mfd: wm8350-i2c: Make sure the i2c regmap functions are compiled
[linux/fpc-iii.git] / drivers / edac / edac_mc.c
blob6b4deff4e53d2e81e720150d3e508c318367d75d
1 /*
2 * edac_mc kernel module
3 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
7 * Written by Thayne Harbaugh
8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
9 * http://www.anime.net/~goemon/linux-ecc/
11 * Modified by Dave Peterson and Doug Thompson
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <linux/bitops.h>
31 #include <asm/uaccess.h>
32 #include <asm/page.h>
33 #include <asm/edac.h>
34 #include "edac_core.h"
35 #include "edac_module.h"
37 #define CREATE_TRACE_POINTS
38 #define TRACE_INCLUDE_PATH ../../include/ras
39 #include <ras/ras_event.h>
41 /* lock to memory controller's control array */
42 static DEFINE_MUTEX(mem_ctls_mutex);
43 static LIST_HEAD(mc_devices);
46 * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
47 * apei/ghes and i7core_edac to be used at the same time.
49 static void const *edac_mc_owner;
51 static struct bus_type mc_bus[EDAC_MAX_MCS];
53 unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf,
54 unsigned len)
56 struct mem_ctl_info *mci = dimm->mci;
57 int i, n, count = 0;
58 char *p = buf;
60 for (i = 0; i < mci->n_layers; i++) {
61 n = snprintf(p, len, "%s %d ",
62 edac_layer_name[mci->layers[i].type],
63 dimm->location[i]);
64 p += n;
65 len -= n;
66 count += n;
67 if (!len)
68 break;
71 return count;
74 #ifdef CONFIG_EDAC_DEBUG
76 static void edac_mc_dump_channel(struct rank_info *chan)
78 edac_dbg(4, " channel->chan_idx = %d\n", chan->chan_idx);
79 edac_dbg(4, " channel = %p\n", chan);
80 edac_dbg(4, " channel->csrow = %p\n", chan->csrow);
81 edac_dbg(4, " channel->dimm = %p\n", chan->dimm);
84 static void edac_mc_dump_dimm(struct dimm_info *dimm, int number)
86 char location[80];
88 edac_dimm_info_location(dimm, location, sizeof(location));
90 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
91 dimm->mci->csbased ? "rank" : "dimm",
92 number, location, dimm->csrow, dimm->cschannel);
93 edac_dbg(4, " dimm = %p\n", dimm);
94 edac_dbg(4, " dimm->label = '%s'\n", dimm->label);
95 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
96 edac_dbg(4, " dimm->grain = %d\n", dimm->grain);
97 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
100 static void edac_mc_dump_csrow(struct csrow_info *csrow)
102 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
103 edac_dbg(4, " csrow = %p\n", csrow);
104 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow->first_page);
105 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow->last_page);
106 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow->page_mask);
107 edac_dbg(4, " csrow->nr_channels = %d\n", csrow->nr_channels);
108 edac_dbg(4, " csrow->channels = %p\n", csrow->channels);
109 edac_dbg(4, " csrow->mci = %p\n", csrow->mci);
112 static void edac_mc_dump_mci(struct mem_ctl_info *mci)
114 edac_dbg(3, "\tmci = %p\n", mci);
115 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
116 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
117 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
118 edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
119 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
120 mci->nr_csrows, mci->csrows);
121 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
122 mci->tot_dimms, mci->dimms);
123 edac_dbg(3, "\tdev = %p\n", mci->pdev);
124 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
125 mci->mod_name, mci->ctl_name);
126 edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
129 #endif /* CONFIG_EDAC_DEBUG */
132 * keep those in sync with the enum mem_type
134 const char *edac_mem_types[] = {
135 "Empty csrow",
136 "Reserved csrow type",
137 "Unknown csrow type",
138 "Fast page mode RAM",
139 "Extended data out RAM",
140 "Burst Extended data out RAM",
141 "Single data rate SDRAM",
142 "Registered single data rate SDRAM",
143 "Double data rate SDRAM",
144 "Registered Double data rate SDRAM",
145 "Rambus DRAM",
146 "Unbuffered DDR2 RAM",
147 "Fully buffered DDR2",
148 "Registered DDR2 RAM",
149 "Rambus XDR",
150 "Unbuffered DDR3 RAM",
151 "Registered DDR3 RAM",
153 EXPORT_SYMBOL_GPL(edac_mem_types);
156 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
157 * @p: pointer to a pointer with the memory offset to be used. At
158 * return, this will be incremented to point to the next offset
159 * @size: Size of the data structure to be reserved
160 * @n_elems: Number of elements that should be reserved
162 * If 'size' is a constant, the compiler will optimize this whole function
163 * down to either a no-op or the addition of a constant to the value of '*p'.
