2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
22 #include <linux/kvm_host.h>
27 #include "kvm_cache_regs.h"
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <trace/events/kvm.h>
53 #define CREATE_TRACE_POINTS
56 #include <asm/debugreg.h>
62 #include <asm/fpu-internal.h> /* Ugh! */
64 #include <asm/pvclock.h>
65 #include <asm/div64.h>
67 #define MAX_IO_MSRS 256
68 #define KVM_MAX_MCE_BANKS 32
69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
71 #define emul_to_vcpu(ctxt) \
72 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
75 * - enable syscall per default because its emulated by KVM
76 * - enable LME and LMA per default on 64 bit KVM
80 u64 __read_mostly efer_reserved_bits
= ~((u64
)(EFER_SCE
| EFER_LME
| EFER_LMA
));
82 static u64 __read_mostly efer_reserved_bits
= ~((u64
)EFER_SCE
);
85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
88 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
);
89 static void process_nmi(struct kvm_vcpu
*vcpu
);
91 struct kvm_x86_ops
*kvm_x86_ops
;
92 EXPORT_SYMBOL_GPL(kvm_x86_ops
);
94 static bool ignore_msrs
= 0;
95 module_param(ignore_msrs
, bool, S_IRUGO
| S_IWUSR
);
97 unsigned int min_timer_period_us
= 500;
98 module_param(min_timer_period_us
, uint
, S_IRUGO
| S_IWUSR
);
100 bool kvm_has_tsc_control
;
101 EXPORT_SYMBOL_GPL(kvm_has_tsc_control
);
102 u32 kvm_max_guest_tsc_khz
;
103 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz
);
105 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
106 static u32 tsc_tolerance_ppm
= 250;
107 module_param(tsc_tolerance_ppm
, uint
, S_IRUGO
| S_IWUSR
);
109 #define KVM_NR_SHARED_MSRS 16
111 struct kvm_shared_msrs_global
{
113 u32 msrs
[KVM_NR_SHARED_MSRS
];
116 struct kvm_shared_msrs
{
117 struct user_return_notifier urn
;
119 struct kvm_shared_msr_values
{
122 } values
[KVM_NR_SHARED_MSRS
];
125 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global
;
126 static struct kvm_shared_msrs __percpu
*shared_msrs
;
128 struct kvm_stats_debugfs_item debugfs_entries
[] = {
129 { "pf_fixed", VCPU_STAT(pf_fixed
) },
130 { "pf_guest", VCPU_STAT(pf_guest
) },
131 { "tlb_flush", VCPU_STAT(tlb_flush
) },
132 { "invlpg", VCPU_STAT(invlpg
) },
133 { "exits", VCPU_STAT(exits
) },
134 { "io_exits", VCPU_STAT(io_exits
) },
135 { "mmio_exits", VCPU_STAT(mmio_exits
) },
136 { "signal_exits", VCPU_STAT(signal_exits
) },
137 { "irq_window", VCPU_STAT(irq_window_exits
) },
138 { "nmi_window", VCPU_STAT(nmi_window_exits
) },
139 { "halt_exits", VCPU_STAT(halt_exits
) },
140 { "halt_wakeup", VCPU_STAT(halt_wakeup
) },
141 { "hypercalls", VCPU_STAT(hypercalls
) },
142 { "request_irq", VCPU_STAT(request_irq_exits
) },
143 { "irq_exits", VCPU_STAT(irq_exits
) },
144 { "host_state_reload", VCPU_STAT(host_state_reload
) },
145 { "efer_reload", VCPU_STAT(efer_reload
) },
146 { "fpu_reload", VCPU_STAT(fpu_reload
) },
147 { "insn_emulation", VCPU_STAT(insn_emulation
) },
148 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail
) },
149 { "irq_injections", VCPU_STAT(irq_injections
) },
150 { "nmi_injections", VCPU_STAT(nmi_injections
) },
151 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped
) },
152 { "mmu_pte_write", VM_STAT(mmu_pte_write
) },
153 { "mmu_pte_updated", VM_STAT(mmu_pte_updated
) },
154 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped
) },
155 { "mmu_flooded", VM_STAT(mmu_flooded
) },
156 { "mmu_recycled", VM_STAT(mmu_recycled
) },
157 { "mmu_cache_miss", VM_STAT(mmu_cache_miss
) },
158 { "mmu_unsync", VM_STAT(mmu_unsync
) },
159 { "remote_tlb_flush", VM_STAT(remote_tlb_flush
) },
160 { "largepages", VM_STAT(lpages
) },
164 u64 __read_mostly host_xcr0
;
166 static int emulator_fix_hypercall(struct x86_emulate_ctxt
*ctxt
);
168 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu
*vcpu
)
171 for (i
= 0; i
< roundup_pow_of_two(ASYNC_PF_PER_VCPU
); i
++)
172 vcpu
->arch
.apf
.gfns
[i
] = ~0;
175 static void kvm_on_user_return(struct user_return_notifier
*urn
)
178 struct kvm_shared_msrs
*locals
179 = container_of(urn
, struct kvm_shared_msrs
, urn
);
180 struct kvm_shared_msr_values
*values
;
182 for (slot
= 0; slot
< shared_msrs_global
.nr
; ++slot
) {
183 values
= &locals
->values
[slot
];
184 if (values
->host
!= values
->curr
) {
185 wrmsrl(shared_msrs_global
.msrs
[slot
], values
->host
);
186 values
->curr
= values
->host
;
189 locals
->registered
= false;
190 user_return_notifier_unregister(urn
);
193 static void shared_msr_update(unsigned slot
, u32 msr
)
196 unsigned int cpu
= smp_processor_id();
197 struct kvm_shared_msrs
*smsr
= per_cpu_ptr(shared_msrs
, cpu
);
199 /* only read, and nobody should modify it at this time,
200 * so don't need lock */
201 if (slot
>= shared_msrs_global
.nr
) {
202 printk(KERN_ERR
"kvm: invalid MSR slot!");
205 rdmsrl_safe(msr
, &value
);
206 smsr
->values
[slot
].host
= value
;
207 smsr
->values
[slot
].curr
= value
;
210 void kvm_define_shared_msr(unsigned slot
, u32 msr
)
212 if (slot
>= shared_msrs_global
.nr
)
213 shared_msrs_global
.nr
= slot
+ 1;
214 shared_msrs_global
.msrs
[slot
] = msr
;
215 /* we need ensured the shared_msr_global have been updated */
218 EXPORT_SYMBOL_GPL(kvm_define_shared_msr
);
220 static void kvm_shared_msr_cpu_online(void)
224 for (i
= 0; i
< shared_msrs_global
.nr
; ++i
)
225 shared_msr_update(i
, shared_msrs_global
.msrs
[i
]);
228 int kvm_set_shared_msr(unsigned slot
, u64 value
, u64 mask
)
230 unsigned int cpu
= smp_processor_id();
231 struct kvm_shared_msrs
*smsr
= per_cpu_ptr(shared_msrs
, cpu
);
234 if (((value
^ smsr
->values
[slot
].curr
) & mask
) == 0)
236 smsr
->values
[slot
].curr
= value
;
237 err
= wrmsrl_safe(shared_msrs_global
.msrs
[slot
], value
);
241 if (!smsr
->registered
) {
242 smsr
->urn
.on_user_return
= kvm_on_user_return
;
243 user_return_notifier_register(&smsr
->urn
);
244 smsr
->registered
= true;
248 EXPORT_SYMBOL_GPL(kvm_set_shared_msr
);
250 static void drop_user_return_notifiers(void *ignore
)
252 unsigned int cpu
= smp_processor_id();
253 struct kvm_shared_msrs
*smsr
= per_cpu_ptr(shared_msrs
, cpu
);
255 if (smsr
->registered
)
256 kvm_on_user_return(&smsr
->urn
);
259 u64
kvm_get_apic_base(struct kvm_vcpu
*vcpu
)
261 return vcpu
->arch
.apic_base
;
263 EXPORT_SYMBOL_GPL(kvm_get_apic_base
);
265 void kvm_set_apic_base(struct kvm_vcpu
*vcpu
, u64 data
)
267 /* TODO: reserve bits check */
268 kvm_lapic_set_base(vcpu
, data
);
270 EXPORT_SYMBOL_GPL(kvm_set_apic_base
);
272 asmlinkage
void kvm_spurious_fault(void)
274 /* Fault while not rebooting. We want the trace. */
277 EXPORT_SYMBOL_GPL(kvm_spurious_fault
);
279 #define EXCPT_BENIGN 0
280 #define EXCPT_CONTRIBUTORY 1
283 static int exception_class(int vector
)
293 return EXCPT_CONTRIBUTORY
;
300 static void kvm_multiple_exception(struct kvm_vcpu
*vcpu
,
301 unsigned nr
, bool has_error
, u32 error_code
,
307 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
309 if (!vcpu
->arch
.exception
.pending
) {
311 vcpu
->arch
.exception
.pending
= true;
312 vcpu
->arch
.exception
.has_error_code
= has_error
;
313 vcpu
->arch
.exception
.nr
= nr
;
314 vcpu
->arch
.exception
.error_code
= error_code
;
315 vcpu
->arch
.exception
.reinject
= reinject
;
319 /* to check exception */
320 prev_nr
= vcpu
->arch
.exception
.nr
;
321 if (prev_nr
== DF_VECTOR
) {
322 /* triple fault -> shutdown */
323 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
326 class1
= exception_class(prev_nr
);
327 class2
= exception_class(nr
);
328 if ((class1
== EXCPT_CONTRIBUTORY
&& class2
== EXCPT_CONTRIBUTORY
)
329 || (class1
== EXCPT_PF
&& class2
!= EXCPT_BENIGN
)) {
330 /* generate double fault per SDM Table 5-5 */
331 vcpu
->arch
.exception
.pending
= true;
332 vcpu
->arch
.exception
.has_error_code
= true;
333 vcpu
->arch
.exception
.nr
= DF_VECTOR
;
334 vcpu
->arch
.exception
.error_code
= 0;
336 /* replace previous exception with a new one in a hope
337 that instruction re-execution will regenerate lost
342 void kvm_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
344 kvm_multiple_exception(vcpu
, nr
, false, 0, false);
346 EXPORT_SYMBOL_GPL(kvm_queue_exception
);
348 void kvm_requeue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
350 kvm_multiple_exception(vcpu
, nr
, false, 0, true);
352 EXPORT_SYMBOL_GPL(kvm_requeue_exception
);
354 void kvm_complete_insn_gp(struct kvm_vcpu
*vcpu
, int err
)
357 kvm_inject_gp(vcpu
, 0);
359 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
361 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp
);
363 void kvm_inject_page_fault(struct kvm_vcpu
*vcpu
, struct x86_exception
*fault
)
365 ++vcpu
->stat
.pf_guest
;
366 vcpu
->arch
.cr2
= fault
->address
;
367 kvm_queue_exception_e(vcpu
, PF_VECTOR
, fault
->error_code
);
369 EXPORT_SYMBOL_GPL(kvm_inject_page_fault
);
371 void kvm_propagate_fault(struct kvm_vcpu
*vcpu
, struct x86_exception
*fault
)
373 if (mmu_is_nested(vcpu
) && !fault
->nested_page_fault
)
374 vcpu
->arch
.nested_mmu
.inject_page_fault(vcpu
, fault
);
376 vcpu
->arch
.mmu
.inject_page_fault(vcpu
, fault
);
379 void kvm_inject_nmi(struct kvm_vcpu
*vcpu
)
381 atomic_inc(&vcpu
->arch
.nmi_queued
);
382 kvm_make_request(KVM_REQ_NMI
, vcpu
);
384 EXPORT_SYMBOL_GPL(kvm_inject_nmi
);
386 void kvm_queue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
388 kvm_multiple_exception(vcpu
, nr
, true, error_code
, false);
390 EXPORT_SYMBOL_GPL(kvm_queue_exception_e
);
392 void kvm_requeue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
394 kvm_multiple_exception(vcpu
, nr
, true, error_code
, true);
396 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e
);
399 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
400 * a #GP and return false.
402 bool kvm_require_cpl(struct kvm_vcpu
*vcpu
, int required_cpl
)
404 if (kvm_x86_ops
->get_cpl(vcpu
) <= required_cpl
)
406 kvm_queue_exception_e(vcpu
, GP_VECTOR
, 0);
409 EXPORT_SYMBOL_GPL(kvm_require_cpl
);
412 * This function will be used to read from the physical memory of the currently
413 * running guest. The difference to kvm_read_guest_page is that this function
414 * can read from guest physical or from the guest's guest physical memory.
416 int kvm_read_guest_page_mmu(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
,
417 gfn_t ngfn
, void *data
, int offset
, int len
,
423 ngpa
= gfn_to_gpa(ngfn
);
424 real_gfn
= mmu
->translate_gpa(vcpu
, ngpa
, access
);
425 if (real_gfn
== UNMAPPED_GVA
)
428 real_gfn
= gpa_to_gfn(real_gfn
);
430 return kvm_read_guest_page(vcpu
->kvm
, real_gfn
, data
, offset
, len
);
432 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu
);
434 int kvm_read_nested_guest_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
435 void *data
, int offset
, int len
, u32 access
)
437 return kvm_read_guest_page_mmu(vcpu
, vcpu
->arch
.walk_mmu
, gfn
,
438 data
, offset
, len
, access
);
442 * Load the pae pdptrs. Return true is they are all valid.
444 int load_pdptrs(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
, unsigned long cr3
)
446 gfn_t pdpt_gfn
= cr3
>> PAGE_SHIFT
;
447 unsigned offset
= ((cr3
& (PAGE_SIZE
-1)) >> 5) << 2;
450 u64 pdpte
[ARRAY_SIZE(mmu
->pdptrs
)];
452 ret
= kvm_read_guest_page_mmu(vcpu
, mmu
, pdpt_gfn
, pdpte
,
453 offset
* sizeof(u64
), sizeof(pdpte
),
454 PFERR_USER_MASK
|PFERR_WRITE_MASK
);
459 for (i
= 0; i
< ARRAY_SIZE(pdpte
); ++i
) {
460 if (is_present_gpte(pdpte
[i
]) &&
461 (pdpte
[i
] & vcpu
->arch
.mmu
.rsvd_bits_mask
[0][2])) {
468 memcpy(mmu
->pdptrs
, pdpte
, sizeof(mmu
->pdptrs
));
469 __set_bit(VCPU_EXREG_PDPTR
,
470 (unsigned long *)&vcpu
->arch
.regs_avail
);
471 __set_bit(VCPU_EXREG_PDPTR
,
472 (unsigned long *)&vcpu
->arch
.regs_dirty
);
477 EXPORT_SYMBOL_GPL(load_pdptrs
);
479 static bool pdptrs_changed(struct kvm_vcpu
*vcpu
)
481 u64 pdpte
[ARRAY_SIZE(vcpu
->arch
.walk_mmu
->pdptrs
)];
487 if (is_long_mode(vcpu
) || !is_pae(vcpu
))
490 if (!test_bit(VCPU_EXREG_PDPTR
,
491 (unsigned long *)&vcpu
->arch
.regs_avail
))
494 gfn
= (kvm_read_cr3(vcpu
) & ~31u) >> PAGE_SHIFT
;
495 offset
= (kvm_read_cr3(vcpu
) & ~31u) & (PAGE_SIZE
- 1);
496 r
= kvm_read_nested_guest_page(vcpu
, gfn
, pdpte
, offset
, sizeof(pdpte
),
497 PFERR_USER_MASK
| PFERR_WRITE_MASK
);
500 changed
= memcmp(pdpte
, vcpu
->arch
.walk_mmu
->pdptrs
, sizeof(pdpte
)) != 0;
506 int kvm_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
508 unsigned long old_cr0
= kvm_read_cr0(vcpu
);
509 unsigned long update_bits
= X86_CR0_PG
| X86_CR0_WP
|
510 X86_CR0_CD
| X86_CR0_NW
;
515 if (cr0
& 0xffffffff00000000UL
)
519 cr0
&= ~CR0_RESERVED_BITS
;
521 if ((cr0
& X86_CR0_NW
) && !(cr0
& X86_CR0_CD
))
524 if ((cr0
& X86_CR0_PG
) && !(cr0
& X86_CR0_PE
))
527 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
)) {
529 if ((vcpu
->arch
.efer
& EFER_LME
)) {
534 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
539 if (is_pae(vcpu
) && !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
,
544 if (!(cr0
& X86_CR0_PG
) && kvm_read_cr4_bits(vcpu
, X86_CR4_PCIDE
))
547 kvm_x86_ops
->set_cr0(vcpu
, cr0
);
549 if ((cr0
^ old_cr0
) & X86_CR0_PG
) {
550 kvm_clear_async_pf_completion_queue(vcpu
);
551 kvm_async_pf_hash_reset(vcpu
);
554 if ((cr0
^ old_cr0
) & update_bits
)
555 kvm_mmu_reset_context(vcpu
);
558 EXPORT_SYMBOL_GPL(kvm_set_cr0
);
560 void kvm_lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
)
562 (void)kvm_set_cr0(vcpu
, kvm_read_cr0_bits(vcpu
, ~0x0eul
) | (msw
& 0x0f));
564 EXPORT_SYMBOL_GPL(kvm_lmsw
);
566 static void kvm_load_guest_xcr0(struct kvm_vcpu
*vcpu
)
568 if (kvm_read_cr4_bits(vcpu
, X86_CR4_OSXSAVE
) &&
569 !vcpu
->guest_xcr0_loaded
) {
570 /* kvm_set_xcr() also depends on this */
571 xsetbv(XCR_XFEATURE_ENABLED_MASK
, vcpu
->arch
.xcr0
);
572 vcpu
->guest_xcr0_loaded
= 1;
576 static void kvm_put_guest_xcr0(struct kvm_vcpu
*vcpu
)
578 if (vcpu
->guest_xcr0_loaded
) {
579 if (vcpu
->arch
.xcr0
!= host_xcr0
)
580 xsetbv(XCR_XFEATURE_ENABLED_MASK
, host_xcr0
);
581 vcpu
->guest_xcr0_loaded
= 0;
585 int __kvm_set_xcr(struct kvm_vcpu
*vcpu
, u32 index
, u64 xcr
)
589 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
590 if (index
!= XCR_XFEATURE_ENABLED_MASK
)
593 if (!(xcr0
& XSTATE_FP
))
595 if ((xcr0
& XSTATE_YMM
) && !(xcr0
& XSTATE_SSE
))
597 if (xcr0
& ~host_xcr0
)
599 kvm_put_guest_xcr0(vcpu
);
600 vcpu
->arch
.xcr0
= xcr0
;
604 int kvm_set_xcr(struct kvm_vcpu
*vcpu
, u32 index
, u64 xcr
)
606 if (kvm_x86_ops
->get_cpl(vcpu
) != 0 ||
607 __kvm_set_xcr(vcpu
, index
, xcr
)) {
608 kvm_inject_gp(vcpu
, 0);
613 EXPORT_SYMBOL_GPL(kvm_set_xcr
);
615 int kvm_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
617 unsigned long old_cr4
= kvm_read_cr4(vcpu
);
618 unsigned long pdptr_bits
= X86_CR4_PGE
| X86_CR4_PSE
|
619 X86_CR4_PAE
| X86_CR4_SMEP
;
620 if (cr4
& CR4_RESERVED_BITS
)
623 if (!guest_cpuid_has_xsave(vcpu
) && (cr4
& X86_CR4_OSXSAVE
))
626 if (!guest_cpuid_has_smep(vcpu
) && (cr4
& X86_CR4_SMEP
))
629 if (!guest_cpuid_has_fsgsbase(vcpu
) && (cr4
& X86_CR4_FSGSBASE
))
632 if (is_long_mode(vcpu
)) {
633 if (!(cr4
& X86_CR4_PAE
))
635 } else if (is_paging(vcpu
) && (cr4
& X86_CR4_PAE
)
636 && ((cr4
^ old_cr4
) & pdptr_bits
)
637 && !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
,
641 if ((cr4
& X86_CR4_PCIDE
) && !(old_cr4
& X86_CR4_PCIDE
)) {
642 if (!guest_cpuid_has_pcid(vcpu
))
645 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
646 if ((kvm_read_cr3(vcpu
) & X86_CR3_PCID_MASK
) || !is_long_mode(vcpu
))
650 if (kvm_x86_ops
->set_cr4(vcpu
, cr4
))
653 if (((cr4
^ old_cr4
) & pdptr_bits
) ||
654 (!(cr4
& X86_CR4_PCIDE
) && (old_cr4
& X86_CR4_PCIDE
)))
655 kvm_mmu_reset_context(vcpu
);
657 if ((cr4
^ old_cr4
) & X86_CR4_OSXSAVE
)
658 kvm_update_cpuid(vcpu
);
662 EXPORT_SYMBOL_GPL(kvm_set_cr4
);
664 int kvm_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
666 if (cr3
== kvm_read_cr3(vcpu
) && !pdptrs_changed(vcpu
)) {
667 kvm_mmu_sync_roots(vcpu
);
668 kvm_mmu_flush_tlb(vcpu
);
672 if (is_long_mode(vcpu
)) {
673 if (kvm_read_cr4_bits(vcpu
, X86_CR4_PCIDE
)) {
674 if (cr3
& CR3_PCID_ENABLED_RESERVED_BITS
)
677 if (cr3
& CR3_L_MODE_RESERVED_BITS
)
681 if (cr3
& CR3_PAE_RESERVED_BITS
)
683 if (is_paging(vcpu
) &&
684 !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, cr3
))
688 * We don't check reserved bits in nonpae mode, because
689 * this isn't enforced, and VMware depends on this.
693 vcpu
->arch
.cr3
= cr3
;
694 __set_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
);
695 vcpu
->arch
.mmu
.new_cr3(vcpu
);
698 EXPORT_SYMBOL_GPL(kvm_set_cr3
);
700 int kvm_set_cr8(struct kvm_vcpu
*vcpu
, unsigned long cr8
)
702 if (cr8
& CR8_RESERVED_BITS
)
704 if (irqchip_in_kernel(vcpu
->kvm
))
705 kvm_lapic_set_tpr(vcpu
, cr8
);
707 vcpu
->arch
.cr8
= cr8
;
710 EXPORT_SYMBOL_GPL(kvm_set_cr8
);
712 unsigned long kvm_get_cr8(struct kvm_vcpu
*vcpu
)
714 if (irqchip_in_kernel(vcpu
->kvm
))
715 return kvm_lapic_get_cr8(vcpu
);
717 return vcpu
->arch
.cr8
;
719 EXPORT_SYMBOL_GPL(kvm_get_cr8
);
721 static void kvm_update_dr7(struct kvm_vcpu
*vcpu
)
725 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)
726 dr7
= vcpu
->arch
.guest_debug_dr7
;
728 dr7
= vcpu
->arch
.dr7
;
729 kvm_x86_ops
->set_dr7(vcpu
, dr7
);
730 vcpu
->arch
.switch_db_regs
= (dr7
& DR7_BP_EN_MASK
);
733 static int __kvm_set_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long val
)
737 vcpu
->arch
.db
[dr
] = val
;
738 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
))
739 vcpu
->arch
.eff_db
[dr
] = val
;
742 if (kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
746 if (val
& 0xffffffff00000000ULL
)
748 vcpu
->arch
.dr6
= (val
& DR6_VOLATILE
) | DR6_FIXED_1
;
751 if (kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
755 if (val
& 0xffffffff00000000ULL
)
757 vcpu
->arch
.dr7
= (val
& DR7_VOLATILE
) | DR7_FIXED_1
;
758 kvm_update_dr7(vcpu
);
765 int kvm_set_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long val
)
769 res
= __kvm_set_dr(vcpu
, dr
, val
);
771 kvm_queue_exception(vcpu
, UD_VECTOR
);
773 kvm_inject_gp(vcpu
, 0);
777 EXPORT_SYMBOL_GPL(kvm_set_dr
);
779 static int _kvm_get_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long *val
)
783 *val
= vcpu
->arch
.db
[dr
];
786 if (kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
790 *val
= vcpu
->arch
.dr6
;
793 if (kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
797 *val
= vcpu
->arch
.dr7
;
804 int kvm_get_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long *val
)
806 if (_kvm_get_dr(vcpu
, dr
, val
)) {
807 kvm_queue_exception(vcpu
, UD_VECTOR
);
812 EXPORT_SYMBOL_GPL(kvm_get_dr
);
814 bool kvm_rdpmc(struct kvm_vcpu
*vcpu
)
816 u32 ecx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
820 err
= kvm_pmu_read_pmc(vcpu
, ecx
, &data
);
823 kvm_register_write(vcpu
, VCPU_REGS_RAX
, (u32
)data
);
824 kvm_register_write(vcpu
, VCPU_REGS_RDX
, data
>> 32);
827 EXPORT_SYMBOL_GPL(kvm_rdpmc
);
830 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
831 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
833 * This list is modified at module load time to reflect the
834 * capabilities of the host cpu. This capabilities test skips MSRs that are
835 * kvm-specific. Those are put in the beginning of the list.
838 #define KVM_SAVE_MSRS_BEGIN 10
839 static u32 msrs_to_save
[] = {
840 MSR_KVM_SYSTEM_TIME
, MSR_KVM_WALL_CLOCK
,
841 MSR_KVM_SYSTEM_TIME_NEW
, MSR_KVM_WALL_CLOCK_NEW
,
842 HV_X64_MSR_GUEST_OS_ID
, HV_X64_MSR_HYPERCALL
,
843 HV_X64_MSR_APIC_ASSIST_PAGE
, MSR_KVM_ASYNC_PF_EN
, MSR_KVM_STEAL_TIME
,
845 MSR_IA32_SYSENTER_CS
, MSR_IA32_SYSENTER_ESP
, MSR_IA32_SYSENTER_EIP
,
848 MSR_CSTAR
, MSR_KERNEL_GS_BASE
, MSR_SYSCALL_MASK
, MSR_LSTAR
,
850 MSR_IA32_TSC
, MSR_IA32_CR_PAT
, MSR_VM_HSAVE_PA
,
851 MSR_IA32_FEATURE_CONTROL
854 static unsigned num_msrs_to_save
;
856 static const u32 emulated_msrs
[] = {
858 MSR_IA32_TSCDEADLINE
,
859 MSR_IA32_MISC_ENABLE
,
864 bool kvm_valid_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
866 if (efer
& efer_reserved_bits
)
869 if (efer
& EFER_FFXSR
) {
870 struct kvm_cpuid_entry2
*feat
;
872 feat
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
873 if (!feat
|| !(feat
->edx
& bit(X86_FEATURE_FXSR_OPT
)))
877 if (efer
& EFER_SVME
) {
878 struct kvm_cpuid_entry2
*feat
;
880 feat
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
881 if (!feat
|| !(feat
->ecx
& bit(X86_FEATURE_SVM
)))
887 EXPORT_SYMBOL_GPL(kvm_valid_efer
);
889 static int set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
891 u64 old_efer
= vcpu
->arch
.efer
;
893 if (!kvm_valid_efer(vcpu
, efer
))
897 && (vcpu
->arch
.efer
& EFER_LME
) != (efer
& EFER_LME
))
901 efer
|= vcpu
->arch
.efer
& EFER_LMA
;
903 kvm_x86_ops
->set_efer(vcpu
, efer
);
905 /* Update reserved bits */
906 if ((efer
^ old_efer
) & EFER_NX
)
907 kvm_mmu_reset_context(vcpu
);
912 void kvm_enable_efer_bits(u64 mask
)
914 efer_reserved_bits
&= ~mask
;
916 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits
);
919 * Writes msr value into into the appropriate "register".
920 * Returns 0 on success, non-0 otherwise.
921 * Assumes vcpu_load() was already called.
923 int kvm_set_msr(struct kvm_vcpu
*vcpu
, struct msr_data
*msr
)
925 switch (msr
->index
) {
928 case MSR_KERNEL_GS_BASE
:
931 if (is_noncanonical_address(msr
->data
))
934 case MSR_IA32_SYSENTER_EIP
:
935 case MSR_IA32_SYSENTER_ESP
:
937 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
938 * non-canonical address is written on Intel but not on
939 * AMD (which ignores the top 32-bits, because it does
940 * not implement 64-bit SYSENTER).
942 * 64-bit code should hence be able to write a non-canonical
943 * value on AMD. Making the address canonical ensures that
944 * vmentry does not fail on Intel after writing a non-canonical
945 * value, and that something deterministic happens if the guest
946 * invokes 64-bit SYSENTER.
948 msr
->data
= get_canonical(msr
->data
);
950 return kvm_x86_ops
->set_msr(vcpu
, msr
);
952 EXPORT_SYMBOL_GPL(kvm_set_msr
);
955 * Adapt set_msr() to msr_io()'s calling convention
957 static int do_set_msr(struct kvm_vcpu
*vcpu
, unsigned index
, u64
*data
)
963 msr
.host_initiated
= true;
964 return kvm_set_msr(vcpu
, &msr
);
968 struct pvclock_gtod_data
{
971 struct { /* extract of a clocksource struct */
979 /* open coded 'struct timespec' */
980 u64 monotonic_time_snsec
;
981 time_t monotonic_time_sec
;
984 static struct pvclock_gtod_data pvclock_gtod_data
;
986 static void update_pvclock_gtod(struct timekeeper
*tk
)
988 struct pvclock_gtod_data
*vdata
= &pvclock_gtod_data
;
990 write_seqcount_begin(&vdata
->seq
);
992 /* copy pvclock gtod data */
993 vdata
->clock
.vclock_mode
= tk
->clock
->archdata
.vclock_mode
;
994 vdata
->clock
.cycle_last
= tk
->clock
->cycle_last
;
995 vdata
->clock
.mask
= tk
->clock
->mask
;
996 vdata
->clock
.mult
= tk
->mult
;
997 vdata
->clock
.shift
= tk
->shift
;
999 vdata
->monotonic_time_sec
= tk
->xtime_sec
1000 + tk
->wall_to_monotonic
.tv_sec
;
1001 vdata
->monotonic_time_snsec
= tk
->xtime_nsec
1002 + (tk
->wall_to_monotonic
.tv_nsec
1004 while (vdata
->monotonic_time_snsec
>=
1005 (((u64
)NSEC_PER_SEC
) << tk
->shift
)) {
1006 vdata
->monotonic_time_snsec
-=
1007 ((u64
)NSEC_PER_SEC
) << tk
->shift
;
1008 vdata
->monotonic_time_sec
++;
1011 write_seqcount_end(&vdata
->seq
);
1016 static void kvm_write_wall_clock(struct kvm
*kvm
, gpa_t wall_clock
)
1020 struct pvclock_wall_clock wc
;
1021 struct timespec boot
;
1026 r
= kvm_read_guest(kvm
, wall_clock
, &version
, sizeof(version
));
1031 ++version
; /* first time write, random junk */
1035 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
1038 * The guest calculates current wall clock time by adding
1039 * system time (updated by kvm_guest_time_update below) to the
1040 * wall clock specified here. guest system time equals host
1041 * system time for us, thus we must fill in host boot time here.
