mfd: wm8350-i2c: Make sure the i2c regmap functions are compiled
[linux/fpc-iii.git] / drivers / block / pktcdvd.c
blob56188475cfd3e23f9fece3039deee7f721b8a2cf
1 /*
2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
6 * May be copied or modified under the terms of the GNU General Public
7 * License. See linux/COPYING for more information.
9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
10 * DVD-RAM devices.
12 * Theory of operation:
14 * At the lowest level, there is the standard driver for the CD/DVD device,
15 * typically ide-cd.c or sr.c. This driver can handle read and write requests,
16 * but it doesn't know anything about the special restrictions that apply to
17 * packet writing. One restriction is that write requests must be aligned to
18 * packet boundaries on the physical media, and the size of a write request
19 * must be equal to the packet size. Another restriction is that a
20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21 * command, if the previous command was a write.
23 * The purpose of the packet writing driver is to hide these restrictions from
24 * higher layers, such as file systems, and present a block device that can be
25 * randomly read and written using 2kB-sized blocks.
27 * The lowest layer in the packet writing driver is the packet I/O scheduler.
28 * Its data is defined by the struct packet_iosched and includes two bio
29 * queues with pending read and write requests. These queues are processed
30 * by the pkt_iosched_process_queue() function. The write requests in this
31 * queue are already properly aligned and sized. This layer is responsible for
32 * issuing the flush cache commands and scheduling the I/O in a good order.
34 * The next layer transforms unaligned write requests to aligned writes. This
35 * transformation requires reading missing pieces of data from the underlying
36 * block device, assembling the pieces to full packets and queuing them to the
37 * packet I/O scheduler.
39 * At the top layer there is a custom make_request_fn function that forwards
40 * read requests directly to the iosched queue and puts write requests in the
41 * unaligned write queue. A kernel thread performs the necessary read
42 * gathering to convert the unaligned writes to aligned writes and then feeds
43 * them to the packet I/O scheduler.
45 *************************************************************************/
47 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49 #include <linux/pktcdvd.h>
50 #include <linux/module.h>
51 #include <linux/types.h>
52 #include <linux/kernel.h>
53 #include <linux/compat.h>
54 #include <linux/kthread.h>
55 #include <linux/errno.h>
56 #include <linux/spinlock.h>
57 #include <linux/file.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/miscdevice.h>
61 #include <linux/freezer.h>
62 #include <linux/mutex.h>
63 #include <linux/slab.h>
64 #include <scsi/scsi_cmnd.h>
65 #include <scsi/scsi_ioctl.h>
66 #include <scsi/scsi.h>
67 #include <linux/debugfs.h>
68 #include <linux/device.h>
70 #include <asm/uaccess.h>
72 #define DRIVER_NAME "pktcdvd"
74 #define pkt_err(pd, fmt, ...) \
75 pr_err("%s: " fmt, pd->name, ##__VA_ARGS__)
76 #define pkt_notice(pd, fmt, ...) \
77 pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__)
78 #define pkt_info(pd, fmt, ...) \
79 pr_info("%s: " fmt, pd->name, ##__VA_ARGS__)
81 #define pkt_dbg(level, pd, fmt, ...) \
82 do { \
83 if (level == 2 && PACKET_DEBUG >= 2) \
84 pr_notice("%s: %s():" fmt, \
85 pd->name, __func__, ##__VA_ARGS__); \
86 else if (level == 1 && PACKET_DEBUG >= 1) \
87 pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__); \
88 } while (0)
90 #define MAX_SPEED 0xffff
92 static DEFINE_MUTEX(pktcdvd_mutex);
93 static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
94 static struct proc_dir_entry *pkt_proc;
95 static int pktdev_major;
96 static int write_congestion_on = PKT_WRITE_CONGESTION_ON;
97 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
98 static struct mutex ctl_mutex; /* Serialize open/close/setup/teardown */
99 static mempool_t *psd_pool;
101 static struct class *class_pktcdvd = NULL; /* /sys/class/pktcdvd */
102 static struct dentry *pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */
104 /* forward declaration */
105 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
106 static int pkt_remove_dev(dev_t pkt_dev);
107 static int pkt_seq_show(struct seq_file *m, void *p);
109 static sector_t get_zone(sector_t sector, struct pktcdvd_device *pd)
111 return (sector + pd->offset) & ~(sector_t)(pd->settings.size - 1);
115 * create and register a pktcdvd kernel object.
117 static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd,
118 const char* name,
119 struct kobject* parent,
120 struct kobj_type* ktype)
122 struct pktcdvd_kobj *p;
123 int error;
125 p = kzalloc(sizeof(*p), GFP_KERNEL);
126 if (!p)
127 return NULL;
128 p->pd = pd;
129 error = kobject_init_and_add(&p->kobj, ktype, parent, "%s", name);
130 if (error) {
131 kobject_put(&p->kobj);
132 return NULL;
134 kobject_uevent(&p->kobj, KOBJ_ADD);
135 return p;
138 * remove a pktcdvd kernel object.
140 static void pkt_kobj_remove(struct pktcdvd_kobj *p)
142 if (p)
143 kobject_put(&p->kobj);
146 * default release function for pktcdvd kernel objects.
148 static void pkt_kobj_release(struct kobject *kobj)
150 kfree(to_pktcdvdkobj(kobj));
154 /**********************************************************
156 * sysfs interface for pktcdvd
157 * by (C) 2006 Thomas Maier <balagi@justmail.de>
159 **********************************************************/
161 #define DEF_ATTR(_obj,_name,_mode) \
162 static struct attribute _obj = { .name = _name, .mode = _mode }
164 /**********************************************************
165 /sys/class/pktcdvd/pktcdvd[0-7]/
166 stat/reset
167 stat/packets_started
168 stat/packets_finished
169 stat/kb_written
170 stat/kb_read
171 stat/kb_read_gather
172 write_queue/size
173 write_queue/congestion_off
174 write_queue/congestion_on
175 **********************************************************/
177 DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200);
178 DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444);
179 DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444);
180 DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444);
181 DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444);
182 DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444);
184 static struct attribute *kobj_pkt_attrs_stat[] = {
185 &kobj_pkt_attr_st1,
186 &kobj_pkt_attr_st2,
187 &kobj_pkt_attr_st3,
188 &kobj_pkt_attr_st4,
189 &kobj_pkt_attr_st5,
190 &kobj_pkt_attr_st6,
191 NULL
194 DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444);
195 DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644);
196 DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on", 0644);
198 static struct attribute *kobj_pkt_attrs_wqueue[] = {
199 &kobj_pkt_attr_wq1,
200 &kobj_pkt_attr_wq2,
201 &kobj_pkt_attr_wq3,
202 NULL
205 static ssize_t kobj_pkt_show(struct kobject *kobj,
206 struct attribute *attr, char *data)
208 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
209 int n = 0;
210 int v;
211 if (strcmp(attr->name, "packets_started") == 0) {
212 n = sprintf(data, "%lu\n", pd->stats.pkt_started);
214 } else if (strcmp(attr->name, "packets_finished") == 0) {
215 n = sprintf(data, "%lu\n", pd->stats.pkt_ended);
217 } else if (strcmp(attr->name, "kb_written") == 0) {
218 n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1);
220 } else if (strcmp(attr->name, "kb_read") == 0) {
221 n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1);
223 } else if (strcmp(attr->name, "kb_read_gather") == 0) {
224 n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1);
226 } else if (strcmp(attr->name, "size") == 0) {
227 spin_lock(&pd->lock);
228 v = pd->bio_queue_size;
229 spin_unlock(&pd->lock);
230 n = sprintf(data, "%d\n", v);
232 } else if (strcmp(attr->name, "congestion_off") == 0) {
233 spin_lock(&pd->lock);
234 v = pd->write_congestion_off;
235 spin_unlock(&pd->lock);
236 n = sprintf(data, "%d\n", v);
238 } else if (strcmp(attr->name, "congestion_on") == 0) {
239 spin_lock(&pd->lock);
240 v = pd->write_congestion_on;
241 spin_unlock(&pd->lock);
242 n = sprintf(data, "%d\n", v);
244 return n;
247 static void init_write_congestion_marks(int* lo, int* hi)
249 if (*hi > 0) {
250 *hi = max(*hi, 500);
251 *hi = min(*hi, 1000000);
252 if (*lo <= 0)
253 *lo = *hi - 100;
254 else {
255 *lo = min(*lo, *hi - 100);
256 *lo = max(*lo, 100);
258 } else {
259 *hi = -1;
260 *lo = -1;
264 static ssize_t kobj_pkt_store(struct kobject *kobj,
265 struct attribute *attr,
266 const char *data, size_t len)
268 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
269 int val;
271 if (strcmp(attr->name, "reset") == 0 && len > 0) {
272 pd->stats.pkt_started = 0;
273 pd->stats.pkt_ended = 0;
274 pd->stats.secs_w = 0;
275 pd->stats.secs_rg = 0;
276 pd->stats.secs_r = 0;
278 } else if (strcmp(attr->name, "congestion_off") == 0
279 && sscanf(data, "%d", &val) == 1) {
280 spin_lock(&pd->lock);
281 pd->write_congestion_off = val;
282 init_write_congestion_marks(&pd->write_congestion_off,
283 &pd->write_congestion_on);
284 spin_unlock(&pd->lock);
286 } else if (strcmp(attr->name, "congestion_on") == 0
287 && sscanf(data, "%d", &val) == 1) {
288 spin_lock(&pd->lock);
289 pd->write_congestion_on = val;
290 init_write_congestion_marks(&pd->write_congestion_off,
291 &pd->write_congestion_on);
292 spin_unlock(&pd->lock);
294 return len;
297 static const struct sysfs_ops kobj_pkt_ops = {
298 .show = kobj_pkt_show,
299 .store = kobj_pkt_store
301 static struct kobj_type kobj_pkt_type_stat = {
302 .release = pkt_kobj_release,
303 .sysfs_ops = &kobj_pkt_ops,
304 .default_attrs = kobj_pkt_attrs_stat
306 static struct kobj_type kobj_pkt_type_wqueue = {
307 .release = pkt_kobj_release,
308 .sysfs_ops = &kobj_pkt_ops,
309 .default_attrs = kobj_pkt_attrs_wqueue
312 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
314 if (class_pktcdvd) {
315 pd->dev = device_create(class_pktcdvd, NULL, MKDEV(0, 0), NULL,
316 "%s", pd->name);
317 if (IS_ERR(pd->dev))
318 pd->dev = NULL;
320 if (pd->dev) {
321 pd->kobj_stat = pkt_kobj_create(pd, "stat",
322 &pd->dev->kobj,
323 &kobj_pkt_type_stat);
324 pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue",
325 &pd->dev->kobj,
326 &kobj_pkt_type_wqueue);
330 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
332 pkt_kobj_remove(pd->kobj_stat);
333 pkt_kobj_remove(pd->kobj_wqueue);
334 if (class_pktcdvd)
335 device_unregister(pd->dev);
339 /********************************************************************
340 /sys/class/pktcdvd/
341 add map block device
342 remove unmap packet dev
343 device_map show mappings
344 *******************************************************************/
346 static void class_pktcdvd_release(struct class *cls)
348 kfree(cls);
350 static ssize_t class_pktcdvd_show_map(struct class *c,
351 struct class_attribute *attr,
352 char *data)
354 int n = 0;
355 int idx;
356 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
357 for (idx = 0; idx < MAX_WRITERS; idx++) {
358 struct pktcdvd_device *pd = pkt_devs[idx];
359 if (!pd)
360 continue;
361 n += sprintf(data+n, "%s %u:%u %u:%u\n",
362 pd->name,
363 MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
364 MAJOR(pd->bdev->bd_dev),
365 MINOR(pd->bdev->bd_dev));
367 mutex_unlock(&ctl_mutex);
368 return n;
371 static ssize_t class_pktcdvd_store_add(struct class *c,
372 struct class_attribute *attr,
373 const char *buf,
374 size_t count)
376 unsigned int major, minor;
378 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
379 /* pkt_setup_dev() expects caller to hold reference to self */
380 if (!try_module_get(THIS_MODULE))
381 return -ENODEV;
383 pkt_setup_dev(MKDEV(major, minor), NULL);
385 module_put(THIS_MODULE);
387 return count;
390 return -EINVAL;
393 static ssize_t class_pktcdvd_store_remove(struct class *c,
394 struct class_attribute *attr,
395 const char *buf,
396 size_t count)
398 unsigned int major, minor;
399 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
400 pkt_remove_dev(MKDEV(major, minor));
401 return count;
403 return -EINVAL;
406 static struct class_attribute class_pktcdvd_attrs[] = {
407 __ATTR(add, 0200, NULL, class_pktcdvd_store_add),
408 __ATTR(remove, 0200, NULL, class_pktcdvd_store_remove),
409 __ATTR(device_map, 0444, class_pktcdvd_show_map, NULL),
410 __ATTR_NULL
414 static int pkt_sysfs_init(void)
416 int ret = 0;
419 * create control files in sysfs
420 * /sys/class/pktcdvd/...