165 * The 'p' pointer is absolutely needed to keep the proper advancing
166 * further in memory to the proper offsets when allocating the struct along
167 * with its embedded structs, as edac_device_alloc_ctl_info() does it
168 * above, for example.
170 * At return, the pointer 'p' will be incremented to be used on a next call
171 * to this function.
173 void *edac_align_ptr(void **p, unsigned size, int n_elems)
175 unsigned align, r;
176 void *ptr = *p;
178 *p += size * n_elems;
181 * 'p' can possibly be an unaligned item X such that sizeof(X) is
182 * 'size'. Adjust 'p' so that its alignment is at least as
183 * stringent as what the compiler would provide for X and return
184 * the aligned result.
185 * Here we assume that the alignment of a "long long" is the most
186 * stringent alignment that the compiler will ever provide by default.
187 * As far as I know, this is a reasonable assumption.
189 if (size > sizeof(long))
190 align = sizeof(long long);
191 else if (size > sizeof(int))
192 align = sizeof(long);
193 else if (size > sizeof(short))
194 align = sizeof(int);
195 else if (size > sizeof(char))
196 align = sizeof(short);
197 else
198 return (char *)ptr;
200 r = (unsigned long)p % align;
202 if (r == 0)
203 return (char *)ptr;
205 *p += align - r;
207 return (void *)(((unsigned long)ptr) + align - r);
210 static void _edac_mc_free(struct mem_ctl_info *mci)
212 int i, chn, row;
213 struct csrow_info *csr;
214 const unsigned int tot_dimms = mci->tot_dimms;
215 const unsigned int tot_channels = mci->num_cschannel;
216 const unsigned int tot_csrows = mci->nr_csrows;
218 if (mci->dimms) {
219 for (i = 0; i < tot_dimms; i++)
220 kfree(mci->dimms[i]);
221 kfree(mci->dimms);
223 if (mci->csrows) {
224 for (row = 0; row < tot_csrows; row++) {
225 csr = mci->csrows[row];
226 if (csr) {
227 if (csr->channels) {
228 for (chn = 0; chn < tot_channels; chn++)
229 kfree(csr->channels[chn]);
230 kfree(csr->channels);
232 kfree(csr);
235 kfree(mci->csrows);
237 kfree(mci);
241 * edac_mc_alloc: Allocate and partially fill a struct mem_ctl_info structure
242 * @mc_num: Memory controller number
243 * @n_layers: Number of MC hierarchy layers
244 * layers: Describes each layer as seen by the Memory Controller
245 * @size_pvt: size of private storage needed
248 * Everything is kmalloc'ed as one big chunk - more efficient.
249 * Only can be used if all structures have the same lifetime - otherwise
250 * you have to allocate and initialize your own structures.
252 * Use edac_mc_free() to free mc structures allocated by this function.
254 * NOTE: drivers handle multi-rank memories in different ways: in some
255 * drivers, one multi-rank memory stick is mapped as one entry, while, in
256 * others, a single multi-rank memory stick would be mapped into several
257 * entries. Currently, this function will allocate multiple struct dimm_info
258 * on such scenarios, as grouping the multiple ranks require drivers change.
260 * Returns:
261 * On failure: NULL
262 * On success: struct mem_ctl_info pointer
264 struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
265 unsigned n_layers,
266 struct edac_mc_layer *layers,
267 unsigned sz_pvt)
269 struct mem_ctl_info *mci;
270 struct edac_mc_layer *layer;
271 struct csrow_info *csr;
272 struct rank_info *chan;
273 struct dimm_info *dimm;
274 u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
275 unsigned pos[EDAC_MAX_LAYERS];
276 unsigned size, tot_dimms = 1, count = 1;
277 unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
278 void *pvt, *p, *ptr = NULL;
279 int i, j, row, chn, n, len, off;
280 bool per_rank = false;
282 BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0);
284 * Calculate the total amount of dimms and csrows/cschannels while
285 * in the old API emulation mode
287 for (i = 0; i < n_layers; i++) {
288 tot_dimms *= layers[i].size;
289 if (layers[i].is_virt_csrow)
290 tot_csrows *= layers[i].size;
291 else
292 tot_channels *= layers[i].size;
294 if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT)
295 per_rank = true;
298 /* Figure out the offsets of the various items from the start of an mc
299 * structure. We want the alignment of each item to be at least as
300 * stringent as what the compiler would provide if we could simply
301 * hardcode everything into a single struct.