1045 if (kvm
->arch
.kvmclock_offset
) {
1046 struct timespec ts
= ns_to_timespec(kvm
->arch
.kvmclock_offset
);
1047 boot
= timespec_sub(boot
, ts
);
1049 wc
.sec
= boot
.tv_sec
;
1050 wc
.nsec
= boot
.tv_nsec
;
1051 wc
.version
= version
;
1053 kvm_write_guest(kvm
, wall_clock
, &wc
, sizeof(wc
));
1056 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
1059 static uint32_t div_frac(uint32_t dividend
, uint32_t divisor
)
1061 uint32_t quotient
, remainder
;
1063 /* Don't try to replace with do_div(), this one calculates
1064 * "(dividend << 32) / divisor" */
1066 : "=a" (quotient
), "=d" (remainder
)
1067 : "0" (0), "1" (dividend
), "r" (divisor
) );
1071 static void kvm_get_time_scale(uint32_t scaled_khz
, uint32_t base_khz
,
1072 s8
*pshift
, u32
*pmultiplier
)
1079 tps64
= base_khz
* 1000LL;
1080 scaled64
= scaled_khz
* 1000LL;
1081 while (tps64
> scaled64
*2 || tps64
& 0xffffffff00000000ULL
) {
1086 tps32
= (uint32_t)tps64
;
1087 while (tps32
<= scaled64
|| scaled64
& 0xffffffff00000000ULL
) {
1088 if (scaled64
& 0xffffffff00000000ULL
|| tps32
& 0x80000000)
1096 *pmultiplier
= div_frac(scaled64
, tps32
);
1098 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1099 __func__
, base_khz
, scaled_khz
, shift
, *pmultiplier
);
1102 static inline u64
get_kernel_ns(void)
1107 monotonic_to_bootbased(&ts
);
1108 return timespec_to_ns(&ts
);
1111 #ifdef CONFIG_X86_64
1112 static atomic_t kvm_guest_has_master_clock
= ATOMIC_INIT(0);
1115 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz
);
1116 unsigned long max_tsc_khz
;
1118 static inline u64
nsec_to_cycles(struct kvm_vcpu
*vcpu
, u64 nsec
)
1120 return pvclock_scale_delta(nsec
, vcpu
->arch
.virtual_tsc_mult
,
1121 vcpu
->arch
.virtual_tsc_shift
);
1124 static u32
adjust_tsc_khz(u32 khz
, s32 ppm
)
1126 u64 v
= (u64
)khz
* (1000000 + ppm
);
1131 static void kvm_set_tsc_khz(struct kvm_vcpu
*vcpu
, u32 this_tsc_khz
)
1133 u32 thresh_lo
, thresh_hi
;
1134 int use_scaling
= 0;
1136 /* tsc_khz can be zero if TSC calibration fails */
1137 if (this_tsc_khz
== 0)
1140 /* Compute a scale to convert nanoseconds in TSC cycles */
1141 kvm_get_time_scale(this_tsc_khz
, NSEC_PER_SEC
/ 1000,
1142 &vcpu
->arch
.virtual_tsc_shift
,
1143 &vcpu
->arch
.virtual_tsc_mult
);
1144 vcpu
->arch
.virtual_tsc_khz
= this_tsc_khz
;
1147 * Compute the variation in TSC rate which is acceptable
1148 * within the range of tolerance and decide if the
1149 * rate being applied is within that bounds of the hardware
1150 * rate. If so, no scaling or compensation need be done.
1152 thresh_lo
= adjust_tsc_khz(tsc_khz
, -tsc_tolerance_ppm
);
1153 thresh_hi
= adjust_tsc_khz(tsc_khz
, tsc_tolerance_ppm
);
1154 if (this_tsc_khz
< thresh_lo
|| this_tsc_khz
> thresh_hi
) {
1155 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz
, thresh_lo
, thresh_hi
);
1158 kvm_x86_ops
->set_tsc_khz(vcpu
, this_tsc_khz
, use_scaling
);
1161 static u64
compute_guest_tsc(struct kvm_vcpu
*vcpu
, s64 kernel_ns
)
1163 u64 tsc
= pvclock_scale_delta(kernel_ns
-vcpu
->arch
.this_tsc_nsec
,
1164 vcpu
->arch
.virtual_tsc_mult
,
1165 vcpu
->arch
.virtual_tsc_shift
);
1166 tsc
+= vcpu
->arch
.this_tsc_write
;
1170 void kvm_track_tsc_matching(struct kvm_vcpu
*vcpu
)
1172 #ifdef CONFIG_X86_64
1174 struct kvm_arch
*ka
= &vcpu
->kvm
->arch
;
1175 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
1177 vcpus_matched
= (ka
->nr_vcpus_matched_tsc
+ 1 ==
1178 atomic_read(&vcpu
->kvm
->online_vcpus
));
1181 * Once the masterclock is enabled, always perform request in
1182 * order to update it.
1184 * In order to enable masterclock, the host clocksource must be TSC
1185 * and the vcpus need to have matched TSCs. When that happens,
1186 * perform request to enable masterclock.
1188 if (ka
->use_master_clock
||
1189 (gtod
->clock
.vclock_mode
== VCLOCK_TSC
&& vcpus_matched
))
1190 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
);
1192 trace_kvm_track_tsc(vcpu
->vcpu_id
, ka
->nr_vcpus_matched_tsc
,
1193 atomic_read(&vcpu
->kvm
->online_vcpus
),
1194 ka
->use_master_clock
, gtod
->clock
.vclock_mode
);
1198 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu
*vcpu
, s64 offset
)
1200 u64 curr_offset
= kvm_x86_ops
->read_tsc_offset(vcpu
);
1201 vcpu
->arch
.ia32_tsc_adjust_msr
+= offset
- curr_offset
;
1204 void kvm_write_tsc(struct kvm_vcpu
*vcpu
, struct msr_data
*msr
)
1206 struct kvm
*kvm
= vcpu
->kvm
;
1207 u64 offset
, ns
, elapsed
;
1208 unsigned long flags
;
1211 u64 data
= msr
->data
;
1213 raw_spin_lock_irqsave(&kvm
->arch
.tsc_write_lock
, flags
);
1214 offset
= kvm_x86_ops
->compute_tsc_offset(vcpu
, data
);
1215 ns
= get_kernel_ns();
1216 elapsed
= ns
- kvm
->arch
.last_tsc_nsec
;
1218 if (vcpu
->arch
.virtual_tsc_khz
) {
1221 /* n.b - signed multiplication and division required */
1222 usdiff
= data
- kvm
->arch
.last_tsc_write
;
1223 #ifdef CONFIG_X86_64
1224 usdiff
= (usdiff
* 1000) / vcpu
->arch
.virtual_tsc_khz
;
1226 /* do_div() only does unsigned */
1227 asm("1: idivl %[divisor]\n"
1228 "2: xor %%edx, %%edx\n"
1229 " movl $0, %[faulted]\n"
1231 ".section .fixup,\"ax\"\n"
1232 "4: movl $1, %[faulted]\n"
1236 _ASM_EXTABLE(1b
, 4b
)
1238 : "=A"(usdiff
), [faulted
] "=r" (faulted
)
1239 : "A"(usdiff
* 1000), [divisor
] "rm"(vcpu
->arch
.virtual_tsc_khz
));
1242 do_div(elapsed
, 1000);
1247 /* idivl overflow => difference is larger than USEC_PER_SEC */
1249 usdiff
= USEC_PER_SEC
;
1251 usdiff
= USEC_PER_SEC
; /* disable TSC match window below */
1254 * Special case: TSC write with a small delta (1 second) of virtual
1255 * cycle time against real time is interpreted as an attempt to
1256 * synchronize the CPU.
1258 * For a reliable TSC, we can match TSC offsets, and for an unstable
1259 * TSC, we add elapsed time in this computation. We could let the
1260 * compensation code attempt to catch up if we fall behind, but
1261 * it's better to try to match offsets from the beginning.
1263 if (usdiff
< USEC_PER_SEC
&&
1264 vcpu
->arch
.virtual_tsc_khz
== kvm
->arch
.last_tsc_khz
) {
1265 if (!check_tsc_unstable()) {
1266 offset
= kvm
->arch
.cur_tsc_offset
;
1267 pr_debug("kvm: matched tsc offset for %llu\n", data
);
1269 u64 delta
= nsec_to_cycles(vcpu
, elapsed
);
1271 offset
= kvm_x86_ops
->compute_tsc_offset(vcpu
, data
);
1272 pr_debug("kvm: adjusted tsc offset by %llu\n", delta
);
1277 * We split periods of matched TSC writes into generations.
1278 * For each generation, we track the original measured
1279 * nanosecond time, offset, and write, so if TSCs are in
1280 * sync, we can match exact offset, and if not, we can match
1281 * exact software computation in compute_guest_tsc()
1283 * These values are tracked in kvm->arch.cur_xxx variables.
1285 kvm
->arch
.cur_tsc_generation
++;
1286 kvm
->arch
.cur_tsc_nsec
= ns
;
1287 kvm
->arch
.cur_tsc_write
= data
;
1288 kvm
->arch
.cur_tsc_offset
= offset
;
1290 pr_debug("kvm: new tsc generation %u, clock %llu\n",
1291 kvm
->arch
.cur_tsc_generation
, data
);
1295 * We also track th most recent recorded KHZ, write and time to
1296 * allow the matching interval to be extended at each write.
1298 kvm
->arch
.last_tsc_nsec
= ns
;
1299 kvm
->arch
.last_tsc_write
= data
;
1300 kvm
->arch
.last_tsc_khz
= vcpu
->arch
.virtual_tsc_khz
;
1302 /* Reset of TSC must disable overshoot protection below */
1303 vcpu
->arch
.hv_clock
.tsc_timestamp
= 0;
1304 vcpu
->arch
.last_guest_tsc
= data
;
1306 /* Keep track of which generation this VCPU has synchronized to */
1307 vcpu
->arch
.this_tsc_generation
= kvm
->arch
.cur_tsc_generation
;
1308 vcpu
->arch
.this_tsc_nsec
= kvm
->arch
.cur_tsc_nsec
;
1309 vcpu
->arch
.this_tsc_write
= kvm
->arch
.cur_tsc_write
;
1311 if (guest_cpuid_has_tsc_adjust(vcpu
) && !msr
->host_initiated
)
1312 update_ia32_tsc_adjust_msr(vcpu
, offset
);
1313 kvm_x86_ops
->write_tsc_offset(vcpu
, offset
);
1314 raw_spin_unlock_irqrestore(&kvm
->arch
.tsc_write_lock
, flags
);
1316 spin_lock(&kvm
->arch
.pvclock_gtod_sync_lock
);
1318 kvm
->arch
.nr_vcpus_matched_tsc
++;
1320 kvm
->arch
.nr_vcpus_matched_tsc
= 0;
1322 kvm_track_tsc_matching(vcpu
);
1323 spin_unlock(&kvm
->arch
.pvclock_gtod_sync_lock
);
1326 EXPORT_SYMBOL_GPL(kvm_write_tsc
);
1328 #ifdef CONFIG_X86_64
1330 static cycle_t
read_tsc(void)
1336 * Empirically, a fence (of type that depends on the CPU)
1337 * before rdtsc is enough to ensure that rdtsc is ordered
1338 * with respect to loads. The various CPU manuals are unclear
1339 * as to whether rdtsc can be reordered with later loads,
1340 * but no one has ever seen it happen.
1343 ret
= (cycle_t
)vget_cycles();
1345 last
= pvclock_gtod_data
.clock
.cycle_last
;
1347 if (likely(ret
>= last
))
1351 * GCC likes to generate cmov here, but this branch is extremely
1352 * predictable (it's just a funciton of time and the likely is
1353 * very likely) and there's a data dependence, so force GCC
1354 * to generate a branch instead. I don't barrier() because
1355 * we don't actually need a barrier, and if this function
1356 * ever gets inlined it will generate worse code.
1362 static inline u64
vgettsc(cycle_t
*cycle_now
)
1365 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
1367 *cycle_now
= read_tsc();
1369 v
= (*cycle_now
- gtod
->clock
.cycle_last
) & gtod
->clock
.mask
;
1370 return v
* gtod
->clock
.mult
;
1373 static int do_monotonic(struct timespec
*ts
, cycle_t
*cycle_now
)
1378 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
1382 seq
= read_seqcount_begin(>od
->seq
);
1383 mode
= gtod
->clock
.vclock_mode
;
1384 ts
->tv_sec
= gtod
->monotonic_time_sec
;
1385 ns
= gtod
->monotonic_time_snsec
;
1386 ns
+= vgettsc(cycle_now
);
1387 ns
>>= gtod
->clock
.shift
;
1388 } while (unlikely(read_seqcount_retry(>od
->seq
, seq
)));
1389 timespec_add_ns(ts
, ns
);
1394 /* returns true if host is using tsc clocksource */
1395 static bool kvm_get_time_and_clockread(s64
*kernel_ns
, cycle_t
*cycle_now
)
1399 /* checked again under seqlock below */
1400 if (pvclock_gtod_data
.clock
.vclock_mode
!= VCLOCK_TSC
)
1403 if (do_monotonic(&ts
, cycle_now
) != VCLOCK_TSC
)
1406 monotonic_to_bootbased(&ts
);
1407 *kernel_ns
= timespec_to_ns(&ts
);
1415 * Assuming a stable TSC across physical CPUS, and a stable TSC
1416 * across virtual CPUs, the following condition is possible.
1417 * Each numbered line represents an event visible to both
1418 * CPUs at the next numbered event.
1420 * "timespecX" represents host monotonic time. "tscX" represents
1423 * VCPU0 on CPU0 | VCPU1 on CPU1
1425 * 1. read timespec0,tsc0
1426 * 2. | timespec1 = timespec0 + N
1428 * 3. transition to guest | transition to guest
1429 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1430 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1431 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1433 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1436 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1438 * - 0 < N - M => M < N
1440 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1441 * always the case (the difference between two distinct xtime instances
1442 * might be smaller then the difference between corresponding TSC reads,
1443 * when updating guest vcpus pvclock areas).
1445 * To avoid that problem, do not allow visibility of distinct
1446 * system_timestamp/tsc_timestamp values simultaneously: use a master
1447 * copy of host monotonic time values. Update that master copy
1450 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1454 static void pvclock_update_vm_gtod_copy(struct kvm
*kvm
)
1456 #ifdef CONFIG_X86_64
1457 struct kvm_arch
*ka
= &kvm
->arch
;
1459 bool host_tsc_clocksource
, vcpus_matched
;
1461 vcpus_matched
= (ka
->nr_vcpus_matched_tsc
+ 1 ==
1462 atomic_read(&kvm
->online_vcpus
));
1465 * If the host uses TSC clock, then passthrough TSC as stable
1468 host_tsc_clocksource
= kvm_get_time_and_clockread(
1469 &ka
->master_kernel_ns
,
1470 &ka
->master_cycle_now
);
1472 ka
->use_master_clock
= host_tsc_clocksource
& vcpus_matched
;
1474 if (ka
->use_master_clock
)
1475 atomic_set(&kvm_guest_has_master_clock
, 1);
1477 vclock_mode
= pvclock_gtod_data
.clock
.vclock_mode
;
1478 trace_kvm_update_master_clock(ka
->use_master_clock
, vclock_mode
,
1483 static void kvm_gen_update_masterclock(struct kvm
*kvm
)
1485 #ifdef CONFIG_X86_64
1487 struct kvm_vcpu
*vcpu
;
1488 struct kvm_arch
*ka
= &kvm
->arch
;
1490 spin_lock(&ka
->pvclock_gtod_sync_lock
);
1491 kvm_make_mclock_inprogress_request(kvm
);
1492 /* no guest entries from this point */
1493 pvclock_update_vm_gtod_copy(kvm
);
1495 kvm_for_each_vcpu(i
, vcpu
, kvm
)
1496 set_bit(KVM_REQ_CLOCK_UPDATE
, &vcpu
->requests
);
1498 /* guest entries allowed */
1499 kvm_for_each_vcpu(i
, vcpu
, kvm
)
1500 clear_bit(KVM_REQ_MCLOCK_INPROGRESS
, &vcpu
->requests
);
1502 spin_unlock(&ka
->pvclock_gtod_sync_lock
);
1506 static int kvm_guest_time_update(struct kvm_vcpu
*v
)
1508 unsigned long flags
, this_tsc_khz
;
1509 struct kvm_vcpu_arch
*vcpu
= &v
->arch
;
1510 struct kvm_arch
*ka
= &v
->kvm
->arch
;
1511 s64 kernel_ns
, max_kernel_ns
;
1512 u64 tsc_timestamp
, host_tsc
;
1513 struct pvclock_vcpu_time_info guest_hv_clock
;
1515 bool use_master_clock
;
1521 * If the host uses TSC clock, then passthrough TSC as stable
1524 spin_lock(&ka
->pvclock_gtod_sync_lock
);
1525 use_master_clock
= ka
->use_master_clock
;
1526 if (use_master_clock
) {
1527 host_tsc
= ka
->master_cycle_now
;
1528 kernel_ns
= ka
->master_kernel_ns
;
1530 spin_unlock(&ka
->pvclock_gtod_sync_lock
);
1532 /* Keep irq disabled to prevent changes to the clock */
1533 local_irq_save(flags
);
1534 this_tsc_khz
= __get_cpu_var(cpu_tsc_khz
);
1535 if (unlikely(this_tsc_khz
== 0)) {
1536 local_irq_restore(flags
);
1537 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, v
);
1540 if (!use_master_clock
) {
1541 host_tsc
= native_read_tsc();
1542 kernel_ns
= get_kernel_ns();
1545 tsc_timestamp
= kvm_x86_ops
->read_l1_tsc(v
, host_tsc
);
1548 * We may have to catch up the TSC to match elapsed wall clock
1549 * time for two reasons, even if kvmclock is used.
1550 * 1) CPU could have been running below the maximum TSC rate
1551 * 2) Broken TSC compensation resets the base at each VCPU
1552 * entry to avoid unknown leaps of TSC even when running
1553 * again on the same CPU. This may cause apparent elapsed
1554 * time to disappear, and the guest to stand still or run
1557 if (vcpu
->tsc_catchup
) {
1558 u64 tsc
= compute_guest_tsc(v
, kernel_ns
);
1559 if (tsc
> tsc_timestamp
) {
1560 adjust_tsc_offset_guest(v
, tsc
- tsc_timestamp
);
1561 tsc_timestamp
= tsc
;
1565 local_irq_restore(flags
);
1567 if (!vcpu
->pv_time_enabled
)
1571 * Time as measured by the TSC may go backwards when resetting the base
1572 * tsc_timestamp. The reason for this is that the TSC resolution is
1573 * higher than the resolution of the other clock scales. Thus, many
1574 * possible measurments of the TSC correspond to one measurement of any
1575 * other clock, and so a spread of values is possible. This is not a
1576 * problem for the computation of the nanosecond clock; with TSC rates
1577 * around 1GHZ, there can only be a few cycles which correspond to one
1578 * nanosecond value, and any path through this code will inevitably
1579 * take longer than that. However, with the kernel_ns value itself,
1580 * the precision may be much lower, down to HZ granularity. If the
1581 * first sampling of TSC against kernel_ns ends in the low part of the
1582 * range, and the second in the high end of the range, we can get:
1584 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1586 * As the sampling errors potentially range in the thousands of cycles,
1587 * it is possible such a time value has already been observed by the
1588 * guest. To protect against this, we must compute the system time as
1589 * observed by the guest and ensure the new system time is greater.
1592 if (vcpu
->hv_clock
.tsc_timestamp
) {
1593 max_kernel_ns
= vcpu
->last_guest_tsc
-
1594 vcpu
->hv_clock
.tsc_timestamp
;
1595 max_kernel_ns
= pvclock_scale_delta(max_kernel_ns
,
1596 vcpu
->hv_clock
.tsc_to_system_mul
,
1597 vcpu
->hv_clock
.tsc_shift
);
1598 max_kernel_ns
+= vcpu
->last_kernel_ns
;
1601 if (unlikely(vcpu
->hw_tsc_khz
!= this_tsc_khz
)) {
1602 kvm_get_time_scale(NSEC_PER_SEC
/ 1000, this_tsc_khz
,
1603 &vcpu
->hv_clock
.tsc_shift
,
1604 &vcpu
->hv_clock
.tsc_to_system_mul
);
1605 vcpu
->hw_tsc_khz
= this_tsc_khz
;
1608 /* with a master <monotonic time, tsc value> tuple,
1609 * pvclock clock reads always increase at the (scaled) rate
1610 * of guest TSC - no need to deal with sampling errors.
1612 if (!use_master_clock
) {
1613 if (max_kernel_ns
> kernel_ns
)
1614 kernel_ns
= max_kernel_ns
;
1616 /* With all the info we got, fill in the values */
1617 vcpu
->hv_clock
.tsc_timestamp
= tsc_timestamp
;
1618 vcpu
->hv_clock
.system_time
= kernel_ns
+ v
->kvm
->arch
.kvmclock_offset
;
1619 vcpu
->last_kernel_ns
= kernel_ns
;
1620 vcpu
->last_guest_tsc
= tsc_timestamp
;
1623 * The interface expects us to write an even number signaling that the
1624 * update is finished. Since the guest won't see the intermediate
1625 * state, we just increase by 2 at the end.
1627 vcpu
->hv_clock
.version
+= 2;
1629 if (unlikely(kvm_read_guest_cached(v
->kvm
, &vcpu
->pv_time
,
1630 &guest_hv_clock
, sizeof(guest_hv_clock
))))
1633 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1634 pvclock_flags
= (guest_hv_clock
.flags
& PVCLOCK_GUEST_STOPPED
);
1636 if (vcpu
->pvclock_set_guest_stopped_request
) {
1637 pvclock_flags
|= PVCLOCK_GUEST_STOPPED
;
1638 vcpu
->pvclock_set_guest_stopped_request
= false;
1641 /* If the host uses TSC clocksource, then it is stable */
1642 if (use_master_clock
)
1643 pvclock_flags
|= PVCLOCK_TSC_STABLE_BIT
;
1645 vcpu
->hv_clock
.flags
= pvclock_flags
;
1647 kvm_write_guest_cached(v
->kvm
, &vcpu
->pv_time
,
1649 sizeof(vcpu
->hv_clock
));
1654 * kvmclock updates which are isolated to a given vcpu, such as
1655 * vcpu->cpu migration, should not allow system_timestamp from
1656 * the rest of the vcpus to remain static. Otherwise ntp frequency
1657 * correction applies to one vcpu's system_timestamp but not
1660 * So in those cases, request a kvmclock update for all vcpus.
1661 * The worst case for a remote vcpu to update its kvmclock
1662 * is then bounded by maximum nohz sleep latency.