422 class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL);
423 if (!class_pktcdvd)
424 return -ENOMEM;
425 class_pktcdvd->name = DRIVER_NAME;
426 class_pktcdvd->owner = THIS_MODULE;
427 class_pktcdvd->class_release = class_pktcdvd_release;
428 class_pktcdvd->class_attrs = class_pktcdvd_attrs;
429 ret = class_register(class_pktcdvd);
430 if (ret) {
431 kfree(class_pktcdvd);
432 class_pktcdvd = NULL;
433 pr_err("failed to create class pktcdvd\n");
434 return ret;
436 return 0;
439 static void pkt_sysfs_cleanup(void)
441 if (class_pktcdvd)
442 class_destroy(class_pktcdvd);
443 class_pktcdvd = NULL;
446 /********************************************************************
447 entries in debugfs
449 /sys/kernel/debug/pktcdvd[0-7]/
450 info
452 *******************************************************************/
454 static int pkt_debugfs_seq_show(struct seq_file *m, void *p)
456 return pkt_seq_show(m, p);
459 static int pkt_debugfs_fops_open(struct inode *inode, struct file *file)
461 return single_open(file, pkt_debugfs_seq_show, inode->i_private);
464 static const struct file_operations debug_fops = {
465 .open = pkt_debugfs_fops_open,
466 .read = seq_read,
467 .llseek = seq_lseek,
468 .release = single_release,
469 .owner = THIS_MODULE,
472 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
474 if (!pkt_debugfs_root)
475 return;
476 pd->dfs_f_info = NULL;
477 pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root);
478 if (IS_ERR(pd->dfs_d_root)) {
479 pd->dfs_d_root = NULL;
480 return;
482 pd->dfs_f_info = debugfs_create_file("info", S_IRUGO,
483 pd->dfs_d_root, pd, &debug_fops);
484 if (IS_ERR(pd->dfs_f_info)) {
485 pd->dfs_f_info = NULL;
486 return;
490 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
492 if (!pkt_debugfs_root)
493 return;
494 if (pd->dfs_f_info)
495 debugfs_remove(pd->dfs_f_info);
496 pd->dfs_f_info = NULL;
497 if (pd->dfs_d_root)
498 debugfs_remove(pd->dfs_d_root);
499 pd->dfs_d_root = NULL;
502 static void pkt_debugfs_init(void)
504 pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
505 if (IS_ERR(pkt_debugfs_root)) {
506 pkt_debugfs_root = NULL;
507 return;
511 static void pkt_debugfs_cleanup(void)
513 if (!pkt_debugfs_root)
514 return;
515 debugfs_remove(pkt_debugfs_root);
516 pkt_debugfs_root = NULL;
519 /* ----------------------------------------------------------*/
522 static void pkt_bio_finished(struct pktcdvd_device *pd)
524 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
525 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
526 pkt_dbg(2, pd, "queue empty\n");
527 atomic_set(&pd->iosched.attention, 1);
528 wake_up(&pd->wqueue);
533 * Allocate a packet_data struct
535 static struct packet_data *pkt_alloc_packet_data(int frames)
537 int i;
538 struct packet_data *pkt;
540 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
541 if (!pkt)
542 goto no_pkt;
544 pkt->frames = frames;
545 pkt->w_bio = bio_kmalloc(GFP_KERNEL, frames);
546 if (!pkt->w_bio)
547 goto no_bio;
549 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
550 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
551 if (!pkt->pages[i])
552 goto no_page;
555 spin_lock_init(&pkt->lock);
556 bio_list_init(&pkt->orig_bios);
558 for (i = 0; i < frames; i++) {
559 struct bio *bio = bio_kmalloc(GFP_KERNEL, 1);
560 if (!bio)
561 goto no_rd_bio;
563 pkt->r_bios[i] = bio;
566 return pkt;
568 no_rd_bio:
569 for (i = 0; i < frames; i++) {
570 struct bio *bio = pkt->r_bios[i];
571 if (bio)
572 bio_put(bio);
575 no_page:
576 for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
577 if (pkt->pages[i])
578 __free_page(pkt->pages[i]);
579 bio_put(pkt->w_bio);
580 no_bio:
581 kfree(pkt);
582 no_pkt:
583 return NULL;
587 * Free a packet_data struct
589 static void pkt_free_packet_data(struct packet_data *pkt)
591 int i;
593 for (i = 0; i < pkt->frames; i++) {
594 struct bio *bio = pkt->r_bios[i];
595 if (bio)
596 bio_put(bio);
598 for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
599 __free_page(pkt->pages[i]);
600 bio_put(pkt->w_bio);
601 kfree(pkt);
604 static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
606 struct packet_data *pkt, *next;
608 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
610 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
611 pkt_free_packet_data(pkt);
613 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
616 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
618 struct packet_data *pkt;
620 BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
622 while (nr_packets > 0) {
623 pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
624 if (!pkt) {
625 pkt_shrink_pktlist(pd);
626 return 0;
628 pkt->id = nr_packets;
629 pkt->pd = pd;
630 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
631 nr_packets--;
633 return 1;
636 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
638 struct rb_node *n = rb_next(&node->rb_node);
639 if (!n)
640 return NULL;
641 return rb_entry(n, struct pkt_rb_node, rb_node);
644 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
646 rb_erase(&node->rb_node, &pd->bio_queue);
647 mempool_free(node, pd->rb_pool);
648 pd->bio_queue_size--;
649 BUG_ON(pd->bio_queue_size < 0);
653 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
655 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
657 struct rb_node *n = pd->bio_queue.rb_node;
658 struct rb_node *next;
659 struct pkt_rb_node *tmp;
661 if (!n) {
662 BUG_ON(pd->bio_queue_size > 0);
663 return NULL;
666 for (;;) {
667 tmp = rb_entry(n, struct pkt_rb_node, rb_node);
668 if (s <= tmp->bio->bi_sector)
669 next = n->rb_left;
670 else
671 next = n->rb_right;
672 if (!next)
673 break;
674 n = next;
677 if (s > tmp->bio->bi_sector) {
678 tmp = pkt_rbtree_next(tmp);
679 if (!tmp)
680 return NULL;
682 BUG_ON(s > tmp->bio->bi_sector);
683 return tmp;
687 * Insert a node into the pd->bio_queue rb tree.
689 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
691 struct rb_node **p = &pd->bio_queue.rb_node;
692 struct rb_node *parent = NULL;
693 sector_t s = node->bio->bi_sector;
694 struct pkt_rb_node *tmp;
696 while (*p) {
697 parent = *p;
698 tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
699 if (s < tmp->bio->bi_sector)
700 p = &(*p)->rb_left;
701 else
702 p = &(*p)->rb_right;
704 rb_link_node(&node->rb_node, parent, p);
705 rb_insert_color(&node->rb_node, &pd->bio_queue);
706 pd->bio_queue_size++;
710 * Send a packet_command to the underlying block device and
711 * wait for completion.
713 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
715 struct request_queue *q = bdev_get_queue(pd->bdev);
716 struct request *rq;
717 int ret = 0;
719 rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
720 WRITE : READ, __GFP_WAIT);
722 if (cgc->buflen) {
723 if (blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen, __GFP_WAIT))
724 goto out;
727 rq->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
728 memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE);
730 rq->timeout = 60*HZ;
731 rq->cmd_type = REQ_TYPE_BLOCK_PC;
732 if (cgc->quiet)
733 rq->cmd_flags |= REQ_QUIET;
735 blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0);
736 if (rq->errors)
737 ret = -EIO;
738 out:
739 blk_put_request(rq);
740 return ret;
743 static const char *sense_key_string(__u8 index)
745 static const char * const info[] = {
746 "No sense", "Recovered error", "Not ready",
747 "Medium error", "Hardware error", "Illegal request",
748 "Unit attention", "Data protect", "Blank check",
751 return index < ARRAY_SIZE(info) ? info[index] : "INVALID";
755 * A generic sense dump / resolve mechanism should be implemented across
756 * all ATAPI + SCSI devices.
