2 * Driver for OHCI 1394 controllers
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 #include <linux/bitops.h>
22 #include <linux/bug.h>
23 #include <linux/compiler.h>
24 #include <linux/delay.h>
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firewire.h>
28 #include <linux/firewire-constants.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
32 #include <linux/kernel.h>
33 #include <linux/list.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/mutex.h>
38 #include <linux/pci.h>
39 #include <linux/pci_ids.h>
40 #include <linux/slab.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/time.h>
44 #include <linux/vmalloc.h>
45 #include <linux/workqueue.h>
47 #include <asm/byteorder.h>
50 #ifdef CONFIG_PPC_PMAC
51 #include <asm/pmac_feature.h>
57 #define ohci_info(ohci, f, args...) dev_info(ohci->card.device, f, ##args)
58 #define ohci_notice(ohci, f, args...) dev_notice(ohci->card.device, f, ##args)
59 #define ohci_err(ohci, f, args...) dev_err(ohci->card.device, f, ##args)
61 #define DESCRIPTOR_OUTPUT_MORE 0
62 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
63 #define DESCRIPTOR_INPUT_MORE (2 << 12)
64 #define DESCRIPTOR_INPUT_LAST (3 << 12)
65 #define DESCRIPTOR_STATUS (1 << 11)
66 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
67 #define DESCRIPTOR_PING (1 << 7)
68 #define DESCRIPTOR_YY (1 << 6)
69 #define DESCRIPTOR_NO_IRQ (0 << 4)
70 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
71 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
72 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
73 #define DESCRIPTOR_WAIT (3 << 0)
75 #define DESCRIPTOR_CMD (0xf << 12)
81 __le32 branch_address
;
83 __le16 transfer_status
;
84 } __attribute__((aligned(16)));
86 #define CONTROL_SET(regs) (regs)
87 #define CONTROL_CLEAR(regs) ((regs) + 4)
88 #define COMMAND_PTR(regs) ((regs) + 12)
89 #define CONTEXT_MATCH(regs) ((regs) + 16)
91 #define AR_BUFFER_SIZE (32*1024)
92 #define AR_BUFFERS_MIN DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
93 /* we need at least two pages for proper list management */
94 #define AR_BUFFERS (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
96 #define MAX_ASYNC_PAYLOAD 4096
97 #define MAX_AR_PACKET_SIZE (16 + MAX_ASYNC_PAYLOAD + 4)
98 #define AR_WRAPAROUND_PAGES DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
101 struct fw_ohci
*ohci
;
102 struct page
*pages
[AR_BUFFERS
];
104 struct descriptor
*descriptors
;
105 dma_addr_t descriptors_bus
;
107 unsigned int last_buffer_index
;
109 struct tasklet_struct tasklet
;
114 typedef int (*descriptor_callback_t
)(struct context
*ctx
,
115 struct descriptor
*d
,
116 struct descriptor
*last
);
119 * A buffer that contains a block of DMA-able coherent memory used for
120 * storing a portion of a DMA descriptor program.
122 struct descriptor_buffer
{
123 struct list_head list
;
124 dma_addr_t buffer_bus
;
127 struct descriptor buffer
[0];
131 struct fw_ohci
*ohci
;
133 int total_allocation
;
139 * List of page-sized buffers for storing DMA descriptors.
140 * Head of list contains buffers in use and tail of list contains
143 struct list_head buffer_list
;
146 * Pointer to a buffer inside buffer_list that contains the tail
147 * end of the current DMA program.
149 struct descriptor_buffer
*buffer_tail
;
152 * The descriptor containing the branch address of the first
153 * descriptor that has not yet been filled by the device.
155 struct descriptor
*last
;
158 * The last descriptor block in the DMA program. It contains the branch
159 * address that must be updated upon appending a new descriptor.
161 struct descriptor
*prev
;
164 descriptor_callback_t callback
;
166 struct tasklet_struct tasklet
;
169 #define IT_HEADER_SY(v) ((v) << 0)
170 #define IT_HEADER_TCODE(v) ((v) << 4)
171 #define IT_HEADER_CHANNEL(v) ((v) << 8)
172 #define IT_HEADER_TAG(v) ((v) << 14)
173 #define IT_HEADER_SPEED(v) ((v) << 16)
174 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
177 struct fw_iso_context base
;
178 struct context context
;
180 size_t header_length
;
181 unsigned long flushing_completions
;
189 #define CONFIG_ROM_SIZE 1024
194 __iomem
char *registers
;
197 int request_generation
; /* for timestamping incoming requests */
199 unsigned int pri_req_max
;
201 bool bus_time_running
;
203 bool csr_state_setclear_abdicate
;
207 * Spinlock for accessing fw_ohci data. Never call out of
208 * this driver with this lock held.
212 struct mutex phy_reg_mutex
;
215 dma_addr_t misc_buffer_bus
;
217 struct ar_context ar_request_ctx
;
218 struct ar_context ar_response_ctx
;
219 struct context at_request_ctx
;
220 struct context at_response_ctx
;
222 u32 it_context_support
;
223 u32 it_context_mask
; /* unoccupied IT contexts */
224 struct iso_context
*it_context_list
;
225 u64 ir_context_channels
; /* unoccupied channels */
226 u32 ir_context_support
;
227 u32 ir_context_mask
; /* unoccupied IR contexts */
228 struct iso_context
*ir_context_list
;
229 u64 mc_channels
; /* channels in use by the multichannel IR context */
233 dma_addr_t config_rom_bus
;
234 __be32
*next_config_rom
;
235 dma_addr_t next_config_rom_bus
;
239 dma_addr_t self_id_bus
;
240 struct work_struct bus_reset_work
;
242 u32 self_id_buffer
[512];
245 static struct workqueue_struct
*selfid_workqueue
;
247 static inline struct fw_ohci
*fw_ohci(struct fw_card
*card
)
249 return container_of(card
, struct fw_ohci
, card
);
252 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
253 #define IR_CONTEXT_BUFFER_FILL 0x80000000
254 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
255 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
256 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
257 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
259 #define CONTEXT_RUN 0x8000
260 #define CONTEXT_WAKE 0x1000
261 #define CONTEXT_DEAD 0x0800
262 #define CONTEXT_ACTIVE 0x0400
264 #define OHCI1394_MAX_AT_REQ_RETRIES 0xf
265 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
266 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
268 #define OHCI1394_REGISTER_SIZE 0x800
269 #define OHCI1394_PCI_HCI_Control 0x40
270 #define SELF_ID_BUF_SIZE 0x800
271 #define OHCI_TCODE_PHY_PACKET 0x0e
272 #define OHCI_VERSION_1_1 0x010010
274 static char ohci_driver_name
[] = KBUILD_MODNAME
;
276 #define PCI_VENDOR_ID_PINNACLE_SYSTEMS 0x11bd
277 #define PCI_DEVICE_ID_AGERE_FW643 0x5901
278 #define PCI_DEVICE_ID_CREATIVE_SB1394 0x4001
279 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
280 #define PCI_DEVICE_ID_TI_TSB12LV22 0x8009
281 #define PCI_DEVICE_ID_TI_TSB12LV26 0x8020
282 #define PCI_DEVICE_ID_TI_TSB82AA2 0x8025
283 #define PCI_DEVICE_ID_VIA_VT630X 0x3044
284 #define PCI_REV_ID_VIA_VT6306 0x46
286 #define QUIRK_CYCLE_TIMER 0x1
287 #define QUIRK_RESET_PACKET 0x2
288 #define QUIRK_BE_HEADERS 0x4
289 #define QUIRK_NO_1394A 0x8
290 #define QUIRK_NO_MSI 0x10
291 #define QUIRK_TI_SLLZ059 0x20
292 #define QUIRK_IR_WAKE 0x40
294 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
295 static const struct {
296 unsigned short vendor
, device
, revision
, flags
;
298 {PCI_VENDOR_ID_AL
, PCI_ANY_ID
, PCI_ANY_ID
,
301 {PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_UNI_N_FW
, PCI_ANY_ID
,
304 {PCI_VENDOR_ID_ATT
, PCI_DEVICE_ID_AGERE_FW643
, 6,
307 {PCI_VENDOR_ID_CREATIVE
, PCI_DEVICE_ID_CREATIVE_SB1394
, PCI_ANY_ID
,
310 {PCI_VENDOR_ID_JMICRON
, PCI_DEVICE_ID_JMICRON_JMB38X_FW
, PCI_ANY_ID
,
313 {PCI_VENDOR_ID_NEC
, PCI_ANY_ID
, PCI_ANY_ID
,
316 {PCI_VENDOR_ID_O2
, PCI_ANY_ID
, PCI_ANY_ID
,
319 {PCI_VENDOR_ID_RICOH
, PCI_ANY_ID
, PCI_ANY_ID
,
320 QUIRK_CYCLE_TIMER
| QUIRK_NO_MSI
},
322 {PCI_VENDOR_ID_TI
, PCI_DEVICE_ID_TI_TSB12LV22
, PCI_ANY_ID
,
323 QUIRK_CYCLE_TIMER
| QUIRK_RESET_PACKET
| QUIRK_NO_1394A
},
325 {PCI_VENDOR_ID_TI
, PCI_DEVICE_ID_TI_TSB12LV26
, PCI_ANY_ID
,
326 QUIRK_RESET_PACKET
| QUIRK_TI_SLLZ059
},
328 {PCI_VENDOR_ID_TI
, PCI_DEVICE_ID_TI_TSB82AA2
, PCI_ANY_ID
,
329 QUIRK_RESET_PACKET
| QUIRK_TI_SLLZ059
},
331 {PCI_VENDOR_ID_TI
, PCI_ANY_ID
, PCI_ANY_ID
,
334 {PCI_VENDOR_ID_VIA
, PCI_DEVICE_ID_VIA_VT630X
, PCI_REV_ID_VIA_VT6306
,
335 QUIRK_CYCLE_TIMER
| QUIRK_IR_WAKE
},
337 {PCI_VENDOR_ID_VIA
, PCI_ANY_ID
, PCI_ANY_ID
,
338 QUIRK_CYCLE_TIMER
| QUIRK_NO_MSI
},
341 /* This overrides anything that was found in ohci_quirks[]. */
342 static int param_quirks
;
343 module_param_named(quirks
, param_quirks
, int, 0644);
344 MODULE_PARM_DESC(quirks
, "Chip quirks (default = 0"
345 ", nonatomic cycle timer = " __stringify(QUIRK_CYCLE_TIMER
)
346 ", reset packet generation = " __stringify(QUIRK_RESET_PACKET
)
347 ", AR/selfID endianness = " __stringify(QUIRK_BE_HEADERS
)
348 ", no 1394a enhancements = " __stringify(QUIRK_NO_1394A
)
349 ", disable MSI = " __stringify(QUIRK_NO_MSI
)
350 ", TI SLLZ059 erratum = " __stringify(QUIRK_TI_SLLZ059
)
351 ", IR wake unreliable = " __stringify(QUIRK_IR_WAKE
)
354 #define OHCI_PARAM_DEBUG_AT_AR 1
355 #define OHCI_PARAM_DEBUG_SELFIDS 2
356 #define OHCI_PARAM_DEBUG_IRQS 4
357 #define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */
359 static int param_debug
;
360 module_param_named(debug
, param_debug
, int, 0644);
361 MODULE_PARM_DESC(debug
, "Verbose logging (default = 0"
362 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR
)
363 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS
)
364 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS
)
365 ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS
)
366 ", or a combination, or all = -1)");
368 static void log_irqs(struct fw_ohci
*ohci
, u32 evt
)
370 if (likely(!(param_debug
&
371 (OHCI_PARAM_DEBUG_IRQS
| OHCI_PARAM_DEBUG_BUSRESETS
))))
374 if (!(param_debug
& OHCI_PARAM_DEBUG_IRQS
) &&
375 !(evt
& OHCI1394_busReset
))
378 ohci_notice(ohci
, "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt
,
379 evt
& OHCI1394_selfIDComplete
? " selfID" : "",
380 evt
& OHCI1394_RQPkt
? " AR_req" : "",
381 evt
& OHCI1394_RSPkt
? " AR_resp" : "",
382 evt
& OHCI1394_reqTxComplete
? " AT_req" : "",
383 evt
& OHCI1394_respTxComplete
? " AT_resp" : "",
384 evt
& OHCI1394_isochRx
? " IR" : "",
385 evt
& OHCI1394_isochTx
? " IT" : "",
386 evt
& OHCI1394_postedWriteErr
? " postedWriteErr" : "",
387 evt
& OHCI1394_cycleTooLong
? " cycleTooLong" : "",
388 evt
& OHCI1394_cycle64Seconds
? " cycle64Seconds" : "",
389 evt
& OHCI1394_cycleInconsistent
? " cycleInconsistent" : "",
390 evt
& OHCI1394_regAccessFail
? " regAccessFail" : "",
391 evt
& OHCI1394_unrecoverableError
? " unrecoverableError" : "",
392 evt
& OHCI1394_busReset
? " busReset" : "",
393 evt
& ~(OHCI1394_selfIDComplete
| OHCI1394_RQPkt
|
394 OHCI1394_RSPkt
| OHCI1394_reqTxComplete
|
395 OHCI1394_respTxComplete
| OHCI1394_isochRx
|
396 OHCI1394_isochTx
| OHCI1394_postedWriteErr
|
397 OHCI1394_cycleTooLong
| OHCI1394_cycle64Seconds
|
398 OHCI1394_cycleInconsistent
|
399 OHCI1394_regAccessFail
| OHCI1394_busReset
)
403 static const char *speed
[] = {
404 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
406 static const char *power
[] = {
407 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
408 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
410 static const char port
[] = { '.', '-', 'p', 'c', };
412 static char _p(u32
*s
, int shift
)
414 return port
[*s
>> shift
& 3];
417 static void log_selfids(struct fw_ohci
*ohci
, int generation
, int self_id_count
)
421 if (likely(!(param_debug
& OHCI_PARAM_DEBUG_SELFIDS
)))
424 ohci_notice(ohci
, "%d selfIDs, generation %d, local node ID %04x\n",
425 self_id_count
, generation
, ohci
->node_id
);
427 for (s
= ohci
->self_id_buffer
; self_id_count
--; ++s
)
428 if ((*s
& 1 << 23) == 0)
430 "selfID 0: %08x, phy %d [%c%c%c] %s gc=%d %s %s%s%s\n",
431 *s
, *s
>> 24 & 63, _p(s
, 6), _p(s
, 4), _p(s
, 2),
432 speed
[*s
>> 14 & 3], *s
>> 16 & 63,
433 power
[*s
>> 8 & 7], *s
>> 22 & 1 ? "L" : "",
434 *s
>> 11 & 1 ? "c" : "", *s
& 2 ? "i" : "");
437 "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
439 _p(s
, 16), _p(s
, 14), _p(s
, 12), _p(s
, 10),
440 _p(s
, 8), _p(s
, 6), _p(s
, 4), _p(s
, 2));
443 static const char *evts
[] = {
444 [0x00] = "evt_no_status", [0x01] = "-reserved-",
445 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
446 [0x04] = "evt_underrun", [0x05] = "evt_overrun",
447 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
448 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
449 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
450 [0x0c] = "-reserved-", [0x0d] = "-reserved-",
451 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
452 [0x10] = "-reserved-", [0x11] = "ack_complete",
453 [0x12] = "ack_pending ", [0x13] = "-reserved-",
454 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
455 [0x16] = "ack_busy_B", [0x17] = "-reserved-",
456 [0x18] = "-reserved-", [0x19] = "-reserved-",
457 [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
458 [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
459 [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
460 [0x20] = "pending/cancelled",
462 static const char *tcodes
[] = {
463 [0x0] = "QW req", [0x1] = "BW req",
464 [0x2] = "W resp", [0x3] = "-reserved-",
465 [0x4] = "QR req", [0x5] = "BR req",
466 [0x6] = "QR resp", [0x7] = "BR resp",
467 [0x8] = "cycle start", [0x9] = "Lk req",
468 [0xa] = "async stream packet", [0xb] = "Lk resp",
469 [0xc] = "-reserved-", [0xd] = "-reserved-",
470 [0xe] = "link internal", [0xf] = "-reserved-",
473 static void log_ar_at_event(struct fw_ohci
*ohci
,
474 char dir
, int speed
, u32
*header
, int evt
)
476 int tcode
= header
[0] >> 4 & 0xf;
479 if (likely(!(param_debug
& OHCI_PARAM_DEBUG_AT_AR
)))
482 if (unlikely(evt
>= ARRAY_SIZE(evts
)))
485 if (evt
== OHCI1394_evt_bus_reset
) {
486 ohci_notice(ohci
, "A%c evt_bus_reset, generation %d\n",
487 dir
, (header
[2] >> 16) & 0xff);
492 case 0x0: case 0x6: case 0x8:
493 snprintf(specific
, sizeof(specific
), " = %08x",
494 be32_to_cpu((__force __be32
)header
[3]));
496 case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
497 snprintf(specific
, sizeof(specific
), " %x,%x",
498 header
[3] >> 16, header
[3] & 0xffff);
506 ohci_notice(ohci
, "A%c %s, %s\n",
507 dir
, evts
[evt
], tcodes
[tcode
]);
510 ohci_notice(ohci
, "A%c %s, PHY %08x %08x\n",
511 dir
, evts
[evt
], header
[1], header
[2]);
513 case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
515 "A%c spd %x tl %02x, %04x -> %04x, %s, %s, %04x%08x%s\n",
516 dir
, speed
, header
[0] >> 10 & 0x3f,
517 header
[1] >> 16, header
[0] >> 16, evts
[evt
],
518 tcodes
[tcode
], header
[1] & 0xffff, header
[2], specific
);
522 "A%c spd %x tl %02x, %04x -> %04x, %s, %s%s\n",
523 dir
, speed
, header
[0] >> 10 & 0x3f,
524 header
[1] >> 16, header
[0] >> 16, evts
[evt
],
525 tcodes
[tcode
], specific
);
529 static inline void reg_write(const struct fw_ohci
*ohci
, int offset
, u32 data
)
531 writel(data
, ohci
->registers
+ offset
);
534 static inline u32
reg_read(const struct fw_ohci
*ohci
, int offset
)
536 return readl(ohci
->registers
+ offset
);
539 static inline void flush_writes(const struct fw_ohci
*ohci
)
541 /* Do a dummy read to flush writes. */
542 reg_read(ohci
, OHCI1394_Version
);
546 * Beware! read_phy_reg(), write_phy_reg(), update_phy_reg(), and
547 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
548 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
549 * directly. Exceptions are intrinsically serialized contexts like pci_probe.