1665 static void kvm_gen_kvmclock_update(struct kvm_vcpu
*v
)
1668 struct kvm
*kvm
= v
->kvm
;
1669 struct kvm_vcpu
*vcpu
;
1671 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
1672 set_bit(KVM_REQ_CLOCK_UPDATE
, &vcpu
->requests
);
1673 kvm_vcpu_kick(vcpu
);
1677 static bool msr_mtrr_valid(unsigned msr
)
1680 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR
- 1:
1681 case MSR_MTRRfix64K_00000
:
1682 case MSR_MTRRfix16K_80000
:
1683 case MSR_MTRRfix16K_A0000
:
1684 case MSR_MTRRfix4K_C0000
:
1685 case MSR_MTRRfix4K_C8000
:
1686 case MSR_MTRRfix4K_D0000
:
1687 case MSR_MTRRfix4K_D8000
:
1688 case MSR_MTRRfix4K_E0000
:
1689 case MSR_MTRRfix4K_E8000
:
1690 case MSR_MTRRfix4K_F0000
:
1691 case MSR_MTRRfix4K_F8000
:
1692 case MSR_MTRRdefType
:
1693 case MSR_IA32_CR_PAT
:
1701 static bool valid_pat_type(unsigned t
)
1703 return t
< 8 && (1 << t
) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1706 static bool valid_mtrr_type(unsigned t
)
1708 return t
< 8 && (1 << t
) & 0x73; /* 0, 1, 4, 5, 6 */
1711 bool kvm_mtrr_valid(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1715 if (!msr_mtrr_valid(msr
))
1718 if (msr
== MSR_IA32_CR_PAT
) {
1719 for (i
= 0; i
< 8; i
++)
1720 if (!valid_pat_type((data
>> (i
* 8)) & 0xff))
1723 } else if (msr
== MSR_MTRRdefType
) {
1726 return valid_mtrr_type(data
& 0xff);
1727 } else if (msr
>= MSR_MTRRfix64K_00000
&& msr
<= MSR_MTRRfix4K_F8000
) {
1728 for (i
= 0; i
< 8 ; i
++)
1729 if (!valid_mtrr_type((data
>> (i
* 8)) & 0xff))
1734 /* variable MTRRs */
1735 return valid_mtrr_type(data
& 0xff);
1737 EXPORT_SYMBOL_GPL(kvm_mtrr_valid
);
1739 static int set_msr_mtrr(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1741 u64
*p
= (u64
*)&vcpu
->arch
.mtrr_state
.fixed_ranges
;
1743 if (!kvm_mtrr_valid(vcpu
, msr
, data
))
1746 if (msr
== MSR_MTRRdefType
) {
1747 vcpu
->arch
.mtrr_state
.def_type
= data
;
1748 vcpu
->arch
.mtrr_state
.enabled
= (data
& 0xc00) >> 10;
1749 } else if (msr
== MSR_MTRRfix64K_00000
)
1751 else if (msr
== MSR_MTRRfix16K_80000
|| msr
== MSR_MTRRfix16K_A0000
)
1752 p
[1 + msr
- MSR_MTRRfix16K_80000
] = data
;
1753 else if (msr
>= MSR_MTRRfix4K_C0000
&& msr
<= MSR_MTRRfix4K_F8000
)
1754 p
[3 + msr
- MSR_MTRRfix4K_C0000
] = data
;
1755 else if (msr
== MSR_IA32_CR_PAT
)
1756 vcpu
->arch
.pat
= data
;
1757 else { /* Variable MTRRs */
1758 int idx
, is_mtrr_mask
;
1761 idx
= (msr
- 0x200) / 2;
1762 is_mtrr_mask
= msr
- 0x200 - 2 * idx
;
1765 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].base_lo
;
1768 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].mask_lo
;
1772 kvm_mmu_reset_context(vcpu
);
1776 static int set_msr_mce(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1778 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
1779 unsigned bank_num
= mcg_cap
& 0xff;
1782 case MSR_IA32_MCG_STATUS
:
1783 vcpu
->arch
.mcg_status
= data
;
1785 case MSR_IA32_MCG_CTL
:
1786 if (!(mcg_cap
& MCG_CTL_P
))
1788 if (data
!= 0 && data
!= ~(u64
)0)
1790 vcpu
->arch
.mcg_ctl
= data
;
1793 if (msr
>= MSR_IA32_MC0_CTL
&&
1794 msr
< MSR_IA32_MC0_CTL
+ 4 * bank_num
) {
1795 u32 offset
= msr
- MSR_IA32_MC0_CTL
;
1796 /* only 0 or all 1s can be written to IA32_MCi_CTL
1797 * some Linux kernels though clear bit 10 in bank 4 to
1798 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1799 * this to avoid an uncatched #GP in the guest
1801 if ((offset
& 0x3) == 0 &&
1802 data
!= 0 && (data
| (1 << 10)) != ~(u64
)0)
1804 vcpu
->arch
.mce_banks
[offset
] = data
;
1812 static int xen_hvm_config(struct kvm_vcpu
*vcpu
, u64 data
)
1814 struct kvm
*kvm
= vcpu
->kvm
;
1815 int lm
= is_long_mode(vcpu
);
1816 u8
*blob_addr
= lm
? (u8
*)(long)kvm
->arch
.xen_hvm_config
.blob_addr_64
1817 : (u8
*)(long)kvm
->arch
.xen_hvm_config
.blob_addr_32
;
1818 u8 blob_size
= lm
? kvm
->arch
.xen_hvm_config
.blob_size_64
1819 : kvm
->arch
.xen_hvm_config
.blob_size_32
;
1820 u32 page_num
= data
& ~PAGE_MASK
;
1821 u64 page_addr
= data
& PAGE_MASK
;
1826 if (page_num
>= blob_size
)
1829 page
= memdup_user(blob_addr
+ (page_num
* PAGE_SIZE
), PAGE_SIZE
);
1834 if (kvm_write_guest(kvm
, page_addr
, page
, PAGE_SIZE
))
1843 static bool kvm_hv_hypercall_enabled(struct kvm
*kvm
)
1845 return kvm
->arch
.hv_hypercall
& HV_X64_MSR_HYPERCALL_ENABLE
;
1848 static bool kvm_hv_msr_partition_wide(u32 msr
)
1852 case HV_X64_MSR_GUEST_OS_ID
:
1853 case HV_X64_MSR_HYPERCALL
:
1861 static int set_msr_hyperv_pw(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1863 struct kvm
*kvm
= vcpu
->kvm
;
1866 case HV_X64_MSR_GUEST_OS_ID
:
1867 kvm
->arch
.hv_guest_os_id
= data
;
1868 /* setting guest os id to zero disables hypercall page */
1869 if (!kvm
->arch
.hv_guest_os_id
)
1870 kvm
->arch
.hv_hypercall
&= ~HV_X64_MSR_HYPERCALL_ENABLE
;
1872 case HV_X64_MSR_HYPERCALL
: {
1877 /* if guest os id is not set hypercall should remain disabled */
1878 if (!kvm
->arch
.hv_guest_os_id
)
1880 if (!(data
& HV_X64_MSR_HYPERCALL_ENABLE
)) {
1881 kvm
->arch
.hv_hypercall
= data
;
1884 gfn
= data
>> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT
;
1885 addr
= gfn_to_hva(kvm
, gfn
);
1886 if (kvm_is_error_hva(addr
))
1888 kvm_x86_ops
->patch_hypercall(vcpu
, instructions
);
1889 ((unsigned char *)instructions
)[3] = 0xc3; /* ret */
1890 if (__copy_to_user((void __user
*)addr
, instructions
, 4))
1892 kvm
->arch
.hv_hypercall
= data
;
1896 vcpu_unimpl(vcpu
, "HYPER-V unimplemented wrmsr: 0x%x "
1897 "data 0x%llx\n", msr
, data
);
1903 static int set_msr_hyperv(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1906 case HV_X64_MSR_APIC_ASSIST_PAGE
: {
1909 if (!(data
& HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE
)) {
1910 vcpu
->arch
.hv_vapic
= data
;
1913 addr
= gfn_to_hva(vcpu
->kvm
, data
>>
1914 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT
);
1915 if (kvm_is_error_hva(addr
))
1917 if (__clear_user((void __user
*)addr
, PAGE_SIZE
))
1919 vcpu
->arch
.hv_vapic
= data
;
1922 case HV_X64_MSR_EOI
:
1923 return kvm_hv_vapic_msr_write(vcpu
, APIC_EOI
, data
);
1924 case HV_X64_MSR_ICR
:
1925 return kvm_hv_vapic_msr_write(vcpu
, APIC_ICR
, data
);
1926 case HV_X64_MSR_TPR
:
1927 return kvm_hv_vapic_msr_write(vcpu
, APIC_TASKPRI
, data
);
1929 vcpu_unimpl(vcpu
, "HYPER-V unimplemented wrmsr: 0x%x "
1930 "data 0x%llx\n", msr
, data
);
1937 static int kvm_pv_enable_async_pf(struct kvm_vcpu
*vcpu
, u64 data
)
1939 gpa_t gpa
= data
& ~0x3f;
1941 /* Bits 2:5 are reserved, Should be zero */
1945 vcpu
->arch
.apf
.msr_val
= data
;
1947 if (!(data
& KVM_ASYNC_PF_ENABLED
)) {
1948 kvm_clear_async_pf_completion_queue(vcpu
);
1949 kvm_async_pf_hash_reset(vcpu
);
1953 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
, &vcpu
->arch
.apf
.data
, gpa
,
1957 vcpu
->arch
.apf
.send_user_only
= !(data
& KVM_ASYNC_PF_SEND_ALWAYS
);
1958 kvm_async_pf_wakeup_all(vcpu
);
1962 static void kvmclock_reset(struct kvm_vcpu
*vcpu
)
1964 vcpu
->arch
.pv_time_enabled
= false;
1967 static void accumulate_steal_time(struct kvm_vcpu
*vcpu
)
1971 if (!(vcpu
->arch
.st
.msr_val
& KVM_MSR_ENABLED
))
1974 delta
= current
->sched_info
.run_delay
- vcpu
->arch
.st
.last_steal
;
1975 vcpu
->arch
.st
.last_steal
= current
->sched_info
.run_delay
;
1976 vcpu
->arch
.st
.accum_steal
= delta
;
1979 static void record_steal_time(struct kvm_vcpu
*vcpu
)
1981 accumulate_steal_time(vcpu
);
1983 if (!(vcpu
->arch
.st
.msr_val
& KVM_MSR_ENABLED
))
1986 if (unlikely(kvm_read_guest_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
1987 &vcpu
->arch
.st
.steal
, sizeof(struct kvm_steal_time
))))
1990 vcpu
->arch
.st
.steal
.steal
+= vcpu
->arch
.st
.accum_steal
;
1991 vcpu
->arch
.st
.steal
.version
+= 2;
1992 vcpu
->arch
.st
.accum_steal
= 0;
1994 kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
1995 &vcpu
->arch
.st
.steal
, sizeof(struct kvm_steal_time
));
1998 int kvm_set_msr_common(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
2001 u32 msr
= msr_info
->index
;
2002 u64 data
= msr_info
->data
;
2005 case MSR_AMD64_NB_CFG
:
2006 case MSR_IA32_UCODE_REV
:
2007 case MSR_IA32_UCODE_WRITE
:
2008 case MSR_VM_HSAVE_PA
:
2009 case MSR_AMD64_PATCH_LOADER
:
2010 case MSR_AMD64_BU_CFG2
:
2014 return set_efer(vcpu
, data
);
2016 data
&= ~(u64
)0x40; /* ignore flush filter disable */
2017 data
&= ~(u64
)0x100; /* ignore ignne emulation enable */
2018 data
&= ~(u64
)0x8; /* ignore TLB cache disable */
2020 vcpu_unimpl(vcpu
, "unimplemented HWCR wrmsr: 0x%llx\n",
2025 case MSR_FAM10H_MMIO_CONF_BASE
:
2027 vcpu_unimpl(vcpu
, "unimplemented MMIO_CONF_BASE wrmsr: "
2032 case MSR_IA32_DEBUGCTLMSR
:
2034 /* We support the non-activated case already */
2036 } else if (data
& ~(DEBUGCTLMSR_LBR
| DEBUGCTLMSR_BTF
)) {
2037 /* Values other than LBR and BTF are vendor-specific,
2038 thus reserved and should throw a #GP */
2041 vcpu_unimpl(vcpu
, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2044 case 0x200 ... 0x2ff:
2045 return set_msr_mtrr(vcpu
, msr
, data
);
2046 case MSR_IA32_APICBASE
:
2047 kvm_set_apic_base(vcpu
, data
);
2049 case APIC_BASE_MSR
... APIC_BASE_MSR
+ 0x3ff:
2050 return kvm_x2apic_msr_write(vcpu
, msr
, data
);
2051 case MSR_IA32_TSCDEADLINE
:
2052 kvm_set_lapic_tscdeadline_msr(vcpu
, data
);
2054 case MSR_IA32_TSC_ADJUST
:
2055 if (guest_cpuid_has_tsc_adjust(vcpu
)) {
2056 if (!msr_info
->host_initiated
) {
2057 u64 adj
= data
- vcpu
->arch
.ia32_tsc_adjust_msr
;
2058 kvm_x86_ops
->adjust_tsc_offset(vcpu
, adj
, true);
2060 vcpu
->arch
.ia32_tsc_adjust_msr
= data
;
2063 case MSR_IA32_MISC_ENABLE
:
2064 vcpu
->arch
.ia32_misc_enable_msr
= data
;
2066 case MSR_KVM_WALL_CLOCK_NEW
:
2067 case MSR_KVM_WALL_CLOCK
:
2068 vcpu
->kvm
->arch
.wall_clock
= data
;
2069 kvm_write_wall_clock(vcpu
->kvm
, data
);
2071 case MSR_KVM_SYSTEM_TIME_NEW
:
2072 case MSR_KVM_SYSTEM_TIME
: {
2074 kvmclock_reset(vcpu
);
2076 vcpu
->arch
.time
= data
;
2077 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE
, vcpu
);
2079 /* we verify if the enable bit is set... */
2083 gpa_offset
= data
& ~(PAGE_MASK
| 1);
2085 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
,
2086 &vcpu
->arch
.pv_time
, data
& ~1ULL,
2087 sizeof(struct pvclock_vcpu_time_info
)))
2088 vcpu
->arch
.pv_time_enabled
= false;
2090 vcpu
->arch
.pv_time_enabled
= true;
2094 case MSR_KVM_ASYNC_PF_EN
:
2095 if (kvm_pv_enable_async_pf(vcpu
, data
))
2098 case MSR_KVM_STEAL_TIME
:
2100 if (unlikely(!sched_info_on()))
2103 if (data
& KVM_STEAL_RESERVED_MASK
)
2106 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
2107 data
& KVM_STEAL_VALID_BITS
,
2108 sizeof(struct kvm_steal_time
)))
2111 vcpu
->arch
.st
.msr_val
= data
;
2113 if (!(data
& KVM_MSR_ENABLED
))
2116 kvm_make_request(KVM_REQ_STEAL_UPDATE
, vcpu
);
2119 case MSR_KVM_PV_EOI_EN
:
2120 if (kvm_lapic_enable_pv_eoi(vcpu
, data
))
2124 case MSR_IA32_MCG_CTL
:
2125 case MSR_IA32_MCG_STATUS
:
2126 case MSR_IA32_MC0_CTL
... MSR_IA32_MC0_CTL
+ 4 * KVM_MAX_MCE_BANKS
- 1:
2127 return set_msr_mce(vcpu
, msr
, data
);
2129 /* Performance counters are not protected by a CPUID bit,
2130 * so we should check all of them in the generic path for the sake of
2131 * cross vendor migration.
2132 * Writing a zero into the event select MSRs disables them,
2133 * which we perfectly emulate ;-). Any other value should be at least
2134 * reported, some guests depend on them.
2136 case MSR_K7_EVNTSEL0
:
2137 case MSR_K7_EVNTSEL1
:
2138 case MSR_K7_EVNTSEL2
:
2139 case MSR_K7_EVNTSEL3
:
2141 vcpu_unimpl(vcpu
, "unimplemented perfctr wrmsr: "
2142 "0x%x data 0x%llx\n", msr
, data
);
2144 /* at least RHEL 4 unconditionally writes to the perfctr registers,
2145 * so we ignore writes to make it happy.
2147 case MSR_K7_PERFCTR0
:
2148 case MSR_K7_PERFCTR1
:
2149 case MSR_K7_PERFCTR2
:
2150 case MSR_K7_PERFCTR3
:
2151 vcpu_unimpl(vcpu
, "unimplemented perfctr wrmsr: "
2152 "0x%x data 0x%llx\n", msr
, data
);
2154 case MSR_P6_PERFCTR0
:
2155 case MSR_P6_PERFCTR1
:
2157 case MSR_P6_EVNTSEL0
:
2158 case MSR_P6_EVNTSEL1
:
2159 if (kvm_pmu_msr(vcpu
, msr
))
2160 return kvm_pmu_set_msr(vcpu
, msr_info
);
2162 if (pr
|| data
!= 0)
2163 vcpu_unimpl(vcpu
, "disabled perfctr wrmsr: "
2164 "0x%x data 0x%llx\n", msr
, data
);
2166 case MSR_K7_CLK_CTL
:
2168 * Ignore all writes to this no longer documented MSR.
2169 * Writes are only relevant for old K7 processors,
2170 * all pre-dating SVM, but a recommended workaround from
2171 * AMD for these chips. It is possible to specify the
2172 * affected processor models on the command line, hence
2173 * the need to ignore the workaround.
2176 case HV_X64_MSR_GUEST_OS_ID
... HV_X64_MSR_SINT15
:
2177 if (kvm_hv_msr_partition_wide(msr
)) {
2179 mutex_lock(&vcpu
->kvm
->lock
);
2180 r
= set_msr_hyperv_pw(vcpu
, msr
, data
);
2181 mutex_unlock(&vcpu
->kvm
->lock
);
2184 return set_msr_hyperv(vcpu
, msr
, data
);
2186 case MSR_IA32_BBL_CR_CTL3
:
2187 /* Drop writes to this legacy MSR -- see rdmsr
2188 * counterpart for further detail.
2190 vcpu_unimpl(vcpu
, "ignored wrmsr: 0x%x data %llx\n", msr
, data
);
2192 case MSR_AMD64_OSVW_ID_LENGTH
:
2193 if (!guest_cpuid_has_osvw(vcpu
))
2195 vcpu
->arch
.osvw
.length
= data
;
2197 case MSR_AMD64_OSVW_STATUS
:
2198 if (!guest_cpuid_has_osvw(vcpu
))
2200 vcpu
->arch
.osvw
.status
= data
;
2203 if (msr
&& (msr
== vcpu
->kvm
->arch
.xen_hvm_config
.msr
))
2204 return xen_hvm_config(vcpu
, data
);
2205 if (kvm_pmu_msr(vcpu
, msr
))
2206 return kvm_pmu_set_msr(vcpu
, msr_info
);
2208 vcpu_unimpl(vcpu
, "unhandled wrmsr: 0x%x data %llx\n",
2212 vcpu_unimpl(vcpu
, "ignored wrmsr: 0x%x data %llx\n",
2219 EXPORT_SYMBOL_GPL(kvm_set_msr_common
);
2223 * Reads an msr value (of 'msr_index') into 'pdata'.
2224 * Returns 0 on success, non-0 otherwise.
2225 * Assumes vcpu_load() was already called.
2227 int kvm_get_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64
*pdata
)
2229 return kvm_x86_ops
->get_msr(vcpu
, msr_index
, pdata
);
2232 static int get_msr_mtrr(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
2234 u64
*p
= (u64
*)&vcpu
->arch
.mtrr_state
.fixed_ranges
;
2236 if (!msr_mtrr_valid(msr
))
2239 if (msr
== MSR_MTRRdefType
)
2240 *pdata
= vcpu
->arch
.mtrr_state
.def_type
+
2241 (vcpu
->arch
.mtrr_state
.enabled
<< 10);
2242 else if (msr
== MSR_MTRRfix64K_00000
)
2244 else if (msr
== MSR_MTRRfix16K_80000
|| msr
== MSR_MTRRfix16K_A0000
)
2245 *pdata
= p
[1 + msr
- MSR_MTRRfix16K_80000
];
2246 else if (msr
>= MSR_MTRRfix4K_C0000
&& msr
<= MSR_MTRRfix4K_F8000
)
2247 *pdata
= p
[3 + msr
- MSR_MTRRfix4K_C0000
];
2248 else if (msr
== MSR_IA32_CR_PAT
)
2249 *pdata
= vcpu
->arch
.pat
;
2250 else { /* Variable MTRRs */
2251 int idx
, is_mtrr_mask
;
2254 idx
= (msr
- 0x200) / 2;
2255 is_mtrr_mask
= msr
- 0x200 - 2 * idx
;
2258 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].base_lo
;
2261 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].mask_lo
;
2268 static int get_msr_mce(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
2271 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
2272 unsigned bank_num
= mcg_cap
& 0xff;
2275 case MSR_IA32_P5_MC_ADDR
:
2276 case MSR_IA32_P5_MC_TYPE
:
2279 case MSR_IA32_MCG_CAP
:
2280 data
= vcpu
->arch
.mcg_cap
;
2282 case MSR_IA32_MCG_CTL
:
2283 if (!(mcg_cap
& MCG_CTL_P
))
2285 data
= vcpu
->arch
.mcg_ctl
;
2287 case MSR_IA32_MCG_STATUS
:
2288 data
= vcpu
->arch
.mcg_status
;
2291 if (msr
>= MSR_IA32_MC0_CTL
&&
2292 msr
< MSR_IA32_MC0_CTL
+ 4 * bank_num
) {
2293 u32 offset
= msr
- MSR_IA32_MC0_CTL
;
2294 data
= vcpu
->arch
.mce_banks
[offset
];
2303 static int get_msr_hyperv_pw(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
2306 struct kvm
*kvm
= vcpu
->kvm
;
2309 case HV_X64_MSR_GUEST_OS_ID
:
2310 data
= kvm
->arch
.hv_guest_os_id
;
2312 case HV_X64_MSR_HYPERCALL
:
2313 data
= kvm
->arch
.hv_hypercall
;
2316 vcpu_unimpl(vcpu
, "Hyper-V unhandled rdmsr: 0x%x\n", msr
);
2324 static int get_msr_hyperv(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
2329 case HV_X64_MSR_VP_INDEX
: {
2332 kvm_for_each_vcpu(r
, v
, vcpu
->kvm
)
2337 case HV_X64_MSR_EOI
:
2338 return kvm_hv_vapic_msr_read(vcpu
, APIC_EOI
, pdata
);
2339 case HV_X64_MSR_ICR
:
2340 return kvm_hv_vapic_msr_read(vcpu
, APIC_ICR
, pdata
);
2341 case HV_X64_MSR_TPR
:
2342 return kvm_hv_vapic_msr_read(vcpu
, APIC_TASKPRI
, pdata
);
2343 case HV_X64_MSR_APIC_ASSIST_PAGE
:
2344 data
= vcpu
->arch
.hv_vapic
;
2347 vcpu_unimpl(vcpu
, "Hyper-V unhandled rdmsr: 0x%x\n", msr
);
2354 int kvm_get_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
2359 case MSR_IA32_PLATFORM_ID
:
2360 case MSR_IA32_EBL_CR_POWERON
:
2361 case MSR_IA32_DEBUGCTLMSR
:
2362 case MSR_IA32_LASTBRANCHFROMIP
:
2363 case MSR_IA32_LASTBRANCHTOIP
:
2364 case MSR_IA32_LASTINTFROMIP
:
2365 case MSR_IA32_LASTINTTOIP
:
2368 case MSR_VM_HSAVE_PA
:
2369 case MSR_K7_EVNTSEL0
:
2370 case MSR_K7_EVNTSEL1
:
2371 case MSR_K7_EVNTSEL2
:
2372 case MSR_K7_EVNTSEL3
:
2373 case MSR_K7_PERFCTR0
:
2374 case MSR_K7_PERFCTR1
:
2375 case MSR_K7_PERFCTR2
:
2376 case MSR_K7_PERFCTR3
:
2377 case MSR_K8_INT_PENDING_MSG
:
2378 case MSR_AMD64_NB_CFG
:
2379 case MSR_FAM10H_MMIO_CONF_BASE
:
2380 case MSR_AMD64_BU_CFG2
:
2383 case MSR_P6_PERFCTR0
:
2384 case MSR_P6_PERFCTR1
:
2385 case MSR_P6_EVNTSEL0
:
2386 case MSR_P6_EVNTSEL1
:
2387 if (kvm_pmu_msr(vcpu
, msr
))
2388 return kvm_pmu_get_msr(vcpu
, msr
, pdata
);
2391 case MSR_IA32_UCODE_REV
:
2392 data
= 0x100000000ULL
;
2395 data
= 0x500 | KVM_NR_VAR_MTRR
;
2397 case 0x200 ... 0x2ff:
2398 return get_msr_mtrr(vcpu
, msr
, pdata
);
2399 case 0xcd: /* fsb frequency */
2403 * MSR_EBC_FREQUENCY_ID
2404 * Conservative value valid for even the basic CPU models.
2405 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2406 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2407 * and 266MHz for model 3, or 4. Set Core Clock
2408 * Frequency to System Bus Frequency Ratio to 1 (bits
2409 * 31:24) even though these are only valid for CPU
2410 * models > 2, however guests may end up dividing or
2411 * multiplying by zero otherwise.
2413 case MSR_EBC_FREQUENCY_ID
:
2416 case MSR_IA32_APICBASE
:
2417 data
= kvm_get_apic_base(vcpu
);
2419 case APIC_BASE_MSR
... APIC_BASE_MSR
+ 0x3ff:
2420 return kvm_x2apic_msr_read(vcpu
, msr
, pdata
);
2422 case MSR_IA32_TSCDEADLINE
:
2423 data
= kvm_get_lapic_tscdeadline_msr(vcpu
);
2425 case MSR_IA32_TSC_ADJUST
:
2426 data
= (u64
)vcpu
->arch
.ia32_tsc_adjust_msr
;
2428 case MSR_IA32_MISC_ENABLE
:
2429 data
= vcpu
->arch
.ia32_misc_enable_msr
;
2431 case MSR_IA32_PERF_STATUS
:
2432 /* TSC increment by tick */
2434 /* CPU multiplier */
2435 data
|= (((uint64_t)4ULL) << 40);
2438 data
= vcpu
->arch
.efer
;
2440 case MSR_KVM_WALL_CLOCK
:
2441 case MSR_KVM_WALL_CLOCK_NEW
:
2442 data
= vcpu
->kvm
->arch
.wall_clock
;
2444 case MSR_KVM_SYSTEM_TIME
:
2445 case MSR_KVM_SYSTEM_TIME_NEW
:
2446 data
= vcpu
->arch
.time
;
2448 case MSR_KVM_ASYNC_PF_EN
:
2449 data
= vcpu
->arch
.apf
.msr_val
;
2451 case MSR_KVM_STEAL_TIME
:
2452 data
= vcpu
->arch
.st
.msr_val
;
2454 case MSR_KVM_PV_EOI_EN
:
2455 data
= vcpu
->arch
.pv_eoi
.msr_val
;
2457 case MSR_IA32_P5_MC_ADDR
:
2458 case MSR_IA32_P5_MC_TYPE
:
2459 case MSR_IA32_MCG_CAP
:
2460 case MSR_IA32_MCG_CTL
:
2461 case MSR_IA32_MCG_STATUS
:
2462 case MSR_IA32_MC0_CTL
... MSR_IA32_MC0_CTL
+ 4 * KVM_MAX_MCE_BANKS
- 1:
2463 return get_msr_mce(vcpu
, msr
, pdata
);
2464 case MSR_K7_CLK_CTL
:
2466 * Provide expected ramp-up count for K7. All other
2467 * are set to zero, indicating minimum divisors for
2470 * This prevents guest kernels on AMD host with CPU
2471 * type 6, model 8 and higher from exploding due to
2472 * the rdmsr failing.
2476 case HV_X64_MSR_GUEST_OS_ID
... HV_X64_MSR_SINT15
:
2477 if (kvm_hv_msr_partition_wide(msr
)) {
2479 mutex_lock(&vcpu
->kvm
->lock
);
2480 r
= get_msr_hyperv_pw(vcpu
, msr
, pdata
);
2481 mutex_unlock(&vcpu
->kvm
->lock
);
2484 return get_msr_hyperv(vcpu
, msr
, pdata
);
2486 case MSR_IA32_BBL_CR_CTL3
:
2487 /* This legacy MSR exists but isn't fully documented in current
2488 * silicon. It is however accessed by winxp in very narrow
2489 * scenarios where it sets bit #19, itself documented as
2490 * a "reserved" bit. Best effort attempt to source coherent
2491 * read data here should the balance of the register be
2492 * interpreted by the guest:
2494 * L2 cache control register 3: 64GB range, 256KB size,
2495 * enabled, latency 0x1, configured
2499 case MSR_AMD64_OSVW_ID_LENGTH
:
2500 if (!guest_cpuid_has_osvw(vcpu
))
2502 data
= vcpu
->arch
.osvw
.length
;
2504 case MSR_AMD64_OSVW_STATUS
:
2505 if (!guest_cpuid_has_osvw(vcpu
))
2507 data
= vcpu
->arch
.osvw
.status
;
2510 if (kvm_pmu_msr(vcpu
, msr
))
2511 return kvm_pmu_get_msr(vcpu
, msr
, pdata
);
2513 vcpu_unimpl(vcpu
, "unhandled rdmsr: 0x%x\n", msr
);
2516 vcpu_unimpl(vcpu
, "ignored rdmsr: 0x%x\n", msr
);
2524 EXPORT_SYMBOL_GPL(kvm_get_msr_common
);
2527 * Read or write a bunch of msrs. All parameters are kernel addresses.
2529 * @return number of msrs set successfully.
2531 static int __msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs
*msrs
,
2532 struct kvm_msr_entry
*entries
,
2533 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
2534 unsigned index
, u64
*data
))
2538 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
2539 for (i
= 0; i
< msrs
->nmsrs
; ++i
)
2540 if (do_msr(vcpu
, entries
[i
].index
, &entries
[i
].data
))
2542 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
2548 * Read or write a bunch of msrs. Parameters are user addresses.
2550 * @return number of msrs set successfully.
