mfd: wm8350-i2c: Make sure the i2c regmap functions are compiled
[linux/fpc-iii.git] / drivers / iommu / intel-iommu.c
blobfd0516c9fbfeac24e10313a2f0c7465dedc0ce45
1 /*
2 * Copyright (c) 2006, Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 * Author: Fenghua Yu <fenghua.yu@intel.com>
24 #include <linux/init.h>
25 #include <linux/bitmap.h>
26 #include <linux/debugfs.h>
27 #include <linux/export.h>
28 #include <linux/slab.h>
29 #include <linux/irq.h>
30 #include <linux/interrupt.h>
31 #include <linux/spinlock.h>
32 #include <linux/pci.h>
33 #include <linux/dmar.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mempool.h>
36 #include <linux/timer.h>
37 #include <linux/iova.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/syscore_ops.h>
41 #include <linux/tboot.h>
42 #include <linux/dmi.h>
43 #include <linux/pci-ats.h>
44 #include <linux/memblock.h>
45 #include <asm/irq_remapping.h>
46 #include <asm/cacheflush.h>
47 #include <asm/iommu.h>
49 #include "irq_remapping.h"
50 #include "pci.h"
52 #define ROOT_SIZE VTD_PAGE_SIZE
53 #define CONTEXT_SIZE VTD_PAGE_SIZE
55 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
56 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
57 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
59 #define IOAPIC_RANGE_START (0xfee00000)
60 #define IOAPIC_RANGE_END (0xfeefffff)
61 #define IOVA_START_ADDR (0x1000)
63 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
65 #define MAX_AGAW_WIDTH 64
67 #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
68 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
70 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
71 to match. That way, we can use 'unsigned long' for PFNs with impunity. */
72 #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
73 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
74 #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
76 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
77 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
78 #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
80 /* page table handling */
81 #define LEVEL_STRIDE (9)
82 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
85 * This bitmap is used to advertise the page sizes our hardware support
86 * to the IOMMU core, which will then use this information to split
87 * physically contiguous memory regions it is mapping into page sizes
88 * that we support.
90 * Traditionally the IOMMU core just handed us the mappings directly,
91 * after making sure the size is an order of a 4KiB page and that the
92 * mapping has natural alignment.
94 * To retain this behavior, we currently advertise that we support
95 * all page sizes that are an order of 4KiB.
97 * If at some point we'd like to utilize the IOMMU core's new behavior,
98 * we could change this to advertise the real page sizes we support.
100 #define INTEL_IOMMU_PGSIZES (~0xFFFUL)
102 static inline int agaw_to_level(int agaw)
104 return agaw + 2;
107 static inline int agaw_to_width(int agaw)
109 return 30 + agaw * LEVEL_STRIDE;
112 static inline int width_to_agaw(int width)
114 return (width - 30) / LEVEL_STRIDE;
117 static inline unsigned int level_to_offset_bits(int level)
119 return (level - 1) * LEVEL_STRIDE;
122 static inline int pfn_level_offset(unsigned long pfn, int level)
124 return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
127 static inline unsigned long level_mask(int level)
129 return -1UL << level_to_offset_bits(level);
132 static inline unsigned long level_size(int level)
134 return 1UL << level_to_offset_bits(level);
137 static inline unsigned long align_to_level(unsigned long pfn, int level)
139 return (pfn + level_size(level) - 1) & level_mask(level);
142 static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
144 return 1 << ((lvl - 1) * LEVEL_STRIDE);
147 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
148 are never going to work. */
149 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
151 return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
154 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
156 return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
158 static inline unsigned long page_to_dma_pfn(struct page *pg)
160 return mm_to_dma_pfn(page_to_pfn(pg));
162 static inline unsigned long virt_to_dma_pfn(void *p)
164 return page_to_dma_pfn(virt_to_page(p));
167 /* global iommu list, set NULL for ignored DMAR units */
168 static struct intel_iommu **g_iommus;
170 static void __init check_tylersburg_isoch(void);
171 static int rwbf_quirk;
174 * set to 1 to panic kernel if can't successfully enable VT-d
175 * (used when kernel is launched w/ TXT)
177 static int force_on = 0;
180 * 0: Present
181 * 1-11: Reserved
182 * 12-63: Context Ptr (12 - (haw-1))
183 * 64-127: Reserved
185 struct root_entry {
186 u64 val;
187 u64 rsvd1;
189 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
190 static inline bool root_present(struct root_entry *root)
192 return (root->val & 1);
194 static inline void set_root_present(struct root_entry *root)
196 root->val |= 1;
198 static inline void set_root_value(struct root_entry *root, unsigned long value)
200 root->val |= value & VTD_PAGE_MASK;
203 static inline struct context_entry *
204 get_context_addr_from_root(struct root_entry *root)
206 return (struct context_entry *)
207 (root_present(root)?phys_to_virt(
208 root->val & VTD_PAGE_MASK) :
209 NULL);
213 * low 64 bits:
214 * 0: present
215 * 1: fault processing disable
216 * 2-3: translation type
217 * 12-63: address space root
218 * high 64 bits:
219 * 0-2: address width
220 * 3-6: aval
221 * 8-23: domain id
223 struct context_entry {
224 u64 lo;
225 u64 hi;
228 static inline bool context_present(struct context_entry *context)
230 return (context->lo & 1);
232 static inline void context_set_present(struct context_entry *context)
234 context->lo |= 1;
237 static inline void context_set_fault_enable(struct context_entry *context)
239 context->lo &= (((u64)-1) << 2) | 1;
242 static inline void context_set_translation_type(struct context_entry *context,
243 unsigned long value)
245 context->lo &= (((u64)-1) << 4) | 3;
246 context->lo |= (value & 3) << 2;
249 static inline void context_set_address_root(struct context_entry *context,
250 unsigned long value)
252 context->lo |= value & VTD_PAGE_MASK;
255 static inline void context_set_address_width(struct context_entry *context,
256 unsigned long value)
258 context->hi |= value & 7;
261 static inline void context_set_domain_id(struct context_entry *context,
262 unsigned long value)
264 context->hi |= (value & ((1 << 16) - 1)) << 8;
267 static inline void context_clear_entry(struct context_entry *context)
269 context->lo = 0;
270 context->hi = 0;
274 * 0: readable
275 * 1: writable
276 * 2-6: reserved
277 * 7: super page
278 * 8-10: available
279 * 11: snoop behavior
280 * 12-63: Host physcial address
282 struct dma_pte {
283 u64 val;
286 static inline void dma_clear_pte(struct dma_pte *pte)
288 pte->val = 0;
291 static inline void dma_set_pte_readable(struct dma_pte *pte)
293 pte->val |= DMA_PTE_READ;
296 static inline void dma_set_pte_writable(struct dma_pte *pte)
298 pte->val |= DMA_PTE_WRITE;
301 static inline void dma_set_pte_snp(struct dma_pte *pte)
303 pte->val |= DMA_PTE_SNP;
306 static inline void dma_set_pte_prot(struct dma_pte *pte, unsigned long prot)
308 pte->val = (pte->val & ~3) | (prot & 3);
311 static inline u64 dma_pte_addr(struct dma_pte *pte)
313 #ifdef CONFIG_64BIT
314 return pte->val & VTD_PAGE_MASK;
315 #else
316 /* Must have a full atomic 64-bit read */
317 return __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
318 #endif
321 static inline void dma_set_pte_pfn(struct dma_pte *pte, unsigned long pfn)
323 pte->val |= (uint64_t)pfn << VTD_PAGE_SHIFT;
326 static inline bool dma_pte_present(struct dma_pte *pte)
328 return (pte->val & 3) != 0;
331 static inline bool dma_pte_superpage(struct dma_pte *pte)
333 return (pte->val & (1 << 7));
336 static inline int first_pte_in_page(struct dma_pte *pte)
338 return !((unsigned long)pte & ~VTD_PAGE_MASK);
342 * This domain is a statically identity mapping domain.
343 * 1. This domain creats a static 1:1 mapping to all usable memory.
344 * 2. It maps to each iommu if successful.
345 * 3. Each iommu mapps to this domain if successful.
347 static struct dmar_domain *si_domain;
348 static int hw_pass_through = 1;
350 /* devices under the same p2p bridge are owned in one domain */
351 #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
353 /* domain represents a virtual machine, more than one devices
354 * across iommus may be owned in one domain, e.g. kvm guest.
356 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1)
358 /* si_domain contains mulitple devices */
359 #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 2)
361 /* define the limit of IOMMUs supported in each domain */
362 #ifdef CONFIG_X86
363 # define IOMMU_UNITS_SUPPORTED MAX_IO_APICS
364 #else
365 # define IOMMU_UNITS_SUPPORTED 64
366 #endif
368 struct dmar_domain {
369 int id; /* domain id */
370 int nid; /* node id */
371 DECLARE_BITMAP(iommu_bmp, IOMMU_UNITS_SUPPORTED);
372 /* bitmap of iommus this domain uses*/
374 struct list_head devices; /* all devices' list */
375 struct iova_domain iovad; /* iova's that belong to this domain */
377 struct dma_pte *pgd; /* virtual address */
378 int gaw; /* max guest address width */
380 /* adjusted guest address width, 0 is level 2 30-bit */
381 int agaw;
383 int flags; /* flags to find out type of domain */
385 int iommu_coherency;/* indicate coherency of iommu access */
386 int iommu_snooping; /* indicate snooping control feature*/
387 int iommu_count; /* reference count of iommu */
388 int iommu_superpage;/* Level of superpages supported:
389 0 == 4KiB (no superpages), 1 == 2MiB,
390 2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
391 spinlock_t iommu_lock; /* protect iommu set in domain */
392 u64 max_addr; /* maximum mapped address */
395 /* PCI domain-device relationship */
396 struct device_domain_info {
397 struct list_head link; /* link to domain siblings */
398 struct list_head global; /* link to global list */
399 int segment; /* PCI domain */
400 u8 bus; /* PCI bus number */
401 u8 devfn; /* PCI devfn number */
402 struct pci_dev *dev; /* it's NULL for PCIe-to-PCI bridge */
403 struct intel_iommu *iommu; /* IOMMU used by this device */
404 struct dmar_domain *domain; /* pointer to domain */
407 static void flush_unmaps_timeout(unsigned long data);
409 DEFINE_TIMER(unmap_timer, flush_unmaps_timeout, 0, 0);
411 #define HIGH_WATER_MARK 250
412 struct deferred_flush_tables {
413 int next;
414 struct iova *iova[HIGH_WATER_MARK];
415 struct dmar_domain *domain[HIGH_WATER_MARK];
418 static struct deferred_flush_tables *deferred_flush;
420 /* bitmap for indexing intel_iommus */
421 static int g_num_of_iommus;
423 static DEFINE_SPINLOCK(async_umap_flush_lock);
424 static LIST_HEAD(unmaps_to_do);
426 static int timer_on;
427 static long list_size;
429 static void domain_remove_dev_info(struct dmar_domain *domain);
431 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
432 int dmar_disabled = 0;
433 #else
434 int dmar_disabled = 1;
435 #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
437 int intel_iommu_enabled = 0;
438 EXPORT_SYMBOL_GPL(intel_iommu_enabled);
440 static int dmar_map_gfx = 1;
441 static int dmar_forcedac;
442 static int intel_iommu_strict;
443 static int intel_iommu_superpage = 1;
445 int intel_iommu_gfx_mapped;
446 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
448 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
449 static DEFINE_SPINLOCK(device_domain_lock);
450 static LIST_HEAD(device_domain_list);
452 static struct iommu_ops intel_iommu_ops;
454 static int __init intel_iommu_setup(char *str)
456 if (!str)
457 return -EINVAL;
458 while (*str) {
459 if (!strncmp(str, "on", 2)) {
460 dmar_disabled = 0;
461 printk(KERN_INFO "Intel-IOMMU: enabled\n");
462 } else if (!strncmp(str, "off", 3)) {
463 dmar_disabled = 1;
464 printk(KERN_INFO "Intel-IOMMU: disabled\n");
465 } else if (!strncmp(str, "igfx_off", 8)) {
466 dmar_map_gfx = 0;
467 printk(KERN_INFO
468 "Intel-IOMMU: disable GFX device mapping\n");
469 } else if (!strncmp(str, "forcedac", 8)) {
470 printk(KERN_INFO
471 "Intel-IOMMU: Forcing DAC for PCI devices\n");
472 dmar_forcedac = 1;
473 } else if (!strncmp(str, "strict", 6)) {
474 printk(KERN_INFO
475 "Intel-IOMMU: disable batched IOTLB flush\n");
476 intel_iommu_strict = 1;
477 } else if (!strncmp(str, "sp_off", 6)) {
478 printk(KERN_INFO
479 "Intel-IOMMU: disable supported super page\n");
480 intel_iommu_superpage = 0;
483 str += strcspn(str, ",");
484 while (*str == ',')
485 str++;
487 return 0;
489 __setup("intel_iommu=", intel_iommu_setup);
491 static struct kmem_cache *iommu_domain_cache;
492 static struct kmem_cache *iommu_devinfo_cache;
493 static struct kmem_cache *iommu_iova_cache;
495 static inline void *alloc_pgtable_page(int node)
497 struct page *page;
498 void *vaddr = NULL;
500 page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
501 if (page)
502 vaddr = page_address(page);
503 return vaddr;
506 static inline void free_pgtable_page(void *vaddr)
508 free_page((unsigned long)vaddr);
511 static inline void *alloc_domain_mem(void)
513 return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
516 static void free_domain_mem(void *vaddr)
518 kmem_cache_free(iommu_domain_cache, vaddr);
521 static inline void * alloc_devinfo_mem(void)
523 return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
526 static inline void free_devinfo_mem(void *vaddr)
528 kmem_cache_free(iommu_devinfo_cache, vaddr);
531 struct iova *alloc_iova_mem(void)
533 return kmem_cache_alloc(iommu_iova_cache, GFP_ATOMIC);
536 void free_iova_mem(struct iova *iova)
538 kmem_cache_free(iommu_iova_cache, iova);
542 static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
544 unsigned long sagaw;
545 int agaw = -1;
547 sagaw = cap_sagaw(iommu->cap);
548 for (agaw = width_to_agaw(max_gaw);
549 agaw >= 0; agaw--) {
550 if (test_bit(agaw, &sagaw))
551 break;
554 return agaw;
558 * Calculate max SAGAW for each iommu.
560 int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
562 return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
566 * calculate agaw for each iommu.
567 * "SAGAW" may be different across iommus, use a default agaw, and
568 * get a supported less agaw for iommus that don't support the default agaw.
