mfd: wm8350-i2c: Make sure the i2c regmap functions are compiled
[linux/fpc-iii.git] / drivers / block / nvme-scsi.c
blob4a4ff4eb8e233141d879fd52da3cade426b838b5
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011, Intel Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
20 * Refer to the SCSI-NVMe Translation spec for details on how
21 * each command is translated.
24 #include <linux/nvme.h>
25 #include <linux/bio.h>
26 #include <linux/bitops.h>
27 #include <linux/blkdev.h>
28 #include <linux/delay.h>
29 #include <linux/errno.h>
30 #include <linux/fs.h>
31 #include <linux/genhd.h>
32 #include <linux/idr.h>
33 #include <linux/init.h>
34 #include <linux/interrupt.h>
35 #include <linux/io.h>
36 #include <linux/kdev_t.h>
37 #include <linux/kthread.h>
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/module.h>
41 #include <linux/moduleparam.h>
42 #include <linux/pci.h>
43 #include <linux/poison.h>
44 #include <linux/sched.h>
45 #include <linux/slab.h>
46 #include <linux/types.h>
47 #include <scsi/sg.h>
48 #include <scsi/scsi.h>
51 static int sg_version_num = 30534; /* 2 digits for each component */
53 #define SNTI_TRANSLATION_SUCCESS 0
54 #define SNTI_INTERNAL_ERROR 1
56 /* VPD Page Codes */
57 #define VPD_SUPPORTED_PAGES 0x00
58 #define VPD_SERIAL_NUMBER 0x80
59 #define VPD_DEVICE_IDENTIFIERS 0x83
60 #define VPD_EXTENDED_INQUIRY 0x86
61 #define VPD_BLOCK_DEV_CHARACTERISTICS 0xB1
63 /* CDB offsets */
64 #define REPORT_LUNS_CDB_ALLOC_LENGTH_OFFSET 6
65 #define REPORT_LUNS_SR_OFFSET 2
66 #define READ_CAP_16_CDB_ALLOC_LENGTH_OFFSET 10
67 #define REQUEST_SENSE_CDB_ALLOC_LENGTH_OFFSET 4
68 #define REQUEST_SENSE_DESC_OFFSET 1
69 #define REQUEST_SENSE_DESC_MASK 0x01
70 #define DESCRIPTOR_FORMAT_SENSE_DATA_TYPE 1
71 #define INQUIRY_EVPD_BYTE_OFFSET 1
72 #define INQUIRY_PAGE_CODE_BYTE_OFFSET 2
73 #define INQUIRY_EVPD_BIT_MASK 1
74 #define INQUIRY_CDB_ALLOCATION_LENGTH_OFFSET 3
75 #define START_STOP_UNIT_CDB_IMMED_OFFSET 1
76 #define START_STOP_UNIT_CDB_IMMED_MASK 0x1
77 #define START_STOP_UNIT_CDB_POWER_COND_MOD_OFFSET 3
78 #define START_STOP_UNIT_CDB_POWER_COND_MOD_MASK 0xF
79 #define START_STOP_UNIT_CDB_POWER_COND_OFFSET 4
80 #define START_STOP_UNIT_CDB_POWER_COND_MASK 0xF0
81 #define START_STOP_UNIT_CDB_NO_FLUSH_OFFSET 4
82 #define START_STOP_UNIT_CDB_NO_FLUSH_MASK 0x4
83 #define START_STOP_UNIT_CDB_START_OFFSET 4
84 #define START_STOP_UNIT_CDB_START_MASK 0x1
85 #define WRITE_BUFFER_CDB_MODE_OFFSET 1
86 #define WRITE_BUFFER_CDB_MODE_MASK 0x1F
87 #define WRITE_BUFFER_CDB_BUFFER_ID_OFFSET 2
88 #define WRITE_BUFFER_CDB_BUFFER_OFFSET_OFFSET 3
89 #define WRITE_BUFFER_CDB_PARM_LIST_LENGTH_OFFSET 6
90 #define FORMAT_UNIT_CDB_FORMAT_PROT_INFO_OFFSET 1
91 #define FORMAT_UNIT_CDB_FORMAT_PROT_INFO_MASK 0xC0
92 #define FORMAT_UNIT_CDB_FORMAT_PROT_INFO_SHIFT 6
93 #define FORMAT_UNIT_CDB_LONG_LIST_OFFSET 1
94 #define FORMAT_UNIT_CDB_LONG_LIST_MASK 0x20
95 #define FORMAT_UNIT_CDB_FORMAT_DATA_OFFSET 1
96 #define FORMAT_UNIT_CDB_FORMAT_DATA_MASK 0x10
97 #define FORMAT_UNIT_SHORT_PARM_LIST_LEN 4
98 #define FORMAT_UNIT_LONG_PARM_LIST_LEN 8
99 #define FORMAT_UNIT_PROT_INT_OFFSET 3
100 #define FORMAT_UNIT_PROT_FIELD_USAGE_OFFSET 0
101 #define FORMAT_UNIT_PROT_FIELD_USAGE_MASK 0x07
102 #define UNMAP_CDB_PARAM_LIST_LENGTH_OFFSET 7
104 /* Misc. defines */
105 #define NIBBLE_SHIFT 4
106 #define FIXED_SENSE_DATA 0x70
107 #define DESC_FORMAT_SENSE_DATA 0x72
108 #define FIXED_SENSE_DATA_ADD_LENGTH 10
109 #define LUN_ENTRY_SIZE 8
110 #define LUN_DATA_HEADER_SIZE 8
111 #define ALL_LUNS_RETURNED 0x02
112 #define ALL_WELL_KNOWN_LUNS_RETURNED 0x01
113 #define RESTRICTED_LUNS_RETURNED 0x00
114 #define NVME_POWER_STATE_START_VALID 0x00
115 #define NVME_POWER_STATE_ACTIVE 0x01
116 #define NVME_POWER_STATE_IDLE 0x02
117 #define NVME_POWER_STATE_STANDBY 0x03
118 #define NVME_POWER_STATE_LU_CONTROL 0x07
119 #define POWER_STATE_0 0
120 #define POWER_STATE_1 1
121 #define POWER_STATE_2 2
122 #define POWER_STATE_3 3
123 #define DOWNLOAD_SAVE_ACTIVATE 0x05
124 #define DOWNLOAD_SAVE_DEFER_ACTIVATE 0x0E
125 #define ACTIVATE_DEFERRED_MICROCODE 0x0F
126 #define FORMAT_UNIT_IMMED_MASK 0x2
127 #define FORMAT_UNIT_IMMED_OFFSET 1
128 #define KELVIN_TEMP_FACTOR 273
129 #define FIXED_FMT_SENSE_DATA_SIZE 18
130 #define DESC_FMT_SENSE_DATA_SIZE 8
132 /* SCSI/NVMe defines and bit masks */
133 #define INQ_STANDARD_INQUIRY_PAGE 0x00
134 #define INQ_SUPPORTED_VPD_PAGES_PAGE 0x00
135 #define INQ_UNIT_SERIAL_NUMBER_PAGE 0x80
136 #define INQ_DEVICE_IDENTIFICATION_PAGE 0x83
137 #define INQ_EXTENDED_INQUIRY_DATA_PAGE 0x86
138 #define INQ_BDEV_CHARACTERISTICS_PAGE 0xB1
139 #define INQ_SERIAL_NUMBER_LENGTH 0x14
140 #define INQ_NUM_SUPPORTED_VPD_PAGES 5
141 #define VERSION_SPC_4 0x06
142 #define ACA_UNSUPPORTED 0
143 #define STANDARD_INQUIRY_LENGTH 36
144 #define ADDITIONAL_STD_INQ_LENGTH 31
145 #define EXTENDED_INQUIRY_DATA_PAGE_LENGTH 0x3C
146 #define RESERVED_FIELD 0
148 /* SCSI READ/WRITE Defines */
149 #define IO_CDB_WP_MASK 0xE0
150 #define IO_CDB_WP_SHIFT 5
151 #define IO_CDB_FUA_MASK 0x8
152 #define IO_6_CDB_LBA_OFFSET 0
153 #define IO_6_CDB_LBA_MASK 0x001FFFFF
154 #define IO_6_CDB_TX_LEN_OFFSET 4
155 #define IO_6_DEFAULT_TX_LEN 256
156 #define IO_10_CDB_LBA_OFFSET 2
157 #define IO_10_CDB_TX_LEN_OFFSET 7
158 #define IO_10_CDB_WP_OFFSET 1
159 #define IO_10_CDB_FUA_OFFSET 1
160 #define IO_12_CDB_LBA_OFFSET 2
161 #define IO_12_CDB_TX_LEN_OFFSET 6
162 #define IO_12_CDB_WP_OFFSET 1
163 #define IO_12_CDB_FUA_OFFSET 1
164 #define IO_16_CDB_FUA_OFFSET 1
165 #define IO_16_CDB_WP_OFFSET 1
166 #define IO_16_CDB_LBA_OFFSET 2
167 #define IO_16_CDB_TX_LEN_OFFSET 10
169 /* Mode Sense/Select defines */
170 #define MODE_PAGE_INFO_EXCEP 0x1C
171 #define MODE_PAGE_CACHING 0x08
172 #define MODE_PAGE_CONTROL 0x0A
173 #define MODE_PAGE_POWER_CONDITION 0x1A
174 #define MODE_PAGE_RETURN_ALL 0x3F
175 #define MODE_PAGE_BLK_DES_LEN 0x08
176 #define MODE_PAGE_LLBAA_BLK_DES_LEN 0x10
177 #define MODE_PAGE_CACHING_LEN 0x14
178 #define MODE_PAGE_CONTROL_LEN 0x0C
179 #define MODE_PAGE_POW_CND_LEN 0x28
180 #define MODE_PAGE_INF_EXC_LEN 0x0C
181 #define MODE_PAGE_ALL_LEN 0x54
182 #define MODE_SENSE6_MPH_SIZE 4
183 #define MODE_SENSE6_ALLOC_LEN_OFFSET 4
184 #define MODE_SENSE_PAGE_CONTROL_OFFSET 2
185 #define MODE_SENSE_PAGE_CONTROL_MASK 0xC0
186 #define MODE_SENSE_PAGE_CODE_OFFSET 2
187 #define MODE_SENSE_PAGE_CODE_MASK 0x3F
188 #define MODE_SENSE_LLBAA_OFFSET 1
189 #define MODE_SENSE_LLBAA_MASK 0x10
190 #define MODE_SENSE_LLBAA_SHIFT 4
191 #define MODE_SENSE_DBD_OFFSET 1
192 #define MODE_SENSE_DBD_MASK 8
193 #define MODE_SENSE_DBD_SHIFT 3
194 #define MODE_SENSE10_MPH_SIZE 8
195 #define MODE_SENSE10_ALLOC_LEN_OFFSET 7
196 #define MODE_SELECT_CDB_PAGE_FORMAT_OFFSET 1
197 #define MODE_SELECT_CDB_SAVE_PAGES_OFFSET 1
198 #define MODE_SELECT_6_CDB_PARAM_LIST_LENGTH_OFFSET 4
199 #define MODE_SELECT_10_CDB_PARAM_LIST_LENGTH_OFFSET 7
200 #define MODE_SELECT_CDB_PAGE_FORMAT_MASK 0x10
201 #define MODE_SELECT_CDB_SAVE_PAGES_MASK 0x1
202 #define MODE_SELECT_6_BD_OFFSET 3
203 #define MODE_SELECT_10_BD_OFFSET 6
204 #define MODE_SELECT_10_LLBAA_OFFSET 4
205 #define MODE_SELECT_10_LLBAA_MASK 1
206 #define MODE_SELECT_6_MPH_SIZE 4
207 #define MODE_SELECT_10_MPH_SIZE 8
208 #define CACHING_MODE_PAGE_WCE_MASK 0x04
209 #define MODE_SENSE_BLK_DESC_ENABLED 0
210 #define MODE_SENSE_BLK_DESC_COUNT 1
211 #define MODE_SELECT_PAGE_CODE_MASK 0x3F
212 #define SHORT_DESC_BLOCK 8
213 #define LONG_DESC_BLOCK 16
214 #define MODE_PAGE_POW_CND_LEN_FIELD 0x26
215 #define MODE_PAGE_INF_EXC_LEN_FIELD 0x0A
216 #define MODE_PAGE_CACHING_LEN_FIELD 0x12
217 #define MODE_PAGE_CONTROL_LEN_FIELD 0x0A
218 #define MODE_SENSE_PC_CURRENT_VALUES 0
220 /* Log Sense defines */
221 #define LOG_PAGE_SUPPORTED_LOG_PAGES_PAGE 0x00
222 #define LOG_PAGE_SUPPORTED_LOG_PAGES_LENGTH 0x07
223 #define LOG_PAGE_INFORMATIONAL_EXCEPTIONS_PAGE 0x2F
224 #define LOG_PAGE_TEMPERATURE_PAGE 0x0D
225 #define LOG_SENSE_CDB_SP_OFFSET 1
226 #define LOG_SENSE_CDB_SP_NOT_ENABLED 0
227 #define LOG_SENSE_CDB_PC_OFFSET 2
228 #define LOG_SENSE_CDB_PC_MASK 0xC0
229 #define LOG_SENSE_CDB_PC_SHIFT 6
230 #define LOG_SENSE_CDB_PC_CUMULATIVE_VALUES 1
231 #define LOG_SENSE_CDB_PAGE_CODE_MASK 0x3F
232 #define LOG_SENSE_CDB_ALLOC_LENGTH_OFFSET 7
233 #define REMAINING_INFO_EXCP_PAGE_LENGTH 0x8
234 #define LOG_INFO_EXCP_PAGE_LENGTH 0xC
235 #define REMAINING_TEMP_PAGE_LENGTH 0xC
236 #define LOG_TEMP_PAGE_LENGTH 0x10
237 #define LOG_TEMP_UNKNOWN 0xFF
238 #define SUPPORTED_LOG_PAGES_PAGE_LENGTH 0x3
240 /* Read Capacity defines */
241 #define READ_CAP_10_RESP_SIZE 8
242 #define READ_CAP_16_RESP_SIZE 32
244 /* NVMe Namespace and Command Defines */
245 #define NVME_GET_SMART_LOG_PAGE 0x02
246 #define NVME_GET_FEAT_TEMP_THRESH 0x04
247 #define BYTES_TO_DWORDS 4
248 #define NVME_MAX_FIRMWARE_SLOT 7
250 /* Report LUNs defines */
251 #define REPORT_LUNS_FIRST_LUN_OFFSET 8
253 /* SCSI ADDITIONAL SENSE Codes */
255 #define SCSI_ASC_NO_SENSE 0x00
256 #define SCSI_ASC_PERIPHERAL_DEV_WRITE_FAULT 0x03
257 #define SCSI_ASC_LUN_NOT_READY 0x04
258 #define SCSI_ASC_WARNING 0x0B
259 #define SCSI_ASC_LOG_BLOCK_GUARD_CHECK_FAILED 0x10
260 #define SCSI_ASC_LOG_BLOCK_APPTAG_CHECK_FAILED 0x10
261 #define SCSI_ASC_LOG_BLOCK_REFTAG_CHECK_FAILED 0x10
262 #define SCSI_ASC_UNRECOVERED_READ_ERROR 0x11
263 #define SCSI_ASC_MISCOMPARE_DURING_VERIFY 0x1D
264 #define SCSI_ASC_ACCESS_DENIED_INVALID_LUN_ID 0x20
265 #define SCSI_ASC_ILLEGAL_COMMAND 0x20
266 #define SCSI_ASC_ILLEGAL_BLOCK 0x21
267 #define SCSI_ASC_INVALID_CDB 0x24
268 #define SCSI_ASC_INVALID_LUN 0x25
269 #define SCSI_ASC_INVALID_PARAMETER 0x26
270 #define SCSI_ASC_FORMAT_COMMAND_FAILED 0x31
271 #define SCSI_ASC_INTERNAL_TARGET_FAILURE 0x44
273 /* SCSI ADDITIONAL SENSE Code Qualifiers */
275 #define SCSI_ASCQ_CAUSE_NOT_REPORTABLE 0x00
276 #define SCSI_ASCQ_FORMAT_COMMAND_FAILED 0x01
277 #define SCSI_ASCQ_LOG_BLOCK_GUARD_CHECK_FAILED 0x01
278 #define SCSI_ASCQ_LOG_BLOCK_APPTAG_CHECK_FAILED 0x02
279 #define SCSI_ASCQ_LOG_BLOCK_REFTAG_CHECK_FAILED 0x03
280 #define SCSI_ASCQ_FORMAT_IN_PROGRESS 0x04
281 #define SCSI_ASCQ_POWER_LOSS_EXPECTED 0x08
282 #define SCSI_ASCQ_INVALID_LUN_ID 0x09
285 * DEVICE_SPECIFIC_PARAMETER in mode parameter header (see sbc2r16) to
286 * enable DPOFUA support type 0x10 value.
