mfd: wm8350-i2c: Make sure the i2c regmap functions are compiled
[linux/fpc-iii.git] / drivers / dma / ppc4xx / adma.c
blob370ff8265630cf05cdb64a571e9acb7d9064e08e
1 /*
2 * Copyright (C) 2006-2009 DENX Software Engineering.
4 * Author: Yuri Tikhonov <yur@emcraft.com>
6 * Further porting to arch/powerpc by
7 * Anatolij Gustschin <agust@denx.de>
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the Free
11 * Software Foundation; either version 2 of the License, or (at your option)
12 * any later version.
14 * This program is distributed in the hope that it will be useful, but WITHOUT
15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
17 * more details.
19 * You should have received a copy of the GNU General Public License along with
20 * this program; if not, write to the Free Software Foundation, Inc., 59
21 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 * The full GNU General Public License is included in this distribution in the
24 * file called COPYING.
28 * This driver supports the asynchrounous DMA copy and RAID engines available
29 * on the AMCC PPC440SPe Processors.
30 * Based on the Intel Xscale(R) family of I/O Processors (IOP 32x, 33x, 134x)
31 * ADMA driver written by D.Williams.
34 #include <linux/init.h>
35 #include <linux/module.h>
36 #include <linux/async_tx.h>
37 #include <linux/delay.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/spinlock.h>
40 #include <linux/interrupt.h>
41 #include <linux/slab.h>
42 #include <linux/uaccess.h>
43 #include <linux/proc_fs.h>
44 #include <linux/of.h>
45 #include <linux/of_platform.h>
46 #include <asm/dcr.h>
47 #include <asm/dcr-regs.h>
48 #include "adma.h"
49 #include "../dmaengine.h"
51 enum ppc_adma_init_code {
52 PPC_ADMA_INIT_OK = 0,
53 PPC_ADMA_INIT_MEMRES,
54 PPC_ADMA_INIT_MEMREG,
55 PPC_ADMA_INIT_ALLOC,
56 PPC_ADMA_INIT_COHERENT,
57 PPC_ADMA_INIT_CHANNEL,
58 PPC_ADMA_INIT_IRQ1,
59 PPC_ADMA_INIT_IRQ2,
60 PPC_ADMA_INIT_REGISTER
63 static char *ppc_adma_errors[] = {
64 [PPC_ADMA_INIT_OK] = "ok",
65 [PPC_ADMA_INIT_MEMRES] = "failed to get memory resource",
66 [PPC_ADMA_INIT_MEMREG] = "failed to request memory region",
67 [PPC_ADMA_INIT_ALLOC] = "failed to allocate memory for adev "
68 "structure",
69 [PPC_ADMA_INIT_COHERENT] = "failed to allocate coherent memory for "
70 "hardware descriptors",
71 [PPC_ADMA_INIT_CHANNEL] = "failed to allocate memory for channel",
72 [PPC_ADMA_INIT_IRQ1] = "failed to request first irq",
73 [PPC_ADMA_INIT_IRQ2] = "failed to request second irq",
74 [PPC_ADMA_INIT_REGISTER] = "failed to register dma async device",
77 static enum ppc_adma_init_code
78 ppc440spe_adma_devices[PPC440SPE_ADMA_ENGINES_NUM];
80 struct ppc_dma_chan_ref {
81 struct dma_chan *chan;
82 struct list_head node;
85 /* The list of channels exported by ppc440spe ADMA */
86 struct list_head
87 ppc440spe_adma_chan_list = LIST_HEAD_INIT(ppc440spe_adma_chan_list);
89 /* This flag is set when want to refetch the xor chain in the interrupt
90 * handler
92 static u32 do_xor_refetch;
94 /* Pointer to DMA0, DMA1 CP/CS FIFO */
95 static void *ppc440spe_dma_fifo_buf;
97 /* Pointers to last submitted to DMA0, DMA1 CDBs */
98 static struct ppc440spe_adma_desc_slot *chan_last_sub[3];
99 static struct ppc440spe_adma_desc_slot *chan_first_cdb[3];
101 /* Pointer to last linked and submitted xor CB */
102 static struct ppc440spe_adma_desc_slot *xor_last_linked;
103 static struct ppc440spe_adma_desc_slot *xor_last_submit;
105 /* This array is used in data-check operations for storing a pattern */
106 static char ppc440spe_qword[16];
108 static atomic_t ppc440spe_adma_err_irq_ref;
109 static dcr_host_t ppc440spe_mq_dcr_host;
110 static unsigned int ppc440spe_mq_dcr_len;
112 /* Since RXOR operations use the common register (MQ0_CF2H) for setting-up
113 * the block size in transactions, then we do not allow to activate more than
114 * only one RXOR transactions simultaneously. So use this var to store
115 * the information about is RXOR currently active (PPC440SPE_RXOR_RUN bit is
116 * set) or not (PPC440SPE_RXOR_RUN is clear).
118 static unsigned long ppc440spe_rxor_state;
120 /* These are used in enable & check routines
122 static u32 ppc440spe_r6_enabled;
123 static struct ppc440spe_adma_chan *ppc440spe_r6_tchan;
124 static struct completion ppc440spe_r6_test_comp;
126 static int ppc440spe_adma_dma2rxor_prep_src(
127 struct ppc440spe_adma_desc_slot *desc,
128 struct ppc440spe_rxor *cursor, int index,
129 int src_cnt, u32 addr);
130 static void ppc440spe_adma_dma2rxor_set_src(
131 struct ppc440spe_adma_desc_slot *desc,
132 int index, dma_addr_t addr);
133 static void ppc440spe_adma_dma2rxor_set_mult(
134 struct ppc440spe_adma_desc_slot *desc,
135 int index, u8 mult);
137 #ifdef ADMA_LL_DEBUG
138 #define ADMA_LL_DBG(x) ({ if (1) x; 0; })
139 #else
140 #define ADMA_LL_DBG(x) ({ if (0) x; 0; })
141 #endif
143 static void print_cb(struct ppc440spe_adma_chan *chan, void *block)
145 struct dma_cdb *cdb;
146 struct xor_cb *cb;
147 int i;
149 switch (chan->device->id) {
150 case 0:
151 case 1:
152 cdb = block;
154 pr_debug("CDB at %p [%d]:\n"
155 "\t attr 0x%02x opc 0x%02x cnt 0x%08x\n"
156 "\t sg1u 0x%08x sg1l 0x%08x\n"
157 "\t sg2u 0x%08x sg2l 0x%08x\n"
158 "\t sg3u 0x%08x sg3l 0x%08x\n",
159 cdb, chan->device->id,
160 cdb->attr, cdb->opc, le32_to_cpu(cdb->cnt),
161 le32_to_cpu(cdb->sg1u), le32_to_cpu(cdb->sg1l),
162 le32_to_cpu(cdb->sg2u), le32_to_cpu(cdb->sg2l),
163 le32_to_cpu(cdb->sg3u), le32_to_cpu(cdb->sg3l)
165 break;
166 case 2:
167 cb = block;
169 pr_debug("CB at %p [%d]:\n"
170 "\t cbc 0x%08x cbbc 0x%08x cbs 0x%08x\n"
171 "\t cbtah 0x%08x cbtal 0x%08x\n"
172 "\t cblah 0x%08x cblal 0x%08x\n",
173 cb, chan->device->id,
174 cb->cbc, cb->cbbc, cb->cbs,
175 cb->cbtah, cb->cbtal,
176 cb->cblah, cb->cblal);
177 for (i = 0; i < 16; i++) {
178 if (i && !cb->ops[i].h && !cb->ops[i].l)
179 continue;
180 pr_debug("\t ops[%2d]: h 0x%08x l 0x%08x\n",
181 i, cb->ops[i].h, cb->ops[i].l);
183 break;
187 static void print_cb_list(struct ppc440spe_adma_chan *chan,
188 struct ppc440spe_adma_desc_slot *iter)
190 for (; iter; iter = iter->hw_next)
191 print_cb(chan, iter->hw_desc);
194 static void prep_dma_xor_dbg(int id, dma_addr_t dst, dma_addr_t *src,
195 unsigned int src_cnt)
197 int i;
199 pr_debug("\n%s(%d):\nsrc: ", __func__, id);
200 for (i = 0; i < src_cnt; i++)
201 pr_debug("\t0x%016llx ", src[i]);
202 pr_debug("dst:\n\t0x%016llx\n", dst);
205 static void prep_dma_pq_dbg(int id, dma_addr_t *dst, dma_addr_t *src,
206 unsigned int src_cnt)
208 int i;
210 pr_debug("\n%s(%d):\nsrc: ", __func__, id);
211 for (i = 0; i < src_cnt; i++)
212 pr_debug("\t0x%016llx ", src[i]);
213 pr_debug("dst: ");
214 for (i = 0; i < 2; i++)
215 pr_debug("\t0x%016llx ", dst[i]);
218 static void prep_dma_pqzero_sum_dbg(int id, dma_addr_t *src,
219 unsigned int src_cnt,
220 const unsigned char *scf)
222 int i;
224 pr_debug("\n%s(%d):\nsrc(coef): ", __func__, id);
225 if (scf) {
226 for (i = 0; i < src_cnt; i++)
227 pr_debug("\t0x%016llx(0x%02x) ", src[i], scf[i]);
228 } else {
229 for (i = 0; i < src_cnt; i++)
230 pr_debug("\t0x%016llx(no) ", src[i]);
233 pr_debug("dst: ");
234 for (i = 0; i < 2; i++)
235 pr_debug("\t0x%016llx ", src[src_cnt + i]);
238 /******************************************************************************
239 * Command (Descriptor) Blocks low-level routines
240 ******************************************************************************/
242 * ppc440spe_desc_init_interrupt - initialize the descriptor for INTERRUPT
243 * pseudo operation
245 static void ppc440spe_desc_init_interrupt(struct ppc440spe_adma_desc_slot *desc,
246 struct ppc440spe_adma_chan *chan)
248 struct xor_cb *p;
250 switch (chan->device->id) {
251 case PPC440SPE_XOR_ID:
252 p = desc->hw_desc;
253 memset(desc->hw_desc, 0, sizeof(struct xor_cb));
254 /* NOP with Command Block Complete Enable */
255 p->cbc = XOR_CBCR_CBCE_BIT;
256 break;
257 case PPC440SPE_DMA0_ID:
258 case PPC440SPE_DMA1_ID:
259 memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
260 /* NOP with interrupt */
261 set_bit(PPC440SPE_DESC_INT, &desc->flags);
262 break;
263 default:
264 printk(KERN_ERR "Unsupported id %d in %s\n", chan->device->id,
265 __func__);
266 break;
271 * ppc440spe_desc_init_null_xor - initialize the descriptor for NULL XOR
272 * pseudo operation
274 static void ppc440spe_desc_init_null_xor(struct ppc440spe_adma_desc_slot *desc)
276 memset(desc->hw_desc, 0, sizeof(struct xor_cb));
277 desc->hw_next = NULL;
278 desc->src_cnt = 0;
279 desc->dst_cnt = 1;
283 * ppc440spe_desc_init_xor - initialize the descriptor for XOR operation
285 static void ppc440spe_desc_init_xor(struct ppc440spe_adma_desc_slot *desc,
286 int src_cnt, unsigned long flags)
288 struct xor_cb *hw_desc = desc->hw_desc;
290 memset(desc->hw_desc, 0, sizeof(struct xor_cb));
291 desc->hw_next = NULL;
292 desc->src_cnt = src_cnt;
293 desc->dst_cnt = 1;
295 hw_desc->cbc = XOR_CBCR_TGT_BIT | src_cnt;
296 if (flags & DMA_PREP_INTERRUPT)
297 /* Enable interrupt on completion */
298 hw_desc->cbc |= XOR_CBCR_CBCE_BIT;
302 * ppc440spe_desc_init_dma2pq - initialize the descriptor for PQ
303 * operation in DMA2 controller
305 static void ppc440spe_desc_init_dma2pq(struct ppc440spe_adma_desc_slot *desc,
306 int dst_cnt, int src_cnt, unsigned long flags)
308 struct xor_cb *hw_desc = desc->hw_desc;
310 memset(desc->hw_desc, 0, sizeof(struct xor_cb));
311 desc->hw_next = NULL;
312 desc->src_cnt = src_cnt;
313 desc->dst_cnt = dst_cnt;
314 memset(desc->reverse_flags, 0, sizeof(desc->reverse_flags));
315 desc->descs_per_op = 0;
317 hw_desc->cbc = XOR_CBCR_TGT_BIT;
318 if (flags & DMA_PREP_INTERRUPT)
319 /* Enable interrupt on completion */
320 hw_desc->cbc |= XOR_CBCR_CBCE_BIT;
323 #define DMA_CTRL_FLAGS_LAST DMA_PREP_FENCE
324 #define DMA_PREP_ZERO_P (DMA_CTRL_FLAGS_LAST << 1)
325 #define DMA_PREP_ZERO_Q (DMA_PREP_ZERO_P << 1)
328 * ppc440spe_desc_init_dma01pq - initialize the descriptors for PQ operation
329 * with DMA0/1
331 static void ppc440spe_desc_init_dma01pq(struct ppc440spe_adma_desc_slot *desc,
332 int dst_cnt, int src_cnt, unsigned long flags,
333 unsigned long op)
335 struct dma_cdb *hw_desc;
336 struct ppc440spe_adma_desc_slot *iter;
337 u8 dopc;
339 /* Common initialization of a PQ descriptors chain */
340 set_bits(op, &desc->flags);
341 desc->src_cnt = src_cnt;
342 desc->dst_cnt = dst_cnt;
344 /* WXOR MULTICAST if both P and Q are being computed
345 * MV_SG1_SG2 if Q only
347 dopc = (desc->dst_cnt == DMA_DEST_MAX_NUM) ?
348 DMA_CDB_OPC_MULTICAST : DMA_CDB_OPC_MV_SG1_SG2;
350 list_for_each_entry(iter, &desc->group_list, chain_node) {
351 hw_desc = iter->hw_desc;
352 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
354 if (likely(!list_is_last(&iter->chain_node,
355 &desc->group_list))) {
356 /* set 'next' pointer */
357 iter->hw_next = list_entry(iter->chain_node.next,
358 struct ppc440spe_adma_desc_slot, chain_node);
359 clear_bit(PPC440SPE_DESC_INT, &iter->flags);
360 } else {
361 /* this is the last descriptor.
362 * this slot will be pasted from ADMA level
363 * each time it wants to configure parameters
364 * of the transaction (src, dst, ...)
366 iter->hw_next = NULL;
367 if (flags & DMA_PREP_INTERRUPT)
368 set_bit(PPC440SPE_DESC_INT, &iter->flags);
369 else
370 clear_bit(PPC440SPE_DESC_INT, &iter->flags);
374 /* Set OPS depending on WXOR/RXOR type of operation */
375 if (!test_bit(PPC440SPE_DESC_RXOR, &desc->flags)) {
376 /* This is a WXOR only chain:
377 * - first descriptors are for zeroing destinations
378 * if PPC440SPE_ZERO_P/Q set;
379 * - descriptors remained are for GF-XOR operations.
381 iter = list_first_entry(&desc->group_list,
382 struct ppc440spe_adma_desc_slot,
383 chain_node);
385 if (test_bit(PPC440SPE_ZERO_P, &desc->flags)) {
386 hw_desc = iter->hw_desc;
387 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
388 iter = list_first_entry(&iter->chain_node,
389 struct ppc440spe_adma_desc_slot,
390 chain_node);
393 if (test_bit(PPC440SPE_ZERO_Q, &desc->flags)) {
394 hw_desc = iter->hw_desc;
395 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
396 iter = list_first_entry(&iter->chain_node,
397 struct ppc440spe_adma_desc_slot,
398 chain_node);
401 list_for_each_entry_from(iter, &desc->group_list, chain_node) {
402 hw_desc = iter->hw_desc;
403 hw_desc->opc = dopc;
405 } else {
406 /* This is either RXOR-only or mixed RXOR/WXOR */
408 /* The first 1 or 2 slots in chain are always RXOR,
409 * if need to calculate P & Q, then there are two
410 * RXOR slots; if only P or only Q, then there is one
412 iter = list_first_entry(&desc->group_list,
413 struct ppc440spe_adma_desc_slot,
414 chain_node);
415 hw_desc = iter->hw_desc;
416 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
418 if (desc->dst_cnt == DMA_DEST_MAX_NUM) {
419 iter = list_first_entry(&iter->chain_node,
420 struct ppc440spe_adma_desc_slot,
421 chain_node);
422 hw_desc = iter->hw_desc;
423 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
426 /* The remaining descs (if any) are WXORs */
427 if (test_bit(PPC440SPE_DESC_WXOR, &desc->flags)) {
428 iter = list_first_entry(&iter->chain_node,
429 struct ppc440spe_adma_desc_slot,
430 chain_node);
431 list_for_each_entry_from(iter, &desc->group_list,
432 chain_node) {
433 hw_desc = iter->hw_desc;
434 hw_desc->opc = dopc;
441 * ppc440spe_desc_init_dma01pqzero_sum - initialize the descriptor
442 * for PQ_ZERO_SUM operation
444 static void ppc440spe_desc_init_dma01pqzero_sum(
445 struct ppc440spe_adma_desc_slot *desc,
446 int dst_cnt, int src_cnt)
448 struct dma_cdb *hw_desc;
449 struct ppc440spe_adma_desc_slot *iter;
450 int i = 0;
451 u8 dopc = (dst_cnt == 2) ? DMA_CDB_OPC_MULTICAST :
452 DMA_CDB_OPC_MV_SG1_SG2;
454 * Initialize starting from 2nd or 3rd descriptor dependent
455 * on dst_cnt. First one or two slots are for cloning P
456 * and/or Q to chan->pdest and/or chan->qdest as we have
457 * to preserve original P/Q.
459 iter = list_first_entry(&desc->group_list,
460 struct ppc440spe_adma_desc_slot, chain_node);
461 iter = list_entry(iter->chain_node.next,
462 struct ppc440spe_adma_desc_slot, chain_node);
464 if (dst_cnt > 1) {
465 iter = list_entry(iter->chain_node.next,
466 struct ppc440spe_adma_desc_slot, chain_node);
468 /* initialize each source descriptor in chain */
469 list_for_each_entry_from(iter, &desc->group_list, chain_node) {
470 hw_desc = iter->hw_desc;
471 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
472 iter->src_cnt = 0;
473 iter->dst_cnt = 0;
475 /* This is a ZERO_SUM operation:
476 * - <src_cnt> descriptors starting from 2nd or 3rd
477 * descriptor are for GF-XOR operations;
478 * - remaining <dst_cnt> descriptors are for checking the result
480 if (i++ < src_cnt)
481 /* MV_SG1_SG2 if only Q is being verified
482 * MULTICAST if both P and Q are being verified
484 hw_desc->opc = dopc;
485 else
486 /* DMA_CDB_OPC_DCHECK128 operation */
487 hw_desc->opc = DMA_CDB_OPC_DCHECK128;
489 if (likely(!list_is_last(&iter->chain_node,
490 &desc->group_list))) {
491 /* set 'next' pointer */
492 iter->hw_next = list_entry(iter->chain_node.next,
493 struct ppc440spe_adma_desc_slot,
494 chain_node);
495 } else {
496 /* this is the last descriptor.
497 * this slot will be pasted from ADMA level
498 * each time it wants to configure parameters
499 * of the transaction (src, dst, ...)