303 mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
304 layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
305 for (i = 0; i < n_layers; i++) {
306 count *= layers[i].size;
307 edac_dbg(4, "errcount layer %d size %d\n", i, count);
308 ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
309 ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
310 tot_errcount += 2 * count;
313 edac_dbg(4, "allocating %d error counters\n", tot_errcount);
314 pvt = edac_align_ptr(&ptr, sz_pvt, 1);
315 size = ((unsigned long)pvt) + sz_pvt;
317 edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
318 size,
319 tot_dimms,
320 per_rank ? "ranks" : "dimms",
321 tot_csrows * tot_channels);
323 mci = kzalloc(size, GFP_KERNEL);
324 if (mci == NULL)
325 return NULL;
327 /* Adjust pointers so they point within the memory we just allocated
328 * rather than an imaginary chunk of memory located at address 0.
330 layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
331 for (i = 0; i < n_layers; i++) {
332 mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
333 mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
335 pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
337 /* setup index and various internal pointers */
338 mci->mc_idx = mc_num;
339 mci->tot_dimms = tot_dimms;
340 mci->pvt_info = pvt;
341 mci->n_layers = n_layers;
342 mci->layers = layer;
343 memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
344 mci->nr_csrows = tot_csrows;
345 mci->num_cschannel = tot_channels;
346 mci->csbased = per_rank;
349 * Alocate and fill the csrow/channels structs
351 mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
352 if (!mci->csrows)
353 goto error;
354 for (row = 0; row < tot_csrows; row++) {
355 csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
356 if (!csr)
357 goto error;
358 mci->csrows[row] = csr;
359 csr->csrow_idx = row;
360 csr->mci = mci;
361 csr->nr_channels = tot_channels;
362 csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
363 GFP_KERNEL);
364 if (!csr->channels)
365 goto error;
367 for (chn = 0; chn < tot_channels; chn++) {
368 chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
369 if (!chan)
370 goto error;
371 csr->channels[chn] = chan;
372 chan->chan_idx = chn;
373 chan->csrow = csr;
378 * Allocate and fill the dimm structs
380 mci->dimms = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
381 if (!mci->dimms)
382 goto error;
384 memset(&pos, 0, sizeof(pos));
385 row = 0;
386 chn = 0;
387 for (i = 0; i < tot_dimms; i++) {
388 chan = mci->csrows[row]->channels[chn];
389 off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]);
390 if (off < 0 || off >= tot_dimms) {
391 edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
392 goto error;
395 dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
396 if (!dimm)
397 goto error;
398 mci->dimms[off] = dimm;
399 dimm->mci = mci;
402 * Copy DIMM location and initialize it.
404 len = sizeof(dimm->label);
405 p = dimm->label;
406 n = snprintf(p, len, "mc#%u", mc_num);
407 p += n;
408 len -= n;
409 for (j = 0; j < n_layers; j++) {
410 n = snprintf(p, len, "%s#%u",
411 edac_layer_name[layers[j].type],
412 pos[j]);
413 p += n;
414 len -= n;
415 dimm->location[j] = pos[j];
417 if (len <= 0)
418 break;
421 /* Link it to the csrows old API data */
422 chan->dimm = dimm;
423 dimm->csrow = row;
424 dimm->cschannel = chn;
426 /* Increment csrow location */
427 if (layers[0].is_virt_csrow) {
428 chn++;
429 if (chn == tot_channels) {
430 chn = 0;
431 row++;
433 } else {
434 row++;
435 if (row == tot_csrows) {
436 row = 0;
437 chn++;
441 /* Increment dimm location */
442 for (j = n_layers - 1; j >= 0; j--) {
443 pos[j]++;
444 if (pos[j] < layers[j].size)
445 break;
446 pos[j] = 0;
450 mci->op_state = OP_ALLOC;
452 return mci;
454 error:
455 _edac_mc_free(mci);
457 return NULL;
459 EXPORT_SYMBOL_GPL(edac_mc_alloc);
462 * edac_mc_free
463 * 'Free' a previously allocated 'mci' structure
464 * @mci: pointer to a struct mem_ctl_info structure
466 void edac_mc_free(struct mem_ctl_info *mci)
468 edac_dbg(1, "\n");
470 /* If we're not yet registered with sysfs free only what was allocated
471 * in edac_mc_alloc().