288 #define DEVICE_SPECIFIC_PARAMETER 0
289 #define VPD_ID_DESCRIPTOR_LENGTH sizeof(VPD_IDENTIFICATION_DESCRIPTOR)
291 /* MACROs to extract information from CDBs */
293 #define GET_OPCODE(cdb) cdb[0]
295 #define GET_U8_FROM_CDB(cdb, index) (cdb[index] << 0)
297 #define GET_U16_FROM_CDB(cdb, index) ((cdb[index] << 8) | (cdb[index + 1] << 0))
299 #define GET_U24_FROM_CDB(cdb, index) ((cdb[index] << 16) | \
300 (cdb[index + 1] << 8) | \
301 (cdb[index + 2] << 0))
303 #define GET_U32_FROM_CDB(cdb, index) ((cdb[index] << 24) | \
304 (cdb[index + 1] << 16) | \
305 (cdb[index + 2] << 8) | \
306 (cdb[index + 3] << 0))
308 #define GET_U64_FROM_CDB(cdb, index) ((((u64)cdb[index]) << 56) | \
309 (((u64)cdb[index + 1]) << 48) | \
310 (((u64)cdb[index + 2]) << 40) | \
311 (((u64)cdb[index + 3]) << 32) | \
312 (((u64)cdb[index + 4]) << 24) | \
313 (((u64)cdb[index + 5]) << 16) | \
314 (((u64)cdb[index + 6]) << 8) | \
315 (((u64)cdb[index + 7]) << 0))
317 /* Inquiry Helper Macros */
318 #define GET_INQ_EVPD_BIT(cdb) \
319 ((GET_U8_FROM_CDB(cdb, INQUIRY_EVPD_BYTE_OFFSET) & \
320 INQUIRY_EVPD_BIT_MASK) ? 1 : 0)
322 #define GET_INQ_PAGE_CODE(cdb) \
323 (GET_U8_FROM_CDB(cdb, INQUIRY_PAGE_CODE_BYTE_OFFSET))
325 #define GET_INQ_ALLOC_LENGTH(cdb) \
326 (GET_U16_FROM_CDB(cdb, INQUIRY_CDB_ALLOCATION_LENGTH_OFFSET))
328 /* Report LUNs Helper Macros */
329 #define GET_REPORT_LUNS_ALLOC_LENGTH(cdb) \
330 (GET_U32_FROM_CDB(cdb, REPORT_LUNS_CDB_ALLOC_LENGTH_OFFSET))
332 /* Read Capacity Helper Macros */
333 #define GET_READ_CAP_16_ALLOC_LENGTH(cdb) \
334 (GET_U32_FROM_CDB(cdb, READ_CAP_16_CDB_ALLOC_LENGTH_OFFSET))
336 #define IS_READ_CAP_16(cdb) \
337 ((cdb[0] == SERVICE_ACTION_IN && cdb[1] == SAI_READ_CAPACITY_16) ? 1 : 0)
339 /* Request Sense Helper Macros */
340 #define GET_REQUEST_SENSE_ALLOC_LENGTH(cdb) \
341 (GET_U8_FROM_CDB(cdb, REQUEST_SENSE_CDB_ALLOC_LENGTH_OFFSET))
343 /* Mode Sense Helper Macros */
344 #define GET_MODE_SENSE_DBD(cdb) \
345 ((GET_U8_FROM_CDB(cdb, MODE_SENSE_DBD_OFFSET) & MODE_SENSE_DBD_MASK) >> \
346 MODE_SENSE_DBD_SHIFT)
348 #define GET_MODE_SENSE_LLBAA(cdb) \
349 ((GET_U8_FROM_CDB(cdb, MODE_SENSE_LLBAA_OFFSET) & \
350 MODE_SENSE_LLBAA_MASK) >> MODE_SENSE_LLBAA_SHIFT)
352 #define GET_MODE_SENSE_MPH_SIZE(cdb10) \
353 (cdb10 ? MODE_SENSE10_MPH_SIZE : MODE_SENSE6_MPH_SIZE)
356 /* Struct to gather data that needs to be extracted from a SCSI CDB.
357 Not conforming to any particular CDB variant, but compatible with all. */
359 struct nvme_trans_io_cdb {
360 u8 fua;
361 u8 prot_info;
362 u64 lba;
363 u32 xfer_len;
367 /* Internal Helper Functions */
370 /* Copy data to userspace memory */
372 static int nvme_trans_copy_to_user(struct sg_io_hdr *hdr, void *from,
373 unsigned long n)
375 int res = SNTI_TRANSLATION_SUCCESS;
376 unsigned long not_copied;
377 int i;
378 void *index = from;
379 size_t remaining = n;
380 size_t xfer_len;
382 if (hdr->iovec_count > 0) {
383 struct sg_iovec sgl;
385 for (i = 0; i < hdr->iovec_count; i++) {
386 not_copied = copy_from_user(&sgl, hdr->dxferp +
387 i * sizeof(struct sg_iovec),
388 sizeof(struct sg_iovec));
389 if (not_copied)
390 return -EFAULT;
391 xfer_len = min(remaining, sgl.iov_len);
392 not_copied = copy_to_user(sgl.iov_base, index,
393 xfer_len);
394 if (not_copied) {
395 res = -EFAULT;
396 break;
398 index += xfer_len;
399 remaining -= xfer_len;
400 if (remaining == 0)
401 break;
403 return res;
405 not_copied = copy_to_user(hdr->dxferp, from, n);
406 if (not_copied)
407 res = -EFAULT;
408 return res;
411 /* Copy data from userspace memory */
413 static int nvme_trans_copy_from_user(struct sg_io_hdr *hdr, void *to,
414 unsigned long n)
416 int res = SNTI_TRANSLATION_SUCCESS;
417 unsigned long not_copied;
418 int i;
419 void *index = to;
420 size_t remaining = n;
421 size_t xfer_len;
423 if (hdr->iovec_count > 0) {
424 struct sg_iovec sgl;
426 for (i = 0; i < hdr->iovec_count; i++) {
427 not_copied = copy_from_user(&sgl, hdr->dxferp +
428 i * sizeof(struct sg_iovec),
429 sizeof(struct sg_iovec));
430 if (not_copied)
431 return -EFAULT;
432 xfer_len = min(remaining, sgl.iov_len);
433 not_copied = copy_from_user(index, sgl.iov_base,
434 xfer_len);
435 if (not_copied) {
436 res = -EFAULT;
437 break;
439 index += xfer_len;
440 remaining -= xfer_len;
441 if (remaining == 0)
442 break;
444 return res;
447 not_copied = copy_from_user(to, hdr->dxferp, n);
448 if (not_copied)
449 res = -EFAULT;
450 return res;
453 /* Status/Sense Buffer Writeback */
455 static int nvme_trans_completion(struct sg_io_hdr *hdr, u8 status, u8 sense_key,
456 u8 asc, u8 ascq)
458 int res = SNTI_TRANSLATION_SUCCESS;
459 u8 xfer_len;
460 u8 resp[DESC_FMT_SENSE_DATA_SIZE];
462 if (scsi_status_is_good(status)) {
463 hdr->status = SAM_STAT_GOOD;
464 hdr->masked_status = GOOD;
465 hdr->host_status = DID_OK;
466 hdr->driver_status = DRIVER_OK;
467 hdr->sb_len_wr = 0;
468 } else {
469 hdr->status = status;
470 hdr->masked_status = status >> 1;
471 hdr->host_status = DID_OK;
472 hdr->driver_status = DRIVER_OK;
474 memset(resp, 0, DESC_FMT_SENSE_DATA_SIZE);
475 resp[0] = DESC_FORMAT_SENSE_DATA;
476 resp[1] = sense_key;
477 resp[2] = asc;
478 resp[3] = ascq;
480 xfer_len = min_t(u8, hdr->mx_sb_len, DESC_FMT_SENSE_DATA_SIZE);
481 hdr->sb_len_wr = xfer_len;
482 if (copy_to_user(hdr->sbp, resp, xfer_len) > 0)
483 res = -EFAULT;
486 return res;
489 static int nvme_trans_status_code(struct sg_io_hdr *hdr, int nvme_sc)
491 u8 status, sense_key, asc, ascq;
492 int res = SNTI_TRANSLATION_SUCCESS;
494 /* For non-nvme (Linux) errors, simply return the error code */
495 if (nvme_sc < 0)
496 return nvme_sc;
498 /* Mask DNR, More, and reserved fields */
499 nvme_sc &= 0x7FF;
501 switch (nvme_sc) {
502 /* Generic Command Status */
503 case NVME_SC_SUCCESS:
504 status = SAM_STAT_GOOD;
505 sense_key = NO_SENSE;
506 asc = SCSI_ASC_NO_SENSE;
507 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
508 break;
509 case NVME_SC_INVALID_OPCODE:
510 status = SAM_STAT_CHECK_CONDITION;
511 sense_key = ILLEGAL_REQUEST;
512 asc = SCSI_ASC_ILLEGAL_COMMAND;
513 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
514 break;
515 case NVME_SC_INVALID_FIELD:
516 status = SAM_STAT_CHECK_CONDITION;
517 sense_key = ILLEGAL_REQUEST;
518 asc = SCSI_ASC_INVALID_CDB;
519 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
520 break;
521 case NVME_SC_DATA_XFER_ERROR:
522 status = SAM_STAT_CHECK_CONDITION;
523 sense_key = MEDIUM_ERROR;
524 asc = SCSI_ASC_NO_SENSE;
525 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
526 break;
527 case NVME_SC_POWER_LOSS:
528 status = SAM_STAT_TASK_ABORTED;
529 sense_key = ABORTED_COMMAND;
530 asc = SCSI_ASC_WARNING;
531 ascq = SCSI_ASCQ_POWER_LOSS_EXPECTED;
532 break;
533 case NVME_SC_INTERNAL:
534 status = SAM_STAT_CHECK_CONDITION;
535 sense_key = HARDWARE_ERROR;
536 asc = SCSI_ASC_INTERNAL_TARGET_FAILURE;
537 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
538 break;
539 case NVME_SC_ABORT_REQ:
540 status = SAM_STAT_TASK_ABORTED;
541 sense_key = ABORTED_COMMAND;
542 asc = SCSI_ASC_NO_SENSE;
543 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
544 break;
545 case NVME_SC_ABORT_QUEUE:
546 status = SAM_STAT_TASK_ABORTED;
547 sense_key = ABORTED_COMMAND;
548 asc = SCSI_ASC_NO_SENSE;
549 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
550 break;
551 case NVME_SC_FUSED_FAIL:
552 status = SAM_STAT_TASK_ABORTED;
553 sense_key = ABORTED_COMMAND;
554 asc = SCSI_ASC_NO_SENSE;
555 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
556 break;
557 case NVME_SC_FUSED_MISSING:
558 status = SAM_STAT_TASK_ABORTED;
559 sense_key = ABORTED_COMMAND;
560 asc = SCSI_ASC_NO_SENSE;
561 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
562 break;
563 case NVME_SC_INVALID_NS:
564 status = SAM_STAT_CHECK_CONDITION;
565 sense_key = ILLEGAL_REQUEST;
566 asc = SCSI_ASC_ACCESS_DENIED_INVALID_LUN_ID;
567 ascq = SCSI_ASCQ_INVALID_LUN_ID;
568 break;
569 case NVME_SC_LBA_RANGE:
570 status = SAM_STAT_CHECK_CONDITION;
571 sense_key = ILLEGAL_REQUEST;
572 asc = SCSI_ASC_ILLEGAL_BLOCK;
573 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
574 break;
575 case NVME_SC_CAP_EXCEEDED:
576 status = SAM_STAT_CHECK_CONDITION;
577 sense_key = MEDIUM_ERROR;
578 asc = SCSI_ASC_NO_SENSE;
579 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
580 break;
581 case NVME_SC_NS_NOT_READY:
582 status = SAM_STAT_CHECK_CONDITION;
583 sense_key = NOT_READY;
584 asc = SCSI_ASC_LUN_NOT_READY;
585 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
586 break;
588 /* Command Specific Status */
589 case NVME_SC_INVALID_FORMAT:
590 status = SAM_STAT_CHECK_CONDITION;
591 sense_key = ILLEGAL_REQUEST;
592 asc = SCSI_ASC_FORMAT_COMMAND_FAILED;
593 ascq = SCSI_ASCQ_FORMAT_COMMAND_FAILED;
594 break;
595 case NVME_SC_BAD_ATTRIBUTES:
596 status = SAM_STAT_CHECK_CONDITION;
597 sense_key = ILLEGAL_REQUEST;
598 asc = SCSI_ASC_INVALID_CDB;
599 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
600 break;
602 /* Media Errors */
603 case NVME_SC_WRITE_FAULT:
604 status = SAM_STAT_CHECK_CONDITION;
605 sense_key = MEDIUM_ERROR;
606 asc = SCSI_ASC_PERIPHERAL_DEV_WRITE_FAULT;
607 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
608 break;
609 case NVME_SC_READ_ERROR:
610 status = SAM_STAT_CHECK_CONDITION;
611 sense_key = MEDIUM_ERROR;
612 asc = SCSI_ASC_UNRECOVERED_READ_ERROR;
613 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
614 break;
615 case NVME_SC_GUARD_CHECK:
616 status = SAM_STAT_CHECK_CONDITION;
617 sense_key = MEDIUM_ERROR;
618 asc = SCSI_ASC_LOG_BLOCK_GUARD_CHECK_FAILED;
619 ascq = SCSI_ASCQ_LOG_BLOCK_GUARD_CHECK_FAILED;
620 break;
621 case NVME_SC_APPTAG_CHECK:
622 status = SAM_STAT_CHECK_CONDITION;
623 sense_key = MEDIUM_ERROR;
624 asc = SCSI_ASC_LOG_BLOCK_APPTAG_CHECK_FAILED;
625 ascq = SCSI_ASCQ_LOG_BLOCK_APPTAG_CHECK_FAILED;
626 break;
627 case NVME_SC_REFTAG_CHECK:
628 status = SAM_STAT_CHECK_CONDITION;
629 sense_key = MEDIUM_ERROR;
630 asc = SCSI_ASC_LOG_BLOCK_REFTAG_CHECK_FAILED;
631 ascq = SCSI_ASCQ_LOG_BLOCK_REFTAG_CHECK_FAILED;
632 break;
633 case NVME_SC_COMPARE_FAILED:
634 status = SAM_STAT_CHECK_CONDITION;
635 sense_key = MISCOMPARE;
636 asc = SCSI_ASC_MISCOMPARE_DURING_VERIFY;
637 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
638 break;
639 case NVME_SC_ACCESS_DENIED:
640 status = SAM_STAT_CHECK_CONDITION;
641 sense_key = ILLEGAL_REQUEST;
642 asc = SCSI_ASC_ACCESS_DENIED_INVALID_LUN_ID;
643 ascq = SCSI_ASCQ_INVALID_LUN_ID;
644 break;
646 /* Unspecified/Default */
647 case NVME_SC_CMDID_CONFLICT:
648 case NVME_SC_CMD_SEQ_ERROR:
649 case NVME_SC_CQ_INVALID:
650 case NVME_SC_QID_INVALID:
651 case NVME_SC_QUEUE_SIZE:
652 case NVME_SC_ABORT_LIMIT:
653 case NVME_SC_ABORT_MISSING:
654 case NVME_SC_ASYNC_LIMIT:
655 case NVME_SC_FIRMWARE_SLOT:
656 case NVME_SC_FIRMWARE_IMAGE:
657 case NVME_SC_INVALID_VECTOR:
658 case NVME_SC_INVALID_LOG_PAGE:
659 default:
660 status = SAM_STAT_CHECK_CONDITION;
661 sense_key = ILLEGAL_REQUEST;
662 asc = SCSI_ASC_NO_SENSE;
663 ascq = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
664 break;
667 res = nvme_trans_completion(hdr, status, sense_key, asc, ascq);
669 return res;
672 /* INQUIRY Helper Functions */
674 static int nvme_trans_standard_inquiry_page(struct nvme_ns *ns,
675 struct sg_io_hdr *hdr, u8 *inq_response,
676 int alloc_len)
678 struct nvme_dev *dev = ns->dev;
679 dma_addr_t dma_addr;
680 void *mem;
681 struct nvme_id_ns *id_ns;
682 int res = SNTI_TRANSLATION_SUCCESS;
683 int nvme_sc;
684 int xfer_len;
685 u8 resp_data_format = 0x02;
686 u8 protect;
687 u8 cmdque = 0x01 << 1;
689 mem = dma_alloc_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns),
690 &dma_addr, GFP_KERNEL);
691 if (mem == NULL) {
692 res = -ENOMEM;
693 goto out_dma;
696 /* nvme ns identify - use DPS value for PROTECT field */
697 nvme_sc = nvme_identify(dev, ns->ns_id, 0, dma_addr);
698 res = nvme_trans_status_code(hdr, nvme_sc);
700 * If nvme_sc was -ve, res will be -ve here.