758 static void pkt_dump_sense(struct pktcdvd_device *pd,
759 struct packet_command *cgc)
761 struct request_sense *sense = cgc->sense;
763 if (sense)
764 pkt_err(pd, "%*ph - sense %02x.%02x.%02x (%s)\n",
765 CDROM_PACKET_SIZE, cgc->cmd,
766 sense->sense_key, sense->asc, sense->ascq,
767 sense_key_string(sense->sense_key));
768 else
769 pkt_err(pd, "%*ph - no sense\n", CDROM_PACKET_SIZE, cgc->cmd);
773 * flush the drive cache to media
775 static int pkt_flush_cache(struct pktcdvd_device *pd)
777 struct packet_command cgc;
779 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
780 cgc.cmd[0] = GPCMD_FLUSH_CACHE;
781 cgc.quiet = 1;
784 * the IMMED bit -- we default to not setting it, although that
785 * would allow a much faster close, this is safer
787 #if 0
788 cgc.cmd[1] = 1 << 1;
789 #endif
790 return pkt_generic_packet(pd, &cgc);
794 * speed is given as the normal factor, e.g. 4 for 4x
796 static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd,
797 unsigned write_speed, unsigned read_speed)
799 struct packet_command cgc;
800 struct request_sense sense;
801 int ret;
803 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
804 cgc.sense = &sense;
805 cgc.cmd[0] = GPCMD_SET_SPEED;
806 cgc.cmd[2] = (read_speed >> 8) & 0xff;
807 cgc.cmd[3] = read_speed & 0xff;
808 cgc.cmd[4] = (write_speed >> 8) & 0xff;
809 cgc.cmd[5] = write_speed & 0xff;
811 if ((ret = pkt_generic_packet(pd, &cgc)))
812 pkt_dump_sense(pd, &cgc);
814 return ret;
818 * Queue a bio for processing by the low-level CD device. Must be called
819 * from process context.
821 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
823 spin_lock(&pd->iosched.lock);
824 if (bio_data_dir(bio) == READ)
825 bio_list_add(&pd->iosched.read_queue, bio);
826 else
827 bio_list_add(&pd->iosched.write_queue, bio);
828 spin_unlock(&pd->iosched.lock);
830 atomic_set(&pd->iosched.attention, 1);
831 wake_up(&pd->wqueue);
835 * Process the queued read/write requests. This function handles special
836 * requirements for CDRW drives:
837 * - A cache flush command must be inserted before a read request if the
838 * previous request was a write.
839 * - Switching between reading and writing is slow, so don't do it more often
840 * than necessary.
841 * - Optimize for throughput at the expense of latency. This means that streaming
842 * writes will never be interrupted by a read, but if the drive has to seek
843 * before the next write, switch to reading instead if there are any pending
844 * read requests.
845 * - Set the read speed according to current usage pattern. When only reading
846 * from the device, it's best to use the highest possible read speed, but
847 * when switching often between reading and writing, it's better to have the
848 * same read and write speeds.
850 static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
853 if (atomic_read(&pd->iosched.attention) == 0)
854 return;
855 atomic_set(&pd->iosched.attention, 0);
857 for (;;) {
858 struct bio *bio;
859 int reads_queued, writes_queued;
861 spin_lock(&pd->iosched.lock);
862 reads_queued = !bio_list_empty(&pd->iosched.read_queue);
863 writes_queued = !bio_list_empty(&pd->iosched.write_queue);
864 spin_unlock(&pd->iosched.lock);
866 if (!reads_queued && !writes_queued)
867 break;
869 if (pd->iosched.writing) {
870 int need_write_seek = 1;
871 spin_lock(&pd->iosched.lock);
872 bio = bio_list_peek(&pd->iosched.write_queue);
873 spin_unlock(&pd->iosched.lock);
874 if (bio && (bio->bi_sector == pd->iosched.last_write))
875 need_write_seek = 0;
876 if (need_write_seek && reads_queued) {
877 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
878 pkt_dbg(2, pd, "write, waiting\n");
879 break;
881 pkt_flush_cache(pd);
882 pd->iosched.writing = 0;
884 } else {
885 if (!reads_queued && writes_queued) {
886 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
887 pkt_dbg(2, pd, "read, waiting\n");
888 break;
890 pd->iosched.writing = 1;
894 spin_lock(&pd->iosched.lock);
895 if (pd->iosched.writing)
896 bio = bio_list_pop(&pd->iosched.write_queue);
897 else
898 bio = bio_list_pop(&pd->iosched.read_queue);
899 spin_unlock(&pd->iosched.lock);
901 if (!bio)
902 continue;
904 if (bio_data_dir(bio) == READ)
905 pd->iosched.successive_reads += bio->bi_size >> 10;
906 else {
907 pd->iosched.successive_reads = 0;
908 pd->iosched.last_write = bio_end_sector(bio);
910 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
911 if (pd->read_speed == pd->write_speed) {
912 pd->read_speed = MAX_SPEED;
913 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
915 } else {
916 if (pd->read_speed != pd->write_speed) {
917 pd->read_speed = pd->write_speed;
918 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
922 atomic_inc(&pd->cdrw.pending_bios);
923 generic_make_request(bio);
928 * Special care is needed if the underlying block device has a small
929 * max_phys_segments value.
931 static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
933 if ((pd->settings.size << 9) / CD_FRAMESIZE
934 <= queue_max_segments(q)) {
936 * The cdrom device can handle one segment/frame
938 clear_bit(PACKET_MERGE_SEGS, &pd->flags);
939 return 0;
940 } else if ((pd->settings.size << 9) / PAGE_SIZE
941 <= queue_max_segments(q)) {
943 * We can handle this case at the expense of some extra memory
944 * copies during write operations
946 set_bit(PACKET_MERGE_SEGS, &pd->flags);
947 return 0;
948 } else {
949 pkt_err(pd, "cdrom max_phys_segments too small\n");
950 return -EIO;
955 * Copy all data for this packet to pkt->pages[], so that
956 * a) The number of required segments for the write bio is minimized, which
957 * is necessary for some scsi controllers.
958 * b) The data can be used as cache to avoid read requests if we receive a
959 * new write request for the same zone.
961 static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec)
963 int f, p, offs;
965 /* Copy all data to pkt->pages[] */
966 p = 0;
967 offs = 0;
968 for (f = 0; f < pkt->frames; f++) {
969 if (bvec[f].bv_page != pkt->pages[p]) {
970 void *vfrom = kmap_atomic(bvec[f].bv_page) + bvec[f].bv_offset;
971 void *vto = page_address(pkt->pages[p]) + offs;
972 memcpy(vto, vfrom, CD_FRAMESIZE);
973 kunmap_atomic(vfrom);
974 bvec[f].bv_page = pkt->pages[p];
975 bvec[f].bv_offset = offs;
976 } else {
977 BUG_ON(bvec[f].bv_offset != offs);
979 offs += CD_FRAMESIZE;
980 if (offs >= PAGE_SIZE) {
981 offs = 0;
982 p++;
987 static void pkt_end_io_read(struct bio *bio, int err)
989 struct packet_data *pkt = bio->bi_private;
990 struct pktcdvd_device *pd = pkt->pd;
991 BUG_ON(!pd);
993 pkt_dbg(2, pd, "bio=%p sec0=%llx sec=%llx err=%d\n",
994 bio, (unsigned long long)pkt->sector,
995 (unsigned long long)bio->bi_sector, err);
997 if (err)
998 atomic_inc(&pkt->io_errors);
999 if (atomic_dec_and_test(&pkt->io_wait)) {
1000 atomic_inc(&pkt->run_sm);
1001 wake_up(&pd->wqueue);
1003 pkt_bio_finished(pd);
1006 static void pkt_end_io_packet_write(struct bio *bio, int err)
1008 struct packet_data *pkt = bio->bi_private;
1009 struct pktcdvd_device *pd = pkt->pd;
1010 BUG_ON(!pd);
1012 pkt_dbg(2, pd, "id=%d, err=%d\n", pkt->id, err);
1014 pd->stats.pkt_ended++;
1016 pkt_bio_finished(pd);
1017 atomic_dec(&pkt->io_wait);
1018 atomic_inc(&pkt->run_sm);
1019 wake_up(&pd->wqueue);
1023 * Schedule reads for the holes in a packet
1025 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1027 int frames_read = 0;
1028 struct bio *bio;
1029 int f;
1030 char written[PACKET_MAX_SIZE];
1032 BUG_ON(bio_list_empty(&pkt->orig_bios));
1034 atomic_set(&pkt->io_wait, 0);
1035 atomic_set(&pkt->io_errors, 0);
1038 * Figure out which frames we need to read before we can write.
1040 memset(written, 0, sizeof(written));
1041 spin_lock(&pkt->lock);
1042 bio_list_for_each(bio, &pkt->orig_bios) {
1043 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1044 int num_frames = bio->bi_size / CD_FRAMESIZE;
1045 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1046 BUG_ON(first_frame < 0);
1047 BUG_ON(first_frame + num_frames > pkt->frames);
1048 for (f = first_frame; f < first_frame + num_frames; f++)
1049 written[f] = 1;
1051 spin_unlock(&pkt->lock);
1053 if (pkt->cache_valid) {
1054 pkt_dbg(2, pd, "zone %llx cached\n",
1055 (unsigned long long)pkt->sector);
1056 goto out_account;
1060 * Schedule reads for missing parts of the packet.
1062 for (f = 0; f < pkt->frames; f++) {
1063 int p, offset;
1065 if (written[f])
1066 continue;
1068 bio = pkt->r_bios[f];
1069 bio_reset(bio);
1070 bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1071 bio->bi_bdev = pd->bdev;
1072 bio->bi_end_io = pkt_end_io_read;
1073 bio->bi_private = pkt;
1075 p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1076 offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1077 pkt_dbg(2, pd, "Adding frame %d, page:%p offs:%d\n",
1078 f, pkt->pages[p], offset);
1079 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1080 BUG();
1082 atomic_inc(&pkt->io_wait);
1083 bio->bi_rw = READ;
1084 pkt_queue_bio(pd, bio);
1085 frames_read++;
1088 out_account:
1089 pkt_dbg(2, pd, "need %d frames for zone %llx\n",
1090 frames_read, (unsigned long long)pkt->sector);
1091 pd->stats.pkt_started++;
1092 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1096 * Find a packet matching zone, or the least recently used packet if
1097 * there is no match.
1099 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1101 struct packet_data *pkt;
1103 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1104 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1105 list_del_init(&pkt->list);
1106 if (pkt->sector != zone)
1107 pkt->cache_valid = 0;
1108 return pkt;
1111 BUG();
1112 return NULL;
1115 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1117 if (pkt->cache_valid) {
1118 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1119 } else {
1120 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1125 * recover a failed write, query for relocation if possible
1127 * returns 1 if recovery is possible, or 0 if not
1130 static int pkt_start_recovery(struct packet_data *pkt)
1133 * FIXME. We need help from the file system to implement
1134 * recovery handling.