570 int iommu_calculate_agaw(struct intel_iommu *iommu)
572 return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
575 /* This functionin only returns single iommu in a domain */
576 static struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
578 int iommu_id;
580 /* si_domain and vm domain should not get here. */
581 BUG_ON(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE);
582 BUG_ON(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY);
584 iommu_id = find_first_bit(domain->iommu_bmp, g_num_of_iommus);
585 if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
586 return NULL;
588 return g_iommus[iommu_id];
591 static void domain_update_iommu_coherency(struct dmar_domain *domain)
593 int i;
595 i = find_first_bit(domain->iommu_bmp, g_num_of_iommus);
597 domain->iommu_coherency = i < g_num_of_iommus ? 1 : 0;
599 for_each_set_bit(i, domain->iommu_bmp, g_num_of_iommus) {
600 if (!ecap_coherent(g_iommus[i]->ecap)) {
601 domain->iommu_coherency = 0;
602 break;
607 static void domain_update_iommu_snooping(struct dmar_domain *domain)
609 int i;
611 domain->iommu_snooping = 1;
613 for_each_set_bit(i, domain->iommu_bmp, g_num_of_iommus) {
614 if (!ecap_sc_support(g_iommus[i]->ecap)) {
615 domain->iommu_snooping = 0;
616 break;
621 static void domain_update_iommu_superpage(struct dmar_domain *domain)
623 struct dmar_drhd_unit *drhd;
624 struct intel_iommu *iommu = NULL;
625 int mask = 0xf;
627 if (!intel_iommu_superpage) {
628 domain->iommu_superpage = 0;
629 return;
632 /* set iommu_superpage to the smallest common denominator */
633 for_each_active_iommu(iommu, drhd) {
634 mask &= cap_super_page_val(iommu->cap);
635 if (!mask) {
636 break;
639 domain->iommu_superpage = fls(mask);
642 /* Some capabilities may be different across iommus */
643 static void domain_update_iommu_cap(struct dmar_domain *domain)
645 domain_update_iommu_coherency(domain);
646 domain_update_iommu_snooping(domain);
647 domain_update_iommu_superpage(domain);
650 static struct intel_iommu *device_to_iommu(int segment, u8 bus, u8 devfn)
652 struct dmar_drhd_unit *drhd = NULL;
653 int i;
655 for_each_drhd_unit(drhd) {
656 if (drhd->ignored)
657 continue;
658 if (segment != drhd->segment)
659 continue;
661 for (i = 0; i < drhd->devices_cnt; i++) {
662 if (drhd->devices[i] &&
663 drhd->devices[i]->bus->number == bus &&
664 drhd->devices[i]->devfn == devfn)
665 return drhd->iommu;
666 if (drhd->devices[i] &&
667 drhd->devices[i]->subordinate &&
668 drhd->devices[i]->subordinate->number <= bus &&
669 drhd->devices[i]->subordinate->busn_res.end >= bus)
670 return drhd->iommu;
673 if (drhd->include_all)
674 return drhd->iommu;
677 return NULL;
680 static void domain_flush_cache(struct dmar_domain *domain,
681 void *addr, int size)
683 if (!domain->iommu_coherency)
684 clflush_cache_range(addr, size);
687 /* Gets context entry for a given bus and devfn */
688 static struct context_entry * device_to_context_entry(struct intel_iommu *iommu,
689 u8 bus, u8 devfn)
691 struct root_entry *root;
692 struct context_entry *context;
693 unsigned long phy_addr;
694 unsigned long flags;
696 spin_lock_irqsave(&iommu->lock, flags);
697 root = &iommu->root_entry[bus];
698 context = get_context_addr_from_root(root);
699 if (!context) {
700 context = (struct context_entry *)
701 alloc_pgtable_page(iommu->node);
702 if (!context) {
703 spin_unlock_irqrestore(&iommu->lock, flags);
704 return NULL;
706 __iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
707 phy_addr = virt_to_phys((void *)context);
708 set_root_value(root, phy_addr);
709 set_root_present(root);
710 __iommu_flush_cache(iommu, root, sizeof(*root));
712 spin_unlock_irqrestore(&iommu->lock, flags);
713 return &context[devfn];
716 static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
718 struct root_entry *root;
719 struct context_entry *context;
720 int ret;
721 unsigned long flags;
723 spin_lock_irqsave(&iommu->lock, flags);
724 root = &iommu->root_entry[bus];
725 context = get_context_addr_from_root(root);
726 if (!context) {
727 ret = 0;
728 goto out;
730 ret = context_present(&context[devfn]);
731 out:
732 spin_unlock_irqrestore(&iommu->lock, flags);
733 return ret;
736 static void clear_context_table(struct intel_iommu *iommu, u8 bus, u8 devfn)
738 struct root_entry *root;
739 struct context_entry *context;
740 unsigned long flags;
742 spin_lock_irqsave(&iommu->lock, flags);
743 root = &iommu->root_entry[bus];
744 context = get_context_addr_from_root(root);
745 if (context) {
746 context_clear_entry(&context[devfn]);
747 __iommu_flush_cache(iommu, &context[devfn], \
748 sizeof(*context));
750 spin_unlock_irqrestore(&iommu->lock, flags);
753 static void free_context_table(struct intel_iommu *iommu)
755 struct root_entry *root;
756 int i;
757 unsigned long flags;
758 struct context_entry *context;
760 spin_lock_irqsave(&iommu->lock, flags);
761 if (!iommu->root_entry) {
762 goto out;
764 for (i = 0; i < ROOT_ENTRY_NR; i++) {
765 root = &iommu->root_entry[i];
766 context = get_context_addr_from_root(root);
767 if (context)
768 free_pgtable_page(context);
770 free_pgtable_page(iommu->root_entry);
771 iommu->root_entry = NULL;
772 out:
773 spin_unlock_irqrestore(&iommu->lock, flags);
776 static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
777 unsigned long pfn, int target_level)
779 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
780 struct dma_pte *parent, *pte = NULL;
781 int level = agaw_to_level(domain->agaw);
782 int offset;
784 BUG_ON(!domain->pgd);
786 if (addr_width < BITS_PER_LONG && pfn >> addr_width)
787 /* Address beyond IOMMU's addressing capabilities. */
788 return NULL;
790 parent = domain->pgd;
792 while (level > 0) {
793 void *tmp_page;
795 offset = pfn_level_offset(pfn, level);
796 pte = &parent[offset];
797 if (!target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
798 break;
799 if (level == target_level)
800 break;
802 if (!dma_pte_present(pte)) {
803 uint64_t pteval;
805 tmp_page = alloc_pgtable_page(domain->nid);
807 if (!tmp_page)
808 return NULL;
810 domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
811 pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
812 if (cmpxchg64(&pte->val, 0ULL, pteval)) {
813 /* Someone else set it while we were thinking; use theirs. */
814 free_pgtable_page(tmp_page);
815 } else {
816 dma_pte_addr(pte);
817 domain_flush_cache(domain, pte, sizeof(*pte));
820 parent = phys_to_virt(dma_pte_addr(pte));
821 level--;
824 return pte;
828 /* return address's pte at specific level */
829 static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
830 unsigned long pfn,
831 int level, int *large_page)
833 struct dma_pte *parent, *pte = NULL;
834 int total = agaw_to_level(domain->agaw);
835 int offset;
837 parent = domain->pgd;
838 while (level <= total) {
839 offset = pfn_level_offset(pfn, total);
840 pte = &parent[offset];
841 if (level == total)
842 return pte;
844 if (!dma_pte_present(pte)) {
845 *large_page = total;
846 break;
849 if (pte->val & DMA_PTE_LARGE_PAGE) {
850 *large_page = total;
851 return pte;
854 parent = phys_to_virt(dma_pte_addr(pte));
855 total--;
857 return NULL;
860 /* clear last level pte, a tlb flush should be followed */
861 static int dma_pte_clear_range(struct dmar_domain *domain,
862 unsigned long start_pfn,
863 unsigned long last_pfn)
865 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
866 unsigned int large_page = 1;
867 struct dma_pte *first_pte, *pte;
868 int order;
870 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
871 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
872 BUG_ON(start_pfn > last_pfn);
874 /* we don't need lock here; nobody else touches the iova range */
875 do {
876 large_page = 1;
877 first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
878 if (!pte) {
879 start_pfn = align_to_level(start_pfn + 1, large_page + 1);
880 continue;
882 do {
883 dma_clear_pte(pte);
884 start_pfn += lvl_to_nr_pages(large_page);
885 pte++;
886 } while (start_pfn <= last_pfn && !first_pte_in_page(pte));
888 domain_flush_cache(domain, first_pte,
889 (void *)pte - (void *)first_pte);
891 } while (start_pfn && start_pfn <= last_pfn);
893 order = (large_page - 1) * 9;
894 return order;
897 static void dma_pte_free_level(struct dmar_domain *domain, int level,
898 struct dma_pte *pte, unsigned long pfn,
899 unsigned long start_pfn, unsigned long last_pfn)
901 pfn = max(start_pfn, pfn);
902 pte = &pte[pfn_level_offset(pfn, level)];
904 do {
905 unsigned long level_pfn;
906 struct dma_pte *level_pte;
908 if (!dma_pte_present(pte) || dma_pte_superpage(pte))
909 goto next;
911 level_pfn = pfn & level_mask(level - 1);
912 level_pte = phys_to_virt(dma_pte_addr(pte));
914 if (level > 2)
915 dma_pte_free_level(domain, level - 1, level_pte,
916 level_pfn, start_pfn, last_pfn);
918 /* If range covers entire pagetable, free it */
919 if (!(start_pfn > level_pfn ||
920 last_pfn < level_pfn + level_size(level) - 1)) {
921 dma_clear_pte(pte);
922 domain_flush_cache(domain, pte, sizeof(*pte));
923 free_pgtable_page(level_pte);
925 next:
926 pfn += level_size(level);
927 } while (!first_pte_in_page(++pte) && pfn <= last_pfn);
930 /* free page table pages. last level pte should already be cleared */
931 static void dma_pte_free_pagetable(struct dmar_domain *domain,
932 unsigned long start_pfn,
933 unsigned long last_pfn)
935 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
937 BUG_ON(addr_width < BITS_PER_LONG && start_pfn >> addr_width);
938 BUG_ON(addr_width < BITS_PER_LONG && last_pfn >> addr_width);
939 BUG_ON(start_pfn > last_pfn);
941 /* We don't need lock here; nobody else touches the iova range */
942 dma_pte_free_level(domain, agaw_to_level(domain->agaw),
943 domain->pgd, 0, start_pfn, last_pfn);
945 /* free pgd */
946 if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
947 free_pgtable_page(domain->pgd);
948 domain->pgd = NULL;
952 /* iommu handling */
953 static int iommu_alloc_root_entry(struct intel_iommu *iommu)
955 struct root_entry *root;
956 unsigned long flags;
958 root = (struct root_entry *)alloc_pgtable_page(iommu->node);
959 if (!root)
960 return -ENOMEM;
962 __iommu_flush_cache(iommu, root, ROOT_SIZE);
964 spin_lock_irqsave(&iommu->lock, flags);
965 iommu->root_entry = root;
966 spin_unlock_irqrestore(&iommu->lock, flags);
968 return 0;
971 static void iommu_set_root_entry(struct intel_iommu *iommu)
973 void *addr;
974 u32 sts;
975 unsigned long flag;
977 addr = iommu->root_entry;
979 raw_spin_lock_irqsave(&iommu->register_lock, flag);
980 dmar_writeq(iommu->reg + DMAR_RTADDR_REG, virt_to_phys(addr));
982 writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
984 /* Make sure hardware complete it */
985 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
986 readl, (sts & DMA_GSTS_RTPS), sts);
988 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
991 static void iommu_flush_write_buffer(struct intel_iommu *iommu)
993 u32 val;
994 unsigned long flag;
996 if (!rwbf_quirk && !cap_rwbf(iommu->cap))
997 return;
999 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1000 writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
1002 /* Make sure hardware complete it */
1003 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1004 readl, (!(val & DMA_GSTS_WBFS)), val);
1006 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1009 /* return value determine if we need a write buffer flush */
1010 static void __iommu_flush_context(struct intel_iommu *iommu,
1011 u16 did, u16 source_id, u8 function_mask,
1012 u64 type)
1014 u64 val = 0;
1015 unsigned long flag;
1017 switch (type) {
1018 case DMA_CCMD_GLOBAL_INVL:
1019 val = DMA_CCMD_GLOBAL_INVL;
1020 break;
1021 case DMA_CCMD_DOMAIN_INVL:
1022 val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
1023 break;
1024 case DMA_CCMD_DEVICE_INVL:
1025 val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
1026 | DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
1027 break;
1028 default:
1029 BUG();
1031 val |= DMA_CCMD_ICC;
1033 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1034 dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
1036 /* Make sure hardware complete it */
1037 IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
1038 dmar_readq, (!(val & DMA_CCMD_ICC)), val);
1040 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1043 /* return value determine if we need a write buffer flush */
1044 static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
1045 u64 addr, unsigned int size_order, u64 type)
1047 int tlb_offset = ecap_iotlb_offset(iommu->ecap);
1048 u64 val = 0, val_iva = 0;
1049 unsigned long flag;
1051 switch (type) {
1052 case DMA_TLB_GLOBAL_FLUSH:
1053 /* global flush doesn't need set IVA_REG */
1054 val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
1055 break;
1056 case DMA_TLB_DSI_FLUSH:
1057 val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1058 break;
1059 case DMA_TLB_PSI_FLUSH:
1060 val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
1061 /* Note: always flush non-leaf currently */
1062 val_iva = size_order | addr;
1063 break;
1064 default:
1065 BUG();
1067 /* Note: set drain read/write */
1068 #if 0
1070 * This is probably to be super secure.. Looks like we can
1071 * ignore it without any impact.