2552 static int msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs __user
*user_msrs
,
2553 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
2554 unsigned index
, u64
*data
),
2557 struct kvm_msrs msrs
;
2558 struct kvm_msr_entry
*entries
;
2563 if (copy_from_user(&msrs
, user_msrs
, sizeof msrs
))
2567 if (msrs
.nmsrs
>= MAX_IO_MSRS
)
2570 size
= sizeof(struct kvm_msr_entry
) * msrs
.nmsrs
;
2571 entries
= memdup_user(user_msrs
->entries
, size
);
2572 if (IS_ERR(entries
)) {
2573 r
= PTR_ERR(entries
);
2577 r
= n
= __msr_io(vcpu
, &msrs
, entries
, do_msr
);
2582 if (writeback
&& copy_to_user(user_msrs
->entries
, entries
, size
))
2593 int kvm_dev_ioctl_check_extension(long ext
)
2598 case KVM_CAP_IRQCHIP
:
2600 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL
:
2601 case KVM_CAP_SET_TSS_ADDR
:
2602 case KVM_CAP_EXT_CPUID
:
2603 case KVM_CAP_CLOCKSOURCE
:
2605 case KVM_CAP_NOP_IO_DELAY
:
2606 case KVM_CAP_MP_STATE
:
2607 case KVM_CAP_SYNC_MMU
:
2608 case KVM_CAP_USER_NMI
:
2609 case KVM_CAP_REINJECT_CONTROL
:
2610 case KVM_CAP_IRQ_INJECT_STATUS
:
2612 case KVM_CAP_IOEVENTFD
:
2614 case KVM_CAP_PIT_STATE2
:
2615 case KVM_CAP_SET_IDENTITY_MAP_ADDR
:
2616 case KVM_CAP_XEN_HVM
:
2617 case KVM_CAP_ADJUST_CLOCK
:
2618 case KVM_CAP_VCPU_EVENTS
:
2619 case KVM_CAP_HYPERV
:
2620 case KVM_CAP_HYPERV_VAPIC
:
2621 case KVM_CAP_HYPERV_SPIN
:
2622 case KVM_CAP_PCI_SEGMENT
:
2623 case KVM_CAP_DEBUGREGS
:
2624 case KVM_CAP_X86_ROBUST_SINGLESTEP
:
2626 case KVM_CAP_ASYNC_PF
:
2627 case KVM_CAP_GET_TSC_KHZ
:
2628 case KVM_CAP_KVMCLOCK_CTRL
:
2629 case KVM_CAP_READONLY_MEM
:
2630 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2631 case KVM_CAP_ASSIGN_DEV_IRQ
:
2632 case KVM_CAP_PCI_2_3
:
2636 case KVM_CAP_COALESCED_MMIO
:
2637 r
= KVM_COALESCED_MMIO_PAGE_OFFSET
;
2640 r
= !kvm_x86_ops
->cpu_has_accelerated_tpr();
2642 case KVM_CAP_NR_VCPUS
:
2643 r
= KVM_SOFT_MAX_VCPUS
;
2645 case KVM_CAP_MAX_VCPUS
:
2648 case KVM_CAP_NR_MEMSLOTS
:
2649 r
= KVM_USER_MEM_SLOTS
;
2651 case KVM_CAP_PV_MMU
: /* obsolete */
2654 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2656 r
= iommu_present(&pci_bus_type
);
2660 r
= KVM_MAX_MCE_BANKS
;
2665 case KVM_CAP_TSC_CONTROL
:
2666 r
= kvm_has_tsc_control
;
2668 case KVM_CAP_TSC_DEADLINE_TIMER
:
2669 r
= boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER
);
2679 long kvm_arch_dev_ioctl(struct file
*filp
,
2680 unsigned int ioctl
, unsigned long arg
)
2682 void __user
*argp
= (void __user
*)arg
;
2686 case KVM_GET_MSR_INDEX_LIST
: {
2687 struct kvm_msr_list __user
*user_msr_list
= argp
;
2688 struct kvm_msr_list msr_list
;
2692 if (copy_from_user(&msr_list
, user_msr_list
, sizeof msr_list
))
2695 msr_list
.nmsrs
= num_msrs_to_save
+ ARRAY_SIZE(emulated_msrs
);
2696 if (copy_to_user(user_msr_list
, &msr_list
, sizeof msr_list
))
2699 if (n
< msr_list
.nmsrs
)
2702 if (copy_to_user(user_msr_list
->indices
, &msrs_to_save
,
2703 num_msrs_to_save
* sizeof(u32
)))
2705 if (copy_to_user(user_msr_list
->indices
+ num_msrs_to_save
,
2707 ARRAY_SIZE(emulated_msrs
) * sizeof(u32
)))
2712 case KVM_GET_SUPPORTED_CPUID
: {
2713 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
2714 struct kvm_cpuid2 cpuid
;
2717 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
2719 r
= kvm_dev_ioctl_get_supported_cpuid(&cpuid
,
2720 cpuid_arg
->entries
);
2725 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
2730 case KVM_X86_GET_MCE_CAP_SUPPORTED
: {
2733 mce_cap
= KVM_MCE_CAP_SUPPORTED
;
2735 if (copy_to_user(argp
, &mce_cap
, sizeof mce_cap
))
2747 static void wbinvd_ipi(void *garbage
)
2752 static bool need_emulate_wbinvd(struct kvm_vcpu
*vcpu
)
2754 return vcpu
->kvm
->arch
.iommu_domain
&&
2755 !(vcpu
->kvm
->arch
.iommu_flags
& KVM_IOMMU_CACHE_COHERENCY
);
2758 void kvm_arch_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
2760 /* Address WBINVD may be executed by guest */
2761 if (need_emulate_wbinvd(vcpu
)) {
2762 if (kvm_x86_ops
->has_wbinvd_exit())
2763 cpumask_set_cpu(cpu
, vcpu
->arch
.wbinvd_dirty_mask
);
2764 else if (vcpu
->cpu
!= -1 && vcpu
->cpu
!= cpu
)
2765 smp_call_function_single(vcpu
->cpu
,
2766 wbinvd_ipi
, NULL
, 1);
2769 kvm_x86_ops
->vcpu_load(vcpu
, cpu
);
2771 /* Apply any externally detected TSC adjustments (due to suspend) */
2772 if (unlikely(vcpu
->arch
.tsc_offset_adjustment
)) {
2773 adjust_tsc_offset_host(vcpu
, vcpu
->arch
.tsc_offset_adjustment
);
2774 vcpu
->arch
.tsc_offset_adjustment
= 0;
2775 set_bit(KVM_REQ_CLOCK_UPDATE
, &vcpu
->requests
);
2778 if (unlikely(vcpu
->cpu
!= cpu
) || check_tsc_unstable()) {
2779 s64 tsc_delta
= !vcpu
->arch
.last_host_tsc
? 0 :
2780 native_read_tsc() - vcpu
->arch
.last_host_tsc
;
2782 mark_tsc_unstable("KVM discovered backwards TSC");
2783 if (check_tsc_unstable()) {
2784 u64 offset
= kvm_x86_ops
->compute_tsc_offset(vcpu
,
2785 vcpu
->arch
.last_guest_tsc
);
2786 kvm_x86_ops
->write_tsc_offset(vcpu
, offset
);
2787 vcpu
->arch
.tsc_catchup
= 1;
2790 * On a host with synchronized TSC, there is no need to update
2791 * kvmclock on vcpu->cpu migration
2793 if (!vcpu
->kvm
->arch
.use_master_clock
|| vcpu
->cpu
== -1)
2794 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE
, vcpu
);
2795 if (vcpu
->cpu
!= cpu
)
2796 kvm_migrate_timers(vcpu
);
2800 kvm_make_request(KVM_REQ_STEAL_UPDATE
, vcpu
);
2803 void kvm_arch_vcpu_put(struct kvm_vcpu
*vcpu
)
2805 kvm_x86_ops
->vcpu_put(vcpu
);
2806 kvm_put_guest_fpu(vcpu
);
2807 vcpu
->arch
.last_host_tsc
= native_read_tsc();
2810 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu
*vcpu
,
2811 struct kvm_lapic_state
*s
)
2813 kvm_x86_ops
->sync_pir_to_irr(vcpu
);
2814 memcpy(s
->regs
, vcpu
->arch
.apic
->regs
, sizeof *s
);
2819 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu
*vcpu
,
2820 struct kvm_lapic_state
*s
)
2822 kvm_apic_post_state_restore(vcpu
, s
);
2823 update_cr8_intercept(vcpu
);
2828 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu
*vcpu
,
2829 struct kvm_interrupt
*irq
)
2831 if (irq
->irq
>= KVM_NR_INTERRUPTS
)
2833 if (irqchip_in_kernel(vcpu
->kvm
))
2836 kvm_queue_interrupt(vcpu
, irq
->irq
, false);
2837 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
2842 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu
*vcpu
)
2844 kvm_inject_nmi(vcpu
);
2849 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu
*vcpu
,
2850 struct kvm_tpr_access_ctl
*tac
)
2854 vcpu
->arch
.tpr_access_reporting
= !!tac
->enabled
;
2858 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu
*vcpu
,
2862 unsigned bank_num
= mcg_cap
& 0xff, bank
;
2865 if (!bank_num
|| bank_num
>= KVM_MAX_MCE_BANKS
)
2867 if (mcg_cap
& ~(KVM_MCE_CAP_SUPPORTED
| 0xff | 0xff0000))
2870 vcpu
->arch
.mcg_cap
= mcg_cap
;
2871 /* Init IA32_MCG_CTL to all 1s */
2872 if (mcg_cap
& MCG_CTL_P
)
2873 vcpu
->arch
.mcg_ctl
= ~(u64
)0;
2874 /* Init IA32_MCi_CTL to all 1s */
2875 for (bank
= 0; bank
< bank_num
; bank
++)
2876 vcpu
->arch
.mce_banks
[bank
*4] = ~(u64
)0;
2881 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu
*vcpu
,
2882 struct kvm_x86_mce
*mce
)
2884 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
2885 unsigned bank_num
= mcg_cap
& 0xff;
2886 u64
*banks
= vcpu
->arch
.mce_banks
;
2888 if (mce
->bank
>= bank_num
|| !(mce
->status
& MCI_STATUS_VAL
))
2891 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2892 * reporting is disabled
2894 if ((mce
->status
& MCI_STATUS_UC
) && (mcg_cap
& MCG_CTL_P
) &&
2895 vcpu
->arch
.mcg_ctl
!= ~(u64
)0)
2897 banks
+= 4 * mce
->bank
;
2899 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2900 * reporting is disabled for the bank
2902 if ((mce
->status
& MCI_STATUS_UC
) && banks
[0] != ~(u64
)0)
2904 if (mce
->status
& MCI_STATUS_UC
) {
2905 if ((vcpu
->arch
.mcg_status
& MCG_STATUS_MCIP
) ||
2906 !kvm_read_cr4_bits(vcpu
, X86_CR4_MCE
)) {
2907 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
2910 if (banks
[1] & MCI_STATUS_VAL
)
2911 mce
->status
|= MCI_STATUS_OVER
;
2912 banks
[2] = mce
->addr
;
2913 banks
[3] = mce
->misc
;
2914 vcpu
->arch
.mcg_status
= mce
->mcg_status
;
2915 banks
[1] = mce
->status
;
2916 kvm_queue_exception(vcpu
, MC_VECTOR
);
2917 } else if (!(banks
[1] & MCI_STATUS_VAL
)
2918 || !(banks
[1] & MCI_STATUS_UC
)) {
2919 if (banks
[1] & MCI_STATUS_VAL
)
2920 mce
->status
|= MCI_STATUS_OVER
;
2921 banks
[2] = mce
->addr
;
2922 banks
[3] = mce
->misc
;
2923 banks
[1] = mce
->status
;
2925 banks
[1] |= MCI_STATUS_OVER
;
2929 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu
*vcpu
,
2930 struct kvm_vcpu_events
*events
)
2933 events
->exception
.injected
=
2934 vcpu
->arch
.exception
.pending
&&
2935 !kvm_exception_is_soft(vcpu
->arch
.exception
.nr
);
2936 events
->exception
.nr
= vcpu
->arch
.exception
.nr
;
2937 events
->exception
.has_error_code
= vcpu
->arch
.exception
.has_error_code
;
2938 events
->exception
.pad
= 0;
2939 events
->exception
.error_code
= vcpu
->arch
.exception
.error_code
;
2941 events
->interrupt
.injected
=
2942 vcpu
->arch
.interrupt
.pending
&& !vcpu
->arch
.interrupt
.soft
;
2943 events
->interrupt
.nr
= vcpu
->arch
.interrupt
.nr
;
2944 events
->interrupt
.soft
= 0;
2945 events
->interrupt
.shadow
=
2946 kvm_x86_ops
->get_interrupt_shadow(vcpu
,
2947 KVM_X86_SHADOW_INT_MOV_SS
| KVM_X86_SHADOW_INT_STI
);
2949 events
->nmi
.injected
= vcpu
->arch
.nmi_injected
;
2950 events
->nmi
.pending
= vcpu
->arch
.nmi_pending
!= 0;
2951 events
->nmi
.masked
= kvm_x86_ops
->get_nmi_mask(vcpu
);
2952 events
->nmi
.pad
= 0;
2954 events
->sipi_vector
= 0; /* never valid when reporting to user space */
2956 events
->flags
= (KVM_VCPUEVENT_VALID_NMI_PENDING
2957 | KVM_VCPUEVENT_VALID_SHADOW
);
2958 memset(&events
->reserved
, 0, sizeof(events
->reserved
));
2961 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu
*vcpu
,
2962 struct kvm_vcpu_events
*events
)
2964 if (events
->flags
& ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2965 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2966 | KVM_VCPUEVENT_VALID_SHADOW
))
2970 vcpu
->arch
.exception
.pending
= events
->exception
.injected
;
2971 vcpu
->arch
.exception
.nr
= events
->exception
.nr
;
2972 vcpu
->arch
.exception
.has_error_code
= events
->exception
.has_error_code
;
2973 vcpu
->arch
.exception
.error_code
= events
->exception
.error_code
;
2975 vcpu
->arch
.interrupt
.pending
= events
->interrupt
.injected
;
2976 vcpu
->arch
.interrupt
.nr
= events
->interrupt
.nr
;
2977 vcpu
->arch
.interrupt
.soft
= events
->interrupt
.soft
;
2978 if (events
->flags
& KVM_VCPUEVENT_VALID_SHADOW
)
2979 kvm_x86_ops
->set_interrupt_shadow(vcpu
,
2980 events
->interrupt
.shadow
);
2982 vcpu
->arch
.nmi_injected
= events
->nmi
.injected
;
2983 if (events
->flags
& KVM_VCPUEVENT_VALID_NMI_PENDING
)
2984 vcpu
->arch
.nmi_pending
= events
->nmi
.pending
;
2985 kvm_x86_ops
->set_nmi_mask(vcpu
, events
->nmi
.masked
);
2987 if (events
->flags
& KVM_VCPUEVENT_VALID_SIPI_VECTOR
&&
2988 kvm_vcpu_has_lapic(vcpu
))
2989 vcpu
->arch
.apic
->sipi_vector
= events
->sipi_vector
;
2991 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
2996 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu
*vcpu
,
2997 struct kvm_debugregs
*dbgregs
)
2999 memcpy(dbgregs
->db
, vcpu
->arch
.db
, sizeof(vcpu
->arch
.db
));
3000 dbgregs
->dr6
= vcpu
->arch
.dr6
;
3001 dbgregs
->dr7
= vcpu
->arch
.dr7
;
3003 memset(&dbgregs
->reserved
, 0, sizeof(dbgregs
->reserved
));
3006 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu
*vcpu
,
3007 struct kvm_debugregs
*dbgregs
)
3012 if (dbgregs
->dr6
& ~0xffffffffull
)
3014 if (dbgregs
->dr7
& ~0xffffffffull
)
3017 memcpy(vcpu
->arch
.db
, dbgregs
->db
, sizeof(vcpu
->arch
.db
));
3018 vcpu
->arch
.dr6
= dbgregs
->dr6
;
3019 vcpu
->arch
.dr7
= dbgregs
->dr7
;
3024 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu
*vcpu
,
3025 struct kvm_xsave
*guest_xsave
)
3028 memcpy(guest_xsave
->region
,
3029 &vcpu
->arch
.guest_fpu
.state
->xsave
,
3032 memcpy(guest_xsave
->region
,
3033 &vcpu
->arch
.guest_fpu
.state
->fxsave
,
3034 sizeof(struct i387_fxsave_struct
));
3035 *(u64
*)&guest_xsave
->region
[XSAVE_HDR_OFFSET
/ sizeof(u32
)] =
3040 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu
*vcpu
,
3041 struct kvm_xsave
*guest_xsave
)
3044 *(u64
*)&guest_xsave
->region
[XSAVE_HDR_OFFSET
/ sizeof(u32
)];
3047 memcpy(&vcpu
->arch
.guest_fpu
.state
->xsave
,
3048 guest_xsave
->region
, xstate_size
);
3050 if (xstate_bv
& ~XSTATE_FPSSE
)
3052 memcpy(&vcpu
->arch
.guest_fpu
.state
->fxsave
,
3053 guest_xsave
->region
, sizeof(struct i387_fxsave_struct
));
3058 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu
*vcpu
,
3059 struct kvm_xcrs
*guest_xcrs
)
3061 if (!cpu_has_xsave
) {
3062 guest_xcrs
->nr_xcrs
= 0;
3066 guest_xcrs
->nr_xcrs
= 1;
3067 guest_xcrs
->flags
= 0;
3068 guest_xcrs
->xcrs
[0].xcr
= XCR_XFEATURE_ENABLED_MASK
;
3069 guest_xcrs
->xcrs
[0].value
= vcpu
->arch
.xcr0
;
3072 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu
*vcpu
,
3073 struct kvm_xcrs
*guest_xcrs
)
3080 if (guest_xcrs
->nr_xcrs
> KVM_MAX_XCRS
|| guest_xcrs
->flags
)
3083 for (i
= 0; i
< guest_xcrs
->nr_xcrs
; i
++)
3084 /* Only support XCR0 currently */
3085 if (guest_xcrs
->xcrs
[0].xcr
== XCR_XFEATURE_ENABLED_MASK
) {
3086 r
= __kvm_set_xcr(vcpu
, XCR_XFEATURE_ENABLED_MASK
,
3087 guest_xcrs
->xcrs
[0].value
);
3096 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3097 * stopped by the hypervisor. This function will be called from the host only.
3098 * EINVAL is returned when the host attempts to set the flag for a guest that
3099 * does not support pv clocks.
3101 static int kvm_set_guest_paused(struct kvm_vcpu
*vcpu
)
3103 if (!vcpu
->arch
.pv_time_enabled
)
3105 vcpu
->arch
.pvclock_set_guest_stopped_request
= true;
3106 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
3110 long kvm_arch_vcpu_ioctl(struct file
*filp
,
3111 unsigned int ioctl
, unsigned long arg
)
3113 struct kvm_vcpu
*vcpu
= filp
->private_data
;
3114 void __user
*argp
= (void __user
*)arg
;
3117 struct kvm_lapic_state
*lapic
;
3118 struct kvm_xsave
*xsave
;
3119 struct kvm_xcrs
*xcrs
;
3125 case KVM_GET_LAPIC
: {
3127 if (!vcpu
->arch
.apic
)
3129 u
.lapic
= kzalloc(sizeof(struct kvm_lapic_state
), GFP_KERNEL
);
3134 r
= kvm_vcpu_ioctl_get_lapic(vcpu
, u
.lapic
);
3138 if (copy_to_user(argp
, u
.lapic
, sizeof(struct kvm_lapic_state
)))
3143 case KVM_SET_LAPIC
: {
3145 if (!vcpu
->arch
.apic
)
3147 u
.lapic
= memdup_user(argp
, sizeof(*u
.lapic
));
3148 if (IS_ERR(u
.lapic
))
3149 return PTR_ERR(u
.lapic
);
3151 r
= kvm_vcpu_ioctl_set_lapic(vcpu
, u
.lapic
);
3154 case KVM_INTERRUPT
: {
3155 struct kvm_interrupt irq
;
3158 if (copy_from_user(&irq
, argp
, sizeof irq
))
3160 r
= kvm_vcpu_ioctl_interrupt(vcpu
, &irq
);
3164 r
= kvm_vcpu_ioctl_nmi(vcpu
);
3167 case KVM_SET_CPUID
: {
3168 struct kvm_cpuid __user
*cpuid_arg
= argp
;
3169 struct kvm_cpuid cpuid
;
3172 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
3174 r
= kvm_vcpu_ioctl_set_cpuid(vcpu
, &cpuid
, cpuid_arg
->entries
);
3177 case KVM_SET_CPUID2
: {
3178 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
3179 struct kvm_cpuid2 cpuid
;
3182 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
3184 r
= kvm_vcpu_ioctl_set_cpuid2(vcpu
, &cpuid
,
3185 cpuid_arg
->entries
);
3188 case KVM_GET_CPUID2
: {
3189 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
3190 struct kvm_cpuid2 cpuid
;
3193 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
3195 r
= kvm_vcpu_ioctl_get_cpuid2(vcpu
, &cpuid
,
3196 cpuid_arg
->entries
);
3200 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
3206 r
= msr_io(vcpu
, argp
, kvm_get_msr
, 1);
3209 r
= msr_io(vcpu
, argp
, do_set_msr
, 0);
3211 case KVM_TPR_ACCESS_REPORTING
: {
3212 struct kvm_tpr_access_ctl tac
;
3215 if (copy_from_user(&tac
, argp
, sizeof tac
))
3217 r
= vcpu_ioctl_tpr_access_reporting(vcpu
, &tac
);
3221 if (copy_to_user(argp
, &tac
, sizeof tac
))
3226 case KVM_SET_VAPIC_ADDR
: {
3227 struct kvm_vapic_addr va
;
3230 if (!irqchip_in_kernel(vcpu
->kvm
))
3233 if (copy_from_user(&va
, argp
, sizeof va
))
3235 r
= kvm_lapic_set_vapic_addr(vcpu
, va
.vapic_addr
);
3238 case KVM_X86_SETUP_MCE
: {
3242 if (copy_from_user(&mcg_cap
, argp
, sizeof mcg_cap
))
3244 r
= kvm_vcpu_ioctl_x86_setup_mce(vcpu
, mcg_cap
);
3247 case KVM_X86_SET_MCE
: {
3248 struct kvm_x86_mce mce
;
3251 if (copy_from_user(&mce
, argp
, sizeof mce
))
3253 r
= kvm_vcpu_ioctl_x86_set_mce(vcpu
, &mce
);
3256 case KVM_GET_VCPU_EVENTS
: {
3257 struct kvm_vcpu_events events
;
3259 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu
, &events
);
3262 if (copy_to_user(argp
, &events
, sizeof(struct kvm_vcpu_events
)))
3267 case KVM_SET_VCPU_EVENTS
: {
3268 struct kvm_vcpu_events events
;
3271 if (copy_from_user(&events
, argp
, sizeof(struct kvm_vcpu_events
)))
3274 r
= kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu
, &events
);
3277 case KVM_GET_DEBUGREGS
: {
3278 struct kvm_debugregs dbgregs
;
3280 kvm_vcpu_ioctl_x86_get_debugregs(vcpu
, &dbgregs
);
3283 if (copy_to_user(argp
, &dbgregs
,
3284 sizeof(struct kvm_debugregs
)))
3289 case KVM_SET_DEBUGREGS
: {
3290 struct kvm_debugregs dbgregs
;
3293 if (copy_from_user(&dbgregs
, argp
,
3294 sizeof(struct kvm_debugregs
)))
3297 r
= kvm_vcpu_ioctl_x86_set_debugregs(vcpu
, &dbgregs
);
3300 case KVM_GET_XSAVE
: {
3301 u
.xsave
= kzalloc(sizeof(struct kvm_xsave
), GFP_KERNEL
);
3306 kvm_vcpu_ioctl_x86_get_xsave(vcpu
, u
.xsave
);
3309 if (copy_to_user(argp
, u
.xsave
, sizeof(struct kvm_xsave
)))
3314 case KVM_SET_XSAVE
: {
3315 u
.xsave
= memdup_user(argp
, sizeof(*u
.xsave
));
3316 if (IS_ERR(u
.xsave
))
3317 return PTR_ERR(u
.xsave
);
3319 r
= kvm_vcpu_ioctl_x86_set_xsave(vcpu
, u
.xsave
);
3322 case KVM_GET_XCRS
: {
3323 u
.xcrs
= kzalloc(sizeof(struct kvm_xcrs
), GFP_KERNEL
);
3328 kvm_vcpu_ioctl_x86_get_xcrs(vcpu
, u
.xcrs
);
3331 if (copy_to_user(argp
, u
.xcrs
,
3332 sizeof(struct kvm_xcrs
)))
3337 case KVM_SET_XCRS
: {
3338 u
.xcrs
= memdup_user(argp
, sizeof(*u
.xcrs
));
3340 return PTR_ERR(u
.xcrs
);
3342 r
= kvm_vcpu_ioctl_x86_set_xcrs(vcpu
, u
.xcrs
);
3345 case KVM_SET_TSC_KHZ
: {
3349 user_tsc_khz
= (u32
)arg
;
3351 if (user_tsc_khz
>= kvm_max_guest_tsc_khz
)
3354 if (user_tsc_khz
== 0)
3355 user_tsc_khz
= tsc_khz
;
3357 kvm_set_tsc_khz(vcpu
, user_tsc_khz
);
3362 case KVM_GET_TSC_KHZ
: {
3363 r
= vcpu
->arch
.virtual_tsc_khz
;
3366 case KVM_KVMCLOCK_CTRL
: {
3367 r
= kvm_set_guest_paused(vcpu
);
3378 int kvm_arch_vcpu_fault(struct kvm_vcpu
*vcpu
, struct vm_fault
*vmf
)
3380 return VM_FAULT_SIGBUS
;
3383 static int kvm_vm_ioctl_set_tss_addr(struct kvm
*kvm
, unsigned long addr
)
3387 if (addr
> (unsigned int)(-3 * PAGE_SIZE
))
3389 ret
= kvm_x86_ops
->set_tss_addr(kvm
, addr
);
3393 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm
*kvm
,
3396 kvm
->arch
.ept_identity_map_addr
= ident_addr
;
3400 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm
*kvm
,
3401 u32 kvm_nr_mmu_pages
)
3403 if (kvm_nr_mmu_pages
< KVM_MIN_ALLOC_MMU_PAGES
)
3406 mutex_lock(&kvm
->slots_lock
);
3408 kvm_mmu_change_mmu_pages(kvm
, kvm_nr_mmu_pages
);
3409 kvm
->arch
.n_requested_mmu_pages
= kvm_nr_mmu_pages
;
3411 mutex_unlock(&kvm
->slots_lock
);
3415 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm
*kvm
)
3417 return kvm
->arch
.n_max_mmu_pages
;
3420 static int kvm_vm_ioctl_get_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
3425 switch (chip
->chip_id
) {
3426 case KVM_IRQCHIP_PIC_MASTER
:
3427 memcpy(&chip
->chip
.pic
,
3428 &pic_irqchip(kvm
)->pics
[0],
3429 sizeof(struct kvm_pic_state
));
3431 case KVM_IRQCHIP_PIC_SLAVE
:
3432 memcpy(&chip
->chip
.pic
,
3433 &pic_irqchip(kvm
)->pics
[1],
3434 sizeof(struct kvm_pic_state
));
3436 case KVM_IRQCHIP_IOAPIC
:
3437 r
= kvm_get_ioapic(kvm
, &chip
->chip
.ioapic
);
3446 static int kvm_vm_ioctl_set_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
3451 switch (chip
->chip_id
) {
3452 case KVM_IRQCHIP_PIC_MASTER
:
3453 spin_lock(&pic_irqchip(kvm
)->lock
);
3454 memcpy(&pic_irqchip(kvm
)->pics
[0],
3456 sizeof(struct kvm_pic_state
));
3457 spin_unlock(&pic_irqchip(kvm
)->lock
);
3459 case KVM_IRQCHIP_PIC_SLAVE
:
3460 spin_lock(&pic_irqchip(kvm
)->lock
);
3461 memcpy(&pic_irqchip(kvm
)->pics
[1],
3463 sizeof(struct kvm_pic_state
));
3464 spin_unlock(&pic_irqchip(kvm
)->lock
);
3466 case KVM_IRQCHIP_IOAPIC
:
3467 r
= kvm_set_ioapic(kvm
, &chip
->chip
.ioapic
);
3473 kvm_pic_update_irq(pic_irqchip(kvm
));
3477 static int kvm_vm_ioctl_get_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
3479 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3480 memcpy(ps
, &kvm
->arch
.vpit
->pit_state
, sizeof(struct kvm_pit_state
));
3481 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3485 static int kvm_vm_ioctl_set_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
3488 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3489 memcpy(&kvm
->arch
.vpit
->pit_state
, ps
, sizeof(struct kvm_pit_state
));
3490 for (i
= 0; i
< 3; i
++)
3491 kvm_pit_load_count(kvm
, i
, ps
->channels
[i
].count
, 0);
3492 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3496 static int kvm_vm_ioctl_get_pit2(struct kvm
*kvm
, struct kvm_pit_state2
*ps
)
3498 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3499 memcpy(ps
->channels
, &kvm
->arch
.vpit
->pit_state
.channels
,
3500 sizeof(ps
->channels
));
3501 ps
->flags
= kvm
->arch
.vpit
->pit_state
.flags
;
3502 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3503 memset(&ps
->reserved
, 0, sizeof(ps
->reserved
));
3507 static int kvm_vm_ioctl_set_pit2(struct kvm
*kvm
, struct kvm_pit_state2
*ps
)
3511 u32 prev_legacy
, cur_legacy
;
3512 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3513 prev_legacy
= kvm
->arch
.vpit
->pit_state
.flags
& KVM_PIT_FLAGS_HPET_LEGACY
;
3514 cur_legacy
= ps
->flags
& KVM_PIT_FLAGS_HPET_LEGACY
;
3515 if (!prev_legacy
&& cur_legacy
)
3517 memcpy(&kvm
->arch
.vpit
->pit_state
.channels
, &ps
->channels
,
3518 sizeof(kvm
->arch
.vpit
->pit_state
.channels
));
3519 kvm
->arch
.vpit
->pit_state
.flags
= ps
->flags
;
3520 for (i
= 0; i
< 3; i
++)
3521 kvm_pit_load_count(kvm
, i
, kvm
->arch
.vpit
->pit_state
.channels
[i
].count
, start
);
3522 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3526 static int kvm_vm_ioctl_reinject(struct kvm
*kvm
,
3527 struct kvm_reinject_control
*control
)
3529 if (!kvm
->arch
.vpit
)
3531 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3532 kvm
->arch
.vpit
->pit_state
.reinject
= control
->pit_reinject
;
3533 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3538 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3539 * @kvm: kvm instance
3540 * @log: slot id and address to which we copy the log
3542 * We need to keep it in mind that VCPU threads can write to the bitmap
3543 * concurrently. So, to avoid losing data, we keep the following order for
3546 * 1. Take a snapshot of the bit and clear it if needed.
3547 * 2. Write protect the corresponding page.
3548 * 3. Flush TLB's if needed.
3549 * 4. Copy the snapshot to the userspace.
3551 * Between 2 and 3, the guest may write to the page using the remaining TLB
3552 * entry. This is not a problem because the page will be reported dirty at
3553 * step 4 using the snapshot taken before and step 3 ensures that successive
3554 * writes will be logged for the next call.
3556 int kvm_vm_ioctl_get_dirty_log(struct kvm
*kvm
, struct kvm_dirty_log
*log
)
3559 struct kvm_memory_slot
*memslot
;
3561 unsigned long *dirty_bitmap
;
3562 unsigned long *dirty_bitmap_buffer
;
3563 bool is_dirty
= false;
3565 mutex_lock(&kvm
->slots_lock
);
3568 if (log
->slot
>= KVM_USER_MEM_SLOTS
)
3571 memslot
= id_to_memslot(kvm
->memslots
, log
->slot
);
3573 dirty_bitmap
= memslot
->dirty_bitmap
;
3578 n
= kvm_dirty_bitmap_bytes(memslot
);
3580 dirty_bitmap_buffer
= dirty_bitmap
+ n
/ sizeof(long);
3581 memset(dirty_bitmap_buffer
, 0, n
);
3583 spin_lock(&kvm
->mmu_lock
);
3585 for (i
= 0; i
< n
/ sizeof(long); i
++) {
3589 if (!dirty_bitmap
[i
])
3594 mask
= xchg(&dirty_bitmap
[i
], 0);
3595 dirty_bitmap_buffer
[i
] = mask
;
3597 offset
= i
* BITS_PER_LONG
;
3598 kvm_mmu_write_protect_pt_masked(kvm
, memslot
, offset
, mask
);
3601 kvm_flush_remote_tlbs(kvm
);
3603 spin_unlock(&kvm
->mmu_lock
);
3606 if (copy_to_user(log
->dirty_bitmap
, dirty_bitmap_buffer
, n
))
3611 mutex_unlock(&kvm
->slots_lock
);
3615 int kvm_vm_ioctl_irq_line(struct kvm
*kvm
, struct kvm_irq_level
*irq_event
,
3618 if (!irqchip_in_kernel(kvm
))
3621 irq_event
->status
= kvm_set_irq(kvm
, KVM_USERSPACE_IRQ_SOURCE_ID
,
3622 irq_event
->irq
, irq_event
->level
,
3627 long kvm_arch_vm_ioctl(struct file
*filp
,
3628 unsigned int ioctl
, unsigned long arg
)
3630 struct kvm
*kvm
= filp
->private_data
;
3631 void __user
*argp
= (void __user
*)arg
;
3634 * This union makes it completely explicit to gcc-3.x
3635 * that these two variables' stack usage should be
3636 * combined, not added together.