473 if (!device_is_registered(&mci->dev)) {
474 _edac_mc_free(mci);
475 return;
478 /* the mci instance is freed here, when the sysfs object is dropped */
479 edac_unregister_sysfs(mci);
481 EXPORT_SYMBOL_GPL(edac_mc_free);
485 * find_mci_by_dev
487 * scan list of controllers looking for the one that manages
488 * the 'dev' device
489 * @dev: pointer to a struct device related with the MCI
491 struct mem_ctl_info *find_mci_by_dev(struct device *dev)
493 struct mem_ctl_info *mci;
494 struct list_head *item;
496 edac_dbg(3, "\n");
498 list_for_each(item, &mc_devices) {
499 mci = list_entry(item, struct mem_ctl_info, link);
501 if (mci->pdev == dev)
502 return mci;
505 return NULL;
507 EXPORT_SYMBOL_GPL(find_mci_by_dev);
510 * handler for EDAC to check if NMI type handler has asserted interrupt
512 static int edac_mc_assert_error_check_and_clear(void)
514 int old_state;
516 if (edac_op_state == EDAC_OPSTATE_POLL)
517 return 1;
519 old_state = edac_err_assert;
520 edac_err_assert = 0;
522 return old_state;
526 * edac_mc_workq_function
527 * performs the operation scheduled by a workq request
529 static void edac_mc_workq_function(struct work_struct *work_req)
531 struct delayed_work *d_work = to_delayed_work(work_req);
532 struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
534 mutex_lock(&mem_ctls_mutex);
536 /* if this control struct has movd to offline state, we are done */
537 if (mci->op_state == OP_OFFLINE) {
538 mutex_unlock(&mem_ctls_mutex);
539 return;
542 /* Only poll controllers that are running polled and have a check */
543 if (edac_mc_assert_error_check_and_clear() && (mci->edac_check != NULL))
544 mci->edac_check(mci);
546 mutex_unlock(&mem_ctls_mutex);
548 /* Reschedule */
549 queue_delayed_work(edac_workqueue, &mci->work,
550 msecs_to_jiffies(edac_mc_get_poll_msec()));
554 * edac_mc_workq_setup
555 * initialize a workq item for this mci
556 * passing in the new delay period in msec
558 * locking model:
560 * called with the mem_ctls_mutex held
562 static void edac_mc_workq_setup(struct mem_ctl_info *mci, unsigned msec,
563 bool init)
565 edac_dbg(0, "\n");
567 /* if this instance is not in the POLL state, then simply return */
568 if (mci->op_state != OP_RUNNING_POLL)
569 return;
571 if (init)
572 INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
574 mod_delayed_work(edac_workqueue, &mci->work, msecs_to_jiffies(msec));
578 * edac_mc_workq_teardown
579 * stop the workq processing on this mci
581 * locking model:
583 * called WITHOUT lock held
585 static void edac_mc_workq_teardown(struct mem_ctl_info *mci)
587 mci->op_state = OP_OFFLINE;
589 cancel_delayed_work_sync(&mci->work);
590 flush_workqueue(edac_workqueue);
594 * edac_mc_reset_delay_period(unsigned long value)
596 * user space has updated our poll period value, need to
597 * reset our workq delays
599 void edac_mc_reset_delay_period(unsigned long value)
601 struct mem_ctl_info *mci;
602 struct list_head *item;
604 mutex_lock(&mem_ctls_mutex);
606 list_for_each(item, &mc_devices) {
607 mci = list_entry(item, struct mem_ctl_info, link);
609 edac_mc_workq_setup(mci, value, false);
612 mutex_unlock(&mem_ctls_mutex);
617 /* Return 0 on success, 1 on failure.
618 * Before calling this function, caller must
619 * assign a unique value to mci->mc_idx.
621 * locking model:
623 * called with the mem_ctls_mutex lock held
625 static int add_mc_to_global_list(struct mem_ctl_info *mci)
627 struct list_head *item, *insert_before;
628 struct mem_ctl_info *p;
630 insert_before = &mc_devices;
632 p = find_mci_by_dev(mci->pdev);
633 if (unlikely(p != NULL))
634 goto fail0;
636 list_for_each(item, &mc_devices) {
637 p = list_entry(item, struct mem_ctl_info, link);
639 if (p->mc_idx >= mci->mc_idx) {
640 if (unlikely(p->mc_idx == mci->mc_idx))
641 goto fail1;
643 insert_before = item;
644 break;
648 list_add_tail_rcu(&mci->link, insert_before);
649 atomic_inc(&edac_handlers);
650 return 0;
652 fail0:
653 edac_printk(KERN_WARNING, EDAC_MC,
654 "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
655 edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
656 return 1;
658 fail1:
659 edac_printk(KERN_WARNING, EDAC_MC,
660 "bug in low-level driver: attempt to assign\n"
661 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
662 return 1;
665 static int del_mc_from_global_list(struct mem_ctl_info *mci)
667 int handlers = atomic_dec_return(&edac_handlers);
668 list_del_rcu(&mci->link);
670 /* these are for safe removal of devices from global list while
671 * NMI handlers may be traversing list
673 synchronize_rcu();
674 INIT_LIST_HEAD(&mci->link);
676 return handlers;
680 * edac_mc_find: Search for a mem_ctl_info structure whose index is 'idx'.
682 * If found, return a pointer to the structure.
683 * Else return NULL.
685 * Caller must hold mem_ctls_mutex.