1073 if (cap_read_drain(iommu->cap))
1074 val |= DMA_TLB_READ_DRAIN;
1075 #endif
1076 if (cap_write_drain(iommu->cap))
1077 val |= DMA_TLB_WRITE_DRAIN;
1079 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1080 /* Note: Only uses first TLB reg currently */
1081 if (val_iva)
1082 dmar_writeq(iommu->reg + tlb_offset, val_iva);
1083 dmar_writeq(iommu->reg + tlb_offset + 8, val);
1085 /* Make sure hardware complete it */
1086 IOMMU_WAIT_OP(iommu, tlb_offset + 8,
1087 dmar_readq, (!(val & DMA_TLB_IVT)), val);
1089 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1091 /* check IOTLB invalidation granularity */
1092 if (DMA_TLB_IAIG(val) == 0)
1093 printk(KERN_ERR"IOMMU: flush IOTLB failed\n");
1094 if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
1095 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
1096 (unsigned long long)DMA_TLB_IIRG(type),
1097 (unsigned long long)DMA_TLB_IAIG(val));
1100 static struct device_domain_info *iommu_support_dev_iotlb(
1101 struct dmar_domain *domain, int segment, u8 bus, u8 devfn)
1103 int found = 0;
1104 unsigned long flags;
1105 struct device_domain_info *info;
1106 struct intel_iommu *iommu = device_to_iommu(segment, bus, devfn);
1108 if (!ecap_dev_iotlb_support(iommu->ecap))
1109 return NULL;
1111 if (!iommu->qi)
1112 return NULL;
1114 spin_lock_irqsave(&device_domain_lock, flags);
1115 list_for_each_entry(info, &domain->devices, link)
1116 if (info->bus == bus && info->devfn == devfn) {
1117 found = 1;
1118 break;
1120 spin_unlock_irqrestore(&device_domain_lock, flags);
1122 if (!found || !info->dev)
1123 return NULL;
1125 if (!pci_find_ext_capability(info->dev, PCI_EXT_CAP_ID_ATS))
1126 return NULL;
1128 if (!dmar_find_matched_atsr_unit(info->dev))
1129 return NULL;
1131 info->iommu = iommu;
1133 return info;
1136 static void iommu_enable_dev_iotlb(struct device_domain_info *info)
1138 if (!info)
1139 return;
1141 pci_enable_ats(info->dev, VTD_PAGE_SHIFT);
1144 static void iommu_disable_dev_iotlb(struct device_domain_info *info)
1146 if (!info->dev || !pci_ats_enabled(info->dev))
1147 return;
1149 pci_disable_ats(info->dev);
1152 static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
1153 u64 addr, unsigned mask)
1155 u16 sid, qdep;
1156 unsigned long flags;
1157 struct device_domain_info *info;
1159 spin_lock_irqsave(&device_domain_lock, flags);
1160 list_for_each_entry(info, &domain->devices, link) {
1161 if (!info->dev || !pci_ats_enabled(info->dev))
1162 continue;
1164 sid = info->bus << 8 | info->devfn;
1165 qdep = pci_ats_queue_depth(info->dev);
1166 qi_flush_dev_iotlb(info->iommu, sid, qdep, addr, mask);
1168 spin_unlock_irqrestore(&device_domain_lock, flags);
1171 static void iommu_flush_iotlb_psi(struct intel_iommu *iommu, u16 did,
1172 unsigned long pfn, unsigned int pages, int map)
1174 unsigned int mask = ilog2(__roundup_pow_of_two(pages));
1175 uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
1177 BUG_ON(pages == 0);
1180 * Fallback to domain selective flush if no PSI support or the size is
1181 * too big.
1182 * PSI requires page size to be 2 ^ x, and the base address is naturally
1183 * aligned to the size
1185 if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap))
1186 iommu->flush.flush_iotlb(iommu, did, 0, 0,
1187 DMA_TLB_DSI_FLUSH);
1188 else
1189 iommu->flush.flush_iotlb(iommu, did, addr, mask,
1190 DMA_TLB_PSI_FLUSH);
1193 * In caching mode, changes of pages from non-present to present require
1194 * flush. However, device IOTLB doesn't need to be flushed in this case.
1196 if (!cap_caching_mode(iommu->cap) || !map)
1197 iommu_flush_dev_iotlb(iommu->domains[did], addr, mask);
1200 static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
1202 u32 pmen;
1203 unsigned long flags;
1205 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1206 pmen = readl(iommu->reg + DMAR_PMEN_REG);
1207 pmen &= ~DMA_PMEN_EPM;
1208 writel(pmen, iommu->reg + DMAR_PMEN_REG);
1210 /* wait for the protected region status bit to clear */
1211 IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
1212 readl, !(pmen & DMA_PMEN_PRS), pmen);
1214 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1217 static int iommu_enable_translation(struct intel_iommu *iommu)
1219 u32 sts;
1220 unsigned long flags;
1222 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1223 iommu->gcmd |= DMA_GCMD_TE;
1224 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1226 /* Make sure hardware complete it */
1227 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1228 readl, (sts & DMA_GSTS_TES), sts);
1230 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1231 return 0;
1234 static int iommu_disable_translation(struct intel_iommu *iommu)
1236 u32 sts;
1237 unsigned long flag;
1239 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1240 iommu->gcmd &= ~DMA_GCMD_TE;
1241 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1243 /* Make sure hardware complete it */
1244 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
1245 readl, (!(sts & DMA_GSTS_TES)), sts);
1247 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1248 return 0;
1252 static int iommu_init_domains(struct intel_iommu *iommu)
1254 unsigned long ndomains;
1255 unsigned long nlongs;
1257 ndomains = cap_ndoms(iommu->cap);
1258 pr_debug("IOMMU %d: Number of Domains supported <%ld>\n", iommu->seq_id,
1259 ndomains);
1260 nlongs = BITS_TO_LONGS(ndomains);
1262 spin_lock_init(&iommu->lock);
1264 /* TBD: there might be 64K domains,
1265 * consider other allocation for future chip
1267 iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
1268 if (!iommu->domain_ids) {
1269 printk(KERN_ERR "Allocating domain id array failed\n");
1270 return -ENOMEM;
1272 iommu->domains = kcalloc(ndomains, sizeof(struct dmar_domain *),
1273 GFP_KERNEL);
1274 if (!iommu->domains) {
1275 printk(KERN_ERR "Allocating domain array failed\n");
1276 return -ENOMEM;
1280 * if Caching mode is set, then invalid translations are tagged
1281 * with domainid 0. Hence we need to pre-allocate it.
1283 if (cap_caching_mode(iommu->cap))
1284 set_bit(0, iommu->domain_ids);
1285 return 0;
1289 static void domain_exit(struct dmar_domain *domain);
1290 static void vm_domain_exit(struct dmar_domain *domain);
1292 void free_dmar_iommu(struct intel_iommu *iommu)
1294 struct dmar_domain *domain;
1295 int i;
1296 unsigned long flags;
1298 if ((iommu->domains) && (iommu->domain_ids)) {
1299 for_each_set_bit(i, iommu->domain_ids, cap_ndoms(iommu->cap)) {
1300 domain = iommu->domains[i];
1301 clear_bit(i, iommu->domain_ids);
1303 spin_lock_irqsave(&domain->iommu_lock, flags);
1304 if (--domain->iommu_count == 0) {
1305 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE)
1306 vm_domain_exit(domain);
1307 else
1308 domain_exit(domain);
1310 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1314 if (iommu->gcmd & DMA_GCMD_TE)
1315 iommu_disable_translation(iommu);
1317 if (iommu->irq) {
1318 irq_set_handler_data(iommu->irq, NULL);
1319 /* This will mask the irq */
1320 free_irq(iommu->irq, iommu);
1321 destroy_irq(iommu->irq);
1324 kfree(iommu->domains);
1325 kfree(iommu->domain_ids);
1327 g_iommus[iommu->seq_id] = NULL;
1329 /* if all iommus are freed, free g_iommus */
1330 for (i = 0; i < g_num_of_iommus; i++) {
1331 if (g_iommus[i])
1332 break;
1335 if (i == g_num_of_iommus)
1336 kfree(g_iommus);
1338 /* free context mapping */
1339 free_context_table(iommu);
1342 static struct dmar_domain *alloc_domain(void)
1344 struct dmar_domain *domain;
1346 domain = alloc_domain_mem();
1347 if (!domain)
1348 return NULL;
1350 domain->nid = -1;
1351 memset(domain->iommu_bmp, 0, sizeof(domain->iommu_bmp));
1352 domain->flags = 0;
1354 return domain;
1357 static int iommu_attach_domain(struct dmar_domain *domain,
1358 struct intel_iommu *iommu)
1360 int num;
1361 unsigned long ndomains;
1362 unsigned long flags;
1364 ndomains = cap_ndoms(iommu->cap);
1366 spin_lock_irqsave(&iommu->lock, flags);
1368 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1369 if (num >= ndomains) {
1370 spin_unlock_irqrestore(&iommu->lock, flags);
1371 printk(KERN_ERR "IOMMU: no free domain ids\n");
1372 return -ENOMEM;
1375 domain->id = num;
1376 set_bit(num, iommu->domain_ids);
1377 set_bit(iommu->seq_id, domain->iommu_bmp);
1378 iommu->domains[num] = domain;
1379 spin_unlock_irqrestore(&iommu->lock, flags);
1381 return 0;
1384 static void iommu_detach_domain(struct dmar_domain *domain,
1385 struct intel_iommu *iommu)
1387 unsigned long flags;
1388 int num, ndomains;
1389 int found = 0;
1391 spin_lock_irqsave(&iommu->lock, flags);
1392 ndomains = cap_ndoms(iommu->cap);
1393 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1394 if (iommu->domains[num] == domain) {
1395 found = 1;
1396 break;
1400 if (found) {
1401 clear_bit(num, iommu->domain_ids);
1402 clear_bit(iommu->seq_id, domain->iommu_bmp);
1403 iommu->domains[num] = NULL;
1405 spin_unlock_irqrestore(&iommu->lock, flags);
1408 static struct iova_domain reserved_iova_list;
1409 static struct lock_class_key reserved_rbtree_key;
1411 static int dmar_init_reserved_ranges(void)
1413 struct pci_dev *pdev = NULL;
1414 struct iova *iova;
1415 int i;
1417 init_iova_domain(&reserved_iova_list, DMA_32BIT_PFN);
1419 lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
1420 &reserved_rbtree_key);
1422 /* IOAPIC ranges shouldn't be accessed by DMA */
1423 iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
1424 IOVA_PFN(IOAPIC_RANGE_END));
1425 if (!iova) {
1426 printk(KERN_ERR "Reserve IOAPIC range failed\n");
1427 return -ENODEV;
1430 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1431 for_each_pci_dev(pdev) {
1432 struct resource *r;
1434 for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1435 r = &pdev->resource[i];
1436 if (!r->flags || !(r->flags & IORESOURCE_MEM))
1437 continue;
1438 iova = reserve_iova(&reserved_iova_list,
1439 IOVA_PFN(r->start),
1440 IOVA_PFN(r->end));
1441 if (!iova) {
1442 printk(KERN_ERR "Reserve iova failed\n");
1443 return -ENODEV;
1447 return 0;
1450 static void domain_reserve_special_ranges(struct dmar_domain *domain)
1452 copy_reserved_iova(&reserved_iova_list, &domain->iovad);
1455 static inline int guestwidth_to_adjustwidth(int gaw)
1457 int agaw;
1458 int r = (gaw - 12) % 9;
1460 if (r == 0)
1461 agaw = gaw;
1462 else
1463 agaw = gaw + 9 - r;
1464 if (agaw > 64)
1465 agaw = 64;
1466 return agaw;
1469 static int domain_init(struct dmar_domain *domain, int guest_width)
1471 struct intel_iommu *iommu;
1472 int adjust_width, agaw;
1473 unsigned long sagaw;
1475 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
1476 spin_lock_init(&domain->iommu_lock);
1478 domain_reserve_special_ranges(domain);
1480 /* calculate AGAW */
1481 iommu = domain_get_iommu(domain);
1482 if (guest_width > cap_mgaw(iommu->cap))
1483 guest_width = cap_mgaw(iommu->cap);
1484 domain->gaw = guest_width;
1485 adjust_width = guestwidth_to_adjustwidth(guest_width);
1486 agaw = width_to_agaw(adjust_width);
1487 sagaw = cap_sagaw(iommu->cap);
1488 if (!test_bit(agaw, &sagaw)) {
1489 /* hardware doesn't support it, choose a bigger one */
1490 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw);
1491 agaw = find_next_bit(&sagaw, 5, agaw);
1492 if (agaw >= 5)
1493 return -ENODEV;
1495 domain->agaw = agaw;
1496 INIT_LIST_HEAD(&domain->devices);
1498 if (ecap_coherent(iommu->ecap))
1499 domain->iommu_coherency = 1;
1500 else
1501 domain->iommu_coherency = 0;
1503 if (ecap_sc_support(iommu->ecap))
1504 domain->iommu_snooping = 1;
1505 else
1506 domain->iommu_snooping = 0;
1508 domain->iommu_superpage = fls(cap_super_page_val(iommu->cap));
1509 domain->iommu_count = 1;
1510 domain->nid = iommu->node;
1512 /* always allocate the top pgd */
1513 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
1514 if (!domain->pgd)
1515 return -ENOMEM;
1516 __iommu_flush_cache(iommu, domain->pgd, PAGE_SIZE);
1517 return 0;
1520 static void domain_exit(struct dmar_domain *domain)
1522 struct dmar_drhd_unit *drhd;
1523 struct intel_iommu *iommu;
1525 /* Domain 0 is reserved, so dont process it */
1526 if (!domain)
1527 return;
1529 /* Flush any lazy unmaps that may reference this domain */
1530 if (!intel_iommu_strict)
1531 flush_unmaps_timeout(0);
1533 domain_remove_dev_info(domain);
1534 /* destroy iovas */
1535 put_iova_domain(&domain->iovad);
1537 /* clear ptes */
1538 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1540 /* free page tables */
1541 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
1543 for_each_active_iommu(iommu, drhd)
1544 if (test_bit(iommu->seq_id, domain->iommu_bmp))
1545 iommu_detach_domain(domain, iommu);
1547 free_domain_mem(domain);
1550 static int domain_context_mapping_one(struct dmar_domain *domain, int segment,
1551 u8 bus, u8 devfn, int translation)
1553 struct context_entry *context;
1554 unsigned long flags;
1555 struct intel_iommu *iommu;
1556 struct dma_pte *pgd;
1557 unsigned long num;
1558 unsigned long ndomains;
1559 int id;
1560 int agaw;
1561 struct device_domain_info *info = NULL;
1563 pr_debug("Set context mapping for %02x:%02x.%d\n",
1564 bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
1566 BUG_ON(!domain->pgd);
1567 BUG_ON(translation != CONTEXT_TT_PASS_THROUGH &&
1568 translation != CONTEXT_TT_MULTI_LEVEL);
1570 iommu = device_to_iommu(segment, bus, devfn);
1571 if (!iommu)
1572 return -ENODEV;
1574 context = device_to_context_entry(iommu, bus, devfn);
1575 if (!context)
1576 return -ENOMEM;
1577 spin_lock_irqsave(&iommu->lock, flags);
1578 if (context_present(context)) {
1579 spin_unlock_irqrestore(&iommu->lock, flags);
1580 return 0;
1583 id = domain->id;
1584 pgd = domain->pgd;
1586 if (domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
1587 domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) {
1588 int found = 0;
1590 /* find an available domain id for this device in iommu */
1591 ndomains = cap_ndoms(iommu->cap);
1592 for_each_set_bit(num, iommu->domain_ids, ndomains) {
1593 if (iommu->domains[num] == domain) {
1594 id = num;
1595 found = 1;
1596 break;
1600 if (found == 0) {
1601 num = find_first_zero_bit(iommu->domain_ids, ndomains);
1602 if (num >= ndomains) {
1603 spin_unlock_irqrestore(&iommu->lock, flags);
1604 printk(KERN_ERR "IOMMU: no free domain ids\n");
1605 return -EFAULT;
1608 set_bit(num, iommu->domain_ids);
1609 iommu->domains[num] = domain;
1610 id = num;
1613 /* Skip top levels of page tables for
1614 * iommu which has less agaw than default.