551 static int read_phy_reg(struct fw_ohci
*ohci
, int addr
)
556 reg_write(ohci
, OHCI1394_PhyControl
, OHCI1394_PhyControl_Read(addr
));
557 for (i
= 0; i
< 3 + 100; i
++) {
558 val
= reg_read(ohci
, OHCI1394_PhyControl
);
560 return -ENODEV
; /* Card was ejected. */
562 if (val
& OHCI1394_PhyControl_ReadDone
)
563 return OHCI1394_PhyControl_ReadData(val
);
566 * Try a few times without waiting. Sleeping is necessary
567 * only when the link/PHY interface is busy.
572 ohci_err(ohci
, "failed to read phy reg %d\n", addr
);
578 static int write_phy_reg(const struct fw_ohci
*ohci
, int addr
, u32 val
)
582 reg_write(ohci
, OHCI1394_PhyControl
,
583 OHCI1394_PhyControl_Write(addr
, val
));
584 for (i
= 0; i
< 3 + 100; i
++) {
585 val
= reg_read(ohci
, OHCI1394_PhyControl
);
587 return -ENODEV
; /* Card was ejected. */
589 if (!(val
& OHCI1394_PhyControl_WritePending
))
595 ohci_err(ohci
, "failed to write phy reg %d, val %u\n", addr
, val
);
601 static int update_phy_reg(struct fw_ohci
*ohci
, int addr
,
602 int clear_bits
, int set_bits
)
604 int ret
= read_phy_reg(ohci
, addr
);
609 * The interrupt status bits are cleared by writing a one bit.
610 * Avoid clearing them unless explicitly requested in set_bits.
613 clear_bits
|= PHY_INT_STATUS_BITS
;
615 return write_phy_reg(ohci
, addr
, (ret
& ~clear_bits
) | set_bits
);
618 static int read_paged_phy_reg(struct fw_ohci
*ohci
, int page
, int addr
)
622 ret
= update_phy_reg(ohci
, 7, PHY_PAGE_SELECT
, page
<< 5);
626 return read_phy_reg(ohci
, addr
);
629 static int ohci_read_phy_reg(struct fw_card
*card
, int addr
)
631 struct fw_ohci
*ohci
= fw_ohci(card
);
634 mutex_lock(&ohci
->phy_reg_mutex
);
635 ret
= read_phy_reg(ohci
, addr
);
636 mutex_unlock(&ohci
->phy_reg_mutex
);
641 static int ohci_update_phy_reg(struct fw_card
*card
, int addr
,
642 int clear_bits
, int set_bits
)
644 struct fw_ohci
*ohci
= fw_ohci(card
);
647 mutex_lock(&ohci
->phy_reg_mutex
);
648 ret
= update_phy_reg(ohci
, addr
, clear_bits
, set_bits
);
649 mutex_unlock(&ohci
->phy_reg_mutex
);
654 static inline dma_addr_t
ar_buffer_bus(struct ar_context
*ctx
, unsigned int i
)
656 return page_private(ctx
->pages
[i
]);
659 static void ar_context_link_page(struct ar_context
*ctx
, unsigned int index
)
661 struct descriptor
*d
;
663 d
= &ctx
->descriptors
[index
];
664 d
->branch_address
&= cpu_to_le32(~0xf);
665 d
->res_count
= cpu_to_le16(PAGE_SIZE
);
666 d
->transfer_status
= 0;
668 wmb(); /* finish init of new descriptors before branch_address update */
669 d
= &ctx
->descriptors
[ctx
->last_buffer_index
];
670 d
->branch_address
|= cpu_to_le32(1);
672 ctx
->last_buffer_index
= index
;
674 reg_write(ctx
->ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_WAKE
);
677 static void ar_context_release(struct ar_context
*ctx
)
682 vm_unmap_ram(ctx
->buffer
, AR_BUFFERS
+ AR_WRAPAROUND_PAGES
);
684 for (i
= 0; i
< AR_BUFFERS
; i
++)
686 dma_unmap_page(ctx
->ohci
->card
.device
,
687 ar_buffer_bus(ctx
, i
),
688 PAGE_SIZE
, DMA_FROM_DEVICE
);
689 __free_page(ctx
->pages
[i
]);
693 static void ar_context_abort(struct ar_context
*ctx
, const char *error_msg
)
695 struct fw_ohci
*ohci
= ctx
->ohci
;
697 if (reg_read(ohci
, CONTROL_CLEAR(ctx
->regs
)) & CONTEXT_RUN
) {
698 reg_write(ohci
, CONTROL_CLEAR(ctx
->regs
), CONTEXT_RUN
);
701 ohci_err(ohci
, "AR error: %s; DMA stopped\n", error_msg
);
703 /* FIXME: restart? */
706 static inline unsigned int ar_next_buffer_index(unsigned int index
)
708 return (index
+ 1) % AR_BUFFERS
;
711 static inline unsigned int ar_prev_buffer_index(unsigned int index
)
713 return (index
- 1 + AR_BUFFERS
) % AR_BUFFERS
;
716 static inline unsigned int ar_first_buffer_index(struct ar_context
*ctx
)
718 return ar_next_buffer_index(ctx
->last_buffer_index
);
722 * We search for the buffer that contains the last AR packet DMA data written
725 static unsigned int ar_search_last_active_buffer(struct ar_context
*ctx
,
726 unsigned int *buffer_offset
)
728 unsigned int i
, next_i
, last
= ctx
->last_buffer_index
;
729 __le16 res_count
, next_res_count
;
731 i
= ar_first_buffer_index(ctx
);
732 res_count
= ACCESS_ONCE(ctx
->descriptors
[i
].res_count
);
734 /* A buffer that is not yet completely filled must be the last one. */
735 while (i
!= last
&& res_count
== 0) {
737 /* Peek at the next descriptor. */
738 next_i
= ar_next_buffer_index(i
);
739 rmb(); /* read descriptors in order */
740 next_res_count
= ACCESS_ONCE(
741 ctx
->descriptors
[next_i
].res_count
);
743 * If the next descriptor is still empty, we must stop at this
746 if (next_res_count
== cpu_to_le16(PAGE_SIZE
)) {
748 * The exception is when the DMA data for one packet is
749 * split over three buffers; in this case, the middle
750 * buffer's descriptor might be never updated by the
751 * controller and look still empty, and we have to peek
754 if (MAX_AR_PACKET_SIZE
> PAGE_SIZE
&& i
!= last
) {
755 next_i
= ar_next_buffer_index(next_i
);
757 next_res_count
= ACCESS_ONCE(
758 ctx
->descriptors
[next_i
].res_count
);
759 if (next_res_count
!= cpu_to_le16(PAGE_SIZE
))
760 goto next_buffer_is_active
;
766 next_buffer_is_active
:
768 res_count
= next_res_count
;
771 rmb(); /* read res_count before the DMA data */
773 *buffer_offset
= PAGE_SIZE
- le16_to_cpu(res_count
);
774 if (*buffer_offset
> PAGE_SIZE
) {
776 ar_context_abort(ctx
, "corrupted descriptor");
782 static void ar_sync_buffers_for_cpu(struct ar_context
*ctx
,
783 unsigned int end_buffer_index
,
784 unsigned int end_buffer_offset
)
788 i
= ar_first_buffer_index(ctx
);
789 while (i
!= end_buffer_index
) {
790 dma_sync_single_for_cpu(ctx
->ohci
->card
.device
,
791 ar_buffer_bus(ctx
, i
),
792 PAGE_SIZE
, DMA_FROM_DEVICE
);
793 i
= ar_next_buffer_index(i
);
795 if (end_buffer_offset
> 0)
796 dma_sync_single_for_cpu(ctx
->ohci
->card
.device
,
797 ar_buffer_bus(ctx
, i
),
798 end_buffer_offset
, DMA_FROM_DEVICE
);
801 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
802 #define cond_le32_to_cpu(v) \
803 (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
805 #define cond_le32_to_cpu(v) le32_to_cpu(v)
808 static __le32
*handle_ar_packet(struct ar_context
*ctx
, __le32
*buffer
)
810 struct fw_ohci
*ohci
= ctx
->ohci
;
812 u32 status
, length
, tcode
;
815 p
.header
[0] = cond_le32_to_cpu(buffer
[0]);
816 p
.header
[1] = cond_le32_to_cpu(buffer
[1]);
817 p
.header
[2] = cond_le32_to_cpu(buffer
[2]);
819 tcode
= (p
.header
[0] >> 4) & 0x0f;
821 case TCODE_WRITE_QUADLET_REQUEST
:
822 case TCODE_READ_QUADLET_RESPONSE
:
823 p
.header
[3] = (__force __u32
) buffer
[3];
824 p
.header_length
= 16;
825 p
.payload_length
= 0;
828 case TCODE_READ_BLOCK_REQUEST
:
829 p
.header
[3] = cond_le32_to_cpu(buffer
[3]);
830 p
.header_length
= 16;
831 p
.payload_length
= 0;
834 case TCODE_WRITE_BLOCK_REQUEST
:
835 case TCODE_READ_BLOCK_RESPONSE
:
836 case TCODE_LOCK_REQUEST
:
837 case TCODE_LOCK_RESPONSE
:
838 p
.header
[3] = cond_le32_to_cpu(buffer
[3]);
839 p
.header_length
= 16;
840 p
.payload_length
= p
.header
[3] >> 16;
841 if (p
.payload_length
> MAX_ASYNC_PAYLOAD
) {
842 ar_context_abort(ctx
, "invalid packet length");
847 case TCODE_WRITE_RESPONSE
:
848 case TCODE_READ_QUADLET_REQUEST
:
849 case OHCI_TCODE_PHY_PACKET
:
850 p
.header_length
= 12;
851 p
.payload_length
= 0;
855 ar_context_abort(ctx
, "invalid tcode");
859 p
.payload
= (void *) buffer
+ p
.header_length
;
861 /* FIXME: What to do about evt_* errors? */
862 length
= (p
.header_length
+ p
.payload_length
+ 3) / 4;
863 status
= cond_le32_to_cpu(buffer
[length
]);
864 evt
= (status
>> 16) & 0x1f;
867 p
.speed
= (status
>> 21) & 0x7;
868 p
.timestamp
= status
& 0xffff;
869 p
.generation
= ohci
->request_generation
;
871 log_ar_at_event(ohci
, 'R', p
.speed
, p
.header
, evt
);
874 * Several controllers, notably from NEC and VIA, forget to
875 * write ack_complete status at PHY packet reception.
877 if (evt
== OHCI1394_evt_no_status
&&
878 (p
.header
[0] & 0xff) == (OHCI1394_phy_tcode
<< 4))
879 p
.ack
= ACK_COMPLETE
;
882 * The OHCI bus reset handler synthesizes a PHY packet with
883 * the new generation number when a bus reset happens (see
884 * section 8.4.2.3). This helps us determine when a request
885 * was received and make sure we send the response in the same
886 * generation. We only need this for requests; for responses
887 * we use the unique tlabel for finding the matching
890 * Alas some chips sometimes emit bus reset packets with a
891 * wrong generation. We set the correct generation for these
892 * at a slightly incorrect time (in bus_reset_work).
894 if (evt
== OHCI1394_evt_bus_reset
) {
895 if (!(ohci
->quirks
& QUIRK_RESET_PACKET
))
896 ohci
->request_generation
= (p
.header
[2] >> 16) & 0xff;
897 } else if (ctx
== &ohci
->ar_request_ctx
) {
898 fw_core_handle_request(&ohci
->card
, &p
);
900 fw_core_handle_response(&ohci
->card
, &p
);
903 return buffer
+ length
+ 1;
906 static void *handle_ar_packets(struct ar_context
*ctx
, void *p
, void *end
)
911 next
= handle_ar_packet(ctx
, p
);
920 static void ar_recycle_buffers(struct ar_context
*ctx
, unsigned int end_buffer
)
924 i
= ar_first_buffer_index(ctx
);
925 while (i
!= end_buffer
) {
926 dma_sync_single_for_device(ctx
->ohci
->card
.device
,
927 ar_buffer_bus(ctx
, i
),
928 PAGE_SIZE
, DMA_FROM_DEVICE
);
929 ar_context_link_page(ctx
, i
);
930 i
= ar_next_buffer_index(i
);
934 static void ar_context_tasklet(unsigned long data
)
936 struct ar_context
*ctx
= (struct ar_context
*)data
;
937 unsigned int end_buffer_index
, end_buffer_offset
;
944 end_buffer_index
= ar_search_last_active_buffer(ctx
,
946 ar_sync_buffers_for_cpu(ctx
, end_buffer_index
, end_buffer_offset
);
947 end
= ctx
->buffer
+ end_buffer_index
* PAGE_SIZE
+ end_buffer_offset
;
949 if (end_buffer_index
< ar_first_buffer_index(ctx
)) {
951 * The filled part of the overall buffer wraps around; handle
952 * all packets up to the buffer end here. If the last packet
953 * wraps around, its tail will be visible after the buffer end
954 * because the buffer start pages are mapped there again.
