2 * edac_mc kernel module
3 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
7 * Written by Thayne Harbaugh
8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
9 * http://www.anime.net/~goemon/linux-ecc/
11 * Modified by Dave Peterson and Doug Thompson
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/ctype.h>
29 #include <linux/edac.h>
30 #include <linux/bitops.h>
31 #include <asm/uaccess.h>
34 #include "edac_core.h"
35 #include "edac_module.h"
37 #define CREATE_TRACE_POINTS
38 #define TRACE_INCLUDE_PATH ../../include/ras
39 #include <ras/ras_event.h>
41 /* lock to memory controller's control array */
42 static DEFINE_MUTEX(mem_ctls_mutex
);
43 static LIST_HEAD(mc_devices
);
46 * Used to lock EDAC MC to just one module, avoiding two drivers e. g.
47 * apei/ghes and i7core_edac to be used at the same time.
49 static void const *edac_mc_owner
;
51 static struct bus_type mc_bus
[EDAC_MAX_MCS
];
53 unsigned edac_dimm_info_location(struct dimm_info
*dimm
, char *buf
,
56 struct mem_ctl_info
*mci
= dimm
->mci
;
60 for (i
= 0; i
< mci
->n_layers
; i
++) {
61 n
= snprintf(p
, len
, "%s %d ",
62 edac_layer_name
[mci
->layers
[i
].type
],
74 #ifdef CONFIG_EDAC_DEBUG
76 static void edac_mc_dump_channel(struct rank_info
*chan
)
78 edac_dbg(4, " channel->chan_idx = %d\n", chan
->chan_idx
);
79 edac_dbg(4, " channel = %p\n", chan
);
80 edac_dbg(4, " channel->csrow = %p\n", chan
->csrow
);
81 edac_dbg(4, " channel->dimm = %p\n", chan
->dimm
);
84 static void edac_mc_dump_dimm(struct dimm_info
*dimm
, int number
)
88 edac_dimm_info_location(dimm
, location
, sizeof(location
));
90 edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
91 dimm
->mci
->csbased
? "rank" : "dimm",
92 number
, location
, dimm
->csrow
, dimm
->cschannel
);
93 edac_dbg(4, " dimm = %p\n", dimm
);
94 edac_dbg(4, " dimm->label = '%s'\n", dimm
->label
);
95 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm
->nr_pages
);
96 edac_dbg(4, " dimm->grain = %d\n", dimm
->grain
);
97 edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm
->nr_pages
);
100 static void edac_mc_dump_csrow(struct csrow_info
*csrow
)
102 edac_dbg(4, "csrow->csrow_idx = %d\n", csrow
->csrow_idx
);
103 edac_dbg(4, " csrow = %p\n", csrow
);
104 edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow
->first_page
);
105 edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow
->last_page
);
106 edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow
->page_mask
);
107 edac_dbg(4, " csrow->nr_channels = %d\n", csrow
->nr_channels
);
108 edac_dbg(4, " csrow->channels = %p\n", csrow
->channels
);
109 edac_dbg(4, " csrow->mci = %p\n", csrow
->mci
);
112 static void edac_mc_dump_mci(struct mem_ctl_info
*mci
)
114 edac_dbg(3, "\tmci = %p\n", mci
);
115 edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci
->mtype_cap
);
116 edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci
->edac_ctl_cap
);
117 edac_dbg(3, "\tmci->edac_cap = %lx\n", mci
->edac_cap
);
118 edac_dbg(4, "\tmci->edac_check = %p\n", mci
->edac_check
);
119 edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
120 mci
->nr_csrows
, mci
->csrows
);
121 edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
122 mci
->tot_dimms
, mci
->dimms
);
123 edac_dbg(3, "\tdev = %p\n", mci
->pdev
);
124 edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
125 mci
->mod_name
, mci
->ctl_name
);
126 edac_dbg(3, "\tpvt_info = %p\n\n", mci
->pvt_info
);
129 #endif /* CONFIG_EDAC_DEBUG */
132 * keep those in sync with the enum mem_type
134 const char *edac_mem_types
[] = {
136 "Reserved csrow type",
137 "Unknown csrow type",
138 "Fast page mode RAM",
139 "Extended data out RAM",
140 "Burst Extended data out RAM",
141 "Single data rate SDRAM",
142 "Registered single data rate SDRAM",
143 "Double data rate SDRAM",
144 "Registered Double data rate SDRAM",
146 "Unbuffered DDR2 RAM",
147 "Fully buffered DDR2",
148 "Registered DDR2 RAM",
150 "Unbuffered DDR3 RAM",
151 "Registered DDR3 RAM",
153 EXPORT_SYMBOL_GPL(edac_mem_types
);
156 * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
157 * @p: pointer to a pointer with the memory offset to be used. At
158 * return, this will be incremented to point to the next offset
159 * @size: Size of the data structure to be reserved
160 * @n_elems: Number of elements that should be reserved
162 * If 'size' is a constant, the compiler will optimize this whole function
163 * down to either a no-op or the addition of a constant to the value of '*p'.