1615 * Unnecessary for PT mode.
1617 if (translation != CONTEXT_TT_PASS_THROUGH) {
1618 for (agaw = domain->agaw; agaw != iommu->agaw; agaw--) {
1619 pgd = phys_to_virt(dma_pte_addr(pgd));
1620 if (!dma_pte_present(pgd)) {
1621 spin_unlock_irqrestore(&iommu->lock, flags);
1622 return -ENOMEM;
1628 context_set_domain_id(context, id);
1630 if (translation != CONTEXT_TT_PASS_THROUGH) {
1631 info = iommu_support_dev_iotlb(domain, segment, bus, devfn);
1632 translation = info ? CONTEXT_TT_DEV_IOTLB :
1633 CONTEXT_TT_MULTI_LEVEL;
1636 * In pass through mode, AW must be programmed to indicate the largest
1637 * AGAW value supported by hardware. And ASR is ignored by hardware.
1639 if (unlikely(translation == CONTEXT_TT_PASS_THROUGH))
1640 context_set_address_width(context, iommu->msagaw);
1641 else {
1642 context_set_address_root(context, virt_to_phys(pgd));
1643 context_set_address_width(context, iommu->agaw);
1646 context_set_translation_type(context, translation);
1647 context_set_fault_enable(context);
1648 context_set_present(context);
1649 domain_flush_cache(domain, context, sizeof(*context));
1652 * It's a non-present to present mapping. If hardware doesn't cache
1653 * non-present entry we only need to flush the write-buffer. If the
1654 * _does_ cache non-present entries, then it does so in the special
1655 * domain #0, which we have to flush:
1657 if (cap_caching_mode(iommu->cap)) {
1658 iommu->flush.flush_context(iommu, 0,
1659 (((u16)bus) << 8) | devfn,
1660 DMA_CCMD_MASK_NOBIT,
1661 DMA_CCMD_DEVICE_INVL);
1662 iommu->flush.flush_iotlb(iommu, domain->id, 0, 0, DMA_TLB_DSI_FLUSH);
1663 } else {
1664 iommu_flush_write_buffer(iommu);
1666 iommu_enable_dev_iotlb(info);
1667 spin_unlock_irqrestore(&iommu->lock, flags);
1669 spin_lock_irqsave(&domain->iommu_lock, flags);
1670 if (!test_and_set_bit(iommu->seq_id, domain->iommu_bmp)) {
1671 domain->iommu_count++;
1672 if (domain->iommu_count == 1)
1673 domain->nid = iommu->node;
1674 domain_update_iommu_cap(domain);
1676 spin_unlock_irqrestore(&domain->iommu_lock, flags);
1677 return 0;
1680 static int
1681 domain_context_mapping(struct dmar_domain *domain, struct pci_dev *pdev,
1682 int translation)
1684 int ret;
1685 struct pci_dev *tmp, *parent;
1687 ret = domain_context_mapping_one(domain, pci_domain_nr(pdev->bus),
1688 pdev->bus->number, pdev->devfn,
1689 translation);
1690 if (ret)
1691 return ret;
1693 /* dependent device mapping */
1694 tmp = pci_find_upstream_pcie_bridge(pdev);
1695 if (!tmp)
1696 return 0;
1697 /* Secondary interface's bus number and devfn 0 */
1698 parent = pdev->bus->self;
1699 while (parent != tmp) {
1700 ret = domain_context_mapping_one(domain,
1701 pci_domain_nr(parent->bus),
1702 parent->bus->number,
1703 parent->devfn, translation);
1704 if (ret)
1705 return ret;
1706 parent = parent->bus->self;
1708 if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */
1709 return domain_context_mapping_one(domain,
1710 pci_domain_nr(tmp->subordinate),
1711 tmp->subordinate->number, 0,
1712 translation);
1713 else /* this is a legacy PCI bridge */
1714 return domain_context_mapping_one(domain,
1715 pci_domain_nr(tmp->bus),
1716 tmp->bus->number,
1717 tmp->devfn,
1718 translation);
1721 static int domain_context_mapped(struct pci_dev *pdev)
1723 int ret;
1724 struct pci_dev *tmp, *parent;
1725 struct intel_iommu *iommu;
1727 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
1728 pdev->devfn);
1729 if (!iommu)
1730 return -ENODEV;
1732 ret = device_context_mapped(iommu, pdev->bus->number, pdev->devfn);
1733 if (!ret)
1734 return ret;
1735 /* dependent device mapping */
1736 tmp = pci_find_upstream_pcie_bridge(pdev);
1737 if (!tmp)
1738 return ret;
1739 /* Secondary interface's bus number and devfn 0 */
1740 parent = pdev->bus->self;
1741 while (parent != tmp) {
1742 ret = device_context_mapped(iommu, parent->bus->number,
1743 parent->devfn);
1744 if (!ret)
1745 return ret;
1746 parent = parent->bus->self;
1748 if (pci_is_pcie(tmp))
1749 return device_context_mapped(iommu, tmp->subordinate->number,
1751 else
1752 return device_context_mapped(iommu, tmp->bus->number,
1753 tmp->devfn);
1756 /* Returns a number of VTD pages, but aligned to MM page size */
1757 static inline unsigned long aligned_nrpages(unsigned long host_addr,
1758 size_t size)
1760 host_addr &= ~PAGE_MASK;
1761 return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
1764 /* Return largest possible superpage level for a given mapping */
1765 static inline int hardware_largepage_caps(struct dmar_domain *domain,
1766 unsigned long iov_pfn,
1767 unsigned long phy_pfn,
1768 unsigned long pages)
1770 int support, level = 1;
1771 unsigned long pfnmerge;
1773 support = domain->iommu_superpage;
1775 /* To use a large page, the virtual *and* physical addresses
1776 must be aligned to 2MiB/1GiB/etc. Lower bits set in either
1777 of them will mean we have to use smaller pages. So just
1778 merge them and check both at once. */
1779 pfnmerge = iov_pfn | phy_pfn;
1781 while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
1782 pages >>= VTD_STRIDE_SHIFT;
1783 if (!pages)
1784 break;
1785 pfnmerge >>= VTD_STRIDE_SHIFT;
1786 level++;
1787 support--;
1789 return level;
1792 static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1793 struct scatterlist *sg, unsigned long phys_pfn,
1794 unsigned long nr_pages, int prot)
1796 struct dma_pte *first_pte = NULL, *pte = NULL;
1797 phys_addr_t uninitialized_var(pteval);
1798 int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
1799 unsigned long sg_res = 0;
1800 unsigned int largepage_lvl = 0;
1801 unsigned long lvl_pages = 0;
1803 BUG_ON(addr_width < BITS_PER_LONG && (iov_pfn + nr_pages - 1) >> addr_width);
1805 if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
1806 return -EINVAL;
1808 prot &= DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP;
1810 if (!sg) {
1811 sg_res = nr_pages;
1812 pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | prot;
1815 while (nr_pages > 0) {
1816 uint64_t tmp;
1818 if (!sg_res) {
1819 sg_res = aligned_nrpages(sg->offset, sg->length);
1820 sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + sg->offset;
1821 sg->dma_length = sg->length;
1822 pteval = page_to_phys(sg_page(sg)) | prot;
1823 phys_pfn = pteval >> VTD_PAGE_SHIFT;
1826 if (!pte) {
1827 largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
1829 first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, largepage_lvl);
1830 if (!pte)
1831 return -ENOMEM;
1832 /* It is large page*/
1833 if (largepage_lvl > 1) {
1834 pteval |= DMA_PTE_LARGE_PAGE;
1835 /* Ensure that old small page tables are removed to make room
1836 for superpage, if they exist. */
1837 dma_pte_clear_range(domain, iov_pfn,
1838 iov_pfn + lvl_to_nr_pages(largepage_lvl) - 1);
1839 dma_pte_free_pagetable(domain, iov_pfn,
1840 iov_pfn + lvl_to_nr_pages(largepage_lvl) - 1);
1841 } else {
1842 pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
1846 /* We don't need lock here, nobody else
1847 * touches the iova range
1849 tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
1850 if (tmp) {
1851 static int dumps = 5;
1852 printk(KERN_CRIT "ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
1853 iov_pfn, tmp, (unsigned long long)pteval);
1854 if (dumps) {
1855 dumps--;
1856 debug_dma_dump_mappings(NULL);
1858 WARN_ON(1);
1861 lvl_pages = lvl_to_nr_pages(largepage_lvl);
1863 BUG_ON(nr_pages < lvl_pages);
1864 BUG_ON(sg_res < lvl_pages);
1866 nr_pages -= lvl_pages;
1867 iov_pfn += lvl_pages;
1868 phys_pfn += lvl_pages;
1869 pteval += lvl_pages * VTD_PAGE_SIZE;
1870 sg_res -= lvl_pages;
1872 /* If the next PTE would be the first in a new page, then we
1873 need to flush the cache on the entries we've just written.
1874 And then we'll need to recalculate 'pte', so clear it and
1875 let it get set again in the if (!pte) block above.
1877 If we're done (!nr_pages) we need to flush the cache too.
1879 Also if we've been setting superpages, we may need to
1880 recalculate 'pte' and switch back to smaller pages for the
1881 end of the mapping, if the trailing size is not enough to
1882 use another superpage (i.e. sg_res < lvl_pages). */
1883 pte++;
1884 if (!nr_pages || first_pte_in_page(pte) ||
1885 (largepage_lvl > 1 && sg_res < lvl_pages)) {
1886 domain_flush_cache(domain, first_pte,
1887 (void *)pte - (void *)first_pte);
1888 pte = NULL;
1891 if (!sg_res && nr_pages)
1892 sg = sg_next(sg);
1894 return 0;
1897 static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1898 struct scatterlist *sg, unsigned long nr_pages,
1899 int prot)
1901 return __domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
1904 static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
1905 unsigned long phys_pfn, unsigned long nr_pages,
1906 int prot)
1908 return __domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
1911 static void iommu_detach_dev(struct intel_iommu *iommu, u8 bus, u8 devfn)
1913 if (!iommu)
1914 return;
1916 clear_context_table(iommu, bus, devfn);
1917 iommu->flush.flush_context(iommu, 0, 0, 0,
1918 DMA_CCMD_GLOBAL_INVL);
1919 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
1922 static inline void unlink_domain_info(struct device_domain_info *info)
1924 assert_spin_locked(&device_domain_lock);
1925 list_del(&info->link);
1926 list_del(&info->global);
1927 if (info->dev)
1928 info->dev->dev.archdata.iommu = NULL;
1931 static void domain_remove_dev_info(struct dmar_domain *domain)
1933 struct device_domain_info *info;
1934 unsigned long flags;
1935 struct intel_iommu *iommu;
1937 spin_lock_irqsave(&device_domain_lock, flags);
1938 while (!list_empty(&domain->devices)) {
1939 info = list_entry(domain->devices.next,
1940 struct device_domain_info, link);
1941 unlink_domain_info(info);
1942 spin_unlock_irqrestore(&device_domain_lock, flags);
1944 iommu_disable_dev_iotlb(info);
1945 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
1946 iommu_detach_dev(iommu, info->bus, info->devfn);
1947 free_devinfo_mem(info);
1949 spin_lock_irqsave(&device_domain_lock, flags);
1951 spin_unlock_irqrestore(&device_domain_lock, flags);
1955 * find_domain
1956 * Note: we use struct pci_dev->dev.archdata.iommu stores the info
1958 static struct dmar_domain *
1959 find_domain(struct pci_dev *pdev)
1961 struct device_domain_info *info;
1963 /* No lock here, assumes no domain exit in normal case */
1964 info = pdev->dev.archdata.iommu;
1965 if (info)
1966 return info->domain;
1967 return NULL;
1970 /* domain is initialized */
1971 static struct dmar_domain *get_domain_for_dev(struct pci_dev *pdev, int gaw)
1973 struct dmar_domain *domain, *found = NULL;
1974 struct intel_iommu *iommu;
1975 struct dmar_drhd_unit *drhd;
1976 struct device_domain_info *info, *tmp;
1977 struct pci_dev *dev_tmp;
1978 unsigned long flags;
1979 int bus = 0, devfn = 0;
1980 int segment;
1981 int ret;
1983 domain = find_domain(pdev);
1984 if (domain)
1985 return domain;
1987 segment = pci_domain_nr(pdev->bus);
1989 dev_tmp = pci_find_upstream_pcie_bridge(pdev);
1990 if (dev_tmp) {
1991 if (pci_is_pcie(dev_tmp)) {
1992 bus = dev_tmp->subordinate->number;
1993 devfn = 0;
1994 } else {
1995 bus = dev_tmp->bus->number;
1996 devfn = dev_tmp->devfn;
1998 spin_lock_irqsave(&device_domain_lock, flags);
1999 list_for_each_entry(info, &device_domain_list, global) {
2000 if (info->segment == segment &&
2001 info->bus == bus && info->devfn == devfn) {
2002 found = info->domain;
2003 break;
2006 spin_unlock_irqrestore(&device_domain_lock, flags);
2007 /* pcie-pci bridge already has a domain, uses it */
2008 if (found) {
2009 domain = found;
2010 goto found_domain;
2014 domain = alloc_domain();
2015 if (!domain)
2016 goto error;
2018 /* Allocate new domain for the device */
2019 drhd = dmar_find_matched_drhd_unit(pdev);
2020 if (!drhd) {
2021 printk(KERN_ERR "IOMMU: can't find DMAR for device %s\n",
2022 pci_name(pdev));
2023 free_domain_mem(domain);
2024 return NULL;
2026 iommu = drhd->iommu;
2028 ret = iommu_attach_domain(domain, iommu);
2029 if (ret) {
2030 free_domain_mem(domain);
2031 goto error;
2034 if (domain_init(domain, gaw)) {
2035 domain_exit(domain);
2036 goto error;
2039 /* register pcie-to-pci device */
2040 if (dev_tmp) {
2041 info = alloc_devinfo_mem();
2042 if (!info) {
2043 domain_exit(domain);
2044 goto error;
2046 info->segment = segment;
2047 info->bus = bus;
2048 info->devfn = devfn;
2049 info->dev = NULL;
2050 info->domain = domain;
2051 /* This domain is shared by devices under p2p bridge */
2052 domain->flags |= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES;
2054 /* pcie-to-pci bridge already has a domain, uses it */
2055 found = NULL;
2056 spin_lock_irqsave(&device_domain_lock, flags);
2057 list_for_each_entry(tmp, &device_domain_list, global) {
2058 if (tmp->segment == segment &&
2059 tmp->bus == bus && tmp->devfn == devfn) {
2060 found = tmp->domain;
2061 break;
2064 if (found) {
2065 spin_unlock_irqrestore(&device_domain_lock, flags);
2066 free_devinfo_mem(info);
2067 domain_exit(domain);
2068 domain = found;
2069 } else {
2070 list_add(&info->link, &domain->devices);
2071 list_add(&info->global, &device_domain_list);
2072 spin_unlock_irqrestore(&device_domain_lock, flags);
2076 found_domain:
2077 info = alloc_devinfo_mem();
2078 if (!info)
2079 goto error;