956 void *buffer_end
= ctx
->buffer
+ AR_BUFFERS
* PAGE_SIZE
;
957 p
= handle_ar_packets(ctx
, p
, buffer_end
);
960 /* adjust p to point back into the actual buffer */
961 p
-= AR_BUFFERS
* PAGE_SIZE
;
964 p
= handle_ar_packets(ctx
, p
, end
);
967 ar_context_abort(ctx
, "inconsistent descriptor");
972 ar_recycle_buffers(ctx
, end_buffer_index
);
980 static int ar_context_init(struct ar_context
*ctx
, struct fw_ohci
*ohci
,
981 unsigned int descriptors_offset
, u32 regs
)
985 struct page
*pages
[AR_BUFFERS
+ AR_WRAPAROUND_PAGES
];
986 struct descriptor
*d
;
990 tasklet_init(&ctx
->tasklet
, ar_context_tasklet
, (unsigned long)ctx
);
992 for (i
= 0; i
< AR_BUFFERS
; i
++) {
993 ctx
->pages
[i
] = alloc_page(GFP_KERNEL
| GFP_DMA32
);
996 dma_addr
= dma_map_page(ohci
->card
.device
, ctx
->pages
[i
],
997 0, PAGE_SIZE
, DMA_FROM_DEVICE
);
998 if (dma_mapping_error(ohci
->card
.device
, dma_addr
)) {
999 __free_page(ctx
->pages
[i
]);
1000 ctx
->pages
[i
] = NULL
;
1003 set_page_private(ctx
->pages
[i
], dma_addr
);
1006 for (i
= 0; i
< AR_BUFFERS
; i
++)
1007 pages
[i
] = ctx
->pages
[i
];
1008 for (i
= 0; i
< AR_WRAPAROUND_PAGES
; i
++)
1009 pages
[AR_BUFFERS
+ i
] = ctx
->pages
[i
];
1010 ctx
->buffer
= vm_map_ram(pages
, AR_BUFFERS
+ AR_WRAPAROUND_PAGES
,
1015 ctx
->descriptors
= ohci
->misc_buffer
+ descriptors_offset
;
1016 ctx
->descriptors_bus
= ohci
->misc_buffer_bus
+ descriptors_offset
;
1018 for (i
= 0; i
< AR_BUFFERS
; i
++) {
1019 d
= &ctx
->descriptors
[i
];
1020 d
->req_count
= cpu_to_le16(PAGE_SIZE
);
1021 d
->control
= cpu_to_le16(DESCRIPTOR_INPUT_MORE
|
1023 DESCRIPTOR_BRANCH_ALWAYS
);
1024 d
->data_address
= cpu_to_le32(ar_buffer_bus(ctx
, i
));
1025 d
->branch_address
= cpu_to_le32(ctx
->descriptors_bus
+
1026 ar_next_buffer_index(i
) * sizeof(struct descriptor
));
1032 ar_context_release(ctx
);
1037 static void ar_context_run(struct ar_context
*ctx
)
1041 for (i
= 0; i
< AR_BUFFERS
; i
++)
1042 ar_context_link_page(ctx
, i
);
1044 ctx
->pointer
= ctx
->buffer
;
1046 reg_write(ctx
->ohci
, COMMAND_PTR(ctx
->regs
), ctx
->descriptors_bus
| 1);
1047 reg_write(ctx
->ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_RUN
);
1050 static struct descriptor
*find_branch_descriptor(struct descriptor
*d
, int z
)
1054 branch
= d
->control
& cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS
);
1056 /* figure out which descriptor the branch address goes in */
1057 if (z
== 2 && branch
== cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS
))
1063 static void context_tasklet(unsigned long data
)
1065 struct context
*ctx
= (struct context
*) data
;
1066 struct descriptor
*d
, *last
;
1069 struct descriptor_buffer
*desc
;
1071 desc
= list_entry(ctx
->buffer_list
.next
,
1072 struct descriptor_buffer
, list
);
1074 while (last
->branch_address
!= 0) {
1075 struct descriptor_buffer
*old_desc
= desc
;
1076 address
= le32_to_cpu(last
->branch_address
);
1079 ctx
->current_bus
= address
;
1081 /* If the branch address points to a buffer outside of the
1082 * current buffer, advance to the next buffer. */
1083 if (address
< desc
->buffer_bus
||
1084 address
>= desc
->buffer_bus
+ desc
->used
)
1085 desc
= list_entry(desc
->list
.next
,
1086 struct descriptor_buffer
, list
);
1087 d
= desc
->buffer
+ (address
- desc
->buffer_bus
) / sizeof(*d
);
1088 last
= find_branch_descriptor(d
, z
);
1090 if (!ctx
->callback(ctx
, d
, last
))
1093 if (old_desc
!= desc
) {
1094 /* If we've advanced to the next buffer, move the
1095 * previous buffer to the free list. */
1096 unsigned long flags
;
1098 spin_lock_irqsave(&ctx
->ohci
->lock
, flags
);
1099 list_move_tail(&old_desc
->list
, &ctx
->buffer_list
);
1100 spin_unlock_irqrestore(&ctx
->ohci
->lock
, flags
);
1107 * Allocate a new buffer and add it to the list of free buffers for this
1108 * context. Must be called with ohci->lock held.
1110 static int context_add_buffer(struct context
*ctx
)
1112 struct descriptor_buffer
*desc
;
1113 dma_addr_t
uninitialized_var(bus_addr
);
1117 * 16MB of descriptors should be far more than enough for any DMA
1118 * program. This will catch run-away userspace or DoS attacks.
1120 if (ctx
->total_allocation
>= 16*1024*1024)
1123 desc
= dma_alloc_coherent(ctx
->ohci
->card
.device
, PAGE_SIZE
,
1124 &bus_addr
, GFP_ATOMIC
);
1128 offset
= (void *)&desc
->buffer
- (void *)desc
;
1129 desc
->buffer_size
= PAGE_SIZE
- offset
;
1130 desc
->buffer_bus
= bus_addr
+ offset
;
1133 list_add_tail(&desc
->list
, &ctx
->buffer_list
);
1134 ctx
->total_allocation
+= PAGE_SIZE
;
1139 static int context_init(struct context
*ctx
, struct fw_ohci
*ohci
,
1140 u32 regs
, descriptor_callback_t callback
)
1144 ctx
->total_allocation
= 0;
1146 INIT_LIST_HEAD(&ctx
->buffer_list
);
1147 if (context_add_buffer(ctx
) < 0)
1150 ctx
->buffer_tail
= list_entry(ctx
->buffer_list
.next
,
1151 struct descriptor_buffer
, list
);
1153 tasklet_init(&ctx
->tasklet
, context_tasklet
, (unsigned long)ctx
);
1154 ctx
->callback
= callback
;
1157 * We put a dummy descriptor in the buffer that has a NULL
1158 * branch address and looks like it's been sent. That way we
1159 * have a descriptor to append DMA programs to.
1161 memset(ctx
->buffer_tail
->buffer
, 0, sizeof(*ctx
->buffer_tail
->buffer
));
1162 ctx
->buffer_tail
->buffer
->control
= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST
);
1163 ctx
->buffer_tail
->buffer
->transfer_status
= cpu_to_le16(0x8011);
1164 ctx
->buffer_tail
->used
+= sizeof(*ctx
->buffer_tail
->buffer
);
1165 ctx
->last
= ctx
->buffer_tail
->buffer
;
1166 ctx
->prev
= ctx
->buffer_tail
->buffer
;
1172 static void context_release(struct context
*ctx
)
1174 struct fw_card
*card
= &ctx
->ohci
->card
;
1175 struct descriptor_buffer
*desc
, *tmp
;
1177 list_for_each_entry_safe(desc
, tmp
, &ctx
->buffer_list
, list
)
1178 dma_free_coherent(card
->device
, PAGE_SIZE
, desc
,
1180 ((void *)&desc
->buffer
- (void *)desc
));
1183 /* Must be called with ohci->lock held */
1184 static struct descriptor
*context_get_descriptors(struct context
*ctx
,
1185 int z
, dma_addr_t
*d_bus
)
1187 struct descriptor
*d
= NULL
;
1188 struct descriptor_buffer
*desc
= ctx
->buffer_tail
;
1190 if (z
* sizeof(*d
) > desc
->buffer_size
)
1193 if (z
* sizeof(*d
) > desc
->buffer_size
- desc
->used
) {
1194 /* No room for the descriptor in this buffer, so advance to the
1197 if (desc
->list
.next
== &ctx
->buffer_list
) {
1198 /* If there is no free buffer next in the list,
1200 if (context_add_buffer(ctx
) < 0)
1203 desc
= list_entry(desc
->list
.next
,
1204 struct descriptor_buffer
, list
);
1205 ctx
->buffer_tail
= desc
;
1208 d
= desc
->buffer
+ desc
->used
/ sizeof(*d
);
1209 memset(d
, 0, z
* sizeof(*d
));
1210 *d_bus
= desc
->buffer_bus
+ desc
->used
;
1215 static void context_run(struct context
*ctx
, u32 extra
)
1217 struct fw_ohci
*ohci
= ctx
->ohci
;
1219 reg_write(ohci
, COMMAND_PTR(ctx
->regs
),
1220 le32_to_cpu(ctx
->last
->branch_address
));
1221 reg_write(ohci
, CONTROL_CLEAR(ctx
->regs
), ~0);
1222 reg_write(ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_RUN
| extra
);
1223 ctx
->running
= true;
1227 static void context_append(struct context
*ctx
,
1228 struct descriptor
*d
, int z
, int extra
)
1231 struct descriptor_buffer
*desc
= ctx
->buffer_tail
;
1232 struct descriptor
*d_branch
;
1234 d_bus
= desc
->buffer_bus
+ (d
- desc
->buffer
) * sizeof(*d
);
1236 desc
->used
+= (z
+ extra
) * sizeof(*d
);
1238 wmb(); /* finish init of new descriptors before branch_address update */
1240 d_branch
= find_branch_descriptor(ctx
->prev
, ctx
->prev_z
);
1241 d_branch
->branch_address
= cpu_to_le32(d_bus
| z
);
1244 * VT6306 incorrectly checks only the single descriptor at the
1245 * CommandPtr when the wake bit is written, so if it's a
1246 * multi-descriptor block starting with an INPUT_MORE, put a copy of
1247 * the branch address in the first descriptor.
1249 * Not doing this for transmit contexts since not sure how it interacts
1250 * with skip addresses.
1252 if (unlikely(ctx
->ohci
->quirks
& QUIRK_IR_WAKE
) &&
1253 d_branch
!= ctx
->prev
&&
1254 (ctx
->prev
->control
& cpu_to_le16(DESCRIPTOR_CMD
)) ==
1255 cpu_to_le16(DESCRIPTOR_INPUT_MORE
)) {
1256 ctx
->prev
->branch_address
= cpu_to_le32(d_bus
| z
);
1263 static void context_stop(struct context
*ctx
)
1265 struct fw_ohci
*ohci
= ctx
->ohci
;
1269 reg_write(ohci
, CONTROL_CLEAR(ctx
->regs
), CONTEXT_RUN
);
1270 ctx
->running
= false;
1272 for (i
= 0; i
< 1000; i
++) {
1273 reg
= reg_read(ohci
, CONTROL_SET(ctx
->regs
));
1274 if ((reg
& CONTEXT_ACTIVE
) == 0)
1280 ohci_err(ohci
, "DMA context still active (0x%08x)\n", reg
);
1283 struct driver_data
{
1285 struct fw_packet
*packet
;
1289 * This function apppends a packet to the DMA queue for transmission.
1290 * Must always be called with the ochi->lock held to ensure proper
1291 * generation handling and locking around packet queue manipulation.
1293 static int at_context_queue_packet(struct context
*ctx
,
1294 struct fw_packet
*packet
)
1296 struct fw_ohci
*ohci
= ctx
->ohci
;
1297 dma_addr_t d_bus
, uninitialized_var(payload_bus
);
1298 struct driver_data
*driver_data
;
1299 struct descriptor
*d
, *last
;
1303 d
= context_get_descriptors(ctx
, 4, &d_bus
);
1305 packet
->ack
= RCODE_SEND_ERROR
;
1309 d
[0].control
= cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE
);
1310 d
[0].res_count
= cpu_to_le16(packet
->timestamp
);
1313 * The DMA format for asynchronous link packets is different
1314 * from the IEEE1394 layout, so shift the fields around
1318 tcode
= (packet
->header
[0] >> 4) & 0x0f;
1319 header
= (__le32
*) &d
[1];
1321 case TCODE_WRITE_QUADLET_REQUEST
:
1322 case TCODE_WRITE_BLOCK_REQUEST
:
1323 case TCODE_WRITE_RESPONSE
:
1324 case TCODE_READ_QUADLET_REQUEST
:
1325 case TCODE_READ_BLOCK_REQUEST
:
1326 case TCODE_READ_QUADLET_RESPONSE
:
1327 case TCODE_READ_BLOCK_RESPONSE
:
1328 case TCODE_LOCK_REQUEST
:
1329 case TCODE_LOCK_RESPONSE
:
1330 header
[0] = cpu_to_le32((packet
->header
[0] & 0xffff) |
1331 (packet
->speed
<< 16));
1332 header
[1] = cpu_to_le32((packet
->header
[1] & 0xffff) |
1333 (packet
->header
[0] & 0xffff0000));
1334 header
[2] = cpu_to_le32(packet
->header
[2]);
1336 if (TCODE_IS_BLOCK_PACKET(tcode
))
1337 header
[3] = cpu_to_le32(packet
->header
[3]);
1339 header
[3] = (__force __le32
) packet
->header
[3];
1341 d
[0].req_count
= cpu_to_le16(packet
->header_length
);
1344 case TCODE_LINK_INTERNAL
:
1345 header
[0] = cpu_to_le32((OHCI1394_phy_tcode
<< 4) |
1346 (packet
->speed
<< 16));
1347 header
[1] = cpu_to_le32(packet
->header
[1]);
1348 header
[2] = cpu_to_le32(packet
->header
[2]);
1349 d
[0].req_count
= cpu_to_le16(12);
1351 if (is_ping_packet(&packet
->header
[1]))
1352 d
[0].control
|= cpu_to_le16(DESCRIPTOR_PING
);
1355 case TCODE_STREAM_DATA
:
1356 header
[0] = cpu_to_le32((packet
->header
[0] & 0xffff) |
1357 (packet
->speed
<< 16));
1358 header
[1] = cpu_to_le32(packet
->header
[0] & 0xffff0000);
1359 d
[0].req_count
= cpu_to_le16(8);
1364 packet
->ack
= RCODE_SEND_ERROR
;
1368 BUILD_BUG_ON(sizeof(struct driver_data
) > sizeof(struct descriptor
));
1369 driver_data
= (struct driver_data
*) &d
[3];
1370 driver_data
->packet
= packet
;
1371 packet
->driver_data
= driver_data
;
1373 if (packet
->payload_length
> 0) {
1374 if (packet
->payload_length
> sizeof(driver_data
->inline_data
)) {
1375 payload_bus
= dma_map_single(ohci
->card
.device
,
1377 packet
->payload_length
,
1379 if (dma_mapping_error(ohci
->card
.device
, payload_bus
)) {
1380 packet
->ack
= RCODE_SEND_ERROR
;
1383 packet
->payload_bus
= payload_bus
;
1384 packet
->payload_mapped
= true;
1386 memcpy(driver_data
->inline_data
, packet
->payload
,
1387 packet
->payload_length
);
1388 payload_bus
= d_bus
+ 3 * sizeof(*d
);
1391 d
[2].req_count
= cpu_to_le16(packet
->payload_length
);
1392 d
[2].data_address
= cpu_to_le32(payload_bus
);
1400 last
->control
|= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST
|
1401 DESCRIPTOR_IRQ_ALWAYS
|
1402 DESCRIPTOR_BRANCH_ALWAYS
);
1404 /* FIXME: Document how the locking works. */
1405 if (ohci
->generation
!= packet
->generation
) {
1406 if (packet
->payload_mapped
)
1407 dma_unmap_single(ohci
->card
.device
, payload_bus
,
1408 packet
->payload_length
, DMA_TO_DEVICE
);
1409 packet
->ack
= RCODE_GENERATION
;
1413 context_append(ctx
, d
, z
, 4 - z
);
1416 reg_write(ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_WAKE
);
1418 context_run(ctx
, 0);
1423 static void at_context_flush(struct context
*ctx
)
1425 tasklet_disable(&ctx
->tasklet
);
1427 ctx
->flushing
= true;
1428 context_tasklet((unsigned long)ctx
);
1429 ctx
->flushing
= false;
1431 tasklet_enable(&ctx
->tasklet
);
1434 static int handle_at_packet(struct context
*context
,
1435 struct descriptor
*d
,
1436 struct descriptor
*last
)
1438 struct driver_data
*driver_data
;
1439 struct fw_packet
*packet
;
1440 struct fw_ohci
*ohci
= context
->ohci
;
1443 if (last
->transfer_status
== 0 && !context
->flushing
)
1444 /* This descriptor isn't done yet, stop iteration. */
1447 driver_data
= (struct driver_data
*) &d
[3];
1448 packet
= driver_data
->packet
;
1450 /* This packet was cancelled, just continue. */
1453 if (packet
->payload_mapped
)
1454 dma_unmap_single(ohci
->card
.device
, packet
->payload_bus
,
1455 packet
->payload_length
, DMA_TO_DEVICE
);
1457 evt
= le16_to_cpu(last
->transfer_status
) & 0x1f;
1458 packet
->timestamp
= le16_to_cpu(last
->res_count
);
1460 log_ar_at_event(ohci
, 'T', packet
->speed
, packet
->header
, evt
);
1463 case OHCI1394_evt_timeout
:
1464 /* Async response transmit timed out. */
1465 packet
->ack
= RCODE_CANCELLED
;
1468 case OHCI1394_evt_flushed
:
1470 * The packet was flushed should give same error as
1471 * when we try to use a stale generation count.
1473 packet
->ack
= RCODE_GENERATION
;
1476 case OHCI1394_evt_missing_ack
:
1477 if (context
->flushing
)
1478 packet
->ack
= RCODE_GENERATION
;
1481 * Using a valid (current) generation count, but the
1482 * node is not on the bus or not sending acks.