501 iter->hw_next = NULL;
502 /* always enable interrupt generation since we get
503 * the status of pqzero from the handler
505 set_bit(PPC440SPE_DESC_INT, &iter->flags);
508 desc->src_cnt = src_cnt;
509 desc->dst_cnt = dst_cnt;
513 * ppc440spe_desc_init_memcpy - initialize the descriptor for MEMCPY operation
515 static void ppc440spe_desc_init_memcpy(struct ppc440spe_adma_desc_slot *desc,
516 unsigned long flags)
518 struct dma_cdb *hw_desc = desc->hw_desc;
520 memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
521 desc->hw_next = NULL;
522 desc->src_cnt = 1;
523 desc->dst_cnt = 1;
525 if (flags & DMA_PREP_INTERRUPT)
526 set_bit(PPC440SPE_DESC_INT, &desc->flags);
527 else
528 clear_bit(PPC440SPE_DESC_INT, &desc->flags);
530 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
534 * ppc440spe_desc_init_memset - initialize the descriptor for MEMSET operation
536 static void ppc440spe_desc_init_memset(struct ppc440spe_adma_desc_slot *desc,
537 int value, unsigned long flags)
539 struct dma_cdb *hw_desc = desc->hw_desc;
541 memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
542 desc->hw_next = NULL;
543 desc->src_cnt = 1;
544 desc->dst_cnt = 1;
546 if (flags & DMA_PREP_INTERRUPT)
547 set_bit(PPC440SPE_DESC_INT, &desc->flags);
548 else
549 clear_bit(PPC440SPE_DESC_INT, &desc->flags);
551 hw_desc->sg1u = hw_desc->sg1l = cpu_to_le32((u32)value);
552 hw_desc->sg3u = hw_desc->sg3l = cpu_to_le32((u32)value);
553 hw_desc->opc = DMA_CDB_OPC_DFILL128;
557 * ppc440spe_desc_set_src_addr - set source address into the descriptor
559 static void ppc440spe_desc_set_src_addr(struct ppc440spe_adma_desc_slot *desc,
560 struct ppc440spe_adma_chan *chan,
561 int src_idx, dma_addr_t addrh,
562 dma_addr_t addrl)
564 struct dma_cdb *dma_hw_desc;
565 struct xor_cb *xor_hw_desc;
566 phys_addr_t addr64, tmplow, tmphi;
568 switch (chan->device->id) {
569 case PPC440SPE_DMA0_ID:
570 case PPC440SPE_DMA1_ID:
571 if (!addrh) {
572 addr64 = addrl;
573 tmphi = (addr64 >> 32);
574 tmplow = (addr64 & 0xFFFFFFFF);
575 } else {
576 tmphi = addrh;
577 tmplow = addrl;
579 dma_hw_desc = desc->hw_desc;
580 dma_hw_desc->sg1l = cpu_to_le32((u32)tmplow);
581 dma_hw_desc->sg1u |= cpu_to_le32((u32)tmphi);
582 break;
583 case PPC440SPE_XOR_ID:
584 xor_hw_desc = desc->hw_desc;
585 xor_hw_desc->ops[src_idx].l = addrl;
586 xor_hw_desc->ops[src_idx].h |= addrh;
587 break;
592 * ppc440spe_desc_set_src_mult - set source address mult into the descriptor
594 static void ppc440spe_desc_set_src_mult(struct ppc440spe_adma_desc_slot *desc,
595 struct ppc440spe_adma_chan *chan, u32 mult_index,
596 int sg_index, unsigned char mult_value)
598 struct dma_cdb *dma_hw_desc;
599 struct xor_cb *xor_hw_desc;
600 u32 *psgu;
602 switch (chan->device->id) {
603 case PPC440SPE_DMA0_ID:
604 case PPC440SPE_DMA1_ID:
605 dma_hw_desc = desc->hw_desc;
607 switch (sg_index) {
608 /* for RXOR operations set multiplier
609 * into source cued address
611 case DMA_CDB_SG_SRC:
612 psgu = &dma_hw_desc->sg1u;
613 break;
614 /* for WXOR operations set multiplier
615 * into destination cued address(es)
617 case DMA_CDB_SG_DST1:
618 psgu = &dma_hw_desc->sg2u;
619 break;
620 case DMA_CDB_SG_DST2:
621 psgu = &dma_hw_desc->sg3u;
622 break;
623 default:
624 BUG();
627 *psgu |= cpu_to_le32(mult_value << mult_index);
628 break;
629 case PPC440SPE_XOR_ID:
630 xor_hw_desc = desc->hw_desc;
631 break;
632 default:
633 BUG();
638 * ppc440spe_desc_set_dest_addr - set destination address into the descriptor
640 static void ppc440spe_desc_set_dest_addr(struct ppc440spe_adma_desc_slot *desc,
641 struct ppc440spe_adma_chan *chan,
642 dma_addr_t addrh, dma_addr_t addrl,
643 u32 dst_idx)
645 struct dma_cdb *dma_hw_desc;
646 struct xor_cb *xor_hw_desc;
647 phys_addr_t addr64, tmphi, tmplow;
648 u32 *psgu, *psgl;
650 switch (chan->device->id) {
651 case PPC440SPE_DMA0_ID:
652 case PPC440SPE_DMA1_ID:
653 if (!addrh) {
654 addr64 = addrl;
655 tmphi = (addr64 >> 32);
656 tmplow = (addr64 & 0xFFFFFFFF);
657 } else {
658 tmphi = addrh;
659 tmplow = addrl;
661 dma_hw_desc = desc->hw_desc;
663 psgu = dst_idx ? &dma_hw_desc->sg3u : &dma_hw_desc->sg2u;
664 psgl = dst_idx ? &dma_hw_desc->sg3l : &dma_hw_desc->sg2l;
666 *psgl = cpu_to_le32((u32)tmplow);
667 *psgu |= cpu_to_le32((u32)tmphi);
668 break;
669 case PPC440SPE_XOR_ID:
670 xor_hw_desc = desc->hw_desc;
671 xor_hw_desc->cbtal = addrl;
672 xor_hw_desc->cbtah |= addrh;
673 break;
678 * ppc440spe_desc_set_byte_count - set number of data bytes involved
679 * into the operation
681 static void ppc440spe_desc_set_byte_count(struct ppc440spe_adma_desc_slot *desc,
682 struct ppc440spe_adma_chan *chan,
683 u32 byte_count)
685 struct dma_cdb *dma_hw_desc;
686 struct xor_cb *xor_hw_desc;
688 switch (chan->device->id) {
689 case PPC440SPE_DMA0_ID:
690 case PPC440SPE_DMA1_ID:
691 dma_hw_desc = desc->hw_desc;
692 dma_hw_desc->cnt = cpu_to_le32(byte_count);
693 break;
694 case PPC440SPE_XOR_ID:
695 xor_hw_desc = desc->hw_desc;
696 xor_hw_desc->cbbc = byte_count;
697 break;
702 * ppc440spe_desc_set_rxor_block_size - set RXOR block size
704 static inline void ppc440spe_desc_set_rxor_block_size(u32 byte_count)
706 /* assume that byte_count is aligned on the 512-boundary;
707 * thus write it directly to the register (bits 23:31 are
708 * reserved there).
710 dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CF2H, byte_count);
714 * ppc440spe_desc_set_dcheck - set CHECK pattern
716 static void ppc440spe_desc_set_dcheck(struct ppc440spe_adma_desc_slot *desc,
717 struct ppc440spe_adma_chan *chan, u8 *qword)
719 struct dma_cdb *dma_hw_desc;
721 switch (chan->device->id) {
722 case PPC440SPE_DMA0_ID:
723 case PPC440SPE_DMA1_ID:
724 dma_hw_desc = desc->hw_desc;
725 iowrite32(qword[0], &dma_hw_desc->sg3l);
726 iowrite32(qword[4], &dma_hw_desc->sg3u);
727 iowrite32(qword[8], &dma_hw_desc->sg2l);
728 iowrite32(qword[12], &dma_hw_desc->sg2u);
729 break;
730 default:
731 BUG();
736 * ppc440spe_xor_set_link - set link address in xor CB
738 static void ppc440spe_xor_set_link(struct ppc440spe_adma_desc_slot *prev_desc,
739 struct ppc440spe_adma_desc_slot *next_desc)
741 struct xor_cb *xor_hw_desc = prev_desc->hw_desc;
743 if (unlikely(!next_desc || !(next_desc->phys))) {
744 printk(KERN_ERR "%s: next_desc=0x%p; next_desc->phys=0x%llx\n",
745 __func__, next_desc,
746 next_desc ? next_desc->phys : 0);
747 BUG();
750 xor_hw_desc->cbs = 0;
751 xor_hw_desc->cblal = next_desc->phys;
752 xor_hw_desc->cblah = 0;
753 xor_hw_desc->cbc |= XOR_CBCR_LNK_BIT;
757 * ppc440spe_desc_set_link - set the address of descriptor following this
758 * descriptor in chain
760 static void ppc440spe_desc_set_link(struct ppc440spe_adma_chan *chan,
761 struct ppc440spe_adma_desc_slot *prev_desc,
762 struct ppc440spe_adma_desc_slot *next_desc)
764 unsigned long flags;
765 struct ppc440spe_adma_desc_slot *tail = next_desc;
767 if (unlikely(!prev_desc || !next_desc ||
768 (prev_desc->hw_next && prev_desc->hw_next != next_desc))) {
769 /* If previous next is overwritten something is wrong.
770 * though we may refetch from append to initiate list
771 * processing; in this case - it's ok.
773 printk(KERN_ERR "%s: prev_desc=0x%p; next_desc=0x%p; "
774 "prev->hw_next=0x%p\n", __func__, prev_desc,
775 next_desc, prev_desc ? prev_desc->hw_next : 0);
776 BUG();
779 local_irq_save(flags);
781 /* do s/w chaining both for DMA and XOR descriptors */
782 prev_desc->hw_next = next_desc;
784 switch (chan->device->id) {
785 case PPC440SPE_DMA0_ID:
786 case PPC440SPE_DMA1_ID:
787 break;
788 case PPC440SPE_XOR_ID:
789 /* bind descriptor to the chain */
790 while (tail->hw_next)
791 tail = tail->hw_next;
792 xor_last_linked = tail;
794 if (prev_desc == xor_last_submit)
795 /* do not link to the last submitted CB */
796 break;
797 ppc440spe_xor_set_link(prev_desc, next_desc);
798 break;
801 local_irq_restore(flags);
805 * ppc440spe_desc_get_src_addr - extract the source address from the descriptor
807 static u32 ppc440spe_desc_get_src_addr(struct ppc440spe_adma_desc_slot *desc,
808 struct ppc440spe_adma_chan *chan, int src_idx)
810 struct dma_cdb *dma_hw_desc;
811 struct xor_cb *xor_hw_desc;
813 switch (chan->device->id) {
814 case PPC440SPE_DMA0_ID:
815 case PPC440SPE_DMA1_ID:
816 dma_hw_desc = desc->hw_desc;
817 /* May have 0, 1, 2, or 3 sources */
818 switch (dma_hw_desc->opc) {
819 case DMA_CDB_OPC_NO_OP:
820 case DMA_CDB_OPC_DFILL128:
821 return 0;
822 case DMA_CDB_OPC_DCHECK128:
823 if (unlikely(src_idx)) {
824 printk(KERN_ERR "%s: try to get %d source for"
825 " DCHECK128\n", __func__, src_idx);
826 BUG();
828 return le32_to_cpu(dma_hw_desc->sg1l);
829 case DMA_CDB_OPC_MULTICAST:
830 case DMA_CDB_OPC_MV_SG1_SG2:
831 if (unlikely(src_idx > 2)) {
832 printk(KERN_ERR "%s: try to get %d source from"
833 " DMA descr\n", __func__, src_idx);
834 BUG();
836 if (src_idx) {
837 if (le32_to_cpu(dma_hw_desc->sg1u) &
838 DMA_CUED_XOR_WIN_MSK) {
839 u8 region;
841 if (src_idx == 1)
842 return le32_to_cpu(
843 dma_hw_desc->sg1l) +
844 desc->unmap_len;
846 region = (le32_to_cpu(
847 dma_hw_desc->sg1u)) >>
848 DMA_CUED_REGION_OFF;
850 region &= DMA_CUED_REGION_MSK;
851 switch (region) {
852 case DMA_RXOR123:
853 return le32_to_cpu(
854 dma_hw_desc->sg1l) +
855 (desc->unmap_len << 1);
856 case DMA_RXOR124:
857 return le32_to_cpu(
858 dma_hw_desc->sg1l) +
859 (desc->unmap_len * 3);
860 case DMA_RXOR125:
861 return le32_to_cpu(
862 dma_hw_desc->sg1l) +
863 (desc->unmap_len << 2);
864 default:
865 printk(KERN_ERR
866 "%s: try to"
867 " get src3 for region %02x"
868 "PPC440SPE_DESC_RXOR12?\n",
869 __func__, region);
870 BUG();
872 } else {
873 printk(KERN_ERR
874 "%s: try to get %d"
875 " source for non-cued descr\n",
876 __func__, src_idx);
877 BUG();
880 return le32_to_cpu(dma_hw_desc->sg1l);
881 default:
882 printk(KERN_ERR "%s: unknown OPC 0x%02x\n",
883 __func__, dma_hw_desc->opc);
884 BUG();
886 return le32_to_cpu(dma_hw_desc->sg1l);
887 case PPC440SPE_XOR_ID:
888 /* May have up to 16 sources */
889 xor_hw_desc = desc->hw_desc;
890 return xor_hw_desc->ops[src_idx].l;
892 return 0;
896 * ppc440spe_desc_get_dest_addr - extract the destination address from the
897 * descriptor
899 static u32 ppc440spe_desc_get_dest_addr(struct ppc440spe_adma_desc_slot *desc,
900 struct ppc440spe_adma_chan *chan, int idx)
902 struct dma_cdb *dma_hw_desc;
903 struct xor_cb *xor_hw_desc;
905 switch (chan->device->id) {
906 case PPC440SPE_DMA0_ID:
907 case PPC440SPE_DMA1_ID:
908 dma_hw_desc = desc->hw_desc;
910 if (likely(!idx))
911 return le32_to_cpu(dma_hw_desc->sg2l);
912 return le32_to_cpu(dma_hw_desc->sg3l);
913 case PPC440SPE_XOR_ID:
914 xor_hw_desc = desc->hw_desc;
915 return xor_hw_desc->cbtal;
917 return 0;
921 * ppc440spe_desc_get_src_num - extract the number of source addresses from
922 * the descriptor
924 static u32 ppc440spe_desc_get_src_num(struct ppc440spe_adma_desc_slot *desc,
925 struct ppc440spe_adma_chan *chan)
927 struct dma_cdb *dma_hw_desc;
928 struct xor_cb *xor_hw_desc;
930 switch (chan->device->id) {
931 case PPC440SPE_DMA0_ID:
932 case PPC440SPE_DMA1_ID:
933 dma_hw_desc = desc->hw_desc;
935 switch (dma_hw_desc->opc) {
936 case DMA_CDB_OPC_NO_OP:
937 case DMA_CDB_OPC_DFILL128:
938 return 0;
939 case DMA_CDB_OPC_DCHECK128:
940 return 1;
941 case DMA_CDB_OPC_MV_SG1_SG2:
942 case DMA_CDB_OPC_MULTICAST:
944 * Only for RXOR operations we have more than
945 * one source
947 if (le32_to_cpu(dma_hw_desc->sg1u) &
948 DMA_CUED_XOR_WIN_MSK) {
949 /* RXOR op, there are 2 or 3 sources */
950 if (((le32_to_cpu(dma_hw_desc->sg1u) >>
951 DMA_CUED_REGION_OFF) &
952 DMA_CUED_REGION_MSK) == DMA_RXOR12) {
953 /* RXOR 1-2 */
954 return 2;
955 } else {
956 /* RXOR 1-2-3/1-2-4/1-2-5 */
957 return 3;
960 return 1;
961 default:
962 printk(KERN_ERR "%s: unknown OPC 0x%02x\n",
963 __func__, dma_hw_desc->opc);
964 BUG();
966 case PPC440SPE_XOR_ID:
967 /* up to 16 sources */
968 xor_hw_desc = desc->hw_desc;
969 return xor_hw_desc->cbc & XOR_CDCR_OAC_MSK;
970 default:
971 BUG();
973 return 0;
977 * ppc440spe_desc_get_dst_num - get the number of destination addresses in
978 * this descriptor
980 static u32 ppc440spe_desc_get_dst_num(struct ppc440spe_adma_desc_slot *desc,
981 struct ppc440spe_adma_chan *chan)
983 struct dma_cdb *dma_hw_desc;
985 switch (chan->device->id) {
986 case PPC440SPE_DMA0_ID:
987 case PPC440SPE_DMA1_ID:
988 /* May be 1 or 2 destinations */
989 dma_hw_desc = desc->hw_desc;
990 switch (dma_hw_desc->opc) {
991 case DMA_CDB_OPC_NO_OP:
992 case DMA_CDB_OPC_DCHECK128:
993 return 0;
994 case DMA_CDB_OPC_MV_SG1_SG2:
995 case DMA_CDB_OPC_DFILL128:
996 return 1;
997 case DMA_CDB_OPC_MULTICAST:
998 if (desc->dst_cnt == 2)
999 return 2;
1000 else
1001 return 1;
1002 default:
1003 printk(KERN_ERR "%s: unknown OPC 0x%02x\n",
1004 __func__, dma_hw_desc->opc);
1005 BUG();
1007 case PPC440SPE_XOR_ID:
1008 /* Always only 1 destination */
1009 return 1;
1010 default:
1011 BUG();
1013 return 0;
1017 * ppc440spe_desc_get_link - get the address of the descriptor that
1018 * follows this one
1020 static inline u32 ppc440spe_desc_get_link(struct ppc440spe_adma_desc_slot *desc,
1021 struct ppc440spe_adma_chan *chan)
1023 if (!desc->hw_next)
1024 return 0;
1026 return desc->hw_next->phys;
1030 * ppc440spe_desc_is_aligned - check alignment
1032 static inline int ppc440spe_desc_is_aligned(
1033 struct ppc440spe_adma_desc_slot *desc, int num_slots)
1035 return (desc->idx & (num_slots - 1)) ? 0 : 1;
1039 * ppc440spe_chan_xor_slot_count - get the number of slots necessary for
1040 * XOR operation
1042 static int ppc440spe_chan_xor_slot_count(size_t len, int src_cnt,
1043 int *slots_per_op)
1045 int slot_cnt;
1047 /* each XOR descriptor provides up to 16 source operands */
1048 slot_cnt = *slots_per_op = (src_cnt + XOR_MAX_OPS - 1)/XOR_MAX_OPS;
1050 if (likely(len <= PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT))
1051 return slot_cnt;
1053 printk(KERN_ERR "%s: len %d > max %d !!\n",
1054 __func__, len, PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
1055 BUG();
1056 return slot_cnt;
1060 * ppc440spe_dma2_pq_slot_count - get the number of slots necessary for
1061 * DMA2 PQ operation
1063 static int ppc440spe_dma2_pq_slot_count(dma_addr_t *srcs,
1064 int src_cnt, size_t len)
1066 signed long long order = 0;
1067 int state = 0;
1068 int addr_count = 0;
1069 int i;
1070 for (i = 1; i < src_cnt; i++) {
1071 dma_addr_t cur_addr = srcs[i];
1072 dma_addr_t old_addr = srcs[i-1];
1073 switch (state) {
1074 case 0:
1075 if (cur_addr == old_addr + len) {
1076 /* direct RXOR */
1077 order = 1;
1078 state = 1;
1079 if (i == src_cnt-1)
1080 addr_count++;
1081 } else if (old_addr == cur_addr + len) {
1082 /* reverse RXOR */
1083 order = -1;
1084 state = 1;
1085 if (i == src_cnt-1)
1086 addr_count++;
1087 } else {
1088 state = 3;
1090 break;
1091 case 1:
1092 if (i == src_cnt-2 || (order == -1
1093 && cur_addr != old_addr - len)) {
1094 order = 0;
1095 state = 0;
1096 addr_count++;
1097 } else if (cur_addr == old_addr + len*order) {
1098 state = 2;
1099 if (i == src_cnt-1)
1100 addr_count++;
1101 } else if (cur_addr == old_addr + 2*len) {
1102 state = 2;
1103 if (i == src_cnt-1)
1104 addr_count++;
1105 } else if (cur_addr == old_addr + 3*len) {
1106 state = 2;
1107 if (i == src_cnt-1)
1108 addr_count++;
1109 } else {
1110 order = 0;
1111 state = 0;
1112 addr_count++;
1114 break;
1115 case 2:
1116 order = 0;
1117 state = 0;
1118 addr_count++;
1119 break;
1121 if (state == 3)
1122 break;
1124 if (src_cnt <= 1 || (state != 1 && state != 2)) {
1125 pr_err("%s: src_cnt=%d, state=%d, addr_count=%d, order=%lld\n",
1126 __func__, src_cnt, state, addr_count, order);
1127 for (i = 0; i < src_cnt; i++)
1128 pr_err("\t[%d] 0x%llx \n", i, srcs[i]);
1129 BUG();
1132 return (addr_count + XOR_MAX_OPS - 1) / XOR_MAX_OPS;
1136 /******************************************************************************
1137 * ADMA channel low-level routines
1138 ******************************************************************************/
1140 static u32
1141 ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan);
1142 static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan);
1145 * ppc440spe_adma_device_clear_eot_status - interrupt ack to XOR or DMA engine
1147 static void ppc440spe_adma_device_clear_eot_status(
1148 struct ppc440spe_adma_chan *chan)
1150 struct dma_regs *dma_reg;
1151 struct xor_regs *xor_reg;
1152 u8 *p = chan->device->dma_desc_pool_virt;
1153 struct dma_cdb *cdb;
1154 u32 rv, i;
1156 switch (chan->device->id) {
1157 case PPC440SPE_DMA0_ID:
1158 case PPC440SPE_DMA1_ID:
1159 /* read FIFO to ack */
1160 dma_reg = chan->device->dma_reg;
1161 while ((rv = ioread32(&dma_reg->csfpl))) {
1162 i = rv & DMA_CDB_ADDR_MSK;
1163 cdb = (struct dma_cdb *)&p[i -
1164 (u32)chan->device->dma_desc_pool];
1166 /* Clear opcode to ack. This is necessary for
1167 * ZeroSum operations only
1169 cdb->opc = 0;
1171 if (test_bit(PPC440SPE_RXOR_RUN,
1172 &ppc440spe_rxor_state)) {
1173 /* probably this is a completed RXOR op,
1174 * get pointer to CDB using the fact that
1175 * physical and virtual addresses of CDB
1176 * in pools have the same offsets
1178 if (le32_to_cpu(cdb->sg1u) &
1179 DMA_CUED_XOR_BASE) {
1180 /* this is a RXOR */
1181 clear_bit(PPC440SPE_RXOR_RUN,
1182 &ppc440spe_rxor_state);
1186 if (rv & DMA_CDB_STATUS_MSK) {
1187 /* ZeroSum check failed
1189 struct ppc440spe_adma_desc_slot *iter;
1190 dma_addr_t phys = rv & ~DMA_CDB_MSK;
1193 * Update the status of corresponding
1194 * descriptor.
1196 list_for_each_entry(iter, &chan->chain,
1197 chain_node) {
1198 if (iter->phys == phys)
1199 break;
1202 * if cannot find the corresponding
1203 * slot it's a bug
1205 BUG_ON(&iter->chain_node == &chan->chain);
1207 if (iter->xor_check_result) {
1208 if (test_bit(PPC440SPE_DESC_PCHECK,
1209 &iter->flags)) {
1210 *iter->xor_check_result |=
1211 SUM_CHECK_P_RESULT;
1212 } else
1213 if (test_bit(PPC440SPE_DESC_QCHECK,
1214 &iter->flags)) {
1215 *iter->xor_check_result |=
1216 SUM_CHECK_Q_RESULT;
1217 } else
1218 BUG();
1223 rv = ioread32(&dma_reg->dsts);
1224 if (rv) {
1225 pr_err("DMA%d err status: 0x%x\n",
1226 chan->device->id, rv);
1227 /* write back to clear */
1228 iowrite32(rv, &dma_reg->dsts);
1230 break;
1231 case PPC440SPE_XOR_ID:
1232 /* reset status bits to ack */
1233 xor_reg = chan->device->xor_reg;
1234 rv = ioread32be(&xor_reg->sr);
1235 iowrite32be(rv, &xor_reg->sr);
1237 if (rv & (XOR_IE_ICBIE_BIT|XOR_IE_ICIE_BIT|XOR_IE_RPTIE_BIT)) {
1238 if (rv & XOR_IE_RPTIE_BIT) {
1239 /* Read PLB Timeout Error.