2080 info->segment = segment;
2081 info->bus = pdev->bus->number;
2082 info->devfn = pdev->devfn;
2083 info->dev = pdev;
2084 info->domain = domain;
2085 spin_lock_irqsave(&device_domain_lock, flags);
2086 /* somebody is fast */
2087 found = find_domain(pdev);
2088 if (found != NULL) {
2089 spin_unlock_irqrestore(&device_domain_lock, flags);
2090 if (found != domain) {
2091 domain_exit(domain);
2092 domain = found;
2094 free_devinfo_mem(info);
2095 return domain;
2097 list_add(&info->link, &domain->devices);
2098 list_add(&info->global, &device_domain_list);
2099 pdev->dev.archdata.iommu = info;
2100 spin_unlock_irqrestore(&device_domain_lock, flags);
2101 return domain;
2102 error:
2103 /* recheck it here, maybe others set it */
2104 return find_domain(pdev);
2107 static int iommu_identity_mapping;
2108 #define IDENTMAP_ALL 1
2109 #define IDENTMAP_GFX 2
2110 #define IDENTMAP_AZALIA 4
2112 static int iommu_domain_identity_map(struct dmar_domain *domain,
2113 unsigned long long start,
2114 unsigned long long end)
2116 unsigned long first_vpfn = start >> VTD_PAGE_SHIFT;
2117 unsigned long last_vpfn = end >> VTD_PAGE_SHIFT;
2119 if (!reserve_iova(&domain->iovad, dma_to_mm_pfn(first_vpfn),
2120 dma_to_mm_pfn(last_vpfn))) {
2121 printk(KERN_ERR "IOMMU: reserve iova failed\n");
2122 return -ENOMEM;
2125 pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
2126 start, end, domain->id);
2128 * RMRR range might have overlap with physical memory range,
2129 * clear it first
2131 dma_pte_clear_range(domain, first_vpfn, last_vpfn);
2133 return domain_pfn_mapping(domain, first_vpfn, first_vpfn,
2134 last_vpfn - first_vpfn + 1,
2135 DMA_PTE_READ|DMA_PTE_WRITE);
2138 static int iommu_prepare_identity_map(struct pci_dev *pdev,
2139 unsigned long long start,
2140 unsigned long long end)
2142 struct dmar_domain *domain;
2143 int ret;
2145 domain = get_domain_for_dev(pdev, DEFAULT_DOMAIN_ADDRESS_WIDTH);
2146 if (!domain)
2147 return -ENOMEM;
2149 /* For _hardware_ passthrough, don't bother. But for software
2150 passthrough, we do it anyway -- it may indicate a memory
2151 range which is reserved in E820, so which didn't get set
2152 up to start with in si_domain */
2153 if (domain == si_domain && hw_pass_through) {
2154 printk("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
2155 pci_name(pdev), start, end);
2156 return 0;
2159 printk(KERN_INFO
2160 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
2161 pci_name(pdev), start, end);
2163 if (end < start) {
2164 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2165 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2166 dmi_get_system_info(DMI_BIOS_VENDOR),
2167 dmi_get_system_info(DMI_BIOS_VERSION),
2168 dmi_get_system_info(DMI_PRODUCT_VERSION));
2169 ret = -EIO;
2170 goto error;
2173 if (end >> agaw_to_width(domain->agaw)) {
2174 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2175 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2176 agaw_to_width(domain->agaw),
2177 dmi_get_system_info(DMI_BIOS_VENDOR),
2178 dmi_get_system_info(DMI_BIOS_VERSION),
2179 dmi_get_system_info(DMI_PRODUCT_VERSION));
2180 ret = -EIO;
2181 goto error;
2184 ret = iommu_domain_identity_map(domain, start, end);
2185 if (ret)
2186 goto error;
2188 /* context entry init */
2189 ret = domain_context_mapping(domain, pdev, CONTEXT_TT_MULTI_LEVEL);
2190 if (ret)
2191 goto error;
2193 return 0;
2195 error:
2196 domain_exit(domain);
2197 return ret;
2200 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit *rmrr,
2201 struct pci_dev *pdev)
2203 if (pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO)
2204 return 0;
2205 return iommu_prepare_identity_map(pdev, rmrr->base_address,
2206 rmrr->end_address);
2209 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
2210 static inline void iommu_prepare_isa(void)
2212 struct pci_dev *pdev;
2213 int ret;
2215 pdev = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, NULL);
2216 if (!pdev)
2217 return;
2219 printk(KERN_INFO "IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
2220 ret = iommu_prepare_identity_map(pdev, 0, 16*1024*1024 - 1);
2222 if (ret)
2223 printk(KERN_ERR "IOMMU: Failed to create 0-16MiB identity map; "
2224 "floppy might not work\n");
2227 #else
2228 static inline void iommu_prepare_isa(void)
2230 return;
2232 #endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
2234 static int md_domain_init(struct dmar_domain *domain, int guest_width);
2236 static int __init si_domain_init(int hw)
2238 struct dmar_drhd_unit *drhd;
2239 struct intel_iommu *iommu;
2240 int nid, ret = 0;
2242 si_domain = alloc_domain();
2243 if (!si_domain)
2244 return -EFAULT;
2246 pr_debug("Identity mapping domain is domain %d\n", si_domain->id);
2248 for_each_active_iommu(iommu, drhd) {
2249 ret = iommu_attach_domain(si_domain, iommu);
2250 if (ret) {
2251 domain_exit(si_domain);
2252 return -EFAULT;
2256 if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
2257 domain_exit(si_domain);
2258 return -EFAULT;
2261 si_domain->flags = DOMAIN_FLAG_STATIC_IDENTITY;
2263 if (hw)
2264 return 0;
2266 for_each_online_node(nid) {
2267 unsigned long start_pfn, end_pfn;
2268 int i;
2270 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2271 ret = iommu_domain_identity_map(si_domain,
2272 PFN_PHYS(start_pfn), PFN_PHYS(end_pfn));
2273 if (ret)
2274 return ret;
2278 return 0;
2281 static void domain_remove_one_dev_info(struct dmar_domain *domain,
2282 struct pci_dev *pdev);
2283 static int identity_mapping(struct pci_dev *pdev)
2285 struct device_domain_info *info;
2287 if (likely(!iommu_identity_mapping))
2288 return 0;
2290 info = pdev->dev.archdata.iommu;
2291 if (info && info != DUMMY_DEVICE_DOMAIN_INFO)
2292 return (info->domain == si_domain);
2294 return 0;
2297 static int domain_add_dev_info(struct dmar_domain *domain,
2298 struct pci_dev *pdev,
2299 int translation)
2301 struct device_domain_info *info;
2302 unsigned long flags;
2303 int ret;
2305 info = alloc_devinfo_mem();
2306 if (!info)
2307 return -ENOMEM;
2309 info->segment = pci_domain_nr(pdev->bus);
2310 info->bus = pdev->bus->number;
2311 info->devfn = pdev->devfn;
2312 info->dev = pdev;
2313 info->domain = domain;
2315 spin_lock_irqsave(&device_domain_lock, flags);
2316 list_add(&info->link, &domain->devices);
2317 list_add(&info->global, &device_domain_list);
2318 pdev->dev.archdata.iommu = info;
2319 spin_unlock_irqrestore(&device_domain_lock, flags);
2321 ret = domain_context_mapping(domain, pdev, translation);
2322 if (ret) {
2323 spin_lock_irqsave(&device_domain_lock, flags);
2324 unlink_domain_info(info);
2325 spin_unlock_irqrestore(&device_domain_lock, flags);
2326 free_devinfo_mem(info);
2327 return ret;
2330 return 0;
2333 static bool device_has_rmrr(struct pci_dev *dev)
2335 struct dmar_rmrr_unit *rmrr;
2336 int i;
2338 for_each_rmrr_units(rmrr) {
2339 for (i = 0; i < rmrr->devices_cnt; i++) {
2341 * Return TRUE if this RMRR contains the device that
2342 * is passed in.
2344 if (rmrr->devices[i] == dev)
2345 return true;
2348 return false;
2351 static int iommu_should_identity_map(struct pci_dev *pdev, int startup)
2355 * We want to prevent any device associated with an RMRR from
2356 * getting placed into the SI Domain. This is done because
2357 * problems exist when devices are moved in and out of domains
2358 * and their respective RMRR info is lost. We exempt USB devices
2359 * from this process due to their usage of RMRRs that are known
2360 * to not be needed after BIOS hand-off to OS.
2362 if (device_has_rmrr(pdev) &&
2363 (pdev->class >> 8) != PCI_CLASS_SERIAL_USB)
2364 return 0;
2366 if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
2367 return 1;
2369 if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
2370 return 1;
2372 if (!(iommu_identity_mapping & IDENTMAP_ALL))
2373 return 0;
2376 * We want to start off with all devices in the 1:1 domain, and
2377 * take them out later if we find they can't access all of memory.
2379 * However, we can't do this for PCI devices behind bridges,
2380 * because all PCI devices behind the same bridge will end up
2381 * with the same source-id on their transactions.
2383 * Practically speaking, we can't change things around for these
2384 * devices at run-time, because we can't be sure there'll be no
2385 * DMA transactions in flight for any of their siblings.
2387 * So PCI devices (unless they're on the root bus) as well as
2388 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2389 * the 1:1 domain, just in _case_ one of their siblings turns out
2390 * not to be able to map all of memory.
2392 if (!pci_is_pcie(pdev)) {
2393 if (!pci_is_root_bus(pdev->bus))
2394 return 0;
2395 if (pdev->class >> 8 == PCI_CLASS_BRIDGE_PCI)
2396 return 0;
2397 } else if (pci_pcie_type(pdev) == PCI_EXP_TYPE_PCI_BRIDGE)
2398 return 0;
2401 * At boot time, we don't yet know if devices will be 64-bit capable.
2402 * Assume that they will -- if they turn out not to be, then we can
2403 * take them out of the 1:1 domain later.
2405 if (!startup) {
2407 * If the device's dma_mask is less than the system's memory
2408 * size then this is not a candidate for identity mapping.
2410 u64 dma_mask = pdev->dma_mask;
2412 if (pdev->dev.coherent_dma_mask &&
2413 pdev->dev.coherent_dma_mask < dma_mask)
2414 dma_mask = pdev->dev.coherent_dma_mask;
2416 return dma_mask >= dma_get_required_mask(&pdev->dev);
2419 return 1;
2422 static int __init iommu_prepare_static_identity_mapping(int hw)
2424 struct pci_dev *pdev = NULL;
2425 int ret;
2427 ret = si_domain_init(hw);
2428 if (ret)
2429 return -EFAULT;
2431 for_each_pci_dev(pdev) {
2432 if (iommu_should_identity_map(pdev, 1)) {
2433 ret = domain_add_dev_info(si_domain, pdev,
2434 hw ? CONTEXT_TT_PASS_THROUGH :
2435 CONTEXT_TT_MULTI_LEVEL);
2436 if (ret) {
2437 /* device not associated with an iommu */
2438 if (ret == -ENODEV)
2439 continue;
2440 return ret;
2442 pr_info("IOMMU: %s identity mapping for device %s\n",
2443 hw ? "hardware" : "software", pci_name(pdev));
2447 return 0;
2450 static int __init init_dmars(void)
2452 struct dmar_drhd_unit *drhd;
2453 struct dmar_rmrr_unit *rmrr;
2454 struct pci_dev *pdev;
2455 struct intel_iommu *iommu;
2456 int i, ret;
2459 * for each drhd
2460 * allocate root
2461 * initialize and program root entry to not present
2462 * endfor
2464 for_each_drhd_unit(drhd) {
2466 * lock not needed as this is only incremented in the single
2467 * threaded kernel __init code path all other access are read
2468 * only
2470 if (g_num_of_iommus < IOMMU_UNITS_SUPPORTED) {
2471 g_num_of_iommus++;
2472 continue;
2474 printk_once(KERN_ERR "intel-iommu: exceeded %d IOMMUs\n",
2475 IOMMU_UNITS_SUPPORTED);
2478 g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
2479 GFP_KERNEL);
2480 if (!g_iommus) {
2481 printk(KERN_ERR "Allocating global iommu array failed\n");
2482 ret = -ENOMEM;
2483 goto error;
2486 deferred_flush = kzalloc(g_num_of_iommus *
2487 sizeof(struct deferred_flush_tables), GFP_KERNEL);
2488 if (!deferred_flush) {
2489 ret = -ENOMEM;
2490 goto error;
2493 for_each_drhd_unit(drhd) {
2494 if (drhd->ignored)
2495 continue;
2497 iommu = drhd->iommu;
2498 g_iommus[iommu->seq_id] = iommu;
2500 ret = iommu_init_domains(iommu);
2501 if (ret)
2502 goto error;
2505 * TBD:
2506 * we could share the same root & context tables
2507 * among all IOMMU's. Need to Split it later.
2509 ret = iommu_alloc_root_entry(iommu);
2510 if (ret) {
2511 printk(KERN_ERR "IOMMU: allocate root entry failed\n");
2512 goto error;
2514 if (!ecap_pass_through(iommu->ecap))
2515 hw_pass_through = 0;
2519 * Start from the sane iommu hardware state.
2521 for_each_drhd_unit(drhd) {
2522 if (drhd->ignored)
2523 continue;
2525 iommu = drhd->iommu;
2528 * If the queued invalidation is already initialized by us
2529 * (for example, while enabling interrupt-remapping) then
2530 * we got the things already rolling from a sane state.
2532 if (iommu->qi)
2533 continue;
2536 * Clear any previous faults.
2538 dmar_fault(-1, iommu);
2540 * Disable queued invalidation if supported and already enabled
2541 * before OS handover.
2543 dmar_disable_qi(iommu);
2546 for_each_drhd_unit(drhd) {
2547 if (drhd->ignored)
2548 continue;
2550 iommu = drhd->iommu;
2552 if (dmar_enable_qi(iommu)) {
2554 * Queued Invalidate not enabled, use Register Based
2555 * Invalidate
2557 iommu->flush.flush_context = __iommu_flush_context;
2558 iommu->flush.flush_iotlb = __iommu_flush_iotlb;
2559 printk(KERN_INFO "IOMMU %d 0x%Lx: using Register based "
2560 "invalidation\n",
2561 iommu->seq_id,
2562 (unsigned long long)drhd->reg_base_addr);
2563 } else {
2564 iommu->flush.flush_context = qi_flush_context;
2565 iommu->flush.flush_iotlb = qi_flush_iotlb;
2566 printk(KERN_INFO "IOMMU %d 0x%Lx: using Queued "
2567 "invalidation\n",
2568 iommu->seq_id,
2569 (unsigned long long)drhd->reg_base_addr);
2573 if (iommu_pass_through)
2574 iommu_identity_mapping |= IDENTMAP_ALL;
2576 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
2577 iommu_identity_mapping |= IDENTMAP_GFX;
2578 #endif
2580 check_tylersburg_isoch();
2583 * If pass through is not set or not enabled, setup context entries for
2584 * identity mappings for rmrr, gfx, and isa and may fall back to static
2585 * identity mapping if iommu_identity_mapping is set.