701 * If nvme_sc was +ve, the status would bace been translated, and res
702 * can only be 0 or -ve.
703 * - If 0 && nvme_sc > 0, then go into next if where res gets nvme_sc
704 * - If -ve, return because its a Linux error.
706 if (res)
707 goto out_free;
708 if (nvme_sc) {
709 res = nvme_sc;
710 goto out_free;
712 id_ns = mem;
713 (id_ns->dps) ? (protect = 0x01) : (protect = 0);
715 memset(inq_response, 0, STANDARD_INQUIRY_LENGTH);
716 inq_response[2] = VERSION_SPC_4;
717 inq_response[3] = resp_data_format; /*normaca=0 | hisup=0 */
718 inq_response[4] = ADDITIONAL_STD_INQ_LENGTH;
719 inq_response[5] = protect; /* sccs=0 | acc=0 | tpgs=0 | pc3=0 */
720 inq_response[7] = cmdque; /* wbus16=0 | sync=0 | vs=0 */
721 strncpy(&inq_response[8], "NVMe ", 8);
722 strncpy(&inq_response[16], dev->model, 16);
723 strncpy(&inq_response[32], dev->firmware_rev, 4);
725 xfer_len = min(alloc_len, STANDARD_INQUIRY_LENGTH);
726 res = nvme_trans_copy_to_user(hdr, inq_response, xfer_len);
728 out_free:
729 dma_free_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns), mem,
730 dma_addr);
731 out_dma:
732 return res;
735 static int nvme_trans_supported_vpd_pages(struct nvme_ns *ns,
736 struct sg_io_hdr *hdr, u8 *inq_response,
737 int alloc_len)
739 int res = SNTI_TRANSLATION_SUCCESS;
740 int xfer_len;
742 memset(inq_response, 0, STANDARD_INQUIRY_LENGTH);
743 inq_response[1] = INQ_SUPPORTED_VPD_PAGES_PAGE; /* Page Code */
744 inq_response[3] = INQ_NUM_SUPPORTED_VPD_PAGES; /* Page Length */
745 inq_response[4] = INQ_SUPPORTED_VPD_PAGES_PAGE;
746 inq_response[5] = INQ_UNIT_SERIAL_NUMBER_PAGE;
747 inq_response[6] = INQ_DEVICE_IDENTIFICATION_PAGE;
748 inq_response[7] = INQ_EXTENDED_INQUIRY_DATA_PAGE;
749 inq_response[8] = INQ_BDEV_CHARACTERISTICS_PAGE;
751 xfer_len = min(alloc_len, STANDARD_INQUIRY_LENGTH);
752 res = nvme_trans_copy_to_user(hdr, inq_response, xfer_len);
754 return res;
757 static int nvme_trans_unit_serial_page(struct nvme_ns *ns,
758 struct sg_io_hdr *hdr, u8 *inq_response,
759 int alloc_len)
761 struct nvme_dev *dev = ns->dev;
762 int res = SNTI_TRANSLATION_SUCCESS;
763 int xfer_len;
765 memset(inq_response, 0, STANDARD_INQUIRY_LENGTH);
766 inq_response[1] = INQ_UNIT_SERIAL_NUMBER_PAGE; /* Page Code */
767 inq_response[3] = INQ_SERIAL_NUMBER_LENGTH; /* Page Length */
768 strncpy(&inq_response[4], dev->serial, INQ_SERIAL_NUMBER_LENGTH);
770 xfer_len = min(alloc_len, STANDARD_INQUIRY_LENGTH);
771 res = nvme_trans_copy_to_user(hdr, inq_response, xfer_len);
773 return res;
776 static int nvme_trans_device_id_page(struct nvme_ns *ns, struct sg_io_hdr *hdr,
777 u8 *inq_response, int alloc_len)
779 struct nvme_dev *dev = ns->dev;
780 dma_addr_t dma_addr;
781 void *mem;
782 struct nvme_id_ctrl *id_ctrl;
783 int res = SNTI_TRANSLATION_SUCCESS;
784 int nvme_sc;
785 u8 ieee[4];
786 int xfer_len;
787 __be32 tmp_id = cpu_to_be32(ns->ns_id);
789 mem = dma_alloc_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns),
790 &dma_addr, GFP_KERNEL);
791 if (mem == NULL) {
792 res = -ENOMEM;
793 goto out_dma;
796 /* nvme controller identify */
797 nvme_sc = nvme_identify(dev, 0, 1, dma_addr);
798 res = nvme_trans_status_code(hdr, nvme_sc);
799 if (res)
800 goto out_free;
801 if (nvme_sc) {
802 res = nvme_sc;
803 goto out_free;
805 id_ctrl = mem;
807 /* Since SCSI tried to save 4 bits... [SPC-4(r34) Table 591] */
808 ieee[0] = id_ctrl->ieee[0] << 4;
809 ieee[1] = id_ctrl->ieee[0] >> 4 | id_ctrl->ieee[1] << 4;
810 ieee[2] = id_ctrl->ieee[1] >> 4 | id_ctrl->ieee[2] << 4;
811 ieee[3] = id_ctrl->ieee[2] >> 4;
813 memset(inq_response, 0, STANDARD_INQUIRY_LENGTH);
814 inq_response[1] = INQ_DEVICE_IDENTIFICATION_PAGE; /* Page Code */
815 inq_response[3] = 20; /* Page Length */
816 /* Designation Descriptor start */
817 inq_response[4] = 0x01; /* Proto ID=0h | Code set=1h */
818 inq_response[5] = 0x03; /* PIV=0b | Asso=00b | Designator Type=3h */
819 inq_response[6] = 0x00; /* Rsvd */
820 inq_response[7] = 16; /* Designator Length */
821 /* Designator start */
822 inq_response[8] = 0x60 | ieee[3]; /* NAA=6h | IEEE ID MSB, High nibble*/
823 inq_response[9] = ieee[2]; /* IEEE ID */
824 inq_response[10] = ieee[1]; /* IEEE ID */
825 inq_response[11] = ieee[0]; /* IEEE ID| Vendor Specific ID... */
826 inq_response[12] = (dev->pci_dev->vendor & 0xFF00) >> 8;
827 inq_response[13] = (dev->pci_dev->vendor & 0x00FF);
828 inq_response[14] = dev->serial[0];
829 inq_response[15] = dev->serial[1];
830 inq_response[16] = dev->model[0];
831 inq_response[17] = dev->model[1];
832 memcpy(&inq_response[18], &tmp_id, sizeof(u32));
833 /* Last 2 bytes are zero */
835 xfer_len = min(alloc_len, STANDARD_INQUIRY_LENGTH);
836 res = nvme_trans_copy_to_user(hdr, inq_response, xfer_len);
838 out_free:
839 dma_free_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns), mem,
840 dma_addr);
841 out_dma:
842 return res;
845 static int nvme_trans_ext_inq_page(struct nvme_ns *ns, struct sg_io_hdr *hdr,
846 int alloc_len)
848 u8 *inq_response;
849 int res = SNTI_TRANSLATION_SUCCESS;
850 int nvme_sc;
851 struct nvme_dev *dev = ns->dev;
852 dma_addr_t dma_addr;
853 void *mem;
854 struct nvme_id_ctrl *id_ctrl;
855 struct nvme_id_ns *id_ns;
856 int xfer_len;
857 u8 microcode = 0x80;
858 u8 spt;
859 u8 spt_lut[8] = {0, 0, 2, 1, 4, 6, 5, 7};
860 u8 grd_chk, app_chk, ref_chk, protect;
861 u8 uask_sup = 0x20;
862 u8 v_sup;
863 u8 luiclr = 0x01;
865 inq_response = kmalloc(EXTENDED_INQUIRY_DATA_PAGE_LENGTH, GFP_KERNEL);
866 if (inq_response == NULL) {
867 res = -ENOMEM;
868 goto out_mem;
871 mem = dma_alloc_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns),
872 &dma_addr, GFP_KERNEL);
873 if (mem == NULL) {
874 res = -ENOMEM;
875 goto out_dma;
878 /* nvme ns identify */
879 nvme_sc = nvme_identify(dev, ns->ns_id, 0, dma_addr);
880 res = nvme_trans_status_code(hdr, nvme_sc);
881 if (res)
882 goto out_free;
883 if (nvme_sc) {
884 res = nvme_sc;
885 goto out_free;
887 id_ns = mem;
888 spt = spt_lut[(id_ns->dpc) & 0x07] << 3;
889 (id_ns->dps) ? (protect = 0x01) : (protect = 0);
890 grd_chk = protect << 2;
891 app_chk = protect << 1;
892 ref_chk = protect;
894 /* nvme controller identify */
895 nvme_sc = nvme_identify(dev, 0, 1, dma_addr);
896 res = nvme_trans_status_code(hdr, nvme_sc);
897 if (res)
898 goto out_free;
899 if (nvme_sc) {
900 res = nvme_sc;
901 goto out_free;
903 id_ctrl = mem;
904 v_sup = id_ctrl->vwc;
906 memset(inq_response, 0, EXTENDED_INQUIRY_DATA_PAGE_LENGTH);
907 inq_response[1] = INQ_EXTENDED_INQUIRY_DATA_PAGE; /* Page Code */
908 inq_response[2] = 0x00; /* Page Length MSB */
909 inq_response[3] = 0x3C; /* Page Length LSB */
910 inq_response[4] = microcode | spt | grd_chk | app_chk | ref_chk;
911 inq_response[5] = uask_sup;
912 inq_response[6] = v_sup;
913 inq_response[7] = luiclr;
914 inq_response[8] = 0;
915 inq_response[9] = 0;
917 xfer_len = min(alloc_len, EXTENDED_INQUIRY_DATA_PAGE_LENGTH);
918 res = nvme_trans_copy_to_user(hdr, inq_response, xfer_len);
920 out_free:
921 dma_free_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns), mem,
922 dma_addr);
923 out_dma:
924 kfree(inq_response);
925 out_mem:
926 return res;
929 static int nvme_trans_bdev_char_page(struct nvme_ns *ns, struct sg_io_hdr *hdr,
930 int alloc_len)
932 u8 *inq_response;
933 int res = SNTI_TRANSLATION_SUCCESS;
934 int xfer_len;
936 inq_response = kzalloc(EXTENDED_INQUIRY_DATA_PAGE_LENGTH, GFP_KERNEL);
937 if (inq_response == NULL) {
938 res = -ENOMEM;
939 goto out_mem;
942 inq_response[1] = INQ_BDEV_CHARACTERISTICS_PAGE; /* Page Code */
943 inq_response[2] = 0x00; /* Page Length MSB */
944 inq_response[3] = 0x3C; /* Page Length LSB */
945 inq_response[4] = 0x00; /* Medium Rotation Rate MSB */
946 inq_response[5] = 0x01; /* Medium Rotation Rate LSB */
947 inq_response[6] = 0x00; /* Form Factor */
949 xfer_len = min(alloc_len, EXTENDED_INQUIRY_DATA_PAGE_LENGTH);
950 res = nvme_trans_copy_to_user(hdr, inq_response, xfer_len);
952 kfree(inq_response);
953 out_mem:
954 return res;
957 /* LOG SENSE Helper Functions */
959 static int nvme_trans_log_supp_pages(struct nvme_ns *ns, struct sg_io_hdr *hdr,
960 int alloc_len)
962 int res = SNTI_TRANSLATION_SUCCESS;
963 int xfer_len;
964 u8 *log_response;
966 log_response = kzalloc(LOG_PAGE_SUPPORTED_LOG_PAGES_LENGTH, GFP_KERNEL);
967 if (log_response == NULL) {
968 res = -ENOMEM;
969 goto out_mem;
972 log_response[0] = LOG_PAGE_SUPPORTED_LOG_PAGES_PAGE;
973 /* Subpage=0x00, Page Length MSB=0 */
974 log_response[3] = SUPPORTED_LOG_PAGES_PAGE_LENGTH;
975 log_response[4] = LOG_PAGE_SUPPORTED_LOG_PAGES_PAGE;
976 log_response[5] = LOG_PAGE_INFORMATIONAL_EXCEPTIONS_PAGE;
977 log_response[6] = LOG_PAGE_TEMPERATURE_PAGE;
979 xfer_len = min(alloc_len, LOG_PAGE_SUPPORTED_LOG_PAGES_LENGTH);
980 res = nvme_trans_copy_to_user(hdr, log_response, xfer_len);
982 kfree(log_response);
983 out_mem:
984 return res;
987 static int nvme_trans_log_info_exceptions(struct nvme_ns *ns,
988 struct sg_io_hdr *hdr, int alloc_len)
990 int res = SNTI_TRANSLATION_SUCCESS;
991 int xfer_len;
992 u8 *log_response;
993 struct nvme_command c;
994 struct nvme_dev *dev = ns->dev;
995 struct nvme_smart_log *smart_log;
996 dma_addr_t dma_addr;
997 void *mem;
998 u8 temp_c;
999 u16 temp_k;
1001 log_response = kzalloc(LOG_INFO_EXCP_PAGE_LENGTH, GFP_KERNEL);
1002 if (log_response == NULL) {
1003 res = -ENOMEM;
1004 goto out_mem;
1007 mem = dma_alloc_coherent(&dev->pci_dev->dev,
1008 sizeof(struct nvme_smart_log),
1009 &dma_addr, GFP_KERNEL);
1010 if (mem == NULL) {
1011 res = -ENOMEM;
1012 goto out_dma;
1015 /* Get SMART Log Page */
1016 memset(&c, 0, sizeof(c));
1017 c.common.opcode = nvme_admin_get_log_page;
1018 c.common.nsid = cpu_to_le32(0xFFFFFFFF);
1019 c.common.prp1 = cpu_to_le64(dma_addr);
1020 c.common.cdw10[0] = cpu_to_le32(((sizeof(struct nvme_smart_log) /
1021 BYTES_TO_DWORDS) << 16) | NVME_GET_SMART_LOG_PAGE);
1022 res = nvme_submit_admin_cmd(dev, &c, NULL);
1023 if (res != NVME_SC_SUCCESS) {
1024 temp_c = LOG_TEMP_UNKNOWN;
1025 } else {
1026 smart_log = mem;
1027 temp_k = (smart_log->temperature[1] << 8) +
1028 (smart_log->temperature[0]);
1029 temp_c = temp_k - KELVIN_TEMP_FACTOR;
1032 log_response[0] = LOG_PAGE_INFORMATIONAL_EXCEPTIONS_PAGE;
1033 /* Subpage=0x00, Page Length MSB=0 */
1034 log_response[3] = REMAINING_INFO_EXCP_PAGE_LENGTH;
1035 /* Informational Exceptions Log Parameter 1 Start */
1036 /* Parameter Code=0x0000 bytes 4,5 */
1037 log_response[6] = 0x23; /* DU=0, TSD=1, ETC=0, TMC=0, FMT_AND_LNK=11b */
1038 log_response[7] = 0x04; /* PARAMETER LENGTH */
1039 /* Add sense Code and qualifier = 0x00 each */
1040 /* Use Temperature from NVMe Get Log Page, convert to C from K */
1041 log_response[10] = temp_c;
1043 xfer_len = min(alloc_len, LOG_INFO_EXCP_PAGE_LENGTH);
1044 res = nvme_trans_copy_to_user(hdr, log_response, xfer_len);
1046 dma_free_coherent(&dev->pci_dev->dev, sizeof(struct nvme_smart_log),
1047 mem, dma_addr);
1048 out_dma:
1049 kfree(log_response);
1050 out_mem:
1051 return res;
1054 static int nvme_trans_log_temperature(struct nvme_ns *ns, struct sg_io_hdr *hdr,
1055 int alloc_len)
1057 int res = SNTI_TRANSLATION_SUCCESS;
1058 int xfer_len;
1059 u8 *log_response;
1060 struct nvme_command c;
1061 struct nvme_dev *dev = ns->dev;
1062 struct nvme_smart_log *smart_log;
1063 dma_addr_t dma_addr;
1064 void *mem;
1065 u32 feature_resp;
1066 u8 temp_c_cur, temp_c_thresh;
1067 u16 temp_k;
1069 log_response = kzalloc(LOG_TEMP_PAGE_LENGTH, GFP_KERNEL);
1070 if (log_response == NULL) {
1071 res = -ENOMEM;
1072 goto out_mem;
1075 mem = dma_alloc_coherent(&dev->pci_dev->dev,
1076 sizeof(struct nvme_smart_log),
1077 &dma_addr, GFP_KERNEL);
1078 if (mem == NULL) {
1079 res = -ENOMEM;
1080 goto out_dma;
1083 /* Get SMART Log Page */
1084 memset(&c, 0, sizeof(c));
1085 c.common.opcode = nvme_admin_get_log_page;
1086 c.common.nsid = cpu_to_le32(0xFFFFFFFF);
1087 c.common.prp1 = cpu_to_le64(dma_addr);
1088 c.common.cdw10[0] = cpu_to_le32(((sizeof(struct nvme_smart_log) /
1089 BYTES_TO_DWORDS) << 16) | NVME_GET_SMART_LOG_PAGE);
1090 res = nvme_submit_admin_cmd(dev, &c, NULL);
1091 if (res != NVME_SC_SUCCESS) {
1092 temp_c_cur = LOG_TEMP_UNKNOWN;
1093 } else {
1094 smart_log = mem;
1095 temp_k = (smart_log->temperature[1] << 8) +
1096 (smart_log->temperature[0]);
1097 temp_c_cur = temp_k - KELVIN_TEMP_FACTOR;
1100 /* Get Features for Temp Threshold */
1101 res = nvme_get_features(dev, NVME_FEAT_TEMP_THRESH, 0, 0,
1102 &feature_resp);
1103 if (res != NVME_SC_SUCCESS)
1104 temp_c_thresh = LOG_TEMP_UNKNOWN;
1105 else
1106 temp_c_thresh = (feature_resp & 0xFFFF) - KELVIN_TEMP_FACTOR;
1108 log_response[0] = LOG_PAGE_TEMPERATURE_PAGE;
1109 /* Subpage=0x00, Page Length MSB=0 */
1110 log_response[3] = REMAINING_TEMP_PAGE_LENGTH;
1111 /* Temperature Log Parameter 1 (Temperature) Start */
1112 /* Parameter Code = 0x0000 */
1113 log_response[6] = 0x01; /* Format and Linking = 01b */
1114 log_response[7] = 0x02; /* Parameter Length */
1115 /* Use Temperature from NVMe Get Log Page, convert to C from K */
1116 log_response[9] = temp_c_cur;
1117 /* Temperature Log Parameter 2 (Reference Temperature) Start */
1118 log_response[11] = 0x01; /* Parameter Code = 0x0001 */
1119 log_response[12] = 0x01; /* Format and Linking = 01b */
1120 log_response[13] = 0x02; /* Parameter Length */
1121 /* Use Temperature Thresh from NVMe Get Log Page, convert to C from K */
1122 log_response[15] = temp_c_thresh;
1124 xfer_len = min(alloc_len, LOG_TEMP_PAGE_LENGTH);
1125 res = nvme_trans_copy_to_user(hdr, log_response, xfer_len);
1127 dma_free_coherent(&dev->pci_dev->dev, sizeof(struct nvme_smart_log),
1128 mem, dma_addr);
1129 out_dma:
1130 kfree(log_response);
1131 out_mem:
1132 return res;
1135 /* MODE SENSE Helper Functions */
1137 static int nvme_trans_fill_mode_parm_hdr(u8 *resp, int len, u8 cdb10, u8 llbaa,
1138 u16 mode_data_length, u16 blk_desc_len)
1140 /* Quick check to make sure I don't stomp on my own memory... */
1141 if ((cdb10 && len < 8) || (!cdb10 && len < 4))
1142 return SNTI_INTERNAL_ERROR;
1144 if (cdb10) {
1145 resp[0] = (mode_data_length & 0xFF00) >> 8;
1146 resp[1] = (mode_data_length & 0x00FF);
1147 /* resp[2] and [3] are zero */
1148 resp[4] = llbaa;
1149 resp[5] = RESERVED_FIELD;
1150 resp[6] = (blk_desc_len & 0xFF00) >> 8;
1151 resp[7] = (blk_desc_len & 0x00FF);
1152 } else {
1153 resp[0] = (mode_data_length & 0x00FF);
1154 /* resp[1] and [2] are zero */
1155 resp[3] = (blk_desc_len & 0x00FF);
1158 return SNTI_TRANSLATION_SUCCESS;
1161 static int nvme_trans_fill_blk_desc(struct nvme_ns *ns, struct sg_io_hdr *hdr,
1162 u8 *resp, int len, u8 llbaa)
1164 int res = SNTI_TRANSLATION_SUCCESS;
1165 int nvme_sc;
1166 struct nvme_dev *dev = ns->dev;
1167 dma_addr_t dma_addr;
1168 void *mem;
1169 struct nvme_id_ns *id_ns;
1170 u8 flbas;
1171 u32 lba_length;
1173 if (llbaa == 0 && len < MODE_PAGE_BLK_DES_LEN)
1174 return SNTI_INTERNAL_ERROR;
1175 else if (llbaa > 0 && len < MODE_PAGE_LLBAA_BLK_DES_LEN)
1176 return SNTI_INTERNAL_ERROR;
1178 mem = dma_alloc_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns),
1179 &dma_addr, GFP_KERNEL);
1180 if (mem == NULL) {
1181 res = -ENOMEM;
1182 goto out;
1185 /* nvme ns identify */
1186 nvme_sc = nvme_identify(dev, ns->ns_id, 0, dma_addr);
1187 res = nvme_trans_status_code(hdr, nvme_sc);
1188 if (res)
1189 goto out_dma;
1190 if (nvme_sc) {
1191 res = nvme_sc;
1192 goto out_dma;
1194 id_ns = mem;
1195 flbas = (id_ns->flbas) & 0x0F;
1196 lba_length = (1 << (id_ns->lbaf[flbas].ds));
1198 if (llbaa == 0) {
1199 __be32 tmp_cap = cpu_to_be32(le64_to_cpu(id_ns->ncap));
1200 /* Byte 4 is reserved */
1201 __be32 tmp_len = cpu_to_be32(lba_length & 0x00FFFFFF);
1203 memcpy(resp, &tmp_cap, sizeof(u32));
1204 memcpy(&resp[4], &tmp_len, sizeof(u32));
1205 } else {
1206 __be64 tmp_cap = cpu_to_be64(le64_to_cpu(id_ns->ncap));
1207 __be32 tmp_len = cpu_to_be32(lba_length);
1209 memcpy(resp, &tmp_cap, sizeof(u64));
1210 /* Bytes 8, 9, 10, 11 are reserved */
1211 memcpy(&resp[12], &tmp_len, sizeof(u32));
1214 out_dma:
1215 dma_free_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns), mem,
1216 dma_addr);
1217 out:
1218 return res;
1221 static int nvme_trans_fill_control_page(struct nvme_ns *ns,
1222 struct sg_io_hdr *hdr, u8 *resp,
1223 int len)
1225 if (len < MODE_PAGE_CONTROL_LEN)
1226 return SNTI_INTERNAL_ERROR;
1228 resp[0] = MODE_PAGE_CONTROL;
1229 resp[1] = MODE_PAGE_CONTROL_LEN_FIELD;
1230 resp[2] = 0x0E; /* TST=000b, TMF_ONLY=0, DPICZ=1,
1231 * D_SENSE=1, GLTSD=1, RLEC=0 */
1232 resp[3] = 0x12; /* Q_ALGO_MODIFIER=1h, NUAR=0, QERR=01b */
1233 /* Byte 4: VS=0, RAC=0, UA_INT=0, SWP=0 */
1234 resp[5] = 0x40; /* ATO=0, TAS=1, ATMPE=0, RWWP=0, AUTOLOAD=0 */
1235 /* resp[6] and [7] are obsolete, thus zero */
1236 resp[8] = 0xFF; /* Busy timeout period = 0xffff */
1237 resp[9] = 0xFF;
1238 /* Bytes 10,11: Extended selftest completion time = 0x0000 */
1240 return SNTI_TRANSLATION_SUCCESS;
1243 static int nvme_trans_fill_caching_page(struct nvme_ns *ns,
1244 struct sg_io_hdr *hdr,
1245 u8 *resp, int len)
1247 int res = SNTI_TRANSLATION_SUCCESS;
1248 int nvme_sc;
1249 struct nvme_dev *dev = ns->dev;
1250 u32 feature_resp;
1251 u8 vwc;
1253 if (len < MODE_PAGE_CACHING_LEN)
1254 return SNTI_INTERNAL_ERROR;
1256 nvme_sc = nvme_get_features(dev, NVME_FEAT_VOLATILE_WC, 0, 0,
1257 &feature_resp);
1258 res = nvme_trans_status_code(hdr, nvme_sc);
1259 if (res)
1260 goto out;
1261 if (nvme_sc) {
1262 res = nvme_sc;
1263 goto out;
1265 vwc = feature_resp & 0x00000001;
1267 resp[0] = MODE_PAGE_CACHING;
1268 resp[1] = MODE_PAGE_CACHING_LEN_FIELD;
1269 resp[2] = vwc << 2;
1271 out:
1272 return res;
1275 static int nvme_trans_fill_pow_cnd_page(struct nvme_ns *ns,
1276 struct sg_io_hdr *hdr, u8 *resp,
1277 int len)
1279 int res = SNTI_TRANSLATION_SUCCESS;
1281 if (len < MODE_PAGE_POW_CND_LEN)
1282 return SNTI_INTERNAL_ERROR;
1284 resp[0] = MODE_PAGE_POWER_CONDITION;
1285 resp[1] = MODE_PAGE_POW_CND_LEN_FIELD;
1286 /* All other bytes are zero */
1288 return res;
1291 static int nvme_trans_fill_inf_exc_page(struct nvme_ns *ns,
1292 struct sg_io_hdr *hdr, u8 *resp,
1293 int len)
1295 int res = SNTI_TRANSLATION_SUCCESS;
1297 if (len < MODE_PAGE_INF_EXC_LEN)
1298 return SNTI_INTERNAL_ERROR;
1300 resp[0] = MODE_PAGE_INFO_EXCEP;
1301 resp[1] = MODE_PAGE_INF_EXC_LEN_FIELD;
1302 resp[2] = 0x88;
1303 /* All other bytes are zero */
1305 return res;
1308 static int nvme_trans_fill_all_pages(struct nvme_ns *ns, struct sg_io_hdr *hdr,
1309 u8 *resp, int len)
1311 int res = SNTI_TRANSLATION_SUCCESS;
1312 u16 mode_pages_offset_1 = 0;
1313 u16 mode_pages_offset_2, mode_pages_offset_3, mode_pages_offset_4;
1315 mode_pages_offset_2 = mode_pages_offset_1 + MODE_PAGE_CACHING_LEN;
1316 mode_pages_offset_3 = mode_pages_offset_2 + MODE_PAGE_CONTROL_LEN;
1317 mode_pages_offset_4 = mode_pages_offset_3 + MODE_PAGE_POW_CND_LEN;
1319 res = nvme_trans_fill_caching_page(ns, hdr, &resp[mode_pages_offset_1],
1320 MODE_PAGE_CACHING_LEN);
1321 if (res != SNTI_TRANSLATION_SUCCESS)
1322 goto out;
1323 res = nvme_trans_fill_control_page(ns, hdr, &resp[mode_pages_offset_2],
1324 MODE_PAGE_CONTROL_LEN);
1325 if (res != SNTI_TRANSLATION_SUCCESS)
1326 goto out;
1327 res = nvme_trans_fill_pow_cnd_page(ns, hdr, &resp[mode_pages_offset_3],
1328 MODE_PAGE_POW_CND_LEN);
1329 if (res != SNTI_TRANSLATION_SUCCESS)
1330 goto out;
1331 res = nvme_trans_fill_inf_exc_page(ns, hdr, &resp[mode_pages_offset_4],
1332 MODE_PAGE_INF_EXC_LEN);
1333 if (res != SNTI_TRANSLATION_SUCCESS)
1334 goto out;
1336 out:
1337 return res;
1340 static inline int nvme_trans_get_blk_desc_len(u8 dbd, u8 llbaa)
1342 if (dbd == MODE_SENSE_BLK_DESC_ENABLED) {
1343 /* SPC-4: len = 8 x Num_of_descriptors if llbaa = 0, 16x if 1 */
1344 return 8 * (llbaa + 1) * MODE_SENSE_BLK_DESC_COUNT;
1345 } else {
1346 return 0;
1350 static int nvme_trans_mode_page_create(struct nvme_ns *ns,
1351 struct sg_io_hdr *hdr, u8 *cmd,
1352 u16 alloc_len, u8 cdb10,
1353 int (*mode_page_fill_func)
1354 (struct nvme_ns *,
1355 struct sg_io_hdr *hdr, u8 *, int),
1356 u16 mode_pages_tot_len)
1358 int res = SNTI_TRANSLATION_SUCCESS;
1359 int xfer_len;
1360 u8 *response;
1361 u8 dbd, llbaa;
1362 u16 resp_size;
1363 int mph_size;
1364 u16 mode_pages_offset_1;
1365 u16 blk_desc_len, blk_desc_offset, mode_data_length;
1367 dbd = GET_MODE_SENSE_DBD(cmd);
1368 llbaa = GET_MODE_SENSE_LLBAA(cmd);
1369 mph_size = GET_MODE_SENSE_MPH_SIZE(cdb10);
1370 blk_desc_len = nvme_trans_get_blk_desc_len(dbd, llbaa);
1372 resp_size = mph_size + blk_desc_len + mode_pages_tot_len;
1373 /* Refer spc4r34 Table 440 for calculation of Mode data Length field */
1374 mode_data_length = 3 + (3 * cdb10) + blk_desc_len + mode_pages_tot_len;
1376 blk_desc_offset = mph_size;
1377 mode_pages_offset_1 = blk_desc_offset + blk_desc_len;
1379 response = kzalloc(resp_size, GFP_KERNEL);
1380 if (response == NULL) {
1381 res = -ENOMEM;
1382 goto out_mem;
1385 res = nvme_trans_fill_mode_parm_hdr(&response[0], mph_size, cdb10,
1386 llbaa, mode_data_length, blk_desc_len);
1387 if (res != SNTI_TRANSLATION_SUCCESS)
1388 goto out_free;
1389 if (blk_desc_len > 0) {
1390 res = nvme_trans_fill_blk_desc(ns, hdr,
1391 &response[blk_desc_offset],
1392 blk_desc_len, llbaa);
1393 if (res != SNTI_TRANSLATION_SUCCESS)
1394 goto out_free;
1396 res = mode_page_fill_func(ns, hdr, &response[mode_pages_offset_1],
1397 mode_pages_tot_len);
1398 if (res != SNTI_TRANSLATION_SUCCESS)
1399 goto out_free;
1401 xfer_len = min(alloc_len, resp_size);
1402 res = nvme_trans_copy_to_user(hdr, response, xfer_len);
1404 out_free:
1405 kfree(response);
1406 out_mem:
1407 return res;
1410 /* Read Capacity Helper Functions */
1412 static void nvme_trans_fill_read_cap(u8 *response, struct nvme_id_ns *id_ns,
1413 u8 cdb16)
1415 u8 flbas;
1416 u32 lba_length;
1417 u64 rlba;
1418 u8 prot_en;
1419 u8 p_type_lut[4] = {0, 0, 1, 2};
1420 __be64 tmp_rlba;