687 struct mem_ctl_info *edac_mc_find(int idx)
689 struct list_head *item;
690 struct mem_ctl_info *mci;
692 list_for_each(item, &mc_devices) {
693 mci = list_entry(item, struct mem_ctl_info, link);
695 if (mci->mc_idx >= idx) {
696 if (mci->mc_idx == idx)
697 return mci;
699 break;
703 return NULL;
705 EXPORT_SYMBOL(edac_mc_find);
708 * edac_mc_add_mc: Insert the 'mci' structure into the mci global list and
709 * create sysfs entries associated with mci structure
710 * @mci: pointer to the mci structure to be added to the list
712 * Return:
713 * 0 Success
714 * !0 Failure
717 /* FIXME - should a warning be printed if no error detection? correction? */
718 int edac_mc_add_mc(struct mem_ctl_info *mci)
720 int ret = -EINVAL;
721 edac_dbg(0, "\n");
723 if (mci->mc_idx >= EDAC_MAX_MCS) {
724 pr_warn_once("Too many memory controllers: %d\n", mci->mc_idx);
725 return -ENODEV;
728 #ifdef CONFIG_EDAC_DEBUG
729 if (edac_debug_level >= 3)
730 edac_mc_dump_mci(mci);
732 if (edac_debug_level >= 4) {
733 int i;
735 for (i = 0; i < mci->nr_csrows; i++) {
736 struct csrow_info *csrow = mci->csrows[i];
737 u32 nr_pages = 0;
738 int j;
740 for (j = 0; j < csrow->nr_channels; j++)
741 nr_pages += csrow->channels[j]->dimm->nr_pages;
742 if (!nr_pages)
743 continue;
744 edac_mc_dump_csrow(csrow);
745 for (j = 0; j < csrow->nr_channels; j++)
746 if (csrow->channels[j]->dimm->nr_pages)
747 edac_mc_dump_channel(csrow->channels[j]);
749 for (i = 0; i < mci->tot_dimms; i++)
750 if (mci->dimms[i]->nr_pages)
751 edac_mc_dump_dimm(mci->dimms[i], i);
753 #endif
754 mutex_lock(&mem_ctls_mutex);
756 if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
757 ret = -EPERM;
758 goto fail0;
761 if (add_mc_to_global_list(mci))
762 goto fail0;
764 /* set load time so that error rate can be tracked */
765 mci->start_time = jiffies;
767 mci->bus = &mc_bus[mci->mc_idx];
769 if (edac_create_sysfs_mci_device(mci)) {
770 edac_mc_printk(mci, KERN_WARNING,
771 "failed to create sysfs device\n");
772 goto fail1;
775 /* If there IS a check routine, then we are running POLLED */
776 if (mci->edac_check != NULL) {
777 /* This instance is NOW RUNNING */
778 mci->op_state = OP_RUNNING_POLL;
780 edac_mc_workq_setup(mci, edac_mc_get_poll_msec(), true);
781 } else {
782 mci->op_state = OP_RUNNING_INTERRUPT;
785 /* Report action taken */
786 edac_mc_printk(mci, KERN_INFO, "Giving out device to '%s' '%s':"
787 " DEV %s\n", mci->mod_name, mci->ctl_name, edac_dev_name(mci));
789 edac_mc_owner = mci->mod_name;
791 mutex_unlock(&mem_ctls_mutex);
792 return 0;
794 fail1:
795 del_mc_from_global_list(mci);
797 fail0:
798 mutex_unlock(&mem_ctls_mutex);
799 return ret;
801 EXPORT_SYMBOL_GPL(edac_mc_add_mc);
804 * edac_mc_del_mc: Remove sysfs entries for specified mci structure and
805 * remove mci structure from global list
806 * @pdev: Pointer to 'struct device' representing mci structure to remove.
808 * Return pointer to removed mci structure, or NULL if device not found.