165 * The 'p' pointer is absolutely needed to keep the proper advancing
166 * further in memory to the proper offsets when allocating the struct along
167 * with its embedded structs, as edac_device_alloc_ctl_info() does it
168 * above, for example.
170 * At return, the pointer 'p' will be incremented to be used on a next call
173 void *edac_align_ptr(void **p
, unsigned size
, int n_elems
)
178 *p
+= size
* n_elems
;
181 * 'p' can possibly be an unaligned item X such that sizeof(X) is
182 * 'size'. Adjust 'p' so that its alignment is at least as
183 * stringent as what the compiler would provide for X and return
184 * the aligned result.
185 * Here we assume that the alignment of a "long long" is the most
186 * stringent alignment that the compiler will ever provide by default.
187 * As far as I know, this is a reasonable assumption.
189 if (size
> sizeof(long))
190 align
= sizeof(long long);
191 else if (size
> sizeof(int))
192 align
= sizeof(long);
193 else if (size
> sizeof(short))
195 else if (size
> sizeof(char))
196 align
= sizeof(short);
200 r
= (unsigned long)p
% align
;
207 return (void *)(((unsigned long)ptr
) + align
- r
);
210 static void _edac_mc_free(struct mem_ctl_info
*mci
)
213 struct csrow_info
*csr
;
214 const unsigned int tot_dimms
= mci
->tot_dimms
;
215 const unsigned int tot_channels
= mci
->num_cschannel
;
216 const unsigned int tot_csrows
= mci
->nr_csrows
;
219 for (i
= 0; i
< tot_dimms
; i
++)
220 kfree(mci
->dimms
[i
]);
224 for (row
= 0; row
< tot_csrows
; row
++) {
225 csr
= mci
->csrows
[row
];
228 for (chn
= 0; chn
< tot_channels
; chn
++)
229 kfree(csr
->channels
[chn
]);
230 kfree(csr
->channels
);
241 * edac_mc_alloc: Allocate and partially fill a struct mem_ctl_info structure
242 * @mc_num: Memory controller number
243 * @n_layers: Number of MC hierarchy layers
244 * layers: Describes each layer as seen by the Memory Controller
245 * @size_pvt: size of private storage needed
248 * Everything is kmalloc'ed as one big chunk - more efficient.
249 * Only can be used if all structures have the same lifetime - otherwise
250 * you have to allocate and initialize your own structures.
252 * Use edac_mc_free() to free mc structures allocated by this function.
254 * NOTE: drivers handle multi-rank memories in different ways: in some
255 * drivers, one multi-rank memory stick is mapped as one entry, while, in
256 * others, a single multi-rank memory stick would be mapped into several
257 * entries. Currently, this function will allocate multiple struct dimm_info
258 * on such scenarios, as grouping the multiple ranks require drivers change.
262 * On success: struct mem_ctl_info pointer
264 struct mem_ctl_info
*edac_mc_alloc(unsigned mc_num
,
266 struct edac_mc_layer
*layers
,
269 struct mem_ctl_info
*mci
;
270 struct edac_mc_layer
*layer
;
271 struct csrow_info
*csr
;
272 struct rank_info
*chan
;
273 struct dimm_info
*dimm
;
274 u32
*ce_per_layer
[EDAC_MAX_LAYERS
], *ue_per_layer
[EDAC_MAX_LAYERS
];
275 unsigned pos
[EDAC_MAX_LAYERS
];
276 unsigned size
, tot_dimms
= 1, count
= 1;
277 unsigned tot_csrows
= 1, tot_channels
= 1, tot_errcount
= 0;
278 void *pvt
, *p
, *ptr
= NULL
;
279 int i
, j
, row
, chn
, n
, len
, off
;
280 bool per_rank
= false;
282 BUG_ON(n_layers
> EDAC_MAX_LAYERS
|| n_layers
== 0);
284 * Calculate the total amount of dimms and csrows/cschannels while
285 * in the old API emulation mode
287 for (i
= 0; i
< n_layers
; i
++) {
288 tot_dimms
*= layers
[i
].size
;
289 if (layers
[i
].is_virt_csrow
)
290 tot_csrows
*= layers
[i
].size
;
292 tot_channels
*= layers
[i
].size
;
294 if (layers
[i
].type
== EDAC_MC_LAYER_CHIP_SELECT
)
298 /* Figure out the offsets of the various items from the start of an mc
299 * structure. We want the alignment of each item to be at least as
300 * stringent as what the compiler would provide if we could simply
301 * hardcode everything into a single struct.