1421 __be32 tmp_rlba_32;
1422 __be32 tmp_len;
1424 flbas = (id_ns->flbas) & 0x0F;
1425 lba_length = (1 << (id_ns->lbaf[flbas].ds));
1426 rlba = le64_to_cpup(&id_ns->nsze) - 1;
1427 (id_ns->dps) ? (prot_en = 0x01) : (prot_en = 0);
1429 if (!cdb16) {
1430 if (rlba > 0xFFFFFFFF)
1431 rlba = 0xFFFFFFFF;
1432 tmp_rlba_32 = cpu_to_be32(rlba);
1433 tmp_len = cpu_to_be32(lba_length);
1434 memcpy(response, &tmp_rlba_32, sizeof(u32));
1435 memcpy(&response[4], &tmp_len, sizeof(u32));
1436 } else {
1437 tmp_rlba = cpu_to_be64(rlba);
1438 tmp_len = cpu_to_be32(lba_length);
1439 memcpy(response, &tmp_rlba, sizeof(u64));
1440 memcpy(&response[8], &tmp_len, sizeof(u32));
1441 response[12] = (p_type_lut[id_ns->dps & 0x3] << 1) | prot_en;
1442 /* P_I_Exponent = 0x0 | LBPPBE = 0x0 */
1443 /* LBPME = 0 | LBPRZ = 0 | LALBA = 0x00 */
1444 /* Bytes 16-31 - Reserved */
1448 /* Start Stop Unit Helper Functions */
1450 static int nvme_trans_power_state(struct nvme_ns *ns, struct sg_io_hdr *hdr,
1451 u8 pc, u8 pcmod, u8 start)
1453 int res = SNTI_TRANSLATION_SUCCESS;
1454 int nvme_sc;
1455 struct nvme_dev *dev = ns->dev;
1456 dma_addr_t dma_addr;
1457 void *mem;
1458 struct nvme_id_ctrl *id_ctrl;
1459 int lowest_pow_st; /* max npss = lowest power consumption */
1460 unsigned ps_desired = 0;
1462 /* NVMe Controller Identify */
1463 mem = dma_alloc_coherent(&dev->pci_dev->dev,
1464 sizeof(struct nvme_id_ctrl),
1465 &dma_addr, GFP_KERNEL);
1466 if (mem == NULL) {
1467 res = -ENOMEM;
1468 goto out;
1470 nvme_sc = nvme_identify(dev, 0, 1, dma_addr);
1471 res = nvme_trans_status_code(hdr, nvme_sc);
1472 if (res)
1473 goto out_dma;
1474 if (nvme_sc) {
1475 res = nvme_sc;
1476 goto out_dma;
1478 id_ctrl = mem;
1479 lowest_pow_st = id_ctrl->npss - 1;
1481 switch (pc) {
1482 case NVME_POWER_STATE_START_VALID:
1483 /* Action unspecified if POWER CONDITION MODIFIER != 0 */
1484 if (pcmod == 0 && start == 0x1)
1485 ps_desired = POWER_STATE_0;
1486 if (pcmod == 0 && start == 0x0)
1487 ps_desired = lowest_pow_st;
1488 break;
1489 case NVME_POWER_STATE_ACTIVE:
1490 /* Action unspecified if POWER CONDITION MODIFIER != 0 */
1491 if (pcmod == 0)
1492 ps_desired = POWER_STATE_0;
1493 break;
1494 case NVME_POWER_STATE_IDLE:
1495 /* Action unspecified if POWER CONDITION MODIFIER != [0,1,2] */
1496 /* min of desired state and (lps-1) because lps is STOP */
1497 if (pcmod == 0x0)
1498 ps_desired = min(POWER_STATE_1, (lowest_pow_st - 1));
1499 else if (pcmod == 0x1)
1500 ps_desired = min(POWER_STATE_2, (lowest_pow_st - 1));
1501 else if (pcmod == 0x2)
1502 ps_desired = min(POWER_STATE_3, (lowest_pow_st - 1));
1503 break;
1504 case NVME_POWER_STATE_STANDBY:
1505 /* Action unspecified if POWER CONDITION MODIFIER != [0,1] */
1506 if (pcmod == 0x0)
1507 ps_desired = max(0, (lowest_pow_st - 2));
1508 else if (pcmod == 0x1)
1509 ps_desired = max(0, (lowest_pow_st - 1));
1510 break;
1511 case NVME_POWER_STATE_LU_CONTROL:
1512 default:
1513 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
1514 ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
1515 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
1516 break;
1518 nvme_sc = nvme_set_features(dev, NVME_FEAT_POWER_MGMT, ps_desired, 0,
1519 NULL);
1520 res = nvme_trans_status_code(hdr, nvme_sc);
1521 if (res)
1522 goto out_dma;
1523 if (nvme_sc)
1524 res = nvme_sc;
1525 out_dma:
1526 dma_free_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ctrl), mem,
1527 dma_addr);
1528 out:
1529 return res;
1532 /* Write Buffer Helper Functions */
1533 /* Also using this for Format Unit with hdr passed as NULL, and buffer_id, 0 */
1535 static int nvme_trans_send_fw_cmd(struct nvme_ns *ns, struct sg_io_hdr *hdr,
1536 u8 opcode, u32 tot_len, u32 offset,
1537 u8 buffer_id)
1539 int res = SNTI_TRANSLATION_SUCCESS;
1540 int nvme_sc;
1541 struct nvme_dev *dev = ns->dev;
1542 struct nvme_command c;
1543 struct nvme_iod *iod = NULL;
1544 unsigned length;
1546 memset(&c, 0, sizeof(c));
1547 c.common.opcode = opcode;
1548 if (opcode == nvme_admin_download_fw) {
1549 if (hdr->iovec_count > 0) {
1550 /* Assuming SGL is not allowed for this command */
1551 res = nvme_trans_completion(hdr,
1552 SAM_STAT_CHECK_CONDITION,
1553 ILLEGAL_REQUEST,
1554 SCSI_ASC_INVALID_CDB,
1555 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
1556 goto out;
1558 iod = nvme_map_user_pages(dev, DMA_TO_DEVICE,
1559 (unsigned long)hdr->dxferp, tot_len);
1560 if (IS_ERR(iod)) {
1561 res = PTR_ERR(iod);
1562 goto out;
1564 length = nvme_setup_prps(dev, &c.common, iod, tot_len,
1565 GFP_KERNEL);
1566 if (length != tot_len) {
1567 res = -ENOMEM;
1568 goto out_unmap;
1571 c.dlfw.numd = cpu_to_le32((tot_len/BYTES_TO_DWORDS) - 1);
1572 c.dlfw.offset = cpu_to_le32(offset/BYTES_TO_DWORDS);
1573 } else if (opcode == nvme_admin_activate_fw) {
1574 u32 cdw10 = buffer_id | NVME_FWACT_REPL_ACTV;
1575 c.common.cdw10[0] = cpu_to_le32(cdw10);
1578 nvme_sc = nvme_submit_admin_cmd(dev, &c, NULL);
1579 res = nvme_trans_status_code(hdr, nvme_sc);
1580 if (res)
1581 goto out_unmap;
1582 if (nvme_sc)
1583 res = nvme_sc;
1585 out_unmap:
1586 if (opcode == nvme_admin_download_fw) {
1587 nvme_unmap_user_pages(dev, DMA_TO_DEVICE, iod);
1588 nvme_free_iod(dev, iod);
1590 out:
1591 return res;
1594 /* Mode Select Helper Functions */
1596 static inline void nvme_trans_modesel_get_bd_len(u8 *parm_list, u8 cdb10,
1597 u16 *bd_len, u8 *llbaa)
1599 if (cdb10) {
1600 /* 10 Byte CDB */
1601 *bd_len = (parm_list[MODE_SELECT_10_BD_OFFSET] << 8) +
1602 parm_list[MODE_SELECT_10_BD_OFFSET + 1];
1603 *llbaa = parm_list[MODE_SELECT_10_LLBAA_OFFSET] &&
1604 MODE_SELECT_10_LLBAA_MASK;
1605 } else {
1606 /* 6 Byte CDB */
1607 *bd_len = parm_list[MODE_SELECT_6_BD_OFFSET];
1611 static void nvme_trans_modesel_save_bd(struct nvme_ns *ns, u8 *parm_list,
1612 u16 idx, u16 bd_len, u8 llbaa)
1614 u16 bd_num;
1616 bd_num = bd_len / ((llbaa == 0) ?
1617 SHORT_DESC_BLOCK : LONG_DESC_BLOCK);
1618 /* Store block descriptor info if a FORMAT UNIT comes later */
1619 /* TODO Saving 1st BD info; what to do if multiple BD received? */
1620 if (llbaa == 0) {
1621 /* Standard Block Descriptor - spc4r34 7.5.5.1 */
1622 ns->mode_select_num_blocks =
1623 (parm_list[idx + 1] << 16) +
1624 (parm_list[idx + 2] << 8) +
1625 (parm_list[idx + 3]);
1627 ns->mode_select_block_len =
1628 (parm_list[idx + 5] << 16) +
1629 (parm_list[idx + 6] << 8) +
1630 (parm_list[idx + 7]);
1631 } else {
1632 /* Long LBA Block Descriptor - sbc3r27 6.4.2.3 */
1633 ns->mode_select_num_blocks =
1634 (((u64)parm_list[idx + 0]) << 56) +
1635 (((u64)parm_list[idx + 1]) << 48) +
1636 (((u64)parm_list[idx + 2]) << 40) +
1637 (((u64)parm_list[idx + 3]) << 32) +
1638 (((u64)parm_list[idx + 4]) << 24) +
1639 (((u64)parm_list[idx + 5]) << 16) +
1640 (((u64)parm_list[idx + 6]) << 8) +
1641 ((u64)parm_list[idx + 7]);
1643 ns->mode_select_block_len =
1644 (parm_list[idx + 12] << 24) +
1645 (parm_list[idx + 13] << 16) +
1646 (parm_list[idx + 14] << 8) +
1647 (parm_list[idx + 15]);
1651 static int nvme_trans_modesel_get_mp(struct nvme_ns *ns, struct sg_io_hdr *hdr,
1652 u8 *mode_page, u8 page_code)
1654 int res = SNTI_TRANSLATION_SUCCESS;
1655 int nvme_sc;
1656 struct nvme_dev *dev = ns->dev;
1657 unsigned dword11;
1659 switch (page_code) {
1660 case MODE_PAGE_CACHING:
1661 dword11 = ((mode_page[2] & CACHING_MODE_PAGE_WCE_MASK) ? 1 : 0);
1662 nvme_sc = nvme_set_features(dev, NVME_FEAT_VOLATILE_WC, dword11,
1663 0, NULL);
1664 res = nvme_trans_status_code(hdr, nvme_sc);
1665 if (res)
1666 break;
1667 if (nvme_sc) {
1668 res = nvme_sc;
1669 break;
1671 break;
1672 case MODE_PAGE_CONTROL:
1673 break;
1674 case MODE_PAGE_POWER_CONDITION:
1675 /* Verify the OS is not trying to set timers */
1676 if ((mode_page[2] & 0x01) != 0 || (mode_page[3] & 0x0F) != 0) {
1677 res = nvme_trans_completion(hdr,
1678 SAM_STAT_CHECK_CONDITION,
1679 ILLEGAL_REQUEST,
1680 SCSI_ASC_INVALID_PARAMETER,
1681 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
1682 if (!res)
1683 res = SNTI_INTERNAL_ERROR;
1684 break;
1686 break;
1687 default:
1688 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
1689 ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
1690 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
1691 if (!res)
1692 res = SNTI_INTERNAL_ERROR;
1693 break;
1696 return res;
1699 static int nvme_trans_modesel_data(struct nvme_ns *ns, struct sg_io_hdr *hdr,
1700 u8 *cmd, u16 parm_list_len, u8 pf,
1701 u8 sp, u8 cdb10)
1703 int res = SNTI_TRANSLATION_SUCCESS;
1704 u8 *parm_list;
1705 u16 bd_len;
1706 u8 llbaa = 0;
1707 u16 index, saved_index;
1708 u8 page_code;
1709 u16 mp_size;
1711 /* Get parm list from data-in/out buffer */
1712 parm_list = kmalloc(parm_list_len, GFP_KERNEL);
1713 if (parm_list == NULL) {
1714 res = -ENOMEM;
1715 goto out;
1718 res = nvme_trans_copy_from_user(hdr, parm_list, parm_list_len);
1719 if (res != SNTI_TRANSLATION_SUCCESS)
1720 goto out_mem;
1722 nvme_trans_modesel_get_bd_len(parm_list, cdb10, &bd_len, &llbaa);
1723 index = (cdb10) ? (MODE_SELECT_10_MPH_SIZE) : (MODE_SELECT_6_MPH_SIZE);
1725 if (bd_len != 0) {
1726 /* Block Descriptors present, parse */
1727 nvme_trans_modesel_save_bd(ns, parm_list, index, bd_len, llbaa);
1728 index += bd_len;
1730 saved_index = index;
1732 /* Multiple mode pages may be present; iterate through all */
1733 /* In 1st Iteration, don't do NVME Command, only check for CDB errors */
1734 do {
1735 page_code = parm_list[index] & MODE_SELECT_PAGE_CODE_MASK;
1736 mp_size = parm_list[index + 1] + 2;
1737 if ((page_code != MODE_PAGE_CACHING) &&
1738 (page_code != MODE_PAGE_CONTROL) &&
1739 (page_code != MODE_PAGE_POWER_CONDITION)) {
1740 res = nvme_trans_completion(hdr,
1741 SAM_STAT_CHECK_CONDITION,
1742 ILLEGAL_REQUEST,
1743 SCSI_ASC_INVALID_CDB,
1744 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
1745 goto out_mem;
1747 index += mp_size;
1748 } while (index < parm_list_len);
1750 /* In 2nd Iteration, do the NVME Commands */
1751 index = saved_index;
1752 do {
1753 page_code = parm_list[index] & MODE_SELECT_PAGE_CODE_MASK;
1754 mp_size = parm_list[index + 1] + 2;
1755 res = nvme_trans_modesel_get_mp(ns, hdr, &parm_list[index],
1756 page_code);
1757 if (res != SNTI_TRANSLATION_SUCCESS)
1758 break;
1759 index += mp_size;
1760 } while (index < parm_list_len);
1762 out_mem:
1763 kfree(parm_list);
1764 out:
1765 return res;
1768 /* Format Unit Helper Functions */
1770 static int nvme_trans_fmt_set_blk_size_count(struct nvme_ns *ns,
1771 struct sg_io_hdr *hdr)
1773 int res = SNTI_TRANSLATION_SUCCESS;
1774 int nvme_sc;
1775 struct nvme_dev *dev = ns->dev;
1776 dma_addr_t dma_addr;
1777 void *mem;
1778 struct nvme_id_ns *id_ns;
1779 u8 flbas;
1782 * SCSI Expects a MODE SELECT would have been issued prior to
1783 * a FORMAT UNIT, and the block size and number would be used
1784 * from the block descriptor in it. If a MODE SELECT had not
1785 * been issued, FORMAT shall use the current values for both.