810 struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
812 struct mem_ctl_info *mci;
814 edac_dbg(0, "\n");
816 mutex_lock(&mem_ctls_mutex);
818 /* find the requested mci struct in the global list */
819 mci = find_mci_by_dev(dev);
820 if (mci == NULL) {
821 mutex_unlock(&mem_ctls_mutex);
822 return NULL;
825 if (!del_mc_from_global_list(mci))
826 edac_mc_owner = NULL;
827 mutex_unlock(&mem_ctls_mutex);
829 /* flush workq processes */
830 edac_mc_workq_teardown(mci);
832 /* marking MCI offline */
833 mci->op_state = OP_OFFLINE;
835 /* remove from sysfs */
836 edac_remove_sysfs_mci_device(mci);
838 edac_printk(KERN_INFO, EDAC_MC,
839 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
840 mci->mod_name, mci->ctl_name, edac_dev_name(mci));
842 return mci;
844 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
846 static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
847 u32 size)
849 struct page *pg;
850 void *virt_addr;
851 unsigned long flags = 0;
853 edac_dbg(3, "\n");
855 /* ECC error page was not in our memory. Ignore it. */
856 if (!pfn_valid(page))
857 return;
859 /* Find the actual page structure then map it and fix */
860 pg = pfn_to_page(page);
862 if (PageHighMem(pg))
863 local_irq_save(flags);
865 virt_addr = kmap_atomic(pg);
867 /* Perform architecture specific atomic scrub operation */
868 atomic_scrub(virt_addr + offset, size);
870 /* Unmap and complete */
871 kunmap_atomic(virt_addr);
873 if (PageHighMem(pg))
874 local_irq_restore(flags);
877 /* FIXME - should return -1 */
878 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
880 struct csrow_info **csrows = mci->csrows;
881 int row, i, j, n;
883 edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
884 row = -1;
886 for (i = 0; i < mci->nr_csrows; i++) {
887 struct csrow_info *csrow = csrows[i];
888 n = 0;
889 for (j = 0; j < csrow->nr_channels; j++) {
890 struct dimm_info *dimm = csrow->channels[j]->dimm;
891 n += dimm->nr_pages;
893 if (n == 0)
894 continue;
896 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
897 mci->mc_idx,
898 csrow->first_page, page, csrow->last_page,
899 csrow->page_mask);
901 if ((page >= csrow->first_page) &&
902 (page <= csrow->last_page) &&
903 ((page & csrow->page_mask) ==
904 (csrow->first_page & csrow->page_mask))) {
905 row = i;
906 break;
910 if (row == -1)
911 edac_mc_printk(mci, KERN_ERR,
912 "could not look up page error address %lx\n",
913 (unsigned long)page);
915 return row;
917 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
919 const char *edac_layer_name[] = {
920 [EDAC_MC_LAYER_BRANCH] = "branch",
921 [EDAC_MC_LAYER_CHANNEL] = "channel",
922 [EDAC_MC_LAYER_SLOT] = "slot",
923 [EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
924 [EDAC_MC_LAYER_ALL_MEM] = "memory",
926 EXPORT_SYMBOL_GPL(edac_layer_name);
928 static void edac_inc_ce_error(struct mem_ctl_info *mci,
929 bool enable_per_layer_report,
930 const int pos[EDAC_MAX_LAYERS],
931 const u16 count)
933 int i, index = 0;
935 mci->ce_mc += count;
937 if (!enable_per_layer_report) {
938 mci->ce_noinfo_count += count;
939 return;
942 for (i = 0; i < mci->n_layers; i++) {
943 if (pos[i] < 0)
944 break;
945 index += pos[i];
946 mci->ce_per_layer[i][index] += count;
948 if (i < mci->n_layers - 1)
949 index *= mci->layers[i + 1].size;
953 static void edac_inc_ue_error(struct mem_ctl_info *mci,
954 bool enable_per_layer_report,
955 const int pos[EDAC_MAX_LAYERS],
956 const u16 count)
958 int i, index = 0;
960 mci->ue_mc += count;
962 if (!enable_per_layer_report) {
963 mci->ue_noinfo_count += count;
964 return;
967 for (i = 0; i < mci->n_layers; i++) {
968 if (pos[i] < 0)
969 break;
970 index += pos[i];
971 mci->ue_per_layer[i][index] += count;
973 if (i < mci->n_layers - 1)
974 index *= mci->layers[i + 1].size;
978 static void edac_ce_error(struct mem_ctl_info *mci,
979 const u16 error_count,
980 const int pos[EDAC_MAX_LAYERS],
981 const char *msg,
982 const char *location,
983 const char *label,
984 const char *detail,
985 const char *other_detail,
986 const bool enable_per_layer_report,
987 const unsigned long page_frame_number,
988 const unsigned long offset_in_page,
989 long grain)
991 unsigned long remapped_page;
992 char *msg_aux = "";
994 if (*msg)
995 msg_aux = " ";
997 if (edac_mc_get_log_ce()) {
998 if (other_detail && *other_detail)
999 edac_mc_printk(mci, KERN_WARNING,
1000 "%d CE %s%son %s (%s %s - %s)\n",
1001 error_count, msg, msg_aux, label,
1002 location, detail, other_detail);
1003 else
1004 edac_mc_printk(mci, KERN_WARNING,
1005 "%d CE %s%son %s (%s %s)\n",
1006 error_count, msg, msg_aux, label,
1007 location, detail);
1009 edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);
1011 if (mci->scrub_mode & SCRUB_SW_SRC) {
1013 * Some memory controllers (called MCs below) can remap
1014 * memory so that it is still available at a different
1015 * address when PCI devices map into memory.
1016 * MC's that can't do this, lose the memory where PCI
1017 * devices are mapped. This mapping is MC-dependent
1018 * and so we call back into the MC driver for it to
1019 * map the MC page to a physical (CPU) page which can
1020 * then be mapped to a virtual page - which can then
1021 * be scrubbed.