303 mci
= edac_align_ptr(&ptr
, sizeof(*mci
), 1);
304 layer
= edac_align_ptr(&ptr
, sizeof(*layer
), n_layers
);
305 for (i
= 0; i
< n_layers
; i
++) {
306 count
*= layers
[i
].size
;
307 edac_dbg(4, "errcount layer %d size %d\n", i
, count
);
308 ce_per_layer
[i
] = edac_align_ptr(&ptr
, sizeof(u32
), count
);
309 ue_per_layer
[i
] = edac_align_ptr(&ptr
, sizeof(u32
), count
);
310 tot_errcount
+= 2 * count
;
313 edac_dbg(4, "allocating %d error counters\n", tot_errcount
);
314 pvt
= edac_align_ptr(&ptr
, sz_pvt
, 1);
315 size
= ((unsigned long)pvt
) + sz_pvt
;
317 edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
320 per_rank
? "ranks" : "dimms",
321 tot_csrows
* tot_channels
);
323 mci
= kzalloc(size
, GFP_KERNEL
);
327 /* Adjust pointers so they point within the memory we just allocated
328 * rather than an imaginary chunk of memory located at address 0.
330 layer
= (struct edac_mc_layer
*)(((char *)mci
) + ((unsigned long)layer
));
331 for (i
= 0; i
< n_layers
; i
++) {
332 mci
->ce_per_layer
[i
] = (u32
*)((char *)mci
+ ((unsigned long)ce_per_layer
[i
]));
333 mci
->ue_per_layer
[i
] = (u32
*)((char *)mci
+ ((unsigned long)ue_per_layer
[i
]));
335 pvt
= sz_pvt
? (((char *)mci
) + ((unsigned long)pvt
)) : NULL
;
337 /* setup index and various internal pointers */
338 mci
->mc_idx
= mc_num
;
339 mci
->tot_dimms
= tot_dimms
;
341 mci
->n_layers
= n_layers
;
343 memcpy(mci
->layers
, layers
, sizeof(*layer
) * n_layers
);
344 mci
->nr_csrows
= tot_csrows
;
345 mci
->num_cschannel
= tot_channels
;
346 mci
->csbased
= per_rank
;
349 * Alocate and fill the csrow/channels structs
351 mci
->csrows
= kcalloc(tot_csrows
, sizeof(*mci
->csrows
), GFP_KERNEL
);
354 for (row
= 0; row
< tot_csrows
; row
++) {
355 csr
= kzalloc(sizeof(**mci
->csrows
), GFP_KERNEL
);
358 mci
->csrows
[row
] = csr
;
359 csr
->csrow_idx
= row
;
361 csr
->nr_channels
= tot_channels
;
362 csr
->channels
= kcalloc(tot_channels
, sizeof(*csr
->channels
),
367 for (chn
= 0; chn
< tot_channels
; chn
++) {
368 chan
= kzalloc(sizeof(**csr
->channels
), GFP_KERNEL
);
371 csr
->channels
[chn
] = chan
;
372 chan
->chan_idx
= chn
;
378 * Allocate and fill the dimm structs
380 mci
->dimms
= kcalloc(tot_dimms
, sizeof(*mci
->dimms
), GFP_KERNEL
);
384 memset(&pos
, 0, sizeof(pos
));
387 for (i
= 0; i
< tot_dimms
; i
++) {
388 chan
= mci
->csrows
[row
]->channels
[chn
];
389 off
= EDAC_DIMM_OFF(layer
, n_layers
, pos
[0], pos
[1], pos
[2]);
390 if (off
< 0 || off
>= tot_dimms
) {
391 edac_mc_printk(mci
, KERN_ERR
, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
395 dimm
= kzalloc(sizeof(**mci
->dimms
), GFP_KERNEL
);
398 mci
->dimms
[off
] = dimm
;
402 * Copy DIMM location and initialize it.
404 len
= sizeof(dimm
->label
);
406 n
= snprintf(p
, len
, "mc#%u", mc_num
);
409 for (j
= 0; j
< n_layers
; j
++) {
410 n
= snprintf(p
, len
, "%s#%u",
411 edac_layer_name
[layers
[j
].type
],
415 dimm
->location
[j
] = pos
[j
];
421 /* Link it to the csrows old API data */
424 dimm
->cschannel
= chn
;
426 /* Increment csrow location */
427 if (layers
[0].is_virt_csrow
) {
429 if (chn
== tot_channels
) {
435 if (row
== tot_csrows
) {
441 /* Increment dimm location */
442 for (j
= n_layers
- 1; j
>= 0; j
--) {
444 if (pos
[j
] < layers
[j
].size
)
450 mci
->op_state
= OP_ALLOC
;
459 EXPORT_SYMBOL_GPL(edac_mc_alloc
);
463 * 'Free' a previously allocated 'mci' structure
464 * @mci: pointer to a struct mem_ctl_info structure
466 void edac_mc_free(struct mem_ctl_info
*mci
)
470 /* If we're not yet registered with sysfs free only what was allocated
471 * in edac_mc_alloc().