2587 if (iommu_identity_mapping) {
2588 ret = iommu_prepare_static_identity_mapping(hw_pass_through);
2589 if (ret) {
2590 printk(KERN_CRIT "Failed to setup IOMMU pass-through\n");
2591 goto error;
2595 * For each rmrr
2596 * for each dev attached to rmrr
2597 * do
2598 * locate drhd for dev, alloc domain for dev
2599 * allocate free domain
2600 * allocate page table entries for rmrr
2601 * if context not allocated for bus
2602 * allocate and init context
2603 * set present in root table for this bus
2604 * init context with domain, translation etc
2605 * endfor
2606 * endfor
2608 printk(KERN_INFO "IOMMU: Setting RMRR:\n");
2609 for_each_rmrr_units(rmrr) {
2610 for (i = 0; i < rmrr->devices_cnt; i++) {
2611 pdev = rmrr->devices[i];
2613 * some BIOS lists non-exist devices in DMAR
2614 * table.
2616 if (!pdev)
2617 continue;
2618 ret = iommu_prepare_rmrr_dev(rmrr, pdev);
2619 if (ret)
2620 printk(KERN_ERR
2621 "IOMMU: mapping reserved region failed\n");
2625 iommu_prepare_isa();
2628 * for each drhd
2629 * enable fault log
2630 * global invalidate context cache
2631 * global invalidate iotlb
2632 * enable translation
2634 for_each_drhd_unit(drhd) {
2635 if (drhd->ignored) {
2637 * we always have to disable PMRs or DMA may fail on
2638 * this device
2640 if (force_on)
2641 iommu_disable_protect_mem_regions(drhd->iommu);
2642 continue;
2644 iommu = drhd->iommu;
2646 iommu_flush_write_buffer(iommu);
2648 ret = dmar_set_interrupt(iommu);
2649 if (ret)
2650 goto error;
2652 iommu_set_root_entry(iommu);
2654 iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
2655 iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
2657 ret = iommu_enable_translation(iommu);
2658 if (ret)
2659 goto error;
2661 iommu_disable_protect_mem_regions(iommu);
2664 return 0;
2665 error:
2666 for_each_drhd_unit(drhd) {
2667 if (drhd->ignored)
2668 continue;
2669 iommu = drhd->iommu;
2670 free_iommu(iommu);
2672 kfree(g_iommus);
2673 return ret;
2676 /* This takes a number of _MM_ pages, not VTD pages */
2677 static struct iova *intel_alloc_iova(struct device *dev,
2678 struct dmar_domain *domain,
2679 unsigned long nrpages, uint64_t dma_mask)
2681 struct pci_dev *pdev = to_pci_dev(dev);
2682 struct iova *iova = NULL;
2684 /* Restrict dma_mask to the width that the iommu can handle */
2685 dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw), dma_mask);
2687 if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
2689 * First try to allocate an io virtual address in
2690 * DMA_BIT_MASK(32) and if that fails then try allocating
2691 * from higher range
2693 iova = alloc_iova(&domain->iovad, nrpages,
2694 IOVA_PFN(DMA_BIT_MASK(32)), 1);
2695 if (iova)
2696 return iova;
2698 iova = alloc_iova(&domain->iovad, nrpages, IOVA_PFN(dma_mask), 1);
2699 if (unlikely(!iova)) {
2700 printk(KERN_ERR "Allocating %ld-page iova for %s failed",
2701 nrpages, pci_name(pdev));
2702 return NULL;
2705 return iova;
2708 static struct dmar_domain *__get_valid_domain_for_dev(struct pci_dev *pdev)
2710 struct dmar_domain *domain;
2711 int ret;
2713 domain = get_domain_for_dev(pdev,
2714 DEFAULT_DOMAIN_ADDRESS_WIDTH);
2715 if (!domain) {
2716 printk(KERN_ERR
2717 "Allocating domain for %s failed", pci_name(pdev));
2718 return NULL;
2721 /* make sure context mapping is ok */
2722 if (unlikely(!domain_context_mapped(pdev))) {
2723 ret = domain_context_mapping(domain, pdev,
2724 CONTEXT_TT_MULTI_LEVEL);
2725 if (ret) {
2726 printk(KERN_ERR
2727 "Domain context map for %s failed",
2728 pci_name(pdev));
2729 return NULL;
2733 return domain;
2736 static inline struct dmar_domain *get_valid_domain_for_dev(struct pci_dev *dev)
2738 struct device_domain_info *info;
2740 /* No lock here, assumes no domain exit in normal case */
2741 info = dev->dev.archdata.iommu;
2742 if (likely(info))
2743 return info->domain;
2745 return __get_valid_domain_for_dev(dev);
2748 static int iommu_dummy(struct pci_dev *pdev)
2750 return pdev->dev.archdata.iommu == DUMMY_DEVICE_DOMAIN_INFO;
2753 /* Check if the pdev needs to go through non-identity map and unmap process.*/
2754 static int iommu_no_mapping(struct device *dev)
2756 struct pci_dev *pdev;
2757 int found;
2759 if (unlikely(dev->bus != &pci_bus_type))
2760 return 1;
2762 pdev = to_pci_dev(dev);
2763 if (iommu_dummy(pdev))
2764 return 1;
2766 if (!iommu_identity_mapping)
2767 return 0;
2769 found = identity_mapping(pdev);
2770 if (found) {
2771 if (iommu_should_identity_map(pdev, 0))
2772 return 1;
2773 else {
2775 * 32 bit DMA is removed from si_domain and fall back
2776 * to non-identity mapping.
2778 domain_remove_one_dev_info(si_domain, pdev);
2779 printk(KERN_INFO "32bit %s uses non-identity mapping\n",
2780 pci_name(pdev));
2781 return 0;
2783 } else {
2785 * In case of a detached 64 bit DMA device from vm, the device
2786 * is put into si_domain for identity mapping.
2788 if (iommu_should_identity_map(pdev, 0)) {
2789 int ret;
2790 ret = domain_add_dev_info(si_domain, pdev,
2791 hw_pass_through ?
2792 CONTEXT_TT_PASS_THROUGH :
2793 CONTEXT_TT_MULTI_LEVEL);
2794 if (!ret) {
2795 printk(KERN_INFO "64bit %s uses identity mapping\n",
2796 pci_name(pdev));
2797 return 1;
2802 return 0;
2805 static dma_addr_t __intel_map_single(struct device *hwdev, phys_addr_t paddr,
2806 size_t size, int dir, u64 dma_mask)
2808 struct pci_dev *pdev = to_pci_dev(hwdev);
2809 struct dmar_domain *domain;
2810 phys_addr_t start_paddr;
2811 struct iova *iova;
2812 int prot = 0;
2813 int ret;
2814 struct intel_iommu *iommu;
2815 unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
2817 BUG_ON(dir == DMA_NONE);
2819 if (iommu_no_mapping(hwdev))
2820 return paddr;
2822 domain = get_valid_domain_for_dev(pdev);
2823 if (!domain)
2824 return 0;
2826 iommu = domain_get_iommu(domain);
2827 size = aligned_nrpages(paddr, size);
2829 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size), dma_mask);
2830 if (!iova)
2831 goto error;
2834 * Check if DMAR supports zero-length reads on write only
2835 * mappings..
2837 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
2838 !cap_zlr(iommu->cap))
2839 prot |= DMA_PTE_READ;
2840 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
2841 prot |= DMA_PTE_WRITE;
2843 * paddr - (paddr + size) might be partial page, we should map the whole
2844 * page. Note: if two part of one page are separately mapped, we
2845 * might have two guest_addr mapping to the same host paddr, but this
2846 * is not a big problem
2848 ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova->pfn_lo),
2849 mm_to_dma_pfn(paddr_pfn), size, prot);
2850 if (ret)
2851 goto error;
2853 /* it's a non-present to present mapping. Only flush if caching mode */
2854 if (cap_caching_mode(iommu->cap))
2855 iommu_flush_iotlb_psi(iommu, domain->id, mm_to_dma_pfn(iova->pfn_lo), size, 1);
2856 else
2857 iommu_flush_write_buffer(iommu);
2859 start_paddr = (phys_addr_t)iova->pfn_lo << PAGE_SHIFT;
2860 start_paddr += paddr & ~PAGE_MASK;
2861 return start_paddr;
2863 error:
2864 if (iova)
2865 __free_iova(&domain->iovad, iova);
2866 printk(KERN_ERR"Device %s request: %zx@%llx dir %d --- failed\n",
2867 pci_name(pdev), size, (unsigned long long)paddr, dir);
2868 return 0;
2871 static dma_addr_t intel_map_page(struct device *dev, struct page *page,
2872 unsigned long offset, size_t size,
2873 enum dma_data_direction dir,
2874 struct dma_attrs *attrs)
2876 return __intel_map_single(dev, page_to_phys(page) + offset, size,
2877 dir, to_pci_dev(dev)->dma_mask);
2880 static void flush_unmaps(void)
2882 int i, j;
2884 timer_on = 0;
2886 /* just flush them all */
2887 for (i = 0; i < g_num_of_iommus; i++) {
2888 struct intel_iommu *iommu = g_iommus[i];
2889 if (!iommu)
2890 continue;
2892 if (!deferred_flush[i].next)
2893 continue;
2895 /* In caching mode, global flushes turn emulation expensive */
2896 if (!cap_caching_mode(iommu->cap))
2897 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
2898 DMA_TLB_GLOBAL_FLUSH);
2899 for (j = 0; j < deferred_flush[i].next; j++) {
2900 unsigned long mask;
2901 struct iova *iova = deferred_flush[i].iova[j];
2902 struct dmar_domain *domain = deferred_flush[i].domain[j];
2904 /* On real hardware multiple invalidations are expensive */
2905 if (cap_caching_mode(iommu->cap))
2906 iommu_flush_iotlb_psi(iommu, domain->id,
2907 iova->pfn_lo, iova->pfn_hi - iova->pfn_lo + 1, 0);
2908 else {
2909 mask = ilog2(mm_to_dma_pfn(iova->pfn_hi - iova->pfn_lo + 1));
2910 iommu_flush_dev_iotlb(deferred_flush[i].domain[j],
2911 (uint64_t)iova->pfn_lo << PAGE_SHIFT, mask);
2913 __free_iova(&deferred_flush[i].domain[j]->iovad, iova);
2915 deferred_flush[i].next = 0;
2918 list_size = 0;
2921 static void flush_unmaps_timeout(unsigned long data)
2923 unsigned long flags;
2925 spin_lock_irqsave(&async_umap_flush_lock, flags);
2926 flush_unmaps();
2927 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2930 static void add_unmap(struct dmar_domain *dom, struct iova *iova)
2932 unsigned long flags;
2933 int next, iommu_id;
2934 struct intel_iommu *iommu;
2936 spin_lock_irqsave(&async_umap_flush_lock, flags);
2937 if (list_size == HIGH_WATER_MARK)
2938 flush_unmaps();
2940 iommu = domain_get_iommu(dom);
2941 iommu_id = iommu->seq_id;
2943 next = deferred_flush[iommu_id].next;
2944 deferred_flush[iommu_id].domain[next] = dom;
2945 deferred_flush[iommu_id].iova[next] = iova;
2946 deferred_flush[iommu_id].next++;
2948 if (!timer_on) {
2949 mod_timer(&unmap_timer, jiffies + msecs_to_jiffies(10));
2950 timer_on = 1;
2952 list_size++;
2953 spin_unlock_irqrestore(&async_umap_flush_lock, flags);
2956 static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
2957 size_t size, enum dma_data_direction dir,
2958 struct dma_attrs *attrs)
2960 struct pci_dev *pdev = to_pci_dev(dev);
2961 struct dmar_domain *domain;
2962 unsigned long start_pfn, last_pfn;
2963 struct iova *iova;
2964 struct intel_iommu *iommu;
2966 if (iommu_no_mapping(dev))
2967 return;
2969 domain = find_domain(pdev);
2970 BUG_ON(!domain);
2972 iommu = domain_get_iommu(domain);
2974 iova = find_iova(&domain->iovad, IOVA_PFN(dev_addr));
2975 if (WARN_ONCE(!iova, "Driver unmaps unmatched page at PFN %llx\n",
2976 (unsigned long long)dev_addr))
2977 return;
2979 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
2980 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
2982 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
2983 pci_name(pdev), start_pfn, last_pfn);
2985 /* clear the whole page */
2986 dma_pte_clear_range(domain, start_pfn, last_pfn);
2988 /* free page tables */
2989 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
2991 if (intel_iommu_strict) {
2992 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
2993 last_pfn - start_pfn + 1, 0);
2994 /* free iova */
2995 __free_iova(&domain->iovad, iova);
2996 } else {
2997 add_unmap(domain, iova);
2999 * queue up the release of the unmap to save the 1/6th of the
3000 * cpu used up by the iotlb flush operation...