1788 if (ns->mode_select_num_blocks == 0 || ns->mode_select_block_len == 0) {
1789 mem = dma_alloc_coherent(&dev->pci_dev->dev,
1790 sizeof(struct nvme_id_ns), &dma_addr, GFP_KERNEL);
1791 if (mem == NULL) {
1792 res = -ENOMEM;
1793 goto out;
1795 /* nvme ns identify */
1796 nvme_sc = nvme_identify(dev, ns->ns_id, 0, dma_addr);
1797 res = nvme_trans_status_code(hdr, nvme_sc);
1798 if (res)
1799 goto out_dma;
1800 if (nvme_sc) {
1801 res = nvme_sc;
1802 goto out_dma;
1804 id_ns = mem;
1806 if (ns->mode_select_num_blocks == 0)
1807 ns->mode_select_num_blocks = le64_to_cpu(id_ns->ncap);
1808 if (ns->mode_select_block_len == 0) {
1809 flbas = (id_ns->flbas) & 0x0F;
1810 ns->mode_select_block_len =
1811 (1 << (id_ns->lbaf[flbas].ds));
1813 out_dma:
1814 dma_free_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns),
1815 mem, dma_addr);
1817 out:
1818 return res;
1821 static int nvme_trans_fmt_get_parm_header(struct sg_io_hdr *hdr, u8 len,
1822 u8 format_prot_info, u8 *nvme_pf_code)
1824 int res = SNTI_TRANSLATION_SUCCESS;
1825 u8 *parm_list;
1826 u8 pf_usage, pf_code;
1828 parm_list = kmalloc(len, GFP_KERNEL);
1829 if (parm_list == NULL) {
1830 res = -ENOMEM;
1831 goto out;
1833 res = nvme_trans_copy_from_user(hdr, parm_list, len);
1834 if (res != SNTI_TRANSLATION_SUCCESS)
1835 goto out_mem;
1837 if ((parm_list[FORMAT_UNIT_IMMED_OFFSET] &
1838 FORMAT_UNIT_IMMED_MASK) != 0) {
1839 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
1840 ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
1841 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
1842 goto out_mem;
1845 if (len == FORMAT_UNIT_LONG_PARM_LIST_LEN &&
1846 (parm_list[FORMAT_UNIT_PROT_INT_OFFSET] & 0x0F) != 0) {
1847 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
1848 ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
1849 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
1850 goto out_mem;
1852 pf_usage = parm_list[FORMAT_UNIT_PROT_FIELD_USAGE_OFFSET] &
1853 FORMAT_UNIT_PROT_FIELD_USAGE_MASK;
1854 pf_code = (pf_usage << 2) | format_prot_info;
1855 switch (pf_code) {
1856 case 0:
1857 *nvme_pf_code = 0;
1858 break;
1859 case 2:
1860 *nvme_pf_code = 1;
1861 break;
1862 case 3:
1863 *nvme_pf_code = 2;
1864 break;
1865 case 7:
1866 *nvme_pf_code = 3;
1867 break;
1868 default:
1869 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
1870 ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
1871 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
1872 break;
1875 out_mem:
1876 kfree(parm_list);
1877 out:
1878 return res;
1881 static int nvme_trans_fmt_send_cmd(struct nvme_ns *ns, struct sg_io_hdr *hdr,
1882 u8 prot_info)
1884 int res = SNTI_TRANSLATION_SUCCESS;
1885 int nvme_sc;
1886 struct nvme_dev *dev = ns->dev;
1887 dma_addr_t dma_addr;
1888 void *mem;
1889 struct nvme_id_ns *id_ns;
1890 u8 i;
1891 u8 flbas, nlbaf;
1892 u8 selected_lbaf = 0xFF;
1893 u32 cdw10 = 0;
1894 struct nvme_command c;
1896 /* Loop thru LBAF's in id_ns to match reqd lbaf, put in cdw10 */
1897 mem = dma_alloc_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns),
1898 &dma_addr, GFP_KERNEL);
1899 if (mem == NULL) {
1900 res = -ENOMEM;
1901 goto out;
1903 /* nvme ns identify */
1904 nvme_sc = nvme_identify(dev, ns->ns_id, 0, dma_addr);
1905 res = nvme_trans_status_code(hdr, nvme_sc);
1906 if (res)
1907 goto out_dma;
1908 if (nvme_sc) {
1909 res = nvme_sc;
1910 goto out_dma;
1912 id_ns = mem;
1913 flbas = (id_ns->flbas) & 0x0F;
1914 nlbaf = id_ns->nlbaf;
1916 for (i = 0; i < nlbaf; i++) {
1917 if (ns->mode_select_block_len == (1 << (id_ns->lbaf[i].ds))) {
1918 selected_lbaf = i;
1919 break;
1922 if (selected_lbaf > 0x0F) {
1923 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
1924 ILLEGAL_REQUEST, SCSI_ASC_INVALID_PARAMETER,
1925 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
1927 if (ns->mode_select_num_blocks != le64_to_cpu(id_ns->ncap)) {
1928 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
1929 ILLEGAL_REQUEST, SCSI_ASC_INVALID_PARAMETER,
1930 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
1933 cdw10 |= prot_info << 5;
1934 cdw10 |= selected_lbaf & 0x0F;
1935 memset(&c, 0, sizeof(c));
1936 c.format.opcode = nvme_admin_format_nvm;
1937 c.format.nsid = cpu_to_le32(ns->ns_id);
1938 c.format.cdw10 = cpu_to_le32(cdw10);
1940 nvme_sc = nvme_submit_admin_cmd(dev, &c, NULL);
1941 res = nvme_trans_status_code(hdr, nvme_sc);
1942 if (res)
1943 goto out_dma;
1944 if (nvme_sc)
1945 res = nvme_sc;
1947 out_dma:
1948 dma_free_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns), mem,
1949 dma_addr);
1950 out:
1951 return res;
1954 /* Read/Write Helper Functions */
1956 static inline void nvme_trans_get_io_cdb6(u8 *cmd,
1957 struct nvme_trans_io_cdb *cdb_info)
1959 cdb_info->fua = 0;
1960 cdb_info->prot_info = 0;
1961 cdb_info->lba = GET_U32_FROM_CDB(cmd, IO_6_CDB_LBA_OFFSET) &
1962 IO_6_CDB_LBA_MASK;
1963 cdb_info->xfer_len = GET_U8_FROM_CDB(cmd, IO_6_CDB_TX_LEN_OFFSET);
1965 /* sbc3r27 sec 5.32 - TRANSFER LEN of 0 implies a 256 Block transfer */
1966 if (cdb_info->xfer_len == 0)
1967 cdb_info->xfer_len = IO_6_DEFAULT_TX_LEN;
1970 static inline void nvme_trans_get_io_cdb10(u8 *cmd,
1971 struct nvme_trans_io_cdb *cdb_info)
1973 cdb_info->fua = GET_U8_FROM_CDB(cmd, IO_10_CDB_FUA_OFFSET) &
1974 IO_CDB_FUA_MASK;
1975 cdb_info->prot_info = GET_U8_FROM_CDB(cmd, IO_10_CDB_WP_OFFSET) &
1976 IO_CDB_WP_MASK >> IO_CDB_WP_SHIFT;
1977 cdb_info->lba = GET_U32_FROM_CDB(cmd, IO_10_CDB_LBA_OFFSET);
1978 cdb_info->xfer_len = GET_U16_FROM_CDB(cmd, IO_10_CDB_TX_LEN_OFFSET);
1981 static inline void nvme_trans_get_io_cdb12(u8 *cmd,
1982 struct nvme_trans_io_cdb *cdb_info)
1984 cdb_info->fua = GET_U8_FROM_CDB(cmd, IO_12_CDB_FUA_OFFSET) &
1985 IO_CDB_FUA_MASK;
1986 cdb_info->prot_info = GET_U8_FROM_CDB(cmd, IO_12_CDB_WP_OFFSET) &
1987 IO_CDB_WP_MASK >> IO_CDB_WP_SHIFT;
1988 cdb_info->lba = GET_U32_FROM_CDB(cmd, IO_12_CDB_LBA_OFFSET);
1989 cdb_info->xfer_len = GET_U32_FROM_CDB(cmd, IO_12_CDB_TX_LEN_OFFSET);
1992 static inline void nvme_trans_get_io_cdb16(u8 *cmd,
1993 struct nvme_trans_io_cdb *cdb_info)
1995 cdb_info->fua = GET_U8_FROM_CDB(cmd, IO_16_CDB_FUA_OFFSET) &
1996 IO_CDB_FUA_MASK;
1997 cdb_info->prot_info = GET_U8_FROM_CDB(cmd, IO_16_CDB_WP_OFFSET) &
1998 IO_CDB_WP_MASK >> IO_CDB_WP_SHIFT;
1999 cdb_info->lba = GET_U64_FROM_CDB(cmd, IO_16_CDB_LBA_OFFSET);
2000 cdb_info->xfer_len = GET_U32_FROM_CDB(cmd, IO_16_CDB_TX_LEN_OFFSET);
2003 static inline u32 nvme_trans_io_get_num_cmds(struct sg_io_hdr *hdr,
2004 struct nvme_trans_io_cdb *cdb_info,
2005 u32 max_blocks)
2007 /* If using iovecs, send one nvme command per vector */
2008 if (hdr->iovec_count > 0)
2009 return hdr->iovec_count;
2010 else if (cdb_info->xfer_len > max_blocks)
2011 return ((cdb_info->xfer_len - 1) / max_blocks) + 1;
2012 else
2013 return 1;
2016 static u16 nvme_trans_io_get_control(struct nvme_ns *ns,
2017 struct nvme_trans_io_cdb *cdb_info)
2019 u16 control = 0;
2021 /* When Protection information support is added, implement here */
2023 if (cdb_info->fua > 0)
2024 control |= NVME_RW_FUA;
2026 return control;
2029 static int nvme_trans_do_nvme_io(struct nvme_ns *ns, struct sg_io_hdr *hdr,
2030 struct nvme_trans_io_cdb *cdb_info, u8 is_write)
2032 int res = SNTI_TRANSLATION_SUCCESS;
2033 int nvme_sc;
2034 struct nvme_dev *dev = ns->dev;
2035 struct nvme_queue *nvmeq;
2036 u32 num_cmds;
2037 struct nvme_iod *iod;
2038 u64 unit_len;
2039 u64 unit_num_blocks; /* Number of blocks to xfer in each nvme cmd */
2040 u32 retcode;
2041 u32 i = 0;
2042 u64 nvme_offset = 0;
2043 void __user *next_mapping_addr;
2044 struct nvme_command c;
2045 u8 opcode = (is_write ? nvme_cmd_write : nvme_cmd_read);
2046 u16 control;
2047 u32 max_blocks = nvme_block_nr(ns, dev->max_hw_sectors);
2049 num_cmds = nvme_trans_io_get_num_cmds(hdr, cdb_info, max_blocks);
2052 * This loop handles two cases.
2053 * First, when an SGL is used in the form of an iovec list:
2054 * - Use iov_base as the next mapping address for the nvme command_id
2055 * - Use iov_len as the data transfer length for the command.
2056 * Second, when we have a single buffer
2057 * - If larger than max_blocks, split into chunks, offset
2058 * each nvme command accordingly.
2060 for (i = 0; i < num_cmds; i++) {
2061 memset(&c, 0, sizeof(c));
2062 if (hdr->iovec_count > 0) {
2063 struct sg_iovec sgl;
2065 retcode = copy_from_user(&sgl, hdr->dxferp +
2066 i * sizeof(struct sg_iovec),
2067 sizeof(struct sg_iovec));
2068 if (retcode)
2069 return -EFAULT;
2070 unit_len = sgl.iov_len;
2071 unit_num_blocks = unit_len >> ns->lba_shift;
2072 next_mapping_addr = sgl.iov_base;
2073 } else {
2074 unit_num_blocks = min((u64)max_blocks,
2075 (cdb_info->xfer_len - nvme_offset));
2076 unit_len = unit_num_blocks << ns->lba_shift;
2077 next_mapping_addr = hdr->dxferp +
2078 ((1 << ns->lba_shift) * nvme_offset);
2081 c.rw.opcode = opcode;
2082 c.rw.nsid = cpu_to_le32(ns->ns_id);
2083 c.rw.slba = cpu_to_le64(cdb_info->lba + nvme_offset);
2084 c.rw.length = cpu_to_le16(unit_num_blocks - 1);
2085 control = nvme_trans_io_get_control(ns, cdb_info);
2086 c.rw.control = cpu_to_le16(control);
2088 iod = nvme_map_user_pages(dev,
2089 (is_write) ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
2090 (unsigned long)next_mapping_addr, unit_len);
2091 if (IS_ERR(iod)) {
2092 res = PTR_ERR(iod);
2093 goto out;
2095 retcode = nvme_setup_prps(dev, &c.common, iod, unit_len,
2096 GFP_KERNEL);
2097 if (retcode != unit_len) {
2098 nvme_unmap_user_pages(dev,
2099 (is_write) ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
2100 iod);
2101 nvme_free_iod(dev, iod);
2102 res = -ENOMEM;
2103 goto out;
2106 nvme_offset += unit_num_blocks;
2108 nvmeq = get_nvmeq(dev);
2110 * Since nvme_submit_sync_cmd sleeps, we can't keep
2111 * preemption disabled. We may be preempted at any
2112 * point, and be rescheduled to a different CPU. That
2113 * will cause cacheline bouncing, but no additional
2114 * races since q_lock already protects against other
2115 * CPUs.