473 if (!device_is_registered(&mci
->dev
)) {
478 /* the mci instance is freed here, when the sysfs object is dropped */
479 edac_unregister_sysfs(mci
);
481 EXPORT_SYMBOL_GPL(edac_mc_free
);
487 * scan list of controllers looking for the one that manages
489 * @dev: pointer to a struct device related with the MCI
491 struct mem_ctl_info
*find_mci_by_dev(struct device
*dev
)
493 struct mem_ctl_info
*mci
;
494 struct list_head
*item
;
498 list_for_each(item
, &mc_devices
) {
499 mci
= list_entry(item
, struct mem_ctl_info
, link
);
501 if (mci
->pdev
== dev
)
507 EXPORT_SYMBOL_GPL(find_mci_by_dev
);
510 * handler for EDAC to check if NMI type handler has asserted interrupt
512 static int edac_mc_assert_error_check_and_clear(void)
516 if (edac_op_state
== EDAC_OPSTATE_POLL
)
519 old_state
= edac_err_assert
;
526 * edac_mc_workq_function
527 * performs the operation scheduled by a workq request
529 static void edac_mc_workq_function(struct work_struct
*work_req
)
531 struct delayed_work
*d_work
= to_delayed_work(work_req
);
532 struct mem_ctl_info
*mci
= to_edac_mem_ctl_work(d_work
);
534 mutex_lock(&mem_ctls_mutex
);
536 /* if this control struct has movd to offline state, we are done */
537 if (mci
->op_state
== OP_OFFLINE
) {
538 mutex_unlock(&mem_ctls_mutex
);
542 /* Only poll controllers that are running polled and have a check */
543 if (edac_mc_assert_error_check_and_clear() && (mci
->edac_check
!= NULL
))
544 mci
->edac_check(mci
);
546 mutex_unlock(&mem_ctls_mutex
);
549 queue_delayed_work(edac_workqueue
, &mci
->work
,
550 msecs_to_jiffies(edac_mc_get_poll_msec()));
554 * edac_mc_workq_setup
555 * initialize a workq item for this mci
556 * passing in the new delay period in msec
560 * called with the mem_ctls_mutex held
562 static void edac_mc_workq_setup(struct mem_ctl_info
*mci
, unsigned msec
,
567 /* if this instance is not in the POLL state, then simply return */
568 if (mci
->op_state
!= OP_RUNNING_POLL
)
572 INIT_DELAYED_WORK(&mci
->work
, edac_mc_workq_function
);
574 mod_delayed_work(edac_workqueue
, &mci
->work
, msecs_to_jiffies(msec
));
578 * edac_mc_workq_teardown
579 * stop the workq processing on this mci
583 * called WITHOUT lock held
585 static void edac_mc_workq_teardown(struct mem_ctl_info
*mci
)
587 mci
->op_state
= OP_OFFLINE
;
589 cancel_delayed_work_sync(&mci
->work
);
590 flush_workqueue(edac_workqueue
);
594 * edac_mc_reset_delay_period(unsigned long value)
596 * user space has updated our poll period value, need to
597 * reset our workq delays
599 void edac_mc_reset_delay_period(unsigned long value
)
601 struct mem_ctl_info
*mci
;
602 struct list_head
*item
;
604 mutex_lock(&mem_ctls_mutex
);
606 list_for_each(item
, &mc_devices
) {
607 mci
= list_entry(item
, struct mem_ctl_info
, link
);
609 edac_mc_workq_setup(mci
, value
, false);
612 mutex_unlock(&mem_ctls_mutex
);
617 /* Return 0 on success, 1 on failure.
618 * Before calling this function, caller must
619 * assign a unique value to mci->mc_idx.
623 * called with the mem_ctls_mutex lock held
625 static int add_mc_to_global_list(struct mem_ctl_info
*mci
)
627 struct list_head
*item
, *insert_before
;
628 struct mem_ctl_info
*p
;
630 insert_before
= &mc_devices
;
632 p
= find_mci_by_dev(mci
->pdev
);
633 if (unlikely(p
!= NULL
))
636 list_for_each(item
, &mc_devices
) {
637 p
= list_entry(item
, struct mem_ctl_info
, link
);
639 if (p
->mc_idx
>= mci
->mc_idx
) {
640 if (unlikely(p
->mc_idx
== mci
->mc_idx
))
643 insert_before
= item
;
648 list_add_tail_rcu(&mci
->link
, insert_before
);
649 atomic_inc(&edac_handlers
);
653 edac_printk(KERN_WARNING
, EDAC_MC
,
654 "%s (%s) %s %s already assigned %d\n", dev_name(p
->pdev
),
655 edac_dev_name(mci
), p
->mod_name
, p
->ctl_name
, p
->mc_idx
);
659 edac_printk(KERN_WARNING
, EDAC_MC
,
660 "bug in low-level driver: attempt to assign\n"
661 " duplicate mc_idx %d in %s()\n", p
->mc_idx
, __func__
);
665 static int del_mc_from_global_list(struct mem_ctl_info
*mci
)
667 int handlers
= atomic_dec_return(&edac_handlers
);
668 list_del_rcu(&mci
->link
);
670 /* these are for safe removal of devices from global list while
671 * NMI handlers may be traversing list
674 INIT_LIST_HEAD(&mci
->link
);
680 * edac_mc_find: Search for a mem_ctl_info structure whose index is 'idx'.