1240 * Try to resubmit the CB
1242 u32 val = ioread32be(&xor_reg->ccbalr);
1244 iowrite32be(val, &xor_reg->cblalr);
1246 val = ioread32be(&xor_reg->crsr);
1247 iowrite32be(val | XOR_CRSR_XAE_BIT,
1248 &xor_reg->crsr);
1249 } else
1250 pr_err("XOR ERR 0x%x status\n", rv);
1251 break;
1254 /* if the XORcore is idle, but there are unprocessed CBs
1255 * then refetch the s/w chain here
1257 if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) &&
1258 do_xor_refetch)
1259 ppc440spe_chan_append(chan);
1260 break;
1265 * ppc440spe_chan_is_busy - get the channel status
1267 static int ppc440spe_chan_is_busy(struct ppc440spe_adma_chan *chan)
1269 struct dma_regs *dma_reg;
1270 struct xor_regs *xor_reg;
1271 int busy = 0;
1273 switch (chan->device->id) {
1274 case PPC440SPE_DMA0_ID:
1275 case PPC440SPE_DMA1_ID:
1276 dma_reg = chan->device->dma_reg;
1277 /* if command FIFO's head and tail pointers are equal and
1278 * status tail is the same as command, then channel is free
1280 if (ioread16(&dma_reg->cpfhp) != ioread16(&dma_reg->cpftp) ||
1281 ioread16(&dma_reg->cpftp) != ioread16(&dma_reg->csftp))
1282 busy = 1;
1283 break;
1284 case PPC440SPE_XOR_ID:
1285 /* use the special status bit for the XORcore
1287 xor_reg = chan->device->xor_reg;
1288 busy = (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) ? 1 : 0;
1289 break;
1292 return busy;
1296 * ppc440spe_chan_set_first_xor_descriptor - init XORcore chain
1298 static void ppc440spe_chan_set_first_xor_descriptor(
1299 struct ppc440spe_adma_chan *chan,
1300 struct ppc440spe_adma_desc_slot *next_desc)
1302 struct xor_regs *xor_reg = chan->device->xor_reg;
1304 if (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)
1305 printk(KERN_INFO "%s: Warn: XORcore is running "
1306 "when try to set the first CDB!\n",
1307 __func__);
1309 xor_last_submit = xor_last_linked = next_desc;
1311 iowrite32be(XOR_CRSR_64BA_BIT, &xor_reg->crsr);
1313 iowrite32be(next_desc->phys, &xor_reg->cblalr);
1314 iowrite32be(0, &xor_reg->cblahr);
1315 iowrite32be(ioread32be(&xor_reg->cbcr) | XOR_CBCR_LNK_BIT,
1316 &xor_reg->cbcr);
1318 chan->hw_chain_inited = 1;
1322 * ppc440spe_dma_put_desc - put DMA0,1 descriptor to FIFO.
1323 * called with irqs disabled
1325 static void ppc440spe_dma_put_desc(struct ppc440spe_adma_chan *chan,
1326 struct ppc440spe_adma_desc_slot *desc)
1328 u32 pcdb;
1329 struct dma_regs *dma_reg = chan->device->dma_reg;
1331 pcdb = desc->phys;
1332 if (!test_bit(PPC440SPE_DESC_INT, &desc->flags))
1333 pcdb |= DMA_CDB_NO_INT;
1335 chan_last_sub[chan->device->id] = desc;
1337 ADMA_LL_DBG(print_cb(chan, desc->hw_desc));
1339 iowrite32(pcdb, &dma_reg->cpfpl);
1343 * ppc440spe_chan_append - update the h/w chain in the channel
1345 static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan)
1347 struct xor_regs *xor_reg;
1348 struct ppc440spe_adma_desc_slot *iter;
1349 struct xor_cb *xcb;
1350 u32 cur_desc;
1351 unsigned long flags;
1353 local_irq_save(flags);
1355 switch (chan->device->id) {
1356 case PPC440SPE_DMA0_ID:
1357 case PPC440SPE_DMA1_ID:
1358 cur_desc = ppc440spe_chan_get_current_descriptor(chan);
1360 if (likely(cur_desc)) {
1361 iter = chan_last_sub[chan->device->id];
1362 BUG_ON(!iter);
1363 } else {
1364 /* first peer */
1365 iter = chan_first_cdb[chan->device->id];
1366 BUG_ON(!iter);
1367 ppc440spe_dma_put_desc(chan, iter);
1368 chan->hw_chain_inited = 1;
1371 /* is there something new to append */
1372 if (!iter->hw_next)
1373 break;
1375 /* flush descriptors from the s/w queue to fifo */
1376 list_for_each_entry_continue(iter, &chan->chain, chain_node) {
1377 ppc440spe_dma_put_desc(chan, iter);
1378 if (!iter->hw_next)
1379 break;
1381 break;
1382 case PPC440SPE_XOR_ID:
1383 /* update h/w links and refetch */
1384 if (!xor_last_submit->hw_next)
1385 break;
1387 xor_reg = chan->device->xor_reg;
1388 /* the last linked CDB has to generate an interrupt
1389 * that we'd be able to append the next lists to h/w
1390 * regardless of the XOR engine state at the moment of
1391 * appending of these next lists
1393 xcb = xor_last_linked->hw_desc;
1394 xcb->cbc |= XOR_CBCR_CBCE_BIT;
1396 if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)) {
1397 /* XORcore is idle. Refetch now */
1398 do_xor_refetch = 0;
1399 ppc440spe_xor_set_link(xor_last_submit,
1400 xor_last_submit->hw_next);
1402 ADMA_LL_DBG(print_cb_list(chan,
1403 xor_last_submit->hw_next));
1405 xor_last_submit = xor_last_linked;
1406 iowrite32be(ioread32be(&xor_reg->crsr) |
1407 XOR_CRSR_RCBE_BIT | XOR_CRSR_64BA_BIT,
1408 &xor_reg->crsr);
1409 } else {
1410 /* XORcore is running. Refetch later in the handler */
1411 do_xor_refetch = 1;
1414 break;
1417 local_irq_restore(flags);
1421 * ppc440spe_chan_get_current_descriptor - get the currently executed descriptor
1423 static u32
1424 ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan)
1426 struct dma_regs *dma_reg;
1427 struct xor_regs *xor_reg;
1429 if (unlikely(!chan->hw_chain_inited))
1430 /* h/w descriptor chain is not initialized yet */
1431 return 0;
1433 switch (chan->device->id) {
1434 case PPC440SPE_DMA0_ID:
1435 case PPC440SPE_DMA1_ID:
1436 dma_reg = chan->device->dma_reg;
1437 return ioread32(&dma_reg->acpl) & (~DMA_CDB_MSK);
1438 case PPC440SPE_XOR_ID:
1439 xor_reg = chan->device->xor_reg;
1440 return ioread32be(&xor_reg->ccbalr);
1442 return 0;
1446 * ppc440spe_chan_run - enable the channel
1448 static void ppc440spe_chan_run(struct ppc440spe_adma_chan *chan)
1450 struct xor_regs *xor_reg;
1452 switch (chan->device->id) {
1453 case PPC440SPE_DMA0_ID:
1454 case PPC440SPE_DMA1_ID:
1455 /* DMAs are always enabled, do nothing */
1456 break;
1457 case PPC440SPE_XOR_ID:
1458 /* drain write buffer */
1459 xor_reg = chan->device->xor_reg;
1461 /* fetch descriptor pointed to in <link> */
1462 iowrite32be(XOR_CRSR_64BA_BIT | XOR_CRSR_XAE_BIT,
1463 &xor_reg->crsr);
1464 break;
1468 /******************************************************************************
1469 * ADMA device level
1470 ******************************************************************************/
1472 static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan);
1473 static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan);
1475 static dma_cookie_t
1476 ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx);
1478 static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *tx,
1479 dma_addr_t addr, int index);
1480 static void
1481 ppc440spe_adma_memcpy_xor_set_src(struct ppc440spe_adma_desc_slot *tx,
1482 dma_addr_t addr, int index);
1484 static void
1485 ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *tx,
1486 dma_addr_t *paddr, unsigned long flags);
1487 static void
1488 ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *tx,
1489 dma_addr_t addr, int index);
1490 static void
1491 ppc440spe_adma_pq_set_src_mult(struct ppc440spe_adma_desc_slot *tx,
1492 unsigned char mult, int index, int dst_pos);
1493 static void
1494 ppc440spe_adma_pqzero_sum_set_dest(struct ppc440spe_adma_desc_slot *tx,
1495 dma_addr_t paddr, dma_addr_t qaddr);
1497 static struct page *ppc440spe_rxor_srcs[32];
1500 * ppc440spe_can_rxor - check if the operands may be processed with RXOR
1502 static int ppc440spe_can_rxor(struct page **srcs, int src_cnt, size_t len)
1504 int i, order = 0, state = 0;
1505 int idx = 0;
1507 if (unlikely(!(src_cnt > 1)))
1508 return 0;
1510 BUG_ON(src_cnt > ARRAY_SIZE(ppc440spe_rxor_srcs));
1512 /* Skip holes in the source list before checking */
1513 for (i = 0; i < src_cnt; i++) {
1514 if (!srcs[i])
1515 continue;
1516 ppc440spe_rxor_srcs[idx++] = srcs[i];
1518 src_cnt = idx;
1520 for (i = 1; i < src_cnt; i++) {
1521 char *cur_addr = page_address(ppc440spe_rxor_srcs[i]);
1522 char *old_addr = page_address(ppc440spe_rxor_srcs[i - 1]);
1524 switch (state) {
1525 case 0:
1526 if (cur_addr == old_addr + len) {
1527 /* direct RXOR */
1528 order = 1;
1529 state = 1;
1530 } else if (old_addr == cur_addr + len) {
1531 /* reverse RXOR */
1532 order = -1;
1533 state = 1;
1534 } else
1535 goto out;
1536 break;
1537 case 1:
1538 if ((i == src_cnt - 2) ||
1539 (order == -1 && cur_addr != old_addr - len)) {
1540 order = 0;
1541 state = 0;
1542 } else if ((cur_addr == old_addr + len * order) ||
1543 (cur_addr == old_addr + 2 * len) ||
1544 (cur_addr == old_addr + 3 * len)) {
1545 state = 2;
1546 } else {
1547 order = 0;
1548 state = 0;
1550 break;
1551 case 2:
1552 order = 0;
1553 state = 0;
1554 break;
1558 out:
1559 if (state == 1 || state == 2)
1560 return 1;
1562 return 0;
1566 * ppc440spe_adma_device_estimate - estimate the efficiency of processing
1567 * the operation given on this channel. It's assumed that 'chan' is
1568 * capable to process 'cap' type of operation.
1569 * @chan: channel to use
1570 * @cap: type of transaction
1571 * @dst_lst: array of destination pointers
1572 * @dst_cnt: number of destination operands
1573 * @src_lst: array of source pointers
1574 * @src_cnt: number of source operands
1575 * @src_sz: size of each source operand
1577 static int ppc440spe_adma_estimate(struct dma_chan *chan,
1578 enum dma_transaction_type cap, struct page **dst_lst, int dst_cnt,
1579 struct page **src_lst, int src_cnt, size_t src_sz)
1581 int ef = 1;
1583 if (cap == DMA_PQ || cap == DMA_PQ_VAL) {
1584 /* If RAID-6 capabilities were not activated don't try
1585 * to use them
1587 if (unlikely(!ppc440spe_r6_enabled))
1588 return -1;
1590 /* In the current implementation of ppc440spe ADMA driver it
1591 * makes sense to pick out only pq case, because it may be
1592 * processed:
1593 * (1) either using Biskup method on DMA2;
1594 * (2) or on DMA0/1.
1595 * Thus we give a favour to (1) if the sources are suitable;
1596 * else let it be processed on one of the DMA0/1 engines.
1597 * In the sum_product case where destination is also the
1598 * source process it on DMA0/1 only.
1600 if (cap == DMA_PQ && chan->chan_id == PPC440SPE_XOR_ID) {
1602 if (dst_cnt == 1 && src_cnt == 2 && dst_lst[0] == src_lst[1])
1603 ef = 0; /* sum_product case, process on DMA0/1 */
1604 else if (ppc440spe_can_rxor(src_lst, src_cnt, src_sz))
1605 ef = 3; /* override (DMA0/1 + idle) */
1606 else
1607 ef = 0; /* can't process on DMA2 if !rxor */
1610 /* channel idleness increases the priority */
1611 if (likely(ef) &&
1612 !ppc440spe_chan_is_busy(to_ppc440spe_adma_chan(chan)))
1613 ef++;
1615 return ef;
1618 struct dma_chan *
1619 ppc440spe_async_tx_find_best_channel(enum dma_transaction_type cap,
1620 struct page **dst_lst, int dst_cnt, struct page **src_lst,
1621 int src_cnt, size_t src_sz)
1623 struct dma_chan *best_chan = NULL;
1624 struct ppc_dma_chan_ref *ref;
1625 int best_rank = -1;
1627 if (unlikely(!src_sz))
1628 return NULL;
1629 if (src_sz > PAGE_SIZE) {
1631 * should a user of the api ever pass > PAGE_SIZE requests
1632 * we sort out cases where temporary page-sized buffers
1633 * are used.
1635 switch (cap) {
1636 case DMA_PQ:
1637 if (src_cnt == 1 && dst_lst[1] == src_lst[0])
1638 return NULL;
1639 if (src_cnt == 2 && dst_lst[1] == src_lst[1])
1640 return NULL;
1641 break;
1642 case DMA_PQ_VAL:
1643 case DMA_XOR_VAL:
1644 return NULL;
1645 default:
1646 break;
1650 list_for_each_entry(ref, &ppc440spe_adma_chan_list, node) {
1651 if (dma_has_cap(cap, ref->chan->device->cap_mask)) {
1652 int rank;
1654 rank = ppc440spe_adma_estimate(ref->chan, cap, dst_lst,
1655 dst_cnt, src_lst, src_cnt, src_sz);
1656 if (rank > best_rank) {
1657 best_rank = rank;
1658 best_chan = ref->chan;
1663 return best_chan;
1665 EXPORT_SYMBOL_GPL(ppc440spe_async_tx_find_best_channel);
1668 * ppc440spe_get_group_entry - get group entry with index idx
1669 * @tdesc: is the last allocated slot in the group.
1671 static struct ppc440spe_adma_desc_slot *
1672 ppc440spe_get_group_entry(struct ppc440spe_adma_desc_slot *tdesc, u32 entry_idx)
1674 struct ppc440spe_adma_desc_slot *iter = tdesc->group_head;
1675 int i = 0;
1677 if (entry_idx < 0 || entry_idx >= (tdesc->src_cnt + tdesc->dst_cnt)) {
1678 printk("%s: entry_idx %d, src_cnt %d, dst_cnt %d\n",
1679 __func__, entry_idx, tdesc->src_cnt, tdesc->dst_cnt);
1680 BUG();
1683 list_for_each_entry(iter, &tdesc->group_list, chain_node) {
1684 if (i++ == entry_idx)
1685 break;
1687 return iter;
1691 * ppc440spe_adma_free_slots - flags descriptor slots for reuse
1692 * @slot: Slot to free
1693 * Caller must hold &ppc440spe_chan->lock while calling this function
1695 static void ppc440spe_adma_free_slots(struct ppc440spe_adma_desc_slot *slot,
1696 struct ppc440spe_adma_chan *chan)
1698 int stride = slot->slots_per_op;
1700 while (stride--) {
1701 slot->slots_per_op = 0;
1702 slot = list_entry(slot->slot_node.next,
1703 struct ppc440spe_adma_desc_slot,
1704 slot_node);
1708 static void ppc440spe_adma_unmap(struct ppc440spe_adma_chan *chan,
1709 struct ppc440spe_adma_desc_slot *desc)
1711 u32 src_cnt, dst_cnt;
1712 dma_addr_t addr;
1715 * get the number of sources & destination
1716 * included in this descriptor and unmap
1717 * them all
1719 src_cnt = ppc440spe_desc_get_src_num(desc, chan);
1720 dst_cnt = ppc440spe_desc_get_dst_num(desc, chan);
1722 /* unmap destinations */
1723 if (!(desc->async_tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
1724 while (dst_cnt--) {
1725 addr = ppc440spe_desc_get_dest_addr(
1726 desc, chan, dst_cnt);
1727 dma_unmap_page(chan->device->dev,
1728 addr, desc->unmap_len,
1729 DMA_FROM_DEVICE);
1733 /* unmap sources */
1734 if (!(desc->async_tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
1735 while (src_cnt--) {
1736 addr = ppc440spe_desc_get_src_addr(
1737 desc, chan, src_cnt);
1738 dma_unmap_page(chan->device->dev,
1739 addr, desc->unmap_len,
1740 DMA_TO_DEVICE);
1746 * ppc440spe_adma_run_tx_complete_actions - call functions to be called
1747 * upon completion
1749 static dma_cookie_t ppc440spe_adma_run_tx_complete_actions(
1750 struct ppc440spe_adma_desc_slot *desc,
1751 struct ppc440spe_adma_chan *chan,
1752 dma_cookie_t cookie)
1754 int i;
1756 BUG_ON(desc->async_tx.cookie < 0);
1757 if (desc->async_tx.cookie > 0) {
1758 cookie = desc->async_tx.cookie;
1759 desc->async_tx.cookie = 0;
1761 /* call the callback (must not sleep or submit new
1762 * operations to this channel)
1764 if (desc->async_tx.callback)
1765 desc->async_tx.callback(
1766 desc->async_tx.callback_param);
1768 /* unmap dma addresses
1769 * (unmap_single vs unmap_page?)
1771 * actually, ppc's dma_unmap_page() functions are empty, so
1772 * the following code is just for the sake of completeness
1774 if (chan && chan->needs_unmap && desc->group_head &&
1775 desc->unmap_len) {
1776 struct ppc440spe_adma_desc_slot *unmap =
1777 desc->group_head;
1778 /* assume 1 slot per op always */
1779 u32 slot_count = unmap->slot_cnt;
1781 /* Run through the group list and unmap addresses */
1782 for (i = 0; i < slot_count; i++) {
1783 BUG_ON(!unmap);
1784 ppc440spe_adma_unmap(chan, unmap);
1785 unmap = unmap->hw_next;
1790 /* run dependent operations */
1791 dma_run_dependencies(&desc->async_tx);
1793 return cookie;
1797 * ppc440spe_adma_clean_slot - clean up CDB slot (if ack is set)
1799 static int ppc440spe_adma_clean_slot(struct ppc440spe_adma_desc_slot *desc,
1800 struct ppc440spe_adma_chan *chan)
1802 /* the client is allowed to attach dependent operations
1803 * until 'ack' is set
1805 if (!async_tx_test_ack(&desc->async_tx))
1806 return 0;
1808 /* leave the last descriptor in the chain
1809 * so we can append to it
1811 if (list_is_last(&desc->chain_node, &chan->chain) ||
1812 desc->phys == ppc440spe_chan_get_current_descriptor(chan))
1813 return 1;
1815 if (chan->device->id != PPC440SPE_XOR_ID) {
1816 /* our DMA interrupt handler clears opc field of
1817 * each processed descriptor. For all types of
1818 * operations except for ZeroSum we do not actually
1819 * need ack from the interrupt handler. ZeroSum is a
1820 * special case since the result of this operation
1821 * is available from the handler only, so if we see
1822 * such type of descriptor (which is unprocessed yet)
1823 * then leave it in chain.
1825 struct dma_cdb *cdb = desc->hw_desc;
1826 if (cdb->opc == DMA_CDB_OPC_DCHECK128)
1827 return 1;
1830 dev_dbg(chan->device->common.dev, "\tfree slot %llx: %d stride: %d\n",
1831 desc->phys, desc->idx, desc->slots_per_op);
1833 list_del(&desc->chain_node);
1834 ppc440spe_adma_free_slots(desc, chan);
1835 return 0;
1839 * __ppc440spe_adma_slot_cleanup - this is the common clean-up routine
1840 * which runs through the channel CDBs list until reach the descriptor
1841 * currently processed. When routine determines that all CDBs of group
1842 * are completed then corresponding callbacks (if any) are called and slots
1843 * are freed.
1845 static void __ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan)
1847 struct ppc440spe_adma_desc_slot *iter, *_iter, *group_start = NULL;
1848 dma_cookie_t cookie = 0;
1849 u32 current_desc = ppc440spe_chan_get_current_descriptor(chan);
1850 int busy = ppc440spe_chan_is_busy(chan);
1851 int seen_current = 0, slot_cnt = 0, slots_per_op = 0;
1853 dev_dbg(chan->device->common.dev, "ppc440spe adma%d: %s\n",
1854 chan->device->id, __func__);
1856 if (!current_desc) {
1857 /* There were no transactions yet, so
1858 * nothing to clean
1860 return;
1863 /* free completed slots from the chain starting with
1864 * the oldest descriptor
1866 list_for_each_entry_safe(iter, _iter, &chan->chain,
1867 chain_node) {
1868 dev_dbg(chan->device->common.dev, "\tcookie: %d slot: %d "
1869 "busy: %d this_desc: %#llx next_desc: %#x "
1870 "cur: %#x ack: %d\n",
1871 iter->async_tx.cookie, iter->idx, busy, iter->phys,
1872 ppc440spe_desc_get_link(iter, chan), current_desc,
1873 async_tx_test_ack(&iter->async_tx));
1874 prefetch(_iter);
1875 prefetch(&_iter->async_tx);
1877 /* do not advance past the current descriptor loaded into the
1878 * hardware channel,subsequent descriptors are either in process
1879 * or have not been submitted
1881 if (seen_current)
1882 break;
1884 /* stop the search if we reach the current descriptor and the
1885 * channel is busy, or if it appears that the current descriptor
1886 * needs to be re-read (i.e. has been appended to)
1888 if (iter->phys == current_desc) {
1889 BUG_ON(seen_current++);
1890 if (busy || ppc440spe_desc_get_link(iter, chan)) {
1891 /* not all descriptors of the group have
1892 * been completed; exit.