2117 put_nvmeq(nvmeq);
2118 nvme_sc = nvme_submit_sync_cmd(nvmeq, &c, NULL,
2119 NVME_IO_TIMEOUT);
2120 if (nvme_sc != NVME_SC_SUCCESS) {
2121 nvme_unmap_user_pages(dev,
2122 (is_write) ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
2123 iod);
2124 nvme_free_iod(dev, iod);
2125 res = nvme_trans_status_code(hdr, nvme_sc);
2126 goto out;
2128 nvme_unmap_user_pages(dev,
2129 (is_write) ? DMA_TO_DEVICE : DMA_FROM_DEVICE,
2130 iod);
2131 nvme_free_iod(dev, iod);
2133 res = nvme_trans_status_code(hdr, NVME_SC_SUCCESS);
2135 out:
2136 return res;
2140 /* SCSI Command Translation Functions */
2142 static int nvme_trans_io(struct nvme_ns *ns, struct sg_io_hdr *hdr, u8 is_write,
2143 u8 *cmd)
2145 int res = SNTI_TRANSLATION_SUCCESS;
2146 struct nvme_trans_io_cdb cdb_info;
2147 u8 opcode = cmd[0];
2148 u64 xfer_bytes;
2149 u64 sum_iov_len = 0;
2150 struct sg_iovec sgl;
2151 int i;
2152 size_t not_copied;
2154 /* Extract Fields from CDB */
2155 switch (opcode) {
2156 case WRITE_6:
2157 case READ_6:
2158 nvme_trans_get_io_cdb6(cmd, &cdb_info);
2159 break;
2160 case WRITE_10:
2161 case READ_10:
2162 nvme_trans_get_io_cdb10(cmd, &cdb_info);
2163 break;
2164 case WRITE_12:
2165 case READ_12:
2166 nvme_trans_get_io_cdb12(cmd, &cdb_info);
2167 break;
2168 case WRITE_16:
2169 case READ_16:
2170 nvme_trans_get_io_cdb16(cmd, &cdb_info);
2171 break;
2172 default:
2173 /* Will never really reach here */
2174 res = SNTI_INTERNAL_ERROR;
2175 goto out;
2178 /* Calculate total length of transfer (in bytes) */
2179 if (hdr->iovec_count > 0) {
2180 for (i = 0; i < hdr->iovec_count; i++) {
2181 not_copied = copy_from_user(&sgl, hdr->dxferp +
2182 i * sizeof(struct sg_iovec),
2183 sizeof(struct sg_iovec));
2184 if (not_copied)
2185 return -EFAULT;
2186 sum_iov_len += sgl.iov_len;
2187 /* IO vector sizes should be multiples of block size */
2188 if (sgl.iov_len % (1 << ns->lba_shift) != 0) {
2189 res = nvme_trans_completion(hdr,
2190 SAM_STAT_CHECK_CONDITION,
2191 ILLEGAL_REQUEST,
2192 SCSI_ASC_INVALID_PARAMETER,
2193 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
2194 goto out;
2197 } else {
2198 sum_iov_len = hdr->dxfer_len;
2201 /* As Per sg ioctl howto, if the lengths differ, use the lower one */
2202 xfer_bytes = min(((u64)hdr->dxfer_len), sum_iov_len);
2204 /* If block count and actual data buffer size dont match, error out */
2205 if (xfer_bytes != (cdb_info.xfer_len << ns->lba_shift)) {
2206 res = -EINVAL;
2207 goto out;
2210 /* Check for 0 length transfer - it is not illegal */
2211 if (cdb_info.xfer_len == 0)
2212 goto out;
2214 /* Send NVMe IO Command(s) */
2215 res = nvme_trans_do_nvme_io(ns, hdr, &cdb_info, is_write);
2216 if (res != SNTI_TRANSLATION_SUCCESS)
2217 goto out;
2219 out:
2220 return res;
2223 static int nvme_trans_inquiry(struct nvme_ns *ns, struct sg_io_hdr *hdr,
2224 u8 *cmd)
2226 int res = SNTI_TRANSLATION_SUCCESS;
2227 u8 evpd;
2228 u8 page_code;
2229 int alloc_len;
2230 u8 *inq_response;
2232 evpd = GET_INQ_EVPD_BIT(cmd);
2233 page_code = GET_INQ_PAGE_CODE(cmd);
2234 alloc_len = GET_INQ_ALLOC_LENGTH(cmd);
2236 inq_response = kmalloc(STANDARD_INQUIRY_LENGTH, GFP_KERNEL);
2237 if (inq_response == NULL) {
2238 res = -ENOMEM;
2239 goto out_mem;
2242 if (evpd == 0) {
2243 if (page_code == INQ_STANDARD_INQUIRY_PAGE) {
2244 res = nvme_trans_standard_inquiry_page(ns, hdr,
2245 inq_response, alloc_len);
2246 } else {
2247 res = nvme_trans_completion(hdr,
2248 SAM_STAT_CHECK_CONDITION,
2249 ILLEGAL_REQUEST,
2250 SCSI_ASC_INVALID_CDB,
2251 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
2253 } else {
2254 switch (page_code) {
2255 case VPD_SUPPORTED_PAGES:
2256 res = nvme_trans_supported_vpd_pages(ns, hdr,
2257 inq_response, alloc_len);
2258 break;
2259 case VPD_SERIAL_NUMBER:
2260 res = nvme_trans_unit_serial_page(ns, hdr, inq_response,
2261 alloc_len);
2262 break;
2263 case VPD_DEVICE_IDENTIFIERS:
2264 res = nvme_trans_device_id_page(ns, hdr, inq_response,
2265 alloc_len);
2266 break;
2267 case VPD_EXTENDED_INQUIRY:
2268 res = nvme_trans_ext_inq_page(ns, hdr, alloc_len);
2269 break;
2270 case VPD_BLOCK_DEV_CHARACTERISTICS:
2271 res = nvme_trans_bdev_char_page(ns, hdr, alloc_len);
2272 break;
2273 default:
2274 res = nvme_trans_completion(hdr,
2275 SAM_STAT_CHECK_CONDITION,
2276 ILLEGAL_REQUEST,
2277 SCSI_ASC_INVALID_CDB,
2278 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
2279 break;
2282 kfree(inq_response);
2283 out_mem:
2284 return res;
2287 static int nvme_trans_log_sense(struct nvme_ns *ns, struct sg_io_hdr *hdr,
2288 u8 *cmd)
2290 int res = SNTI_TRANSLATION_SUCCESS;
2291 u16 alloc_len;
2292 u8 sp;
2293 u8 pc;
2294 u8 page_code;
2296 sp = GET_U8_FROM_CDB(cmd, LOG_SENSE_CDB_SP_OFFSET);
2297 if (sp != LOG_SENSE_CDB_SP_NOT_ENABLED) {
2298 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
2299 ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
2300 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
2301 goto out;
2303 pc = GET_U8_FROM_CDB(cmd, LOG_SENSE_CDB_PC_OFFSET);
2304 page_code = pc & LOG_SENSE_CDB_PAGE_CODE_MASK;
2305 pc = (pc & LOG_SENSE_CDB_PC_MASK) >> LOG_SENSE_CDB_PC_SHIFT;
2306 if (pc != LOG_SENSE_CDB_PC_CUMULATIVE_VALUES) {
2307 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
2308 ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
2309 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
2310 goto out;
2312 alloc_len = GET_U16_FROM_CDB(cmd, LOG_SENSE_CDB_ALLOC_LENGTH_OFFSET);
2313 switch (page_code) {
2314 case LOG_PAGE_SUPPORTED_LOG_PAGES_PAGE:
2315 res = nvme_trans_log_supp_pages(ns, hdr, alloc_len);
2316 break;
2317 case LOG_PAGE_INFORMATIONAL_EXCEPTIONS_PAGE:
2318 res = nvme_trans_log_info_exceptions(ns, hdr, alloc_len);
2319 break;
2320 case LOG_PAGE_TEMPERATURE_PAGE:
2321 res = nvme_trans_log_temperature(ns, hdr, alloc_len);
2322 break;
2323 default:
2324 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
2325 ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
2326 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
2327 break;
2330 out:
2331 return res;
2334 static int nvme_trans_mode_select(struct nvme_ns *ns, struct sg_io_hdr *hdr,
2335 u8 *cmd)
2337 int res = SNTI_TRANSLATION_SUCCESS;
2338 u8 cdb10 = 0;
2339 u16 parm_list_len;
2340 u8 page_format;
2341 u8 save_pages;
2343 page_format = GET_U8_FROM_CDB(cmd, MODE_SELECT_CDB_PAGE_FORMAT_OFFSET);
2344 page_format &= MODE_SELECT_CDB_PAGE_FORMAT_MASK;
2346 save_pages = GET_U8_FROM_CDB(cmd, MODE_SELECT_CDB_SAVE_PAGES_OFFSET);
2347 save_pages &= MODE_SELECT_CDB_SAVE_PAGES_MASK;
2349 if (GET_OPCODE(cmd) == MODE_SELECT) {
2350 parm_list_len = GET_U8_FROM_CDB(cmd,
2351 MODE_SELECT_6_CDB_PARAM_LIST_LENGTH_OFFSET);
2352 } else {
2353 parm_list_len = GET_U16_FROM_CDB(cmd,
2354 MODE_SELECT_10_CDB_PARAM_LIST_LENGTH_OFFSET);
2355 cdb10 = 1;
2358 if (parm_list_len != 0) {
2360 * According to SPC-4 r24, a paramter list length field of 0
2361 * shall not be considered an error
2363 res = nvme_trans_modesel_data(ns, hdr, cmd, parm_list_len,
2364 page_format, save_pages, cdb10);
2367 return res;
2370 static int nvme_trans_mode_sense(struct nvme_ns *ns, struct sg_io_hdr *hdr,
2371 u8 *cmd)
2373 int res = SNTI_TRANSLATION_SUCCESS;
2374 u16 alloc_len;
2375 u8 cdb10 = 0;
2376 u8 page_code;
2377 u8 pc;
2379 if (GET_OPCODE(cmd) == MODE_SENSE) {
2380 alloc_len = GET_U8_FROM_CDB(cmd, MODE_SENSE6_ALLOC_LEN_OFFSET);
2381 } else {
2382 alloc_len = GET_U16_FROM_CDB(cmd,
2383 MODE_SENSE10_ALLOC_LEN_OFFSET);
2384 cdb10 = 1;
2387 pc = GET_U8_FROM_CDB(cmd, MODE_SENSE_PAGE_CONTROL_OFFSET) &
2388 MODE_SENSE_PAGE_CONTROL_MASK;
2389 if (pc != MODE_SENSE_PC_CURRENT_VALUES) {
2390 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
2391 ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
2392 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
2393 goto out;
2396 page_code = GET_U8_FROM_CDB(cmd, MODE_SENSE_PAGE_CODE_OFFSET) &
2397 MODE_SENSE_PAGE_CODE_MASK;
2398 switch (page_code) {
2399 case MODE_PAGE_CACHING:
2400 res = nvme_trans_mode_page_create(ns, hdr, cmd, alloc_len,
2401 cdb10,
2402 &nvme_trans_fill_caching_page,
2403 MODE_PAGE_CACHING_LEN);
2404 break;
2405 case MODE_PAGE_CONTROL:
2406 res = nvme_trans_mode_page_create(ns, hdr, cmd, alloc_len,
2407 cdb10,
2408 &nvme_trans_fill_control_page,
2409 MODE_PAGE_CONTROL_LEN);
2410 break;
2411 case MODE_PAGE_POWER_CONDITION:
2412 res = nvme_trans_mode_page_create(ns, hdr, cmd, alloc_len,
2413 cdb10,
2414 &nvme_trans_fill_pow_cnd_page,
2415 MODE_PAGE_POW_CND_LEN);
2416 break;
2417 case MODE_PAGE_INFO_EXCEP:
2418 res = nvme_trans_mode_page_create(ns, hdr, cmd, alloc_len,
2419 cdb10,
2420 &nvme_trans_fill_inf_exc_page,
2421 MODE_PAGE_INF_EXC_LEN);
2422 break;
2423 case MODE_PAGE_RETURN_ALL:
2424 res = nvme_trans_mode_page_create(ns, hdr, cmd, alloc_len,
2425 cdb10,
2426 &nvme_trans_fill_all_pages,
2427 MODE_PAGE_ALL_LEN);
2428 break;
2429 default:
2430 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
2431 ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
2432 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
2433 break;
2436 out:
2437 return res;
2440 static int nvme_trans_read_capacity(struct nvme_ns *ns, struct sg_io_hdr *hdr,
2441 u8 *cmd)
2443 int res = SNTI_TRANSLATION_SUCCESS;
2444 int nvme_sc;
2445 u32 alloc_len = READ_CAP_10_RESP_SIZE;
2446 u32 resp_size = READ_CAP_10_RESP_SIZE;
2447 u32 xfer_len;
2448 u8 cdb16;
2449 struct nvme_dev *dev = ns->dev;
2450 dma_addr_t dma_addr;
2451 void *mem;
2452 struct nvme_id_ns *id_ns;
2453 u8 *response;
2455 cdb16 = IS_READ_CAP_16(cmd);
2456 if (cdb16) {
2457 alloc_len = GET_READ_CAP_16_ALLOC_LENGTH(cmd);
2458 resp_size = READ_CAP_16_RESP_SIZE;
2461 mem = dma_alloc_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns),
2462 &dma_addr, GFP_KERNEL);
2463 if (mem == NULL) {
2464 res = -ENOMEM;
2465 goto out;
2467 /* nvme ns identify */
2468 nvme_sc = nvme_identify(dev, ns->ns_id, 0, dma_addr);
2469 res = nvme_trans_status_code(hdr, nvme_sc);
2470 if (res)
2471 goto out_dma;
2472 if (nvme_sc) {
2473 res = nvme_sc;
2474 goto out_dma;
2476 id_ns = mem;
2478 response = kzalloc(resp_size, GFP_KERNEL);
2479 if (response == NULL) {
2480 res = -ENOMEM;
2481 goto out_dma;
2483 nvme_trans_fill_read_cap(response, id_ns, cdb16);
2485 xfer_len = min(alloc_len, resp_size);
2486 res = nvme_trans_copy_to_user(hdr, response, xfer_len);
2488 kfree(response);
2489 out_dma:
2490 dma_free_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ns), mem,
2491 dma_addr);
2492 out:
2493 return res;
2496 static int nvme_trans_report_luns(struct nvme_ns *ns, struct sg_io_hdr *hdr,
2497 u8 *cmd)
2499 int res = SNTI_TRANSLATION_SUCCESS;
2500 int nvme_sc;
2501 u32 alloc_len, xfer_len, resp_size;
2502 u8 select_report;
2503 u8 *response;
2504 struct nvme_dev *dev = ns->dev;
2505 dma_addr_t dma_addr;
2506 void *mem;
2507 struct nvme_id_ctrl *id_ctrl;
2508 u32 ll_length, lun_id;
2509 u8 lun_id_offset = REPORT_LUNS_FIRST_LUN_OFFSET;
2510 __be32 tmp_len;
2512 alloc_len = GET_REPORT_LUNS_ALLOC_LENGTH(cmd);
2513 select_report = GET_U8_FROM_CDB(cmd, REPORT_LUNS_SR_OFFSET);
2515 if ((select_report != ALL_LUNS_RETURNED) &&
2516 (select_report != ALL_WELL_KNOWN_LUNS_RETURNED) &&
2517 (select_report != RESTRICTED_LUNS_RETURNED)) {
2518 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
2519 ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
2520 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
2521 goto out;
2522 } else {
2523 /* NVMe Controller Identify */
2524 mem = dma_alloc_coherent(&dev->pci_dev->dev,
2525 sizeof(struct nvme_id_ctrl),
2526 &dma_addr, GFP_KERNEL);
2527 if (mem == NULL) {
2528 res = -ENOMEM;
2529 goto out;
2531 nvme_sc = nvme_identify(dev, 0, 1, dma_addr);
2532 res = nvme_trans_status_code(hdr, nvme_sc);
2533 if (res)
2534 goto out_dma;
2535 if (nvme_sc) {
2536 res = nvme_sc;
2537 goto out_dma;
2539 id_ctrl = mem;
2540 ll_length = le32_to_cpu(id_ctrl->nn) * LUN_ENTRY_SIZE;
2541 resp_size = ll_length + LUN_DATA_HEADER_SIZE;
2543 if (alloc_len < resp_size) {
2544 res = nvme_trans_completion(hdr,
2545 SAM_STAT_CHECK_CONDITION,
2546 ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
2547 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
2548 goto out_dma;
2551 response = kzalloc(resp_size, GFP_KERNEL);
2552 if (response == NULL) {
2553 res = -ENOMEM;
2554 goto out_dma;
2557 /* The first LUN ID will always be 0 per the SAM spec */
2558 for (lun_id = 0; lun_id < le32_to_cpu(id_ctrl->nn); lun_id++) {
2560 * Set the LUN Id and then increment to the next LUN
2561 * location in the parameter data.
