,
8334 .present = 1
8336 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
8338 kvm_set_dr(vcpu, 7, 0x400);
8339 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
8343 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
8344 * and modify vmcs12 to make it see what it would expect to see there if
8345 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
8347 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu)
8349 struct vcpu_vmx *vmx = to_vmx(vcpu);
8350 int cpu;
8351 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8353 /* trying to cancel vmlaunch/vmresume is a bug */
8354 WARN_ON_ONCE(vmx->nested.nested_run_pending);
8356 leave_guest_mode(vcpu);
8357 prepare_vmcs12(vcpu, vmcs12);
8359 cpu = get_cpu();
8360 vmx->loaded_vmcs = &vmx->vmcs01;
8361 vmx_vcpu_put(vcpu);
8362 vmx_vcpu_load(vcpu, cpu);
8363 vcpu->cpu = cpu;
8364 put_cpu();
8366 vmx_segment_cache_clear(vmx);
8368 /* if no vmcs02 cache requested, remove the one we used */
8369 if (VMCS02_POOL_SIZE == 0)
8370 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
8372 load_vmcs12_host_state(vcpu, vmcs12);
8374 /* Update TSC_OFFSET if TSC was changed while L2 ran */
8375 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
8377 if (vmx->nested.change_vmcs01_virtual_x2apic_mode) {
8378 vmx->nested.change_vmcs01_virtual_x2apic_mode = false;
8379 vmx_set_virtual_x2apic_mode(vcpu,
8380 vcpu->arch.apic_base & X2APIC_ENABLE);
8383 /* This is needed for same reason as it was needed in prepare_vmcs02 */
8384 vmx->host_rsp = 0;
8386 /* Unpin physical memory we referred to in vmcs02 */
8387 if (vmx->nested.apic_access_page) {
8388 nested_release_page(vmx->nested.apic_access_page);
8389 vmx->nested.apic_access_page = 0;
8393 * Exiting from L2 to L1, we're now back to L1 which thinks it just
8394 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
8395 * success or failure flag accordingly.
8397 if (unlikely(vmx->fail)) {
8398 vmx->fail = 0;
8399 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
8400 } else
8401 nested_vmx_succeed(vcpu);
8402 if (enable_shadow_vmcs)
8403 vmx->nested.sync_shadow_vmcs = true;
8407 * L1's failure to enter L2 is a subset of a normal exit, as explained in
8408 * 23.7 "VM-entry failures during or after loading guest state" (this also
8409 * lists the acceptable exit-reason and exit-qualification parameters).
8410 * It should only be called before L2 actually succeeded to run, and when
8411 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
8413 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
8414 struct vmcs12 *vmcs12,
8415 u32 reason, unsigned long qualification)
8417 load_vmcs12_host_state(vcpu, vmcs12);
8418 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
8419 vmcs12->exit_qualification = qualification;
8420 nested_vmx_succeed(vcpu);
8421 if (enable_shadow_vmcs)
8422 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
8425 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
8426 struct x86_instruction_info *info,
8427 enum x86_intercept_stage stage)
8429 return X86EMUL_CONTINUE;
8432 static struct kvm_x86_ops vmx_x86_ops = {
8433 .cpu_has_kvm_support = cpu_has_kvm_support,
8434 .disabled_by_bios = vmx_disabled_by_bios,
8435 .hardware_setup = hardware_setup,
8436 .hardware_unsetup = hardware_unsetup,
8437 .check_processor_compatibility = vmx_check_processor_compat,
8438 .hardware_enable = hardware_enable,
8439 .hardware_disable = hardware_disable,
8440 .cpu_has_accelerated_tpr = report_flexpriority,
8442 .vcpu_create = vmx_create_vcpu,
8443 .vcpu_free = vmx_free_vcpu,
8444 .vcpu_reset = vmx_vcpu_reset,
8446 .prepare_guest_switch = vmx_save_host_state,
8447 .vcpu_load = vmx_vcpu_load,
8448 .vcpu_put = vmx_vcpu_put,
8450 .update_db_bp_intercept = update_exception_bitmap,
8451 .get_msr = vmx_get_msr,
8452 .set_msr = vmx_set_msr,
8453 .get_segment_base = vmx_get_segment_base,
8454 .get_segment = vmx_get_segment,
8455 .set_segment = vmx_set_segment,
8456 .get_cpl = vmx_get_cpl,
8457 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
8458 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
8459 .decache_cr3 = vmx_decache_cr3,
8460 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