1894 break;
1898 /* detect the start of a group transaction */
1899 if (!slot_cnt && !slots_per_op) {
1900 slot_cnt = iter->slot_cnt;
1901 slots_per_op = iter->slots_per_op;
1902 if (slot_cnt <= slots_per_op) {
1903 slot_cnt = 0;
1904 slots_per_op = 0;
1908 if (slot_cnt) {
1909 if (!group_start)
1910 group_start = iter;
1911 slot_cnt -= slots_per_op;
1914 /* all the members of a group are complete */
1915 if (slots_per_op != 0 && slot_cnt == 0) {
1916 struct ppc440spe_adma_desc_slot *grp_iter, *_grp_iter;
1917 int end_of_chain = 0;
1919 /* clean up the group */
1920 slot_cnt = group_start->slot_cnt;
1921 grp_iter = group_start;
1922 list_for_each_entry_safe_from(grp_iter, _grp_iter,
1923 &chan->chain, chain_node) {
1925 cookie = ppc440spe_adma_run_tx_complete_actions(
1926 grp_iter, chan, cookie);
1928 slot_cnt -= slots_per_op;
1929 end_of_chain = ppc440spe_adma_clean_slot(
1930 grp_iter, chan);
1931 if (end_of_chain && slot_cnt) {
1932 /* Should wait for ZeroSum completion */
1933 if (cookie > 0)
1934 chan->common.completed_cookie = cookie;
1935 return;
1938 if (slot_cnt == 0 || end_of_chain)
1939 break;
1942 /* the group should be complete at this point */
1943 BUG_ON(slot_cnt);
1945 slots_per_op = 0;
1946 group_start = NULL;
1947 if (end_of_chain)
1948 break;
1949 else
1950 continue;
1951 } else if (slots_per_op) /* wait for group completion */
1952 continue;
1954 cookie = ppc440spe_adma_run_tx_complete_actions(iter, chan,
1955 cookie);
1957 if (ppc440spe_adma_clean_slot(iter, chan))
1958 break;
1961 BUG_ON(!seen_current);
1963 if (cookie > 0) {
1964 chan->common.completed_cookie = cookie;
1965 pr_debug("\tcompleted cookie %d\n", cookie);
1971 * ppc440spe_adma_tasklet - clean up watch-dog initiator
1973 static void ppc440spe_adma_tasklet(unsigned long data)
1975 struct ppc440spe_adma_chan *chan = (struct ppc440spe_adma_chan *) data;
1977 spin_lock_nested(&chan->lock, SINGLE_DEPTH_NESTING);
1978 __ppc440spe_adma_slot_cleanup(chan);
1979 spin_unlock(&chan->lock);
1983 * ppc440spe_adma_slot_cleanup - clean up scheduled initiator
1985 static void ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan)
1987 spin_lock_bh(&chan->lock);
1988 __ppc440spe_adma_slot_cleanup(chan);
1989 spin_unlock_bh(&chan->lock);
1993 * ppc440spe_adma_alloc_slots - allocate free slots (if any)
1995 static struct ppc440spe_adma_desc_slot *ppc440spe_adma_alloc_slots(
1996 struct ppc440spe_adma_chan *chan, int num_slots,
1997 int slots_per_op)
1999 struct ppc440spe_adma_desc_slot *iter = NULL, *_iter;
2000 struct ppc440spe_adma_desc_slot *alloc_start = NULL;
2001 struct list_head chain = LIST_HEAD_INIT(chain);
2002 int slots_found, retry = 0;
2005 BUG_ON(!num_slots || !slots_per_op);
2006 /* start search from the last allocated descrtiptor
2007 * if a contiguous allocation can not be found start searching
2008 * from the beginning of the list
2010 retry:
2011 slots_found = 0;
2012 if (retry == 0)
2013 iter = chan->last_used;
2014 else
2015 iter = list_entry(&chan->all_slots,
2016 struct ppc440spe_adma_desc_slot,
2017 slot_node);
2018 list_for_each_entry_safe_continue(iter, _iter, &chan->all_slots,
2019 slot_node) {
2020 prefetch(_iter);
2021 prefetch(&_iter->async_tx);
2022 if (iter->slots_per_op) {
2023 slots_found = 0;
2024 continue;
2027 /* start the allocation if the slot is correctly aligned */
2028 if (!slots_found++)
2029 alloc_start = iter;
2031 if (slots_found == num_slots) {
2032 struct ppc440spe_adma_desc_slot *alloc_tail = NULL;
2033 struct ppc440spe_adma_desc_slot *last_used = NULL;
2035 iter = alloc_start;
2036 while (num_slots) {
2037 int i;
2038 /* pre-ack all but the last descriptor */
2039 if (num_slots != slots_per_op)
2040 async_tx_ack(&iter->async_tx);
2042 list_add_tail(&iter->chain_node, &chain);
2043 alloc_tail = iter;
2044 iter->async_tx.cookie = 0;
2045 iter->hw_next = NULL;
2046 iter->flags = 0;
2047 iter->slot_cnt = num_slots;
2048 iter->xor_check_result = NULL;
2049 for (i = 0; i < slots_per_op; i++) {
2050 iter->slots_per_op = slots_per_op - i;
2051 last_used = iter;
2052 iter = list_entry(iter->slot_node.next,
2053 struct ppc440spe_adma_desc_slot,
2054 slot_node);
2056 num_slots -= slots_per_op;
2058 alloc_tail->group_head = alloc_start;
2059 alloc_tail->async_tx.cookie = -EBUSY;
2060 list_splice(&chain, &alloc_tail->group_list);
2061 chan->last_used = last_used;
2062 return alloc_tail;
2065 if (!retry++)
2066 goto retry;
2068 /* try to free some slots if the allocation fails */
2069 tasklet_schedule(&chan->irq_tasklet);
2070 return NULL;
2074 * ppc440spe_adma_alloc_chan_resources - allocate pools for CDB slots
2076 static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan)
2078 struct ppc440spe_adma_chan *ppc440spe_chan;
2079 struct ppc440spe_adma_desc_slot *slot = NULL;
2080 char *hw_desc;
2081 int i, db_sz;
2082 int init;
2084 ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2085 init = ppc440spe_chan->slots_allocated ? 0 : 1;
2086 chan->chan_id = ppc440spe_chan->device->id;
2088 /* Allocate descriptor slots */
2089 i = ppc440spe_chan->slots_allocated;
2090 if (ppc440spe_chan->device->id != PPC440SPE_XOR_ID)
2091 db_sz = sizeof(struct dma_cdb);
2092 else
2093 db_sz = sizeof(struct xor_cb);
2095 for (; i < (ppc440spe_chan->device->pool_size / db_sz); i++) {
2096 slot = kzalloc(sizeof(struct ppc440spe_adma_desc_slot),
2097 GFP_KERNEL);
2098 if (!slot) {
2099 printk(KERN_INFO "SPE ADMA Channel only initialized"
2100 " %d descriptor slots", i--);
2101 break;
2104 hw_desc = (char *) ppc440spe_chan->device->dma_desc_pool_virt;
2105 slot->hw_desc = (void *) &hw_desc[i * db_sz];
2106 dma_async_tx_descriptor_init(&slot->async_tx, chan);
2107 slot->async_tx.tx_submit = ppc440spe_adma_tx_submit;
2108 INIT_LIST_HEAD(&slot->chain_node);
2109 INIT_LIST_HEAD(&slot->slot_node);
2110 INIT_LIST_HEAD(&slot->group_list);
2111 slot->phys = ppc440spe_chan->device->dma_desc_pool + i * db_sz;
2112 slot->idx = i;
2114 spin_lock_bh(&ppc440spe_chan->lock);
2115 ppc440spe_chan->slots_allocated++;
2116 list_add_tail(&slot->slot_node, &ppc440spe_chan->all_slots);
2117 spin_unlock_bh(&ppc440spe_chan->lock);
2120 if (i && !ppc440spe_chan->last_used) {
2121 ppc440spe_chan->last_used =
2122 list_entry(ppc440spe_chan->all_slots.next,
2123 struct ppc440spe_adma_desc_slot,
2124 slot_node);
2127 dev_dbg(ppc440spe_chan->device->common.dev,
2128 "ppc440spe adma%d: allocated %d descriptor slots\n",
2129 ppc440spe_chan->device->id, i);
2131 /* initialize the channel and the chain with a null operation */
2132 if (init) {
2133 switch (ppc440spe_chan->device->id) {
2134 case PPC440SPE_DMA0_ID:
2135 case PPC440SPE_DMA1_ID:
2136 ppc440spe_chan->hw_chain_inited = 0;
2137 /* Use WXOR for self-testing */
2138 if (!ppc440spe_r6_tchan)
2139 ppc440spe_r6_tchan = ppc440spe_chan;
2140 break;
2141 case PPC440SPE_XOR_ID:
2142 ppc440spe_chan_start_null_xor(ppc440spe_chan);
2143 break;
2144 default:
2145 BUG();
2147 ppc440spe_chan->needs_unmap = 1;
2150 return (i > 0) ? i : -ENOMEM;
2154 * ppc440spe_rxor_set_region_data -
2156 static void ppc440spe_rxor_set_region(struct ppc440spe_adma_desc_slot *desc,
2157 u8 xor_arg_no, u32 mask)
2159 struct xor_cb *xcb = desc->hw_desc;
2161 xcb->ops[xor_arg_no].h |= mask;
2165 * ppc440spe_rxor_set_src -
2167 static void ppc440spe_rxor_set_src(struct ppc440spe_adma_desc_slot *desc,
2168 u8 xor_arg_no, dma_addr_t addr)
2170 struct xor_cb *xcb = desc->hw_desc;
2172 xcb->ops[xor_arg_no].h |= DMA_CUED_XOR_BASE;
2173 xcb->ops[xor_arg_no].l = addr;
2177 * ppc440spe_rxor_set_mult -
2179 static void ppc440spe_rxor_set_mult(struct ppc440spe_adma_desc_slot *desc,
2180 u8 xor_arg_no, u8 idx, u8 mult)
2182 struct xor_cb *xcb = desc->hw_desc;
2184 xcb->ops[xor_arg_no].h |= mult << (DMA_CUED_MULT1_OFF + idx * 8);
2188 * ppc440spe_adma_check_threshold - append CDBs to h/w chain if threshold
2189 * has been achieved
2191 static void ppc440spe_adma_check_threshold(struct ppc440spe_adma_chan *chan)
2193 dev_dbg(chan->device->common.dev, "ppc440spe adma%d: pending: %d\n",
2194 chan->device->id, chan->pending);
2196 if (chan->pending >= PPC440SPE_ADMA_THRESHOLD) {
2197 chan->pending = 0;
2198 ppc440spe_chan_append(chan);
2203 * ppc440spe_adma_tx_submit - submit new descriptor group to the channel
2204 * (it's not necessary that descriptors will be submitted to the h/w
2205 * chains too right now)
2207 static dma_cookie_t ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx)
2209 struct ppc440spe_adma_desc_slot *sw_desc;
2210 struct ppc440spe_adma_chan *chan = to_ppc440spe_adma_chan(tx->chan);
2211 struct ppc440spe_adma_desc_slot *group_start, *old_chain_tail;
2212 int slot_cnt;
2213 int slots_per_op;
2214 dma_cookie_t cookie;
2216 sw_desc = tx_to_ppc440spe_adma_slot(tx);
2218 group_start = sw_desc->group_head;
2219 slot_cnt = group_start->slot_cnt;
2220 slots_per_op = group_start->slots_per_op;
2222 spin_lock_bh(&chan->lock);
2223 cookie = dma_cookie_assign(tx);
2225 if (unlikely(list_empty(&chan->chain))) {
2226 /* first peer */
2227 list_splice_init(&sw_desc->group_list, &chan->chain);
2228 chan_first_cdb[chan->device->id] = group_start;
2229 } else {
2230 /* isn't first peer, bind CDBs to chain */
2231 old_chain_tail = list_entry(chan->chain.prev,
2232 struct ppc440spe_adma_desc_slot,
2233 chain_node);
2234 list_splice_init(&sw_desc->group_list,
2235 &old_chain_tail->chain_node);
2236 /* fix up the hardware chain */
2237 ppc440spe_desc_set_link(chan, old_chain_tail, group_start);
2240 /* increment the pending count by the number of operations */
2241 chan->pending += slot_cnt / slots_per_op;
2242 ppc440spe_adma_check_threshold(chan);
2243 spin_unlock_bh(&chan->lock);
2245 dev_dbg(chan->device->common.dev,
2246 "ppc440spe adma%d: %s cookie: %d slot: %d tx %p\n",
2247 chan->device->id, __func__,
2248 sw_desc->async_tx.cookie, sw_desc->idx, sw_desc);
2250 return cookie;
2254 * ppc440spe_adma_prep_dma_interrupt - prepare CDB for a pseudo DMA operation
2256 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_interrupt(
2257 struct dma_chan *chan, unsigned long flags)
2259 struct ppc440spe_adma_chan *ppc440spe_chan;
2260 struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
2261 int slot_cnt, slots_per_op;
2263 ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2265 dev_dbg(ppc440spe_chan->device->common.dev,
2266 "ppc440spe adma%d: %s\n", ppc440spe_chan->device->id,
2267 __func__);
2269 spin_lock_bh(&ppc440spe_chan->lock);
2270 slot_cnt = slots_per_op = 1;
2271 sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2272 slots_per_op);
2273 if (sw_desc) {
2274 group_start = sw_desc->group_head;
2275 ppc440spe_desc_init_interrupt(group_start, ppc440spe_chan);
2276 group_start->unmap_len = 0;
2277 sw_desc->async_tx.flags = flags;
2279 spin_unlock_bh(&ppc440spe_chan->lock);
2281 return sw_desc ? &sw_desc->async_tx : NULL;
2285 * ppc440spe_adma_prep_dma_memcpy - prepare CDB for a MEMCPY operation
2287 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_memcpy(
2288 struct dma_chan *chan, dma_addr_t dma_dest,
2289 dma_addr_t dma_src, size_t len, unsigned long flags)
2291 struct ppc440spe_adma_chan *ppc440spe_chan;
2292 struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
2293 int slot_cnt, slots_per_op;
2295 ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2297 if (unlikely(!len))
2298 return NULL;
2300 BUG_ON(len > PPC440SPE_ADMA_DMA_MAX_BYTE_COUNT);
2302 spin_lock_bh(&ppc440spe_chan->lock);
2304 dev_dbg(ppc440spe_chan->device->common.dev,
2305 "ppc440spe adma%d: %s len: %u int_en %d\n",
2306 ppc440spe_chan->device->id, __func__, len,
2307 flags & DMA_PREP_INTERRUPT ? 1 : 0);
2308 slot_cnt = slots_per_op = 1;
2309 sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2310 slots_per_op);
2311 if (sw_desc) {
2312 group_start = sw_desc->group_head;
2313 ppc440spe_desc_init_memcpy(group_start, flags);
2314 ppc440spe_adma_set_dest(group_start, dma_dest, 0);
2315 ppc440spe_adma_memcpy_xor_set_src(group_start, dma_src, 0);
2316 ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
2317 sw_desc->unmap_len = len;
2318 sw_desc->async_tx.flags = flags;
2320 spin_unlock_bh(&ppc440spe_chan->lock);
2322 return sw_desc ? &sw_desc->async_tx : NULL;
2326 * ppc440spe_adma_prep_dma_xor - prepare CDB for a XOR operation
2328 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor(
2329 struct dma_chan *chan, dma_addr_t dma_dest,
2330 dma_addr_t *dma_src, u32 src_cnt, size_t len,
2331 unsigned long flags)
2333 struct ppc440spe_adma_chan *ppc440spe_chan;
2334 struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
2335 int slot_cnt, slots_per_op;
2337 ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2339 ADMA_LL_DBG(prep_dma_xor_dbg(ppc440spe_chan->device->id,
2340 dma_dest, dma_src, src_cnt));
2341 if (unlikely(!len))
2342 return NULL;
2343 BUG_ON(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
2345 dev_dbg(ppc440spe_chan->device->common.dev,
2346 "ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
2347 ppc440spe_chan->device->id, __func__, src_cnt, len,
2348 flags & DMA_PREP_INTERRUPT ? 1 : 0);
2350 spin_lock_bh(&ppc440spe_chan->lock);
2351 slot_cnt = ppc440spe_chan_xor_slot_count(len, src_cnt, &slots_per_op);
2352 sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2353 slots_per_op);
2354 if (sw_desc) {
2355 group_start = sw_desc->group_head;
2356 ppc440spe_desc_init_xor(group_start, src_cnt, flags);
2357 ppc440spe_adma_set_dest(group_start, dma_dest, 0);
2358 while (src_cnt--)
2359 ppc440spe_adma_memcpy_xor_set_src(group_start,
2360 dma_src[src_cnt], src_cnt);
2361 ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
2362 sw_desc->unmap_len = len;
2363 sw_desc->async_tx.flags = flags;
2365 spin_unlock_bh(&ppc440spe_chan->lock);
2367 return sw_desc ? &sw_desc->async_tx : NULL;
2370 static inline void
2371 ppc440spe_desc_set_xor_src_cnt(struct ppc440spe_adma_desc_slot *desc,
2372 int src_cnt);
2373 static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor);
2376 * ppc440spe_adma_init_dma2rxor_slot -
2378 static void ppc440spe_adma_init_dma2rxor_slot(
2379 struct ppc440spe_adma_desc_slot *desc,
2380 dma_addr_t *src, int src_cnt)
2382 int i;
2384 /* initialize CDB */
2385 for (i = 0; i < src_cnt; i++) {
2386 ppc440spe_adma_dma2rxor_prep_src(desc, &desc->rxor_cursor, i,
2387 desc->src_cnt, (u32)src[i]);
2392 * ppc440spe_dma01_prep_mult -
2393 * for Q operation where destination is also the source
2395 static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_mult(
2396 struct ppc440spe_adma_chan *ppc440spe_chan,
2397 dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
2398 const unsigned char *scf, size_t len, unsigned long flags)
2400 struct ppc440spe_adma_desc_slot *sw_desc = NULL;
2401 unsigned long op = 0;
2402 int slot_cnt;
2404 set_bit(PPC440SPE_DESC_WXOR, &op);
2405 slot_cnt = 2;
2407 spin_lock_bh(&ppc440spe_chan->lock);
2409 /* use WXOR, each descriptor occupies one slot */
2410 sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2411 if (sw_desc) {
2412 struct ppc440spe_adma_chan *chan;
2413 struct ppc440spe_adma_desc_slot *iter;
2414 struct dma_cdb *hw_desc;
2416 chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
2417 set_bits(op, &sw_desc->flags);
2418 sw_desc->src_cnt = src_cnt;
2419 sw_desc->dst_cnt = dst_cnt;
2420 /* First descriptor, zero data in the destination and copy it
2421 * to q page using MULTICAST transfer.
2423 iter = list_first_entry(&sw_desc->group_list,
2424 struct ppc440spe_adma_desc_slot,
2425 chain_node);
2426 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2427 /* set 'next' pointer */
2428 iter->hw_next = list_entry(iter->chain_node.next,
2429 struct ppc440spe_adma_desc_slot,
2430 chain_node);
2431 clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2432 hw_desc = iter->hw_desc;
2433 hw_desc->opc = DMA_CDB_OPC_MULTICAST;
2435 ppc440spe_desc_set_dest_addr(iter, chan,
2436 DMA_CUED_XOR_BASE, dst[0], 0);
2437 ppc440spe_desc_set_dest_addr(iter, chan, 0, dst[1], 1);
2438 ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2439 src[0]);
2440 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2441 iter->unmap_len = len;
2444 * Second descriptor, multiply data from the q page
2445 * and store the result in real destination.
2447 iter = list_first_entry(&iter->chain_node,
2448 struct ppc440spe_adma_desc_slot,
2449 chain_node);
2450 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2451 iter->hw_next = NULL;
2452 if (flags & DMA_PREP_INTERRUPT)
2453 set_bit(PPC440SPE_DESC_INT, &iter->flags);
2454 else
2455 clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2457 hw_desc = iter->hw_desc;
2458 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2459 ppc440spe_desc_set_src_addr(iter, chan, 0,
2460 DMA_CUED_XOR_HB, dst[1]);
2461 ppc440spe_desc_set_dest_addr(iter, chan,
2462 DMA_CUED_XOR_BASE, dst[0], 0);
2464 ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2465 DMA_CDB_SG_DST1, scf[0]);
2466 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2467 iter->unmap_len = len;
2468 sw_desc->async_tx.flags = flags;
2471 spin_unlock_bh(&ppc440spe_chan->lock);
2473 return sw_desc;
2477 * ppc440spe_dma01_prep_sum_product -
2478 * Dx = A*(P+Pxy) + B*(Q+Qxy) operation where destination is also
2479 * the source.