1484 packet
->ack
= RCODE_NO_ACK
;
1488 case ACK_COMPLETE
+ 0x10:
1489 case ACK_PENDING
+ 0x10:
1490 case ACK_BUSY_X
+ 0x10:
1491 case ACK_BUSY_A
+ 0x10:
1492 case ACK_BUSY_B
+ 0x10:
1493 case ACK_DATA_ERROR
+ 0x10:
1494 case ACK_TYPE_ERROR
+ 0x10:
1495 packet
->ack
= evt
- 0x10;
1498 case OHCI1394_evt_no_status
:
1499 if (context
->flushing
) {
1500 packet
->ack
= RCODE_GENERATION
;
1506 packet
->ack
= RCODE_SEND_ERROR
;
1510 packet
->callback(packet
, &ohci
->card
, packet
->ack
);
1515 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
1516 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
1517 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
1518 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
1519 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
1521 static void handle_local_rom(struct fw_ohci
*ohci
,
1522 struct fw_packet
*packet
, u32 csr
)
1524 struct fw_packet response
;
1525 int tcode
, length
, i
;
1527 tcode
= HEADER_GET_TCODE(packet
->header
[0]);
1528 if (TCODE_IS_BLOCK_PACKET(tcode
))
1529 length
= HEADER_GET_DATA_LENGTH(packet
->header
[3]);
1533 i
= csr
- CSR_CONFIG_ROM
;
1534 if (i
+ length
> CONFIG_ROM_SIZE
) {
1535 fw_fill_response(&response
, packet
->header
,
1536 RCODE_ADDRESS_ERROR
, NULL
, 0);
1537 } else if (!TCODE_IS_READ_REQUEST(tcode
)) {
1538 fw_fill_response(&response
, packet
->header
,
1539 RCODE_TYPE_ERROR
, NULL
, 0);
1541 fw_fill_response(&response
, packet
->header
, RCODE_COMPLETE
,
1542 (void *) ohci
->config_rom
+ i
, length
);
1545 fw_core_handle_response(&ohci
->card
, &response
);
1548 static void handle_local_lock(struct fw_ohci
*ohci
,
1549 struct fw_packet
*packet
, u32 csr
)
1551 struct fw_packet response
;
1552 int tcode
, length
, ext_tcode
, sel
, try;
1553 __be32
*payload
, lock_old
;
1554 u32 lock_arg
, lock_data
;
1556 tcode
= HEADER_GET_TCODE(packet
->header
[0]);
1557 length
= HEADER_GET_DATA_LENGTH(packet
->header
[3]);
1558 payload
= packet
->payload
;
1559 ext_tcode
= HEADER_GET_EXTENDED_TCODE(packet
->header
[3]);
1561 if (tcode
== TCODE_LOCK_REQUEST
&&
1562 ext_tcode
== EXTCODE_COMPARE_SWAP
&& length
== 8) {
1563 lock_arg
= be32_to_cpu(payload
[0]);
1564 lock_data
= be32_to_cpu(payload
[1]);
1565 } else if (tcode
== TCODE_READ_QUADLET_REQUEST
) {
1569 fw_fill_response(&response
, packet
->header
,
1570 RCODE_TYPE_ERROR
, NULL
, 0);
1574 sel
= (csr
- CSR_BUS_MANAGER_ID
) / 4;
1575 reg_write(ohci
, OHCI1394_CSRData
, lock_data
);
1576 reg_write(ohci
, OHCI1394_CSRCompareData
, lock_arg
);
1577 reg_write(ohci
, OHCI1394_CSRControl
, sel
);
1579 for (try = 0; try < 20; try++)
1580 if (reg_read(ohci
, OHCI1394_CSRControl
) & 0x80000000) {
1581 lock_old
= cpu_to_be32(reg_read(ohci
,
1583 fw_fill_response(&response
, packet
->header
,
1585 &lock_old
, sizeof(lock_old
));
1589 ohci_err(ohci
, "swap not done (CSR lock timeout)\n");
1590 fw_fill_response(&response
, packet
->header
, RCODE_BUSY
, NULL
, 0);
1593 fw_core_handle_response(&ohci
->card
, &response
);
1596 static void handle_local_request(struct context
*ctx
, struct fw_packet
*packet
)
1600 if (ctx
== &ctx
->ohci
->at_request_ctx
) {
1601 packet
->ack
= ACK_PENDING
;
1602 packet
->callback(packet
, &ctx
->ohci
->card
, packet
->ack
);
1606 ((unsigned long long)
1607 HEADER_GET_OFFSET_HIGH(packet
->header
[1]) << 32) |
1609 csr
= offset
- CSR_REGISTER_BASE
;
1611 /* Handle config rom reads. */
1612 if (csr
>= CSR_CONFIG_ROM
&& csr
< CSR_CONFIG_ROM_END
)
1613 handle_local_rom(ctx
->ohci
, packet
, csr
);
1615 case CSR_BUS_MANAGER_ID
:
1616 case CSR_BANDWIDTH_AVAILABLE
:
1617 case CSR_CHANNELS_AVAILABLE_HI
:
1618 case CSR_CHANNELS_AVAILABLE_LO
:
1619 handle_local_lock(ctx
->ohci
, packet
, csr
);
1622 if (ctx
== &ctx
->ohci
->at_request_ctx
)
1623 fw_core_handle_request(&ctx
->ohci
->card
, packet
);
1625 fw_core_handle_response(&ctx
->ohci
->card
, packet
);
1629 if (ctx
== &ctx
->ohci
->at_response_ctx
) {
1630 packet
->ack
= ACK_COMPLETE
;
1631 packet
->callback(packet
, &ctx
->ohci
->card
, packet
->ack
);
1635 static void at_context_transmit(struct context
*ctx
, struct fw_packet
*packet
)
1637 unsigned long flags
;
1640 spin_lock_irqsave(&ctx
->ohci
->lock
, flags
);
1642 if (HEADER_GET_DESTINATION(packet
->header
[0]) == ctx
->ohci
->node_id
&&
1643 ctx
->ohci
->generation
== packet
->generation
) {
1644 spin_unlock_irqrestore(&ctx
->ohci
->lock
, flags
);
1645 handle_local_request(ctx
, packet
);
1649 ret
= at_context_queue_packet(ctx
, packet
);
1650 spin_unlock_irqrestore(&ctx
->ohci
->lock
, flags
);
1653 packet
->callback(packet
, &ctx
->ohci
->card
, packet
->ack
);
1657 static void detect_dead_context(struct fw_ohci
*ohci
,
1658 const char *name
, unsigned int regs
)
1662 ctl
= reg_read(ohci
, CONTROL_SET(regs
));
1663 if (ctl
& CONTEXT_DEAD
)
1664 ohci_err(ohci
, "DMA context %s has stopped, error code: %s\n",
1665 name
, evts
[ctl
& 0x1f]);
1668 static void handle_dead_contexts(struct fw_ohci
*ohci
)
1673 detect_dead_context(ohci
, "ATReq", OHCI1394_AsReqTrContextBase
);
1674 detect_dead_context(ohci
, "ATRsp", OHCI1394_AsRspTrContextBase
);
1675 detect_dead_context(ohci
, "ARReq", OHCI1394_AsReqRcvContextBase
);
1676 detect_dead_context(ohci
, "ARRsp", OHCI1394_AsRspRcvContextBase
);
1677 for (i
= 0; i
< 32; ++i
) {
1678 if (!(ohci
->it_context_support
& (1 << i
)))
1680 sprintf(name
, "IT%u", i
);
1681 detect_dead_context(ohci
, name
, OHCI1394_IsoXmitContextBase(i
));
1683 for (i
= 0; i
< 32; ++i
) {
1684 if (!(ohci
->ir_context_support
& (1 << i
)))
1686 sprintf(name
, "IR%u", i
);
1687 detect_dead_context(ohci
, name
, OHCI1394_IsoRcvContextBase(i
));
1689 /* TODO: maybe try to flush and restart the dead contexts */
1692 static u32
cycle_timer_ticks(u32 cycle_timer
)
1696 ticks
= cycle_timer
& 0xfff;
1697 ticks
+= 3072 * ((cycle_timer
>> 12) & 0x1fff);
1698 ticks
+= (3072 * 8000) * (cycle_timer
>> 25);
1704 * Some controllers exhibit one or more of the following bugs when updating the
1705 * iso cycle timer register:
1706 * - When the lowest six bits are wrapping around to zero, a read that happens
1707 * at the same time will return garbage in the lowest ten bits.
1708 * - When the cycleOffset field wraps around to zero, the cycleCount field is
1709 * not incremented for about 60 ns.
1710 * - Occasionally, the entire register reads zero.
1712 * To catch these, we read the register three times and ensure that the
1713 * difference between each two consecutive reads is approximately the same, i.e.
1714 * less than twice the other. Furthermore, any negative difference indicates an
1715 * error. (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1716 * execute, so we have enough precision to compute the ratio of the differences.)
1718 static u32
get_cycle_time(struct fw_ohci
*ohci
)
1725 c2
= reg_read(ohci
, OHCI1394_IsochronousCycleTimer
);
1727 if (ohci
->quirks
& QUIRK_CYCLE_TIMER
) {
1730 c2
= reg_read(ohci
, OHCI1394_IsochronousCycleTimer
);
1734 c2
= reg_read(ohci
, OHCI1394_IsochronousCycleTimer
);
1735 t0
= cycle_timer_ticks(c0
);
1736 t1
= cycle_timer_ticks(c1
);
1737 t2
= cycle_timer_ticks(c2
);
1740 } while ((diff01
<= 0 || diff12
<= 0 ||
1741 diff01
/ diff12
>= 2 || diff12
/ diff01
>= 2)
1749 * This function has to be called at least every 64 seconds. The bus_time
1750 * field stores not only the upper 25 bits of the BUS_TIME register but also
1751 * the most significant bit of the cycle timer in bit 6 so that we can detect
1752 * changes in this bit.
1754 static u32
update_bus_time(struct fw_ohci
*ohci
)
1756 u32 cycle_time_seconds
= get_cycle_time(ohci
) >> 25;
1758 if (unlikely(!ohci
->bus_time_running
)) {
1759 reg_write(ohci
, OHCI1394_IntMaskSet
, OHCI1394_cycle64Seconds
);
1760 ohci
->bus_time
= (lower_32_bits(get_seconds()) & ~0x7f) |
1761 (cycle_time_seconds
& 0x40);
1762 ohci
->bus_time_running
= true;
1765 if ((ohci
->bus_time
& 0x40) != (cycle_time_seconds
& 0x40))
1766 ohci
->bus_time
+= 0x40;
1768 return ohci
->bus_time
| cycle_time_seconds
;
1771 static int get_status_for_port(struct fw_ohci
*ohci
, int port_index
)
1775 mutex_lock(&ohci
->phy_reg_mutex
);
1776 reg
= write_phy_reg(ohci
, 7, port_index
);
1778 reg
= read_phy_reg(ohci
, 8);
1779 mutex_unlock(&ohci
->phy_reg_mutex
);
1783 switch (reg
& 0x0f) {
1785 return 2; /* is child node (connected to parent node) */
1787 return 3; /* is parent node (connected to child node) */
1789 return 1; /* not connected */
1792 static int get_self_id_pos(struct fw_ohci
*ohci
, u32 self_id
,
1798 for (i
= 0; i
< self_id_count
; i
++) {
1799 entry
= ohci
->self_id_buffer
[i
];
1800 if ((self_id
& 0xff000000) == (entry
& 0xff000000))
1802 if ((self_id
& 0xff000000) < (entry
& 0xff000000))
1808 static int initiated_reset(struct fw_ohci
*ohci
)
1813 mutex_lock(&ohci
->phy_reg_mutex
);
1814 reg
= write_phy_reg(ohci
, 7, 0xe0); /* Select page 7 */
1816 reg
= read_phy_reg(ohci
, 8);
1818 reg
= write_phy_reg(ohci
, 8, reg
); /* set PMODE bit */
1820 reg
= read_phy_reg(ohci
, 12); /* read register 12 */
1822 if ((reg
& 0x08) == 0x08) {
1823 /* bit 3 indicates "initiated reset" */
1829 mutex_unlock(&ohci
->phy_reg_mutex
);
1834 * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1835 * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1836 * Construct the selfID from phy register contents.
1838 static int find_and_insert_self_id(struct fw_ohci
*ohci
, int self_id_count
)
1840 int reg
, i
, pos
, status
;
1841 /* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
1842 u32 self_id
= 0x8040c800;
1844 reg
= reg_read(ohci
, OHCI1394_NodeID
);
1845 if (!(reg
& OHCI1394_NodeID_idValid
)) {
1847 "node ID not valid, new bus reset in progress\n");
1850 self_id
|= ((reg
& 0x3f) << 24); /* phy ID */
1852 reg
= ohci_read_phy_reg(&ohci
->card
, 4);
1855 self_id
|= ((reg
& 0x07) << 8); /* power class */
1857 reg
= ohci_read_phy_reg(&ohci
->card
, 1);
1860 self_id
|= ((reg
& 0x3f) << 16); /* gap count */
1862 for (i
= 0; i
< 3; i
++) {
1863 status
= get_status_for_port(ohci
, i
);
1866 self_id
|= ((status
& 0x3) << (6 - (i
* 2)));
1869 self_id
|= initiated_reset(ohci
);
1871 pos
= get_self_id_pos(ohci
, self_id
, self_id_count
);
1873 memmove(&(ohci
->self_id_buffer
[pos
+1]),
1874 &(ohci
->self_id_buffer
[pos
]),
1875 (self_id_count
- pos
) * sizeof(*ohci
->self_id_buffer
));
1876 ohci
->self_id_buffer
[pos
] = self_id
;
1879 return self_id_count
;
1882 static void bus_reset_work(struct work_struct
*work
)
1884 struct fw_ohci
*ohci
=
1885 container_of(work
, struct fw_ohci
, bus_reset_work
);
1886 int self_id_count
, generation
, new_generation
, i
, j
;
1888 void *free_rom
= NULL
;
1889 dma_addr_t free_rom_bus
= 0;
1892 reg
= reg_read(ohci
, OHCI1394_NodeID
);
1893 if (!(reg
& OHCI1394_NodeID_idValid
)) {
1895 "node ID not valid, new bus reset in progress\n");
1898 if ((reg
& OHCI1394_NodeID_nodeNumber
) == 63) {
1899 ohci_notice(ohci
, "malconfigured bus\n");
1902 ohci
->node_id
= reg
& (OHCI1394_NodeID_busNumber
|
1903 OHCI1394_NodeID_nodeNumber
);
1905 is_new_root
= (reg
& OHCI1394_NodeID_root
) != 0;
1906 if (!(ohci
->is_root
&& is_new_root
))
1907 reg_write(ohci
, OHCI1394_LinkControlSet
,
1908 OHCI1394_LinkControl_cycleMaster
);
1909 ohci
->is_root
= is_new_root
;
1911 reg
= reg_read(ohci
, OHCI1394_SelfIDCount
);
1912 if (reg
& OHCI1394_SelfIDCount_selfIDError
) {
1913 ohci_notice(ohci
, "self ID receive error\n");
1917 * The count in the SelfIDCount register is the number of
1918 * bytes in the self ID receive buffer. Since we also receive
1919 * the inverted quadlets and a header quadlet, we shift one
1920 * bit extra to get the actual number of self IDs.
1922 self_id_count
= (reg
>> 3) & 0xff;
1924 if (self_id_count
> 252) {
1925 ohci_notice(ohci
, "bad selfIDSize (%08x)\n", reg
);
1929 generation
= (cond_le32_to_cpu(ohci
->self_id
[0]) >> 16) & 0xff;
1932 for (i
= 1, j
= 0; j
< self_id_count
; i
+= 2, j
++) {
1933 u32 id
= cond_le32_to_cpu(ohci
->self_id
[i
]);
1934 u32 id2
= cond_le32_to_cpu(ohci
->self_id
[i
+ 1]);
1938 * If the invalid data looks like a cycle start packet,
1939 * it's likely to be the result of the cycle master
1940 * having a wrong gap count. In this case, the self IDs
1941 * so far are valid and should be processed so that the
1942 * bus manager can then correct the gap count.
1944 if (id
== 0xffff008f) {
1945 ohci_notice(ohci
, "ignoring spurious self IDs\n");
1950 ohci_notice(ohci
, "bad self ID %d/%d (%08x != ~%08x)\n",
1951 j
, self_id_count
, id
, id2
);
1954 ohci
->self_id_buffer
[j
] = id
;
1957 if (ohci
->quirks
& QUIRK_TI_SLLZ059
) {
1958 self_id_count
= find_and_insert_self_id(ohci
, self_id_count
);
1959 if (self_id_count
< 0) {
1961 "could not construct local self ID\n");
1966 if (self_id_count
== 0) {
1967 ohci_notice(ohci
, "no self IDs\n");
1973 * Check the consistency of the self IDs we just read. The
1974 * problem we face is that a new bus reset can start while we
1975 * read out the self IDs from the DMA buffer. If this happens,
1976 * the DMA buffer will be overwritten with new self IDs and we
1977 * will read out inconsistent data. The OHCI specification
1978 * (section 11.2) recommends a technique similar to
1979 * linux/seqlock.h, where we remember the generation of the
1980 * self IDs in the buffer before reading them out and compare
1981 * it to the current generation after reading them out. If
1982 * the two generations match we know we have a consistent set
1986 new_generation
= (reg_read(ohci
, OHCI1394_SelfIDCount
) >> 16) & 0xff;
1987 if (new_generation
!= generation
) {
1988 ohci_notice(ohci
, "new bus reset, discarding self ids\n");
1992 /* FIXME: Document how the locking works. */
1993 spin_lock_irq(&ohci
->lock
);
1995 ohci
->generation
= -1; /* prevent AT packet queueing */
1996 context_stop(&ohci
->at_request_ctx
);
1997 context_stop(&ohci
->at_response_ctx
);
1999 spin_unlock_irq(&ohci
->lock
);
2002 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
2003 * packets in the AT queues and software needs to drain them.