1136 return 0;
1137 #if 0
1138 struct request *rq = pkt->rq;
1139 struct pktcdvd_device *pd = rq->rq_disk->private_data;
1140 struct block_device *pkt_bdev;
1141 struct super_block *sb = NULL;
1142 unsigned long old_block, new_block;
1143 sector_t new_sector;
1145 pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
1146 if (pkt_bdev) {
1147 sb = get_super(pkt_bdev);
1148 bdput(pkt_bdev);
1151 if (!sb)
1152 return 0;
1154 if (!sb->s_op->relocate_blocks)
1155 goto out;
1157 old_block = pkt->sector / (CD_FRAMESIZE >> 9);
1158 if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
1159 goto out;
1161 new_sector = new_block * (CD_FRAMESIZE >> 9);
1162 pkt->sector = new_sector;
1164 bio_reset(pkt->bio);
1165 pkt->bio->bi_bdev = pd->bdev;
1166 pkt->bio->bi_rw = REQ_WRITE;
1167 pkt->bio->bi_sector = new_sector;
1168 pkt->bio->bi_size = pkt->frames * CD_FRAMESIZE;
1169 pkt->bio->bi_vcnt = pkt->frames;
1171 pkt->bio->bi_end_io = pkt_end_io_packet_write;
1172 pkt->bio->bi_private = pkt;
1174 drop_super(sb);
1175 return 1;
1177 out:
1178 drop_super(sb);
1179 return 0;
1180 #endif
1183 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
1185 #if PACKET_DEBUG > 1
1186 static const char *state_name[] = {
1187 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1189 enum packet_data_state old_state = pkt->state;
1190 pkt_dbg(2, pd, "pkt %2d : s=%6llx %s -> %s\n",
1191 pkt->id, (unsigned long long)pkt->sector,
1192 state_name[old_state], state_name[state]);
1193 #endif
1194 pkt->state = state;
1198 * Scan the work queue to see if we can start a new packet.
1199 * returns non-zero if any work was done.
1201 static int pkt_handle_queue(struct pktcdvd_device *pd)
1203 struct packet_data *pkt, *p;
1204 struct bio *bio = NULL;
1205 sector_t zone = 0; /* Suppress gcc warning */
1206 struct pkt_rb_node *node, *first_node;
1207 struct rb_node *n;
1208 int wakeup;
1210 atomic_set(&pd->scan_queue, 0);
1212 if (list_empty(&pd->cdrw.pkt_free_list)) {
1213 pkt_dbg(2, pd, "no pkt\n");
1214 return 0;
1218 * Try to find a zone we are not already working on.
1220 spin_lock(&pd->lock);
1221 first_node = pkt_rbtree_find(pd, pd->current_sector);
1222 if (!first_node) {
1223 n = rb_first(&pd->bio_queue);
1224 if (n)
1225 first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1227 node = first_node;
1228 while (node) {
1229 bio = node->bio;
1230 zone = get_zone(bio->bi_sector, pd);
1231 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1232 if (p->sector == zone) {
1233 bio = NULL;
1234 goto try_next_bio;
1237 break;
1238 try_next_bio:
1239 node = pkt_rbtree_next(node);
1240 if (!node) {
1241 n = rb_first(&pd->bio_queue);
1242 if (n)
1243 node = rb_entry(n, struct pkt_rb_node, rb_node);
1245 if (node == first_node)
1246 node = NULL;
1248 spin_unlock(&pd->lock);
1249 if (!bio) {
1250 pkt_dbg(2, pd, "no bio\n");
1251 return 0;
1254 pkt = pkt_get_packet_data(pd, zone);
1256 pd->current_sector = zone + pd->settings.size;
1257 pkt->sector = zone;
1258 BUG_ON(pkt->frames != pd->settings.size >> 2);
1259 pkt->write_size = 0;
1262 * Scan work queue for bios in the same zone and link them
1263 * to this packet.
1265 spin_lock(&pd->lock);
1266 pkt_dbg(2, pd, "looking for zone %llx\n", (unsigned long long)zone);
1267 while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1268 bio = node->bio;
1269 pkt_dbg(2, pd, "found zone=%llx\n",
1270 (unsigned long long)get_zone(bio->bi_sector, pd));
1271 if (get_zone(bio->bi_sector, pd) != zone)
1272 break;
1273 pkt_rbtree_erase(pd, node);
1274 spin_lock(&pkt->lock);
1275 bio_list_add(&pkt->orig_bios, bio);
1276 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
1277 spin_unlock(&pkt->lock);
1279 /* check write congestion marks, and if bio_queue_size is
1280 below, wake up any waiters */
1281 wakeup = (pd->write_congestion_on > 0
1282 && pd->bio_queue_size <= pd->write_congestion_off);
1283 spin_unlock(&pd->lock);
1284 if (wakeup) {
1285 clear_bdi_congested(&pd->disk->queue->backing_dev_info,
1286 BLK_RW_ASYNC);
1289 pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1290 pkt_set_state(pkt, PACKET_WAITING_STATE);
1291 atomic_set(&pkt->run_sm, 1);
1293 spin_lock(&pd->cdrw.active_list_lock);
1294 list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1295 spin_unlock(&pd->cdrw.active_list_lock);
1297 return 1;
1301 * Assemble a bio to write one packet and queue the bio for processing
1302 * by the underlying block device.
1304 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1306 int f;
1307 struct bio_vec *bvec = pkt->w_bio->bi_io_vec;
1309 bio_reset(pkt->w_bio);
1310 pkt->w_bio->bi_sector = pkt->sector;
1311 pkt->w_bio->bi_bdev = pd->bdev;
1312 pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1313 pkt->w_bio->bi_private = pkt;
1315 /* XXX: locking? */
1316 for (f = 0; f < pkt->frames; f++) {
1317 bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1318 bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1319 if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset))
1320 BUG();
1322 pkt_dbg(2, pd, "vcnt=%d\n", pkt->w_bio->bi_vcnt);
1325 * Fill-in bvec with data from orig_bios.
1327 spin_lock(&pkt->lock);
1328 bio_copy_data(pkt->w_bio, pkt->orig_bios.head);
1330 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1331 spin_unlock(&pkt->lock);
1333 pkt_dbg(2, pd, "Writing %d frames for zone %llx\n",
1334 pkt->write_size, (unsigned long long)pkt->sector);
1336 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) {
1337 pkt_make_local_copy(pkt, bvec);
1338 pkt->cache_valid = 1;
1339 } else {
1340 pkt->cache_valid = 0;
1343 /* Start the write request */
1344 atomic_set(&pkt->io_wait, 1);
1345 pkt->w_bio->bi_rw = WRITE;
1346 pkt_queue_bio(pd, pkt->w_bio);
1349 static void pkt_finish_packet(struct packet_data *pkt, int uptodate)
1351 struct bio *bio;
1353 if (!uptodate)
1354 pkt->cache_valid = 0;
1356 /* Finish all bios corresponding to this packet */
1357 while ((bio = bio_list_pop(&pkt->orig_bios)))
1358 bio_endio(bio, uptodate ? 0 : -EIO);
1361 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1363 int uptodate;
1365 pkt_dbg(2, pd, "pkt %d\n", pkt->id);
1367 for (;;) {
1368 switch (pkt->state) {
1369 case PACKET_WAITING_STATE:
1370 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1371 return;
1373 pkt->sleep_time = 0;
1374 pkt_gather_data(pd, pkt);
1375 pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1376 break;
1378 case PACKET_READ_WAIT_STATE:
1379 if (atomic_read(&pkt->io_wait) > 0)
1380 return;
1382 if (atomic_read(&pkt->io_errors) > 0) {
1383 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1384 } else {
1385 pkt_start_write(pd, pkt);
1387 break;
1389 case PACKET_WRITE_WAIT_STATE:
1390 if (atomic_read(&pkt->io_wait) > 0)
1391 return;
1393 if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) {
1394 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1395 } else {
1396 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1398 break;
1400 case PACKET_RECOVERY_STATE:
1401 if (pkt_start_recovery(pkt)) {
1402 pkt_start_write(pd, pkt);
1403 } else {
1404 pkt_dbg(2, pd, "No recovery possible\n");
1405 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1407 break;
1409 case PACKET_FINISHED_STATE:
1410 uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags);
1411 pkt_finish_packet(pkt, uptodate);
1412 return;
1414 default:
1415 BUG();
1416 break;
1421 static void pkt_handle_packets(struct pktcdvd_device *pd)
1423 struct packet_data *pkt, *next;
1426 * Run state machine for active packets
1428 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1429 if (atomic_read(&pkt->run_sm) > 0) {
1430 atomic_set(&pkt->run_sm, 0);
1431 pkt_run_state_machine(pd, pkt);
1436 * Move no longer active packets to the free list
1438 spin_lock(&pd->cdrw.active_list_lock);
1439 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1440 if (pkt->state == PACKET_FINISHED_STATE) {
1441 list_del(&pkt->list);
1442 pkt_put_packet_data(pd, pkt);
1443 pkt_set_state(pkt, PACKET_IDLE_STATE);
1444 atomic_set(&pd->scan_queue, 1);
1447 spin_unlock(&pd->cdrw.active_list_lock);
1450 static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1452 struct packet_data *pkt;
1453 int i;
1455 for (i = 0; i < PACKET_NUM_STATES; i++)
1456 states[i] = 0;
1458 spin_lock(&pd->cdrw.active_list_lock);
1459 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1460 states[pkt->state]++;
1462 spin_unlock(&pd->cdrw.active_list_lock);
1466 * kcdrwd is woken up when writes have been queued for one of our
1467 * registered devices
1469 static int kcdrwd(void *foobar)
1471 struct pktcdvd_device *pd = foobar;
1472 struct packet_data *pkt;
1473 long min_sleep_time, residue;
1475 set_user_nice(current, -20);
1476 set_freezable();
1478 for (;;) {
1479 DECLARE_WAITQUEUE(wait, current);
1482 * Wait until there is something to do
1484 add_wait_queue(&pd->wqueue, &wait);
1485 for (;;) {
1486 set_current_state(TASK_INTERRUPTIBLE);
1488 /* Check if we need to run pkt_handle_queue */
1489 if (atomic_read(&pd->scan_queue) > 0)
1490 goto work_to_do;
1492 /* Check if we need to run the state machine for some packet */
1493 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1494 if (atomic_read(&pkt->run_sm) > 0)
1495 goto work_to_do;
1498 /* Check if we need to process the iosched queues */
1499 if (atomic_read(&pd->iosched.attention) != 0)
1500 goto work_to_do;
1502 /* Otherwise, go to sleep */
1503 if (PACKET_DEBUG > 1) {
1504 int states[PACKET_NUM_STATES];
1505 pkt_count_states(pd, states);
1506 pkt_dbg(2, pd, "i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1507 states[0], states[1], states[2],
1508 states[3], states[4], states[5]);
1511 min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1512 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1513 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1514 min_sleep_time = pkt->sleep_time;
1517 pkt_dbg(2, pd, "sleeping\n");
1518 residue = schedule_timeout(min_sleep_time);
1519 pkt_dbg(2, pd, "wake up\n");
1521 /* make swsusp happy with our thread */
1522 try_to_freeze();
1524 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1525 if (!pkt->sleep_time)
1526 continue;
1527 pkt->sleep_time -= min_sleep_time - residue;
1528 if (pkt->sleep_time <= 0) {
1529 pkt->sleep_time = 0;
1530 atomic_inc(&pkt->run_sm);
1534 if (kthread_should_stop())
1535 break;
1537 work_to_do:
1538 set_current_state(TASK_RUNNING);
1539 remove_wait_queue(&pd->wqueue, &wait);
1541 if (kthread_should_stop())
1542 break;
1545 * if pkt_handle_queue returns true, we can queue
1546 * another request.