8461 .set_cr0 = vmx_set_cr0,
8462 .set_cr3 = vmx_set_cr3,
8463 .set_cr4 = vmx_set_cr4,
8464 .set_efer = vmx_set_efer,
8465 .get_idt = vmx_get_idt,
8466 .set_idt = vmx_set_idt,
8467 .get_gdt = vmx_get_gdt,
8468 .set_gdt = vmx_set_gdt,
8469 .set_dr7 = vmx_set_dr7,
8470 .cache_reg = vmx_cache_reg,
8471 .get_rflags = vmx_get_rflags,
8472 .set_rflags = vmx_set_rflags,
8473 .fpu_activate = vmx_fpu_activate,
8474 .fpu_deactivate = vmx_fpu_deactivate,
8476 .tlb_flush = vmx_flush_tlb,
8478 .run = vmx_vcpu_run,
8479 .handle_exit = vmx_handle_exit,
8480 .skip_emulated_instruction = skip_emulated_instruction,
8481 .set_interrupt_shadow = vmx_set_interrupt_shadow,
8482 .get_interrupt_shadow = vmx_get_interrupt_shadow,
8483 .patch_hypercall = vmx_patch_hypercall,
8484 .set_irq = vmx_inject_irq,
8485 .set_nmi = vmx_inject_nmi,
8486 .queue_exception = vmx_queue_exception,
8487 .cancel_injection = vmx_cancel_injection,
8488 .interrupt_allowed = vmx_interrupt_allowed,
8489 .nmi_allowed = vmx_nmi_allowed,
8490 .get_nmi_mask = vmx_get_nmi_mask,
8491 .set_nmi_mask = vmx_set_nmi_mask,
8492 .enable_nmi_window = enable_nmi_window,
8493 .enable_irq_window = enable_irq_window,
8494 .update_cr8_intercept = update_cr8_intercept,
8495 .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
8496 .vm_has_apicv = vmx_vm_has_apicv,
8497 .load_eoi_exitmap = vmx_load_eoi_exitmap,
8498 .hwapic_irr_update = vmx_hwapic_irr_update,
8499 .hwapic_isr_update = vmx_hwapic_isr_update,
8500 .sync_pir_to_irr = vmx_sync_pir_to_irr,
8501 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
8503 .set_tss_addr = vmx_set_tss_addr,
8504 .get_tdp_level = get_ept_level,
8505 .get_mt_mask = vmx_get_mt_mask,
8507 .get_exit_info = vmx_get_exit_info,
8509 .get_lpage_level = vmx_get_lpage_level,
8511 .cpuid_update = vmx_cpuid_update,
8513 .rdtscp_supported = vmx_rdtscp_supported,
8514 .invpcid_supported = vmx_invpcid_supported,
8516 .set_supported_cpuid = vmx_set_supported_cpuid,
8518 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
8520 .set_tsc_khz = vmx_set_tsc_khz,
8521 .read_tsc_offset = vmx_read_tsc_offset,
8522 .write_tsc_offset = vmx_write_tsc_offset,
8523 .adjust_tsc_offset = vmx_adjust_tsc_offset,
8524 .compute_tsc_offset = vmx_compute_tsc_offset,
8525 .read_l1_tsc = vmx_read_l1_tsc,
8527 .set_tdp_cr3 = vmx_set_cr3,
8529 .check_intercept = vmx_check_intercept,
8530 .handle_external_intr = vmx_handle_external_intr,
8533 static int __init vmx_init(void)
8535 int r, i, msr;
8537 rdmsrl_safe(MSR_EFER, &host_efer);
8539 for (i = 0; i < NR_VMX_MSR; ++i)
8540 kvm_define_shared_msr(i, vmx_msr_index[i]);
8542 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
8543 if (!vmx_io_bitmap_a)
8544 return -ENOMEM;
8546 r = -ENOMEM;
8548 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
8549 if (!vmx_io_bitmap_b)
8550 goto out;
8552 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
8553 if (!vmx_msr_bitmap_legacy)
8554 goto out1;
8556 vmx_msr_bitmap_legacy_x2apic =
8557 (unsigned long *)__get_free_page(GFP_KERNEL);
8558 if (!vmx_msr_bitmap_legacy_x2apic)
8559 goto out2;
8561 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
8562 if (!vmx_msr_bitmap_longmode)
8563 goto out3;
8565 vmx_msr_bitmap_longmode_x2apic =
8566 (unsigned long *)__get_free_page(GFP_KERNEL);
8567 if (!vmx_msr_bitmap_longmode_x2apic)
8568 goto out4;
8569 vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
8570 if (!vmx_vmread_bitmap)
8571 goto out5;
8573 vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
8574 if (!vmx_vmwrite_bitmap)
8575 goto out6;
8577 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
8578 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
8579 /* shadowed read/write fields */
8580 for (i = 0; i < max_shadow_read_write_fields; i++) {
8581 clear_bit(shadow_read_write_fields[i], vmx_vmwrite_bitmap);
8582 clear_bit(shadow_read_write_fields[i], vmx_vmread_bitmap);
8584 /* shadowed read only fields */
8585 for (i = 0; i < max_shadow_read_only_fields; i++)
8586 clear_bit(shadow_read_only_fields[i], vmx_vmread_bitmap);
8589 * Allow direct access to the PC debug port (it is often used for I/O
8590 * delays, but the vmexits simply slow things down).