1023 remapped_page = mci->ctl_page_to_phys ?
1024 mci->ctl_page_to_phys(mci, page_frame_number) :
1025 page_frame_number;
1027 edac_mc_scrub_block(remapped_page,
1028 offset_in_page, grain);
1032 static void edac_ue_error(struct mem_ctl_info *mci,
1033 const u16 error_count,
1034 const int pos[EDAC_MAX_LAYERS],
1035 const char *msg,
1036 const char *location,
1037 const char *label,
1038 const char *detail,
1039 const char *other_detail,
1040 const bool enable_per_layer_report)
1042 char *msg_aux = "";
1044 if (*msg)
1045 msg_aux = " ";
1047 if (edac_mc_get_log_ue()) {
1048 if (other_detail && *other_detail)
1049 edac_mc_printk(mci, KERN_WARNING,
1050 "%d UE %s%son %s (%s %s - %s)\n",
1051 error_count, msg, msg_aux, label,
1052 location, detail, other_detail);
1053 else
1054 edac_mc_printk(mci, KERN_WARNING,
1055 "%d UE %s%son %s (%s %s)\n",
1056 error_count, msg, msg_aux, label,
1057 location, detail);
1060 if (edac_mc_get_panic_on_ue()) {
1061 if (other_detail && *other_detail)
1062 panic("UE %s%son %s (%s%s - %s)\n",
1063 msg, msg_aux, label, location, detail, other_detail);
1064 else
1065 panic("UE %s%son %s (%s%s)\n",
1066 msg, msg_aux, label, location, detail);
1069 edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
1073 * edac_raw_mc_handle_error - reports a memory event to userspace without doing
1074 * anything to discover the error location
1076 * @type: severity of the error (CE/UE/Fatal)
1077 * @mci: a struct mem_ctl_info pointer
1078 * @e: error description
1080 * This raw function is used internally by edac_mc_handle_error(). It should
1081 * only be called directly when the hardware error come directly from BIOS,
1082 * like in the case of APEI GHES driver.
1084 void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type,
1085 struct mem_ctl_info *mci,
1086 struct edac_raw_error_desc *e)
1088 char detail[80];
1089 int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
1091 /* Memory type dependent details about the error */
1092 if (type == HW_EVENT_ERR_CORRECTED) {
1093 snprintf(detail, sizeof(detail),
1094 "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
1095 e->page_frame_number, e->offset_in_page,
1096 e->grain, e->syndrome);
1097 edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1098 detail, e->other_detail, e->enable_per_layer_report,
1099 e->page_frame_number, e->offset_in_page, e->grain);
1100 } else {
1101 snprintf(detail, sizeof(detail),
1102 "page:0x%lx offset:0x%lx grain:%ld",
1103 e->page_frame_number, e->offset_in_page, e->grain);
1105 edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label,
1106 detail, e->other_detail, e->enable_per_layer_report);
1111 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
1114 * edac_mc_handle_error - reports a memory event to userspace
1116 * @type: severity of the error (CE/UE/Fatal)
1117 * @mci: a struct mem_ctl_info pointer
1118 * @error_count: Number of errors of the same type
1119 * @page_frame_number: mem page where the error occurred
1120 * @offset_in_page: offset of the error inside the page
1121 * @syndrome: ECC syndrome
1122 * @top_layer: Memory layer[0] position
1123 * @mid_layer: Memory layer[1] position
1124 * @low_layer: Memory layer[2] position
1125 * @msg: Message meaningful to the end users that
1126 * explains the event
1127 * @other_detail: Technical details about the event that
1128 * may help hardware manufacturers and
1129 * EDAC developers to analyse the event
1131 void edac_mc_handle_error(const enum hw_event_mc_err_type type,
1132 struct mem_ctl_info *mci,
1133 const u16 error_count,
1134 const unsigned long page_frame_number,
1135 const unsigned long offset_in_page,
1136 const unsigned long syndrome,
1137 const int top_layer,
1138 const int mid_layer,
1139 const int low_layer,
1140 const char *msg,
1141 const char *other_detail)
1143 char *p;
1144 int row = -1, chan = -1;
1145 int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
1146 int i, n_labels = 0;
1147 u8 grain_bits;
1148 struct edac_raw_error_desc *e = &mci->error_desc;
1150 edac_dbg(3, "MC%d\n", mci->mc_idx);
1152 /* Fills the error report buffer */
1153 memset(e, 0, sizeof (*e));
1154 e->error_count = error_count;
1155 e->top_layer = top_layer;
1156 e->mid_layer = mid_layer;
1157 e->low_layer = low_layer;
1158 e->page_frame_number = page_frame_number;
1159 e->offset_in_page = offset_in_page;
1160 e->syndrome = syndrome;
1161 e->msg = msg;
1162 e->other_detail = other_detail;
1165 * Check if the event report is consistent and if the memory
1166 * location is known. If it is known, enable_per_layer_report will be
1167 * true, the DIMM(s) label info will be filled and the per-layer
1168 * error counters will be incremented.