2481 static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_sum_product(
2482 struct ppc440spe_adma_chan *ppc440spe_chan,
2483 dma_addr_t *dst, dma_addr_t *src, int src_cnt,
2484 const unsigned char *scf, size_t len, unsigned long flags)
2486 struct ppc440spe_adma_desc_slot *sw_desc = NULL;
2487 unsigned long op = 0;
2488 int slot_cnt;
2490 set_bit(PPC440SPE_DESC_WXOR, &op);
2491 slot_cnt = 3;
2493 spin_lock_bh(&ppc440spe_chan->lock);
2495 /* WXOR, each descriptor occupies one slot */
2496 sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2497 if (sw_desc) {
2498 struct ppc440spe_adma_chan *chan;
2499 struct ppc440spe_adma_desc_slot *iter;
2500 struct dma_cdb *hw_desc;
2502 chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
2503 set_bits(op, &sw_desc->flags);
2504 sw_desc->src_cnt = src_cnt;
2505 sw_desc->dst_cnt = 1;
2506 /* 1st descriptor, src[1] data to q page and zero destination */
2507 iter = list_first_entry(&sw_desc->group_list,
2508 struct ppc440spe_adma_desc_slot,
2509 chain_node);
2510 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2511 iter->hw_next = list_entry(iter->chain_node.next,
2512 struct ppc440spe_adma_desc_slot,
2513 chain_node);
2514 clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2515 hw_desc = iter->hw_desc;
2516 hw_desc->opc = DMA_CDB_OPC_MULTICAST;
2518 ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
2519 *dst, 0);
2520 ppc440spe_desc_set_dest_addr(iter, chan, 0,
2521 ppc440spe_chan->qdest, 1);
2522 ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2523 src[1]);
2524 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2525 iter->unmap_len = len;
2527 /* 2nd descriptor, multiply src[1] data and store the
2528 * result in destination */
2529 iter = list_first_entry(&iter->chain_node,
2530 struct ppc440spe_adma_desc_slot,
2531 chain_node);
2532 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2533 /* set 'next' pointer */
2534 iter->hw_next = list_entry(iter->chain_node.next,
2535 struct ppc440spe_adma_desc_slot,
2536 chain_node);
2537 if (flags & DMA_PREP_INTERRUPT)
2538 set_bit(PPC440SPE_DESC_INT, &iter->flags);
2539 else
2540 clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2542 hw_desc = iter->hw_desc;
2543 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2544 ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2545 ppc440spe_chan->qdest);
2546 ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
2547 *dst, 0);
2548 ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2549 DMA_CDB_SG_DST1, scf[1]);
2550 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2551 iter->unmap_len = len;
2554 * 3rd descriptor, multiply src[0] data and xor it
2555 * with destination
2557 iter = list_first_entry(&iter->chain_node,
2558 struct ppc440spe_adma_desc_slot,
2559 chain_node);
2560 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2561 iter->hw_next = NULL;
2562 if (flags & DMA_PREP_INTERRUPT)
2563 set_bit(PPC440SPE_DESC_INT, &iter->flags);
2564 else
2565 clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2567 hw_desc = iter->hw_desc;
2568 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2569 ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2570 src[0]);
2571 ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
2572 *dst, 0);
2573 ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2574 DMA_CDB_SG_DST1, scf[0]);
2575 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2576 iter->unmap_len = len;
2577 sw_desc->async_tx.flags = flags;
2580 spin_unlock_bh(&ppc440spe_chan->lock);
2582 return sw_desc;
2585 static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_pq(
2586 struct ppc440spe_adma_chan *ppc440spe_chan,
2587 dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
2588 const unsigned char *scf, size_t len, unsigned long flags)
2590 int slot_cnt;
2591 struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter;
2592 unsigned long op = 0;
2593 unsigned char mult = 1;
2595 pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
2596 __func__, dst_cnt, src_cnt, len);
2597 /* select operations WXOR/RXOR depending on the
2598 * source addresses of operators and the number
2599 * of destinations (RXOR support only Q-parity calculations)
2601 set_bit(PPC440SPE_DESC_WXOR, &op);
2602 if (!test_and_set_bit(PPC440SPE_RXOR_RUN, &ppc440spe_rxor_state)) {
2603 /* no active RXOR;
2604 * do RXOR if:
2605 * - there are more than 1 source,
2606 * - len is aligned on 512-byte boundary,
2607 * - source addresses fit to one of 4 possible regions.
2609 if (src_cnt > 1 &&
2610 !(len & MQ0_CF2H_RXOR_BS_MASK) &&
2611 (src[0] + len) == src[1]) {
2612 /* may do RXOR R1 R2 */
2613 set_bit(PPC440SPE_DESC_RXOR, &op);
2614 if (src_cnt != 2) {
2615 /* may try to enhance region of RXOR */
2616 if ((src[1] + len) == src[2]) {
2617 /* do RXOR R1 R2 R3 */
2618 set_bit(PPC440SPE_DESC_RXOR123,
2619 &op);
2620 } else if ((src[1] + len * 2) == src[2]) {
2621 /* do RXOR R1 R2 R4 */
2622 set_bit(PPC440SPE_DESC_RXOR124, &op);
2623 } else if ((src[1] + len * 3) == src[2]) {
2624 /* do RXOR R1 R2 R5 */
2625 set_bit(PPC440SPE_DESC_RXOR125,
2626 &op);
2627 } else {
2628 /* do RXOR R1 R2 */
2629 set_bit(PPC440SPE_DESC_RXOR12,
2630 &op);
2632 } else {
2633 /* do RXOR R1 R2 */
2634 set_bit(PPC440SPE_DESC_RXOR12, &op);
2638 if (!test_bit(PPC440SPE_DESC_RXOR, &op)) {
2639 /* can not do this operation with RXOR */
2640 clear_bit(PPC440SPE_RXOR_RUN,
2641 &ppc440spe_rxor_state);
2642 } else {
2643 /* can do; set block size right now */
2644 ppc440spe_desc_set_rxor_block_size(len);
2648 /* Number of necessary slots depends on operation type selected */
2649 if (!test_bit(PPC440SPE_DESC_RXOR, &op)) {
2650 /* This is a WXOR only chain. Need descriptors for each
2651 * source to GF-XOR them with WXOR, and need descriptors
2652 * for each destination to zero them with WXOR
2654 slot_cnt = src_cnt;
2656 if (flags & DMA_PREP_ZERO_P) {
2657 slot_cnt++;
2658 set_bit(PPC440SPE_ZERO_P, &op);
2660 if (flags & DMA_PREP_ZERO_Q) {
2661 slot_cnt++;
2662 set_bit(PPC440SPE_ZERO_Q, &op);
2664 } else {
2665 /* Need 1/2 descriptor for RXOR operation, and
2666 * need (src_cnt - (2 or 3)) for WXOR of sources
2667 * remained (if any)
2669 slot_cnt = dst_cnt;
2671 if (flags & DMA_PREP_ZERO_P)
2672 set_bit(PPC440SPE_ZERO_P, &op);
2673 if (flags & DMA_PREP_ZERO_Q)
2674 set_bit(PPC440SPE_ZERO_Q, &op);
2676 if (test_bit(PPC440SPE_DESC_RXOR12, &op))
2677 slot_cnt += src_cnt - 2;
2678 else
2679 slot_cnt += src_cnt - 3;
2681 /* Thus we have either RXOR only chain or
2682 * mixed RXOR/WXOR
2684 if (slot_cnt == dst_cnt)
2685 /* RXOR only chain */
2686 clear_bit(PPC440SPE_DESC_WXOR, &op);
2689 spin_lock_bh(&ppc440spe_chan->lock);
2690 /* for both RXOR/WXOR each descriptor occupies one slot */
2691 sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2692 if (sw_desc) {
2693 ppc440spe_desc_init_dma01pq(sw_desc, dst_cnt, src_cnt,
2694 flags, op);
2696 /* setup dst/src/mult */
2697 pr_debug("%s: set dst descriptor 0, 1: 0x%016llx, 0x%016llx\n",
2698 __func__, dst[0], dst[1]);
2699 ppc440spe_adma_pq_set_dest(sw_desc, dst, flags);
2700 while (src_cnt--) {
2701 ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt],
2702 src_cnt);
2704 /* NOTE: "Multi = 0 is equivalent to = 1" as it
2705 * stated in 440SPSPe_RAID6_Addendum_UM_1_17.pdf
2706 * doesn't work for RXOR with DMA0/1! Instead, multi=0
2707 * leads to zeroing source data after RXOR.
2708 * So, for P case set-up mult=1 explicitly.
2710 if (!(flags & DMA_PREP_PQ_DISABLE_Q))
2711 mult = scf[src_cnt];
2712 ppc440spe_adma_pq_set_src_mult(sw_desc,
2713 mult, src_cnt, dst_cnt - 1);
2716 /* Setup byte count foreach slot just allocated */
2717 sw_desc->async_tx.flags = flags;
2718 list_for_each_entry(iter, &sw_desc->group_list,
2719 chain_node) {
2720 ppc440spe_desc_set_byte_count(iter,
2721 ppc440spe_chan, len);
2722 iter->unmap_len = len;
2725 spin_unlock_bh(&ppc440spe_chan->lock);
2727 return sw_desc;
2730 static struct ppc440spe_adma_desc_slot *ppc440spe_dma2_prep_pq(
2731 struct ppc440spe_adma_chan *ppc440spe_chan,
2732 dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
2733 const unsigned char *scf, size_t len, unsigned long flags)
2735 int slot_cnt, descs_per_op;
2736 struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter;
2737 unsigned long op = 0;
2738 unsigned char mult = 1;
2740 BUG_ON(!dst_cnt);
2741 /*pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
2742 __func__, dst_cnt, src_cnt, len);*/
2744 spin_lock_bh(&ppc440spe_chan->lock);
2745 descs_per_op = ppc440spe_dma2_pq_slot_count(src, src_cnt, len);
2746 if (descs_per_op < 0) {
2747 spin_unlock_bh(&ppc440spe_chan->lock);
2748 return NULL;
2751 /* depending on number of sources we have 1 or 2 RXOR chains */
2752 slot_cnt = descs_per_op * dst_cnt;
2754 sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2755 if (sw_desc) {
2756 op = slot_cnt;
2757 sw_desc->async_tx.flags = flags;
2758 list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
2759 ppc440spe_desc_init_dma2pq(iter, dst_cnt, src_cnt,
2760 --op ? 0 : flags);
2761 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2762 len);
2763 iter->unmap_len = len;
2765 ppc440spe_init_rxor_cursor(&(iter->rxor_cursor));
2766 iter->rxor_cursor.len = len;
2767 iter->descs_per_op = descs_per_op;
2769 op = 0;
2770 list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
2771 op++;
2772 if (op % descs_per_op == 0)
2773 ppc440spe_adma_init_dma2rxor_slot(iter, src,
2774 src_cnt);
2775 if (likely(!list_is_last(&iter->chain_node,
2776 &sw_desc->group_list))) {
2777 /* set 'next' pointer */
2778 iter->hw_next =
2779 list_entry(iter->chain_node.next,
2780 struct ppc440spe_adma_desc_slot,
2781 chain_node);
2782 ppc440spe_xor_set_link(iter, iter->hw_next);
2783 } else {
2784 /* this is the last descriptor. */
2785 iter->hw_next = NULL;
2789 /* fixup head descriptor */
2790 sw_desc->dst_cnt = dst_cnt;
2791 if (flags & DMA_PREP_ZERO_P)
2792 set_bit(PPC440SPE_ZERO_P, &sw_desc->flags);
2793 if (flags & DMA_PREP_ZERO_Q)
2794 set_bit(PPC440SPE_ZERO_Q, &sw_desc->flags);
2796 /* setup dst/src/mult */
2797 ppc440spe_adma_pq_set_dest(sw_desc, dst, flags);
2799 while (src_cnt--) {
2800 /* handle descriptors (if dst_cnt == 2) inside
2801 * the ppc440spe_adma_pq_set_srcxxx() functions
2803 ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt],
2804 src_cnt);
2805 if (!(flags & DMA_PREP_PQ_DISABLE_Q))
2806 mult = scf[src_cnt];
2807 ppc440spe_adma_pq_set_src_mult(sw_desc,
2808 mult, src_cnt, dst_cnt - 1);
2811 spin_unlock_bh(&ppc440spe_chan->lock);
2812 ppc440spe_desc_set_rxor_block_size(len);
2813 return sw_desc;
2817 * ppc440spe_adma_prep_dma_pq - prepare CDB (group) for a GF-XOR operation
2819 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pq(
2820 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
2821 unsigned int src_cnt, const unsigned char *scf,
2822 size_t len, unsigned long flags)
2824 struct ppc440spe_adma_chan *ppc440spe_chan;
2825 struct ppc440spe_adma_desc_slot *sw_desc = NULL;
2826 int dst_cnt = 0;
2828 ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2830 ADMA_LL_DBG(prep_dma_pq_dbg(ppc440spe_chan->device->id,
2831 dst, src, src_cnt));
2832 BUG_ON(!len);
2833 BUG_ON(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
2834 BUG_ON(!src_cnt);
2836 if (src_cnt == 1 && dst[1] == src[0]) {
2837 dma_addr_t dest[2];
2839 /* dst[1] is real destination (Q) */
2840 dest[0] = dst[1];
2841 /* this is the page to multicast source data to */
2842 dest[1] = ppc440spe_chan->qdest;
2843 sw_desc = ppc440spe_dma01_prep_mult(ppc440spe_chan,
2844 dest, 2, src, src_cnt, scf, len, flags);
2845 return sw_desc ? &sw_desc->async_tx : NULL;
2848 if (src_cnt == 2 && dst[1] == src[1]) {
2849 sw_desc = ppc440spe_dma01_prep_sum_product(ppc440spe_chan,
2850 &dst[1], src, 2, scf, len, flags);
2851 return sw_desc ? &sw_desc->async_tx : NULL;
2854 if (!(flags & DMA_PREP_PQ_DISABLE_P)) {
2855 BUG_ON(!dst[0]);
2856 dst_cnt++;
2857 flags |= DMA_PREP_ZERO_P;
2860 if (!(flags & DMA_PREP_PQ_DISABLE_Q)) {
2861 BUG_ON(!dst[1]);
2862 dst_cnt++;
2863 flags |= DMA_PREP_ZERO_Q;
2866 BUG_ON(!dst_cnt);
2868 dev_dbg(ppc440spe_chan->device->common.dev,
2869 "ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
2870 ppc440spe_chan->device->id, __func__, src_cnt, len,
2871 flags & DMA_PREP_INTERRUPT ? 1 : 0);
2873 switch (ppc440spe_chan->device->id) {
2874 case PPC440SPE_DMA0_ID:
2875 case PPC440SPE_DMA1_ID:
2876 sw_desc = ppc440spe_dma01_prep_pq(ppc440spe_chan,
2877 dst, dst_cnt, src, src_cnt, scf,
2878 len, flags);
2879 break;
2881 case PPC440SPE_XOR_ID:
2882 sw_desc = ppc440spe_dma2_prep_pq(ppc440spe_chan,
2883 dst, dst_cnt, src, src_cnt, scf,
2884 len, flags);
2885 break;
2888 return sw_desc ? &sw_desc->async_tx : NULL;
2892 * ppc440spe_adma_prep_dma_pqzero_sum - prepare CDB group for
2893 * a PQ_ZERO_SUM operation
2895 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pqzero_sum(
2896 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
2897 unsigned int src_cnt, const unsigned char *scf, size_t len,
2898 enum sum_check_flags *pqres, unsigned long flags)
2900 struct ppc440spe_adma_chan *ppc440spe_chan;
2901 struct ppc440spe_adma_desc_slot *sw_desc, *iter;
2902 dma_addr_t pdest, qdest;
2903 int slot_cnt, slots_per_op, idst, dst_cnt;
2905 ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2907 if (flags & DMA_PREP_PQ_DISABLE_P)
2908 pdest = 0;
2909 else
2910 pdest = pq[0];
2912 if (flags & DMA_PREP_PQ_DISABLE_Q)
2913 qdest = 0;
2914 else
2915 qdest = pq[1];
2917 ADMA_LL_DBG(prep_dma_pqzero_sum_dbg(ppc440spe_chan->device->id,
2918 src, src_cnt, scf));
2920 /* Always use WXOR for P/Q calculations (two destinations).
2921 * Need 1 or 2 extra slots to verify results are zero.
2923 idst = dst_cnt = (pdest && qdest) ? 2 : 1;
2925 /* One additional slot per destination to clone P/Q
2926 * before calculation (we have to preserve destinations).
2928 slot_cnt = src_cnt + dst_cnt * 2;
2929 slots_per_op = 1;
2931 spin_lock_bh(&ppc440spe_chan->lock);
2932 sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2933 slots_per_op);
2934 if (sw_desc) {
2935 ppc440spe_desc_init_dma01pqzero_sum(sw_desc, dst_cnt, src_cnt);
2937 /* Setup byte count for each slot just allocated */
2938 sw_desc->async_tx.flags = flags;
2939 list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
2940 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2941 len);
2942 iter->unmap_len = len;
2945 if (pdest) {
2946 struct dma_cdb *hw_desc;
2947 struct ppc440spe_adma_chan *chan;
2949 iter = sw_desc->group_head;
2950 chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
2951 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2952 iter->hw_next = list_entry(iter->chain_node.next,
2953 struct ppc440spe_adma_desc_slot,
2954 chain_node);
2955 hw_desc = iter->hw_desc;
2956 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2957 iter->src_cnt = 0;
2958 iter->dst_cnt = 0;
2959 ppc440spe_desc_set_dest_addr(iter, chan, 0,
2960 ppc440spe_chan->pdest, 0);
2961 ppc440spe_desc_set_src_addr(iter, chan, 0, 0, pdest);
2962 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2963 len);
2964 iter->unmap_len = 0;
2965 /* override pdest to preserve original P */
2966 pdest = ppc440spe_chan->pdest;
2968 if (qdest) {
2969 struct dma_cdb *hw_desc;
2970 struct ppc440spe_adma_chan *chan;
2972 iter = list_first_entry(&sw_desc->group_list,
2973 struct ppc440spe_adma_desc_slot,
2974 chain_node);
2975 chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
2977 if (pdest) {
2978 iter = list_entry(iter->chain_node.next,
2979 struct ppc440spe_adma_desc_slot,
2980 chain_node);
2983 memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2984 iter->hw_next = list_entry(iter->chain_node.next,
2985 struct ppc440spe_adma_desc_slot,
2986 chain_node);
2987 hw_desc = iter->hw_desc;
2988 hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2989 iter->src_cnt = 0;
2990 iter->dst_cnt = 0;
2991 ppc440spe_desc_set_dest_addr(iter, chan, 0,
2992 ppc440spe_chan->qdest, 0);
2993 ppc440spe_desc_set_src_addr(iter, chan, 0, 0, qdest);
2994 ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2995 len);
2996 iter->unmap_len = 0;
2997 /* override qdest to preserve original Q */
2998 qdest = ppc440spe_chan->qdest;
3001 /* Setup destinations for P/Q ops */
3002 ppc440spe_adma_pqzero_sum_set_dest(sw_desc, pdest, qdest);
3004 /* Setup zero QWORDs into DCHECK CDBs */
3005 idst = dst_cnt;
3006 list_for_each_entry_reverse(iter, &sw_desc->group_list,
3007 chain_node) {
3009 * The last CDB corresponds to Q-parity check,
3010 * the one before last CDB corresponds
3011 * P-parity check
3013 if (idst == DMA_DEST_MAX_NUM) {
3014 if (idst == dst_cnt) {
3015 set_bit(PPC440SPE_DESC_QCHECK,
3016 &iter->flags);
3017 } else {
3018 set_bit(PPC440SPE_DESC_PCHECK,
3019 &iter->flags);
3021 } else {
3022 if (qdest) {
3023 set_bit(PPC440SPE_DESC_QCHECK,
3024 &iter->flags);
3025 } else {
3026 set_bit(PPC440SPE_DESC_PCHECK,
3027 &iter->flags);
3030 iter->xor_check_result = pqres;
3033 * set it to zero, if check fail then result will
3034 * be updated
3036 *iter->xor_check_result = 0;
3037 ppc440spe_desc_set_dcheck(iter, ppc440spe_chan,
3038 ppc440spe_qword);
3040 if (!(--dst_cnt))
3041 break;
3044 /* Setup sources and mults for P/Q ops */
3045 list_for_each_entry_continue_reverse(iter, &sw_desc->group_list,
3046 chain_node) {
3047 struct ppc440spe_adma_chan *chan;
3048 u32 mult_dst;
3050 chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
3051 ppc440spe_desc_set_src_addr(iter, chan, 0,
3052 DMA_CUED_XOR_HB,
3053 src[src_cnt - 1]);
3054 if (qdest) {
3055 mult_dst = (dst_cnt - 1) ? DMA_CDB_SG_DST2 :
3056 DMA_CDB_SG_DST1;
3057 ppc440spe_desc_set_src_mult(iter, chan,
3058 DMA_CUED_MULT1_OFF,
3059 mult_dst,
3060 scf[src_cnt - 1]);
3062 if (!(--src_cnt))
3063 break;
3066 spin_unlock_bh(&ppc440spe_chan->lock);
3067 return sw_desc ? &sw_desc->async_tx : NULL;
3071 * ppc440spe_adma_prep_dma_xor_zero_sum - prepare CDB group for
3072 * XOR ZERO_SUM operation
3074 static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor_zero_sum(
3075 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
3076 size_t len, enum sum_check_flags *result, unsigned long flags)
3078 struct dma_async_tx_descriptor *tx;
3079 dma_addr_t pq[2];
3081 /* validate P, disable Q */
3082 pq[0] = src[0];
3083 pq[1] = 0;
3084 flags |= DMA_PREP_PQ_DISABLE_Q;
3086 tx = ppc440spe_adma_prep_dma_pqzero_sum(chan, pq, &src[1],
3087 src_cnt - 1, 0, len,
3088 result, flags);
3089 return tx;
3093 * ppc440spe_adma_set_dest - set destination address into descriptor
3095 static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *sw_desc,
3096 dma_addr_t addr, int index)
3098 struct ppc440spe_adma_chan *chan;
3100 BUG_ON(index >= sw_desc->dst_cnt);
3102 chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3104 switch (chan->device->id) {
3105 case PPC440SPE_DMA0_ID:
3106 case PPC440SPE_DMA1_ID:
3107 /* to do: support transfers lengths >
3108 * PPC440SPE_ADMA_DMA/XOR_MAX_BYTE_COUNT
3110 ppc440spe_desc_set_dest_addr(sw_desc->group_head,
3111 chan, 0, addr, index);
3112 break;
3113 case PPC440SPE_XOR_ID:
3114 sw_desc = ppc440spe_get_group_entry(sw_desc, index);
3115 ppc440spe_desc_set_dest_addr(sw_desc,
3116 chan, 0, addr, index);
3117 break;
3121 static void ppc440spe_adma_pq_zero_op(struct ppc440spe_adma_desc_slot *iter,
3122 struct ppc440spe_adma_chan *chan, dma_addr_t addr)
3124 /* To clear destinations update the descriptor
3125 * (P or Q depending on index) as follows:
3126 * addr is destination (0 corresponds to SG2):
3128 ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, addr, 0);
3130 /* ... and the addr is source: */
3131 ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, addr);
3133 /* addr is always SG2 then the mult is always DST1 */
3134 ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
3135 DMA_CDB_SG_DST1, 1);
3139 * ppc440spe_adma_pq_set_dest - set destination address into descriptor
3140 * for the PQXOR operation
3142 static void ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *sw_desc,
3143 dma_addr_t *addrs, unsigned long flags)
3145 struct ppc440spe_adma_desc_slot *iter;
3146 struct ppc440spe_adma_chan *chan;
3147 dma_addr_t paddr, qaddr;
3148 dma_addr_t addr = 0, ppath, qpath;
3149 int index = 0, i;
3151 chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3153 if (flags & DMA_PREP_PQ_DISABLE_P)
3154 paddr = 0;
3155 else
3156 paddr = addrs[0];
3158 if (flags & DMA_PREP_PQ_DISABLE_Q)
3159 qaddr = 0;
3160 else
3161 qaddr = addrs[1];
3163 if (!paddr || !qaddr)
3164 addr = paddr ? paddr : qaddr;
3166 switch (chan->device->id) {
3167 case PPC440SPE_DMA0_ID:
3168 case PPC440SPE_DMA1_ID:
3169 /* walk through the WXOR source list and set P/Q-destinations
3170 * for each slot:
3172 if (!test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
3173 /* This is WXOR-only chain; may have 1/2 zero descs */
3174 if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
3175 index++;
3176 if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
3177 index++;
3179 iter = ppc440spe_get_group_entry(sw_desc, index);
3180 if (addr) {
3181 /* one destination */
3182 list_for_each_entry_from(iter,
3183 &sw_desc->group_list, chain_node)
3184 ppc440spe_desc_set_dest_addr(iter, chan,
3185 DMA_CUED_XOR_BASE, addr, 0);
3186 } else {
3187 /* two destinations */
3188 list_for_each_entry_from(iter,
3189 &sw_desc->group_list, chain_node) {
3190 ppc440spe_desc_set_dest_addr(iter, chan,
3191 DMA_CUED_XOR_BASE, paddr, 0);
3192 ppc440spe_desc_set_dest_addr(iter, chan,
3193 DMA_CUED_XOR_BASE, qaddr, 1);
3197 if (index) {
3198 /* To clear destinations update the descriptor
3199 * (1st,2nd, or both depending on flags)
3201 index = 0;
3202 if (test_bit(PPC440SPE_ZERO_P,
3203 &sw_desc->flags)) {
3204 iter = ppc440spe_get_group_entry(
3205 sw_desc, index++);
3206 ppc440spe_adma_pq_zero_op(iter, chan,
3207 paddr);
3210 if (test_bit(PPC440SPE_ZERO_Q,
3211 &sw_desc->flags)) {
3212 iter = ppc440spe_get_group_entry(
3213 sw_desc, index++);
3214 ppc440spe_adma_pq_zero_op(iter, chan,
3215 qaddr);
3218 return;
3220 } else {
3221 /* This is RXOR-only or RXOR/WXOR mixed chain */
3223 /* If we want to include destination into calculations,
3224 * then make dest addresses cued with mult=1 (XOR).