8592 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
8593 clear_bit(0x80, vmx_io_bitmap_a);
8595 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
8597 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
8598 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
8600 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8602 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
8603 __alignof__(struct vcpu_vmx), THIS_MODULE);
8604 if (r)
8605 goto out7;
8607 #ifdef CONFIG_KEXEC
8608 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8609 crash_vmclear_local_loaded_vmcss);
8610 #endif
8612 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
8613 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
8614 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
8615 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
8616 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
8617 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
8618 memcpy(vmx_msr_bitmap_legacy_x2apic,
8619 vmx_msr_bitmap_legacy, PAGE_SIZE);
8620 memcpy(vmx_msr_bitmap_longmode_x2apic,
8621 vmx_msr_bitmap_longmode, PAGE_SIZE);
8623 if (enable_apicv) {
8624 for (msr = 0x800; msr <= 0x8ff; msr++)
8625 vmx_disable_intercept_msr_read_x2apic(msr);
8627 /* According SDM, in x2apic mode, the whole id reg is used.
8628 * But in KVM, it only use the highest eight bits. Need to
8629 * intercept it */
8630 vmx_enable_intercept_msr_read_x2apic(0x802);
8631 /* TMCCT */
8632 vmx_enable_intercept_msr_read_x2apic(0x839);
8633 /* TPR */
8634 vmx_disable_intercept_msr_write_x2apic(0x808);
8635 /* EOI */
8636 vmx_disable_intercept_msr_write_x2apic(0x80b);
8637 /* SELF-IPI */
8638 vmx_disable_intercept_msr_write_x2apic(0x83f);
8641 if (enable_ept) {
8642 kvm_mmu_set_mask_ptes(0ull,
8643 (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
8644 (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
8645 0ull, VMX_EPT_EXECUTABLE_MASK);
8646 ept_set_mmio_spte_mask();
8647 kvm_enable_tdp();
8648 } else
8649 kvm_disable_tdp();
8651 return 0;
8653 out7:
8654 free_page((unsigned long)vmx_vmwrite_bitmap);
8655 out6:
8656 free_page((unsigned long)vmx_vmread_bitmap);
8657 out5:
8658 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
8659 out4:
8660 free_page((unsigned long)vmx_msr_bitmap_longmode);
8661 out3:
8662 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
8663 out2:
8664 free_page((unsigned long)vmx_msr_bitmap_legacy);
8665 out1:
8666 free_page((unsigned long)vmx_io_bitmap_b);
8667 out:
8668 free_page((unsigned long)vmx_io_bitmap_a);
8669 return r;
8672 static void __exit vmx_exit(void)
8674 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
8675 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
8676 free_page((unsigned long)vmx_msr_bitmap_legacy);
8677 free_page((unsigned long)vmx_msr_bitmap_longmode);
8678 free_page((unsigned long)vmx_io_bitmap_b);
8679 free_page((unsigned long)vmx_io_bitmap_a);
8680 free_page((unsigned long)vmx_vmwrite_bitmap);
8681 free_page((unsigned long)vmx_vmread_bitmap);
8683 #ifdef CONFIG_KEXEC
8684 rcu_assign_pointer(crash_vmclear_loaded_vmcss, NULL);
8685 synchronize_rcu();
8686 #endif
8688 kvm_exit();
8691 module_init(vmx_init)
8692 module_exit(vmx_exit)