3639 struct kvm_pit_state ps
;
3640 struct kvm_pit_state2 ps2
;
3641 struct kvm_pit_config pit_config
;
3645 case KVM_SET_TSS_ADDR
:
3646 r
= kvm_vm_ioctl_set_tss_addr(kvm
, arg
);
3648 case KVM_SET_IDENTITY_MAP_ADDR
: {
3652 if (copy_from_user(&ident_addr
, argp
, sizeof ident_addr
))
3654 r
= kvm_vm_ioctl_set_identity_map_addr(kvm
, ident_addr
);
3657 case KVM_SET_NR_MMU_PAGES
:
3658 r
= kvm_vm_ioctl_set_nr_mmu_pages(kvm
, arg
);
3660 case KVM_GET_NR_MMU_PAGES
:
3661 r
= kvm_vm_ioctl_get_nr_mmu_pages(kvm
);
3663 case KVM_CREATE_IRQCHIP
: {
3664 struct kvm_pic
*vpic
;
3666 mutex_lock(&kvm
->lock
);
3669 goto create_irqchip_unlock
;
3671 if (atomic_read(&kvm
->online_vcpus
))
3672 goto create_irqchip_unlock
;
3674 vpic
= kvm_create_pic(kvm
);
3676 r
= kvm_ioapic_init(kvm
);
3678 mutex_lock(&kvm
->slots_lock
);
3679 kvm_io_bus_unregister_dev(kvm
, KVM_PIO_BUS
,
3681 kvm_io_bus_unregister_dev(kvm
, KVM_PIO_BUS
,
3683 kvm_io_bus_unregister_dev(kvm
, KVM_PIO_BUS
,
3685 mutex_unlock(&kvm
->slots_lock
);
3687 goto create_irqchip_unlock
;
3690 goto create_irqchip_unlock
;
3692 kvm
->arch
.vpic
= vpic
;
3694 r
= kvm_setup_default_irq_routing(kvm
);
3696 mutex_lock(&kvm
->slots_lock
);
3697 mutex_lock(&kvm
->irq_lock
);
3698 kvm_ioapic_destroy(kvm
);
3699 kvm_destroy_pic(kvm
);
3700 mutex_unlock(&kvm
->irq_lock
);
3701 mutex_unlock(&kvm
->slots_lock
);
3703 create_irqchip_unlock
:
3704 mutex_unlock(&kvm
->lock
);
3707 case KVM_CREATE_PIT
:
3708 u
.pit_config
.flags
= KVM_PIT_SPEAKER_DUMMY
;
3710 case KVM_CREATE_PIT2
:
3712 if (copy_from_user(&u
.pit_config
, argp
,
3713 sizeof(struct kvm_pit_config
)))
3716 mutex_lock(&kvm
->slots_lock
);
3719 goto create_pit_unlock
;
3721 kvm
->arch
.vpit
= kvm_create_pit(kvm
, u
.pit_config
.flags
);
3725 mutex_unlock(&kvm
->slots_lock
);
3727 case KVM_GET_IRQCHIP
: {
3728 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3729 struct kvm_irqchip
*chip
;
3731 chip
= memdup_user(argp
, sizeof(*chip
));
3738 if (!irqchip_in_kernel(kvm
))
3739 goto get_irqchip_out
;
3740 r
= kvm_vm_ioctl_get_irqchip(kvm
, chip
);
3742 goto get_irqchip_out
;
3744 if (copy_to_user(argp
, chip
, sizeof *chip
))
3745 goto get_irqchip_out
;
3751 case KVM_SET_IRQCHIP
: {
3752 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3753 struct kvm_irqchip
*chip
;
3755 chip
= memdup_user(argp
, sizeof(*chip
));
3762 if (!irqchip_in_kernel(kvm
))
3763 goto set_irqchip_out
;
3764 r
= kvm_vm_ioctl_set_irqchip(kvm
, chip
);
3766 goto set_irqchip_out
;
3774 if (copy_from_user(&u
.ps
, argp
, sizeof(struct kvm_pit_state
)))
3777 if (!kvm
->arch
.vpit
)
3779 r
= kvm_vm_ioctl_get_pit(kvm
, &u
.ps
);
3783 if (copy_to_user(argp
, &u
.ps
, sizeof(struct kvm_pit_state
)))
3790 if (copy_from_user(&u
.ps
, argp
, sizeof u
.ps
))
3793 if (!kvm
->arch
.vpit
)
3795 r
= kvm_vm_ioctl_set_pit(kvm
, &u
.ps
);
3798 case KVM_GET_PIT2
: {
3800 if (!kvm
->arch
.vpit
)
3802 r
= kvm_vm_ioctl_get_pit2(kvm
, &u
.ps2
);
3806 if (copy_to_user(argp
, &u
.ps2
, sizeof(u
.ps2
)))
3811 case KVM_SET_PIT2
: {
3813 if (copy_from_user(&u
.ps2
, argp
, sizeof(u
.ps2
)))
3816 if (!kvm
->arch
.vpit
)
3818 r
= kvm_vm_ioctl_set_pit2(kvm
, &u
.ps2
);
3821 case KVM_REINJECT_CONTROL
: {
3822 struct kvm_reinject_control control
;
3824 if (copy_from_user(&control
, argp
, sizeof(control
)))
3826 r
= kvm_vm_ioctl_reinject(kvm
, &control
);
3829 case KVM_XEN_HVM_CONFIG
: {
3831 if (copy_from_user(&kvm
->arch
.xen_hvm_config
, argp
,
3832 sizeof(struct kvm_xen_hvm_config
)))
3835 if (kvm
->arch
.xen_hvm_config
.flags
)
3840 case KVM_SET_CLOCK
: {
3841 struct kvm_clock_data user_ns
;
3846 if (copy_from_user(&user_ns
, argp
, sizeof(user_ns
)))
3854 local_irq_disable();
3855 now_ns
= get_kernel_ns();
3856 delta
= user_ns
.clock
- now_ns
;
3858 kvm
->arch
.kvmclock_offset
= delta
;
3859 kvm_gen_update_masterclock(kvm
);
3862 case KVM_GET_CLOCK
: {
3863 struct kvm_clock_data user_ns
;
3866 local_irq_disable();
3867 now_ns
= get_kernel_ns();
3868 user_ns
.clock
= kvm
->arch
.kvmclock_offset
+ now_ns
;
3871 memset(&user_ns
.pad
, 0, sizeof(user_ns
.pad
));
3874 if (copy_to_user(argp
, &user_ns
, sizeof(user_ns
)))
3887 static void kvm_init_msr_list(void)
3892 /* skip the first msrs in the list. KVM-specific */
3893 for (i
= j
= KVM_SAVE_MSRS_BEGIN
; i
< ARRAY_SIZE(msrs_to_save
); i
++) {
3894 if (rdmsr_safe(msrs_to_save
[i
], &dummy
[0], &dummy
[1]) < 0)
3897 msrs_to_save
[j
] = msrs_to_save
[i
];
3900 num_msrs_to_save
= j
;
3903 static int vcpu_mmio_write(struct kvm_vcpu
*vcpu
, gpa_t addr
, int len
,
3911 if (!(vcpu
->arch
.apic
&&
3912 !kvm_iodevice_write(&vcpu
->arch
.apic
->dev
, addr
, n
, v
))
3913 && kvm_io_bus_write(vcpu
->kvm
, KVM_MMIO_BUS
, addr
, n
, v
))
3924 static int vcpu_mmio_read(struct kvm_vcpu
*vcpu
, gpa_t addr
, int len
, void *v
)
3931 if (!(vcpu
->arch
.apic
&&
3932 !kvm_iodevice_read(&vcpu
->arch
.apic
->dev
, addr
, n
, v
))
3933 && kvm_io_bus_read(vcpu
->kvm
, KVM_MMIO_BUS
, addr
, n
, v
))
3935 trace_kvm_mmio(KVM_TRACE_MMIO_READ
, n
, addr
, *(u64
*)v
);
3945 static void kvm_set_segment(struct kvm_vcpu
*vcpu
,
3946 struct kvm_segment
*var
, int seg
)
3948 kvm_x86_ops
->set_segment(vcpu
, var
, seg
);
3951 void kvm_get_segment(struct kvm_vcpu
*vcpu
,
3952 struct kvm_segment
*var
, int seg
)
3954 kvm_x86_ops
->get_segment(vcpu
, var
, seg
);
3957 gpa_t
translate_nested_gpa(struct kvm_vcpu
*vcpu
, gpa_t gpa
, u32 access
)
3960 struct x86_exception exception
;
3962 BUG_ON(!mmu_is_nested(vcpu
));
3964 /* NPT walks are always user-walks */
3965 access
|= PFERR_USER_MASK
;
3966 t_gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, gpa
, access
, &exception
);
3971 gpa_t
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu
*vcpu
, gva_t gva
,
3972 struct x86_exception
*exception
)
3974 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
3975 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
3978 gpa_t
kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu
*vcpu
, gva_t gva
,
3979 struct x86_exception
*exception
)
3981 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
3982 access
|= PFERR_FETCH_MASK
;
3983 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
3986 gpa_t
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu
*vcpu
, gva_t gva
,
3987 struct x86_exception
*exception
)
3989 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
3990 access
|= PFERR_WRITE_MASK
;
3991 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
3994 /* uses this to access any guest's mapped memory without checking CPL */
3995 gpa_t
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu
*vcpu
, gva_t gva
,
3996 struct x86_exception
*exception
)
3998 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, 0, exception
);
4001 static int kvm_read_guest_virt_helper(gva_t addr
, void *val
, unsigned int bytes
,
4002 struct kvm_vcpu
*vcpu
, u32 access
,
4003 struct x86_exception
*exception
)
4006 int r
= X86EMUL_CONTINUE
;
4009 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
, access
,
4011 unsigned offset
= addr
& (PAGE_SIZE
-1);
4012 unsigned toread
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
4015 if (gpa
== UNMAPPED_GVA
)
4016 return X86EMUL_PROPAGATE_FAULT
;
4017 ret
= kvm_read_guest(vcpu
->kvm
, gpa
, data
, toread
);
4019 r
= X86EMUL_IO_NEEDED
;
4031 /* used for instruction fetching */
4032 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt
*ctxt
,
4033 gva_t addr
, void *val
, unsigned int bytes
,
4034 struct x86_exception
*exception
)
4036 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4037 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4039 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
,
4040 access
| PFERR_FETCH_MASK
,
4044 int kvm_read_guest_virt(struct x86_emulate_ctxt
*ctxt
,
4045 gva_t addr
, void *val
, unsigned int bytes
,
4046 struct x86_exception
*exception
)
4048 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4049 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4051 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
, access
,
4054 EXPORT_SYMBOL_GPL(kvm_read_guest_virt
);
4056 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt
*ctxt
,
4057 gva_t addr
, void *val
, unsigned int bytes
,
4058 struct x86_exception
*exception
)
4060 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4061 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
, 0, exception
);
4064 int kvm_write_guest_virt_system(struct x86_emulate_ctxt
*ctxt
,
4065 gva_t addr
, void *val
,
4067 struct x86_exception
*exception
)
4069 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4071 int r
= X86EMUL_CONTINUE
;
4074 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
,
4077 unsigned offset
= addr
& (PAGE_SIZE
-1);
4078 unsigned towrite
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
4081 if (gpa
== UNMAPPED_GVA
)
4082 return X86EMUL_PROPAGATE_FAULT
;
4083 ret
= kvm_write_guest(vcpu
->kvm
, gpa
, data
, towrite
);
4085 r
= X86EMUL_IO_NEEDED
;
4096 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system
);
4098 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu
*vcpu
, unsigned long gva
,
4099 gpa_t
*gpa
, struct x86_exception
*exception
,
4102 u32 access
= ((kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0)
4103 | (write
? PFERR_WRITE_MASK
: 0);
4105 if (vcpu_match_mmio_gva(vcpu
, gva
)
4106 && !permission_fault(vcpu
->arch
.walk_mmu
, vcpu
->arch
.access
, access
)) {
4107 *gpa
= vcpu
->arch
.mmio_gfn
<< PAGE_SHIFT
|
4108 (gva
& (PAGE_SIZE
- 1));
4109 trace_vcpu_match_mmio(gva
, *gpa
, write
, false);
4113 *gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
4115 if (*gpa
== UNMAPPED_GVA
)
4118 /* For APIC access vmexit */
4119 if ((*gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
4122 if (vcpu_match_mmio_gpa(vcpu
, *gpa
)) {
4123 trace_vcpu_match_mmio(gva
, *gpa
, write
, true);
4130 int emulator_write_phys(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4131 const void *val
, int bytes
)
4135 ret
= kvm_write_guest(vcpu
->kvm
, gpa
, val
, bytes
);
4138 kvm_mmu_pte_write(vcpu
, gpa
, val
, bytes
);
4142 struct read_write_emulator_ops
{
4143 int (*read_write_prepare
)(struct kvm_vcpu
*vcpu
, void *val
,
4145 int (*read_write_emulate
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4146 void *val
, int bytes
);
4147 int (*read_write_mmio
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4148 int bytes
, void *val
);
4149 int (*read_write_exit_mmio
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4150 void *val
, int bytes
);
4154 static int read_prepare(struct kvm_vcpu
*vcpu
, void *val
, int bytes
)
4156 if (vcpu
->mmio_read_completed
) {
4157 trace_kvm_mmio(KVM_TRACE_MMIO_READ
, bytes
,
4158 vcpu
->mmio_fragments
[0].gpa
, *(u64
*)val
);
4159 vcpu
->mmio_read_completed
= 0;
4166 static int read_emulate(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4167 void *val
, int bytes
)
4169 return !kvm_read_guest(vcpu
->kvm
, gpa
, val
, bytes
);
4172 static int write_emulate(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4173 void *val
, int bytes
)
4175 return emulator_write_phys(vcpu
, gpa
, val
, bytes
);
4178 static int write_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
, int bytes
, void *val
)
4180 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE
, bytes
, gpa
, *(u64
*)val
);
4181 return vcpu_mmio_write(vcpu
, gpa
, bytes
, val
);
4184 static int read_exit_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4185 void *val
, int bytes
)
4187 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED
, bytes
, gpa
, 0);
4188 return X86EMUL_IO_NEEDED
;
4191 static int write_exit_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4192 void *val
, int bytes
)
4194 struct kvm_mmio_fragment
*frag
= &vcpu
->mmio_fragments
[0];
4196 memcpy(vcpu
->run
->mmio
.data
, frag
->data
, min(8u, frag
->len
));
4197 return X86EMUL_CONTINUE
;
4200 static const struct read_write_emulator_ops read_emultor
= {
4201 .read_write_prepare
= read_prepare
,
4202 .read_write_emulate
= read_emulate
,
4203 .read_write_mmio
= vcpu_mmio_read
,
4204 .read_write_exit_mmio
= read_exit_mmio
,
4207 static const struct read_write_emulator_ops write_emultor
= {
4208 .read_write_emulate
= write_emulate
,
4209 .read_write_mmio
= write_mmio
,
4210 .read_write_exit_mmio
= write_exit_mmio
,
4214 static int emulator_read_write_onepage(unsigned long addr
, void *val
,
4216 struct x86_exception
*exception
,
4217 struct kvm_vcpu
*vcpu
,
4218 const struct read_write_emulator_ops
*ops
)
4222 bool write
= ops
->write
;
4223 struct kvm_mmio_fragment
*frag
;
4225 ret
= vcpu_mmio_gva_to_gpa(vcpu
, addr
, &gpa
, exception
, write
);
4228 return X86EMUL_PROPAGATE_FAULT
;
4230 /* For APIC access vmexit */
4234 if (ops
->read_write_emulate(vcpu
, gpa
, val
, bytes
))
4235 return X86EMUL_CONTINUE
;
4239 * Is this MMIO handled locally?
4241 handled
= ops
->read_write_mmio(vcpu
, gpa
, bytes
, val
);
4242 if (handled
== bytes
)
4243 return X86EMUL_CONTINUE
;
4249 WARN_ON(vcpu
->mmio_nr_fragments
>= KVM_MAX_MMIO_FRAGMENTS
);
4250 frag
= &vcpu
->mmio_fragments
[vcpu
->mmio_nr_fragments
++];
4254 return X86EMUL_CONTINUE
;
4257 int emulator_read_write(struct x86_emulate_ctxt
*ctxt
, unsigned long addr
,
4258 void *val
, unsigned int bytes
,
4259 struct x86_exception
*exception
,
4260 const struct read_write_emulator_ops
*ops
)
4262 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4266 if (ops
->read_write_prepare
&&
4267 ops
->read_write_prepare(vcpu
, val
, bytes
))
4268 return X86EMUL_CONTINUE
;
4270 vcpu
->mmio_nr_fragments
= 0;
4272 /* Crossing a page boundary? */
4273 if (((addr
+ bytes
- 1) ^ addr
) & PAGE_MASK
) {
4276 now
= -addr
& ~PAGE_MASK
;
4277 rc
= emulator_read_write_onepage(addr
, val
, now
, exception
,
4280 if (rc
!= X86EMUL_CONTINUE
)
4287 rc
= emulator_read_write_onepage(addr
, val
, bytes
, exception
,
4289 if (rc
!= X86EMUL_CONTINUE
)
4292 if (!vcpu
->mmio_nr_fragments
)
4295 gpa
= vcpu
->mmio_fragments
[0].gpa
;
4297 vcpu
->mmio_needed
= 1;
4298 vcpu
->mmio_cur_fragment
= 0;
4300 vcpu
->run
->mmio
.len
= min(8u, vcpu
->mmio_fragments
[0].len
);
4301 vcpu
->run
->mmio
.is_write
= vcpu
->mmio_is_write
= ops
->write
;
4302 vcpu
->run
->exit_reason
= KVM_EXIT_MMIO
;
4303 vcpu
->run
->mmio
.phys_addr
= gpa
;
4305 return ops
->read_write_exit_mmio(vcpu
, gpa
, val
, bytes
);
4308 static int emulator_read_emulated(struct x86_emulate_ctxt
*ctxt
,
4312 struct x86_exception
*exception
)
4314 return emulator_read_write(ctxt
, addr
, val
, bytes
,
4315 exception
, &read_emultor
);
4318 int emulator_write_emulated(struct x86_emulate_ctxt
*ctxt
,
4322 struct x86_exception
*exception
)
4324 return emulator_read_write(ctxt
, addr
, (void *)val
, bytes
,
4325 exception
, &write_emultor
);
4328 #define CMPXCHG_TYPE(t, ptr, old, new) \
4329 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4331 #ifdef CONFIG_X86_64
4332 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4334 # define CMPXCHG64(ptr, old, new) \
4335 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4338 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt
*ctxt
,
4343 struct x86_exception
*exception
)
4345 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4351 /* guests cmpxchg8b have to be emulated atomically */
4352 if (bytes
> 8 || (bytes
& (bytes
- 1)))
4355 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, addr
, NULL
);
4357 if (gpa
== UNMAPPED_GVA
||
4358 (gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
4361 if (((gpa
+ bytes
- 1) & PAGE_MASK
) != (gpa
& PAGE_MASK
))
4364 page
= gfn_to_page(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
4365 if (is_error_page(page
))
4368 kaddr
= kmap_atomic(page
);
4369 kaddr
+= offset_in_page(gpa
);
4372 exchanged
= CMPXCHG_TYPE(u8
, kaddr
, old
, new);
4375 exchanged
= CMPXCHG_TYPE(u16
, kaddr
, old
, new);
4378 exchanged
= CMPXCHG_TYPE(u32
, kaddr
, old
, new);
4381 exchanged
= CMPXCHG64(kaddr
, old
, new);
4386 kunmap_atomic(kaddr
);
4387 kvm_release_page_dirty(page
);
4390 return X86EMUL_CMPXCHG_FAILED
;
4392 kvm_mmu_pte_write(vcpu
, gpa
, new, bytes
);
4394 return X86EMUL_CONTINUE
;
4397 printk_once(KERN_WARNING
"kvm: emulating exchange as write\n");
4399 return emulator_write_emulated(ctxt
, addr
, new, bytes
, exception
);
4402 static int kernel_pio(struct kvm_vcpu
*vcpu
, void *pd
)
4404 /* TODO: String I/O for in kernel device */
4407 if (vcpu
->arch
.pio
.in
)
4408 r
= kvm_io_bus_read(vcpu
->kvm
, KVM_PIO_BUS
, vcpu
->arch
.pio
.port
,
4409 vcpu
->arch
.pio
.size
, pd
);
4411 r
= kvm_io_bus_write(vcpu
->kvm
, KVM_PIO_BUS
,
4412 vcpu
->arch
.pio
.port
, vcpu
->arch
.pio
.size
,
4417 static int emulator_pio_in_out(struct kvm_vcpu
*vcpu
, int size
,
4418 unsigned short port
, void *val
,
4419 unsigned int count
, bool in
)
4421 trace_kvm_pio(!in
, port
, size
, count
);
4423 vcpu
->arch
.pio
.port
= port
;
4424 vcpu
->arch
.pio
.in
= in
;
4425 vcpu
->arch
.pio
.count
= count
;
4426 vcpu
->arch
.pio
.size
= size
;
4428 if (!kernel_pio(vcpu
, vcpu
->arch
.pio_data
)) {
4429 vcpu
->arch
.pio
.count
= 0;
4433 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
4434 vcpu
->run
->io
.direction
= in
? KVM_EXIT_IO_IN
: KVM_EXIT_IO_OUT
;
4435 vcpu
->run
->io
.size
= size
;
4436 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
4437 vcpu
->run
->io
.count
= count
;
4438 vcpu
->run
->io
.port
= port
;
4443 static int emulator_pio_in_emulated(struct x86_emulate_ctxt
*ctxt
,
4444 int size
, unsigned short port
, void *val
,
4447 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4450 if (vcpu
->arch
.pio
.count
)
4453 ret
= emulator_pio_in_out(vcpu
, size
, port
, val
, count
, true);
4456 memcpy(val
, vcpu
->arch
.pio_data
, size
* count
);
4457 vcpu
->arch
.pio
.count
= 0;
4464 static int emulator_pio_out_emulated(struct x86_emulate_ctxt
*ctxt
,
4465 int size
, unsigned short port
,
4466 const void *val
, unsigned int count
)
4468 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4470 memcpy(vcpu
->arch
.pio_data
, val
, size
* count
);
4471 return emulator_pio_in_out(vcpu
, size
, port
, (void *)val
, count
, false);
4474 static unsigned long get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
4476 return kvm_x86_ops
->get_segment_base(vcpu
, seg
);
4479 static void emulator_invlpg(struct x86_emulate_ctxt
*ctxt
, ulong address
)
4481 kvm_mmu_invlpg(emul_to_vcpu(ctxt
), address
);
4484 int kvm_emulate_wbinvd(struct kvm_vcpu
*vcpu
)
4486 if (!need_emulate_wbinvd(vcpu
))
4487 return X86EMUL_CONTINUE
;
4489 if (kvm_x86_ops
->has_wbinvd_exit()) {
4490 int cpu
= get_cpu();
4492 cpumask_set_cpu(cpu
, vcpu
->arch
.wbinvd_dirty_mask
);
4493 smp_call_function_many(vcpu
->arch
.wbinvd_dirty_mask
,
4494 wbinvd_ipi
, NULL
, 1);
4496 cpumask_clear(vcpu
->arch
.wbinvd_dirty_mask
);
4499 return X86EMUL_CONTINUE
;
4501 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd
);
4503 static void emulator_wbinvd(struct x86_emulate_ctxt
*ctxt
)
4505 kvm_emulate_wbinvd(emul_to_vcpu(ctxt
));
4508 int emulator_get_dr(struct x86_emulate_ctxt
*ctxt
, int dr
, unsigned long *dest
)
4510 return _kvm_get_dr(emul_to_vcpu(ctxt
), dr
, dest
);
4513 int emulator_set_dr(struct x86_emulate_ctxt
*ctxt
, int dr
, unsigned long value
)
4516 return __kvm_set_dr(emul_to_vcpu(ctxt
), dr
, value
);
4519 static u64
mk_cr_64(u64 curr_cr
, u32 new_val
)
4521 return (curr_cr
& ~((1ULL << 32) - 1)) | new_val
;
4524 static unsigned long emulator_get_cr(struct x86_emulate_ctxt
*ctxt
, int cr
)
4526 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4527 unsigned long value
;
4531 value
= kvm_read_cr0(vcpu
);
4534 value
= vcpu
->arch
.cr2
;
4537 value
= kvm_read_cr3(vcpu
);
4540 value
= kvm_read_cr4(vcpu
);
4543 value
= kvm_get_cr8(vcpu
);
4546 kvm_err("%s: unexpected cr %u\n", __func__
, cr
);
4553 static int emulator_set_cr(struct x86_emulate_ctxt
*ctxt
, int cr
, ulong val
)
4555 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4560 res
= kvm_set_cr0(vcpu
, mk_cr_64(kvm_read_cr0(vcpu
), val
));
4563 vcpu
->arch
.cr2
= val
;
4566 res
= kvm_set_cr3(vcpu
, val
);
4569 res
= kvm_set_cr4(vcpu
, mk_cr_64(kvm_read_cr4(vcpu
), val
));
4572 res
= kvm_set_cr8(vcpu
, val
);
4575 kvm_err("%s: unexpected cr %u\n", __func__
, cr
);
4582 static void emulator_set_rflags(struct x86_emulate_ctxt
*ctxt
, ulong val
)
4584 kvm_set_rflags(emul_to_vcpu(ctxt
), val
);
4587 static int emulator_get_cpl(struct x86_emulate_ctxt
*ctxt
)
4589 return kvm_x86_ops
->get_cpl(emul_to_vcpu(ctxt
));
4592 static void emulator_get_gdt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4594 kvm_x86_ops
->get_gdt(emul_to_vcpu(ctxt
), dt
);
4597 static void emulator_get_idt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4599 kvm_x86_ops
->get_idt(emul_to_vcpu(ctxt
), dt
);
4602 static void emulator_set_gdt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4604 kvm_x86_ops
->set_gdt(emul_to_vcpu(ctxt
), dt
);
4607 static void emulator_set_idt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4609 kvm_x86_ops
->set_idt(emul_to_vcpu(ctxt
), dt
);
4612 static unsigned long emulator_get_cached_segment_base(
4613 struct x86_emulate_ctxt
*ctxt
, int seg
)
4615 return get_segment_base(emul_to_vcpu(ctxt
), seg
);
4618 static bool emulator_get_segment(struct x86_emulate_ctxt
*ctxt
, u16
*selector
,
4619 struct desc_struct
*desc
, u32
*base3
,
4622 struct kvm_segment var
;
4624 kvm_get_segment(emul_to_vcpu(ctxt
), &var
, seg
);
4625 *selector
= var
.selector
;
4628 memset(desc
, 0, sizeof(*desc
));
4634 set_desc_limit(desc
, var
.limit
);
4635 set_desc_base(desc
, (unsigned long)var
.base
);
4636 #ifdef CONFIG_X86_64
4638 *base3
= var
.base
>> 32;
4640 desc
->type
= var
.type
;
4642 desc
->dpl
= var
.dpl
;
4643 desc
->p
= var
.present
;
4644 desc
->avl
= var
.avl
;
4652 static void emulator_set_segment(struct x86_emulate_ctxt
*ctxt
, u16 selector
,
4653 struct desc_struct
*desc
, u32 base3
,
4656 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4657 struct kvm_segment var
;
4659 var
.selector
= selector
;
4660 var
.base
= get_desc_base(desc
);
4661 #ifdef CONFIG_X86_64
4662 var
.base
|= ((u64
)base3
) << 32;
4664 var
.limit
= get_desc_limit(desc
);
4666 var
.limit
= (var
.limit
<< 12) | 0xfff;
4667 var
.type
= desc
->type
;
4668 var
.present
= desc
->p
;
4669 var
.dpl
= desc
->dpl
;
4674 var
.avl
= desc
->avl
;
4675 var
.present
= desc
->p
;
4676 var
.unusable
= !var
.present
;
4679 kvm_set_segment(vcpu
, &var
, seg
);
4683 static int emulator_get_msr(struct x86_emulate_ctxt
*ctxt
,
4684 u32 msr_index
, u64
*pdata
)
4686 return kvm_get_msr(emul_to_vcpu(ctxt
), msr_index
, pdata
);
4689 static int emulator_set_msr(struct x86_emulate_ctxt
*ctxt
,
4690 u32 msr_index
, u64 data
)
4692 struct msr_data msr
;
4695 msr
.index
= msr_index
;
4696 msr
.host_initiated
= false;
4697 return kvm_set_msr(emul_to_vcpu(ctxt
), &msr
);
4700 static int emulator_read_pmc(struct x86_emulate_ctxt
*ctxt
,
4701 u32 pmc
, u64
*pdata
)
4703 return kvm_pmu_read_pmc(emul_to_vcpu(ctxt
), pmc
, pdata
);
4706 static void emulator_halt(struct x86_emulate_ctxt
*ctxt
)
4708 emul_to_vcpu(ctxt
)->arch
.halt_request
= 1;
4711 static void emulator_get_fpu(struct x86_emulate_ctxt
*ctxt
)
4714 kvm_load_guest_fpu(emul_to_vcpu(ctxt
));
4716 * CR0.TS may reference the host fpu state, not the guest fpu state,
4717 * so it may be clear at this point.