2004 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
2006 at_context_flush(&ohci
->at_request_ctx
);
2007 at_context_flush(&ohci
->at_response_ctx
);
2009 spin_lock_irq(&ohci
->lock
);
2011 ohci
->generation
= generation
;
2012 reg_write(ohci
, OHCI1394_IntEventClear
, OHCI1394_busReset
);
2014 if (ohci
->quirks
& QUIRK_RESET_PACKET
)
2015 ohci
->request_generation
= generation
;
2018 * This next bit is unrelated to the AT context stuff but we
2019 * have to do it under the spinlock also. If a new config rom
2020 * was set up before this reset, the old one is now no longer
2021 * in use and we can free it. Update the config rom pointers
2022 * to point to the current config rom and clear the
2023 * next_config_rom pointer so a new update can take place.
2026 if (ohci
->next_config_rom
!= NULL
) {
2027 if (ohci
->next_config_rom
!= ohci
->config_rom
) {
2028 free_rom
= ohci
->config_rom
;
2029 free_rom_bus
= ohci
->config_rom_bus
;
2031 ohci
->config_rom
= ohci
->next_config_rom
;
2032 ohci
->config_rom_bus
= ohci
->next_config_rom_bus
;
2033 ohci
->next_config_rom
= NULL
;
2036 * Restore config_rom image and manually update
2037 * config_rom registers. Writing the header quadlet
2038 * will indicate that the config rom is ready, so we
2041 reg_write(ohci
, OHCI1394_BusOptions
,
2042 be32_to_cpu(ohci
->config_rom
[2]));
2043 ohci
->config_rom
[0] = ohci
->next_header
;
2044 reg_write(ohci
, OHCI1394_ConfigROMhdr
,
2045 be32_to_cpu(ohci
->next_header
));
2048 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2049 reg_write(ohci
, OHCI1394_PhyReqFilterHiSet
, ~0);
2050 reg_write(ohci
, OHCI1394_PhyReqFilterLoSet
, ~0);
2053 spin_unlock_irq(&ohci
->lock
);
2056 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
2057 free_rom
, free_rom_bus
);
2059 log_selfids(ohci
, generation
, self_id_count
);
2061 fw_core_handle_bus_reset(&ohci
->card
, ohci
->node_id
, generation
,
2062 self_id_count
, ohci
->self_id_buffer
,
2063 ohci
->csr_state_setclear_abdicate
);
2064 ohci
->csr_state_setclear_abdicate
= false;
2067 static irqreturn_t
irq_handler(int irq
, void *data
)
2069 struct fw_ohci
*ohci
= data
;
2070 u32 event
, iso_event
;
2073 event
= reg_read(ohci
, OHCI1394_IntEventClear
);
2075 if (!event
|| !~event
)
2079 * busReset and postedWriteErr must not be cleared yet
2080 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2082 reg_write(ohci
, OHCI1394_IntEventClear
,
2083 event
& ~(OHCI1394_busReset
| OHCI1394_postedWriteErr
));
2084 log_irqs(ohci
, event
);
2086 if (event
& OHCI1394_selfIDComplete
)
2087 queue_work(selfid_workqueue
, &ohci
->bus_reset_work
);
2089 if (event
& OHCI1394_RQPkt
)
2090 tasklet_schedule(&ohci
->ar_request_ctx
.tasklet
);
2092 if (event
& OHCI1394_RSPkt
)
2093 tasklet_schedule(&ohci
->ar_response_ctx
.tasklet
);
2095 if (event
& OHCI1394_reqTxComplete
)
2096 tasklet_schedule(&ohci
->at_request_ctx
.tasklet
);
2098 if (event
& OHCI1394_respTxComplete
)
2099 tasklet_schedule(&ohci
->at_response_ctx
.tasklet
);
2101 if (event
& OHCI1394_isochRx
) {
2102 iso_event
= reg_read(ohci
, OHCI1394_IsoRecvIntEventClear
);
2103 reg_write(ohci
, OHCI1394_IsoRecvIntEventClear
, iso_event
);
2106 i
= ffs(iso_event
) - 1;
2108 &ohci
->ir_context_list
[i
].context
.tasklet
);
2109 iso_event
&= ~(1 << i
);
2113 if (event
& OHCI1394_isochTx
) {
2114 iso_event
= reg_read(ohci
, OHCI1394_IsoXmitIntEventClear
);
2115 reg_write(ohci
, OHCI1394_IsoXmitIntEventClear
, iso_event
);
2118 i
= ffs(iso_event
) - 1;
2120 &ohci
->it_context_list
[i
].context
.tasklet
);
2121 iso_event
&= ~(1 << i
);
2125 if (unlikely(event
& OHCI1394_regAccessFail
))
2126 ohci_err(ohci
, "register access failure\n");
2128 if (unlikely(event
& OHCI1394_postedWriteErr
)) {
2129 reg_read(ohci
, OHCI1394_PostedWriteAddressHi
);
2130 reg_read(ohci
, OHCI1394_PostedWriteAddressLo
);
2131 reg_write(ohci
, OHCI1394_IntEventClear
,
2132 OHCI1394_postedWriteErr
);
2133 if (printk_ratelimit())
2134 ohci_err(ohci
, "PCI posted write error\n");
2137 if (unlikely(event
& OHCI1394_cycleTooLong
)) {
2138 if (printk_ratelimit())
2139 ohci_notice(ohci
, "isochronous cycle too long\n");
2140 reg_write(ohci
, OHCI1394_LinkControlSet
,
2141 OHCI1394_LinkControl_cycleMaster
);
2144 if (unlikely(event
& OHCI1394_cycleInconsistent
)) {
2146 * We need to clear this event bit in order to make
2147 * cycleMatch isochronous I/O work. In theory we should
2148 * stop active cycleMatch iso contexts now and restart
2149 * them at least two cycles later. (FIXME?)
2151 if (printk_ratelimit())
2152 ohci_notice(ohci
, "isochronous cycle inconsistent\n");
2155 if (unlikely(event
& OHCI1394_unrecoverableError
))
2156 handle_dead_contexts(ohci
);
2158 if (event
& OHCI1394_cycle64Seconds
) {
2159 spin_lock(&ohci
->lock
);
2160 update_bus_time(ohci
);
2161 spin_unlock(&ohci
->lock
);
2168 static int software_reset(struct fw_ohci
*ohci
)
2173 reg_write(ohci
, OHCI1394_HCControlSet
, OHCI1394_HCControl_softReset
);
2174 for (i
= 0; i
< 500; i
++) {
2175 val
= reg_read(ohci
, OHCI1394_HCControlSet
);
2177 return -ENODEV
; /* Card was ejected. */
2179 if (!(val
& OHCI1394_HCControl_softReset
))
2188 static void copy_config_rom(__be32
*dest
, const __be32
*src
, size_t length
)
2190 size_t size
= length
* 4;
2192 memcpy(dest
, src
, size
);
2193 if (size
< CONFIG_ROM_SIZE
)
2194 memset(&dest
[length
], 0, CONFIG_ROM_SIZE
- size
);
2197 static int configure_1394a_enhancements(struct fw_ohci
*ohci
)
2200 int ret
, clear
, set
, offset
;
2202 /* Check if the driver should configure link and PHY. */
2203 if (!(reg_read(ohci
, OHCI1394_HCControlSet
) &
2204 OHCI1394_HCControl_programPhyEnable
))
2207 /* Paranoia: check whether the PHY supports 1394a, too. */
2208 enable_1394a
= false;
2209 ret
= read_phy_reg(ohci
, 2);
2212 if ((ret
& PHY_EXTENDED_REGISTERS
) == PHY_EXTENDED_REGISTERS
) {
2213 ret
= read_paged_phy_reg(ohci
, 1, 8);
2217 enable_1394a
= true;
2220 if (ohci
->quirks
& QUIRK_NO_1394A
)
2221 enable_1394a
= false;
2223 /* Configure PHY and link consistently. */
2226 set
= PHY_ENABLE_ACCEL
| PHY_ENABLE_MULTI
;
2228 clear
= PHY_ENABLE_ACCEL
| PHY_ENABLE_MULTI
;
2231 ret
= update_phy_reg(ohci
, 5, clear
, set
);
2236 offset
= OHCI1394_HCControlSet
;
2238 offset
= OHCI1394_HCControlClear
;
2239 reg_write(ohci
, offset
, OHCI1394_HCControl_aPhyEnhanceEnable
);
2241 /* Clean up: configuration has been taken care of. */
2242 reg_write(ohci
, OHCI1394_HCControlClear
,
2243 OHCI1394_HCControl_programPhyEnable
);
2248 static int probe_tsb41ba3d(struct fw_ohci
*ohci
)
2250 /* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2251 static const u8 id
[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2254 reg
= read_phy_reg(ohci
, 2);
2257 if ((reg
& PHY_EXTENDED_REGISTERS
) != PHY_EXTENDED_REGISTERS
)
2260 for (i
= ARRAY_SIZE(id
) - 1; i
>= 0; i
--) {
2261 reg
= read_paged_phy_reg(ohci
, 1, i
+ 10);
2270 static int ohci_enable(struct fw_card
*card
,
2271 const __be32
*config_rom
, size_t length
)
2273 struct fw_ohci
*ohci
= fw_ohci(card
);
2274 u32 lps
, version
, irqs
;
2277 if (software_reset(ohci
)) {
2278 ohci_err(ohci
, "failed to reset ohci card\n");
2283 * Now enable LPS, which we need in order to start accessing
2284 * most of the registers. In fact, on some cards (ALI M5251),
2285 * accessing registers in the SClk domain without LPS enabled
2286 * will lock up the machine. Wait 50msec to make sure we have
2287 * full link enabled. However, with some cards (well, at least
2288 * a JMicron PCIe card), we have to try again sometimes.
2290 * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but
2291 * cannot actually use the phy at that time. These need tens of
2292 * millisecods pause between LPS write and first phy access too.
2295 reg_write(ohci
, OHCI1394_HCControlSet
,
2296 OHCI1394_HCControl_LPS
|
2297 OHCI1394_HCControl_postedWriteEnable
);
2300 for (lps
= 0, i
= 0; !lps
&& i
< 3; i
++) {
2302 lps
= reg_read(ohci
, OHCI1394_HCControlSet
) &
2303 OHCI1394_HCControl_LPS
;
2307 ohci_err(ohci
, "failed to set Link Power Status\n");
2311 if (ohci
->quirks
& QUIRK_TI_SLLZ059
) {
2312 ret
= probe_tsb41ba3d(ohci
);
2316 ohci_notice(ohci
, "local TSB41BA3D phy\n");
2318 ohci
->quirks
&= ~QUIRK_TI_SLLZ059
;
2321 reg_write(ohci
, OHCI1394_HCControlClear
,
2322 OHCI1394_HCControl_noByteSwapData
);
2324 reg_write(ohci
, OHCI1394_SelfIDBuffer
, ohci
->self_id_bus
);
2325 reg_write(ohci
, OHCI1394_LinkControlSet
,
2326 OHCI1394_LinkControl_cycleTimerEnable
|
2327 OHCI1394_LinkControl_cycleMaster
);
2329 reg_write(ohci
, OHCI1394_ATRetries
,
2330 OHCI1394_MAX_AT_REQ_RETRIES
|
2331 (OHCI1394_MAX_AT_RESP_RETRIES
<< 4) |
2332 (OHCI1394_MAX_PHYS_RESP_RETRIES
<< 8) |
2335 ohci
->bus_time_running
= false;
2337 for (i
= 0; i
< 32; i
++)
2338 if (ohci
->ir_context_support
& (1 << i
))
2339 reg_write(ohci
, OHCI1394_IsoRcvContextControlClear(i
),
2340 IR_CONTEXT_MULTI_CHANNEL_MODE
);
2342 version
= reg_read(ohci
, OHCI1394_Version
) & 0x00ff00ff;
2343 if (version
>= OHCI_VERSION_1_1
) {
2344 reg_write(ohci
, OHCI1394_InitialChannelsAvailableHi
,
2346 card
->broadcast_channel_auto_allocated
= true;
2349 /* Get implemented bits of the priority arbitration request counter. */
2350 reg_write(ohci
, OHCI1394_FairnessControl
, 0x3f);
2351 ohci
->pri_req_max
= reg_read(ohci
, OHCI1394_FairnessControl
) & 0x3f;
2352 reg_write(ohci
, OHCI1394_FairnessControl
, 0);
2353 card
->priority_budget_implemented
= ohci
->pri_req_max
!= 0;
2355 reg_write(ohci
, OHCI1394_PhyUpperBound
, 0x00010000);
2356 reg_write(ohci
, OHCI1394_IntEventClear
, ~0);
2357 reg_write(ohci
, OHCI1394_IntMaskClear
, ~0);
2359 ret
= configure_1394a_enhancements(ohci
);
2363 /* Activate link_on bit and contender bit in our self ID packets.*/
2364 ret
= ohci_update_phy_reg(card
, 4, 0, PHY_LINK_ACTIVE
| PHY_CONTENDER
);
2369 * When the link is not yet enabled, the atomic config rom
2370 * update mechanism described below in ohci_set_config_rom()
2371 * is not active. We have to update ConfigRomHeader and
2372 * BusOptions manually, and the write to ConfigROMmap takes
2373 * effect immediately. We tie this to the enabling of the
2374 * link, so we have a valid config rom before enabling - the
2375 * OHCI requires that ConfigROMhdr and BusOptions have valid
2376 * values before enabling.
2378 * However, when the ConfigROMmap is written, some controllers
2379 * always read back quadlets 0 and 2 from the config rom to
2380 * the ConfigRomHeader and BusOptions registers on bus reset.
2381 * They shouldn't do that in this initial case where the link
2382 * isn't enabled. This means we have to use the same
2383 * workaround here, setting the bus header to 0 and then write
2384 * the right values in the bus reset tasklet.
2388 ohci
->next_config_rom
=
2389 dma_alloc_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
2390 &ohci
->next_config_rom_bus
,
2392 if (ohci
->next_config_rom
== NULL
)
2395 copy_config_rom(ohci
->next_config_rom
, config_rom
, length
);
2398 * In the suspend case, config_rom is NULL, which
2399 * means that we just reuse the old config rom.
2401 ohci
->next_config_rom
= ohci
->config_rom
;
2402 ohci
->next_config_rom_bus
= ohci
->config_rom_bus
;
2405 ohci
->next_header
= ohci
->next_config_rom
[0];
2406 ohci
->next_config_rom
[0] = 0;
2407 reg_write(ohci
, OHCI1394_ConfigROMhdr
, 0);
2408 reg_write(ohci
, OHCI1394_BusOptions
,
2409 be32_to_cpu(ohci
->next_config_rom
[2]));
2410 reg_write(ohci
, OHCI1394_ConfigROMmap
, ohci
->next_config_rom_bus
);
2412 reg_write(ohci
, OHCI1394_AsReqFilterHiSet
, 0x80000000);
2414 irqs
= OHCI1394_reqTxComplete
| OHCI1394_respTxComplete
|
2415 OHCI1394_RQPkt
| OHCI1394_RSPkt
|
2416 OHCI1394_isochTx
| OHCI1394_isochRx
|
2417 OHCI1394_postedWriteErr
|
2418 OHCI1394_selfIDComplete
|
2419 OHCI1394_regAccessFail
|
2420 OHCI1394_cycleInconsistent
|
2421 OHCI1394_unrecoverableError
|
2422 OHCI1394_cycleTooLong
|
2423 OHCI1394_masterIntEnable
;
2424 if (param_debug
& OHCI_PARAM_DEBUG_BUSRESETS
)
2425 irqs
|= OHCI1394_busReset
;
2426 reg_write(ohci
, OHCI1394_IntMaskSet
, irqs
);
2428 reg_write(ohci
, OHCI1394_HCControlSet
,
2429 OHCI1394_HCControl_linkEnable
|
2430 OHCI1394_HCControl_BIBimageValid
);
2432 reg_write(ohci
, OHCI1394_LinkControlSet
,
2433 OHCI1394_LinkControl_rcvSelfID
|
2434 OHCI1394_LinkControl_rcvPhyPkt
);
2436 ar_context_run(&ohci
->ar_request_ctx
);
2437 ar_context_run(&ohci
->ar_response_ctx
);
2441 /* We are ready to go, reset bus to finish initialization. */
2442 fw_schedule_bus_reset(&ohci
->card
, false, true);
2447 static int ohci_set_config_rom(struct fw_card
*card
,
2448 const __be32
*config_rom
, size_t length
)
2450 struct fw_ohci
*ohci
;
2451 __be32
*next_config_rom
;
2452 dma_addr_t
uninitialized_var(next_config_rom_bus
);
2454 ohci
= fw_ohci(card
);
2457 * When the OHCI controller is enabled, the config rom update
2458 * mechanism is a bit tricky, but easy enough to use. See
2459 * section 5.5.6 in the OHCI specification.