682 * If found, return a pointer to the structure.
685 * Caller must hold mem_ctls_mutex.
687 struct mem_ctl_info
*edac_mc_find(int idx
)
689 struct list_head
*item
;
690 struct mem_ctl_info
*mci
;
692 list_for_each(item
, &mc_devices
) {
693 mci
= list_entry(item
, struct mem_ctl_info
, link
);
695 if (mci
->mc_idx
>= idx
) {
696 if (mci
->mc_idx
== idx
)
705 EXPORT_SYMBOL(edac_mc_find
);
708 * edac_mc_add_mc: Insert the 'mci' structure into the mci global list and
709 * create sysfs entries associated with mci structure
710 * @mci: pointer to the mci structure to be added to the list
717 /* FIXME - should a warning be printed if no error detection? correction? */
718 int edac_mc_add_mc(struct mem_ctl_info
*mci
)
723 if (mci
->mc_idx
>= EDAC_MAX_MCS
) {
724 pr_warn_once("Too many memory controllers: %d\n", mci
->mc_idx
);
728 #ifdef CONFIG_EDAC_DEBUG
729 if (edac_debug_level
>= 3)
730 edac_mc_dump_mci(mci
);
732 if (edac_debug_level
>= 4) {
735 for (i
= 0; i
< mci
->nr_csrows
; i
++) {
736 struct csrow_info
*csrow
= mci
->csrows
[i
];
740 for (j
= 0; j
< csrow
->nr_channels
; j
++)
741 nr_pages
+= csrow
->channels
[j
]->dimm
->nr_pages
;
744 edac_mc_dump_csrow(csrow
);
745 for (j
= 0; j
< csrow
->nr_channels
; j
++)
746 if (csrow
->channels
[j
]->dimm
->nr_pages
)
747 edac_mc_dump_channel(csrow
->channels
[j
]);
749 for (i
= 0; i
< mci
->tot_dimms
; i
++)
750 if (mci
->dimms
[i
]->nr_pages
)
751 edac_mc_dump_dimm(mci
->dimms
[i
], i
);
754 mutex_lock(&mem_ctls_mutex
);
756 if (edac_mc_owner
&& edac_mc_owner
!= mci
->mod_name
) {
761 if (add_mc_to_global_list(mci
))
764 /* set load time so that error rate can be tracked */
765 mci
->start_time
= jiffies
;
767 mci
->bus
= &mc_bus
[mci
->mc_idx
];
769 if (edac_create_sysfs_mci_device(mci
)) {
770 edac_mc_printk(mci
, KERN_WARNING
,
771 "failed to create sysfs device\n");
775 /* If there IS a check routine, then we are running POLLED */
776 if (mci
->edac_check
!= NULL
) {
777 /* This instance is NOW RUNNING */
778 mci
->op_state
= OP_RUNNING_POLL
;
780 edac_mc_workq_setup(mci
, edac_mc_get_poll_msec(), true);
782 mci
->op_state
= OP_RUNNING_INTERRUPT
;
785 /* Report action taken */
786 edac_mc_printk(mci
, KERN_INFO
, "Giving out device to '%s' '%s':"
787 " DEV %s\n", mci
->mod_name
, mci
->ctl_name
, edac_dev_name(mci
));
789 edac_mc_owner
= mci
->mod_name
;
791 mutex_unlock(&mem_ctls_mutex
);
795 del_mc_from_global_list(mci
);
798 mutex_unlock(&mem_ctls_mutex
);
801 EXPORT_SYMBOL_GPL(edac_mc_add_mc
);
804 * edac_mc_del_mc: Remove sysfs entries for specified mci structure and
805 * remove mci structure from global list
806 * @pdev: Pointer to 'struct device' representing mci structure to remove.
808 * Return pointer to removed mci structure, or NULL if device not found.