3005 static void *intel_alloc_coherent(struct device *hwdev, size_t size,
3006 dma_addr_t *dma_handle, gfp_t flags,
3007 struct dma_attrs *attrs)
3009 void *vaddr;
3010 int order;
3012 size = PAGE_ALIGN(size);
3013 order = get_order(size);
3015 if (!iommu_no_mapping(hwdev))
3016 flags &= ~(GFP_DMA | GFP_DMA32);
3017 else if (hwdev->coherent_dma_mask < dma_get_required_mask(hwdev)) {
3018 if (hwdev->coherent_dma_mask < DMA_BIT_MASK(32))
3019 flags |= GFP_DMA;
3020 else
3021 flags |= GFP_DMA32;
3024 vaddr = (void *)__get_free_pages(flags, order);
3025 if (!vaddr)
3026 return NULL;
3027 memset(vaddr, 0, size);
3029 *dma_handle = __intel_map_single(hwdev, virt_to_bus(vaddr), size,
3030 DMA_BIDIRECTIONAL,
3031 hwdev->coherent_dma_mask);
3032 if (*dma_handle)
3033 return vaddr;
3034 free_pages((unsigned long)vaddr, order);
3035 return NULL;
3038 static void intel_free_coherent(struct device *hwdev, size_t size, void *vaddr,
3039 dma_addr_t dma_handle, struct dma_attrs *attrs)
3041 int order;
3043 size = PAGE_ALIGN(size);
3044 order = get_order(size);
3046 intel_unmap_page(hwdev, dma_handle, size, DMA_BIDIRECTIONAL, NULL);
3047 free_pages((unsigned long)vaddr, order);
3050 static void intel_unmap_sg(struct device *hwdev, struct scatterlist *sglist,
3051 int nelems, enum dma_data_direction dir,
3052 struct dma_attrs *attrs)
3054 struct pci_dev *pdev = to_pci_dev(hwdev);
3055 struct dmar_domain *domain;
3056 unsigned long start_pfn, last_pfn;
3057 struct iova *iova;
3058 struct intel_iommu *iommu;
3060 if (iommu_no_mapping(hwdev))
3061 return;
3063 domain = find_domain(pdev);
3064 BUG_ON(!domain);
3066 iommu = domain_get_iommu(domain);
3068 iova = find_iova(&domain->iovad, IOVA_PFN(sglist[0].dma_address));
3069 if (WARN_ONCE(!iova, "Driver unmaps unmatched sglist at PFN %llx\n",
3070 (unsigned long long)sglist[0].dma_address))
3071 return;
3073 start_pfn = mm_to_dma_pfn(iova->pfn_lo);
3074 last_pfn = mm_to_dma_pfn(iova->pfn_hi + 1) - 1;
3076 /* clear the whole page */
3077 dma_pte_clear_range(domain, start_pfn, last_pfn);
3079 /* free page tables */
3080 dma_pte_free_pagetable(domain, start_pfn, last_pfn);
3082 if (intel_iommu_strict) {
3083 iommu_flush_iotlb_psi(iommu, domain->id, start_pfn,
3084 last_pfn - start_pfn + 1, 0);
3085 /* free iova */
3086 __free_iova(&domain->iovad, iova);
3087 } else {
3088 add_unmap(domain, iova);
3090 * queue up the release of the unmap to save the 1/6th of the
3091 * cpu used up by the iotlb flush operation...
3096 static int intel_nontranslate_map_sg(struct device *hddev,
3097 struct scatterlist *sglist, int nelems, int dir)
3099 int i;
3100 struct scatterlist *sg;
3102 for_each_sg(sglist, sg, nelems, i) {
3103 BUG_ON(!sg_page(sg));
3104 sg->dma_address = page_to_phys(sg_page(sg)) + sg->offset;
3105 sg->dma_length = sg->length;
3107 return nelems;
3110 static int intel_map_sg(struct device *hwdev, struct scatterlist *sglist, int nelems,
3111 enum dma_data_direction dir, struct dma_attrs *attrs)
3113 int i;
3114 struct pci_dev *pdev = to_pci_dev(hwdev);
3115 struct dmar_domain *domain;
3116 size_t size = 0;
3117 int prot = 0;
3118 struct iova *iova = NULL;
3119 int ret;
3120 struct scatterlist *sg;
3121 unsigned long start_vpfn;
3122 struct intel_iommu *iommu;
3124 BUG_ON(dir == DMA_NONE);
3125 if (iommu_no_mapping(hwdev))
3126 return intel_nontranslate_map_sg(hwdev, sglist, nelems, dir);
3128 domain = get_valid_domain_for_dev(pdev);
3129 if (!domain)
3130 return 0;
3132 iommu = domain_get_iommu(domain);
3134 for_each_sg(sglist, sg, nelems, i)
3135 size += aligned_nrpages(sg->offset, sg->length);
3137 iova = intel_alloc_iova(hwdev, domain, dma_to_mm_pfn(size),
3138 pdev->dma_mask);
3139 if (!iova) {
3140 sglist->dma_length = 0;
3141 return 0;
3145 * Check if DMAR supports zero-length reads on write only
3146 * mappings..
3148 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
3149 !cap_zlr(iommu->cap))
3150 prot |= DMA_PTE_READ;
3151 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
3152 prot |= DMA_PTE_WRITE;
3154 start_vpfn = mm_to_dma_pfn(iova->pfn_lo);
3156 ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
3157 if (unlikely(ret)) {
3158 /* clear the page */
3159 dma_pte_clear_range(domain, start_vpfn,
3160 start_vpfn + size - 1);
3161 /* free page tables */
3162 dma_pte_free_pagetable(domain, start_vpfn,
3163 start_vpfn + size - 1);
3164 /* free iova */
3165 __free_iova(&domain->iovad, iova);
3166 return 0;
3169 /* it's a non-present to present mapping. Only flush if caching mode */
3170 if (cap_caching_mode(iommu->cap))
3171 iommu_flush_iotlb_psi(iommu, domain->id, start_vpfn, size, 1);
3172 else
3173 iommu_flush_write_buffer(iommu);
3175 return nelems;
3178 static int intel_mapping_error(struct device *dev, dma_addr_t dma_addr)
3180 return !dma_addr;
3183 struct dma_map_ops intel_dma_ops = {
3184 .alloc = intel_alloc_coherent,
3185 .free = intel_free_coherent,
3186 .map_sg = intel_map_sg,
3187 .unmap_sg = intel_unmap_sg,
3188 .map_page = intel_map_page,
3189 .unmap_page = intel_unmap_page,
3190 .mapping_error = intel_mapping_error,
3193 static inline int iommu_domain_cache_init(void)
3195 int ret = 0;
3197 iommu_domain_cache = kmem_cache_create("iommu_domain",
3198 sizeof(struct dmar_domain),
3200 SLAB_HWCACHE_ALIGN,
3202 NULL);
3203 if (!iommu_domain_cache) {
3204 printk(KERN_ERR "Couldn't create iommu_domain cache\n");
3205 ret = -ENOMEM;
3208 return ret;
3211 static inline int iommu_devinfo_cache_init(void)
3213 int ret = 0;
3215 iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
3216 sizeof(struct device_domain_info),
3218 SLAB_HWCACHE_ALIGN,
3219 NULL);
3220 if (!iommu_devinfo_cache) {
3221 printk(KERN_ERR "Couldn't create devinfo cache\n");
3222 ret = -ENOMEM;
3225 return ret;
3228 static inline int iommu_iova_cache_init(void)
3230 int ret = 0;
3232 iommu_iova_cache = kmem_cache_create("iommu_iova",
3233 sizeof(struct iova),
3235 SLAB_HWCACHE_ALIGN,
3236 NULL);
3237 if (!iommu_iova_cache) {
3238 printk(KERN_ERR "Couldn't create iova cache\n");
3239 ret = -ENOMEM;
3242 return ret;
3245 static int __init iommu_init_mempool(void)
3247 int ret;
3248 ret = iommu_iova_cache_init();
3249 if (ret)
3250 return ret;
3252 ret = iommu_domain_cache_init();
3253 if (ret)
3254 goto domain_error;
3256 ret = iommu_devinfo_cache_init();
3257 if (!ret)
3258 return ret;
3260 kmem_cache_destroy(iommu_domain_cache);
3261 domain_error:
3262 kmem_cache_destroy(iommu_iova_cache);
3264 return -ENOMEM;
3267 static void __init iommu_exit_mempool(void)
3269 kmem_cache_destroy(iommu_devinfo_cache);
3270 kmem_cache_destroy(iommu_domain_cache);
3271 kmem_cache_destroy(iommu_iova_cache);
3275 static void quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
3277 struct dmar_drhd_unit *drhd;
3278 u32 vtbar;
3279 int rc;
3281 /* We know that this device on this chipset has its own IOMMU.
3282 * If we find it under a different IOMMU, then the BIOS is lying
3283 * to us. Hope that the IOMMU for this device is actually
3284 * disabled, and it needs no translation...
3286 rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
3287 if (rc) {
3288 /* "can't" happen */
3289 dev_info(&pdev->dev, "failed to run vt-d quirk\n");
3290 return;
3292 vtbar &= 0xffff0000;
3294 /* we know that the this iommu should be at offset 0xa000 from vtbar */
3295 drhd = dmar_find_matched_drhd_unit(pdev);
3296 if (WARN_TAINT_ONCE(!drhd || drhd->reg_base_addr - vtbar != 0xa000,
3297 TAINT_FIRMWARE_WORKAROUND,
3298 "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
3299 pdev->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3301 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_IOAT_SNB, quirk_ioat_snb_local_iommu);
3303 static void __init init_no_remapping_devices(void)
3305 struct dmar_drhd_unit *drhd;
3307 for_each_drhd_unit(drhd) {
3308 if (!drhd->include_all) {
3309 int i;
3310 for (i = 0; i < drhd->devices_cnt; i++)
3311 if (drhd->devices[i] != NULL)
3312 break;
3313 /* ignore DMAR unit if no pci devices exist */
3314 if (i == drhd->devices_cnt)
3315 drhd->ignored = 1;
3319 for_each_drhd_unit(drhd) {
3320 int i;
3321 if (drhd->ignored || drhd->include_all)
3322 continue;
3324 for (i = 0; i < drhd->devices_cnt; i++)
3325 if (drhd->devices[i] &&
3326 !IS_GFX_DEVICE(drhd->devices[i]))
3327 break;
3329 if (i < drhd->devices_cnt)
3330 continue;
3332 /* This IOMMU has *only* gfx devices. Either bypass it or
3333 set the gfx_mapped flag, as appropriate */
3334 if (dmar_map_gfx) {
3335 intel_iommu_gfx_mapped = 1;
3336 } else {
3337 drhd->ignored = 1;
3338 for (i = 0; i < drhd->devices_cnt; i++) {
3339 if (!drhd->devices[i])
3340 continue;
3341 drhd->devices[i]->dev.archdata.iommu = DUMMY_DEVICE_DOMAIN_INFO;
3347 #ifdef CONFIG_SUSPEND
3348 static int init_iommu_hw(void)
3350 struct dmar_drhd_unit *drhd;
3351 struct intel_iommu *iommu = NULL;
3353 for_each_active_iommu(iommu, drhd)
3354 if (iommu->qi)
3355 dmar_reenable_qi(iommu);
3357 for_each_iommu(iommu, drhd) {
3358 if (drhd->ignored) {
3360 * we always have to disable PMRs or DMA may fail on
3361 * this device
3363 if (force_on)
3364 iommu_disable_protect_mem_regions(iommu);
3365 continue;
3368 iommu_flush_write_buffer(iommu);
3370 iommu_set_root_entry(iommu);
3372 iommu->flush.flush_context(iommu, 0, 0, 0,
3373 DMA_CCMD_GLOBAL_INVL);
3374 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3375 DMA_TLB_GLOBAL_FLUSH);
3376 if (iommu_enable_translation(iommu))
3377 return 1;
3378 iommu_disable_protect_mem_regions(iommu);
3381 return 0;
3384 static void iommu_flush_all(void)
3386 struct dmar_drhd_unit *drhd;
3387 struct intel_iommu *iommu;
3389 for_each_active_iommu(iommu, drhd) {
3390 iommu->flush.flush_context(iommu, 0, 0, 0,
3391 DMA_CCMD_GLOBAL_INVL);
3392 iommu->flush.flush_iotlb(iommu, 0, 0, 0,
3393 DMA_TLB_GLOBAL_FLUSH);
3397 static int iommu_suspend(void)
3399 struct dmar_drhd_unit *drhd;
3400 struct intel_iommu *iommu = NULL;
3401 unsigned long flag;
3403 for_each_active_iommu(iommu, drhd) {
3404 iommu->iommu_state = kzalloc(sizeof(u32) * MAX_SR_DMAR_REGS,
3405 GFP_ATOMIC);
3406 if (!iommu->iommu_state)
3407 goto nomem;
3410 iommu_flush_all();
3412 for_each_active_iommu(iommu, drhd) {
3413 iommu_disable_translation(iommu);
3415 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3417 iommu->iommu_state[SR_DMAR_FECTL_REG] =
3418 readl(iommu->reg + DMAR_FECTL_REG);
3419 iommu->iommu_state[SR_DMAR_FEDATA_REG] =
3420 readl(iommu->reg + DMAR_FEDATA_REG);
3421 iommu->iommu_state[SR_DMAR_FEADDR_REG] =
3422 readl(iommu->reg + DMAR_FEADDR_REG);
3423 iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
3424 readl(iommu->reg + DMAR_FEUADDR_REG);
3426 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3428 return 0;
3430 nomem:
3431 for_each_active_iommu(iommu, drhd)
3432 kfree(iommu->iommu_state);
3434 return -ENOMEM;
3437 static void iommu_resume(void)
3439 struct dmar_drhd_unit *drhd;
3440 struct intel_iommu *iommu = NULL;
3441 unsigned long flag;
3443 if (init_iommu_hw()) {
3444 if (force_on)
3445 panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
3446 else
3447 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3448 return;
3451 for_each_active_iommu(iommu, drhd) {
3453 raw_spin_lock_irqsave(&iommu->register_lock, flag);
3455 writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
3456 iommu->reg + DMAR_FECTL_REG);
3457 writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
3458 iommu->reg + DMAR_FEDATA_REG);
3459 writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
3460 iommu->reg + DMAR_FEADDR_REG);
3461 writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
3462 iommu->reg + DMAR_FEUADDR_REG);
3464 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
3467 for_each_active_iommu(iommu, drhd)
3468 kfree(iommu->iommu_state);
3471 static struct syscore_ops iommu_syscore_ops = {
3472 .resume = iommu_resume,
3473 .suspend = iommu_suspend,
3476 static void __init init_iommu_pm_ops(void)
3478 register_syscore_ops(&iommu_syscore_ops);
3481 #else
3482 static inline void init_iommu_pm_ops(void) {}
3483 #endif /* CONFIG_PM */
3485 LIST_HEAD(dmar_rmrr_units);
3487 static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr)
3489 list_add(&rmrr->list, &dmar_rmrr_units);
3493 int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header)
3495 struct acpi_dmar_reserved_memory *rmrr;
3496 struct dmar_rmrr_unit *rmrru;
3498 rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
3499 if (!rmrru)
3500 return -ENOMEM;
3502 rmrru->hdr = header;
3503 rmrr = (struct acpi_dmar_reserved_memory *)header;
3504 rmrru->base_address = rmrr->base_address;
3505 rmrru->end_address = rmrr->end_address;
3507 dmar_register_rmrr_unit(rmrru);
3508 return 0;
3511 static int __init
3512 rmrr_parse_dev(struct dmar_rmrr_unit *rmrru)
3514 struct acpi_dmar_reserved_memory *rmrr;
3515 int ret;
3517 rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr;
3518 ret = dmar_parse_dev_scope((void *)(rmrr + 1),
3519 ((void *)rmrr) + rmrr->header.length,
3520 &rmrru->devices_cnt, &rmrru->devices, rmrr->segment);
3522 if (ret || (rmrru->devices_cnt == 0)) {
3523 list_del(&rmrru->list);
3524 kfree(rmrru);
3526 return ret;
3529 static LIST_HEAD(dmar_atsr_units);
3531 int __init dmar_parse_one_atsr(struct acpi_dmar_header *hdr)
3533 struct acpi_dmar_atsr *atsr;
3534 struct dmar_atsr_unit *atsru;
3536 atsr = container_of(hdr, struct acpi_dmar_atsr, header);
3537 atsru = kzalloc(sizeof(*atsru), GFP_KERNEL);
3538 if (!atsru)
3539 return -ENOMEM;
3541 atsru->hdr = hdr;
3542 atsru->include_all = atsr->flags & 0x1;
3544 list_add(&atsru->list, &dmar_atsr_units);
3546 return 0;
3549 static int __init atsr_parse_dev(struct dmar_atsr_unit *atsru)
3551 int rc;
3552 struct acpi_dmar_atsr *atsr;
3554 if (atsru->include_all)
3555 return 0;
3557 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3558 rc = dmar_parse_dev_scope((void *)(atsr + 1),
3559 (void *)atsr + atsr->header.length,
3560 &atsru->devices_cnt, &atsru->devices,
3561 atsr->segment);
3562 if (rc || !atsru->devices_cnt) {
3563 list_del(&atsru->list);
3564 kfree(atsru);
3567 return rc;
3570 int dmar_find_matched_atsr_unit(struct pci_dev *dev)
3572 int i;
3573 struct pci_bus *bus;
3574 struct acpi_dmar_atsr *atsr;
3575 struct dmar_atsr_unit *atsru;
3577 dev = pci_physfn(dev);
3579 list_for_each_entry(atsru, &dmar_atsr_units, list) {
3580 atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
3581 if (atsr->segment == pci_domain_nr(dev->bus))
3582 goto found;
3585 return 0;
3587 found:
3588 for (bus = dev->bus; bus; bus = bus->parent) {
3589 struct pci_dev *bridge = bus->self;
3591 if (!bridge || !pci_is_pcie(bridge) ||
3592 pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
3593 return 0;
3595 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT) {
3596 for (i = 0; i < atsru->devices_cnt; i++)
3597 if (atsru->devices[i] == bridge)
3598 return 1;
3599 break;
3603 if (atsru->include_all)
3604 return 1;
3606 return 0;
3609 int __init dmar_parse_rmrr_atsr_dev(void)
3611 struct dmar_rmrr_unit *rmrr, *rmrr_n;
3612 struct dmar_atsr_unit *atsr, *atsr_n;
3613 int ret = 0;
3615 list_for_each_entry_safe(rmrr, rmrr_n, &dmar_rmrr_units, list) {
3616 ret = rmrr_parse_dev(rmrr);
3617 if (ret)
3618 return ret;
3621 list_for_each_entry_safe(atsr, atsr_n, &dmar_atsr_units, list) {
3622 ret = atsr_parse_dev(atsr);
3623 if (ret)
3624 return ret;
3627 return ret;
3631 * Here we only respond to action of unbound device from driver.