1548 while (pkt_handle_queue(pd))
1552 * Handle packet state machine
1554 pkt_handle_packets(pd);
1557 * Handle iosched queues
1559 pkt_iosched_process_queue(pd);
1562 return 0;
1565 static void pkt_print_settings(struct pktcdvd_device *pd)
1567 pkt_info(pd, "%s packets, %u blocks, Mode-%c disc\n",
1568 pd->settings.fp ? "Fixed" : "Variable",
1569 pd->settings.size >> 2,
1570 pd->settings.block_mode == 8 ? '1' : '2');
1573 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1575 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1577 cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1578 cgc->cmd[2] = page_code | (page_control << 6);
1579 cgc->cmd[7] = cgc->buflen >> 8;
1580 cgc->cmd[8] = cgc->buflen & 0xff;
1581 cgc->data_direction = CGC_DATA_READ;
1582 return pkt_generic_packet(pd, cgc);
1585 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1587 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1588 memset(cgc->buffer, 0, 2);
1589 cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1590 cgc->cmd[1] = 0x10; /* PF */
1591 cgc->cmd[7] = cgc->buflen >> 8;
1592 cgc->cmd[8] = cgc->buflen & 0xff;
1593 cgc->data_direction = CGC_DATA_WRITE;
1594 return pkt_generic_packet(pd, cgc);
1597 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1599 struct packet_command cgc;
1600 int ret;
1602 /* set up command and get the disc info */
1603 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1604 cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1605 cgc.cmd[8] = cgc.buflen = 2;
1606 cgc.quiet = 1;
1608 if ((ret = pkt_generic_packet(pd, &cgc)))
1609 return ret;
1611 /* not all drives have the same disc_info length, so requeue
1612 * packet with the length the drive tells us it can supply
1614 cgc.buflen = be16_to_cpu(di->disc_information_length) +
1615 sizeof(di->disc_information_length);
1617 if (cgc.buflen > sizeof(disc_information))
1618 cgc.buflen = sizeof(disc_information);
1620 cgc.cmd[8] = cgc.buflen;
1621 return pkt_generic_packet(pd, &cgc);
1624 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1626 struct packet_command cgc;
1627 int ret;
1629 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1630 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1631 cgc.cmd[1] = type & 3;
1632 cgc.cmd[4] = (track & 0xff00) >> 8;
1633 cgc.cmd[5] = track & 0xff;
1634 cgc.cmd[8] = 8;
1635 cgc.quiet = 1;
1637 if ((ret = pkt_generic_packet(pd, &cgc)))
1638 return ret;
1640 cgc.buflen = be16_to_cpu(ti->track_information_length) +
1641 sizeof(ti->track_information_length);
1643 if (cgc.buflen > sizeof(track_information))
1644 cgc.buflen = sizeof(track_information);
1646 cgc.cmd[8] = cgc.buflen;
1647 return pkt_generic_packet(pd, &cgc);
1650 static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd,
1651 long *last_written)
1653 disc_information di;
1654 track_information ti;
1655 __u32 last_track;
1656 int ret = -1;
1658 if ((ret = pkt_get_disc_info(pd, &di)))
1659 return ret;
1661 last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1662 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1663 return ret;
1665 /* if this track is blank, try the previous. */
1666 if (ti.blank) {
1667 last_track--;
1668 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1669 return ret;
1672 /* if last recorded field is valid, return it. */
1673 if (ti.lra_v) {
1674 *last_written = be32_to_cpu(ti.last_rec_address);
1675 } else {
1676 /* make it up instead */
1677 *last_written = be32_to_cpu(ti.track_start) +
1678 be32_to_cpu(ti.track_size);
1679 if (ti.free_blocks)
1680 *last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1682 return 0;
1686 * write mode select package based on pd->settings
1688 static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd)
1690 struct packet_command cgc;
1691 struct request_sense sense;
1692 write_param_page *wp;
1693 char buffer[128];
1694 int ret, size;
1696 /* doesn't apply to DVD+RW or DVD-RAM */
1697 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1698 return 0;
1700 memset(buffer, 0, sizeof(buffer));
1701 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1702 cgc.sense = &sense;
1703 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1704 pkt_dump_sense(pd, &cgc);
1705 return ret;
1708 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1709 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1710 if (size > sizeof(buffer))
1711 size = sizeof(buffer);
1714 * now get it all
1716 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1717 cgc.sense = &sense;
1718 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1719 pkt_dump_sense(pd, &cgc);
1720 return ret;
1724 * write page is offset header + block descriptor length
1726 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1728 wp->fp = pd->settings.fp;
1729 wp->track_mode = pd->settings.track_mode;
1730 wp->write_type = pd->settings.write_type;
1731 wp->data_block_type = pd->settings.block_mode;
1733 wp->multi_session = 0;
1735 #ifdef PACKET_USE_LS
1736 wp->link_size = 7;
1737 wp->ls_v = 1;
1738 #endif
1740 if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1741 wp->session_format = 0;
1742 wp->subhdr2 = 0x20;
1743 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1744 wp->session_format = 0x20;
1745 wp->subhdr2 = 8;
1746 #if 0
1747 wp->mcn[0] = 0x80;
1748 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1749 #endif
1750 } else {
1752 * paranoia
1754 pkt_err(pd, "write mode wrong %d\n", wp->data_block_type);
1755 return 1;
1757 wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1759 cgc.buflen = cgc.cmd[8] = size;
1760 if ((ret = pkt_mode_select(pd, &cgc))) {
1761 pkt_dump_sense(pd, &cgc);
1762 return ret;
1765 pkt_print_settings(pd);
1766 return 0;
1770 * 1 -- we can write to this track, 0 -- we can't
1772 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1774 switch (pd->mmc3_profile) {
1775 case 0x1a: /* DVD+RW */
1776 case 0x12: /* DVD-RAM */
1777 /* The track is always writable on DVD+RW/DVD-RAM */
1778 return 1;
1779 default:
1780 break;
1783 if (!ti->packet || !ti->fp)
1784 return 0;
1787 * "good" settings as per Mt Fuji.
1789 if (ti->rt == 0 && ti->blank == 0)
1790 return 1;
1792 if (ti->rt == 0 && ti->blank == 1)
1793 return 1;
1795 if (ti->rt == 1 && ti->blank == 0)
1796 return 1;
1798 pkt_err(pd, "bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1799 return 0;
1803 * 1 -- we can write to this disc, 0 -- we can't
1805 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1807 switch (pd->mmc3_profile) {
1808 case 0x0a: /* CD-RW */
1809 case 0xffff: /* MMC3 not supported */
1810 break;
1811 case 0x1a: /* DVD+RW */
1812 case 0x13: /* DVD-RW */
1813 case 0x12: /* DVD-RAM */
1814 return 1;
1815 default:
1816 pkt_dbg(2, pd, "Wrong disc profile (%x)\n",
1817 pd->mmc3_profile);
1818 return 0;
1822 * for disc type 0xff we should probably reserve a new track.
1823 * but i'm not sure, should we leave this to user apps? probably.
1825 if (di->disc_type == 0xff) {
1826 pkt_notice(pd, "unknown disc - no track?\n");
1827 return 0;
1830 if (di->disc_type != 0x20 && di->disc_type != 0) {
1831 pkt_err(pd, "wrong disc type (%x)\n", di->disc_type);
1832 return 0;
1835 if (di->erasable == 0) {
1836 pkt_notice(pd, "disc not erasable\n");
1837 return 0;
1840 if (di->border_status == PACKET_SESSION_RESERVED) {
1841 pkt_err(pd, "can't write to last track (reserved)\n");
1842 return 0;
1845 return 1;
1848 static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd)
1850 struct packet_command cgc;
1851 unsigned char buf[12];
1852 disc_information di;
1853 track_information ti;
1854 int ret, track;
1856 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1857 cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1858 cgc.cmd[8] = 8;
1859 ret = pkt_generic_packet(pd, &cgc);
1860 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1862 memset(&di, 0, sizeof(disc_information));
1863 memset(&ti, 0, sizeof(track_information));
1865 if ((ret = pkt_get_disc_info(pd, &di))) {
1866 pkt_err(pd, "failed get_disc\n");
1867 return ret;
1870 if (!pkt_writable_disc(pd, &di))
1871 return -EROFS;
1873 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1875 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1876 if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
1877 pkt_err(pd, "failed get_track\n");
1878 return ret;
1881 if (!pkt_writable_track(pd, &ti)) {
1882 pkt_err(pd, "can't write to this track\n");
1883 return -EROFS;
1887 * we keep packet size in 512 byte units, makes it easier to
1888 * deal with request calculations.
1890 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1891 if (pd->settings.size == 0) {
1892 pkt_notice(pd, "detected zero packet size!\n");
1893 return -ENXIO;
1895 if (pd->settings.size > PACKET_MAX_SECTORS) {
1896 pkt_err(pd, "packet size is too big\n");
1897 return -EROFS;
1899 pd->settings.fp = ti.fp;
1900 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1902 if (ti.nwa_v) {
1903 pd->nwa = be32_to_cpu(ti.next_writable);
1904 set_bit(PACKET_NWA_VALID, &pd->flags);
1908 * in theory we could use lra on -RW media as well and just zero
1909 * blocks that haven't been written yet, but in practice that
1910 * is just a no-go. we'll use that for -R, naturally.