810 struct mem_ctl_info
*edac_mc_del_mc(struct device
*dev
)
812 struct mem_ctl_info
*mci
;
816 mutex_lock(&mem_ctls_mutex
);
818 /* find the requested mci struct in the global list */
819 mci
= find_mci_by_dev(dev
);
821 mutex_unlock(&mem_ctls_mutex
);
825 if (!del_mc_from_global_list(mci
))
826 edac_mc_owner
= NULL
;
827 mutex_unlock(&mem_ctls_mutex
);
829 /* flush workq processes */
830 edac_mc_workq_teardown(mci
);
832 /* marking MCI offline */
833 mci
->op_state
= OP_OFFLINE
;
835 /* remove from sysfs */
836 edac_remove_sysfs_mci_device(mci
);
838 edac_printk(KERN_INFO
, EDAC_MC
,
839 "Removed device %d for %s %s: DEV %s\n", mci
->mc_idx
,
840 mci
->mod_name
, mci
->ctl_name
, edac_dev_name(mci
));
844 EXPORT_SYMBOL_GPL(edac_mc_del_mc
);
846 static void edac_mc_scrub_block(unsigned long page
, unsigned long offset
,
851 unsigned long flags
= 0;
855 /* ECC error page was not in our memory. Ignore it. */
856 if (!pfn_valid(page
))
859 /* Find the actual page structure then map it and fix */
860 pg
= pfn_to_page(page
);
863 local_irq_save(flags
);
865 virt_addr
= kmap_atomic(pg
);
867 /* Perform architecture specific atomic scrub operation */
868 atomic_scrub(virt_addr
+ offset
, size
);
870 /* Unmap and complete */
871 kunmap_atomic(virt_addr
);
874 local_irq_restore(flags
);
877 /* FIXME - should return -1 */
878 int edac_mc_find_csrow_by_page(struct mem_ctl_info
*mci
, unsigned long page
)
880 struct csrow_info
**csrows
= mci
->csrows
;
883 edac_dbg(1, "MC%d: 0x%lx\n", mci
->mc_idx
, page
);
886 for (i
= 0; i
< mci
->nr_csrows
; i
++) {
887 struct csrow_info
*csrow
= csrows
[i
];
889 for (j
= 0; j
< csrow
->nr_channels
; j
++) {
890 struct dimm_info
*dimm
= csrow
->channels
[j
]->dimm
;
896 edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
898 csrow
->first_page
, page
, csrow
->last_page
,
901 if ((page
>= csrow
->first_page
) &&
902 (page
<= csrow
->last_page
) &&
903 ((page
& csrow
->page_mask
) ==
904 (csrow
->first_page
& csrow
->page_mask
))) {
911 edac_mc_printk(mci
, KERN_ERR
,
912 "could not look up page error address %lx\n",
913 (unsigned long)page
);
917 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page
);
919 const char *edac_layer_name
[] = {
920 [EDAC_MC_LAYER_BRANCH
] = "branch",
921 [EDAC_MC_LAYER_CHANNEL
] = "channel",
922 [EDAC_MC_LAYER_SLOT
] = "slot",
923 [EDAC_MC_LAYER_CHIP_SELECT
] = "csrow",
924 [EDAC_MC_LAYER_ALL_MEM
] = "memory",
926 EXPORT_SYMBOL_GPL(edac_layer_name
);
928 static void edac_inc_ce_error(struct mem_ctl_info
*mci
,
929 bool enable_per_layer_report
,
930 const int pos
[EDAC_MAX_LAYERS
],
937 if (!enable_per_layer_report
) {
938 mci
->ce_noinfo_count
+= count
;
942 for (i
= 0; i
< mci
->n_layers
; i
++) {
946 mci
->ce_per_layer
[i
][index
] += count
;
948 if (i
< mci
->n_layers
- 1)
949 index
*= mci
->layers
[i
+ 1].size
;
953 static void edac_inc_ue_error(struct mem_ctl_info
*mci
,
954 bool enable_per_layer_report
,
955 const int pos
[EDAC_MAX_LAYERS
],
962 if (!enable_per_layer_report
) {
963 mci
->ue_noinfo_count
+= count
;
967 for (i
= 0; i
< mci
->n_layers
; i
++) {
971 mci
->ue_per_layer
[i
][index
] += count
;
973 if (i
< mci
->n_layers
- 1)
974 index
*= mci
->layers
[i
+ 1].size
;
978 static void edac_ce_error(struct mem_ctl_info
*mci
,
979 const u16 error_count
,
980 const int pos
[EDAC_MAX_LAYERS
],
982 const char *location
,
985 const char *other_detail
,
986 const bool enable_per_layer_report
,
987 const unsigned long page_frame_number
,
988 const unsigned long offset_in_page
,
991 unsigned long remapped_page
;
997 if (edac_mc_get_log_ce()) {
998 if (other_detail
&& *other_detail
)
999 edac_mc_printk(mci
, KERN_WARNING
,
1000 "%d CE %s%son %s (%s %s - %s)\n",
1001 error_count
, msg
, msg_aux
, label
,
1002 location
, detail
, other_detail
);
1004 edac_mc_printk(mci
, KERN_WARNING
,
1005 "%d CE %s%son %s (%s %s)\n",
1006 error_count
, msg
, msg_aux
, label
,
1009 edac_inc_ce_error(mci
, enable_per_layer_report
, pos
, error_count
);
1011 if (mci
->scrub_mode
& SCRUB_SW_SRC
) {
1013 * Some memory controllers (called MCs below) can remap
1014 * memory so that it is still available at a different
1015 * address when PCI devices map into memory.