3226 ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ?
3227 DMA_CUED_XOR_HB :
3228 DMA_CUED_XOR_BASE |
3229 (1 << DMA_CUED_MULT1_OFF);
3230 qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ?
3231 DMA_CUED_XOR_HB :
3232 DMA_CUED_XOR_BASE |
3233 (1 << DMA_CUED_MULT1_OFF);
3235 /* Setup destination(s) in RXOR slot(s) */
3236 iter = ppc440spe_get_group_entry(sw_desc, index++);
3237 ppc440spe_desc_set_dest_addr(iter, chan,
3238 paddr ? ppath : qpath,
3239 paddr ? paddr : qaddr, 0);
3240 if (!addr) {
3241 /* two destinations */
3242 iter = ppc440spe_get_group_entry(sw_desc,
3243 index++);
3244 ppc440spe_desc_set_dest_addr(iter, chan,
3245 qpath, qaddr, 0);
3248 if (test_bit(PPC440SPE_DESC_WXOR, &sw_desc->flags)) {
3249 /* Setup destination(s) in remaining WXOR
3250 * slots
3252 iter = ppc440spe_get_group_entry(sw_desc,
3253 index);
3254 if (addr) {
3255 /* one destination */
3256 list_for_each_entry_from(iter,
3257 &sw_desc->group_list,
3258 chain_node)
3259 ppc440spe_desc_set_dest_addr(
3260 iter, chan,
3261 DMA_CUED_XOR_BASE,
3262 addr, 0);
3264 } else {
3265 /* two destinations */
3266 list_for_each_entry_from(iter,
3267 &sw_desc->group_list,
3268 chain_node) {
3269 ppc440spe_desc_set_dest_addr(
3270 iter, chan,
3271 DMA_CUED_XOR_BASE,
3272 paddr, 0);
3273 ppc440spe_desc_set_dest_addr(
3274 iter, chan,
3275 DMA_CUED_XOR_BASE,
3276 qaddr, 1);
3282 break;
3284 case PPC440SPE_XOR_ID:
3285 /* DMA2 descriptors have only 1 destination, so there are
3286 * two chains - one for each dest.
3287 * If we want to include destination into calculations,
3288 * then make dest addresses cued with mult=1 (XOR).
3290 ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ?
3291 DMA_CUED_XOR_HB :
3292 DMA_CUED_XOR_BASE |
3293 (1 << DMA_CUED_MULT1_OFF);
3295 qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ?
3296 DMA_CUED_XOR_HB :
3297 DMA_CUED_XOR_BASE |
3298 (1 << DMA_CUED_MULT1_OFF);
3300 iter = ppc440spe_get_group_entry(sw_desc, 0);
3301 for (i = 0; i < sw_desc->descs_per_op; i++) {
3302 ppc440spe_desc_set_dest_addr(iter, chan,
3303 paddr ? ppath : qpath,
3304 paddr ? paddr : qaddr, 0);
3305 iter = list_entry(iter->chain_node.next,
3306 struct ppc440spe_adma_desc_slot,
3307 chain_node);
3310 if (!addr) {
3311 /* Two destinations; setup Q here */
3312 iter = ppc440spe_get_group_entry(sw_desc,
3313 sw_desc->descs_per_op);
3314 for (i = 0; i < sw_desc->descs_per_op; i++) {
3315 ppc440spe_desc_set_dest_addr(iter,
3316 chan, qpath, qaddr, 0);
3317 iter = list_entry(iter->chain_node.next,
3318 struct ppc440spe_adma_desc_slot,
3319 chain_node);
3323 break;
3328 * ppc440spe_adma_pq_zero_sum_set_dest - set destination address into descriptor
3329 * for the PQ_ZERO_SUM operation
3331 static void ppc440spe_adma_pqzero_sum_set_dest(
3332 struct ppc440spe_adma_desc_slot *sw_desc,
3333 dma_addr_t paddr, dma_addr_t qaddr)
3335 struct ppc440spe_adma_desc_slot *iter, *end;
3336 struct ppc440spe_adma_chan *chan;
3337 dma_addr_t addr = 0;
3338 int idx;
3340 chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3342 /* walk through the WXOR source list and set P/Q-destinations
3343 * for each slot
3345 idx = (paddr && qaddr) ? 2 : 1;
3346 /* set end */
3347 list_for_each_entry_reverse(end, &sw_desc->group_list,
3348 chain_node) {
3349 if (!(--idx))
3350 break;
3352 /* set start */
3353 idx = (paddr && qaddr) ? 2 : 1;
3354 iter = ppc440spe_get_group_entry(sw_desc, idx);
3356 if (paddr && qaddr) {
3357 /* two destinations */
3358 list_for_each_entry_from(iter, &sw_desc->group_list,
3359 chain_node) {
3360 if (unlikely(iter == end))
3361 break;
3362 ppc440spe_desc_set_dest_addr(iter, chan,
3363 DMA_CUED_XOR_BASE, paddr, 0);
3364 ppc440spe_desc_set_dest_addr(iter, chan,
3365 DMA_CUED_XOR_BASE, qaddr, 1);
3367 } else {
3368 /* one destination */
3369 addr = paddr ? paddr : qaddr;
3370 list_for_each_entry_from(iter, &sw_desc->group_list,
3371 chain_node) {
3372 if (unlikely(iter == end))
3373 break;
3374 ppc440spe_desc_set_dest_addr(iter, chan,
3375 DMA_CUED_XOR_BASE, addr, 0);
3379 /* The remaining descriptors are DATACHECK. These have no need in
3380 * destination. Actually, these destinations are used there
3381 * as sources for check operation. So, set addr as source.
3383 ppc440spe_desc_set_src_addr(end, chan, 0, 0, addr ? addr : paddr);
3385 if (!addr) {
3386 end = list_entry(end->chain_node.next,
3387 struct ppc440spe_adma_desc_slot, chain_node);
3388 ppc440spe_desc_set_src_addr(end, chan, 0, 0, qaddr);
3393 * ppc440spe_desc_set_xor_src_cnt - set source count into descriptor
3395 static inline void ppc440spe_desc_set_xor_src_cnt(
3396 struct ppc440spe_adma_desc_slot *desc,
3397 int src_cnt)
3399 struct xor_cb *hw_desc = desc->hw_desc;
3401 hw_desc->cbc &= ~XOR_CDCR_OAC_MSK;
3402 hw_desc->cbc |= src_cnt;
3406 * ppc440spe_adma_pq_set_src - set source address into descriptor
3408 static void ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *sw_desc,
3409 dma_addr_t addr, int index)
3411 struct ppc440spe_adma_chan *chan;
3412 dma_addr_t haddr = 0;
3413 struct ppc440spe_adma_desc_slot *iter = NULL;
3415 chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3417 switch (chan->device->id) {
3418 case PPC440SPE_DMA0_ID:
3419 case PPC440SPE_DMA1_ID:
3420 /* DMA0,1 may do: WXOR, RXOR, RXOR+WXORs chain
3422 if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
3423 /* RXOR-only or RXOR/WXOR operation */
3424 int iskip = test_bit(PPC440SPE_DESC_RXOR12,
3425 &sw_desc->flags) ? 2 : 3;
3427 if (index == 0) {
3428 /* 1st slot (RXOR) */
3429 /* setup sources region (R1-2-3, R1-2-4,
3430 * or R1-2-5)
3432 if (test_bit(PPC440SPE_DESC_RXOR12,
3433 &sw_desc->flags))
3434 haddr = DMA_RXOR12 <<
3435 DMA_CUED_REGION_OFF;
3436 else if (test_bit(PPC440SPE_DESC_RXOR123,
3437 &sw_desc->flags))
3438 haddr = DMA_RXOR123 <<
3439 DMA_CUED_REGION_OFF;
3440 else if (test_bit(PPC440SPE_DESC_RXOR124,
3441 &sw_desc->flags))
3442 haddr = DMA_RXOR124 <<
3443 DMA_CUED_REGION_OFF;
3444 else if (test_bit(PPC440SPE_DESC_RXOR125,
3445 &sw_desc->flags))
3446 haddr = DMA_RXOR125 <<
3447 DMA_CUED_REGION_OFF;
3448 else
3449 BUG();
3450 haddr |= DMA_CUED_XOR_BASE;
3451 iter = ppc440spe_get_group_entry(sw_desc, 0);
3452 } else if (index < iskip) {
3453 /* 1st slot (RXOR)
3454 * shall actually set source address only once
3455 * instead of first <iskip>
3457 iter = NULL;
3458 } else {
3459 /* 2nd/3d and next slots (WXOR);
3460 * skip first slot with RXOR
3462 haddr = DMA_CUED_XOR_HB;
3463 iter = ppc440spe_get_group_entry(sw_desc,
3464 index - iskip + sw_desc->dst_cnt);
3466 } else {
3467 int znum = 0;
3469 /* WXOR-only operation; skip first slots with
3470 * zeroing destinations
3472 if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
3473 znum++;
3474 if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
3475 znum++;
3477 haddr = DMA_CUED_XOR_HB;
3478 iter = ppc440spe_get_group_entry(sw_desc,
3479 index + znum);
3482 if (likely(iter)) {
3483 ppc440spe_desc_set_src_addr(iter, chan, 0, haddr, addr);
3485 if (!index &&
3486 test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags) &&
3487 sw_desc->dst_cnt == 2) {
3488 /* if we have two destinations for RXOR, then
3489 * setup source in the second descr too
3491 iter = ppc440spe_get_group_entry(sw_desc, 1);
3492 ppc440spe_desc_set_src_addr(iter, chan, 0,
3493 haddr, addr);
3496 break;
3498 case PPC440SPE_XOR_ID:
3499 /* DMA2 may do Biskup */
3500 iter = sw_desc->group_head;
3501 if (iter->dst_cnt == 2) {
3502 /* both P & Q calculations required; set P src here */
3503 ppc440spe_adma_dma2rxor_set_src(iter, index, addr);
3505 /* this is for Q */
3506 iter = ppc440spe_get_group_entry(sw_desc,
3507 sw_desc->descs_per_op);
3509 ppc440spe_adma_dma2rxor_set_src(iter, index, addr);
3510 break;
3515 * ppc440spe_adma_memcpy_xor_set_src - set source address into descriptor
3517 static void ppc440spe_adma_memcpy_xor_set_src(
3518 struct ppc440spe_adma_desc_slot *sw_desc,
3519 dma_addr_t addr, int index)
3521 struct ppc440spe_adma_chan *chan;
3523 chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3524 sw_desc = sw_desc->group_head;
3526 if (likely(sw_desc))
3527 ppc440spe_desc_set_src_addr(sw_desc, chan, index, 0, addr);
3531 * ppc440spe_adma_dma2rxor_inc_addr -
3533 static void ppc440spe_adma_dma2rxor_inc_addr(
3534 struct ppc440spe_adma_desc_slot *desc,
3535 struct ppc440spe_rxor *cursor, int index, int src_cnt)
3537 cursor->addr_count++;
3538 if (index == src_cnt - 1) {
3539 ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count);
3540 } else if (cursor->addr_count == XOR_MAX_OPS) {
3541 ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count);
3542 cursor->addr_count = 0;
3543 cursor->desc_count++;
3548 * ppc440spe_adma_dma2rxor_prep_src - setup RXOR types in DMA2 CDB
3550 static int ppc440spe_adma_dma2rxor_prep_src(
3551 struct ppc440spe_adma_desc_slot *hdesc,
3552 struct ppc440spe_rxor *cursor, int index,
3553 int src_cnt, u32 addr)
3555 int rval = 0;
3556 u32 sign;
3557 struct ppc440spe_adma_desc_slot *desc = hdesc;
3558 int i;
3560 for (i = 0; i < cursor->desc_count; i++) {
3561 desc = list_entry(hdesc->chain_node.next,
3562 struct ppc440spe_adma_desc_slot,
3563 chain_node);
3566 switch (cursor->state) {
3567 case 0:
3568 if (addr == cursor->addrl + cursor->len) {
3569 /* direct RXOR */
3570 cursor->state = 1;
3571 cursor->xor_count++;
3572 if (index == src_cnt-1) {
3573 ppc440spe_rxor_set_region(desc,
3574 cursor->addr_count,
3575 DMA_RXOR12 << DMA_CUED_REGION_OFF);
3576 ppc440spe_adma_dma2rxor_inc_addr(
3577 desc, cursor, index, src_cnt);
3579 } else if (cursor->addrl == addr + cursor->len) {
3580 /* reverse RXOR */
3581 cursor->state = 1;
3582 cursor->xor_count++;
3583 set_bit(cursor->addr_count, &desc->reverse_flags[0]);
3584 if (index == src_cnt-1) {
3585 ppc440spe_rxor_set_region(desc,
3586 cursor->addr_count,
3587 DMA_RXOR12 << DMA_CUED_REGION_OFF);
3588 ppc440spe_adma_dma2rxor_inc_addr(
3589 desc, cursor, index, src_cnt);
3591 } else {
3592 printk(KERN_ERR "Cannot build "
3593 "DMA2 RXOR command block.\n");
3594 BUG();
3596 break;
3597 case 1:
3598 sign = test_bit(cursor->addr_count,
3599 desc->reverse_flags)
3600 ? -1 : 1;
3601 if (index == src_cnt-2 || (sign == -1
3602 && addr != cursor->addrl - 2*cursor->len)) {
3603 cursor->state = 0;
3604 cursor->xor_count = 1;
3605 cursor->addrl = addr;
3606 ppc440spe_rxor_set_region(desc,
3607 cursor->addr_count,
3608 DMA_RXOR12 << DMA_CUED_REGION_OFF);
3609 ppc440spe_adma_dma2rxor_inc_addr(
3610 desc, cursor, index, src_cnt);
3611 } else if (addr == cursor->addrl + 2*sign*cursor->len) {
3612 cursor->state = 2;
3613 cursor->xor_count = 0;
3614 ppc440spe_rxor_set_region(desc,
3615 cursor->addr_count,
3616 DMA_RXOR123 << DMA_CUED_REGION_OFF);
3617 if (index == src_cnt-1) {
3618 ppc440spe_adma_dma2rxor_inc_addr(
3619 desc, cursor, index, src_cnt);
3621 } else if (addr == cursor->addrl + 3*cursor->len) {
3622 cursor->state = 2;
3623 cursor->xor_count = 0;
3624 ppc440spe_rxor_set_region(desc,
3625 cursor->addr_count,
3626 DMA_RXOR124 << DMA_CUED_REGION_OFF);
3627 if (index == src_cnt-1) {
3628 ppc440spe_adma_dma2rxor_inc_addr(
3629 desc, cursor, index, src_cnt);
3631 } else if (addr == cursor->addrl + 4*cursor->len) {
3632 cursor->state = 2;
3633 cursor->xor_count = 0;
3634 ppc440spe_rxor_set_region(desc,
3635 cursor->addr_count,
3636 DMA_RXOR125 << DMA_CUED_REGION_OFF);
3637 if (index == src_cnt-1) {
3638 ppc440spe_adma_dma2rxor_inc_addr(
3639 desc, cursor, index, src_cnt);
3641 } else {
3642 cursor->state = 0;
3643 cursor->xor_count = 1;
3644 cursor->addrl = addr;
3645 ppc440spe_rxor_set_region(desc,
3646 cursor->addr_count,
3647 DMA_RXOR12 << DMA_CUED_REGION_OFF);
3648 ppc440spe_adma_dma2rxor_inc_addr(
3649 desc, cursor, index, src_cnt);
3651 break;
3652 case 2:
3653 cursor->state = 0;
3654 cursor->addrl = addr;
3655 cursor->xor_count++;
3656 if (index) {
3657 ppc440spe_adma_dma2rxor_inc_addr(
3658 desc, cursor, index, src_cnt);
3660 break;
3663 return rval;
3667 * ppc440spe_adma_dma2rxor_set_src - set RXOR source address; it's assumed that
3668 * ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
3670 static void ppc440spe_adma_dma2rxor_set_src(
3671 struct ppc440spe_adma_desc_slot *desc,
3672 int index, dma_addr_t addr)
3674 struct xor_cb *xcb = desc->hw_desc;
3675 int k = 0, op = 0, lop = 0;
3677 /* get the RXOR operand which corresponds to index addr */
3678 while (op <= index) {
3679 lop = op;
3680 if (k == XOR_MAX_OPS) {
3681 k = 0;
3682 desc = list_entry(desc->chain_node.next,
3683 struct ppc440spe_adma_desc_slot, chain_node);
3684 xcb = desc->hw_desc;
3687 if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) ==
3688 (DMA_RXOR12 << DMA_CUED_REGION_OFF))
3689 op += 2;
3690 else
3691 op += 3;
3694 BUG_ON(k < 1);
3696 if (test_bit(k-1, desc->reverse_flags)) {
3697 /* reverse operand order; put last op in RXOR group */
3698 if (index == op - 1)
3699 ppc440spe_rxor_set_src(desc, k - 1, addr);
3700 } else {
3701 /* direct operand order; put first op in RXOR group */
3702 if (index == lop)
3703 ppc440spe_rxor_set_src(desc, k - 1, addr);
3708 * ppc440spe_adma_dma2rxor_set_mult - set RXOR multipliers; it's assumed that
3709 * ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
3711 static void ppc440spe_adma_dma2rxor_set_mult(
3712 struct ppc440spe_adma_desc_slot *desc,
3713 int index, u8 mult)
3715 struct xor_cb *xcb = desc->hw_desc;
3716 int k = 0, op = 0, lop = 0;
3718 /* get the RXOR operand which corresponds to index mult */
3719 while (op <= index) {
3720 lop = op;
3721 if (k == XOR_MAX_OPS) {
3722 k = 0;
3723 desc = list_entry(desc->chain_node.next,
3724 struct ppc440spe_adma_desc_slot,
3725 chain_node);
3726 xcb = desc->hw_desc;
3729 if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) ==
3730 (DMA_RXOR12 << DMA_CUED_REGION_OFF))
3731 op += 2;
3732 else
3733 op += 3;
3736 BUG_ON(k < 1);
3737 if (test_bit(k-1, desc->reverse_flags)) {
3738 /* reverse order */
3739 ppc440spe_rxor_set_mult(desc, k - 1, op - index - 1, mult);
3740 } else {
3741 /* direct order */
3742 ppc440spe_rxor_set_mult(desc, k - 1, index - lop, mult);
3747 * ppc440spe_init_rxor_cursor -
3749 static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor)
3751 memset(cursor, 0, sizeof(struct ppc440spe_rxor));
3752 cursor->state = 2;
3756 * ppc440spe_adma_pq_set_src_mult - set multiplication coefficient into
3757 * descriptor for the PQXOR operation
3759 static void ppc440spe_adma_pq_set_src_mult(
3760 struct ppc440spe_adma_desc_slot *sw_desc,
3761 unsigned char mult, int index, int dst_pos)
3763 struct ppc440spe_adma_chan *chan;
3764 u32 mult_idx, mult_dst;
3765 struct ppc440spe_adma_desc_slot *iter = NULL, *iter1 = NULL;
3767 chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3769 switch (chan->device->id) {
3770 case PPC440SPE_DMA0_ID:
3771 case PPC440SPE_DMA1_ID:
3772 if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
3773 int region = test_bit(PPC440SPE_DESC_RXOR12,
3774 &sw_desc->flags) ? 2 : 3;
3776 if (index < region) {
3777 /* RXOR multipliers */
3778 iter = ppc440spe_get_group_entry(sw_desc,
3779 sw_desc->dst_cnt - 1);
3780 if (sw_desc->dst_cnt == 2)
3781 iter1 = ppc440spe_get_group_entry(
3782 sw_desc, 0);
3784 mult_idx = DMA_CUED_MULT1_OFF + (index << 3);
3785 mult_dst = DMA_CDB_SG_SRC;
3786 } else {
3787 /* WXOR multiplier */
3788 iter = ppc440spe_get_group_entry(sw_desc,
3789 index - region +
3790 sw_desc->dst_cnt);
3791 mult_idx = DMA_CUED_MULT1_OFF;
3792 mult_dst = dst_pos ? DMA_CDB_SG_DST2 :
3793 DMA_CDB_SG_DST1;
3795 } else {
3796 int znum = 0;
3798 /* WXOR-only;
3799 * skip first slots with destinations (if ZERO_DST has
3800 * place)
3802 if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
3803 znum++;
3804 if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
3805 znum++;
3807 iter = ppc440spe_get_group_entry(sw_desc, index + znum);
3808 mult_idx = DMA_CUED_MULT1_OFF;
3809 mult_dst = dst_pos ? DMA_CDB_SG_DST2 : DMA_CDB_SG_DST1;
3812 if (likely(iter)) {
3813 ppc440spe_desc_set_src_mult(iter, chan,
3814 mult_idx, mult_dst, mult);
3816 if (unlikely(iter1)) {
3817 /* if we have two destinations for RXOR, then
3818 * we've just set Q mult. Set-up P now.