2461 * The OHCI controller caches the new config rom address in a
2462 * shadow register (ConfigROMmapNext) and needs a bus reset
2463 * for the changes to take place. When the bus reset is
2464 * detected, the controller loads the new values for the
2465 * ConfigRomHeader and BusOptions registers from the specified
2466 * config rom and loads ConfigROMmap from the ConfigROMmapNext
2467 * shadow register. All automatically and atomically.
2469 * Now, there's a twist to this story. The automatic load of
2470 * ConfigRomHeader and BusOptions doesn't honor the
2471 * noByteSwapData bit, so with a be32 config rom, the
2472 * controller will load be32 values in to these registers
2473 * during the atomic update, even on litte endian
2474 * architectures. The workaround we use is to put a 0 in the
2475 * header quadlet; 0 is endian agnostic and means that the
2476 * config rom isn't ready yet. In the bus reset tasklet we
2477 * then set up the real values for the two registers.
2479 * We use ohci->lock to avoid racing with the code that sets
2480 * ohci->next_config_rom to NULL (see bus_reset_work).
2484 dma_alloc_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
2485 &next_config_rom_bus
, GFP_KERNEL
);
2486 if (next_config_rom
== NULL
)
2489 spin_lock_irq(&ohci
->lock
);
2492 * If there is not an already pending config_rom update,
2493 * push our new allocation into the ohci->next_config_rom
2494 * and then mark the local variable as null so that we
2495 * won't deallocate the new buffer.
2497 * OTOH, if there is a pending config_rom update, just
2498 * use that buffer with the new config_rom data, and
2499 * let this routine free the unused DMA allocation.
2502 if (ohci
->next_config_rom
== NULL
) {
2503 ohci
->next_config_rom
= next_config_rom
;
2504 ohci
->next_config_rom_bus
= next_config_rom_bus
;
2505 next_config_rom
= NULL
;
2508 copy_config_rom(ohci
->next_config_rom
, config_rom
, length
);
2510 ohci
->next_header
= config_rom
[0];
2511 ohci
->next_config_rom
[0] = 0;
2513 reg_write(ohci
, OHCI1394_ConfigROMmap
, ohci
->next_config_rom_bus
);
2515 spin_unlock_irq(&ohci
->lock
);
2517 /* If we didn't use the DMA allocation, delete it. */
2518 if (next_config_rom
!= NULL
)
2519 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
2520 next_config_rom
, next_config_rom_bus
);
2523 * Now initiate a bus reset to have the changes take
2524 * effect. We clean up the old config rom memory and DMA
2525 * mappings in the bus reset tasklet, since the OHCI
2526 * controller could need to access it before the bus reset
2530 fw_schedule_bus_reset(&ohci
->card
, true, true);
2535 static void ohci_send_request(struct fw_card
*card
, struct fw_packet
*packet
)
2537 struct fw_ohci
*ohci
= fw_ohci(card
);
2539 at_context_transmit(&ohci
->at_request_ctx
, packet
);
2542 static void ohci_send_response(struct fw_card
*card
, struct fw_packet
*packet
)
2544 struct fw_ohci
*ohci
= fw_ohci(card
);
2546 at_context_transmit(&ohci
->at_response_ctx
, packet
);
2549 static int ohci_cancel_packet(struct fw_card
*card
, struct fw_packet
*packet
)
2551 struct fw_ohci
*ohci
= fw_ohci(card
);
2552 struct context
*ctx
= &ohci
->at_request_ctx
;
2553 struct driver_data
*driver_data
= packet
->driver_data
;
2556 tasklet_disable(&ctx
->tasklet
);
2558 if (packet
->ack
!= 0)
2561 if (packet
->payload_mapped
)
2562 dma_unmap_single(ohci
->card
.device
, packet
->payload_bus
,
2563 packet
->payload_length
, DMA_TO_DEVICE
);
2565 log_ar_at_event(ohci
, 'T', packet
->speed
, packet
->header
, 0x20);
2566 driver_data
->packet
= NULL
;
2567 packet
->ack
= RCODE_CANCELLED
;
2568 packet
->callback(packet
, &ohci
->card
, packet
->ack
);
2571 tasklet_enable(&ctx
->tasklet
);
2576 static int ohci_enable_phys_dma(struct fw_card
*card
,
2577 int node_id
, int generation
)
2579 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2582 struct fw_ohci
*ohci
= fw_ohci(card
);
2583 unsigned long flags
;
2587 * FIXME: Make sure this bitmask is cleared when we clear the busReset
2588 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
2591 spin_lock_irqsave(&ohci
->lock
, flags
);
2593 if (ohci
->generation
!= generation
) {
2599 * Note, if the node ID contains a non-local bus ID, physical DMA is
2600 * enabled for _all_ nodes on remote buses.
2603 n
= (node_id
& 0xffc0) == LOCAL_BUS
? node_id
& 0x3f : 63;
2605 reg_write(ohci
, OHCI1394_PhyReqFilterLoSet
, 1 << n
);
2607 reg_write(ohci
, OHCI1394_PhyReqFilterHiSet
, 1 << (n
- 32));
2611 spin_unlock_irqrestore(&ohci
->lock
, flags
);
2614 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2617 static u32
ohci_read_csr(struct fw_card
*card
, int csr_offset
)
2619 struct fw_ohci
*ohci
= fw_ohci(card
);
2620 unsigned long flags
;
2623 switch (csr_offset
) {
2624 case CSR_STATE_CLEAR
:
2626 if (ohci
->is_root
&&
2627 (reg_read(ohci
, OHCI1394_LinkControlSet
) &
2628 OHCI1394_LinkControl_cycleMaster
))
2629 value
= CSR_STATE_BIT_CMSTR
;
2632 if (ohci
->csr_state_setclear_abdicate
)
2633 value
|= CSR_STATE_BIT_ABDICATE
;
2638 return reg_read(ohci
, OHCI1394_NodeID
) << 16;
2640 case CSR_CYCLE_TIME
:
2641 return get_cycle_time(ohci
);
2645 * We might be called just after the cycle timer has wrapped
2646 * around but just before the cycle64Seconds handler, so we
2647 * better check here, too, if the bus time needs to be updated.
2649 spin_lock_irqsave(&ohci
->lock
, flags
);
2650 value
= update_bus_time(ohci
);
2651 spin_unlock_irqrestore(&ohci
->lock
, flags
);
2654 case CSR_BUSY_TIMEOUT
:
2655 value
= reg_read(ohci
, OHCI1394_ATRetries
);
2656 return (value
>> 4) & 0x0ffff00f;
2658 case CSR_PRIORITY_BUDGET
:
2659 return (reg_read(ohci
, OHCI1394_FairnessControl
) & 0x3f) |
2660 (ohci
->pri_req_max
<< 8);
2668 static void ohci_write_csr(struct fw_card
*card
, int csr_offset
, u32 value
)
2670 struct fw_ohci
*ohci
= fw_ohci(card
);
2671 unsigned long flags
;
2673 switch (csr_offset
) {
2674 case CSR_STATE_CLEAR
:
2675 if ((value
& CSR_STATE_BIT_CMSTR
) && ohci
->is_root
) {
2676 reg_write(ohci
, OHCI1394_LinkControlClear
,
2677 OHCI1394_LinkControl_cycleMaster
);
2680 if (value
& CSR_STATE_BIT_ABDICATE
)
2681 ohci
->csr_state_setclear_abdicate
= false;
2685 if ((value
& CSR_STATE_BIT_CMSTR
) && ohci
->is_root
) {
2686 reg_write(ohci
, OHCI1394_LinkControlSet
,
2687 OHCI1394_LinkControl_cycleMaster
);
2690 if (value
& CSR_STATE_BIT_ABDICATE
)
2691 ohci
->csr_state_setclear_abdicate
= true;
2695 reg_write(ohci
, OHCI1394_NodeID
, value
>> 16);
2699 case CSR_CYCLE_TIME
:
2700 reg_write(ohci
, OHCI1394_IsochronousCycleTimer
, value
);
2701 reg_write(ohci
, OHCI1394_IntEventSet
,
2702 OHCI1394_cycleInconsistent
);
2707 spin_lock_irqsave(&ohci
->lock
, flags
);
2708 ohci
->bus_time
= (update_bus_time(ohci
) & 0x40) |
2710 spin_unlock_irqrestore(&ohci
->lock
, flags
);
2713 case CSR_BUSY_TIMEOUT
:
2714 value
= (value
& 0xf) | ((value
& 0xf) << 4) |
2715 ((value
& 0xf) << 8) | ((value
& 0x0ffff000) << 4);
2716 reg_write(ohci
, OHCI1394_ATRetries
, value
);
2720 case CSR_PRIORITY_BUDGET
:
2721 reg_write(ohci
, OHCI1394_FairnessControl
, value
& 0x3f);
2731 static void flush_iso_completions(struct iso_context
*ctx
)
2733 ctx
->base
.callback
.sc(&ctx
->base
, ctx
->last_timestamp
,
2734 ctx
->header_length
, ctx
->header
,
2735 ctx
->base
.callback_data
);
2736 ctx
->header_length
= 0;
2739 static void copy_iso_headers(struct iso_context
*ctx
, const u32
*dma_hdr
)
2743 if (ctx
->header_length
+ ctx
->base
.header_size
> PAGE_SIZE
) {
2744 if (ctx
->base
.drop_overflow_headers
)
2746 flush_iso_completions(ctx
);
2749 ctx_hdr
= ctx
->header
+ ctx
->header_length
;
2750 ctx
->last_timestamp
= (u16
)le32_to_cpu((__force __le32
)dma_hdr
[0]);
2753 * The two iso header quadlets are byteswapped to little
2754 * endian by the controller, but we want to present them
2755 * as big endian for consistency with the bus endianness.
2757 if (ctx
->base
.header_size
> 0)
2758 ctx_hdr
[0] = swab32(dma_hdr
[1]); /* iso packet header */
2759 if (ctx
->base
.header_size
> 4)
2760 ctx_hdr
[1] = swab32(dma_hdr
[0]); /* timestamp */
2761 if (ctx
->base
.header_size
> 8)
2762 memcpy(&ctx_hdr
[2], &dma_hdr
[2], ctx
->base
.header_size
- 8);
2763 ctx
->header_length
+= ctx
->base
.header_size
;
2766 static int handle_ir_packet_per_buffer(struct context
*context
,
2767 struct descriptor
*d
,
2768 struct descriptor
*last
)
2770 struct iso_context
*ctx
=
2771 container_of(context
, struct iso_context
, context
);
2772 struct descriptor
*pd
;
2775 for (pd
= d
; pd
<= last
; pd
++)
2776 if (pd
->transfer_status
)
2779 /* Descriptor(s) not done yet, stop iteration */
2782 while (!(d
->control
& cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS
))) {
2784 buffer_dma
= le32_to_cpu(d
->data_address
);
2785 dma_sync_single_range_for_cpu(context
->ohci
->card
.device
,
2786 buffer_dma
& PAGE_MASK
,
2787 buffer_dma
& ~PAGE_MASK
,
2788 le16_to_cpu(d
->req_count
),
2792 copy_iso_headers(ctx
, (u32
*) (last
+ 1));
2794 if (last
->control
& cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
))
2795 flush_iso_completions(ctx
);
2800 /* d == last because each descriptor block is only a single descriptor. */
2801 static int handle_ir_buffer_fill(struct context
*context
,
2802 struct descriptor
*d
,
2803 struct descriptor
*last
)
2805 struct iso_context
*ctx
=
2806 container_of(context
, struct iso_context
, context
);
2807 unsigned int req_count
, res_count
, completed
;
2810 req_count
= le16_to_cpu(last
->req_count
);
2811 res_count
= le16_to_cpu(ACCESS_ONCE(last
->res_count
));
2812 completed
= req_count
- res_count
;
2813 buffer_dma
= le32_to_cpu(last
->data_address
);
2815 if (completed
> 0) {
2816 ctx
->mc_buffer_bus
= buffer_dma
;
2817 ctx
->mc_completed
= completed
;
2821 /* Descriptor(s) not done yet, stop iteration */
2824 dma_sync_single_range_for_cpu(context
->ohci
->card
.device
,
2825 buffer_dma
& PAGE_MASK
,
2826 buffer_dma
& ~PAGE_MASK
,
2827 completed
, DMA_FROM_DEVICE
);
2829 if (last
->control
& cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
)) {
2830 ctx
->base
.callback
.mc(&ctx
->base
,
2831 buffer_dma
+ completed
,
2832 ctx
->base
.callback_data
);
2833 ctx
->mc_completed
= 0;
2839 static void flush_ir_buffer_fill(struct iso_context
*ctx
)
2841 dma_sync_single_range_for_cpu(ctx
->context
.ohci
->card
.device
,
2842 ctx
->mc_buffer_bus
& PAGE_MASK
,
2843 ctx
->mc_buffer_bus
& ~PAGE_MASK
,
2844 ctx
->mc_completed
, DMA_FROM_DEVICE
);
2846 ctx
->base
.callback
.mc(&ctx
->base
,
2847 ctx
->mc_buffer_bus
+ ctx
->mc_completed
,
2848 ctx
->base
.callback_data
);
2849 ctx
->mc_completed
= 0;
2852 static inline void sync_it_packet_for_cpu(struct context
*context
,
2853 struct descriptor
*pd
)
2858 /* only packets beginning with OUTPUT_MORE* have data buffers */
2859 if (pd
->control
& cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS
))
2862 /* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2866 * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2867 * data buffer is in the context program's coherent page and must not
2870 if ((le32_to_cpu(pd
->data_address
) & PAGE_MASK
) ==
2871 (context
->current_bus
& PAGE_MASK
)) {
2872 if (pd
->control
& cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS
))
2878 buffer_dma
= le32_to_cpu(pd
->data_address
);
2879 dma_sync_single_range_for_cpu(context
->ohci
->card