1016 * MC's that can't do this, lose the memory where PCI
1017 * devices are mapped. This mapping is MC-dependent
1018 * and so we call back into the MC driver for it to
1019 * map the MC page to a physical (CPU) page which can
1020 * then be mapped to a virtual page - which can then
1023 remapped_page
= mci
->ctl_page_to_phys
?
1024 mci
->ctl_page_to_phys(mci
, page_frame_number
) :
1027 edac_mc_scrub_block(remapped_page
,
1028 offset_in_page
, grain
);
1032 static void edac_ue_error(struct mem_ctl_info
*mci
,
1033 const u16 error_count
,
1034 const int pos
[EDAC_MAX_LAYERS
],
1036 const char *location
,
1039 const char *other_detail
,
1040 const bool enable_per_layer_report
)
1047 if (edac_mc_get_log_ue()) {
1048 if (other_detail
&& *other_detail
)
1049 edac_mc_printk(mci
, KERN_WARNING
,
1050 "%d UE %s%son %s (%s %s - %s)\n",
1051 error_count
, msg
, msg_aux
, label
,
1052 location
, detail
, other_detail
);
1054 edac_mc_printk(mci
, KERN_WARNING
,
1055 "%d UE %s%son %s (%s %s)\n",
1056 error_count
, msg
, msg_aux
, label
,
1060 if (edac_mc_get_panic_on_ue()) {
1061 if (other_detail
&& *other_detail
)
1062 panic("UE %s%son %s (%s%s - %s)\n",
1063 msg
, msg_aux
, label
, location
, detail
, other_detail
);
1065 panic("UE %s%son %s (%s%s)\n",
1066 msg
, msg_aux
, label
, location
, detail
);
1069 edac_inc_ue_error(mci
, enable_per_layer_report
, pos
, error_count
);
1073 * edac_raw_mc_handle_error - reports a memory event to userspace without doing
1074 * anything to discover the error location
1076 * @type: severity of the error (CE/UE/Fatal)
1077 * @mci: a struct mem_ctl_info pointer
1078 * @e: error description
1080 * This raw function is used internally by edac_mc_handle_error(). It should
1081 * only be called directly when the hardware error come directly from BIOS,
1082 * like in the case of APEI GHES driver.
1084 void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type
,
1085 struct mem_ctl_info
*mci
,
1086 struct edac_raw_error_desc
*e
)
1089 int pos
[EDAC_MAX_LAYERS
] = { e
->top_layer
, e
->mid_layer
, e
->low_layer
};
1091 /* Memory type dependent details about the error */
1092 if (type
== HW_EVENT_ERR_CORRECTED
) {
1093 snprintf(detail
, sizeof(detail
),
1094 "page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
1095 e
->page_frame_number
, e
->offset_in_page
,
1096 e
->grain
, e
->syndrome
);
1097 edac_ce_error(mci
, e
->error_count
, pos
, e
->msg
, e
->location
, e
->label
,
1098 detail
, e
->other_detail
, e
->enable_per_layer_report
,
1099 e
->page_frame_number
, e
->offset_in_page
, e
->grain
);
1101 snprintf(detail
, sizeof(detail
),
1102 "page:0x%lx offset:0x%lx grain:%ld",
1103 e
->page_frame_number
, e
->offset_in_page
, e
->grain
);
1105 edac_ue_error(mci
, e
->error_count
, pos
, e
->msg
, e
->location
, e
->label
,
1106 detail
, e
->other_detail
, e
->enable_per_layer_report
);
1111 EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error
);
1114 * edac_mc_handle_error - reports a memory event to userspace
1116 * @type: severity of the error (CE/UE/Fatal)
1117 * @mci: a struct mem_ctl_info pointer
1118 * @error_count: Number of errors of the same type
1119 * @page_frame_number: mem page where the error occurred
1120 * @offset_in_page: offset of the error inside the page
1121 * @syndrome: ECC syndrome
1122 * @top_layer: Memory layer[0] position
1123 * @mid_layer: Memory layer[1] position
1124 * @low_layer: Memory layer[2] position
1125 * @msg: Message meaningful to the end users that
1126 * explains the event
1127 * @other_detail: Technical details about the event that
1128 * may help hardware manufacturers and
1129 * EDAC developers to analyse the event
1131 void edac_mc_handle_error(const enum hw_event_mc_err_type type
,
1132 struct mem_ctl_info
*mci
,
1133 const u16 error_count
,
1134 const unsigned long page_frame_number
,
1135 const unsigned long offset_in_page
,
1136 const unsigned long syndrome
,
1137 const int top_layer
,
1138 const int mid_layer
,
1139 const int low_layer
,
1141 const char *other_detail
)
1144 int row
= -1, chan
= -1;
1145 int pos
[EDAC_MAX_LAYERS
] = { top_layer
, mid_layer
, low_layer
};
1146 int i
, n_labels
= 0;
1148 struct edac_raw_error_desc
*e
= &mci
->error_desc
;
1150 edac_dbg(3, "MC%d\n", mci
->mc_idx
);
1152 /* Fills the error report buffer */
1153 memset(e
, 0, sizeof (*e
));
1154 e
->error_count
= error_count
;
1155 e
->top_layer
= top_layer
;
1156 e
->mid_layer
= mid_layer
;
1157 e
->low_layer
= low_layer
;
1158 e
->page_frame_number
= page_frame_number
;
1159 e
->offset_in_page
= offset_in_page
;
1160 e
->syndrome
= syndrome
;
1162 e
->other_detail
= other_detail
;
1165 * Check if the event report is consistent and if the memory
1166 * location is known. If it is known, enable_per_layer_report will be
1167 * true, the DIMM(s) label info will be filled and the per-layer
1168 * error counters will be incremented.