3820 ppc440spe_desc_set_src_mult(iter1, chan,
3821 mult_idx, mult_dst, 1);
3825 break;
3827 case PPC440SPE_XOR_ID:
3828 iter = sw_desc->group_head;
3829 if (sw_desc->dst_cnt == 2) {
3830 /* both P & Q calculations required; set P mult here */
3831 ppc440spe_adma_dma2rxor_set_mult(iter, index, 1);
3833 /* and then set Q mult */
3834 iter = ppc440spe_get_group_entry(sw_desc,
3835 sw_desc->descs_per_op);
3837 ppc440spe_adma_dma2rxor_set_mult(iter, index, mult);
3838 break;
3843 * ppc440spe_adma_free_chan_resources - free the resources allocated
3845 static void ppc440spe_adma_free_chan_resources(struct dma_chan *chan)
3847 struct ppc440spe_adma_chan *ppc440spe_chan;
3848 struct ppc440spe_adma_desc_slot *iter, *_iter;
3849 int in_use_descs = 0;
3851 ppc440spe_chan = to_ppc440spe_adma_chan(chan);
3852 ppc440spe_adma_slot_cleanup(ppc440spe_chan);
3854 spin_lock_bh(&ppc440spe_chan->lock);
3855 list_for_each_entry_safe(iter, _iter, &ppc440spe_chan->chain,
3856 chain_node) {
3857 in_use_descs++;
3858 list_del(&iter->chain_node);
3860 list_for_each_entry_safe_reverse(iter, _iter,
3861 &ppc440spe_chan->all_slots, slot_node) {
3862 list_del(&iter->slot_node);
3863 kfree(iter);
3864 ppc440spe_chan->slots_allocated--;
3866 ppc440spe_chan->last_used = NULL;
3868 dev_dbg(ppc440spe_chan->device->common.dev,
3869 "ppc440spe adma%d %s slots_allocated %d\n",
3870 ppc440spe_chan->device->id,
3871 __func__, ppc440spe_chan->slots_allocated);
3872 spin_unlock_bh(&ppc440spe_chan->lock);
3874 /* one is ok since we left it on there on purpose */
3875 if (in_use_descs > 1)
3876 printk(KERN_ERR "SPE: Freeing %d in use descriptors!\n",
3877 in_use_descs - 1);
3881 * ppc440spe_adma_tx_status - poll the status of an ADMA transaction
3882 * @chan: ADMA channel handle
3883 * @cookie: ADMA transaction identifier
3884 * @txstate: a holder for the current state of the channel
3886 static enum dma_status ppc440spe_adma_tx_status(struct dma_chan *chan,
3887 dma_cookie_t cookie, struct dma_tx_state *txstate)
3889 struct ppc440spe_adma_chan *ppc440spe_chan;
3890 enum dma_status ret;
3892 ppc440spe_chan = to_ppc440spe_adma_chan(chan);
3893 ret = dma_cookie_status(chan, cookie, txstate);
3894 if (ret == DMA_SUCCESS)
3895 return ret;
3897 ppc440spe_adma_slot_cleanup(ppc440spe_chan);
3899 return dma_cookie_status(chan, cookie, txstate);
3903 * ppc440spe_adma_eot_handler - end of transfer interrupt handler
3905 static irqreturn_t ppc440spe_adma_eot_handler(int irq, void *data)
3907 struct ppc440spe_adma_chan *chan = data;
3909 dev_dbg(chan->device->common.dev,
3910 "ppc440spe adma%d: %s\n", chan->device->id, __func__);
3912 tasklet_schedule(&chan->irq_tasklet);
3913 ppc440spe_adma_device_clear_eot_status(chan);
3915 return IRQ_HANDLED;
3919 * ppc440spe_adma_err_handler - DMA error interrupt handler;
3920 * do the same things as a eot handler
3922 static irqreturn_t ppc440spe_adma_err_handler(int irq, void *data)
3924 struct ppc440spe_adma_chan *chan = data;
3926 dev_dbg(chan->device->common.dev,
3927 "ppc440spe adma%d: %s\n", chan->device->id, __func__);
3929 tasklet_schedule(&chan->irq_tasklet);
3930 ppc440spe_adma_device_clear_eot_status(chan);
3932 return IRQ_HANDLED;
3936 * ppc440spe_test_callback - called when test operation has been done
3938 static void ppc440spe_test_callback(void *unused)
3940 complete(&ppc440spe_r6_test_comp);
3944 * ppc440spe_adma_issue_pending - flush all pending descriptors to h/w
3946 static void ppc440spe_adma_issue_pending(struct dma_chan *chan)
3948 struct ppc440spe_adma_chan *ppc440spe_chan;
3950 ppc440spe_chan = to_ppc440spe_adma_chan(chan);
3951 dev_dbg(ppc440spe_chan->device->common.dev,
3952 "ppc440spe adma%d: %s %d \n", ppc440spe_chan->device->id,
3953 __func__, ppc440spe_chan->pending);
3955 if (ppc440spe_chan->pending) {
3956 ppc440spe_chan->pending = 0;
3957 ppc440spe_chan_append(ppc440spe_chan);
3962 * ppc440spe_chan_start_null_xor - initiate the first XOR operation (DMA engines
3963 * use FIFOs (as opposite to chains used in XOR) so this is a XOR
3964 * specific operation)
3966 static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan)
3968 struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
3969 dma_cookie_t cookie;
3970 int slot_cnt, slots_per_op;
3972 dev_dbg(chan->device->common.dev,
3973 "ppc440spe adma%d: %s\n", chan->device->id, __func__);
3975 spin_lock_bh(&chan->lock);
3976 slot_cnt = ppc440spe_chan_xor_slot_count(0, 2, &slots_per_op);
3977 sw_desc = ppc440spe_adma_alloc_slots(chan, slot_cnt, slots_per_op);
3978 if (sw_desc) {
3979 group_start = sw_desc->group_head;
3980 list_splice_init(&sw_desc->group_list, &chan->chain);
3981 async_tx_ack(&sw_desc->async_tx);
3982 ppc440spe_desc_init_null_xor(group_start);
3984 cookie = dma_cookie_assign(&sw_desc->async_tx);
3986 /* initialize the completed cookie to be less than
3987 * the most recently used cookie
3989 chan->common.completed_cookie = cookie - 1;
3991 /* channel should not be busy */
3992 BUG_ON(ppc440spe_chan_is_busy(chan));
3994 /* set the descriptor address */
3995 ppc440spe_chan_set_first_xor_descriptor(chan, sw_desc);
3997 /* run the descriptor */
3998 ppc440spe_chan_run(chan);
3999 } else
4000 printk(KERN_ERR "ppc440spe adma%d"
4001 " failed to allocate null descriptor\n",
4002 chan->device->id);
4003 spin_unlock_bh(&chan->lock);
4007 * ppc440spe_test_raid6 - test are RAID-6 capabilities enabled successfully.
4008 * For this we just perform one WXOR operation with the same source
4009 * and destination addresses, the GF-multiplier is 1; so if RAID-6
4010 * capabilities are enabled then we'll get src/dst filled with zero.
4012 static int ppc440spe_test_raid6(struct ppc440spe_adma_chan *chan)
4014 struct ppc440spe_adma_desc_slot *sw_desc, *iter;
4015 struct page *pg;
4016 char *a;
4017 dma_addr_t dma_addr, addrs[2];
4018 unsigned long op = 0;
4019 int rval = 0;
4021 set_bit(PPC440SPE_DESC_WXOR, &op);
4023 pg = alloc_page(GFP_KERNEL);
4024 if (!pg)
4025 return -ENOMEM;
4027 spin_lock_bh(&chan->lock);
4028 sw_desc = ppc440spe_adma_alloc_slots(chan, 1, 1);
4029 if (sw_desc) {
4030 /* 1 src, 1 dsr, int_ena, WXOR */
4031 ppc440spe_desc_init_dma01pq(sw_desc, 1, 1, 1, op);
4032 list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
4033 ppc440spe_desc_set_byte_count(iter, chan, PAGE_SIZE);
4034 iter->unmap_len = PAGE_SIZE;
4036 } else {
4037 rval = -EFAULT;
4038 spin_unlock_bh(&chan->lock);
4039 goto exit;
4041 spin_unlock_bh(&chan->lock);
4043 /* Fill the test page with ones */
4044 memset(page_address(pg), 0xFF, PAGE_SIZE);
4045 dma_addr = dma_map_page(chan->device->dev, pg, 0,
4046 PAGE_SIZE, DMA_BIDIRECTIONAL);
4048 /* Setup addresses */
4049 ppc440spe_adma_pq_set_src(sw_desc, dma_addr, 0);
4050 ppc440spe_adma_pq_set_src_mult(sw_desc, 1, 0, 0);
4051 addrs[0] = dma_addr;
4052 addrs[1] = 0;
4053 ppc440spe_adma_pq_set_dest(sw_desc, addrs, DMA_PREP_PQ_DISABLE_Q);
4055 async_tx_ack(&sw_desc->async_tx);
4056 sw_desc->async_tx.callback = ppc440spe_test_callback;
4057 sw_desc->async_tx.callback_param = NULL;
4059 init_completion(&ppc440spe_r6_test_comp);
4061 ppc440spe_adma_tx_submit(&sw_desc->async_tx);
4062 ppc440spe_adma_issue_pending(&chan->common);
4064 wait_for_completion(&ppc440spe_r6_test_comp);
4066 /* Now check if the test page is zeroed */
4067 a = page_address(pg);
4068 if ((*(u32 *)a) == 0 && memcmp(a, a+4, PAGE_SIZE-4) == 0) {
4069 /* page is zero - RAID-6 enabled */
4070 rval = 0;
4071 } else {
4072 /* RAID-6 was not enabled */
4073 rval = -EINVAL;
4075 exit:
4076 __free_page(pg);
4077 return rval;
4080 static void ppc440spe_adma_init_capabilities(struct ppc440spe_adma_device *adev)
4082 switch (adev->id) {
4083 case PPC440SPE_DMA0_ID:
4084 case PPC440SPE_DMA1_ID:
4085 dma_cap_set(DMA_MEMCPY, adev->common.cap_mask);
4086 dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask);
4087 dma_cap_set(DMA_PQ, adev->common.cap_mask);
4088 dma_cap_set(DMA_PQ_VAL, adev->common.cap_mask);
4089 dma_cap_set(DMA_XOR_VAL, adev->common.cap_mask);
4090 break;
4091 case PPC440SPE_XOR_ID:
4092 dma_cap_set(DMA_XOR, adev->common.cap_mask);
4093 dma_cap_set(DMA_PQ, adev->common.cap_mask);
4094 dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask);
4095 adev->common.cap_mask = adev->common.cap_mask;
4096 break;
4099 /* Set base routines */
4100 adev->common.device_alloc_chan_resources =
4101 ppc440spe_adma_alloc_chan_resources;
4102 adev->common.device_free_chan_resources =
4103 ppc440spe_adma_free_chan_resources;
4104 adev->common.device_tx_status = ppc440spe_adma_tx_status;
4105 adev->common.device_issue_pending = ppc440spe_adma_issue_pending;
4107 /* Set prep routines based on capability */
4108 if (dma_has_cap(DMA_MEMCPY, adev->common.cap_mask)) {
4109 adev->common.device_prep_dma_memcpy =
4110 ppc440spe_adma_prep_dma_memcpy;
4112 if (dma_has_cap(DMA_XOR, adev->common.cap_mask)) {
4113 adev->common.max_xor = XOR_MAX_OPS;
4114 adev->common.device_prep_dma_xor =
4115 ppc440spe_adma_prep_dma_xor;
4117 if (dma_has_cap(DMA_PQ, adev->common.cap_mask)) {
4118 switch (adev->id) {
4119 case PPC440SPE_DMA0_ID:
4120 dma_set_maxpq(&adev->common,
4121 DMA0_FIFO_SIZE / sizeof(struct dma_cdb), 0);
4122 break;
4123 case PPC440SPE_DMA1_ID:
4124 dma_set_maxpq(&adev->common,
4125 DMA1_FIFO_SIZE / sizeof(struct dma_cdb), 0);
4126 break;
4127 case PPC440SPE_XOR_ID:
4128 adev->common.max_pq = XOR_MAX_OPS * 3;
4129 break;
4131 adev->common.device_prep_dma_pq =
4132 ppc440spe_adma_prep_dma_pq;
4134 if (dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask)) {
4135 switch (adev->id) {
4136 case PPC440SPE_DMA0_ID:
4137 adev->common.max_pq = DMA0_FIFO_SIZE /
4138 sizeof(struct dma_cdb);
4139 break;
4140 case PPC440SPE_DMA1_ID:
4141 adev->common.max_pq = DMA1_FIFO_SIZE /
4142 sizeof(struct dma_cdb);
4143 break;
4145 adev->common.device_prep_dma_pq_val =
4146 ppc440spe_adma_prep_dma_pqzero_sum;
4148 if (dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask)) {
4149 switch (adev->id) {
4150 case PPC440SPE_DMA0_ID:
4151 adev->common.max_xor = DMA0_FIFO_SIZE /
4152 sizeof(struct dma_cdb);
4153 break;
4154 case PPC440SPE_DMA1_ID:
4155 adev->common.max_xor = DMA1_FIFO_SIZE /
4156 sizeof(struct dma_cdb);
4157 break;
4159 adev->common.device_prep_dma_xor_val =
4160 ppc440spe_adma_prep_dma_xor_zero_sum;
4162 if (dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask)) {
4163 adev->common.device_prep_dma_interrupt =
4164 ppc440spe_adma_prep_dma_interrupt;
4166 pr_info("%s: AMCC(R) PPC440SP(E) ADMA Engine: "
4167 "( %s%s%s%s%s%s%s)\n",
4168 dev_name(adev->dev),
4169 dma_has_cap(DMA_PQ, adev->common.cap_mask) ? "pq " : "",
4170 dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask) ? "pq_val " : "",
4171 dma_has_cap(DMA_XOR, adev->common.cap_mask) ? "xor " : "",
4172 dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask) ? "xor_val " : "",
4173 dma_has_cap(DMA_MEMCPY, adev->common.cap_mask) ? "memcpy " : "",
4174 dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask) ? "intr " : "");
4177 static int ppc440spe_adma_setup_irqs(struct ppc440spe_adma_device *adev,
4178 struct ppc440spe_adma_chan *chan,
4179 int *initcode)
4181 struct platform_device *ofdev;
4182 struct device_node *np;
4183 int ret;
4185 ofdev = container_of(adev->dev, struct platform_device, dev);
4186 np = ofdev->dev.of_node;
4187 if (adev->id != PPC440SPE_XOR_ID) {
4188 adev->err_irq = irq_of_parse_and_map(np, 1);
4189 if (adev->err_irq == NO_IRQ) {
4190 dev_warn(adev->dev, "no err irq resource?\n");
4191 *initcode = PPC_ADMA_INIT_IRQ2;
4192 adev->err_irq = -ENXIO;
4193 } else
4194 atomic_inc(&ppc440spe_adma_err_irq_ref);
4195 } else {
4196 adev->err_irq = -ENXIO;
4199 adev->irq = irq_of_parse_and_map(np, 0);
4200 if (adev->irq == NO_IRQ) {
4201 dev_err(adev->dev, "no irq resource\n");
4202 *initcode = PPC_ADMA_INIT_IRQ1;
4203 ret = -ENXIO;
4204 goto err_irq_map;
4206 dev_dbg(adev->dev, "irq %d, err irq %d\n",
4207 adev->irq, adev->err_irq);
4209 ret = request_irq(adev->irq, ppc440spe_adma_eot_handler,
4210 0, dev_driver_string(adev->dev), chan);
4211 if (ret) {
4212 dev_err(adev->dev, "can't request irq %d\n",
4213 adev->irq);
4214 *initcode = PPC_ADMA_INIT_IRQ1;
4215 ret = -EIO;
4216 goto err_req1;
4219 /* only DMA engines have a separate error IRQ
4220 * so it's Ok if err_irq < 0 in XOR engine case.
4222 if (adev->err_irq > 0) {
4223 /* both DMA engines share common error IRQ */
4224 ret = request_irq(adev->err_irq,
4225 ppc440spe_adma_err_handler,
4226 IRQF_SHARED,
4227 dev_driver_string(adev->dev),
4228 chan);
4229 if (ret) {
4230 dev_err(adev->dev, "can't request irq %d\n",
4231 adev->err_irq);
4232 *initcode = PPC_ADMA_INIT_IRQ2;
4233 ret = -EIO;
4234 goto err_req2;
4238 if (adev->id == PPC440SPE_XOR_ID) {
4239 /* enable XOR engine interrupts */
4240 iowrite32be(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT |
4241 XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT,
4242 &adev->xor_reg->ier);
4243 } else {
4244 u32 mask, enable;
4246 np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe");
4247 if (!np) {
4248 pr_err("%s: can't find I2O device tree node\n",
4249 __func__);
4250 ret = -ENODEV;
4251 goto err_req2;
4253 adev->i2o_reg = of_iomap(np, 0);
4254 if (!adev->i2o_reg) {
4255 pr_err("%s: failed to map I2O registers\n", __func__);
4256 of_node_put(np);
4257 ret = -EINVAL;
4258 goto err_req2;
4260 of_node_put(np);
4261 /* Unmask 'CS FIFO Attention' interrupts and
4262 * enable generating interrupts on errors
4264 enable = (adev->id == PPC440SPE_DMA0_ID) ?
4265 ~(I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) :
4266 ~(I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM);
4267 mask = ioread32(&adev->i2o_reg->iopim) & enable;
4268 iowrite32(mask, &adev->i2o_reg->iopim);
4270 return 0;
4272 err_req2:
4273 free_irq(adev->irq, chan);
4274 err_req1:
4275 irq_dispose_mapping(adev->irq);
4276 err_irq_map:
4277 if (adev->err_irq > 0) {
4278 if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref))
4279 irq_dispose_mapping(adev->err_irq);
4281 return ret;
4284 static void ppc440spe_adma_release_irqs(struct ppc440spe_adma_device *adev,
4285 struct ppc440spe_adma_chan *chan)
4287 u32 mask, disable;
4289 if (adev->id == PPC440SPE_XOR_ID) {
4290 /* disable XOR engine interrupts */
4291 mask = ioread32be(&adev->xor_reg->ier);
4292 mask &= ~(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT |
4293 XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT);
4294 iowrite32be(mask, &adev->xor_reg->ier);
4295 } else {
4296 /* disable DMAx engine interrupts */
4297 disable = (adev->id == PPC440SPE_DMA0_ID) ?
4298 (I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) :
4299 (I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM);
4300 mask = ioread32(&adev->i2o_reg->iopim) | disable;
4301 iowrite32(mask, &adev->i2o_reg->iopim);
4303 free_irq(adev->irq, chan);
4304 irq_dispose_mapping(adev->irq);
4305 if (adev->err_irq > 0) {
4306 free_irq(adev->err_irq, chan);
4307 if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref)) {
4308 irq_dispose_mapping(adev->err_irq);
4309 iounmap(adev->i2o_reg);
4315 * ppc440spe_adma_probe - probe the asynch device
4317 static int ppc440spe_adma_probe(struct platform_device *ofdev)
4319 struct device_node *np = ofdev->dev.of_node;
4320 struct resource res;
4321 struct ppc440spe_adma_device *adev;
4322 struct ppc440spe_adma_chan *chan;
4323 struct ppc_dma_chan_ref *ref, *_ref;
4324 int ret = 0, initcode = PPC_ADMA_INIT_OK;
4325 const u32 *idx;
4326 int len;
4327 void *regs;
4328 u32 id, pool_size;
4330 if (of_device_is_compatible(np, "amcc,xor-accelerator")) {
4331 id = PPC440SPE_XOR_ID;
4332 /* As far as the XOR engine is concerned, it does not
4333 * use FIFOs but uses linked list. So there is no dependency
4334 * between pool size to allocate and the engine configuration.
4336 pool_size = PAGE_SIZE << 1;
4337 } else {
4338 /* it is DMA0 or DMA1 */
4339 idx = of_get_property(np, "cell-index", &len);
4340 if (!idx || (len != sizeof(u32))) {
4341 dev_err(&ofdev->dev, "Device node %s has missing "
4342 "or invalid cell-index property\n",
4343 np->full_name);
4344 return -EINVAL;
4346 id = *idx;
4347 /* DMA0,1 engines use FIFO to maintain CDBs, so we
4348 * should allocate the pool accordingly to size of this
4349 * FIFO. Thus, the pool size depends on the FIFO depth:
4350 * how much CDBs pointers the FIFO may contain then so
4351 * much CDBs we should provide in the pool.
4352 * That is
4353 * CDB size = 32B;
4354 * CDBs number = (DMA0_FIFO_SIZE >> 3);
4355 * Pool size = CDBs number * CDB size =
4356 * = (DMA0_FIFO_SIZE >> 3) << 5 = DMA0_FIFO_SIZE << 2.
4358 pool_size = (id == PPC440SPE_DMA0_ID) ?