1912 if (ti.lra_v) {
1913 pd->lra = be32_to_cpu(ti.last_rec_address);
1914 set_bit(PACKET_LRA_VALID, &pd->flags);
1915 } else {
1916 pd->lra = 0xffffffff;
1917 set_bit(PACKET_LRA_VALID, &pd->flags);
1921 * fine for now
1923 pd->settings.link_loss = 7;
1924 pd->settings.write_type = 0; /* packet */
1925 pd->settings.track_mode = ti.track_mode;
1928 * mode1 or mode2 disc
1930 switch (ti.data_mode) {
1931 case PACKET_MODE1:
1932 pd->settings.block_mode = PACKET_BLOCK_MODE1;
1933 break;
1934 case PACKET_MODE2:
1935 pd->settings.block_mode = PACKET_BLOCK_MODE2;
1936 break;
1937 default:
1938 pkt_err(pd, "unknown data mode\n");
1939 return -EROFS;
1941 return 0;
1945 * enable/disable write caching on drive
1947 static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd,
1948 int set)
1950 struct packet_command cgc;
1951 struct request_sense sense;
1952 unsigned char buf[64];
1953 int ret;
1955 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1956 cgc.sense = &sense;
1957 cgc.buflen = pd->mode_offset + 12;
1960 * caching mode page might not be there, so quiet this command
1962 cgc.quiet = 1;
1964 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
1965 return ret;
1967 buf[pd->mode_offset + 10] |= (!!set << 2);
1969 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
1970 ret = pkt_mode_select(pd, &cgc);
1971 if (ret) {
1972 pkt_err(pd, "write caching control failed\n");
1973 pkt_dump_sense(pd, &cgc);
1974 } else if (!ret && set)
1975 pkt_notice(pd, "enabled write caching\n");
1976 return ret;
1979 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
1981 struct packet_command cgc;
1983 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1984 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
1985 cgc.cmd[4] = lockflag ? 1 : 0;
1986 return pkt_generic_packet(pd, &cgc);
1990 * Returns drive maximum write speed
1992 static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd,
1993 unsigned *write_speed)
1995 struct packet_command cgc;
1996 struct request_sense sense;
1997 unsigned char buf[256+18];
1998 unsigned char *cap_buf;
1999 int ret, offset;
2001 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
2002 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
2003 cgc.sense = &sense;
2005 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2006 if (ret) {
2007 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
2008 sizeof(struct mode_page_header);
2009 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2010 if (ret) {
2011 pkt_dump_sense(pd, &cgc);
2012 return ret;
2016 offset = 20; /* Obsoleted field, used by older drives */
2017 if (cap_buf[1] >= 28)
2018 offset = 28; /* Current write speed selected */
2019 if (cap_buf[1] >= 30) {
2020 /* If the drive reports at least one "Logical Unit Write
2021 * Speed Performance Descriptor Block", use the information
2022 * in the first block. (contains the highest speed)
2024 int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
2025 if (num_spdb > 0)
2026 offset = 34;
2029 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
2030 return 0;
2033 /* These tables from cdrecord - I don't have orange book */
2034 /* standard speed CD-RW (1-4x) */
2035 static char clv_to_speed[16] = {
2036 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2037 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2039 /* high speed CD-RW (-10x) */
2040 static char hs_clv_to_speed[16] = {
2041 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2042 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2044 /* ultra high speed CD-RW */
2045 static char us_clv_to_speed[16] = {
2046 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2047 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
2051 * reads the maximum media speed from ATIP
2053 static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd,
2054 unsigned *speed)
2056 struct packet_command cgc;
2057 struct request_sense sense;
2058 unsigned char buf[64];
2059 unsigned int size, st, sp;
2060 int ret;
2062 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2063 cgc.sense = &sense;
2064 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2065 cgc.cmd[1] = 2;
2066 cgc.cmd[2] = 4; /* READ ATIP */
2067 cgc.cmd[8] = 2;
2068 ret = pkt_generic_packet(pd, &cgc);
2069 if (ret) {
2070 pkt_dump_sense(pd, &cgc);
2071 return ret;
2073 size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
2074 if (size > sizeof(buf))
2075 size = sizeof(buf);
2077 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2078 cgc.sense = &sense;
2079 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2080 cgc.cmd[1] = 2;
2081 cgc.cmd[2] = 4;
2082 cgc.cmd[8] = size;
2083 ret = pkt_generic_packet(pd, &cgc);
2084 if (ret) {
2085 pkt_dump_sense(pd, &cgc);
2086 return ret;
2089 if (!(buf[6] & 0x40)) {
2090 pkt_notice(pd, "disc type is not CD-RW\n");
2091 return 1;
2093 if (!(buf[6] & 0x4)) {
2094 pkt_notice(pd, "A1 values on media are not valid, maybe not CDRW?\n");
2095 return 1;
2098 st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2100 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2102 /* Info from cdrecord */
2103 switch (st) {
2104 case 0: /* standard speed */
2105 *speed = clv_to_speed[sp];
2106 break;
2107 case 1: /* high speed */
2108 *speed = hs_clv_to_speed[sp];
2109 break;
2110 case 2: /* ultra high speed */
2111 *speed = us_clv_to_speed[sp];
2112 break;
2113 default:
2114 pkt_notice(pd, "unknown disc sub-type %d\n", st);
2115 return 1;
2117 if (*speed) {
2118 pkt_info(pd, "maximum media speed: %d\n", *speed);
2119 return 0;
2120 } else {
2121 pkt_notice(pd, "unknown speed %d for sub-type %d\n", sp, st);
2122 return 1;
2126 static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd)
2128 struct packet_command cgc;
2129 struct request_sense sense;
2130 int ret;
2132 pkt_dbg(2, pd, "Performing OPC\n");
2134 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2135 cgc.sense = &sense;
2136 cgc.timeout = 60*HZ;
2137 cgc.cmd[0] = GPCMD_SEND_OPC;
2138 cgc.cmd[1] = 1;
2139 if ((ret = pkt_generic_packet(pd, &cgc)))
2140 pkt_dump_sense(pd, &cgc);
2141 return ret;
2144 static int pkt_open_write(struct pktcdvd_device *pd)
2146 int ret;
2147 unsigned int write_speed, media_write_speed, read_speed;
2149 if ((ret = pkt_probe_settings(pd))) {
2150 pkt_dbg(2, pd, "failed probe\n");
2151 return ret;
2154 if ((ret = pkt_set_write_settings(pd))) {
2155 pkt_dbg(1, pd, "failed saving write settings\n");
2156 return -EIO;
2159 pkt_write_caching(pd, USE_WCACHING);
2161 if ((ret = pkt_get_max_speed(pd, &write_speed)))
2162 write_speed = 16 * 177;
2163 switch (pd->mmc3_profile) {
2164 case 0x13: /* DVD-RW */
2165 case 0x1a: /* DVD+RW */
2166 case 0x12: /* DVD-RAM */
2167 pkt_dbg(1, pd, "write speed %ukB/s\n", write_speed);
2168 break;
2169 default:
2170 if ((ret = pkt_media_speed(pd, &media_write_speed)))
2171 media_write_speed = 16;
2172 write_speed = min(write_speed, media_write_speed * 177);
2173 pkt_dbg(1, pd, "write speed %ux\n", write_speed / 176);
2174 break;
2176 read_speed = write_speed;
2178 if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
2179 pkt_dbg(1, pd, "couldn't set write speed\n");
2180 return -EIO;
2182 pd->write_speed = write_speed;
2183 pd->read_speed = read_speed;
2185 if ((ret = pkt_perform_opc(pd))) {
2186 pkt_dbg(1, pd, "Optimum Power Calibration failed\n");
2189 return 0;
2193 * called at open time.
2195 static int pkt_open_dev(struct pktcdvd_device *pd, fmode_t write)
2197 int ret;
2198 long lba;
2199 struct request_queue *q;
2202 * We need to re-open the cdrom device without O_NONBLOCK to be able
2203 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2204 * so bdget() can't fail.
2206 bdget(pd->bdev->bd_dev);
2207 if ((ret = blkdev_get(pd->bdev, FMODE_READ | FMODE_EXCL, pd)))
2208 goto out;
2210 if ((ret = pkt_get_last_written(pd, &lba))) {
2211 pkt_err(pd, "pkt_get_last_written failed\n");
2212 goto out_putdev;
2215 set_capacity(pd->disk, lba << 2);
2216 set_capacity(pd->bdev->bd_disk, lba << 2);
2217 bd_set_size(pd->bdev, (loff_t)lba << 11);
2219 q = bdev_get_queue(pd->bdev);
2220 if (write) {
2221 if ((ret = pkt_open_write(pd)))
2222 goto out_putdev;
2224 * Some CDRW drives can not handle writes larger than one packet,
2225 * even if the size is a multiple of the packet size.
2227 spin_lock_irq(q->queue_lock);
2228 blk_queue_max_hw_sectors(q, pd->settings.size);
2229 spin_unlock_irq(q->queue_lock);
2230 set_bit(PACKET_WRITABLE, &pd->flags);
2231 } else {
2232 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2233 clear_bit(PACKET_WRITABLE, &pd->flags);
2236 if ((ret = pkt_set_segment_merging(pd, q)))
2237 goto out_putdev;
2239 if (write) {
2240 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2241 pkt_err(pd, "not enough memory for buffers\n");
2242 ret = -ENOMEM;
2243 goto out_putdev;
2245 pkt_info(pd, "%lukB available on disc\n", lba << 1);
2248 return 0;
2250 out_putdev:
2251 blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2252 out:
2253 return ret;
2257 * called when the device is closed. makes sure that the device flushes
2258 * the internal cache before we close.