4722 static void emulator_put_fpu(struct x86_emulate_ctxt
*ctxt
)
4727 static int emulator_intercept(struct x86_emulate_ctxt
*ctxt
,
4728 struct x86_instruction_info
*info
,
4729 enum x86_intercept_stage stage
)
4731 return kvm_x86_ops
->check_intercept(emul_to_vcpu(ctxt
), info
, stage
);
4734 static void emulator_get_cpuid(struct x86_emulate_ctxt
*ctxt
,
4735 u32
*eax
, u32
*ebx
, u32
*ecx
, u32
*edx
)
4737 kvm_cpuid(emul_to_vcpu(ctxt
), eax
, ebx
, ecx
, edx
);
4740 static ulong
emulator_read_gpr(struct x86_emulate_ctxt
*ctxt
, unsigned reg
)
4742 return kvm_register_read(emul_to_vcpu(ctxt
), reg
);
4745 static void emulator_write_gpr(struct x86_emulate_ctxt
*ctxt
, unsigned reg
, ulong val
)
4747 kvm_register_write(emul_to_vcpu(ctxt
), reg
, val
);
4750 static const struct x86_emulate_ops emulate_ops
= {
4751 .read_gpr
= emulator_read_gpr
,
4752 .write_gpr
= emulator_write_gpr
,
4753 .read_std
= kvm_read_guest_virt_system
,
4754 .write_std
= kvm_write_guest_virt_system
,
4755 .fetch
= kvm_fetch_guest_virt
,
4756 .read_emulated
= emulator_read_emulated
,
4757 .write_emulated
= emulator_write_emulated
,
4758 .cmpxchg_emulated
= emulator_cmpxchg_emulated
,
4759 .invlpg
= emulator_invlpg
,
4760 .pio_in_emulated
= emulator_pio_in_emulated
,
4761 .pio_out_emulated
= emulator_pio_out_emulated
,
4762 .get_segment
= emulator_get_segment
,
4763 .set_segment
= emulator_set_segment
,
4764 .get_cached_segment_base
= emulator_get_cached_segment_base
,
4765 .get_gdt
= emulator_get_gdt
,
4766 .get_idt
= emulator_get_idt
,
4767 .set_gdt
= emulator_set_gdt
,
4768 .set_idt
= emulator_set_idt
,
4769 .get_cr
= emulator_get_cr
,
4770 .set_cr
= emulator_set_cr
,
4771 .set_rflags
= emulator_set_rflags
,
4772 .cpl
= emulator_get_cpl
,
4773 .get_dr
= emulator_get_dr
,
4774 .set_dr
= emulator_set_dr
,
4775 .set_msr
= emulator_set_msr
,
4776 .get_msr
= emulator_get_msr
,
4777 .read_pmc
= emulator_read_pmc
,
4778 .halt
= emulator_halt
,
4779 .wbinvd
= emulator_wbinvd
,
4780 .fix_hypercall
= emulator_fix_hypercall
,
4781 .get_fpu
= emulator_get_fpu
,
4782 .put_fpu
= emulator_put_fpu
,
4783 .intercept
= emulator_intercept
,
4784 .get_cpuid
= emulator_get_cpuid
,
4787 static void toggle_interruptibility(struct kvm_vcpu
*vcpu
, u32 mask
)
4789 u32 int_shadow
= kvm_x86_ops
->get_interrupt_shadow(vcpu
, mask
);
4791 * an sti; sti; sequence only disable interrupts for the first
4792 * instruction. So, if the last instruction, be it emulated or
4793 * not, left the system with the INT_STI flag enabled, it
4794 * means that the last instruction is an sti. We should not
4795 * leave the flag on in this case. The same goes for mov ss
4797 if (!(int_shadow
& mask
))
4798 kvm_x86_ops
->set_interrupt_shadow(vcpu
, mask
);
4801 static void inject_emulated_exception(struct kvm_vcpu
*vcpu
)
4803 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
4804 if (ctxt
->exception
.vector
== PF_VECTOR
)
4805 kvm_propagate_fault(vcpu
, &ctxt
->exception
);
4806 else if (ctxt
->exception
.error_code_valid
)
4807 kvm_queue_exception_e(vcpu
, ctxt
->exception
.vector
,
4808 ctxt
->exception
.error_code
);
4810 kvm_queue_exception(vcpu
, ctxt
->exception
.vector
);
4813 static void init_decode_cache(struct x86_emulate_ctxt
*ctxt
)
4815 memset(&ctxt
->twobyte
, 0,
4816 (void *)&ctxt
->_regs
- (void *)&ctxt
->twobyte
);
4818 ctxt
->fetch
.start
= 0;
4819 ctxt
->fetch
.end
= 0;
4820 ctxt
->io_read
.pos
= 0;
4821 ctxt
->io_read
.end
= 0;
4822 ctxt
->mem_read
.pos
= 0;
4823 ctxt
->mem_read
.end
= 0;
4826 static void init_emulate_ctxt(struct kvm_vcpu
*vcpu
)
4828 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
4831 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
4833 ctxt
->eflags
= kvm_get_rflags(vcpu
);
4834 ctxt
->eip
= kvm_rip_read(vcpu
);
4835 ctxt
->mode
= (!is_protmode(vcpu
)) ? X86EMUL_MODE_REAL
:
4836 (ctxt
->eflags
& X86_EFLAGS_VM
) ? X86EMUL_MODE_VM86
:
4837 cs_l
? X86EMUL_MODE_PROT64
:
4838 cs_db
? X86EMUL_MODE_PROT32
:
4839 X86EMUL_MODE_PROT16
;
4840 ctxt
->guest_mode
= is_guest_mode(vcpu
);
4842 init_decode_cache(ctxt
);
4843 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= false;
4846 int kvm_inject_realmode_interrupt(struct kvm_vcpu
*vcpu
, int irq
, int inc_eip
)
4848 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
4851 init_emulate_ctxt(vcpu
);
4855 ctxt
->_eip
= ctxt
->eip
+ inc_eip
;
4856 ret
= emulate_int_real(ctxt
, irq
);
4858 if (ret
!= X86EMUL_CONTINUE
)
4859 return EMULATE_FAIL
;
4861 ctxt
->eip
= ctxt
->_eip
;
4862 kvm_rip_write(vcpu
, ctxt
->eip
);
4863 kvm_set_rflags(vcpu
, ctxt
->eflags
);
4865 if (irq
== NMI_VECTOR
)
4866 vcpu
->arch
.nmi_pending
= 0;
4868 vcpu
->arch
.interrupt
.pending
= false;
4870 return EMULATE_DONE
;
4872 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt
);
4874 static int handle_emulation_failure(struct kvm_vcpu
*vcpu
)
4876 int r
= EMULATE_DONE
;
4878 ++vcpu
->stat
.insn_emulation_fail
;
4879 trace_kvm_emulate_insn_failed(vcpu
);
4880 if (!is_guest_mode(vcpu
) && kvm_x86_ops
->get_cpl(vcpu
) == 0) {
4881 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
4882 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
4883 vcpu
->run
->internal
.ndata
= 0;
4886 kvm_queue_exception(vcpu
, UD_VECTOR
);
4891 static bool reexecute_instruction(struct kvm_vcpu
*vcpu
, gva_t cr2
,
4892 bool write_fault_to_shadow_pgtable
,
4898 if (emulation_type
& EMULTYPE_NO_REEXECUTE
)
4901 if (!vcpu
->arch
.mmu
.direct_map
) {
4903 * Write permission should be allowed since only
4904 * write access need to be emulated.
4906 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, cr2
, NULL
);
4909 * If the mapping is invalid in guest, let cpu retry
4910 * it to generate fault.
4912 if (gpa
== UNMAPPED_GVA
)
4917 * Do not retry the unhandleable instruction if it faults on the
4918 * readonly host memory, otherwise it will goto a infinite loop:
4919 * retry instruction -> write #PF -> emulation fail -> retry
4920 * instruction -> ...
4922 pfn
= gfn_to_pfn(vcpu
->kvm
, gpa_to_gfn(gpa
));
4925 * If the instruction failed on the error pfn, it can not be fixed,
4926 * report the error to userspace.
4928 if (is_error_noslot_pfn(pfn
))
4931 kvm_release_pfn_clean(pfn
);
4933 /* The instructions are well-emulated on direct mmu. */
4934 if (vcpu
->arch
.mmu
.direct_map
) {
4935 unsigned int indirect_shadow_pages
;
4937 spin_lock(&vcpu
->kvm
->mmu_lock
);
4938 indirect_shadow_pages
= vcpu
->kvm
->arch
.indirect_shadow_pages
;
4939 spin_unlock(&vcpu
->kvm
->mmu_lock
);
4941 if (indirect_shadow_pages
)
4942 kvm_mmu_unprotect_page(vcpu
->kvm
, gpa_to_gfn(gpa
));
4948 * if emulation was due to access to shadowed page table
4949 * and it failed try to unshadow page and re-enter the
4950 * guest to let CPU execute the instruction.
4952 kvm_mmu_unprotect_page(vcpu
->kvm
, gpa_to_gfn(gpa
));
4955 * If the access faults on its page table, it can not
4956 * be fixed by unprotecting shadow page and it should
4957 * be reported to userspace.
4959 return !write_fault_to_shadow_pgtable
;
4962 static bool retry_instruction(struct x86_emulate_ctxt
*ctxt
,
4963 unsigned long cr2
, int emulation_type
)
4965 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4966 unsigned long last_retry_eip
, last_retry_addr
, gpa
= cr2
;
4968 last_retry_eip
= vcpu
->arch
.last_retry_eip
;
4969 last_retry_addr
= vcpu
->arch
.last_retry_addr
;
4972 * If the emulation is caused by #PF and it is non-page_table
4973 * writing instruction, it means the VM-EXIT is caused by shadow
4974 * page protected, we can zap the shadow page and retry this
4975 * instruction directly.
4977 * Note: if the guest uses a non-page-table modifying instruction
4978 * on the PDE that points to the instruction, then we will unmap
4979 * the instruction and go to an infinite loop. So, we cache the
4980 * last retried eip and the last fault address, if we meet the eip
4981 * and the address again, we can break out of the potential infinite
4984 vcpu
->arch
.last_retry_eip
= vcpu
->arch
.last_retry_addr
= 0;
4986 if (!(emulation_type
& EMULTYPE_RETRY
))
4989 if (x86_page_table_writing_insn(ctxt
))
4992 if (ctxt
->eip
== last_retry_eip
&& last_retry_addr
== cr2
)
4995 vcpu
->arch
.last_retry_eip
= ctxt
->eip
;
4996 vcpu
->arch
.last_retry_addr
= cr2
;
4998 if (!vcpu
->arch
.mmu
.direct_map
)
4999 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, cr2
, NULL
);
5001 kvm_mmu_unprotect_page(vcpu
->kvm
, gpa_to_gfn(gpa
));
5006 static int complete_emulated_mmio(struct kvm_vcpu
*vcpu
);
5007 static int complete_emulated_pio(struct kvm_vcpu
*vcpu
);
5009 static int kvm_vcpu_check_hw_bp(unsigned long addr
, u32 type
, u32 dr7
,
5018 for (i
= 0; i
< 4; i
++, enable
>>= 2, rwlen
>>= 4)
5019 if ((enable
& 3) && (rwlen
& 15) == type
&& db
[i
] == addr
)
5024 static void kvm_vcpu_check_singlestep(struct kvm_vcpu
*vcpu
, int *r
)
5026 struct kvm_run
*kvm_run
= vcpu
->run
;
5029 * Use the "raw" value to see if TF was passed to the processor.
5030 * Note that the new value of the flags has not been saved yet.
5032 * This is correct even for TF set by the guest, because "the
5033 * processor will not generate this exception after the instruction
5034 * that sets the TF flag".
5036 unsigned long rflags
= kvm_x86_ops
->get_rflags(vcpu
);
5038 if (unlikely(rflags
& X86_EFLAGS_TF
)) {
5039 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
) {
5040 kvm_run
->debug
.arch
.dr6
= DR6_BS
| DR6_FIXED_1
;
5041 kvm_run
->debug
.arch
.pc
= vcpu
->arch
.singlestep_rip
;
5042 kvm_run
->debug
.arch
.exception
= DB_VECTOR
;
5043 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
5044 *r
= EMULATE_USER_EXIT
;
5046 vcpu
->arch
.emulate_ctxt
.eflags
&= ~X86_EFLAGS_TF
;
5048 * "Certain debug exceptions may clear bit 0-3. The
5049 * remaining contents of the DR6 register are never
5050 * cleared by the processor".
5052 vcpu
->arch
.dr6
&= ~15;
5053 vcpu
->arch
.dr6
|= DR6_BS
;
5054 kvm_queue_exception(vcpu
, DB_VECTOR
);
5059 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu
*vcpu
, int *r
)
5061 struct kvm_run
*kvm_run
= vcpu
->run
;
5062 unsigned long eip
= vcpu
->arch
.emulate_ctxt
.eip
;
5065 if (unlikely(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
) &&
5066 (vcpu
->arch
.guest_debug_dr7
& DR7_BP_EN_MASK
)) {
5067 dr6
= kvm_vcpu_check_hw_bp(eip
, 0,
5068 vcpu
->arch
.guest_debug_dr7
,
5072 kvm_run
->debug
.arch
.dr6
= dr6
| DR6_FIXED_1
;
5073 kvm_run
->debug
.arch
.pc
= kvm_rip_read(vcpu
) +
5074 get_segment_base(vcpu
, VCPU_SREG_CS
);
5076 kvm_run
->debug
.arch
.exception
= DB_VECTOR
;
5077 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
5078 *r
= EMULATE_USER_EXIT
;
5083 if (unlikely(vcpu
->arch
.dr7
& DR7_BP_EN_MASK
)) {
5084 dr6
= kvm_vcpu_check_hw_bp(eip
, 0,
5089 vcpu
->arch
.dr6
&= ~15;
5090 vcpu
->arch
.dr6
|= dr6
;
5091 kvm_queue_exception(vcpu
, DB_VECTOR
);
5100 int x86_emulate_instruction(struct kvm_vcpu
*vcpu
,
5107 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
5108 bool writeback
= true;
5109 bool write_fault_to_spt
= vcpu
->arch
.write_fault_to_shadow_pgtable
;
5112 * Clear write_fault_to_shadow_pgtable here to ensure it is
5115 vcpu
->arch
.write_fault_to_shadow_pgtable
= false;
5116 kvm_clear_exception_queue(vcpu
);
5118 if (!(emulation_type
& EMULTYPE_NO_DECODE
)) {
5119 init_emulate_ctxt(vcpu
);
5122 * We will reenter on the same instruction since
5123 * we do not set complete_userspace_io. This does not
5124 * handle watchpoints yet, those would be handled in
5127 if (kvm_vcpu_check_breakpoint(vcpu
, &r
))
5130 ctxt
->interruptibility
= 0;
5131 ctxt
->have_exception
= false;
5132 ctxt
->perm_ok
= false;
5134 ctxt
->only_vendor_specific_insn
5135 = emulation_type
& EMULTYPE_TRAP_UD
;
5137 r
= x86_decode_insn(ctxt
, insn
, insn_len
);
5139 trace_kvm_emulate_insn_start(vcpu
);
5140 ++vcpu
->stat
.insn_emulation
;
5141 if (r
!= EMULATION_OK
) {
5142 if (emulation_type
& EMULTYPE_TRAP_UD
)
5143 return EMULATE_FAIL
;
5144 if (reexecute_instruction(vcpu
, cr2
, write_fault_to_spt
,
5146 return EMULATE_DONE
;
5147 if (emulation_type
& EMULTYPE_SKIP
)
5148 return EMULATE_FAIL
;
5149 return handle_emulation_failure(vcpu
);
5153 if (emulation_type
& EMULTYPE_SKIP
) {
5154 kvm_rip_write(vcpu
, ctxt
->_eip
);
5155 return EMULATE_DONE
;
5158 if (retry_instruction(ctxt
, cr2
, emulation_type
))
5159 return EMULATE_DONE
;
5161 /* this is needed for vmware backdoor interface to work since it
5162 changes registers values during IO operation */
5163 if (vcpu
->arch
.emulate_regs_need_sync_from_vcpu
) {
5164 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= false;
5165 emulator_invalidate_register_cache(ctxt
);
5169 r
= x86_emulate_insn(ctxt
);
5171 if (r
== EMULATION_INTERCEPTED
)
5172 return EMULATE_DONE
;
5174 if (r
== EMULATION_FAILED
) {
5175 if (reexecute_instruction(vcpu
, cr2
, write_fault_to_spt
,
5177 return EMULATE_DONE
;
5179 return handle_emulation_failure(vcpu
);
5182 if (ctxt
->have_exception
) {
5183 inject_emulated_exception(vcpu
);
5185 } else if (vcpu
->arch
.pio
.count
) {
5186 if (!vcpu
->arch
.pio
.in
) {
5187 /* FIXME: return into emulator if single-stepping. */
5188 vcpu
->arch
.pio
.count
= 0;
5191 vcpu
->arch
.complete_userspace_io
= complete_emulated_pio
;
5193 r
= EMULATE_USER_EXIT
;
5194 } else if (vcpu
->mmio_needed
) {
5195 if (!vcpu
->mmio_is_write
)
5197 r
= EMULATE_USER_EXIT
;
5198 vcpu
->arch
.complete_userspace_io
= complete_emulated_mmio
;
5199 } else if (r
== EMULATION_RESTART
)
5205 toggle_interruptibility(vcpu
, ctxt
->interruptibility
);
5206 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5207 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
5208 kvm_rip_write(vcpu
, ctxt
->eip
);
5209 if (r
== EMULATE_DONE
)
5210 kvm_vcpu_check_singlestep(vcpu
, &r
);
5211 kvm_set_rflags(vcpu
, ctxt
->eflags
);
5213 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= true;
5217 EXPORT_SYMBOL_GPL(x86_emulate_instruction
);
5219 int kvm_fast_pio_out(struct kvm_vcpu
*vcpu
, int size
, unsigned short port
)
5221 unsigned long val
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
5222 int ret
= emulator_pio_out_emulated(&vcpu
->arch
.emulate_ctxt
,
5223 size
, port
, &val
, 1);
5224 /* do not return to emulator after return from userspace */
5225 vcpu
->arch
.pio
.count
= 0;
5228 EXPORT_SYMBOL_GPL(kvm_fast_pio_out
);
5230 static void tsc_bad(void *info
)
5232 __this_cpu_write(cpu_tsc_khz
, 0);
5235 static void tsc_khz_changed(void *data
)
5237 struct cpufreq_freqs
*freq
= data
;
5238 unsigned long khz
= 0;
5242 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
5243 khz
= cpufreq_quick_get(raw_smp_processor_id());
5246 __this_cpu_write(cpu_tsc_khz
, khz
);
5249 static int kvmclock_cpufreq_notifier(struct notifier_block
*nb
, unsigned long val
,
5252 struct cpufreq_freqs
*freq
= data
;
5254 struct kvm_vcpu
*vcpu
;
5255 int i
, send_ipi
= 0;
5258 * We allow guests to temporarily run on slowing clocks,
5259 * provided we notify them after, or to run on accelerating
5260 * clocks, provided we notify them before. Thus time never
5263 * However, we have a problem. We can't atomically update
5264 * the frequency of a given CPU from this function; it is
5265 * merely a notifier, which can be called from any CPU.
5266 * Changing the TSC frequency at arbitrary points in time
5267 * requires a recomputation of local variables related to
5268 * the TSC for each VCPU. We must flag these local variables
5269 * to be updated and be sure the update takes place with the
5270 * new frequency before any guests proceed.
5272 * Unfortunately, the combination of hotplug CPU and frequency
5273 * change creates an intractable locking scenario; the order
5274 * of when these callouts happen is undefined with respect to
5275 * CPU hotplug, and they can race with each other. As such,
5276 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5277 * undefined; you can actually have a CPU frequency change take
5278 * place in between the computation of X and the setting of the
5279 * variable. To protect against this problem, all updates of
5280 * the per_cpu tsc_khz variable are done in an interrupt
5281 * protected IPI, and all callers wishing to update the value
5282 * must wait for a synchronous IPI to complete (which is trivial
5283 * if the caller is on the CPU already). This establishes the
5284 * necessary total order on variable updates.
5286 * Note that because a guest time update may take place
5287 * anytime after the setting of the VCPU's request bit, the
5288 * correct TSC value must be set before the request. However,
5289 * to ensure the update actually makes it to any guest which
5290 * starts running in hardware virtualization between the set
5291 * and the acquisition of the spinlock, we must also ping the
5292 * CPU after setting the request bit.
5296 if (val
== CPUFREQ_PRECHANGE
&& freq
->old
> freq
->new)
5298 if (val
== CPUFREQ_POSTCHANGE
&& freq
->old
< freq
->new)
5301 smp_call_function_single(freq
->cpu
, tsc_khz_changed
, freq
, 1);
5303 raw_spin_lock(&kvm_lock
);
5304 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
5305 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
5306 if (vcpu
->cpu
!= freq
->cpu
)
5308 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
5309 if (vcpu
->cpu
!= smp_processor_id())
5313 raw_spin_unlock(&kvm_lock
);
5315 if (freq
->old
< freq
->new && send_ipi
) {
5317 * We upscale the frequency. Must make the guest
5318 * doesn't see old kvmclock values while running with
5319 * the new frequency, otherwise we risk the guest sees
5320 * time go backwards.
5322 * In case we update the frequency for another cpu
5323 * (which might be in guest context) send an interrupt
5324 * to kick the cpu out of guest context. Next time
5325 * guest context is entered kvmclock will be updated,
5326 * so the guest will not see stale values.
5328 smp_call_function_single(freq
->cpu
, tsc_khz_changed
, freq
, 1);
5333 static struct notifier_block kvmclock_cpufreq_notifier_block
= {
5334 .notifier_call
= kvmclock_cpufreq_notifier
5337 static int kvmclock_cpu_notifier(struct notifier_block
*nfb
,
5338 unsigned long action
, void *hcpu
)
5340 unsigned int cpu
= (unsigned long)hcpu
;
5344 case CPU_DOWN_FAILED
:
5345 smp_call_function_single(cpu
, tsc_khz_changed
, NULL
, 1);
5347 case CPU_DOWN_PREPARE
:
5348 smp_call_function_single(cpu
, tsc_bad
, NULL
, 1);
5354 static struct notifier_block kvmclock_cpu_notifier_block
= {
5355 .notifier_call
= kvmclock_cpu_notifier
,
5356 .priority
= -INT_MAX
5359 static void kvm_timer_init(void)
5363 max_tsc_khz
= tsc_khz
;
5364 register_hotcpu_notifier(&kvmclock_cpu_notifier_block
);
5365 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
)) {
5366 #ifdef CONFIG_CPU_FREQ
5367 struct cpufreq_policy policy
;
5368 memset(&policy
, 0, sizeof(policy
));
5370 cpufreq_get_policy(&policy
, cpu
);
5371 if (policy
.cpuinfo
.max_freq
)
5372 max_tsc_khz
= policy
.cpuinfo
.max_freq
;
5375 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block
,
5376 CPUFREQ_TRANSITION_NOTIFIER
);
5378 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz
);
5379 for_each_online_cpu(cpu
)
5380 smp_call_function_single(cpu
, tsc_khz_changed
, NULL
, 1);
5383 static DEFINE_PER_CPU(struct kvm_vcpu
*, current_vcpu
);
5385 int kvm_is_in_guest(void)
5387 return __this_cpu_read(current_vcpu
) != NULL
;
5390 static int kvm_is_user_mode(void)
5394 if (__this_cpu_read(current_vcpu
))
5395 user_mode
= kvm_x86_ops
->get_cpl(__this_cpu_read(current_vcpu
));
5397 return user_mode
!= 0;
5400 static unsigned long kvm_get_guest_ip(void)
5402 unsigned long ip
= 0;
5404 if (__this_cpu_read(current_vcpu
))
5405 ip
= kvm_rip_read(__this_cpu_read(current_vcpu
));
5410 static struct perf_guest_info_callbacks kvm_guest_cbs
= {
5411 .is_in_guest
= kvm_is_in_guest
,
5412 .is_user_mode
= kvm_is_user_mode
,
5413 .get_guest_ip
= kvm_get_guest_ip
,
5416 void kvm_before_handle_nmi(struct kvm_vcpu
*vcpu
)
5418 __this_cpu_write(current_vcpu
, vcpu
);
5420 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi
);
5422 void kvm_after_handle_nmi(struct kvm_vcpu
*vcpu
)
5424 __this_cpu_write(current_vcpu
, NULL
);
5426 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi
);
5428 static void kvm_set_mmio_spte_mask(void)
5431 int maxphyaddr
= boot_cpu_data
.x86_phys_bits
;
5434 * Set the reserved bits and the present bit of an paging-structure
5435 * entry to generate page fault with PFER.RSV = 1.
5437 /* Mask the reserved physical address bits. */
5438 mask
= ((1ull << (51 - maxphyaddr
+ 1)) - 1) << maxphyaddr
;
5440 /* Bit 62 is always reserved for 32bit host. */
5441 mask
|= 0x3ull
<< 62;
5443 /* Set the present bit. */
5446 #ifdef CONFIG_X86_64
5448 * If reserved bit is not supported, clear the present bit to disable
5451 if (maxphyaddr
== 52)
5455 kvm_mmu_set_mmio_spte_mask(mask
);
5458 #ifdef CONFIG_X86_64
5459 static void pvclock_gtod_update_fn(struct work_struct
*work
)
5463 struct kvm_vcpu
*vcpu
;
5466 raw_spin_lock(&kvm_lock
);
5467 list_for_each_entry(kvm
, &vm_list
, vm_list
)
5468 kvm_for_each_vcpu(i
, vcpu
, kvm
)
5469 set_bit(KVM_REQ_MASTERCLOCK_UPDATE
, &vcpu
->requests
);
5470 atomic_set(&kvm_guest_has_master_clock
, 0);
5471 raw_spin_unlock(&kvm_lock
);
5474 static DECLARE_WORK(pvclock_gtod_work
, pvclock_gtod_update_fn
);
5477 * Notification about pvclock gtod data update.
5479 static int pvclock_gtod_notify(struct notifier_block
*nb
, unsigned long unused
,
5482 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
5483 struct timekeeper
*tk
= priv
;
5485 update_pvclock_gtod(tk
);
5487 /* disable master clock if host does not trust, or does not
5488 * use, TSC clocksource
5490 if (gtod
->clock
.vclock_mode
!= VCLOCK_TSC
&&
5491 atomic_read(&kvm_guest_has_master_clock
) != 0)
5492 queue_work(system_long_wq
, &pvclock_gtod_work
);
5497 static struct notifier_block pvclock_gtod_notifier
= {
5498 .notifier_call
= pvclock_gtod_notify
,
5502 int kvm_arch_init(void *opaque
)
5505 struct kvm_x86_ops
*ops
= opaque
;
5508 printk(KERN_ERR
"kvm: already loaded the other module\n");
5513 if (!ops
->cpu_has_kvm_support()) {
5514 printk(KERN_ERR
"kvm: no hardware support\n");
5518 if (ops
->disabled_by_bios()) {
5519 printk(KERN_ERR
"kvm: disabled by bios\n");
5525 shared_msrs
= alloc_percpu(struct kvm_shared_msrs
);
5527 printk(KERN_ERR
"kvm: failed to allocate percpu kvm_shared_msrs\n");
5531 r
= kvm_mmu_module_init();
5533 goto out_free_percpu
;
5535 kvm_set_mmio_spte_mask();
5536 kvm_init_msr_list();
5539 kvm_mmu_set_mask_ptes(PT_USER_MASK
, PT_ACCESSED_MASK
,
5540 PT_DIRTY_MASK
, PT64_NX_MASK
, 0);
5544 perf_register_guest_info_callbacks(&kvm_guest_cbs
);
5547 host_xcr0
= xgetbv(XCR_XFEATURE_ENABLED_MASK
);
5550 #ifdef CONFIG_X86_64
5551 pvclock_gtod_register_notifier(&pvclock_gtod_notifier
);
5557 free_percpu(shared_msrs
);
5562 void kvm_arch_exit(void)
5564 perf_unregister_guest_info_callbacks(&kvm_guest_cbs
);
5566 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
5567 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block
,
5568 CPUFREQ_TRANSITION_NOTIFIER
);
5569 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block
);
5570 #ifdef CONFIG_X86_64
5571 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier
);
5574 kvm_mmu_module_exit();
5575 free_percpu(shared_msrs
);
5578 int kvm_emulate_halt(struct kvm_vcpu
*vcpu
)
5580 ++vcpu
->stat
.halt_exits
;
5581 if (irqchip_in_kernel(vcpu
->kvm
)) {
5582 vcpu
->arch
.mp_state
= KVM_MP_STATE_HALTED
;
5585 vcpu
->run
->exit_reason
= KVM_EXIT_HLT
;
5589 EXPORT_SYMBOL_GPL(kvm_emulate_halt
);
5591 int kvm_hv_hypercall(struct kvm_vcpu
*vcpu
)
5593 u64 param
, ingpa
, outgpa
, ret
;
5594 uint16_t code
, rep_idx
, rep_cnt
, res
= HV_STATUS_SUCCESS
, rep_done
= 0;
5595 bool fast
, longmode
;
5599 * hypercall generates UD from non zero cpl and real mode
5602 if (kvm_x86_ops
->get_cpl(vcpu
) != 0 || !is_protmode(vcpu
)) {
5603 kvm_queue_exception(vcpu
, UD_VECTOR
);
5607 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
5608 longmode
= is_long_mode(vcpu
) && cs_l
== 1;
5611 param
= ((u64
)kvm_register_read(vcpu
, VCPU_REGS_RDX
) << 32) |
5612 (kvm_register_read(vcpu
, VCPU_REGS_RAX
) & 0xffffffff);
5613 ingpa
= ((u64
)kvm_register_read(vcpu
, VCPU_REGS_RBX
) << 32) |
5614 (kvm_register_read(vcpu
, VCPU_REGS_RCX
) & 0xffffffff);
5615 outgpa
= ((u64
)kvm_register_read(vcpu
, VCPU_REGS_RDI
) << 32) |
5616 (kvm_register_read(vcpu
, VCPU_REGS_RSI
) & 0xffffffff);
5618 #ifdef CONFIG_X86_64
5620 param
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
5621 ingpa
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
5622 outgpa
= kvm_register_read(vcpu
, VCPU_REGS_R8
);
5626 code
= param
& 0xffff;
5627 fast
= (param
>> 16) & 0x1;
5628 rep_cnt
= (param
>> 32) & 0xfff;
5629 rep_idx
= (param
>> 48) & 0xfff;
5631 trace_kvm_hv_hypercall(code
, fast
, rep_cnt
, rep_idx
, ingpa
, outgpa
);
5634 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT
:
5635 kvm_vcpu_on_spin(vcpu
);
5638 res
= HV_STATUS_INVALID_HYPERCALL_CODE
;
5642 ret
= res
| (((u64
)rep_done
& 0xfff) << 32);
5644 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
);
5646 kvm_register_write(vcpu
, VCPU_REGS_RDX
, ret
>> 32);
5647 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
& 0xffffffff);
5654 * kvm_pv_kick_cpu_op: Kick a vcpu.
5656 * @apicid - apicid of vcpu to be kicked.