.device
,
2880 buffer_dma
& PAGE_MASK
,
2881 buffer_dma
& ~PAGE_MASK
,
2882 le16_to_cpu(pd
->req_count
),
2884 control
= pd
->control
;
2886 } while (!(control
& cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS
)));
2889 static int handle_it_packet(struct context
*context
,
2890 struct descriptor
*d
,
2891 struct descriptor
*last
)
2893 struct iso_context
*ctx
=
2894 container_of(context
, struct iso_context
, context
);
2895 struct descriptor
*pd
;
2898 for (pd
= d
; pd
<= last
; pd
++)
2899 if (pd
->transfer_status
)
2902 /* Descriptor(s) not done yet, stop iteration */
2905 sync_it_packet_for_cpu(context
, d
);
2907 if (ctx
->header_length
+ 4 > PAGE_SIZE
) {
2908 if (ctx
->base
.drop_overflow_headers
)
2910 flush_iso_completions(ctx
);
2913 ctx_hdr
= ctx
->header
+ ctx
->header_length
;
2914 ctx
->last_timestamp
= le16_to_cpu(last
->res_count
);
2915 /* Present this value as big-endian to match the receive code */
2916 *ctx_hdr
= cpu_to_be32((le16_to_cpu(pd
->transfer_status
) << 16) |
2917 le16_to_cpu(pd
->res_count
));
2918 ctx
->header_length
+= 4;
2920 if (last
->control
& cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
))
2921 flush_iso_completions(ctx
);
2926 static void set_multichannel_mask(struct fw_ohci
*ohci
, u64 channels
)
2928 u32 hi
= channels
>> 32, lo
= channels
;
2930 reg_write(ohci
, OHCI1394_IRMultiChanMaskHiClear
, ~hi
);
2931 reg_write(ohci
, OHCI1394_IRMultiChanMaskLoClear
, ~lo
);
2932 reg_write(ohci
, OHCI1394_IRMultiChanMaskHiSet
, hi
);
2933 reg_write(ohci
, OHCI1394_IRMultiChanMaskLoSet
, lo
);
2935 ohci
->mc_channels
= channels
;
2938 static struct fw_iso_context
*ohci_allocate_iso_context(struct fw_card
*card
,
2939 int type
, int channel
, size_t header_size
)
2941 struct fw_ohci
*ohci
= fw_ohci(card
);
2942 struct iso_context
*uninitialized_var(ctx
);
2943 descriptor_callback_t
uninitialized_var(callback
);
2944 u64
*uninitialized_var(channels
);
2945 u32
*uninitialized_var(mask
), uninitialized_var(regs
);
2946 int index
, ret
= -EBUSY
;
2948 spin_lock_irq(&ohci
->lock
);
2951 case FW_ISO_CONTEXT_TRANSMIT
:
2952 mask
= &ohci
->it_context_mask
;
2953 callback
= handle_it_packet
;
2954 index
= ffs(*mask
) - 1;
2956 *mask
&= ~(1 << index
);
2957 regs
= OHCI1394_IsoXmitContextBase(index
);
2958 ctx
= &ohci
->it_context_list
[index
];
2962 case FW_ISO_CONTEXT_RECEIVE
:
2963 channels
= &ohci
->ir_context_channels
;
2964 mask
= &ohci
->ir_context_mask
;
2965 callback
= handle_ir_packet_per_buffer
;
2966 index
= *channels
& 1ULL << channel
? ffs(*mask
) - 1 : -1;
2968 *channels
&= ~(1ULL << channel
);
2969 *mask
&= ~(1 << index
);
2970 regs
= OHCI1394_IsoRcvContextBase(index
);
2971 ctx
= &ohci
->ir_context_list
[index
];
2975 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
2976 mask
= &ohci
->ir_context_mask
;
2977 callback
= handle_ir_buffer_fill
;
2978 index
= !ohci
->mc_allocated
? ffs(*mask
) - 1 : -1;
2980 ohci
->mc_allocated
= true;
2981 *mask
&= ~(1 << index
);
2982 regs
= OHCI1394_IsoRcvContextBase(index
);
2983 ctx
= &ohci
->ir_context_list
[index
];
2992 spin_unlock_irq(&ohci
->lock
);
2995 return ERR_PTR(ret
);
2997 memset(ctx
, 0, sizeof(*ctx
));
2998 ctx
->header_length
= 0;
2999 ctx
->header
= (void *) __get_free_page(GFP_KERNEL
);
3000 if (ctx
->header
== NULL
) {
3004 ret
= context_init(&ctx
->context
, ohci
, regs
, callback
);
3006 goto out_with_header
;
3008 if (type
== FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
) {
3009 set_multichannel_mask(ohci
, 0);
3010 ctx
->mc_completed
= 0;
3016 free_page((unsigned long)ctx
->header
);
3018 spin_lock_irq(&ohci
->lock
);
3021 case FW_ISO_CONTEXT_RECEIVE
:
3022 *channels
|= 1ULL << channel
;
3025 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
3026 ohci
->mc_allocated
= false;
3029 *mask
|= 1 << index
;
3031 spin_unlock_irq(&ohci
->lock
);
3033 return ERR_PTR(ret
);
3036 static int ohci_start_iso(struct fw_iso_context
*base
,
3037 s32 cycle
, u32 sync
, u32 tags
)
3039 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
3040 struct fw_ohci
*ohci
= ctx
->context
.ohci
;
3041 u32 control
= IR_CONTEXT_ISOCH_HEADER
, match
;
3044 /* the controller cannot start without any queued packets */
3045 if (ctx
->context
.last
->branch_address
== 0)
3048 switch (ctx
->base
.type
) {
3049 case FW_ISO_CONTEXT_TRANSMIT
:
3050 index
= ctx
- ohci
->it_context_list
;
3053 match
= IT_CONTEXT_CYCLE_MATCH_ENABLE
|
3054 (cycle
& 0x7fff) << 16;
3056 reg_write(ohci
, OHCI1394_IsoXmitIntEventClear
, 1 << index
);
3057 reg_write(ohci
, OHCI1394_IsoXmitIntMaskSet
, 1 << index
);
3058 context_run(&ctx
->context
, match
);
3061 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
3062 control
|= IR_CONTEXT_BUFFER_FILL
|IR_CONTEXT_MULTI_CHANNEL_MODE
;
3064 case FW_ISO_CONTEXT_RECEIVE
:
3065 index
= ctx
- ohci
->ir_context_list
;
3066 match
= (tags
<< 28) | (sync
<< 8) | ctx
->base
.channel
;
3068 match
|= (cycle
& 0x07fff) << 12;
3069 control
|= IR_CONTEXT_CYCLE_MATCH_ENABLE
;
3072 reg_write(ohci
, OHCI1394_IsoRecvIntEventClear
, 1 << index
);
3073 reg_write(ohci
, OHCI1394_IsoRecvIntMaskSet
, 1 << index
);
3074 reg_write(ohci
, CONTEXT_MATCH(ctx
->context
.regs
), match
);
3075 context_run(&ctx
->context
, control
);
3086 static int ohci_stop_iso(struct fw_iso_context
*base
)
3088 struct fw_ohci
*ohci
= fw_ohci(base
->card
);
3089 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
3092 switch (ctx
->base
.type
) {
3093 case FW_ISO_CONTEXT_TRANSMIT
:
3094 index
= ctx
- ohci
->it_context_list
;
3095 reg_write(ohci
, OHCI1394_IsoXmitIntMaskClear
, 1 << index
);
3098 case FW_ISO_CONTEXT_RECEIVE
:
3099 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
3100 index
= ctx
- ohci
->ir_context_list
;
3101 reg_write(ohci
, OHCI1394_IsoRecvIntMaskClear
, 1 << index
);
3105 context_stop(&ctx
->context
);
3106 tasklet_kill(&ctx
->context
.tasklet
);
3111 static void ohci_free_iso_context(struct fw_iso_context
*base
)
3113 struct fw_ohci
*ohci
= fw_ohci(base
->card
);
3114 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
3115 unsigned long flags
;
3118 ohci_stop_iso(base
);
3119 context_release(&ctx
->context
);
3120 free_page((unsigned long)ctx
->header
);
3122 spin_lock_irqsave(&ohci
->lock
, flags
);
3124 switch (base
->type
) {
3125 case FW_ISO_CONTEXT_TRANSMIT
:
3126 index
= ctx
- ohci
->it_context_list
;
3127 ohci
->it_context_mask
|= 1 << index
;
3130 case FW_ISO_CONTEXT_RECEIVE
:
3131 index
= ctx
- ohci
->ir_context_list
;
3132 ohci
->ir_context_mask
|= 1 << index
;
3133 ohci
->ir_context_channels
|= 1ULL << base
->channel
;
3136 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
3137 index
= ctx
- ohci
->ir_context_list
;
3138 ohci
->ir_context_mask
|= 1 << index
;
3139 ohci
->ir_context_channels
|= ohci
->mc_channels
;
3140 ohci
->mc_channels
= 0;
3141 ohci
->mc_allocated
= false;
3145 spin_unlock_irqrestore(&ohci
->lock
, flags
);
3148 static int ohci_set_iso_channels(struct fw_iso_context
*base
, u64
*channels
)
3150 struct fw_ohci
*ohci
= fw_ohci(base
->card
);
3151 unsigned long flags
;
3154 switch (base
->type
) {
3155 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
3157 spin_lock_irqsave(&ohci
->lock
, flags
);
3159 /* Don't allow multichannel to grab other contexts' channels. */
3160 if (~ohci
->ir_context_channels
& ~ohci
->mc_channels
& *channels
) {
3161 *channels
= ohci
->ir_context_channels
;
3164 set_multichannel_mask(ohci
, *channels
);
3168 spin_unlock_irqrestore(&ohci
->lock
, flags
);
3179 static void ohci_resume_iso_dma(struct fw_ohci
*ohci
)
3182 struct iso_context
*ctx
;
3184 for (i
= 0 ; i
< ohci
->n_ir
; i
++) {
3185 ctx
= &ohci
->ir_context_list
[i
];
3186 if (ctx
->context
.running
)
3187 ohci_start_iso(&ctx
->base
, 0, ctx
->sync
, ctx
->tags
);
3190 for (i
= 0 ; i
< ohci
->n_it
; i
++) {
3191 ctx
= &ohci
->it_context_list
[i
];
3192 if (ctx
->context
.running
)
3193 ohci_start_iso(&ctx
->base
, 0, ctx
->sync
, ctx
->tags
);
3198 static int queue_iso_transmit(struct iso_context
*ctx
,
3199 struct fw_iso_packet
*packet
,
3200 struct fw_iso_buffer
*buffer
,
3201 unsigned long payload
)
3203 struct descriptor
*d
, *last
, *pd
;
3204 struct fw_iso_packet
*p
;
3206 dma_addr_t d_bus
, page_bus
;
3207 u32 z
, header_z
, payload_z
, irq
;
3208 u32 payload_index
, payload_end_index
, next_page_index
;
3209 int page
, end_page
, i
, length
, offset
;
3212 payload_index
= payload
;
3218 if (p
->header_length
> 0)
3221 /* Determine the first page the payload isn't contained in. */
3222 end_page
= PAGE_ALIGN(payload_index
+ p
->payload_length
) >> PAGE_SHIFT
;
3223 if (p
->payload_length
> 0)
3224 payload_z
= end_page
- (payload_index
>> PAGE_SHIFT
);
3230 /* Get header size in number of descriptors. */
3231 header_z
= DIV_ROUND_UP(p
->header_length
, sizeof(*d
));
3233 d
= context_get_descriptors(&ctx
->context
, z
+ header_z
, &d_bus
);
3238 d
[0].control
= cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE
);
3239 d
[0].req_count
= cpu_to_le16(8);
3241 * Link the skip address to this descriptor itself. This causes
3242 * a context to skip a cycle whenever lost cycles or FIFO
3243 * overruns occur, without dropping the data. The application
3244 * should then decide whether this is an error condition or not.
3245 * FIXME: Make the context's cycle-lost behaviour configurable?
3247 d
[0].branch_address
= cpu_to_le32(d_bus
| z
);
3249 header
= (__le32
*) &d
[1];
3250 header
[0] = cpu_to_le32(IT_HEADER_SY(p
->sy
) |
3251 IT_HEADER_TAG(p
->tag
) |
3252 IT_HEADER_TCODE(TCODE_STREAM_DATA
) |
3253 IT_HEADER_CHANNEL(ctx
->base
.channel
) |
3254 IT_HEADER_SPEED(ctx
->base
.speed
));
3256 cpu_to_le32(IT_HEADER_DATA_LENGTH(p
->header_length
+
3257 p
->payload_length
));
3260 if (p
->header_length
> 0) {
3261 d
[2].req_count
= cpu_to_le16(p
->header_length
);
3262 d
[2].data_address
= cpu_to_le32(d_bus
+ z
* sizeof(*d
));
3263 memcpy(&d
[z
], p
->header
, p
->header_length
);
3266 pd
= d
+ z
- payload_z
;
3267 payload_end_index
= payload_index
+ p
->payload_length
;
3268 for (i
= 0; i
< payload_z
; i
++) {
3269 page
= payload_index
>> PAGE_SHIFT
;
3270 offset
= payload_index
& ~PAGE_MASK
;
3271 next_page_index
= (page
+ 1) << PAGE_SHIFT
;
3273 min(next_page_index
, payload_end_index
) - payload_index
;
3274 pd
[i
].req_count
= cpu_to_le16(length
);
3276 page_bus
= page_private(buffer
->pages
[page
]);
3277 pd
[i
].data_address
= cpu_to_le32(page_bus
+ offset
);
3279 dma_sync_single_range_for_device(ctx
->context
.ohci
->card
.device
,
3280 page_bus
, offset
, length
,
3283 payload_index
+= length
;
3287 irq
= DESCRIPTOR_IRQ_ALWAYS
;
3289 irq
= DESCRIPTOR_NO_IRQ
;
3291 last
= z
== 2 ? d
: d
+ z
- 1;
3292 last
->control
|= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST
|
3294 DESCRIPTOR_BRANCH_ALWAYS
|
3297 context_append(&ctx
->context
, d
, z
, header_z
);
3302 static int queue_iso_packet_per_buffer(struct iso_context
*ctx
,
3303 struct fw_iso_packet
*packet
,
3304 struct fw_iso_buffer
*buffer
,
3305 unsigned long payload
)
3307 struct device
*device
= ctx
->context
.ohci
->card
.device
;
3308 struct descriptor
*d
, *pd
;
3309 dma_addr_t d_bus
, page_bus
;
3310 u32 z
, header_z
, rest
;
3312 int page
, offset
, packet_count
, header_size
, payload_per_buffer
;
3315 * The OHCI controller puts the isochronous header and trailer in the
3316 * buffer, so we need at least 8 bytes.