4359 DMA0_FIFO_SIZE : DMA1_FIFO_SIZE;
4360 pool_size <<= 2;
4363 if (of_address_to_resource(np, 0, &res)) {
4364 dev_err(&ofdev->dev, "failed to get memory resource\n");
4365 initcode = PPC_ADMA_INIT_MEMRES;
4366 ret = -ENODEV;
4367 goto out;
4370 if (!request_mem_region(res.start, resource_size(&res),
4371 dev_driver_string(&ofdev->dev))) {
4372 dev_err(&ofdev->dev, "failed to request memory region %pR\n",
4373 &res);
4374 initcode = PPC_ADMA_INIT_MEMREG;
4375 ret = -EBUSY;
4376 goto out;
4379 /* create a device */
4380 adev = kzalloc(sizeof(*adev), GFP_KERNEL);
4381 if (!adev) {
4382 dev_err(&ofdev->dev, "failed to allocate device\n");
4383 initcode = PPC_ADMA_INIT_ALLOC;
4384 ret = -ENOMEM;
4385 goto err_adev_alloc;
4388 adev->id = id;
4389 adev->pool_size = pool_size;
4390 /* allocate coherent memory for hardware descriptors */
4391 adev->dma_desc_pool_virt = dma_alloc_coherent(&ofdev->dev,
4392 adev->pool_size, &adev->dma_desc_pool,
4393 GFP_KERNEL);
4394 if (adev->dma_desc_pool_virt == NULL) {
4395 dev_err(&ofdev->dev, "failed to allocate %d bytes of coherent "
4396 "memory for hardware descriptors\n",
4397 adev->pool_size);
4398 initcode = PPC_ADMA_INIT_COHERENT;
4399 ret = -ENOMEM;
4400 goto err_dma_alloc;
4402 dev_dbg(&ofdev->dev, "allocated descriptor pool virt 0x%p phys 0x%llx\n",
4403 adev->dma_desc_pool_virt, (u64)adev->dma_desc_pool);
4405 regs = ioremap(res.start, resource_size(&res));
4406 if (!regs) {
4407 dev_err(&ofdev->dev, "failed to ioremap regs!\n");
4408 goto err_regs_alloc;
4411 if (adev->id == PPC440SPE_XOR_ID) {
4412 adev->xor_reg = regs;
4413 /* Reset XOR */
4414 iowrite32be(XOR_CRSR_XASR_BIT, &adev->xor_reg->crsr);
4415 iowrite32be(XOR_CRSR_64BA_BIT, &adev->xor_reg->crrr);
4416 } else {
4417 size_t fifo_size = (adev->id == PPC440SPE_DMA0_ID) ?
4418 DMA0_FIFO_SIZE : DMA1_FIFO_SIZE;
4419 adev->dma_reg = regs;
4420 /* DMAx_FIFO_SIZE is defined in bytes,
4421 * <fsiz> - is defined in number of CDB pointers (8byte).
4422 * DMA FIFO Length = CSlength + CPlength, where
4423 * CSlength = CPlength = (fsiz + 1) * 8.
4425 iowrite32(DMA_FIFO_ENABLE | ((fifo_size >> 3) - 2),
4426 &adev->dma_reg->fsiz);
4427 /* Configure DMA engine */
4428 iowrite32(DMA_CFG_DXEPR_HP | DMA_CFG_DFMPP_HP | DMA_CFG_FALGN,
4429 &adev->dma_reg->cfg);
4430 /* Clear Status */
4431 iowrite32(~0, &adev->dma_reg->dsts);
4434 adev->dev = &ofdev->dev;
4435 adev->common.dev = &ofdev->dev;
4436 INIT_LIST_HEAD(&adev->common.channels);
4437 platform_set_drvdata(ofdev, adev);
4439 /* create a channel */
4440 chan = kzalloc(sizeof(*chan), GFP_KERNEL);
4441 if (!chan) {
4442 dev_err(&ofdev->dev, "can't allocate channel structure\n");
4443 initcode = PPC_ADMA_INIT_CHANNEL;
4444 ret = -ENOMEM;
4445 goto err_chan_alloc;
4448 spin_lock_init(&chan->lock);
4449 INIT_LIST_HEAD(&chan->chain);
4450 INIT_LIST_HEAD(&chan->all_slots);
4451 chan->device = adev;
4452 chan->common.device = &adev->common;
4453 dma_cookie_init(&chan->common);
4454 list_add_tail(&chan->common.device_node, &adev->common.channels);
4455 tasklet_init(&chan->irq_tasklet, ppc440spe_adma_tasklet,
4456 (unsigned long)chan);
4458 /* allocate and map helper pages for async validation or
4459 * async_mult/async_sum_product operations on DMA0/1.
4461 if (adev->id != PPC440SPE_XOR_ID) {
4462 chan->pdest_page = alloc_page(GFP_KERNEL);
4463 chan->qdest_page = alloc_page(GFP_KERNEL);
4464 if (!chan->pdest_page ||
4465 !chan->qdest_page) {
4466 if (chan->pdest_page)
4467 __free_page(chan->pdest_page);
4468 if (chan->qdest_page)
4469 __free_page(chan->qdest_page);
4470 ret = -ENOMEM;
4471 goto err_page_alloc;
4473 chan->pdest = dma_map_page(&ofdev->dev, chan->pdest_page, 0,
4474 PAGE_SIZE, DMA_BIDIRECTIONAL);
4475 chan->qdest = dma_map_page(&ofdev->dev, chan->qdest_page, 0,
4476 PAGE_SIZE, DMA_BIDIRECTIONAL);
4479 ref = kmalloc(sizeof(*ref), GFP_KERNEL);
4480 if (ref) {
4481 ref->chan = &chan->common;
4482 INIT_LIST_HEAD(&ref->node);
4483 list_add_tail(&ref->node, &ppc440spe_adma_chan_list);
4484 } else {
4485 dev_err(&ofdev->dev, "failed to allocate channel reference!\n");
4486 ret = -ENOMEM;
4487 goto err_ref_alloc;
4490 ret = ppc440spe_adma_setup_irqs(adev, chan, &initcode);
4491 if (ret)
4492 goto err_irq;
4494 ppc440spe_adma_init_capabilities(adev);
4496 ret = dma_async_device_register(&adev->common);
4497 if (ret) {
4498 initcode = PPC_ADMA_INIT_REGISTER;
4499 dev_err(&ofdev->dev, "failed to register dma device\n");
4500 goto err_dev_reg;
4503 goto out;
4505 err_dev_reg:
4506 ppc440spe_adma_release_irqs(adev, chan);
4507 err_irq:
4508 list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list, node) {
4509 if (chan == to_ppc440spe_adma_chan(ref->chan)) {
4510 list_del(&ref->node);
4511 kfree(ref);
4514 err_ref_alloc:
4515 if (adev->id != PPC440SPE_XOR_ID) {
4516 dma_unmap_page(&ofdev->dev, chan->pdest,
4517 PAGE_SIZE, DMA_BIDIRECTIONAL);
4518 dma_unmap_page(&ofdev->dev, chan->qdest,
4519 PAGE_SIZE, DMA_BIDIRECTIONAL);
4520 __free_page(chan->pdest_page);
4521 __free_page(chan->qdest_page);
4523 err_page_alloc:
4524 kfree(chan);
4525 err_chan_alloc:
4526 if (adev->id == PPC440SPE_XOR_ID)
4527 iounmap(adev->xor_reg);
4528 else
4529 iounmap(adev->dma_reg);
4530 err_regs_alloc:
4531 dma_free_coherent(adev->dev, adev->pool_size,
4532 adev->dma_desc_pool_virt,
4533 adev->dma_desc_pool);
4534 err_dma_alloc:
4535 kfree(adev);
4536 err_adev_alloc:
4537 release_mem_region(res.start, resource_size(&res));
4538 out:
4539 if (id < PPC440SPE_ADMA_ENGINES_NUM)
4540 ppc440spe_adma_devices[id] = initcode;
4542 return ret;
4546 * ppc440spe_adma_remove - remove the asynch device
4548 static int ppc440spe_adma_remove(struct platform_device *ofdev)
4550 struct ppc440spe_adma_device *adev = platform_get_drvdata(ofdev);
4551 struct device_node *np = ofdev->dev.of_node;
4552 struct resource res;
4553 struct dma_chan *chan, *_chan;
4554 struct ppc_dma_chan_ref *ref, *_ref;
4555 struct ppc440spe_adma_chan *ppc440spe_chan;
4557 if (adev->id < PPC440SPE_ADMA_ENGINES_NUM)
4558 ppc440spe_adma_devices[adev->id] = -1;
4560 dma_async_device_unregister(&adev->common);
4562 list_for_each_entry_safe(chan, _chan, &adev->common.channels,
4563 device_node) {
4564 ppc440spe_chan = to_ppc440spe_adma_chan(chan);
4565 ppc440spe_adma_release_irqs(adev, ppc440spe_chan);
4566 tasklet_kill(&ppc440spe_chan->irq_tasklet);
4567 if (adev->id != PPC440SPE_XOR_ID) {
4568 dma_unmap_page(&ofdev->dev, ppc440spe_chan->pdest,
4569 PAGE_SIZE, DMA_BIDIRECTIONAL);
4570 dma_unmap_page(&ofdev->dev, ppc440spe_chan->qdest,
4571 PAGE_SIZE, DMA_BIDIRECTIONAL);
4572 __free_page(ppc440spe_chan->pdest_page);
4573 __free_page(ppc440spe_chan->qdest_page);
4575 list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list,
4576 node) {
4577 if (ppc440spe_chan ==
4578 to_ppc440spe_adma_chan(ref->chan)) {
4579 list_del(&ref->node);
4580 kfree(ref);
4583 list_del(&chan->device_node);
4584 kfree(ppc440spe_chan);
4587 dma_free_coherent(adev->dev, adev->pool_size,
4588 adev->dma_desc_pool_virt, adev->dma_desc_pool);
4589 if (adev->id == PPC440SPE_XOR_ID)
4590 iounmap(adev->xor_reg);
4591 else
4592 iounmap(adev->dma_reg);
4593 of_address_to_resource(np, 0, &res);
4594 release_mem_region(res.start, resource_size(&res));
4595 kfree(adev);
4596 return 0;
4600 * /sys driver interface to enable h/w RAID-6 capabilities
4601 * Files created in e.g. /sys/devices/plb.0/400100100.dma0/driver/
4602 * directory are "devices", "enable" and "poly".
4603 * "devices" shows available engines.
4604 * "enable" is used to enable RAID-6 capabilities or to check
4605 * whether these has been activated.
4606 * "poly" allows setting/checking used polynomial (for PPC440SPe only).
4609 static ssize_t show_ppc440spe_devices(struct device_driver *dev, char *buf)
4611 ssize_t size = 0;
4612 int i;
4614 for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++) {
4615 if (ppc440spe_adma_devices[i] == -1)
4616 continue;
4617 size += snprintf(buf + size, PAGE_SIZE - size,
4618 "PPC440SP(E)-ADMA.%d: %s\n", i,
4619 ppc_adma_errors[ppc440spe_adma_devices[i]]);
4621 return size;
4624 static ssize_t show_ppc440spe_r6enable(struct device_driver *dev, char *buf)
4626 return snprintf(buf, PAGE_SIZE,
4627 "PPC440SP(e) RAID-6 capabilities are %sABLED.\n",
4628 ppc440spe_r6_enabled ? "EN" : "DIS");
4631 static ssize_t store_ppc440spe_r6enable(struct device_driver *dev,
4632 const char *buf, size_t count)
4634 unsigned long val;
4636 if (!count || count > 11)
4637 return -EINVAL;
4639 if (!ppc440spe_r6_tchan)
4640 return -EFAULT;
4642 /* Write a key */
4643 sscanf(buf, "%lx", &val);
4644 dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_XORBA, val);
4645 isync();
4647 /* Verify whether it really works now */
4648 if (ppc440spe_test_raid6(ppc440spe_r6_tchan) == 0) {
4649 pr_info("PPC440SP(e) RAID-6 has been activated "
4650 "successfully\n");
4651 ppc440spe_r6_enabled = 1;
4652 } else {
4653 pr_info("PPC440SP(e) RAID-6 hasn't been activated!"
4654 " Error key ?\n");
4655 ppc440spe_r6_enabled = 0;
4657 return count;
4660 static ssize_t show_ppc440spe_r6poly(struct device_driver *dev, char *buf)
4662 ssize_t size = 0;
4663 u32 reg;
4665 #ifdef CONFIG_440SP
4666 /* 440SP has fixed polynomial */
4667 reg = 0x4d;
4668 #else
4669 reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL);
4670 reg >>= MQ0_CFBHL_POLY;
4671 reg &= 0xFF;
4672 #endif
4674 size = snprintf(buf, PAGE_SIZE, "PPC440SP(e) RAID-6 driver "
4675 "uses 0x1%02x polynomial.\n", reg);
4676 return size;
4679 static ssize_t store_ppc440spe_r6poly(struct device_driver *dev,
4680 const char *buf, size_t count)
4682 unsigned long reg, val;
4684 #ifdef CONFIG_440SP
4685 /* 440SP uses default 0x14D polynomial only */
4686 return -EINVAL;
4687 #endif
4689 if (!count || count > 6)
4690 return -EINVAL;
4692 /* e.g., 0x14D or 0x11D */
4693 sscanf(buf, "%lx", &val);
4695 if (val & ~0x1FF)
4696 return -EINVAL;
4698 val &= 0xFF;
4699 reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL);
4700 reg &= ~(0xFF << MQ0_CFBHL_POLY);
4701 reg |= val << MQ0_CFBHL_POLY;
4702 dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL, reg);
4704 return count;
4707 static DRIVER_ATTR(devices, S_IRUGO, show_ppc440spe_devices, NULL);
4708 static DRIVER_ATTR(enable, S_IRUGO | S_IWUSR, show_ppc440spe_r6enable,
4709 store_ppc440spe_r6enable);
4710 static DRIVER_ATTR(poly, S_IRUGO | S_IWUSR, show_ppc440spe_r6poly,
4711 store_ppc440spe_r6poly);
4714 * Common initialisation for RAID engines; allocate memory for
4715 * DMAx FIFOs, perform configuration common for all DMA engines.
4716 * Further DMA engine specific configuration is done at probe time.
4718 static int ppc440spe_configure_raid_devices(void)
4720 struct device_node *np;
4721 struct resource i2o_res;
4722 struct i2o_regs __iomem *i2o_reg;
4723 dcr_host_t i2o_dcr_host;
4724 unsigned int dcr_base, dcr_len;
4725 int i, ret;
4727 np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe");
4728 if (!np) {
4729 pr_err("%s: can't find I2O device tree node\n",
4730 __func__);
4731 return -ENODEV;
4734 if (of_address_to_resource(np, 0, &i2o_res)) {
4735 of_node_put(np);
4736 return -EINVAL;
4739 i2o_reg = of_iomap(np, 0);
4740 if (!i2o_reg) {
4741 pr_err("%s: failed to map I2O registers\n", __func__);
4742 of_node_put(np);
4743 return -EINVAL;
4746 /* Get I2O DCRs base */
4747 dcr_base = dcr_resource_start(np, 0);
4748 dcr_len = dcr_resource_len(np, 0);
4749 if (!dcr_base && !dcr_len) {
4750 pr_err("%s: can't get DCR registers base/len!\n",
4751 np->full_name);
4752 of_node_put(np);
4753 iounmap(i2o_reg);
4754 return -ENODEV;
4757 i2o_dcr_host = dcr_map(np, dcr_base, dcr_len);
4758 if (!DCR_MAP_OK(i2o_dcr_host)) {
4759 pr_err("%s: failed to map DCRs!\n", np->full_name);
4760 of_node_put(np);
4761 iounmap(i2o_reg);
4762 return -ENODEV;
4764 of_node_put(np);
4766 /* Provide memory regions for DMA's FIFOs: I2O, DMA0 and DMA1 share
4767 * the base address of FIFO memory space.
4768 * Actually we need twice more physical memory than programmed in the
4769 * <fsiz> register (because there are two FIFOs for each DMA: CP and CS)
4771 ppc440spe_dma_fifo_buf = kmalloc((DMA0_FIFO_SIZE + DMA1_FIFO_SIZE) << 1,
4772 GFP_KERNEL);
4773 if (!ppc440spe_dma_fifo_buf) {
4774 pr_err("%s: DMA FIFO buffer allocation failed.\n", __func__);
4775 iounmap(i2o_reg);
4776 dcr_unmap(i2o_dcr_host, dcr_len);
4777 return -ENOMEM;
4781 * Configure h/w
4783 /* Reset I2O/DMA */
4784 mtdcri(SDR0, DCRN_SDR0_SRST, DCRN_SDR0_SRST_I2ODMA);
4785 mtdcri(SDR0, DCRN_SDR0_SRST, 0);
4787 /* Setup the base address of mmaped registers */
4788 dcr_write(i2o_dcr_host, DCRN_I2O0_IBAH, (u32)(i2o_res.start >> 32));
4789 dcr_write(i2o_dcr_host, DCRN_I2O0_IBAL, (u32)(i2o_res.start) |
4790 I2O_REG_ENABLE);
4791 dcr_unmap(i2o_dcr_host, dcr_len);
4793 /* Setup FIFO memory space base address */
4794 iowrite32(0, &i2o_reg->ifbah);
4795 iowrite32(((u32)__pa(ppc440spe_dma_fifo_buf)), &i2o_reg->ifbal);
4797 /* set zero FIFO size for I2O, so the whole
4798 * ppc440spe_dma_fifo_buf is used by DMAs.
4799 * DMAx_FIFOs will be configured while probe.
4801 iowrite32(0, &i2o_reg->ifsiz);
4802 iounmap(i2o_reg);
4804 /* To prepare WXOR/RXOR functionality we need access to
4805 * Memory Queue Module DCRs (finally it will be enabled
4806 * via /sys interface of the ppc440spe ADMA driver).
4808 np = of_find_compatible_node(NULL, NULL, "ibm,mq-440spe");
4809 if (!np) {
4810 pr_err("%s: can't find MQ device tree node\n",
4811 __func__);
4812 ret = -ENODEV;
4813 goto out_free;
4816 /* Get MQ DCRs base */
4817 dcr_base = dcr_resource_start(np, 0);
4818 dcr_len = dcr_resource_len(np, 0);
4819 if (!dcr_base && !dcr_len) {
4820 pr_err("%s: can't get DCR registers base/len!\n",
4821 np->full_name);
4822 ret = -ENODEV;
4823 goto out_mq;
4826 ppc440spe_mq_dcr_host = dcr_map(np, dcr_base, dcr_len);
4827 if (!DCR_MAP_OK(ppc440spe_mq_dcr_host)) {
4828 pr_err("%s: failed to map DCRs!\n", np->full_name);
4829 ret = -ENODEV;
4830 goto out_mq;
4832 of_node_put(np);
4833 ppc440spe_mq_dcr_len = dcr_len;
4835 /* Set HB alias */
4836 dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_BAUH, DMA_CUED_XOR_HB);
4838 /* Set:
4839 * - LL transaction passing limit to 1;
4840 * - Memory controller cycle limit to 1;
4841 * - Galois Polynomial to 0x14d (default)
4843 dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL,
4844 (1 << MQ0_CFBHL_TPLM) | (1 << MQ0_CFBHL_HBCL) |
4845 (PPC440SPE_DEFAULT_POLY << MQ0_CFBHL_POLY));
4847 atomic_set(&ppc440spe_adma_err_irq_ref, 0);
4848 for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++)
4849 ppc440spe_adma_devices[i] = -1;
4851 return 0;
4853 out_mq:
4854 of_node_put(np);
4855 out_free:
4856 kfree(ppc440spe_dma_fifo_buf);
4857 return ret;
4860 static const struct of_device_id ppc440spe_adma_of_match[] = {
4861 { .compatible = "ibm,dma-440spe", },
4862 { .compatible = "amcc,xor-accelerator", },
4865 MODULE_DEVICE_TABLE(of, ppc440spe_adma_of_match);
4867 static struct platform_driver ppc440spe_adma_driver = {
4868 .probe = ppc440spe_adma_probe,
4869 .remove = ppc440spe_adma_remove,
4870 .driver = {
4871 .name = "PPC440SP(E)-ADMA",
4872 .owner = THIS_MODULE,
4873 .of_match_table = ppc440spe_adma_of_match,
4877 static __init int ppc440spe_adma_init(void)
4879 int ret;
4881 ret = ppc440spe_configure_raid_devices();
4882 if (ret)
4883 return ret;
4885 ret = platform_driver_register(&ppc440spe_adma_driver);
4886 if (ret) {
4887 pr_err("%s: failed to register platform driver\n",
4888 __func__);
4889 goto out_reg;
4892 /* Initialization status */
4893 ret = driver_create_file(&ppc440spe_adma_driver.driver,
4894 &driver_attr_devices);
4895 if (ret)
4896 goto out_dev;
4898 /* RAID-6 h/w enable entry */
4899 ret = driver_create_file(&ppc440spe_adma_driver.driver,
4900 &driver_attr_enable);
4901 if (ret)
4902 goto out_en;
4904 /* GF polynomial to use */
4905 ret = driver_create_file(&ppc440spe_adma_driver.driver,
4906 &driver_attr_poly);
4907 if (!ret)
4908 return ret;
4910 driver_remove_file(&ppc440spe_adma_driver.driver,
4911 &driver_attr_enable);
4912 out_en:
4913 driver_remove_file(&ppc440spe_adma_driver.driver,
4914 &driver_attr_devices);
4915 out_dev:
4916 /* User will not be able to enable h/w RAID-6 */
4917 pr_err("%s: failed to create RAID-6 driver interface\n",
4918 __func__);
4919 platform_driver_unregister(&ppc440spe_adma_driver);
4920 out_reg:
4921 dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len);
4922 kfree(ppc440spe_dma_fifo_buf);
4923 return ret;
4926 static void __exit ppc440spe_adma_exit(void)
4928 driver_remove_file(&ppc440spe_adma_driver.driver,
4929 &driver_attr_poly);
4930 driver_remove_file(&ppc440spe_adma_driver.driver,
4931 &driver_attr_enable);
4932 driver_remove_file(&ppc440spe_adma_driver.driver,
4933 &driver_attr_devices);
4934 platform_driver_unregister(&ppc440spe_adma_driver);
4935 dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len);
4936 kfree(ppc440spe_dma_fifo_buf);
4939 arch_initcall(ppc440spe_adma_init);
4940 module_exit(ppc440spe_adma_exit);
4942 MODULE_AUTHOR("Yuri Tikhonov <yur@emcraft.com>");
4943 MODULE_DESCRIPTION("PPC440SPE ADMA Engine Driver");
4944 MODULE_LICENSE("GPL");