2563 __be64 tmp_id = cpu_to_be64(lun_id);
2564 memcpy(&response[lun_id_offset], &tmp_id, sizeof(u64));
2565 lun_id_offset += LUN_ENTRY_SIZE;
2567 tmp_len = cpu_to_be32(ll_length);
2568 memcpy(response, &tmp_len, sizeof(u32));
2571 xfer_len = min(alloc_len, resp_size);
2572 res = nvme_trans_copy_to_user(hdr, response, xfer_len);
2574 kfree(response);
2575 out_dma:
2576 dma_free_coherent(&dev->pci_dev->dev, sizeof(struct nvme_id_ctrl), mem,
2577 dma_addr);
2578 out:
2579 return res;
2582 static int nvme_trans_request_sense(struct nvme_ns *ns, struct sg_io_hdr *hdr,
2583 u8 *cmd)
2585 int res = SNTI_TRANSLATION_SUCCESS;
2586 u8 alloc_len, xfer_len, resp_size;
2587 u8 desc_format;
2588 u8 *response;
2590 alloc_len = GET_REQUEST_SENSE_ALLOC_LENGTH(cmd);
2591 desc_format = GET_U8_FROM_CDB(cmd, REQUEST_SENSE_DESC_OFFSET);
2592 desc_format &= REQUEST_SENSE_DESC_MASK;
2594 resp_size = ((desc_format) ? (DESC_FMT_SENSE_DATA_SIZE) :
2595 (FIXED_FMT_SENSE_DATA_SIZE));
2596 response = kzalloc(resp_size, GFP_KERNEL);
2597 if (response == NULL) {
2598 res = -ENOMEM;
2599 goto out;
2602 if (desc_format == DESCRIPTOR_FORMAT_SENSE_DATA_TYPE) {
2603 /* Descriptor Format Sense Data */
2604 response[0] = DESC_FORMAT_SENSE_DATA;
2605 response[1] = NO_SENSE;
2606 /* TODO How is LOW POWER CONDITION ON handled? (byte 2) */
2607 response[2] = SCSI_ASC_NO_SENSE;
2608 response[3] = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
2609 /* SDAT_OVFL = 0 | Additional Sense Length = 0 */
2610 } else {
2611 /* Fixed Format Sense Data */
2612 response[0] = FIXED_SENSE_DATA;
2613 /* Byte 1 = Obsolete */
2614 response[2] = NO_SENSE; /* FM, EOM, ILI, SDAT_OVFL = 0 */
2615 /* Bytes 3-6 - Information - set to zero */
2616 response[7] = FIXED_SENSE_DATA_ADD_LENGTH;
2617 /* Bytes 8-11 - Cmd Specific Information - set to zero */
2618 response[12] = SCSI_ASC_NO_SENSE;
2619 response[13] = SCSI_ASCQ_CAUSE_NOT_REPORTABLE;
2620 /* Byte 14 = Field Replaceable Unit Code = 0 */
2621 /* Bytes 15-17 - SKSV=0; Sense Key Specific = 0 */
2624 xfer_len = min(alloc_len, resp_size);
2625 res = nvme_trans_copy_to_user(hdr, response, xfer_len);
2627 kfree(response);
2628 out:
2629 return res;
2632 static int nvme_trans_security_protocol(struct nvme_ns *ns,
2633 struct sg_io_hdr *hdr,
2634 u8 *cmd)
2636 return nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
2637 ILLEGAL_REQUEST, SCSI_ASC_ILLEGAL_COMMAND,
2638 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
2641 static int nvme_trans_start_stop(struct nvme_ns *ns, struct sg_io_hdr *hdr,
2642 u8 *cmd)
2644 int res = SNTI_TRANSLATION_SUCCESS;
2645 int nvme_sc;
2646 struct nvme_queue *nvmeq;
2647 struct nvme_command c;
2648 u8 immed, pcmod, pc, no_flush, start;
2650 immed = GET_U8_FROM_CDB(cmd, START_STOP_UNIT_CDB_IMMED_OFFSET);
2651 pcmod = GET_U8_FROM_CDB(cmd, START_STOP_UNIT_CDB_POWER_COND_MOD_OFFSET);
2652 pc = GET_U8_FROM_CDB(cmd, START_STOP_UNIT_CDB_POWER_COND_OFFSET);
2653 no_flush = GET_U8_FROM_CDB(cmd, START_STOP_UNIT_CDB_NO_FLUSH_OFFSET);
2654 start = GET_U8_FROM_CDB(cmd, START_STOP_UNIT_CDB_START_OFFSET);
2656 immed &= START_STOP_UNIT_CDB_IMMED_MASK;
2657 pcmod &= START_STOP_UNIT_CDB_POWER_COND_MOD_MASK;
2658 pc = (pc & START_STOP_UNIT_CDB_POWER_COND_MASK) >> NIBBLE_SHIFT;
2659 no_flush &= START_STOP_UNIT_CDB_NO_FLUSH_MASK;
2660 start &= START_STOP_UNIT_CDB_START_MASK;
2662 if (immed != 0) {
2663 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
2664 ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
2665 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
2666 } else {
2667 if (no_flush == 0) {
2668 /* Issue NVME FLUSH command prior to START STOP UNIT */
2669 memset(&c, 0, sizeof(c));
2670 c.common.opcode = nvme_cmd_flush;
2671 c.common.nsid = cpu_to_le32(ns->ns_id);
2673 nvmeq = get_nvmeq(ns->dev);
2674 put_nvmeq(nvmeq);
2675 nvme_sc = nvme_submit_sync_cmd(nvmeq, &c, NULL, NVME_IO_TIMEOUT);
2677 res = nvme_trans_status_code(hdr, nvme_sc);
2678 if (res)
2679 goto out;
2680 if (nvme_sc) {
2681 res = nvme_sc;
2682 goto out;
2685 /* Setup the expected power state transition */
2686 res = nvme_trans_power_state(ns, hdr, pc, pcmod, start);
2689 out:
2690 return res;
2693 static int nvme_trans_synchronize_cache(struct nvme_ns *ns,
2694 struct sg_io_hdr *hdr, u8 *cmd)
2696 int res = SNTI_TRANSLATION_SUCCESS;
2697 int nvme_sc;
2698 struct nvme_command c;
2699 struct nvme_queue *nvmeq;
2701 memset(&c, 0, sizeof(c));
2702 c.common.opcode = nvme_cmd_flush;
2703 c.common.nsid = cpu_to_le32(ns->ns_id);
2705 nvmeq = get_nvmeq(ns->dev);
2706 put_nvmeq(nvmeq);
2707 nvme_sc = nvme_submit_sync_cmd(nvmeq, &c, NULL, NVME_IO_TIMEOUT);
2709 res = nvme_trans_status_code(hdr, nvme_sc);
2710 if (res)
2711 goto out;
2712 if (nvme_sc)
2713 res = nvme_sc;
2715 out:
2716 return res;
2719 static int nvme_trans_format_unit(struct nvme_ns *ns, struct sg_io_hdr *hdr,
2720 u8 *cmd)
2722 int res = SNTI_TRANSLATION_SUCCESS;
2723 u8 parm_hdr_len = 0;
2724 u8 nvme_pf_code = 0;
2725 u8 format_prot_info, long_list, format_data;
2727 format_prot_info = GET_U8_FROM_CDB(cmd,
2728 FORMAT_UNIT_CDB_FORMAT_PROT_INFO_OFFSET);
2729 long_list = GET_U8_FROM_CDB(cmd, FORMAT_UNIT_CDB_LONG_LIST_OFFSET);
2730 format_data = GET_U8_FROM_CDB(cmd, FORMAT_UNIT_CDB_FORMAT_DATA_OFFSET);
2732 format_prot_info = (format_prot_info &
2733 FORMAT_UNIT_CDB_FORMAT_PROT_INFO_MASK) >>
2734 FORMAT_UNIT_CDB_FORMAT_PROT_INFO_SHIFT;
2735 long_list &= FORMAT_UNIT_CDB_LONG_LIST_MASK;
2736 format_data &= FORMAT_UNIT_CDB_FORMAT_DATA_MASK;
2738 if (format_data != 0) {
2739 if (format_prot_info != 0) {
2740 if (long_list == 0)
2741 parm_hdr_len = FORMAT_UNIT_SHORT_PARM_LIST_LEN;
2742 else
2743 parm_hdr_len = FORMAT_UNIT_LONG_PARM_LIST_LEN;
2745 } else if (format_data == 0 && format_prot_info != 0) {
2746 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
2747 ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
2748 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
2749 goto out;
2752 /* Get parm header from data-in/out buffer */
2754 * According to the translation spec, the only fields in the parameter
2755 * list we are concerned with are in the header. So allocate only that.
2757 if (parm_hdr_len > 0) {
2758 res = nvme_trans_fmt_get_parm_header(hdr, parm_hdr_len,
2759 format_prot_info, &nvme_pf_code);
2760 if (res != SNTI_TRANSLATION_SUCCESS)
2761 goto out;
2764 /* Attempt to activate any previously downloaded firmware image */
2765 res = nvme_trans_send_fw_cmd(ns, hdr, nvme_admin_activate_fw, 0, 0, 0);
2767 /* Determine Block size and count and send format command */
2768 res = nvme_trans_fmt_set_blk_size_count(ns, hdr);
2769 if (res != SNTI_TRANSLATION_SUCCESS)
2770 goto out;
2772 res = nvme_trans_fmt_send_cmd(ns, hdr, nvme_pf_code);
2774 out:
2775 return res;
2778 static int nvme_trans_test_unit_ready(struct nvme_ns *ns,
2779 struct sg_io_hdr *hdr,
2780 u8 *cmd)
2782 int res = SNTI_TRANSLATION_SUCCESS;
2783 struct nvme_dev *dev = ns->dev;
2785 if (!(readl(&dev->bar->csts) & NVME_CSTS_RDY))
2786 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
2787 NOT_READY, SCSI_ASC_LUN_NOT_READY,
2788 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
2789 else
2790 res = nvme_trans_completion(hdr, SAM_STAT_GOOD, NO_SENSE, 0, 0);
2792 return res;
2795 static int nvme_trans_write_buffer(struct nvme_ns *ns, struct sg_io_hdr *hdr,
2796 u8 *cmd)
2798 int res = SNTI_TRANSLATION_SUCCESS;
2799 u32 buffer_offset, parm_list_length;
2800 u8 buffer_id, mode;
2802 parm_list_length =
2803 GET_U24_FROM_CDB(cmd, WRITE_BUFFER_CDB_PARM_LIST_LENGTH_OFFSET);
2804 if (parm_list_length % BYTES_TO_DWORDS != 0) {
2805 /* NVMe expects Firmware file to be a whole number of DWORDS */
2806 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
2807 ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
2808 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
2809 goto out;
2811 buffer_id = GET_U8_FROM_CDB(cmd, WRITE_BUFFER_CDB_BUFFER_ID_OFFSET);
2812 if (buffer_id > NVME_MAX_FIRMWARE_SLOT) {
2813 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
2814 ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
2815 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
2816 goto out;
2818 mode = GET_U8_FROM_CDB(cmd, WRITE_BUFFER_CDB_MODE_OFFSET) &
2819 WRITE_BUFFER_CDB_MODE_MASK;
2820 buffer_offset =
2821 GET_U24_FROM_CDB(cmd, WRITE_BUFFER_CDB_BUFFER_OFFSET_OFFSET);
2823 switch (mode) {
2824 case DOWNLOAD_SAVE_ACTIVATE:
2825 res = nvme_trans_send_fw_cmd(ns, hdr, nvme_admin_download_fw,
2826 parm_list_length, buffer_offset,
2827 buffer_id);
2828 if (res != SNTI_TRANSLATION_SUCCESS)
2829 goto out;
2830 res = nvme_trans_send_fw_cmd(ns, hdr, nvme_admin_activate_fw,
2831 parm_list_length, buffer_offset,
2832 buffer_id);
2833 break;
2834 case DOWNLOAD_SAVE_DEFER_ACTIVATE:
2835 res = nvme_trans_send_fw_cmd(ns, hdr, nvme_admin_download_fw,
2836 parm_list_length, buffer_offset,
2837 buffer_id);
2838 break;
2839 case ACTIVATE_DEFERRED_MICROCODE:
2840 res = nvme_trans_send_fw_cmd(ns, hdr, nvme_admin_activate_fw,
2841 parm_list_length, buffer_offset,
2842 buffer_id);
2843 break;
2844 default:
2845 res = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
2846 ILLEGAL_REQUEST, SCSI_ASC_INVALID_CDB,
2847 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
2848 break;
2851 out:
2852 return res;
2855 struct scsi_unmap_blk_desc {
2856 __be64 slba;
2857 __be32 nlb;
2858 u32 resv;
2861 struct scsi_unmap_parm_list {
2862 __be16 unmap_data_len;
2863 __be16 unmap_blk_desc_data_len;
2864 u32 resv;
2865 struct scsi_unmap_blk_desc desc[0];
2868 static int nvme_trans_unmap(struct nvme_ns *ns, struct sg_io_hdr *hdr,
2869 u8 *cmd)
2871 struct nvme_dev *dev = ns->dev;
2872 struct scsi_unmap_parm_list *plist;
2873 struct nvme_dsm_range *range;
2874 struct nvme_queue *nvmeq;
2875 struct nvme_command c;
2876 int i, nvme_sc, res = -ENOMEM;
2877 u16 ndesc, list_len;
2878 dma_addr_t dma_addr;
2880 list_len = GET_U16_FROM_CDB(cmd, UNMAP_CDB_PARAM_LIST_LENGTH_OFFSET);
2881 if (!list_len)
2882 return -EINVAL;
2884 plist = kmalloc(list_len, GFP_KERNEL);
2885 if (!plist)
2886 return -ENOMEM;
2888 res = nvme_trans_copy_from_user(hdr, plist, list_len);
2889 if (res != SNTI_TRANSLATION_SUCCESS)
2890 goto out;
2892 ndesc = be16_to_cpu(plist->unmap_blk_desc_data_len) >> 4;
2893 if (!ndesc || ndesc > 256) {
2894 res = -EINVAL;
2895 goto out;
2898 range = dma_alloc_coherent(&dev->pci_dev->dev, ndesc * sizeof(*range),
2899 &dma_addr, GFP_KERNEL);
2900 if (!range)
2901 goto out;
2903 for (i = 0; i < ndesc; i++) {
2904 range[i].nlb = cpu_to_le32(be32_to_cpu(plist->desc[i].nlb));
2905 range[i].slba = cpu_to_le64(be64_to_cpu(plist->desc[i].slba));
2906 range[i].cattr = 0;
2909 memset(&c, 0, sizeof(c));
2910 c.dsm.opcode = nvme_cmd_dsm;
2911 c.dsm.nsid = cpu_to_le32(ns->ns_id);
2912 c.dsm.prp1 = cpu_to_le64(dma_addr);
2913 c.dsm.nr = cpu_to_le32(ndesc - 1);
2914 c.dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
2916 nvmeq = get_nvmeq(dev);
2917 put_nvmeq(nvmeq);
2919 nvme_sc = nvme_submit_sync_cmd(nvmeq, &c, NULL, NVME_IO_TIMEOUT);
2920 res = nvme_trans_status_code(hdr, nvme_sc);
2922 dma_free_coherent(&dev->pci_dev->dev, ndesc * sizeof(*range),
2923 range, dma_addr);
2924 out:
2925 kfree(plist);
2926 return res;
2929 static int nvme_scsi_translate(struct nvme_ns *ns, struct sg_io_hdr *hdr)
2931 u8 cmd[BLK_MAX_CDB];
2932 int retcode;
2933 unsigned int opcode;
2935 if (hdr->cmdp == NULL)
2936 return -EMSGSIZE;
2937 if (copy_from_user(cmd, hdr->cmdp, hdr->cmd_len))
2938 return -EFAULT;
2940 opcode = cmd[0];
2942 switch (opcode) {
2943 case READ_6:
2944 case READ_10:
2945 case READ_12:
2946 case READ_16:
2947 retcode = nvme_trans_io(ns, hdr, 0, cmd);
2948 break;
2949 case WRITE_6:
2950 case WRITE_10:
2951 case WRITE_12:
2952 case WRITE_16:
2953 retcode = nvme_trans_io(ns, hdr, 1, cmd);
2954 break;
2955 case INQUIRY:
2956 retcode = nvme_trans_inquiry(ns, hdr, cmd);
2957 break;
2958 case LOG_SENSE:
2959 retcode = nvme_trans_log_sense(ns, hdr, cmd);
2960 break;
2961 case MODE_SELECT:
2962 case MODE_SELECT_10:
2963 retcode = nvme_trans_mode_select(ns, hdr, cmd);
2964 break;
2965 case MODE_SENSE:
2966 case MODE_SENSE_10:
2967 retcode = nvme_trans_mode_sense(ns, hdr, cmd);
2968 break;
2969 case READ_CAPACITY:
2970 retcode = nvme_trans_read_capacity(ns, hdr, cmd);
2971 break;
2972 case SERVICE_ACTION_IN:
2973 if (IS_READ_CAP_16(cmd))
2974 retcode = nvme_trans_read_capacity(ns, hdr, cmd);
2975 else
2976 goto out;
2977 break;
2978 case REPORT_LUNS:
2979 retcode = nvme_trans_report_luns(ns, hdr, cmd);
2980 break;
2981 case REQUEST_SENSE:
2982 retcode = nvme_trans_request_sense(ns, hdr, cmd);
2983 break;
2984 case SECURITY_PROTOCOL_IN:
2985 case SECURITY_PROTOCOL_OUT:
2986 retcode = nvme_trans_security_protocol(ns, hdr, cmd);
2987 break;
2988 case START_STOP:
2989 retcode = nvme_trans_start_stop(ns, hdr, cmd);
2990 break;
2991 case SYNCHRONIZE_CACHE:
2992 retcode = nvme_trans_synchronize_cache(ns, hdr, cmd);
2993 break;
2994 case FORMAT_UNIT:
2995 retcode = nvme_trans_format_unit(ns, hdr, cmd);
2996 break;
2997 case TEST_UNIT_READY:
2998 retcode = nvme_trans_test_unit_ready(ns, hdr, cmd);
2999 break;
3000 case WRITE_BUFFER:
3001 retcode = nvme_trans_write_buffer(ns, hdr, cmd);
3002 break;
3003 case UNMAP:
3004 retcode = nvme_trans_unmap(ns, hdr, cmd);
3005 break;
3006 default:
3007 out:
3008 retcode = nvme_trans_completion(hdr, SAM_STAT_CHECK_CONDITION,
3009 ILLEGAL_REQUEST, SCSI_ASC_ILLEGAL_COMMAND,
3010 SCSI_ASCQ_CAUSE_NOT_REPORTABLE);
3011 break;
3013 return retcode;
3016 int nvme_sg_io(struct nvme_ns *ns, struct sg_io_hdr __user *u_hdr)
3018 struct sg_io_hdr hdr;
3019 int retcode;
3021 if (!capable(CAP_SYS_ADMIN))
3022 return -EACCES;
3023 if (copy_from_user(&hdr, u_hdr, sizeof(hdr)))
3024 return -EFAULT;
3025 if (hdr.interface_id != 'S')
3026 return -EINVAL;
3027 if (hdr.cmd_len > BLK_MAX_CDB)
3028 return -EINVAL;
3030 retcode = nvme_scsi_translate(ns, &hdr);
3031 if (retcode < 0)
3032 return retcode;
3033 if (retcode > 0)
3034 retcode = SNTI_TRANSLATION_SUCCESS;
3035 if (copy_to_user(u_hdr, &hdr, sizeof(sg_io_hdr_t)) > 0)
3036 return -EFAULT;
3038 return retcode;
3041 int nvme_sg_get_version_num(int __user *ip)
3043 return put_user(sg_version_num, ip);