1170 for (i
= 0; i
< mci
->n_layers
; i
++) {
1171 if (pos
[i
] >= (int)mci
->layers
[i
].size
) {
1173 edac_mc_printk(mci
, KERN_ERR
,
1174 "INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
1175 edac_layer_name
[mci
->layers
[i
].type
],
1176 pos
[i
], mci
->layers
[i
].size
);
1178 * Instead of just returning it, let's use what's
1179 * known about the error. The increment routines and
1180 * the DIMM filter logic will do the right thing by
1181 * pointing the likely damaged DIMMs.
1186 e
->enable_per_layer_report
= true;
1190 * Get the dimm label/grain that applies to the match criteria.
1191 * As the error algorithm may not be able to point to just one memory
1192 * stick, the logic here will get all possible labels that could
1193 * pottentially be affected by the error.
1194 * On FB-DIMM memory controllers, for uncorrected errors, it is common
1195 * to have only the MC channel and the MC dimm (also called "branch")
1196 * but the channel is not known, as the memory is arranged in pairs,
1197 * where each memory belongs to a separate channel within the same
1203 for (i
= 0; i
< mci
->tot_dimms
; i
++) {
1204 struct dimm_info
*dimm
= mci
->dimms
[i
];
1206 if (top_layer
>= 0 && top_layer
!= dimm
->location
[0])
1208 if (mid_layer
>= 0 && mid_layer
!= dimm
->location
[1])
1210 if (low_layer
>= 0 && low_layer
!= dimm
->location
[2])
1213 /* get the max grain, over the error match range */
1214 if (dimm
->grain
> e
->grain
)
1215 e
->grain
= dimm
->grain
;
1218 * If the error is memory-controller wide, there's no need to
1219 * seek for the affected DIMMs because the whole
1220 * channel/memory controller/... may be affected.
1221 * Also, don't show errors for empty DIMM slots.
1223 if (e
->enable_per_layer_report
&& dimm
->nr_pages
) {
1224 if (n_labels
>= EDAC_MAX_LABELS
) {
1225 e
->enable_per_layer_report
= false;
1229 if (p
!= e
->label
) {
1230 strcpy(p
, OTHER_LABEL
);
1231 p
+= strlen(OTHER_LABEL
);
1233 strcpy(p
, dimm
->label
);
1238 * get csrow/channel of the DIMM, in order to allow
1239 * incrementing the compat API counters
1241 edac_dbg(4, "%s csrows map: (%d,%d)\n",
1242 mci
->csbased
? "rank" : "dimm",
1243 dimm
->csrow
, dimm
->cschannel
);
1246 else if (row
>= 0 && row
!= dimm
->csrow
)
1250 chan
= dimm
->cschannel
;
1251 else if (chan
>= 0 && chan
!= dimm
->cschannel
)
1256 if (!e
->enable_per_layer_report
) {
1257 strcpy(e
->label
, "any memory");
1259 edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row
, chan
);
1261 strcpy(e
->label
, "unknown memory");
1262 if (type
== HW_EVENT_ERR_CORRECTED
) {
1264 mci
->csrows
[row
]->ce_count
+= error_count
;
1266 mci
->csrows
[row
]->channels
[chan
]->ce_count
+= error_count
;
1270 mci
->csrows
[row
]->ue_count
+= error_count
;
1273 /* Fill the RAM location data */
1276 for (i
= 0; i
< mci
->n_layers
; i
++) {
1280 p
+= sprintf(p
, "%s:%d ",
1281 edac_layer_name
[mci
->layers
[i
].type
],
1284 if (p
> e
->location
)
1287 /* Report the error via the trace interface */
1288 grain_bits
= fls_long(e
->grain
) + 1;
1289 trace_mc_event(type
, e
->msg
, e
->label
, e
->error_count
,
1290 mci
->mc_idx
, e
->top_layer
, e
->mid_layer
, e
->low_layer
,
1291 PAGES_TO_MiB(e
->page_frame_number
) | e
->offset_in_page
,
1292 grain_bits
, e
->syndrome
, e
->other_detail
);
1294 edac_raw_mc_handle_error(type
, mci
, e
);
1296 EXPORT_SYMBOL_GPL(edac_mc_handle_error
);