5658 static void kvm_pv_kick_cpu_op(struct kvm
*kvm
, unsigned long flags
, int apicid
)
5660 struct kvm_lapic_irq lapic_irq
;
5662 lapic_irq
.shorthand
= 0;
5663 lapic_irq
.dest_mode
= 0;
5664 lapic_irq
.dest_id
= apicid
;
5666 lapic_irq
.delivery_mode
= APIC_DM_REMRD
;
5667 kvm_irq_delivery_to_apic(kvm
, 0, &lapic_irq
, NULL
);
5670 int kvm_emulate_hypercall(struct kvm_vcpu
*vcpu
)
5672 unsigned long nr
, a0
, a1
, a2
, a3
, ret
;
5675 if (kvm_hv_hypercall_enabled(vcpu
->kvm
))
5676 return kvm_hv_hypercall(vcpu
);
5678 nr
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
5679 a0
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
5680 a1
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
5681 a2
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
5682 a3
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
5684 trace_kvm_hypercall(nr
, a0
, a1
, a2
, a3
);
5686 if (!is_long_mode(vcpu
)) {
5694 if (kvm_x86_ops
->get_cpl(vcpu
) != 0) {
5700 case KVM_HC_VAPIC_POLL_IRQ
:
5703 case KVM_HC_KICK_CPU
:
5704 kvm_pv_kick_cpu_op(vcpu
->kvm
, a0
, a1
);
5712 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
);
5713 ++vcpu
->stat
.hypercalls
;
5716 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall
);
5718 static int emulator_fix_hypercall(struct x86_emulate_ctxt
*ctxt
)
5720 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5721 char instruction
[3];
5722 unsigned long rip
= kvm_rip_read(vcpu
);
5724 kvm_x86_ops
->patch_hypercall(vcpu
, instruction
);
5726 return emulator_write_emulated(ctxt
, rip
, instruction
, 3, NULL
);
5730 * Check if userspace requested an interrupt window, and that the
5731 * interrupt window is open.
5733 * No need to exit to userspace if we already have an interrupt queued.
5735 static int dm_request_for_irq_injection(struct kvm_vcpu
*vcpu
)
5737 return (!irqchip_in_kernel(vcpu
->kvm
) && !kvm_cpu_has_interrupt(vcpu
) &&
5738 vcpu
->run
->request_interrupt_window
&&
5739 kvm_arch_interrupt_allowed(vcpu
));
5742 static void post_kvm_run_save(struct kvm_vcpu
*vcpu
)
5744 struct kvm_run
*kvm_run
= vcpu
->run
;
5746 kvm_run
->if_flag
= (kvm_get_rflags(vcpu
) & X86_EFLAGS_IF
) != 0;
5747 kvm_run
->cr8
= kvm_get_cr8(vcpu
);
5748 kvm_run
->apic_base
= kvm_get_apic_base(vcpu
);
5749 if (irqchip_in_kernel(vcpu
->kvm
))
5750 kvm_run
->ready_for_interrupt_injection
= 1;
5752 kvm_run
->ready_for_interrupt_injection
=
5753 kvm_arch_interrupt_allowed(vcpu
) &&
5754 !kvm_cpu_has_interrupt(vcpu
) &&
5755 !kvm_event_needs_reinjection(vcpu
);
5758 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
)
5762 if (!kvm_x86_ops
->update_cr8_intercept
)
5765 if (!vcpu
->arch
.apic
)
5768 if (!vcpu
->arch
.apic
->vapic_addr
)
5769 max_irr
= kvm_lapic_find_highest_irr(vcpu
);
5776 tpr
= kvm_lapic_get_cr8(vcpu
);
5778 kvm_x86_ops
->update_cr8_intercept(vcpu
, tpr
, max_irr
);
5781 static void inject_pending_event(struct kvm_vcpu
*vcpu
)
5783 /* try to reinject previous events if any */
5784 if (vcpu
->arch
.exception
.pending
) {
5785 trace_kvm_inj_exception(vcpu
->arch
.exception
.nr
,
5786 vcpu
->arch
.exception
.has_error_code
,
5787 vcpu
->arch
.exception
.error_code
);
5788 kvm_x86_ops
->queue_exception(vcpu
, vcpu
->arch
.exception
.nr
,
5789 vcpu
->arch
.exception
.has_error_code
,
5790 vcpu
->arch
.exception
.error_code
,
5791 vcpu
->arch
.exception
.reinject
);
5795 if (vcpu
->arch
.nmi_injected
) {
5796 kvm_x86_ops
->set_nmi(vcpu
);
5800 if (vcpu
->arch
.interrupt
.pending
) {
5801 kvm_x86_ops
->set_irq(vcpu
);
5805 /* try to inject new event if pending */
5806 if (vcpu
->arch
.nmi_pending
) {
5807 if (kvm_x86_ops
->nmi_allowed(vcpu
)) {
5808 --vcpu
->arch
.nmi_pending
;
5809 vcpu
->arch
.nmi_injected
= true;
5810 kvm_x86_ops
->set_nmi(vcpu
);
5812 } else if (kvm_cpu_has_injectable_intr(vcpu
)) {
5813 if (kvm_x86_ops
->interrupt_allowed(vcpu
)) {
5814 kvm_queue_interrupt(vcpu
, kvm_cpu_get_interrupt(vcpu
),
5816 kvm_x86_ops
->set_irq(vcpu
);
5821 static void process_nmi(struct kvm_vcpu
*vcpu
)
5826 * x86 is limited to one NMI running, and one NMI pending after it.
5827 * If an NMI is already in progress, limit further NMIs to just one.
5828 * Otherwise, allow two (and we'll inject the first one immediately).
5830 if (kvm_x86_ops
->get_nmi_mask(vcpu
) || vcpu
->arch
.nmi_injected
)
5833 vcpu
->arch
.nmi_pending
+= atomic_xchg(&vcpu
->arch
.nmi_queued
, 0);
5834 vcpu
->arch
.nmi_pending
= min(vcpu
->arch
.nmi_pending
, limit
);
5835 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5838 static void vcpu_scan_ioapic(struct kvm_vcpu
*vcpu
)
5840 u64 eoi_exit_bitmap
[4];
5843 if (!kvm_apic_hw_enabled(vcpu
->arch
.apic
))
5846 memset(eoi_exit_bitmap
, 0, 32);
5849 kvm_ioapic_scan_entry(vcpu
, eoi_exit_bitmap
, tmr
);
5850 kvm_x86_ops
->load_eoi_exitmap(vcpu
, eoi_exit_bitmap
);
5851 kvm_apic_update_tmr(vcpu
, tmr
);
5854 static int vcpu_enter_guest(struct kvm_vcpu
*vcpu
)
5857 bool req_int_win
= !irqchip_in_kernel(vcpu
->kvm
) &&
5858 vcpu
->run
->request_interrupt_window
;
5859 bool req_immediate_exit
= false;
5861 if (vcpu
->requests
) {
5862 if (kvm_check_request(KVM_REQ_MMU_RELOAD
, vcpu
))
5863 kvm_mmu_unload(vcpu
);
5864 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER
, vcpu
))
5865 __kvm_migrate_timers(vcpu
);
5866 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
))
5867 kvm_gen_update_masterclock(vcpu
->kvm
);
5868 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE
, vcpu
))
5869 kvm_gen_kvmclock_update(vcpu
);
5870 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE
, vcpu
)) {
5871 r
= kvm_guest_time_update(vcpu
);
5875 if (kvm_check_request(KVM_REQ_MMU_SYNC
, vcpu
))
5876 kvm_mmu_sync_roots(vcpu
);
5877 if (kvm_check_request(KVM_REQ_TLB_FLUSH
, vcpu
))
5878 kvm_x86_ops
->tlb_flush(vcpu
);
5879 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS
, vcpu
)) {
5880 vcpu
->run
->exit_reason
= KVM_EXIT_TPR_ACCESS
;
5884 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT
, vcpu
)) {
5885 vcpu
->run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
5889 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU
, vcpu
)) {
5890 vcpu
->fpu_active
= 0;
5891 kvm_x86_ops
->fpu_deactivate(vcpu
);
5893 if (kvm_check_request(KVM_REQ_APF_HALT
, vcpu
)) {
5894 /* Page is swapped out. Do synthetic halt */
5895 vcpu
->arch
.apf
.halted
= true;
5899 if (kvm_check_request(KVM_REQ_STEAL_UPDATE
, vcpu
))
5900 record_steal_time(vcpu
);
5901 if (kvm_check_request(KVM_REQ_NMI
, vcpu
))
5903 if (kvm_check_request(KVM_REQ_PMU
, vcpu
))
5904 kvm_handle_pmu_event(vcpu
);
5905 if (kvm_check_request(KVM_REQ_PMI
, vcpu
))
5906 kvm_deliver_pmi(vcpu
);
5907 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC
, vcpu
))
5908 vcpu_scan_ioapic(vcpu
);
5911 if (kvm_check_request(KVM_REQ_EVENT
, vcpu
) || req_int_win
) {
5912 kvm_apic_accept_events(vcpu
);
5913 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_INIT_RECEIVED
) {
5918 inject_pending_event(vcpu
);
5920 /* enable NMI/IRQ window open exits if needed */
5921 if (vcpu
->arch
.nmi_pending
)
5922 req_immediate_exit
=
5923 kvm_x86_ops
->enable_nmi_window(vcpu
) != 0;
5924 else if (kvm_cpu_has_injectable_intr(vcpu
) || req_int_win
)
5925 req_immediate_exit
=
5926 kvm_x86_ops
->enable_irq_window(vcpu
) != 0;
5928 if (kvm_lapic_enabled(vcpu
)) {
5930 * Update architecture specific hints for APIC
5931 * virtual interrupt delivery.
5933 if (kvm_x86_ops
->hwapic_irr_update
)
5934 kvm_x86_ops
->hwapic_irr_update(vcpu
,
5935 kvm_lapic_find_highest_irr(vcpu
));
5936 update_cr8_intercept(vcpu
);
5937 kvm_lapic_sync_to_vapic(vcpu
);
5941 r
= kvm_mmu_reload(vcpu
);
5943 goto cancel_injection
;
5948 kvm_x86_ops
->prepare_guest_switch(vcpu
);
5949 if (vcpu
->fpu_active
)
5950 kvm_load_guest_fpu(vcpu
);
5951 kvm_load_guest_xcr0(vcpu
);
5953 vcpu
->mode
= IN_GUEST_MODE
;
5955 /* We should set ->mode before check ->requests,
5956 * see the comment in make_all_cpus_request.
5960 local_irq_disable();
5962 if (vcpu
->mode
== EXITING_GUEST_MODE
|| vcpu
->requests
5963 || need_resched() || signal_pending(current
)) {
5964 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
5969 goto cancel_injection
;
5972 srcu_read_unlock(&vcpu
->kvm
->srcu
, vcpu
->srcu_idx
);
5974 if (req_immediate_exit
)
5975 smp_send_reschedule(vcpu
->cpu
);
5979 if (unlikely(vcpu
->arch
.switch_db_regs
)) {
5981 set_debugreg(vcpu
->arch
.eff_db
[0], 0);
5982 set_debugreg(vcpu
->arch
.eff_db
[1], 1);
5983 set_debugreg(vcpu
->arch
.eff_db
[2], 2);
5984 set_debugreg(vcpu
->arch
.eff_db
[3], 3);
5987 trace_kvm_entry(vcpu
->vcpu_id
);
5988 kvm_x86_ops
->run(vcpu
);
5991 * If the guest has used debug registers, at least dr7
5992 * will be disabled while returning to the host.
5993 * If we don't have active breakpoints in the host, we don't
5994 * care about the messed up debug address registers. But if
5995 * we have some of them active, restore the old state.
5997 if (hw_breakpoint_active())
5998 hw_breakpoint_restore();
6000 vcpu
->arch
.last_guest_tsc
= kvm_x86_ops
->read_l1_tsc(vcpu
,
6003 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
6006 /* Interrupt is enabled by handle_external_intr() */
6007 kvm_x86_ops
->handle_external_intr(vcpu
);
6012 * We must have an instruction between local_irq_enable() and
6013 * kvm_guest_exit(), so the timer interrupt isn't delayed by
6014 * the interrupt shadow. The stat.exits increment will do nicely.
6015 * But we need to prevent reordering, hence this barrier():
6023 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
6026 * Profile KVM exit RIPs:
6028 if (unlikely(prof_on
== KVM_PROFILING
)) {
6029 unsigned long rip
= kvm_rip_read(vcpu
);
6030 profile_hit(KVM_PROFILING
, (void *)rip
);
6033 if (unlikely(vcpu
->arch
.tsc_always_catchup
))
6034 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
6036 if (vcpu
->arch
.apic_attention
)
6037 kvm_lapic_sync_from_vapic(vcpu
);
6039 r
= kvm_x86_ops
->handle_exit(vcpu
);
6043 kvm_x86_ops
->cancel_injection(vcpu
);
6044 if (unlikely(vcpu
->arch
.apic_attention
))
6045 kvm_lapic_sync_from_vapic(vcpu
);
6051 static int __vcpu_run(struct kvm_vcpu
*vcpu
)
6054 struct kvm
*kvm
= vcpu
->kvm
;
6056 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
6060 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
&&
6061 !vcpu
->arch
.apf
.halted
)
6062 r
= vcpu_enter_guest(vcpu
);
6064 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
6065 kvm_vcpu_block(vcpu
);
6066 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
6067 if (kvm_check_request(KVM_REQ_UNHALT
, vcpu
)) {
6068 kvm_apic_accept_events(vcpu
);
6069 switch(vcpu
->arch
.mp_state
) {
6070 case KVM_MP_STATE_HALTED
:
6071 vcpu
->arch
.pv
.pv_unhalted
= false;
6072 vcpu
->arch
.mp_state
=
6073 KVM_MP_STATE_RUNNABLE
;
6074 case KVM_MP_STATE_RUNNABLE
:
6075 vcpu
->arch
.apf
.halted
= false;
6077 case KVM_MP_STATE_INIT_RECEIVED
:
6089 clear_bit(KVM_REQ_PENDING_TIMER
, &vcpu
->requests
);
6090 if (kvm_cpu_has_pending_timer(vcpu
))
6091 kvm_inject_pending_timer_irqs(vcpu
);
6093 if (dm_request_for_irq_injection(vcpu
)) {
6095 vcpu
->run
->exit_reason
= KVM_EXIT_INTR
;
6096 ++vcpu
->stat
.request_irq_exits
;
6099 kvm_check_async_pf_completion(vcpu
);
6101 if (signal_pending(current
)) {
6103 vcpu
->run
->exit_reason
= KVM_EXIT_INTR
;
6104 ++vcpu
->stat
.signal_exits
;
6106 if (need_resched()) {
6107 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
6109 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
6113 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
6118 static inline int complete_emulated_io(struct kvm_vcpu
*vcpu
)
6121 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
6122 r
= emulate_instruction(vcpu
, EMULTYPE_NO_DECODE
);
6123 srcu_read_unlock(&vcpu
->kvm
->srcu
, vcpu
->srcu_idx
);
6124 if (r
!= EMULATE_DONE
)
6129 static int complete_emulated_pio(struct kvm_vcpu
*vcpu
)
6131 BUG_ON(!vcpu
->arch
.pio
.count
);
6133 return complete_emulated_io(vcpu
);
6137 * Implements the following, as a state machine:
6141 * for each mmio piece in the fragment
6149 * for each mmio piece in the fragment
6154 static int complete_emulated_mmio(struct kvm_vcpu
*vcpu
)
6156 struct kvm_run
*run
= vcpu
->run
;
6157 struct kvm_mmio_fragment
*frag
;
6160 BUG_ON(!vcpu
->mmio_needed
);
6162 /* Complete previous fragment */
6163 frag
= &vcpu
->mmio_fragments
[vcpu
->mmio_cur_fragment
];
6164 len
= min(8u, frag
->len
);
6165 if (!vcpu
->mmio_is_write
)
6166 memcpy(frag
->data
, run
->mmio
.data
, len
);
6168 if (frag
->len
<= 8) {
6169 /* Switch to the next fragment. */
6171 vcpu
->mmio_cur_fragment
++;
6173 /* Go forward to the next mmio piece. */
6179 if (vcpu
->mmio_cur_fragment
>= vcpu
->mmio_nr_fragments
) {
6180 vcpu
->mmio_needed
= 0;
6182 /* FIXME: return into emulator if single-stepping. */
6183 if (vcpu
->mmio_is_write
)
6185 vcpu
->mmio_read_completed
= 1;
6186 return complete_emulated_io(vcpu
);
6189 run
->exit_reason
= KVM_EXIT_MMIO
;
6190 run
->mmio
.phys_addr
= frag
->gpa
;
6191 if (vcpu
->mmio_is_write
)
6192 memcpy(run
->mmio
.data
, frag
->data
, min(8u, frag
->len
));
6193 run
->mmio
.len
= min(8u, frag
->len
);
6194 run
->mmio
.is_write
= vcpu
->mmio_is_write
;
6195 vcpu
->arch
.complete_userspace_io
= complete_emulated_mmio
;
6200 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
6205 if (!tsk_used_math(current
) && init_fpu(current
))
6208 if (vcpu
->sigset_active
)
6209 sigprocmask(SIG_SETMASK
, &vcpu
->sigset
, &sigsaved
);
6211 if (unlikely(vcpu
->arch
.mp_state
== KVM_MP_STATE_UNINITIALIZED
)) {
6212 kvm_vcpu_block(vcpu
);
6213 kvm_apic_accept_events(vcpu
);
6214 clear_bit(KVM_REQ_UNHALT
, &vcpu
->requests
);
6219 /* re-sync apic's tpr */
6220 if (!irqchip_in_kernel(vcpu
->kvm
)) {
6221 if (kvm_set_cr8(vcpu
, kvm_run
->cr8
) != 0) {
6227 if (unlikely(vcpu
->arch
.complete_userspace_io
)) {
6228 int (*cui
)(struct kvm_vcpu
*) = vcpu
->arch
.complete_userspace_io
;
6229 vcpu
->arch
.complete_userspace_io
= NULL
;
6234 WARN_ON(vcpu
->arch
.pio
.count
|| vcpu
->mmio_needed
);
6236 r
= __vcpu_run(vcpu
);
6239 post_kvm_run_save(vcpu
);
6240 if (vcpu
->sigset_active
)
6241 sigprocmask(SIG_SETMASK
, &sigsaved
, NULL
);
6246 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
6248 if (vcpu
->arch
.emulate_regs_need_sync_to_vcpu
) {
6250 * We are here if userspace calls get_regs() in the middle of
6251 * instruction emulation. Registers state needs to be copied
6252 * back from emulation context to vcpu. Userspace shouldn't do
6253 * that usually, but some bad designed PV devices (vmware
6254 * backdoor interface) need this to work
6256 emulator_writeback_register_cache(&vcpu
->arch
.emulate_ctxt
);
6257 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
6259 regs
->rax
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
6260 regs
->rbx
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
6261 regs
->rcx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
6262 regs
->rdx
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
6263 regs
->rsi
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
6264 regs
->rdi
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
6265 regs
->rsp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
6266 regs
->rbp
= kvm_register_read(vcpu
, VCPU_REGS_RBP
);
6267 #ifdef CONFIG_X86_64
6268 regs
->r8
= kvm_register_read(vcpu
, VCPU_REGS_R8
);
6269 regs
->r9
= kvm_register_read(vcpu
, VCPU_REGS_R9
);
6270 regs
->r10
= kvm_register_read(vcpu
, VCPU_REGS_R10
);
6271 regs
->r11
= kvm_register_read(vcpu
, VCPU_REGS_R11
);
6272 regs
->r12
= kvm_register_read(vcpu
, VCPU_REGS_R12
);
6273 regs
->r13
= kvm_register_read(vcpu
, VCPU_REGS_R13
);
6274 regs
->r14
= kvm_register_read(vcpu
, VCPU_REGS_R14
);
6275 regs
->r15
= kvm_register_read(vcpu
, VCPU_REGS_R15
);
6278 regs
->rip
= kvm_rip_read(vcpu
);
6279 regs
->rflags
= kvm_get_rflags(vcpu
);
6284 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
6286 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= true;
6287 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
6289 kvm_register_write(vcpu
, VCPU_REGS_RAX
, regs
->rax
);
6290 kvm_register_write(vcpu
, VCPU_REGS_RBX
, regs
->rbx
);
6291 kvm_register_write(vcpu
, VCPU_REGS_RCX
, regs
->rcx
);
6292 kvm_register_write(vcpu
, VCPU_REGS_RDX
, regs
->rdx
);
6293 kvm_register_write(vcpu
, VCPU_REGS_RSI
, regs
->rsi
);
6294 kvm_register_write(vcpu
, VCPU_REGS_RDI
, regs
->rdi
);
6295 kvm_register_write(vcpu
, VCPU_REGS_RSP
, regs
->rsp
);
6296 kvm_register_write(vcpu
, VCPU_REGS_RBP
, regs
->rbp
);
6297 #ifdef CONFIG_X86_64
6298 kvm_register_write(vcpu
, VCPU_REGS_R8
, regs
->r8
);
6299 kvm_register_write(vcpu
, VCPU_REGS_R9
, regs
->r9
);
6300 kvm_register_write(vcpu
, VCPU_REGS_R10
, regs
->r10
);
6301 kvm_register_write(vcpu
, VCPU_REGS_R11
, regs
->r11
);
6302 kvm_register_write(vcpu
, VCPU_REGS_R12
, regs
->r12
);
6303 kvm_register_write(vcpu
, VCPU_REGS_R13
, regs
->r13
);
6304 kvm_register_write(vcpu
, VCPU_REGS_R14
, regs
->r14
);
6305 kvm_register_write(vcpu
, VCPU_REGS_R15
, regs
->r15
);
6308 kvm_rip_write(vcpu
, regs
->rip
);
6309 kvm_set_rflags(vcpu
, regs
->rflags
);
6311 vcpu
->arch
.exception
.pending
= false;
6313 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6318 void kvm_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
6320 struct kvm_segment cs
;
6322 kvm_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
6326 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits
);
6328 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu
*vcpu
,
6329 struct kvm_sregs
*sregs
)
6333 kvm_get_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
6334 kvm_get_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
6335 kvm_get_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
6336 kvm_get_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
6337 kvm_get_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
6338 kvm_get_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
6340 kvm_get_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
6341 kvm_get_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
6343 kvm_x86_ops
->get_idt(vcpu
, &dt
);
6344 sregs
->idt
.limit
= dt
.size
;
6345 sregs
->idt
.base
= dt
.address
;
6346 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
6347 sregs
->gdt
.limit
= dt
.size
;
6348 sregs
->gdt
.base
= dt
.address
;
6350 sregs
->cr0
= kvm_read_cr0(vcpu
);
6351 sregs
->cr2
= vcpu
->arch
.cr2
;
6352 sregs
->cr3
= kvm_read_cr3(vcpu
);
6353 sregs
->cr4
= kvm_read_cr4(vcpu
);
6354 sregs
->cr8
= kvm_get_cr8(vcpu
);
6355 sregs
->efer
= vcpu
->arch
.efer
;
6356 sregs
->apic_base
= kvm_get_apic_base(vcpu
);
6358 memset(sregs
->interrupt_bitmap
, 0, sizeof sregs
->interrupt_bitmap
);
6360 if (vcpu
->arch
.interrupt
.pending
&& !vcpu
->arch
.interrupt
.soft
)
6361 set_bit(vcpu
->arch
.interrupt
.nr
,
6362 (unsigned long *)sregs
->interrupt_bitmap
);
6367 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu
*vcpu
,
6368 struct kvm_mp_state
*mp_state
)
6370 kvm_apic_accept_events(vcpu
);
6371 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_HALTED
&&
6372 vcpu
->arch
.pv
.pv_unhalted
)
6373 mp_state
->mp_state
= KVM_MP_STATE_RUNNABLE
;
6375 mp_state
->mp_state
= vcpu
->arch
.mp_state
;
6380 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu
*vcpu
,
6381 struct kvm_mp_state
*mp_state
)
6383 if (!kvm_vcpu_has_lapic(vcpu
) &&
6384 mp_state
->mp_state
!= KVM_MP_STATE_RUNNABLE
)
6387 if (mp_state
->mp_state
== KVM_MP_STATE_SIPI_RECEIVED
) {
6388 vcpu
->arch
.mp_state
= KVM_MP_STATE_INIT_RECEIVED
;
6389 set_bit(KVM_APIC_SIPI
, &vcpu
->arch
.apic
->pending_events
);
6391 vcpu
->arch
.mp_state
= mp_state
->mp_state
;
6392 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6396 int kvm_task_switch(struct kvm_vcpu
*vcpu
, u16 tss_selector
, int idt_index
,
6397 int reason
, bool has_error_code
, u32 error_code
)
6399 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
6402 init_emulate_ctxt(vcpu
);
6404 ret
= emulator_task_switch(ctxt
, tss_selector
, idt_index
, reason
,
6405 has_error_code
, error_code
);
6408 return EMULATE_FAIL
;
6410 kvm_rip_write(vcpu
, ctxt
->eip
);
6411 kvm_set_rflags(vcpu
, ctxt
->eflags
);
6412 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6413 return EMULATE_DONE
;
6415 EXPORT_SYMBOL_GPL(kvm_task_switch
);
6417 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu
*vcpu
,
6418 struct kvm_sregs
*sregs
)
6420 int mmu_reset_needed
= 0;
6421 int pending_vec
, max_bits
, idx
;
6424 if (!guest_cpuid_has_xsave(vcpu
) && (sregs
->cr4
& X86_CR4_OSXSAVE
))
6427 dt
.size
= sregs
->idt
.limit
;
6428 dt
.address
= sregs
->idt
.base
;
6429 kvm_x86_ops
->set_idt(vcpu
, &dt
);
6430 dt
.size
= sregs
->gdt
.limit
;
6431 dt
.address
= sregs
->gdt
.base
;
6432 kvm_x86_ops
->set_gdt(vcpu
, &dt
);
6434 vcpu
->arch
.cr2
= sregs
->cr2
;
6435 mmu_reset_needed
|= kvm_read_cr3(vcpu
) != sregs
->cr3
;
6436 vcpu
->arch
.cr3
= sregs
->cr3
;
6437 __set_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
);
6439 kvm_set_cr8(vcpu
, sregs
->cr8
);
6441 mmu_reset_needed
|= vcpu
->arch
.efer
!= sregs
->efer
;
6442 kvm_x86_ops
->set_efer(vcpu
, sregs
->efer
);
6443 kvm_set_apic_base(vcpu
, sregs
->apic_base
);
6445 mmu_reset_needed
|= kvm_read_cr0(vcpu
) != sregs
->cr0
;
6446 kvm_x86_ops
->set_cr0(vcpu
, sregs
->cr0
);
6447 vcpu
->arch
.cr0
= sregs
->cr0
;
6449 mmu_reset_needed
|= kvm_read_cr4(vcpu
) != sregs
->cr4
;
6450 kvm_x86_ops
->set_cr4(vcpu
, sregs
->cr4
);
6451 if (sregs
->cr4
& X86_CR4_OSXSAVE
)
6452 kvm_update_cpuid(vcpu
);
6454 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
6455 if (!is_long_mode(vcpu
) && is_pae(vcpu
)) {
6456 load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, kvm_read_cr3(vcpu
));
6457 mmu_reset_needed
= 1;
6459 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
6461 if (mmu_reset_needed
)
6462 kvm_mmu_reset_context(vcpu
);
6464 max_bits
= KVM_NR_INTERRUPTS
;
6465 pending_vec
= find_first_bit(
6466 (const unsigned long *)sregs
->interrupt_bitmap
, max_bits
);
6467 if (pending_vec
< max_bits
) {
6468 kvm_queue_interrupt(vcpu
, pending_vec
, false);
6469 pr_debug("Set back pending irq %d\n", pending_vec
);
6472 kvm_set_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
6473 kvm_set_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
6474 kvm_set_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
6475 kvm_set_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
6476 kvm_set_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
6477 kvm_set_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
6479 kvm_set_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
6480 kvm_set_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
6482 update_cr8_intercept(vcpu
);
6484 /* Older userspace won't unhalt the vcpu on reset. */
6485 if (kvm_vcpu_is_bsp(vcpu
) && kvm_rip_read(vcpu
) == 0xfff0 &&
6486 sregs
->cs
.selector
== 0xf000 && sregs
->cs
.base
== 0xffff0000 &&
6488 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
6490 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6495 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu
*vcpu
,
6496 struct kvm_guest_debug
*dbg
)
6498 unsigned long rflags
;
6501 if (dbg
->control
& (KVM_GUESTDBG_INJECT_DB
| KVM_GUESTDBG_INJECT_BP
)) {
6503 if (vcpu
->arch
.exception
.pending
)
6505 if (dbg
->control
& KVM_GUESTDBG_INJECT_DB
)
6506 kvm_queue_exception(vcpu
, DB_VECTOR
);
6508 kvm_queue_exception(vcpu
, BP_VECTOR
);
6512 * Read rflags as long as potentially injected trace flags are still
6515 rflags
= kvm_get_rflags(vcpu
);
6517 vcpu
->guest_debug
= dbg
->control
;
6518 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_ENABLE
))
6519 vcpu
->guest_debug
= 0;
6521 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
) {
6522 for (i
= 0; i
< KVM_NR_DB_REGS
; ++i
)
6523 vcpu
->arch
.eff_db
[i
] = dbg
->arch
.debugreg
[i
];
6524 vcpu
->arch
.guest_debug_dr7
= dbg
->arch
.debugreg
[7];
6526 for (i
= 0; i
< KVM_NR_DB_REGS
; i
++)
6527 vcpu
->arch
.eff_db
[i
] = vcpu
->arch
.db
[i
];
6529 kvm_update_dr7(vcpu
);
6531 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
6532 vcpu
->arch
.singlestep_rip
= kvm_rip_read(vcpu
) +
6533 get_segment_base(vcpu
, VCPU_SREG_CS
);
6536 * Trigger an rflags update that will inject or remove the trace
6539 kvm_set_rflags(vcpu
, rflags
);
6541 kvm_x86_ops
->update_db_bp_intercept(vcpu
);
6551 * Translate a guest virtual address to a guest physical address.