2260 static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2262 if (flush && pkt_flush_cache(pd))
2263 pkt_dbg(1, pd, "not flushing cache\n");
2265 pkt_lock_door(pd, 0);
2267 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2268 blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2270 pkt_shrink_pktlist(pd);
2273 static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor)
2275 if (dev_minor >= MAX_WRITERS)
2276 return NULL;
2277 return pkt_devs[dev_minor];
2280 static int pkt_open(struct block_device *bdev, fmode_t mode)
2282 struct pktcdvd_device *pd = NULL;
2283 int ret;
2285 mutex_lock(&pktcdvd_mutex);
2286 mutex_lock(&ctl_mutex);
2287 pd = pkt_find_dev_from_minor(MINOR(bdev->bd_dev));
2288 if (!pd) {
2289 ret = -ENODEV;
2290 goto out;
2292 BUG_ON(pd->refcnt < 0);
2294 pd->refcnt++;
2295 if (pd->refcnt > 1) {
2296 if ((mode & FMODE_WRITE) &&
2297 !test_bit(PACKET_WRITABLE, &pd->flags)) {
2298 ret = -EBUSY;
2299 goto out_dec;
2301 } else {
2302 ret = pkt_open_dev(pd, mode & FMODE_WRITE);
2303 if (ret)
2304 goto out_dec;
2306 * needed here as well, since ext2 (among others) may change
2307 * the blocksize at mount time
2309 set_blocksize(bdev, CD_FRAMESIZE);
2312 mutex_unlock(&ctl_mutex);
2313 mutex_unlock(&pktcdvd_mutex);
2314 return 0;
2316 out_dec:
2317 pd->refcnt--;
2318 out:
2319 mutex_unlock(&ctl_mutex);
2320 mutex_unlock(&pktcdvd_mutex);
2321 return ret;
2324 static void pkt_close(struct gendisk *disk, fmode_t mode)
2326 struct pktcdvd_device *pd = disk->private_data;
2328 mutex_lock(&pktcdvd_mutex);
2329 mutex_lock(&ctl_mutex);
2330 pd->refcnt--;
2331 BUG_ON(pd->refcnt < 0);
2332 if (pd->refcnt == 0) {
2333 int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2334 pkt_release_dev(pd, flush);
2336 mutex_unlock(&ctl_mutex);
2337 mutex_unlock(&pktcdvd_mutex);
2341 static void pkt_end_io_read_cloned(struct bio *bio, int err)
2343 struct packet_stacked_data *psd = bio->bi_private;
2344 struct pktcdvd_device *pd = psd->pd;
2346 bio_put(bio);
2347 bio_endio(psd->bio, err);
2348 mempool_free(psd, psd_pool);
2349 pkt_bio_finished(pd);
2352 static void pkt_make_request(struct request_queue *q, struct bio *bio)
2354 struct pktcdvd_device *pd;
2355 char b[BDEVNAME_SIZE];
2356 sector_t zone;
2357 struct packet_data *pkt;
2358 int was_empty, blocked_bio;
2359 struct pkt_rb_node *node;
2361 pd = q->queuedata;
2362 if (!pd) {
2363 pr_err("%s incorrect request queue\n",
2364 bdevname(bio->bi_bdev, b));
2365 goto end_io;
2369 * Clone READ bios so we can have our own bi_end_io callback.
2371 if (bio_data_dir(bio) == READ) {
2372 struct bio *cloned_bio = bio_clone(bio, GFP_NOIO);
2373 struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
2375 psd->pd = pd;
2376 psd->bio = bio;
2377 cloned_bio->bi_bdev = pd->bdev;
2378 cloned_bio->bi_private = psd;
2379 cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2380 pd->stats.secs_r += bio_sectors(bio);
2381 pkt_queue_bio(pd, cloned_bio);
2382 return;
2385 if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2386 pkt_notice(pd, "WRITE for ro device (%llu)\n",
2387 (unsigned long long)bio->bi_sector);
2388 goto end_io;
2391 if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) {
2392 pkt_err(pd, "wrong bio size\n");
2393 goto end_io;
2396 blk_queue_bounce(q, &bio);
2398 zone = get_zone(bio->bi_sector, pd);
2399 pkt_dbg(2, pd, "start = %6llx stop = %6llx\n",
2400 (unsigned long long)bio->bi_sector,
2401 (unsigned long long)bio_end_sector(bio));
2403 /* Check if we have to split the bio */
2405 struct bio_pair *bp;
2406 sector_t last_zone;
2407 int first_sectors;
2409 last_zone = get_zone(bio_end_sector(bio) - 1, pd);
2410 if (last_zone != zone) {
2411 BUG_ON(last_zone != zone + pd->settings.size);
2412 first_sectors = last_zone - bio->bi_sector;
2413 bp = bio_split(bio, first_sectors);
2414 BUG_ON(!bp);
2415 pkt_make_request(q, &bp->bio1);
2416 pkt_make_request(q, &bp->bio2);
2417 bio_pair_release(bp);
2418 return;
2423 * If we find a matching packet in state WAITING or READ_WAIT, we can
2424 * just append this bio to that packet.
2426 spin_lock(&pd->cdrw.active_list_lock);
2427 blocked_bio = 0;
2428 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2429 if (pkt->sector == zone) {
2430 spin_lock(&pkt->lock);
2431 if ((pkt->state == PACKET_WAITING_STATE) ||
2432 (pkt->state == PACKET_READ_WAIT_STATE)) {
2433 bio_list_add(&pkt->orig_bios, bio);
2434 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
2435 if ((pkt->write_size >= pkt->frames) &&
2436 (pkt->state == PACKET_WAITING_STATE)) {
2437 atomic_inc(&pkt->run_sm);
2438 wake_up(&pd->wqueue);
2440 spin_unlock(&pkt->lock);
2441 spin_unlock(&pd->cdrw.active_list_lock);
2442 return;
2443 } else {
2444 blocked_bio = 1;
2446 spin_unlock(&pkt->lock);
2449 spin_unlock(&pd->cdrw.active_list_lock);
2452 * Test if there is enough room left in the bio work queue
2453 * (queue size >= congestion on mark).
2454 * If not, wait till the work queue size is below the congestion off mark.
2456 spin_lock(&pd->lock);
2457 if (pd->write_congestion_on > 0
2458 && pd->bio_queue_size >= pd->write_congestion_on) {
2459 set_bdi_congested(&q->backing_dev_info, BLK_RW_ASYNC);
2460 do {
2461 spin_unlock(&pd->lock);
2462 congestion_wait(BLK_RW_ASYNC, HZ);
2463 spin_lock(&pd->lock);
2464 } while(pd->bio_queue_size > pd->write_congestion_off);
2466 spin_unlock(&pd->lock);
2469 * No matching packet found. Store the bio in the work queue.
2471 node = mempool_alloc(pd->rb_pool, GFP_NOIO);
2472 node->bio = bio;
2473 spin_lock(&pd->lock);
2474 BUG_ON(pd->bio_queue_size < 0);
2475 was_empty = (pd->bio_queue_size == 0);
2476 pkt_rbtree_insert(pd, node);
2477 spin_unlock(&pd->lock);
2480 * Wake up the worker thread.
2482 atomic_set(&pd->scan_queue, 1);
2483 if (was_empty) {
2484 /* This wake_up is required for correct operation */
2485 wake_up(&pd->wqueue);
2486 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2488 * This wake up is not required for correct operation,
2489 * but improves performance in some cases.
2491 wake_up(&pd->wqueue);
2493 return;
2494 end_io:
2495 bio_io_error(bio);
2500 static int pkt_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
2501 struct bio_vec *bvec)
2503 struct pktcdvd_device *pd = q->queuedata;
2504 sector_t zone = get_zone(bmd->bi_sector, pd);
2505 int used = ((bmd->bi_sector - zone) << 9) + bmd->bi_size;
2506 int remaining = (pd->settings.size << 9) - used;
2507 int remaining2;
2510 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet
2511 * boundary, pkt_make_request() will split the bio.
2513 remaining2 = PAGE_SIZE - bmd->bi_size;
2514 remaining = max(remaining, remaining2);
2516 BUG_ON(remaining < 0);
2517 return remaining;
2520 static void pkt_init_queue(struct pktcdvd_device *pd)
2522 struct request_queue *q = pd->disk->queue;
2524 blk_queue_make_request(q, pkt_make_request);
2525 blk_queue_logical_block_size(q, CD_FRAMESIZE);
2526 blk_queue_max_hw_sectors(q, PACKET_MAX_SECTORS);
2527 blk_queue_merge_bvec(q, pkt_merge_bvec);
2528 q->queuedata = pd;
2531 static int pkt_seq_show(struct seq_file *m, void *p)
2533 struct pktcdvd_device *pd = m->private;
2534 char *msg;
2535 char bdev_buf[BDEVNAME_SIZE];
2536 int states[PACKET_NUM_STATES];
2538 seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2539 bdevname(pd->bdev, bdev_buf));
2541 seq_printf(m, "\nSettings:\n");
2542 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2544 if (pd->settings.write_type == 0)
2545 msg = "Packet";
2546 else
2547 msg = "Unknown";
2548 seq_printf(m, "\twrite type:\t\t%s\n", msg);
2550 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2551 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2553 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2555 if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2556 msg = "Mode 1";
2557 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2558 msg = "Mode 2";
2559 else
2560 msg = "Unknown";
2561 seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2563 seq_printf(m, "\nStatistics:\n");
2564 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2565 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2566 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2567 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2568 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2570 seq_printf(m, "\nMisc:\n");
2571 seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2572 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2573 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2574 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2575 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2576 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2578 seq_printf(m, "\nQueue state:\n");
2579 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2580 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2581 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2583 pkt_count_states(pd, states);
2584 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2585 states[0], states[1], states[2], states[3], states[4], states[5]);
2587 seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
2588 pd->write_congestion_off,
2589 pd->write_congestion_on);
2590 return 0;
2593 static int pkt_seq_open(struct inode *inode, struct file *file)
2595 return single_open(file, pkt_seq_show, PDE_DATA(inode));
2598 static const struct file_operations pkt_proc_fops = {
2599 .open = pkt_seq_open,
2600 .read = seq_read,
2601 .llseek = seq_lseek,
2602 .release = single_release
2605 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2607 int i;
2608 int ret = 0;
2609 char b[BDEVNAME_SIZE];
2610 struct block_device *bdev;
2612 if (pd->pkt_dev == dev) {
2613 pkt_err(pd, "recursive setup not allowed\n");
2614 return -EBUSY;
2616 for (i = 0; i < MAX_WRITERS; i++) {
2617 struct pktcdvd_device *pd2 = pkt_devs[i];
2618 if (!pd2)
2619 continue;
2620 if (pd2->bdev->bd_dev == dev) {
2621 pkt_err(pd, "%s already setup\n",
2622 bdevname(pd2->bdev, b));
2623 return -EBUSY;
2625 if (pd2->pkt_dev == dev) {
2626 pkt_err(pd, "can't chain pktcdvd devices\n");
2627 return -EBUSY;
2631 bdev = bdget(dev);
2632 if (!bdev)
2633 return -ENOMEM;
2634 ret = blkdev_get(bdev, FMODE_READ | FMODE_NDELAY, NULL);
2635 if (ret)
2636 return ret;
2638 /* This is safe, since we have a reference from open(). */
2639 __module_get(THIS_MODULE);
2641 pd->bdev = bdev;
2642 set_blocksize(bdev, CD_FRAMESIZE);
2644 pkt_init_queue(pd);
2646 atomic_set(&pd->cdrw.pending_bios, 0);
2647 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2648 if (IS_ERR(pd->cdrw.thread)) {
2649 pkt_err(pd, "can't start kernel thread\n");
2650 ret = -ENOMEM;
2651 goto out_mem;
2654 proc_create_data(pd->name, 0, pkt_proc, &pkt_proc_fops, pd);
2655 pkt_dbg(1, pd, "writer mapped to %s\n", bdevname(bdev, b));
2656 return 0;
2658 out_mem:
2659 blkdev_put(bdev, FMODE_READ | FMODE_NDELAY);
2660 /* This is safe: open() is still holding a reference. */
2661 module_put(THIS_MODULE);
2662 return ret;
2665 static int pkt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg)
2667 struct pktcdvd_device *pd = bdev->bd_disk->private_data;
2668 int ret;
2670 pkt_dbg(2, pd, "cmd %x, dev %d:%d\n",
2671 cmd, MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2673 mutex_lock(&pktcdvd_mutex);
2674 switch (cmd) {
2675 case CDROMEJECT:
2677 * The door gets locked when the device is opened, so we
2678 * have to unlock it or else the eject command fails.