1170 for (i = 0; i < mci->n_layers; i++) {
1171 if (pos[i] >= (int)mci->layers[i].size) {
1173 edac_mc_printk(mci, KERN_ERR,
1174 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1175 edac_layer_name[mci->layers[i].type],
1176 pos[i], mci->layers[i].size);
1178 * Instead of just returning it, let's use what's
1179 * known about the error. The increment routines and
1180 * the DIMM filter logic will do the right thing by
1181 * pointing the likely damaged DIMMs.
1183 pos[i] = -1;
1185 if (pos[i] >= 0)
1186 e->enable_per_layer_report = true;
1190 * Get the dimm label/grain that applies to the match criteria.
1191 * As the error algorithm may not be able to point to just one memory
1192 * stick, the logic here will get all possible labels that could
1193 * pottentially be affected by the error.
1194 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1195 * to have only the MC channel and the MC dimm (also called "branch")
1196 * but the channel is not known, as the memory is arranged in pairs,
1197 * where each memory belongs to a separate channel within the same
1198 * branch.
1200 p = e->label;
1201 *p = '\0';
1203 for (i = 0; i < mci->tot_dimms; i++) {
1204 struct dimm_info *dimm = mci->dimms[i];
1206 if (top_layer >= 0 && top_layer != dimm->location[0])
1207 continue;
1208 if (mid_layer >= 0 && mid_layer != dimm->location[1])
1209 continue;
1210 if (low_layer >= 0 && low_layer != dimm->location[2])
1211 continue;
1213 /* get the max grain, over the error match range */
1214 if (dimm->grain > e->grain)
1215 e->grain = dimm->grain;
1218 * If the error is memory-controller wide, there's no need to
1219 * seek for the affected DIMMs because the whole
1220 * channel/memory controller/... may be affected.
1221 * Also, don't show errors for empty DIMM slots.
1223 if (e->enable_per_layer_report && dimm->nr_pages) {
1224 if (n_labels >= EDAC_MAX_LABELS) {
1225 e->enable_per_layer_report = false;
1226 break;
1228 n_labels++;
1229 if (p != e->label) {
1230 strcpy(p, OTHER_LABEL);
1231 p += strlen(OTHER_LABEL);
1233 strcpy(p, dimm->label);
1234 p += strlen(p);
1235 *p = '\0';
1238 * get csrow/channel of the DIMM, in order to allow
1239 * incrementing the compat API counters
1241 edac_dbg(4, "%s csrows map: (%d,%d)\n",
1242 mci->csbased ? "rank" : "dimm",
1243 dimm->csrow, dimm->cschannel);
1244 if (row == -1)
1245 row = dimm->csrow;
1246 else if (row >= 0 && row != dimm->csrow)
1247 row = -2;
1249 if (chan == -1)
1250 chan = dimm->cschannel;
1251 else if (chan >= 0 && chan != dimm->cschannel)
1252 chan = -2;
1256 if (!e->enable_per_layer_report) {
1257 strcpy(e->label, "any memory");
1258 } else {
1259 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
1260 if (p == e->label)
1261 strcpy(e->label, "unknown memory");
1262 if (type == HW_EVENT_ERR_CORRECTED) {
1263 if (row >= 0) {
1264 mci->csrows[row]->ce_count += error_count;
1265 if (chan >= 0)
1266 mci->csrows[row]->channels[chan]->ce_count += error_count;
1268 } else
1269 if (row >= 0)
1270 mci->csrows[row]->ue_count += error_count;
1273 /* Fill the RAM location data */
1274 p = e->location;
1276 for (i = 0; i < mci->n_layers; i++) {
1277 if (pos[i] < 0)
1278 continue;
1280 p += sprintf(p, "%s:%d ",
1281 edac_layer_name[mci->layers[i].type],
1282 pos[i]);
1284 if (p > e->location)
1285 *(p - 1) = '\0';
1287 /* Report the error via the trace interface */
1288 grain_bits = fls_long(e->grain) + 1;
1289 trace_mc_event(type, e->msg, e->label, e->error_count,
1290 mci->mc_idx, e->top_layer, e->mid_layer, e->low_layer,
1291 PAGES_TO_MiB(e->page_frame_number) | e->offset_in_page,
1292 grain_bits, e->syndrome, e->other_detail);
1294 edac_raw_mc_handle_error(type, mci, e);
1296 EXPORT_SYMBOL_GPL(edac_mc_handle_error);