6553 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu
*vcpu
,
6554 struct kvm_translation
*tr
)
6556 unsigned long vaddr
= tr
->linear_address
;
6560 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
6561 gpa
= kvm_mmu_gva_to_gpa_system(vcpu
, vaddr
, NULL
);
6562 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
6563 tr
->physical_address
= gpa
;
6564 tr
->valid
= gpa
!= UNMAPPED_GVA
;
6571 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
6573 struct i387_fxsave_struct
*fxsave
=
6574 &vcpu
->arch
.guest_fpu
.state
->fxsave
;
6576 memcpy(fpu
->fpr
, fxsave
->st_space
, 128);
6577 fpu
->fcw
= fxsave
->cwd
;
6578 fpu
->fsw
= fxsave
->swd
;
6579 fpu
->ftwx
= fxsave
->twd
;
6580 fpu
->last_opcode
= fxsave
->fop
;
6581 fpu
->last_ip
= fxsave
->rip
;
6582 fpu
->last_dp
= fxsave
->rdp
;
6583 memcpy(fpu
->xmm
, fxsave
->xmm_space
, sizeof fxsave
->xmm_space
);
6588 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
6590 struct i387_fxsave_struct
*fxsave
=
6591 &vcpu
->arch
.guest_fpu
.state
->fxsave
;
6593 memcpy(fxsave
->st_space
, fpu
->fpr
, 128);
6594 fxsave
->cwd
= fpu
->fcw
;
6595 fxsave
->swd
= fpu
->fsw
;
6596 fxsave
->twd
= fpu
->ftwx
;
6597 fxsave
->fop
= fpu
->last_opcode
;
6598 fxsave
->rip
= fpu
->last_ip
;
6599 fxsave
->rdp
= fpu
->last_dp
;
6600 memcpy(fxsave
->xmm_space
, fpu
->xmm
, sizeof fxsave
->xmm_space
);
6605 int fx_init(struct kvm_vcpu
*vcpu
)
6609 err
= fpu_alloc(&vcpu
->arch
.guest_fpu
);
6613 fpu_finit(&vcpu
->arch
.guest_fpu
);
6616 * Ensure guest xcr0 is valid for loading
6618 vcpu
->arch
.xcr0
= XSTATE_FP
;
6620 vcpu
->arch
.cr0
|= X86_CR0_ET
;
6624 EXPORT_SYMBOL_GPL(fx_init
);
6626 static void fx_free(struct kvm_vcpu
*vcpu
)
6628 fpu_free(&vcpu
->arch
.guest_fpu
);
6631 void kvm_load_guest_fpu(struct kvm_vcpu
*vcpu
)
6633 if (vcpu
->guest_fpu_loaded
)
6637 * Restore all possible states in the guest,
6638 * and assume host would use all available bits.
6639 * Guest xcr0 would be loaded later.
6641 kvm_put_guest_xcr0(vcpu
);
6642 vcpu
->guest_fpu_loaded
= 1;
6643 __kernel_fpu_begin();
6644 fpu_restore_checking(&vcpu
->arch
.guest_fpu
);
6648 void kvm_put_guest_fpu(struct kvm_vcpu
*vcpu
)
6650 kvm_put_guest_xcr0(vcpu
);
6652 if (!vcpu
->guest_fpu_loaded
)
6655 vcpu
->guest_fpu_loaded
= 0;
6656 fpu_save_init(&vcpu
->arch
.guest_fpu
);
6658 ++vcpu
->stat
.fpu_reload
;
6659 kvm_make_request(KVM_REQ_DEACTIVATE_FPU
, vcpu
);
6663 void kvm_arch_vcpu_free(struct kvm_vcpu
*vcpu
)
6665 kvmclock_reset(vcpu
);
6667 free_cpumask_var(vcpu
->arch
.wbinvd_dirty_mask
);
6669 kvm_x86_ops
->vcpu_free(vcpu
);
6672 struct kvm_vcpu
*kvm_arch_vcpu_create(struct kvm
*kvm
,
6675 if (check_tsc_unstable() && atomic_read(&kvm
->online_vcpus
) != 0)
6676 printk_once(KERN_WARNING
6677 "kvm: SMP vm created on host with unstable TSC; "
6678 "guest TSC will not be reliable\n");
6679 return kvm_x86_ops
->vcpu_create(kvm
, id
);
6682 int kvm_arch_vcpu_setup(struct kvm_vcpu
*vcpu
)
6686 vcpu
->arch
.mtrr_state
.have_fixed
= 1;
6687 r
= vcpu_load(vcpu
);
6690 kvm_vcpu_reset(vcpu
);
6691 r
= kvm_mmu_setup(vcpu
);
6697 int kvm_arch_vcpu_postcreate(struct kvm_vcpu
*vcpu
)
6700 struct msr_data msr
;
6702 r
= vcpu_load(vcpu
);
6706 msr
.index
= MSR_IA32_TSC
;
6707 msr
.host_initiated
= true;
6708 kvm_write_tsc(vcpu
, &msr
);
6714 void kvm_arch_vcpu_destroy(struct kvm_vcpu
*vcpu
)
6717 vcpu
->arch
.apf
.msr_val
= 0;
6719 r
= vcpu_load(vcpu
);
6721 kvm_mmu_unload(vcpu
);
6725 kvm_x86_ops
->vcpu_free(vcpu
);
6728 void kvm_vcpu_reset(struct kvm_vcpu
*vcpu
)
6730 atomic_set(&vcpu
->arch
.nmi_queued
, 0);
6731 vcpu
->arch
.nmi_pending
= 0;
6732 vcpu
->arch
.nmi_injected
= false;
6734 memset(vcpu
->arch
.db
, 0, sizeof(vcpu
->arch
.db
));
6735 vcpu
->arch
.dr6
= DR6_FIXED_1
;
6736 vcpu
->arch
.dr7
= DR7_FIXED_1
;
6737 kvm_update_dr7(vcpu
);
6739 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6740 vcpu
->arch
.apf
.msr_val
= 0;
6741 vcpu
->arch
.st
.msr_val
= 0;
6743 kvmclock_reset(vcpu
);
6745 kvm_clear_async_pf_completion_queue(vcpu
);
6746 kvm_async_pf_hash_reset(vcpu
);
6747 vcpu
->arch
.apf
.halted
= false;
6749 kvm_pmu_reset(vcpu
);
6751 memset(vcpu
->arch
.regs
, 0, sizeof(vcpu
->arch
.regs
));
6752 vcpu
->arch
.regs_avail
= ~0;
6753 vcpu
->arch
.regs_dirty
= ~0;
6755 kvm_x86_ops
->vcpu_reset(vcpu
);
6758 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu
*vcpu
, unsigned int vector
)
6760 struct kvm_segment cs
;
6762 kvm_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
6763 cs
.selector
= vector
<< 8;
6764 cs
.base
= vector
<< 12;
6765 kvm_set_segment(vcpu
, &cs
, VCPU_SREG_CS
);
6766 kvm_rip_write(vcpu
, 0);
6769 int kvm_arch_hardware_enable(void *garbage
)
6772 struct kvm_vcpu
*vcpu
;
6777 bool stable
, backwards_tsc
= false;
6779 kvm_shared_msr_cpu_online();
6780 ret
= kvm_x86_ops
->hardware_enable(garbage
);
6784 local_tsc
= native_read_tsc();
6785 stable
= !check_tsc_unstable();
6786 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
6787 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
6788 if (!stable
&& vcpu
->cpu
== smp_processor_id())
6789 set_bit(KVM_REQ_CLOCK_UPDATE
, &vcpu
->requests
);
6790 if (stable
&& vcpu
->arch
.last_host_tsc
> local_tsc
) {
6791 backwards_tsc
= true;
6792 if (vcpu
->arch
.last_host_tsc
> max_tsc
)
6793 max_tsc
= vcpu
->arch
.last_host_tsc
;
6799 * Sometimes, even reliable TSCs go backwards. This happens on
6800 * platforms that reset TSC during suspend or hibernate actions, but
6801 * maintain synchronization. We must compensate. Fortunately, we can
6802 * detect that condition here, which happens early in CPU bringup,
6803 * before any KVM threads can be running. Unfortunately, we can't
6804 * bring the TSCs fully up to date with real time, as we aren't yet far
6805 * enough into CPU bringup that we know how much real time has actually
6806 * elapsed; our helper function, get_kernel_ns() will be using boot
6807 * variables that haven't been updated yet.
6809 * So we simply find the maximum observed TSC above, then record the
6810 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
6811 * the adjustment will be applied. Note that we accumulate
6812 * adjustments, in case multiple suspend cycles happen before some VCPU
6813 * gets a chance to run again. In the event that no KVM threads get a
6814 * chance to run, we will miss the entire elapsed period, as we'll have
6815 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
6816 * loose cycle time. This isn't too big a deal, since the loss will be
6817 * uniform across all VCPUs (not to mention the scenario is extremely
6818 * unlikely). It is possible that a second hibernate recovery happens
6819 * much faster than a first, causing the observed TSC here to be
6820 * smaller; this would require additional padding adjustment, which is
6821 * why we set last_host_tsc to the local tsc observed here.
6823 * N.B. - this code below runs only on platforms with reliable TSC,
6824 * as that is the only way backwards_tsc is set above. Also note
6825 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
6826 * have the same delta_cyc adjustment applied if backwards_tsc
6827 * is detected. Note further, this adjustment is only done once,
6828 * as we reset last_host_tsc on all VCPUs to stop this from being
6829 * called multiple times (one for each physical CPU bringup).
6831 * Platforms with unreliable TSCs don't have to deal with this, they
6832 * will be compensated by the logic in vcpu_load, which sets the TSC to
6833 * catchup mode. This will catchup all VCPUs to real time, but cannot
6834 * guarantee that they stay in perfect synchronization.
6836 if (backwards_tsc
) {
6837 u64 delta_cyc
= max_tsc
- local_tsc
;
6838 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
6839 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
6840 vcpu
->arch
.tsc_offset_adjustment
+= delta_cyc
;
6841 vcpu
->arch
.last_host_tsc
= local_tsc
;
6842 set_bit(KVM_REQ_MASTERCLOCK_UPDATE
,
6847 * We have to disable TSC offset matching.. if you were
6848 * booting a VM while issuing an S4 host suspend....
6849 * you may have some problem. Solving this issue is
6850 * left as an exercise to the reader.
6852 kvm
->arch
.last_tsc_nsec
= 0;
6853 kvm
->arch
.last_tsc_write
= 0;
6860 void kvm_arch_hardware_disable(void *garbage
)
6862 kvm_x86_ops
->hardware_disable(garbage
);
6863 drop_user_return_notifiers(garbage
);
6866 int kvm_arch_hardware_setup(void)
6868 return kvm_x86_ops
->hardware_setup();
6871 void kvm_arch_hardware_unsetup(void)
6873 kvm_x86_ops
->hardware_unsetup();
6876 void kvm_arch_check_processor_compat(void *rtn
)
6878 kvm_x86_ops
->check_processor_compatibility(rtn
);
6881 bool kvm_vcpu_compatible(struct kvm_vcpu
*vcpu
)
6883 return irqchip_in_kernel(vcpu
->kvm
) == (vcpu
->arch
.apic
!= NULL
);
6886 struct static_key kvm_no_apic_vcpu __read_mostly
;
6888 int kvm_arch_vcpu_init(struct kvm_vcpu
*vcpu
)
6894 BUG_ON(vcpu
->kvm
== NULL
);
6897 vcpu
->arch
.pv
.pv_unhalted
= false;
6898 vcpu
->arch
.emulate_ctxt
.ops
= &emulate_ops
;
6899 if (!irqchip_in_kernel(kvm
) || kvm_vcpu_is_bsp(vcpu
))
6900 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
6902 vcpu
->arch
.mp_state
= KVM_MP_STATE_UNINITIALIZED
;
6904 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
6909 vcpu
->arch
.pio_data
= page_address(page
);
6911 kvm_set_tsc_khz(vcpu
, max_tsc_khz
);
6913 r
= kvm_mmu_create(vcpu
);
6915 goto fail_free_pio_data
;
6917 if (irqchip_in_kernel(kvm
)) {
6918 r
= kvm_create_lapic(vcpu
);
6920 goto fail_mmu_destroy
;
6922 static_key_slow_inc(&kvm_no_apic_vcpu
);
6924 vcpu
->arch
.mce_banks
= kzalloc(KVM_MAX_MCE_BANKS
* sizeof(u64
) * 4,
6926 if (!vcpu
->arch
.mce_banks
) {
6928 goto fail_free_lapic
;
6930 vcpu
->arch
.mcg_cap
= KVM_MAX_MCE_BANKS
;
6932 if (!zalloc_cpumask_var(&vcpu
->arch
.wbinvd_dirty_mask
, GFP_KERNEL
)) {
6934 goto fail_free_mce_banks
;
6939 goto fail_free_wbinvd_dirty_mask
;
6941 vcpu
->arch
.ia32_tsc_adjust_msr
= 0x0;
6942 vcpu
->arch
.pv_time_enabled
= false;
6943 kvm_async_pf_hash_reset(vcpu
);
6947 fail_free_wbinvd_dirty_mask
:
6948 free_cpumask_var(vcpu
->arch
.wbinvd_dirty_mask
);
6949 fail_free_mce_banks
:
6950 kfree(vcpu
->arch
.mce_banks
);
6952 kvm_free_lapic(vcpu
);
6954 kvm_mmu_destroy(vcpu
);
6956 free_page((unsigned long)vcpu
->arch
.pio_data
);
6961 void kvm_arch_vcpu_uninit(struct kvm_vcpu
*vcpu
)
6965 kvm_pmu_destroy(vcpu
);
6966 kfree(vcpu
->arch
.mce_banks
);
6967 kvm_free_lapic(vcpu
);
6968 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
6969 kvm_mmu_destroy(vcpu
);
6970 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
6971 free_page((unsigned long)vcpu
->arch
.pio_data
);
6972 if (!irqchip_in_kernel(vcpu
->kvm
))
6973 static_key_slow_dec(&kvm_no_apic_vcpu
);
6976 int kvm_arch_init_vm(struct kvm
*kvm
, unsigned long type
)
6981 INIT_LIST_HEAD(&kvm
->arch
.active_mmu_pages
);
6982 INIT_LIST_HEAD(&kvm
->arch
.zapped_obsolete_pages
);
6983 INIT_LIST_HEAD(&kvm
->arch
.assigned_dev_head
);
6985 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6986 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID
, &kvm
->arch
.irq_sources_bitmap
);
6987 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
6988 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID
,
6989 &kvm
->arch
.irq_sources_bitmap
);
6991 raw_spin_lock_init(&kvm
->arch
.tsc_write_lock
);
6992 mutex_init(&kvm
->arch
.apic_map_lock
);
6993 spin_lock_init(&kvm
->arch
.pvclock_gtod_sync_lock
);
6995 pvclock_update_vm_gtod_copy(kvm
);
7000 static void kvm_unload_vcpu_mmu(struct kvm_vcpu
*vcpu
)
7003 r
= vcpu_load(vcpu
);
7005 kvm_mmu_unload(vcpu
);
7009 static void kvm_free_vcpus(struct kvm
*kvm
)
7012 struct kvm_vcpu
*vcpu
;
7015 * Unpin any mmu pages first.
7017 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
7018 kvm_clear_async_pf_completion_queue(vcpu
);
7019 kvm_unload_vcpu_mmu(vcpu
);
7021 kvm_for_each_vcpu(i
, vcpu
, kvm
)
7022 kvm_arch_vcpu_free(vcpu
);
7024 mutex_lock(&kvm
->lock
);
7025 for (i
= 0; i
< atomic_read(&kvm
->online_vcpus
); i
++)
7026 kvm
->vcpus
[i
] = NULL
;
7028 atomic_set(&kvm
->online_vcpus
, 0);
7029 mutex_unlock(&kvm
->lock
);
7032 void kvm_arch_sync_events(struct kvm
*kvm
)
7034 kvm_free_all_assigned_devices(kvm
);
7038 void kvm_arch_destroy_vm(struct kvm
*kvm
)
7040 if (current
->mm
== kvm
->mm
) {
7042 * Free memory regions allocated on behalf of userspace,
7043 * unless the the memory map has changed due to process exit
7046 struct kvm_userspace_memory_region mem
;
7047 memset(&mem
, 0, sizeof(mem
));
7048 mem
.slot
= APIC_ACCESS_PAGE_PRIVATE_MEMSLOT
;
7049 kvm_set_memory_region(kvm
, &mem
);
7051 mem
.slot
= IDENTITY_PAGETABLE_PRIVATE_MEMSLOT
;
7052 kvm_set_memory_region(kvm
, &mem
);
7054 mem
.slot
= TSS_PRIVATE_MEMSLOT
;
7055 kvm_set_memory_region(kvm
, &mem
);
7057 kvm_iommu_unmap_guest(kvm
);
7058 kfree(kvm
->arch
.vpic
);
7059 kfree(kvm
->arch
.vioapic
);
7060 kvm_free_vcpus(kvm
);
7061 if (kvm
->arch
.apic_access_page
)
7062 put_page(kvm
->arch
.apic_access_page
);
7063 if (kvm
->arch
.ept_identity_pagetable
)
7064 put_page(kvm
->arch
.ept_identity_pagetable
);
7065 kfree(rcu_dereference_check(kvm
->arch
.apic_map
, 1));
7068 void kvm_arch_free_memslot(struct kvm_memory_slot
*free
,
7069 struct kvm_memory_slot
*dont
)
7073 for (i
= 0; i
< KVM_NR_PAGE_SIZES
; ++i
) {
7074 if (!dont
|| free
->arch
.rmap
[i
] != dont
->arch
.rmap
[i
]) {
7075 kvm_kvfree(free
->arch
.rmap
[i
]);
7076 free
->arch
.rmap
[i
] = NULL
;
7081 if (!dont
|| free
->arch
.lpage_info
[i
- 1] !=
7082 dont
->arch
.lpage_info
[i
- 1]) {
7083 kvm_kvfree(free
->arch
.lpage_info
[i
- 1]);
7084 free
->arch
.lpage_info
[i
- 1] = NULL
;
7089 int kvm_arch_create_memslot(struct kvm_memory_slot
*slot
, unsigned long npages
)
7093 for (i
= 0; i
< KVM_NR_PAGE_SIZES
; ++i
) {
7098 lpages
= gfn_to_index(slot
->base_gfn
+ npages
- 1,
7099 slot
->base_gfn
, level
) + 1;
7101 slot
->arch
.rmap
[i
] =
7102 kvm_kvzalloc(lpages
* sizeof(*slot
->arch
.rmap
[i
]));
7103 if (!slot
->arch
.rmap
[i
])
7108 slot
->arch
.lpage_info
[i
- 1] = kvm_kvzalloc(lpages
*
7109 sizeof(*slot
->arch
.lpage_info
[i
- 1]));
7110 if (!slot
->arch
.lpage_info
[i
- 1])
7113 if (slot
->base_gfn
& (KVM_PAGES_PER_HPAGE(level
) - 1))
7114 slot
->arch
.lpage_info
[i
- 1][0].write_count
= 1;
7115 if ((slot
->base_gfn
+ npages
) & (KVM_PAGES_PER_HPAGE(level
) - 1))
7116 slot
->arch
.lpage_info
[i
- 1][lpages
- 1].write_count
= 1;
7117 ugfn
= slot
->userspace_addr
>> PAGE_SHIFT
;
7119 * If the gfn and userspace address are not aligned wrt each
7120 * other, or if explicitly asked to, disable large page
7121 * support for this slot
7123 if ((slot
->base_gfn
^ ugfn
) & (KVM_PAGES_PER_HPAGE(level
) - 1) ||
7124 !kvm_largepages_enabled()) {
7127 for (j
= 0; j
< lpages
; ++j
)
7128 slot
->arch
.lpage_info
[i
- 1][j
].write_count
= 1;
7135 for (i
= 0; i
< KVM_NR_PAGE_SIZES
; ++i
) {
7136 kvm_kvfree(slot
->arch
.rmap
[i
]);
7137 slot
->arch
.rmap
[i
] = NULL
;
7141 kvm_kvfree(slot
->arch
.lpage_info
[i
- 1]);
7142 slot
->arch
.lpage_info
[i
- 1] = NULL
;
7147 void kvm_arch_memslots_updated(struct kvm
*kvm
)
7150 * memslots->generation has been incremented.
7151 * mmio generation may have reached its maximum value.
7153 kvm_mmu_invalidate_mmio_sptes(kvm
);
7156 int kvm_arch_prepare_memory_region(struct kvm
*kvm
,
7157 struct kvm_memory_slot
*memslot
,
7158 struct kvm_userspace_memory_region
*mem
,
7159 enum kvm_mr_change change
)
7162 * Only private memory slots need to be mapped here since
7163 * KVM_SET_MEMORY_REGION ioctl is no longer supported.
7165 if ((memslot
->id
>= KVM_USER_MEM_SLOTS
) && (change
== KVM_MR_CREATE
)) {
7166 unsigned long userspace_addr
;
7169 * MAP_SHARED to prevent internal slot pages from being moved
7172 userspace_addr
= vm_mmap(NULL
, 0, memslot
->npages
* PAGE_SIZE
,
7173 PROT_READ
| PROT_WRITE
,
7174 MAP_SHARED
| MAP_ANONYMOUS
, 0);
7176 if (IS_ERR((void *)userspace_addr
))
7177 return PTR_ERR((void *)userspace_addr
);
7179 memslot
->userspace_addr
= userspace_addr
;
7185 void kvm_arch_commit_memory_region(struct kvm
*kvm
,
7186 struct kvm_userspace_memory_region
*mem
,
7187 const struct kvm_memory_slot
*old
,
7188 enum kvm_mr_change change
)
7191 int nr_mmu_pages
= 0;
7193 if ((mem
->slot
>= KVM_USER_MEM_SLOTS
) && (change
== KVM_MR_DELETE
)) {
7196 ret
= vm_munmap(old
->userspace_addr
,
7197 old
->npages
* PAGE_SIZE
);
7200 "kvm_vm_ioctl_set_memory_region: "
7201 "failed to munmap memory\n");
7204 if (!kvm
->arch
.n_requested_mmu_pages
)
7205 nr_mmu_pages
= kvm_mmu_calculate_mmu_pages(kvm
);
7208 kvm_mmu_change_mmu_pages(kvm
, nr_mmu_pages
);
7210 * Write protect all pages for dirty logging.
7211 * Existing largepage mappings are destroyed here and new ones will
7212 * not be created until the end of the logging.
7214 if ((change
!= KVM_MR_DELETE
) && (mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
))
7215 kvm_mmu_slot_remove_write_access(kvm
, mem
->slot
);
7218 void kvm_arch_flush_shadow_all(struct kvm
*kvm
)
7220 kvm_mmu_invalidate_zap_all_pages(kvm
);
7223 void kvm_arch_flush_shadow_memslot(struct kvm
*kvm
,
7224 struct kvm_memory_slot
*slot
)
7226 kvm_mmu_invalidate_zap_all_pages(kvm
);
7229 int kvm_arch_vcpu_runnable(struct kvm_vcpu
*vcpu
)
7231 return (vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
&&
7232 !vcpu
->arch
.apf
.halted
)
7233 || !list_empty_careful(&vcpu
->async_pf
.done
)
7234 || kvm_apic_has_events(vcpu
)
7235 || vcpu
->arch
.pv
.pv_unhalted
7236 || atomic_read(&vcpu
->arch
.nmi_queued
) ||
7237 (kvm_arch_interrupt_allowed(vcpu
) &&
7238 kvm_cpu_has_interrupt(vcpu
));
7241 int kvm_arch_vcpu_should_kick(struct kvm_vcpu
*vcpu
)
7243 return kvm_vcpu_exiting_guest_mode(vcpu
) == IN_GUEST_MODE
;
7246 int kvm_arch_interrupt_allowed(struct kvm_vcpu
*vcpu
)
7248 return kvm_x86_ops
->interrupt_allowed(vcpu
);
7251 bool kvm_is_linear_rip(struct kvm_vcpu
*vcpu
, unsigned long linear_rip
)
7253 unsigned long current_rip
= kvm_rip_read(vcpu
) +
7254 get_segment_base(vcpu
, VCPU_SREG_CS
);
7256 return current_rip
== linear_rip
;
7258 EXPORT_SYMBOL_GPL(kvm_is_linear_rip
);
7260 unsigned long kvm_get_rflags(struct kvm_vcpu
*vcpu
)
7262 unsigned long rflags
;
7264 rflags
= kvm_x86_ops
->get_rflags(vcpu
);
7265 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
7266 rflags
&= ~X86_EFLAGS_TF
;
7269 EXPORT_SYMBOL_GPL(kvm_get_rflags
);
7271 void kvm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
7273 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
&&
7274 kvm_is_linear_rip(vcpu
, vcpu
->arch
.singlestep_rip
))
7275 rflags
|= X86_EFLAGS_TF
;
7276 kvm_x86_ops
->set_rflags(vcpu
, rflags
);
7277 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
7279 EXPORT_SYMBOL_GPL(kvm_set_rflags
);
7281 void kvm_arch_async_page_ready(struct kvm_vcpu
*vcpu
, struct kvm_async_pf
*work
)
7285 if ((vcpu
->arch
.mmu
.direct_map
!= work
->arch
.direct_map
) ||
7286 is_error_page(work
->page
))
7289 r
= kvm_mmu_reload(vcpu
);
7293 if (!vcpu
->arch
.mmu
.direct_map
&&
7294 work
->arch
.cr3
!= vcpu
->arch
.mmu
.get_cr3(vcpu
))
7297 vcpu
->arch
.mmu
.page_fault(vcpu
, work
->gva
, 0, true);
7300 static inline u32
kvm_async_pf_hash_fn(gfn_t gfn
)
7302 return hash_32(gfn
& 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU
));
7305 static inline u32
kvm_async_pf_next_probe(u32 key
)
7307 return (key
+ 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU
) - 1);
7310 static void kvm_add_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
7312 u32 key
= kvm_async_pf_hash_fn(gfn
);
7314 while (vcpu
->arch
.apf
.gfns
[key
] != ~0)
7315 key
= kvm_async_pf_next_probe(key
);
7317 vcpu
->arch
.apf
.gfns
[key
] = gfn
;
7320 static u32
kvm_async_pf_gfn_slot(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
7323 u32 key
= kvm_async_pf_hash_fn(gfn
);
7325 for (i
= 0; i
< roundup_pow_of_two(ASYNC_PF_PER_VCPU
) &&
7326 (vcpu
->arch
.apf
.gfns
[key
] != gfn
&&
7327 vcpu
->arch
.apf
.gfns
[key
] != ~0); i
++)
7328 key
= kvm_async_pf_next_probe(key
);
7333 bool kvm_find_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
7335 return vcpu
->arch
.apf
.gfns
[kvm_async_pf_gfn_slot(vcpu
, gfn
)] == gfn
;
7338 static void kvm_del_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
7342 i
= j
= kvm_async_pf_gfn_slot(vcpu
, gfn
);
7344 vcpu
->arch
.apf
.gfns
[i
] = ~0;
7346 j
= kvm_async_pf_next_probe(j
);
7347 if (vcpu
->arch
.apf
.gfns
[j
] == ~0)
7349 k
= kvm_async_pf_hash_fn(vcpu
->arch
.apf
.gfns
[j
]);
7351 * k lies cyclically in ]i,j]
7353 * |....j i.k.| or |.k..j i...|
7355 } while ((i
<= j
) ? (i
< k
&& k
<= j
) : (i
< k
|| k
<= j
));
7356 vcpu
->arch
.apf
.gfns
[i
] = vcpu
->arch
.apf
.gfns
[j
];
7361 static int apf_put_user(struct kvm_vcpu
*vcpu
, u32 val
)
7364 return kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.apf
.data
, &val
,
7368 void kvm_arch_async_page_not_present(struct kvm_vcpu
*vcpu
,
7369 struct kvm_async_pf
*work
)
7371 struct x86_exception fault
;
7373 trace_kvm_async_pf_not_present(work
->arch
.token
, work
->gva
);
7374 kvm_add_async_pf_gfn(vcpu
, work
->arch
.gfn
);
7376 if (!(vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
) ||
7377 (vcpu
->arch
.apf
.send_user_only
&&
7378 kvm_x86_ops
->get_cpl(vcpu
) == 0))
7379 kvm_make_request(KVM_REQ_APF_HALT
, vcpu
);
7380 else if (!apf_put_user(vcpu
, KVM_PV_REASON_PAGE_NOT_PRESENT
)) {
7381 fault
.vector
= PF_VECTOR
;
7382 fault
.error_code_valid
= true;
7383 fault
.error_code
= 0;
7384 fault
.nested_page_fault
= false;
7385 fault
.address
= work
->arch
.token
;
7386 kvm_inject_page_fault(vcpu
, &fault
);
7390 void kvm_arch_async_page_present(struct kvm_vcpu
*vcpu
,
7391 struct kvm_async_pf
*work
)
7393 struct x86_exception fault
;
7395 trace_kvm_async_pf_ready(work
->arch
.token
, work
->gva
);
7396 if (is_error_page(work
->page
))
7397 work
->arch
.token
= ~0; /* broadcast wakeup */
7399 kvm_del_async_pf_gfn(vcpu
, work
->arch
.gfn
);
7401 if ((vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
) &&
7402 !apf_put_user(vcpu
, KVM_PV_REASON_PAGE_READY
)) {
7403 fault
.vector
= PF_VECTOR
;
7404 fault
.error_code_valid
= true;
7405 fault
.error_code
= 0;
7406 fault
.nested_page_fault
= false;
7407 fault
.address
= work
->arch
.token
;
7408 kvm_inject_page_fault(vcpu
, &fault
);
7410 vcpu
->arch
.apf
.halted
= false;
7411 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
7414 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu
*vcpu
)
7416 if (!(vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
))
7419 return !kvm_event_needs_reinjection(vcpu
) &&
7420 kvm_x86_ops
->interrupt_allowed(vcpu
);
7423 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit
);
7424 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq
);
7425 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault
);
7426 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr
);
7427 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr
);
7428 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun
);
7429 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit
);
7430 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject
);
7431 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit
);
7432 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga
);
7433 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit
);
7434 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts
);
7435 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset
);