2680 if (pd->refcnt == 1)
2681 pkt_lock_door(pd, 0);
2682 /* fallthru */
2684 * forward selected CDROM ioctls to CD-ROM, for UDF
2686 case CDROMMULTISESSION:
2687 case CDROMREADTOCENTRY:
2688 case CDROM_LAST_WRITTEN:
2689 case CDROM_SEND_PACKET:
2690 case SCSI_IOCTL_SEND_COMMAND:
2691 ret = __blkdev_driver_ioctl(pd->bdev, mode, cmd, arg);
2692 break;
2694 default:
2695 pkt_dbg(2, pd, "Unknown ioctl (%x)\n", cmd);
2696 ret = -ENOTTY;
2698 mutex_unlock(&pktcdvd_mutex);
2700 return ret;
2703 static unsigned int pkt_check_events(struct gendisk *disk,
2704 unsigned int clearing)
2706 struct pktcdvd_device *pd = disk->private_data;
2707 struct gendisk *attached_disk;
2709 if (!pd)
2710 return 0;
2711 if (!pd->bdev)
2712 return 0;
2713 attached_disk = pd->bdev->bd_disk;
2714 if (!attached_disk || !attached_disk->fops->check_events)
2715 return 0;
2716 return attached_disk->fops->check_events(attached_disk, clearing);
2719 static const struct block_device_operations pktcdvd_ops = {
2720 .owner = THIS_MODULE,
2721 .open = pkt_open,
2722 .release = pkt_close,
2723 .ioctl = pkt_ioctl,
2724 .check_events = pkt_check_events,
2727 static char *pktcdvd_devnode(struct gendisk *gd, umode_t *mode)
2729 return kasprintf(GFP_KERNEL, "pktcdvd/%s", gd->disk_name);
2733 * Set up mapping from pktcdvd device to CD-ROM device.
2735 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2737 int idx;
2738 int ret = -ENOMEM;
2739 struct pktcdvd_device *pd;
2740 struct gendisk *disk;
2742 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2744 for (idx = 0; idx < MAX_WRITERS; idx++)
2745 if (!pkt_devs[idx])
2746 break;
2747 if (idx == MAX_WRITERS) {
2748 pr_err("max %d writers supported\n", MAX_WRITERS);
2749 ret = -EBUSY;
2750 goto out_mutex;
2753 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2754 if (!pd)
2755 goto out_mutex;
2757 pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE,
2758 sizeof(struct pkt_rb_node));
2759 if (!pd->rb_pool)
2760 goto out_mem;
2762 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2763 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2764 spin_lock_init(&pd->cdrw.active_list_lock);
2766 spin_lock_init(&pd->lock);
2767 spin_lock_init(&pd->iosched.lock);
2768 bio_list_init(&pd->iosched.read_queue);
2769 bio_list_init(&pd->iosched.write_queue);
2770 sprintf(pd->name, DRIVER_NAME"%d", idx);
2771 init_waitqueue_head(&pd->wqueue);
2772 pd->bio_queue = RB_ROOT;
2774 pd->write_congestion_on = write_congestion_on;
2775 pd->write_congestion_off = write_congestion_off;
2777 disk = alloc_disk(1);
2778 if (!disk)
2779 goto out_mem;
2780 pd->disk = disk;
2781 disk->major = pktdev_major;
2782 disk->first_minor = idx;
2783 disk->fops = &pktcdvd_ops;
2784 disk->flags = GENHD_FL_REMOVABLE;
2785 strcpy(disk->disk_name, pd->name);
2786 disk->devnode = pktcdvd_devnode;
2787 disk->private_data = pd;
2788 disk->queue = blk_alloc_queue(GFP_KERNEL);
2789 if (!disk->queue)
2790 goto out_mem2;
2792 pd->pkt_dev = MKDEV(pktdev_major, idx);
2793 ret = pkt_new_dev(pd, dev);
2794 if (ret)
2795 goto out_new_dev;
2797 /* inherit events of the host device */
2798 disk->events = pd->bdev->bd_disk->events;
2799 disk->async_events = pd->bdev->bd_disk->async_events;
2801 add_disk(disk);
2803 pkt_sysfs_dev_new(pd);
2804 pkt_debugfs_dev_new(pd);
2806 pkt_devs[idx] = pd;
2807 if (pkt_dev)
2808 *pkt_dev = pd->pkt_dev;
2810 mutex_unlock(&ctl_mutex);
2811 return 0;
2813 out_new_dev:
2814 blk_cleanup_queue(disk->queue);
2815 out_mem2:
2816 put_disk(disk);
2817 out_mem:
2818 if (pd->rb_pool)
2819 mempool_destroy(pd->rb_pool);
2820 kfree(pd);
2821 out_mutex:
2822 mutex_unlock(&ctl_mutex);
2823 pr_err("setup of pktcdvd device failed\n");
2824 return ret;
2828 * Tear down mapping from pktcdvd device to CD-ROM device.
2830 static int pkt_remove_dev(dev_t pkt_dev)
2832 struct pktcdvd_device *pd;
2833 int idx;
2834 int ret = 0;
2836 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2838 for (idx = 0; idx < MAX_WRITERS; idx++) {
2839 pd = pkt_devs[idx];
2840 if (pd && (pd->pkt_dev == pkt_dev))
2841 break;
2843 if (idx == MAX_WRITERS) {
2844 pr_debug("dev not setup\n");
2845 ret = -ENXIO;
2846 goto out;
2849 if (pd->refcnt > 0) {
2850 ret = -EBUSY;
2851 goto out;
2853 if (!IS_ERR(pd->cdrw.thread))
2854 kthread_stop(pd->cdrw.thread);
2856 pkt_devs[idx] = NULL;
2858 pkt_debugfs_dev_remove(pd);
2859 pkt_sysfs_dev_remove(pd);
2861 blkdev_put(pd->bdev, FMODE_READ | FMODE_NDELAY);
2863 remove_proc_entry(pd->name, pkt_proc);
2864 pkt_dbg(1, pd, "writer unmapped\n");
2866 del_gendisk(pd->disk);
2867 blk_cleanup_queue(pd->disk->queue);
2868 put_disk(pd->disk);
2870 mempool_destroy(pd->rb_pool);
2871 kfree(pd);
2873 /* This is safe: open() is still holding a reference. */
2874 module_put(THIS_MODULE);
2876 out:
2877 mutex_unlock(&ctl_mutex);
2878 return ret;
2881 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2883 struct pktcdvd_device *pd;
2885 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2887 pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2888 if (pd) {
2889 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
2890 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2891 } else {
2892 ctrl_cmd->dev = 0;
2893 ctrl_cmd->pkt_dev = 0;
2895 ctrl_cmd->num_devices = MAX_WRITERS;
2897 mutex_unlock(&ctl_mutex);
2900 static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2902 void __user *argp = (void __user *)arg;
2903 struct pkt_ctrl_command ctrl_cmd;
2904 int ret = 0;
2905 dev_t pkt_dev = 0;
2907 if (cmd != PACKET_CTRL_CMD)
2908 return -ENOTTY;
2910 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
2911 return -EFAULT;
2913 switch (ctrl_cmd.command) {
2914 case PKT_CTRL_CMD_SETUP:
2915 if (!capable(CAP_SYS_ADMIN))
2916 return -EPERM;
2917 ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
2918 ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
2919 break;
2920 case PKT_CTRL_CMD_TEARDOWN:
2921 if (!capable(CAP_SYS_ADMIN))
2922 return -EPERM;
2923 ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
2924 break;
2925 case PKT_CTRL_CMD_STATUS:
2926 pkt_get_status(&ctrl_cmd);
2927 break;
2928 default:
2929 return -ENOTTY;
2932 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
2933 return -EFAULT;
2934 return ret;
2937 #ifdef CONFIG_COMPAT
2938 static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2940 return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2942 #endif
2944 static const struct file_operations pkt_ctl_fops = {
2945 .open = nonseekable_open,
2946 .unlocked_ioctl = pkt_ctl_ioctl,
2947 #ifdef CONFIG_COMPAT
2948 .compat_ioctl = pkt_ctl_compat_ioctl,
2949 #endif
2950 .owner = THIS_MODULE,
2951 .llseek = no_llseek,
2954 static struct miscdevice pkt_misc = {
2955 .minor = MISC_DYNAMIC_MINOR,
2956 .name = DRIVER_NAME,
2957 .nodename = "pktcdvd/control",
2958 .fops = &pkt_ctl_fops
2961 static int __init pkt_init(void)
2963 int ret;
2965 mutex_init(&ctl_mutex);
2967 psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE,
2968 sizeof(struct packet_stacked_data));
2969 if (!psd_pool)
2970 return -ENOMEM;
2972 ret = register_blkdev(pktdev_major, DRIVER_NAME);
2973 if (ret < 0) {
2974 pr_err("unable to register block device\n");
2975 goto out2;
2977 if (!pktdev_major)
2978 pktdev_major = ret;
2980 ret = pkt_sysfs_init();
2981 if (ret)
2982 goto out;
2984 pkt_debugfs_init();
2986 ret = misc_register(&pkt_misc);
2987 if (ret) {
2988 pr_err("unable to register misc device\n");
2989 goto out_misc;
2992 pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL);
2994 return 0;
2996 out_misc:
2997 pkt_debugfs_cleanup();
2998 pkt_sysfs_cleanup();
2999 out:
3000 unregister_blkdev(pktdev_major, DRIVER_NAME);
3001 out2:
3002 mempool_destroy(psd_pool);
3003 return ret;
3006 static void __exit pkt_exit(void)
3008 remove_proc_entry("driver/"DRIVER_NAME, NULL);
3009 misc_deregister(&pkt_misc);
3011 pkt_debugfs_cleanup();
3012 pkt_sysfs_cleanup();
3014 unregister_blkdev(pktdev_major, DRIVER_NAME);
3015 mempool_destroy(psd_pool);
3018 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
3019 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
3020 MODULE_LICENSE("GPL");
3022 module_init(pkt_init);
3023 module_exit(pkt_exit);