3318 packet_count
= packet
->header_length
/ ctx
->base
.header_size
;
3319 header_size
= max(ctx
->base
.header_size
, (size_t)8);
3321 /* Get header size in number of descriptors. */
3322 header_z
= DIV_ROUND_UP(header_size
, sizeof(*d
));
3323 page
= payload
>> PAGE_SHIFT
;
3324 offset
= payload
& ~PAGE_MASK
;
3325 payload_per_buffer
= packet
->payload_length
/ packet_count
;
3327 for (i
= 0; i
< packet_count
; i
++) {
3328 /* d points to the header descriptor */
3329 z
= DIV_ROUND_UP(payload_per_buffer
+ offset
, PAGE_SIZE
) + 1;
3330 d
= context_get_descriptors(&ctx
->context
,
3331 z
+ header_z
, &d_bus
);
3335 d
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
3336 DESCRIPTOR_INPUT_MORE
);
3337 if (packet
->skip
&& i
== 0)
3338 d
->control
|= cpu_to_le16(DESCRIPTOR_WAIT
);
3339 d
->req_count
= cpu_to_le16(header_size
);
3340 d
->res_count
= d
->req_count
;
3341 d
->transfer_status
= 0;
3342 d
->data_address
= cpu_to_le32(d_bus
+ (z
* sizeof(*d
)));
3344 rest
= payload_per_buffer
;
3346 for (j
= 1; j
< z
; j
++) {
3348 pd
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
3349 DESCRIPTOR_INPUT_MORE
);
3351 if (offset
+ rest
< PAGE_SIZE
)
3354 length
= PAGE_SIZE
- offset
;
3355 pd
->req_count
= cpu_to_le16(length
);
3356 pd
->res_count
= pd
->req_count
;
3357 pd
->transfer_status
= 0;
3359 page_bus
= page_private(buffer
->pages
[page
]);
3360 pd
->data_address
= cpu_to_le32(page_bus
+ offset
);
3362 dma_sync_single_range_for_device(device
, page_bus
,
3366 offset
= (offset
+ length
) & ~PAGE_MASK
;
3371 pd
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
3372 DESCRIPTOR_INPUT_LAST
|
3373 DESCRIPTOR_BRANCH_ALWAYS
);
3374 if (packet
->interrupt
&& i
== packet_count
- 1)
3375 pd
->control
|= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
);
3377 context_append(&ctx
->context
, d
, z
, header_z
);
3383 static int queue_iso_buffer_fill(struct iso_context
*ctx
,
3384 struct fw_iso_packet
*packet
,
3385 struct fw_iso_buffer
*buffer
,
3386 unsigned long payload
)
3388 struct descriptor
*d
;
3389 dma_addr_t d_bus
, page_bus
;
3390 int page
, offset
, rest
, z
, i
, length
;
3392 page
= payload
>> PAGE_SHIFT
;
3393 offset
= payload
& ~PAGE_MASK
;
3394 rest
= packet
->payload_length
;
3396 /* We need one descriptor for each page in the buffer. */
3397 z
= DIV_ROUND_UP(offset
+ rest
, PAGE_SIZE
);
3399 if (WARN_ON(offset
& 3 || rest
& 3 || page
+ z
> buffer
->page_count
))
3402 for (i
= 0; i
< z
; i
++) {
3403 d
= context_get_descriptors(&ctx
->context
, 1, &d_bus
);
3407 d
->control
= cpu_to_le16(DESCRIPTOR_INPUT_MORE
|
3408 DESCRIPTOR_BRANCH_ALWAYS
);
3409 if (packet
->skip
&& i
== 0)
3410 d
->control
|= cpu_to_le16(DESCRIPTOR_WAIT
);
3411 if (packet
->interrupt
&& i
== z
- 1)
3412 d
->control
|= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
);
3414 if (offset
+ rest
< PAGE_SIZE
)
3417 length
= PAGE_SIZE
- offset
;
3418 d
->req_count
= cpu_to_le16(length
);
3419 d
->res_count
= d
->req_count
;
3420 d
->transfer_status
= 0;
3422 page_bus
= page_private(buffer
->pages
[page
]);
3423 d
->data_address
= cpu_to_le32(page_bus
+ offset
);
3425 dma_sync_single_range_for_device(ctx
->context
.ohci
->card
.device
,
3426 page_bus
, offset
, length
,
3433 context_append(&ctx
->context
, d
, 1, 0);
3439 static int ohci_queue_iso(struct fw_iso_context
*base
,
3440 struct fw_iso_packet
*packet
,
3441 struct fw_iso_buffer
*buffer
,
3442 unsigned long payload
)
3444 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
3445 unsigned long flags
;
3448 spin_lock_irqsave(&ctx
->context
.ohci
->lock
, flags
);
3449 switch (base
->type
) {
3450 case FW_ISO_CONTEXT_TRANSMIT
:
3451 ret
= queue_iso_transmit(ctx
, packet
, buffer
, payload
);
3453 case FW_ISO_CONTEXT_RECEIVE
:
3454 ret
= queue_iso_packet_per_buffer(ctx
, packet
, buffer
, payload
);
3456 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
3457 ret
= queue_iso_buffer_fill(ctx
, packet
, buffer
, payload
);
3460 spin_unlock_irqrestore(&ctx
->context
.ohci
->lock
, flags
);
3465 static void ohci_flush_queue_iso(struct fw_iso_context
*base
)
3467 struct context
*ctx
=
3468 &container_of(base
, struct iso_context
, base
)->context
;
3470 reg_write(ctx
->ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_WAKE
);
3473 static int ohci_flush_iso_completions(struct fw_iso_context
*base
)
3475 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
3478 tasklet_disable(&ctx
->context
.tasklet
);
3480 if (!test_and_set_bit_lock(0, &ctx
->flushing_completions
)) {
3481 context_tasklet((unsigned long)&ctx
->context
);
3483 switch (base
->type
) {
3484 case FW_ISO_CONTEXT_TRANSMIT
:
3485 case FW_ISO_CONTEXT_RECEIVE
:
3486 if (ctx
->header_length
!= 0)
3487 flush_iso_completions(ctx
);
3489 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
3490 if (ctx
->mc_completed
!= 0)
3491 flush_ir_buffer_fill(ctx
);
3497 clear_bit_unlock(0, &ctx
->flushing_completions
);
3498 smp_mb__after_clear_bit();
3501 tasklet_enable(&ctx
->context
.tasklet
);
3506 static const struct fw_card_driver ohci_driver
= {
3507 .enable
= ohci_enable
,
3508 .read_phy_reg
= ohci_read_phy_reg
,
3509 .update_phy_reg
= ohci_update_phy_reg
,
3510 .set_config_rom
= ohci_set_config_rom
,
3511 .send_request
= ohci_send_request
,
3512 .send_response
= ohci_send_response
,
3513 .cancel_packet
= ohci_cancel_packet
,
3514 .enable_phys_dma
= ohci_enable_phys_dma
,
3515 .read_csr
= ohci_read_csr
,
3516 .write_csr
= ohci_write_csr
,
3518 .allocate_iso_context
= ohci_allocate_iso_context
,
3519 .free_iso_context
= ohci_free_iso_context
,
3520 .set_iso_channels
= ohci_set_iso_channels
,
3521 .queue_iso
= ohci_queue_iso
,
3522 .flush_queue_iso
= ohci_flush_queue_iso
,
3523 .flush_iso_completions
= ohci_flush_iso_completions
,
3524 .start_iso
= ohci_start_iso
,
3525 .stop_iso
= ohci_stop_iso
,
3528 #ifdef CONFIG_PPC_PMAC
3529 static void pmac_ohci_on(struct pci_dev
*dev
)
3531 if (machine_is(powermac
)) {
3532 struct device_node
*ofn
= pci_device_to_OF_node(dev
);
3535 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER
, ofn
, 0, 1);
3536 pmac_call_feature(PMAC_FTR_1394_ENABLE
, ofn
, 0, 1);
3541 static void pmac_ohci_off(struct pci_dev
*dev
)
3543 if (machine_is(powermac
)) {
3544 struct device_node
*ofn
= pci_device_to_OF_node(dev
);
3547 pmac_call_feature(PMAC_FTR_1394_ENABLE
, ofn
, 0, 0);
3548 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER
, ofn
, 0, 0);
3553 static inline void pmac_ohci_on(struct pci_dev
*dev
) {}
3554 static inline void pmac_ohci_off(struct pci_dev
*dev
) {}
3555 #endif /* CONFIG_PPC_PMAC */
3557 static int pci_probe(struct pci_dev
*dev
,
3558 const struct pci_device_id
*ent
)
3560 struct fw_ohci
*ohci
;
3561 u32 bus_options
, max_receive
, link_speed
, version
;
3566 if (dev
->vendor
== PCI_VENDOR_ID_PINNACLE_SYSTEMS
) {
3567 dev_err(&dev
->dev
, "Pinnacle MovieBoard is not yet supported\n");
3571 ohci
= kzalloc(sizeof(*ohci
), GFP_KERNEL
);
3577 fw_card_initialize(&ohci
->card
, &ohci_driver
, &dev
->dev
);
3581 err
= pci_enable_device(dev
);
3583 dev_err(&dev
->dev
, "failed to enable OHCI hardware\n");
3587 pci_set_master(dev
);
3588 pci_write_config_dword(dev
, OHCI1394_PCI_HCI_Control
, 0);
3589 pci_set_drvdata(dev
, ohci
);
3591 spin_lock_init(&ohci
->lock
);
3592 mutex_init(&ohci
->phy_reg_mutex
);
3594 INIT_WORK(&ohci
->bus_reset_work
, bus_reset_work
);
3596 if (!(pci_resource_flags(dev
, 0) & IORESOURCE_MEM
) ||
3597 pci_resource_len(dev
, 0) < OHCI1394_REGISTER_SIZE
) {
3598 ohci_err(ohci
, "invalid MMIO resource\n");
3603 err
= pci_request_region(dev
, 0, ohci_driver_name
);
3605 ohci_err(ohci
, "MMIO resource unavailable\n");
3609 ohci
->registers
= pci_iomap(dev
, 0, OHCI1394_REGISTER_SIZE
);
3610 if (ohci
->registers
== NULL
) {
3611 ohci_err(ohci
, "failed to remap registers\n");
3616 for (i
= 0; i
< ARRAY_SIZE(ohci_quirks
); i
++)
3617 if ((ohci_quirks
[i
].vendor
== dev
->vendor
) &&
3618 (ohci_quirks
[i
].device
== (unsigned short)PCI_ANY_ID
||
3619 ohci_quirks
[i
].device
== dev
->device
) &&
3620 (ohci_quirks
[i
].revision
== (unsigned short)PCI_ANY_ID
||
3621 ohci_quirks
[i
].revision
>= dev
->revision
)) {
3622 ohci
->quirks
= ohci_quirks
[i
].flags
;
3626 ohci
->quirks
= param_quirks
;
3629 * Because dma_alloc_coherent() allocates at least one page,
3630 * we save space by using a common buffer for the AR request/
3631 * response descriptors and the self IDs buffer.
3633 BUILD_BUG_ON(AR_BUFFERS
* sizeof(struct descriptor
) > PAGE_SIZE
/4);
3634 BUILD_BUG_ON(SELF_ID_BUF_SIZE
> PAGE_SIZE
/2);
3635 ohci
->misc_buffer
= dma_alloc_coherent(ohci
->card
.device
,
3637 &ohci
->misc_buffer_bus
,
3639 if (!ohci
->misc_buffer
) {
3644 err
= ar_context_init(&ohci
->ar_request_ctx
, ohci
, 0,
3645 OHCI1394_AsReqRcvContextControlSet
);
3649 err
= ar_context_init(&ohci
->ar_response_ctx
, ohci
, PAGE_SIZE
/4,
3650 OHCI1394_AsRspRcvContextControlSet
);
3652 goto fail_arreq_ctx
;
3654 err
= context_init(&ohci
->at_request_ctx
, ohci
,
3655 OHCI1394_AsReqTrContextControlSet
, handle_at_packet
);
3657 goto fail_arrsp_ctx
;
3659 err
= context_init(&ohci
->at_response_ctx
, ohci
,
3660 OHCI1394_AsRspTrContextControlSet
, handle_at_packet
);
3662 goto fail_atreq_ctx
;
3664 reg_write(ohci
, OHCI1394_IsoRecvIntMaskSet
, ~0);
3665 ohci
->ir_context_channels
= ~0ULL;
3666 ohci
->ir_context_support
= reg_read(ohci
, OHCI1394_IsoRecvIntMaskSet
);
3667 reg_write(ohci
, OHCI1394_IsoRecvIntMaskClear
, ~0);
3668 ohci
->ir_context_mask
= ohci
->ir_context_support
;
3669 ohci
->n_ir
= hweight32(ohci
->ir_context_mask
);
3670 size
= sizeof(struct iso_context
) * ohci
->n_ir
;
3671 ohci
->ir_context_list
= kzalloc(size
, GFP_KERNEL
);
3673 reg_write(ohci
, OHCI1394_IsoXmitIntMaskSet
, ~0);
3674 ohci
->it_context_support
= reg_read(ohci
, OHCI1394_IsoXmitIntMaskSet
);
3675 /* JMicron JMB38x often shows 0 at first read, just ignore it */
3676 if (!ohci
->it_context_support
) {
3677 ohci_notice(ohci
, "overriding IsoXmitIntMask\n");
3678 ohci
->it_context_support
= 0xf;
3680 reg_write(ohci
, OHCI1394_IsoXmitIntMaskClear
, ~0);
3681 ohci
->it_context_mask
= ohci
->it_context_support
;
3682 ohci
->n_it
= hweight32(ohci
->it_context_mask
);
3683 size
= sizeof(struct iso_context
) * ohci
->n_it
;
3684 ohci
->it_context_list
= kzalloc(size
, GFP_KERNEL
);
3686 if (ohci
->it_context_list
== NULL
|| ohci
->ir_context_list
== NULL
) {
3691 ohci
->self_id
= ohci
->misc_buffer
+ PAGE_SIZE
/2;
3692 ohci
->self_id_bus
= ohci
->misc_buffer_bus
+ PAGE_SIZE
/2;
3694 bus_options
= reg_read(ohci
, OHCI1394_BusOptions
);
3695 max_receive
= (bus_options
>> 12) & 0xf;
3696 link_speed
= bus_options
& 0x7;
3697 guid
= ((u64
) reg_read(ohci
, OHCI1394_GUIDHi
) << 32) |
3698 reg_read(ohci
, OHCI1394_GUIDLo
);
3700 if (!(ohci
->quirks
& QUIRK_NO_MSI
))
3701 pci_enable_msi(dev
);
3702 if (request_irq(dev
->irq
, irq_handler
,
3703 pci_dev_msi_enabled(dev
) ? 0 : IRQF_SHARED
,
3704 ohci_driver_name
, ohci
)) {
3705 ohci_err(ohci
, "failed to allocate interrupt %d\n", dev
->irq
);
3710 err
= fw_card_add(&ohci
->card
, max_receive
, link_speed
, guid
);
3714 version
= reg_read(ohci
, OHCI1394_Version
) & 0x00ff00ff;
3716 "added OHCI v%x.%x device as card %d, "
3717 "%d IR + %d IT contexts, quirks 0x%x\n",
3718 version
>> 16, version
& 0xff, ohci
->card
.index
,
3719 ohci
->n_ir
, ohci
->n_it
, ohci
->quirks
);
3724 free_irq(dev
->irq
, ohci
);
3726 pci_disable_msi(dev
);
3728 kfree(ohci
->ir_context_list
);
3729 kfree(ohci
->it_context_list
);
3730 context_release(&ohci
->at_response_ctx
);
3732 context_release(&ohci
->at_request_ctx
);
3734 ar_context_release(&ohci
->ar_response_ctx
);
3736 ar_context_release(&ohci
->ar_request_ctx
);
3738 dma_free_coherent(ohci
->card
.device
, PAGE_SIZE
,
3739 ohci
->misc_buffer
, ohci
->misc_buffer_bus
);
3741 pci_iounmap(dev
, ohci
->registers
);
3743 pci_release_region(dev
, 0);
3745 pci_disable_device(dev
);
3753 static void pci_remove(struct pci_dev
*dev
)
3755 struct fw_ohci
*ohci
= pci_get_drvdata(dev
);
3758 * If the removal is happening from the suspend state, LPS won't be
3759 * enabled and host registers (eg., IntMaskClear) won't be accessible.
3761 if (reg_read(ohci
, OHCI1394_HCControlSet
) & OHCI1394_HCControl_LPS
) {
3762 reg_write(ohci
, OHCI1394_IntMaskClear
, ~0);
3765 cancel_work_sync(&ohci
->bus_reset_work
);
3766 fw_core_remove_card(&ohci
->card
);
3769 * FIXME: Fail all pending packets here, now that the upper
3770 * layers can't queue any more.
3773 software_reset(ohci
);
3774 free_irq(dev
->irq
, ohci
);
3776 if (ohci
->next_config_rom
&& ohci
->next_config_rom
!= ohci
->config_rom
)
3777 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
3778 ohci
->next_config_rom
, ohci
->next_config_rom_bus
);
3779 if (ohci
->config_rom
)
3780 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
3781 ohci
->config_rom
, ohci
->config_rom_bus
);
3782 ar_context_release(&ohci
->ar_request_ctx
);
3783 ar_context_release(&ohci
->ar_response_ctx
);
3784 dma_free_coherent(ohci
->card
.device
, PAGE_SIZE
,
3785 ohci
->misc_buffer
, ohci
->misc_buffer_bus
);
3786 context_release(&ohci
->at_request_ctx
);
3787 context_release(&ohci
->at_response_ctx
);
3788 kfree(ohci
->it_context_list
);
3789 kfree(ohci
->ir_context_list
);
3790 pci_disable_msi(dev
);
3791 pci_iounmap(dev
, ohci
->registers
);
3792 pci_release_region(dev
, 0);
3793 pci_disable_device(dev
);
3797 dev_notice(&dev
->dev
, "removed fw-ohci device\n");
3801 static int pci_suspend(struct pci_dev
*dev
, pm_message_t state
)
3803 struct fw_ohci
*ohci
= pci_get_drvdata(dev
);
3806 software_reset(ohci
);
3807 err
= pci_save_state(dev
);
3809 ohci_err(ohci
, "pci_save_state failed\n");
3812 err
= pci_set_power_state(dev
, pci_choose_state(dev
, state
));
3814 ohci_err(ohci
, "pci_set_power_state failed with %d\n", err
);
3820 static int pci_resume(struct pci_dev
*dev
)
3822 struct fw_ohci
*ohci
= pci_get_drvdata(dev
);
3826 pci_set_power_state(dev
, PCI_D0
);
3827 pci_restore_state(dev
);
3828 err
= pci_enable_device(dev
);
3830 ohci_err(ohci
, "pci_enable_device failed\n");
3834 /* Some systems don't setup GUID register on resume from ram */
3835 if (!reg_read(ohci
, OHCI1394_GUIDLo
) &&
3836 !reg_read(ohci
, OHCI1394_GUIDHi
)) {
3837 reg_write(ohci
, OHCI1394_GUIDLo
, (u32
)ohci
->card
.guid
);
3838 reg_write(ohci
, OHCI1394_GUIDHi
, (u32
)(ohci
->card
.guid
>> 32));
3841 err
= ohci_enable(&ohci
->card
, NULL
, 0);
3845 ohci_resume_iso_dma(ohci
);
3851 static const struct pci_device_id pci_table
[] = {
3852 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI
, ~0) },
3856 MODULE_DEVICE_TABLE(pci
, pci_table
);
3858 static struct pci_driver fw_ohci_pci_driver
= {
3859 .name
= ohci_driver_name
,
3860 .id_table
= pci_table
,
3862 .remove
= pci_remove
,
3864 .resume
= pci_resume
,
3865 .suspend
= pci_suspend
,
3869 static int __init
fw_ohci_init(void)
3871 selfid_workqueue
= alloc_workqueue(KBUILD_MODNAME
, WQ_MEM_RECLAIM
, 0);
3872 if (!selfid_workqueue
)
3875 return pci_register_driver(&fw_ohci_pci_driver
);
3878 static void __exit
fw_ohci_cleanup(void)
3880 pci_unregister_driver(&fw_ohci_pci_driver
);
3881 destroy_workqueue(selfid_workqueue
);
3884 module_init(fw_ohci_init
);
3885 module_exit(fw_ohci_cleanup
);
3887 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3888 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3889 MODULE_LICENSE("GPL");
3891 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3892 MODULE_ALIAS("ohci1394");