3633 * Added device is not attached to its DMAR domain here yet. That will happen
3634 * when mapping the device to iova.
3636 static int device_notifier(struct notifier_block *nb,
3637 unsigned long action, void *data)
3639 struct device *dev = data;
3640 struct pci_dev *pdev = to_pci_dev(dev);
3641 struct dmar_domain *domain;
3643 if (iommu_no_mapping(dev))
3644 return 0;
3646 domain = find_domain(pdev);
3647 if (!domain)
3648 return 0;
3650 if (action == BUS_NOTIFY_UNBOUND_DRIVER && !iommu_pass_through) {
3651 domain_remove_one_dev_info(domain, pdev);
3653 if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) &&
3654 !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY) &&
3655 list_empty(&domain->devices))
3656 domain_exit(domain);
3659 return 0;
3662 static struct notifier_block device_nb = {
3663 .notifier_call = device_notifier,
3666 int __init intel_iommu_init(void)
3668 int ret = 0;
3669 struct dmar_drhd_unit *drhd;
3671 /* VT-d is required for a TXT/tboot launch, so enforce that */
3672 force_on = tboot_force_iommu();
3674 if (dmar_table_init()) {
3675 if (force_on)
3676 panic("tboot: Failed to initialize DMAR table\n");
3677 return -ENODEV;
3681 * Disable translation if already enabled prior to OS handover.
3683 for_each_drhd_unit(drhd) {
3684 struct intel_iommu *iommu;
3686 if (drhd->ignored)
3687 continue;
3689 iommu = drhd->iommu;
3690 if (iommu->gcmd & DMA_GCMD_TE)
3691 iommu_disable_translation(iommu);
3694 if (dmar_dev_scope_init() < 0) {
3695 if (force_on)
3696 panic("tboot: Failed to initialize DMAR device scope\n");
3697 return -ENODEV;
3700 if (no_iommu || dmar_disabled)
3701 return -ENODEV;
3703 if (iommu_init_mempool()) {
3704 if (force_on)
3705 panic("tboot: Failed to initialize iommu memory\n");
3706 return -ENODEV;
3709 if (list_empty(&dmar_rmrr_units))
3710 printk(KERN_INFO "DMAR: No RMRR found\n");
3712 if (list_empty(&dmar_atsr_units))
3713 printk(KERN_INFO "DMAR: No ATSR found\n");
3715 if (dmar_init_reserved_ranges()) {
3716 if (force_on)
3717 panic("tboot: Failed to reserve iommu ranges\n");
3718 return -ENODEV;
3721 init_no_remapping_devices();
3723 ret = init_dmars();
3724 if (ret) {
3725 if (force_on)
3726 panic("tboot: Failed to initialize DMARs\n");
3727 printk(KERN_ERR "IOMMU: dmar init failed\n");
3728 put_iova_domain(&reserved_iova_list);
3729 iommu_exit_mempool();
3730 return ret;
3732 printk(KERN_INFO
3733 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
3735 init_timer(&unmap_timer);
3736 #ifdef CONFIG_SWIOTLB
3737 swiotlb = 0;
3738 #endif
3739 dma_ops = &intel_dma_ops;
3741 init_iommu_pm_ops();
3743 bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
3745 bus_register_notifier(&pci_bus_type, &device_nb);
3747 intel_iommu_enabled = 1;
3749 return 0;
3752 static void iommu_detach_dependent_devices(struct intel_iommu *iommu,
3753 struct pci_dev *pdev)
3755 struct pci_dev *tmp, *parent;
3757 if (!iommu || !pdev)
3758 return;
3760 /* dependent device detach */
3761 tmp = pci_find_upstream_pcie_bridge(pdev);
3762 /* Secondary interface's bus number and devfn 0 */
3763 if (tmp) {
3764 parent = pdev->bus->self;
3765 while (parent != tmp) {
3766 iommu_detach_dev(iommu, parent->bus->number,
3767 parent->devfn);
3768 parent = parent->bus->self;
3770 if (pci_is_pcie(tmp)) /* this is a PCIe-to-PCI bridge */
3771 iommu_detach_dev(iommu,
3772 tmp->subordinate->number, 0);
3773 else /* this is a legacy PCI bridge */
3774 iommu_detach_dev(iommu, tmp->bus->number,
3775 tmp->devfn);
3779 static void domain_remove_one_dev_info(struct dmar_domain *domain,
3780 struct pci_dev *pdev)
3782 struct device_domain_info *info;
3783 struct intel_iommu *iommu;
3784 unsigned long flags;
3785 int found = 0;
3786 struct list_head *entry, *tmp;
3788 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
3789 pdev->devfn);
3790 if (!iommu)
3791 return;
3793 spin_lock_irqsave(&device_domain_lock, flags);
3794 list_for_each_safe(entry, tmp, &domain->devices) {
3795 info = list_entry(entry, struct device_domain_info, link);
3796 if (info->segment == pci_domain_nr(pdev->bus) &&
3797 info->bus == pdev->bus->number &&
3798 info->devfn == pdev->devfn) {
3799 unlink_domain_info(info);
3800 spin_unlock_irqrestore(&device_domain_lock, flags);
3802 iommu_disable_dev_iotlb(info);
3803 iommu_detach_dev(iommu, info->bus, info->devfn);
3804 iommu_detach_dependent_devices(iommu, pdev);
3805 free_devinfo_mem(info);
3807 spin_lock_irqsave(&device_domain_lock, flags);
3809 if (found)
3810 break;
3811 else
3812 continue;
3815 /* if there is no other devices under the same iommu
3816 * owned by this domain, clear this iommu in iommu_bmp
3817 * update iommu count and coherency
3819 if (iommu == device_to_iommu(info->segment, info->bus,
3820 info->devfn))
3821 found = 1;
3824 spin_unlock_irqrestore(&device_domain_lock, flags);
3826 if (found == 0) {
3827 unsigned long tmp_flags;
3828 spin_lock_irqsave(&domain->iommu_lock, tmp_flags);
3829 clear_bit(iommu->seq_id, domain->iommu_bmp);
3830 domain->iommu_count--;
3831 domain_update_iommu_cap(domain);
3832 spin_unlock_irqrestore(&domain->iommu_lock, tmp_flags);
3834 if (!(domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE) &&
3835 !(domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)) {
3836 spin_lock_irqsave(&iommu->lock, tmp_flags);
3837 clear_bit(domain->id, iommu->domain_ids);
3838 iommu->domains[domain->id] = NULL;
3839 spin_unlock_irqrestore(&iommu->lock, tmp_flags);
3844 static void vm_domain_remove_all_dev_info(struct dmar_domain *domain)
3846 struct device_domain_info *info;
3847 struct intel_iommu *iommu;
3848 unsigned long flags1, flags2;
3850 spin_lock_irqsave(&device_domain_lock, flags1);
3851 while (!list_empty(&domain->devices)) {
3852 info = list_entry(domain->devices.next,
3853 struct device_domain_info, link);
3854 unlink_domain_info(info);
3855 spin_unlock_irqrestore(&device_domain_lock, flags1);
3857 iommu_disable_dev_iotlb(info);
3858 iommu = device_to_iommu(info->segment, info->bus, info->devfn);
3859 iommu_detach_dev(iommu, info->bus, info->devfn);
3860 iommu_detach_dependent_devices(iommu, info->dev);
3862 /* clear this iommu in iommu_bmp, update iommu count
3863 * and capabilities
3865 spin_lock_irqsave(&domain->iommu_lock, flags2);
3866 if (test_and_clear_bit(iommu->seq_id,
3867 domain->iommu_bmp)) {
3868 domain->iommu_count--;
3869 domain_update_iommu_cap(domain);
3871 spin_unlock_irqrestore(&domain->iommu_lock, flags2);
3873 free_devinfo_mem(info);
3874 spin_lock_irqsave(&device_domain_lock, flags1);
3876 spin_unlock_irqrestore(&device_domain_lock, flags1);
3879 /* domain id for virtual machine, it won't be set in context */
3880 static unsigned long vm_domid;
3882 static struct dmar_domain *iommu_alloc_vm_domain(void)
3884 struct dmar_domain *domain;
3886 domain = alloc_domain_mem();
3887 if (!domain)
3888 return NULL;
3890 domain->id = vm_domid++;
3891 domain->nid = -1;
3892 memset(domain->iommu_bmp, 0, sizeof(domain->iommu_bmp));
3893 domain->flags = DOMAIN_FLAG_VIRTUAL_MACHINE;
3895 return domain;
3898 static int md_domain_init(struct dmar_domain *domain, int guest_width)
3900 int adjust_width;
3902 init_iova_domain(&domain->iovad, DMA_32BIT_PFN);
3903 spin_lock_init(&domain->iommu_lock);
3905 domain_reserve_special_ranges(domain);
3907 /* calculate AGAW */
3908 domain->gaw = guest_width;
3909 adjust_width = guestwidth_to_adjustwidth(guest_width);
3910 domain->agaw = width_to_agaw(adjust_width);
3912 INIT_LIST_HEAD(&domain->devices);
3914 domain->iommu_count = 0;
3915 domain->iommu_coherency = 0;
3916 domain->iommu_snooping = 0;
3917 domain->iommu_superpage = 0;
3918 domain->max_addr = 0;
3919 domain->nid = -1;
3921 /* always allocate the top pgd */
3922 domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
3923 if (!domain->pgd)
3924 return -ENOMEM;
3925 domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
3926 return 0;
3929 static void iommu_free_vm_domain(struct dmar_domain *domain)
3931 unsigned long flags;
3932 struct dmar_drhd_unit *drhd;
3933 struct intel_iommu *iommu;
3934 unsigned long i;
3935 unsigned long ndomains;
3937 for_each_drhd_unit(drhd) {
3938 if (drhd->ignored)
3939 continue;
3940 iommu = drhd->iommu;
3942 ndomains = cap_ndoms(iommu->cap);
3943 for_each_set_bit(i, iommu->domain_ids, ndomains) {
3944 if (iommu->domains[i] == domain) {
3945 spin_lock_irqsave(&iommu->lock, flags);
3946 clear_bit(i, iommu->domain_ids);
3947 iommu->domains[i] = NULL;
3948 spin_unlock_irqrestore(&iommu->lock, flags);
3949 break;
3955 static void vm_domain_exit(struct dmar_domain *domain)
3957 /* Domain 0 is reserved, so dont process it */
3958 if (!domain)
3959 return;
3961 vm_domain_remove_all_dev_info(domain);
3962 /* destroy iovas */
3963 put_iova_domain(&domain->iovad);
3965 /* clear ptes */
3966 dma_pte_clear_range(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3968 /* free page tables */
3969 dma_pte_free_pagetable(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
3971 iommu_free_vm_domain(domain);
3972 free_domain_mem(domain);
3975 static int intel_iommu_domain_init(struct iommu_domain *domain)
3977 struct dmar_domain *dmar_domain;
3979 dmar_domain = iommu_alloc_vm_domain();
3980 if (!dmar_domain) {
3981 printk(KERN_ERR
3982 "intel_iommu_domain_init: dmar_domain == NULL\n");
3983 return -ENOMEM;
3985 if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
3986 printk(KERN_ERR
3987 "intel_iommu_domain_init() failed\n");
3988 vm_domain_exit(dmar_domain);
3989 return -ENOMEM;
3991 domain_update_iommu_cap(dmar_domain);
3992 domain->priv = dmar_domain;
3994 domain->geometry.aperture_start = 0;
3995 domain->geometry.aperture_end = __DOMAIN_MAX_ADDR(dmar_domain->gaw);
3996 domain->geometry.force_aperture = true;
3998 return 0;
4001 static void intel_iommu_domain_destroy(struct iommu_domain *domain)
4003 struct dmar_domain *dmar_domain = domain->priv;
4005 domain->priv = NULL;
4006 vm_domain_exit(dmar_domain);
4009 static int intel_iommu_attach_device(struct iommu_domain *domain,
4010 struct device *dev)
4012 struct dmar_domain *dmar_domain = domain->priv;
4013 struct pci_dev *pdev = to_pci_dev(dev);
4014 struct intel_iommu *iommu;
4015 int addr_width;
4017 /* normally pdev is not mapped */
4018 if (unlikely(domain_context_mapped(pdev))) {
4019 struct dmar_domain *old_domain;
4021 old_domain = find_domain(pdev);
4022 if (old_domain) {
4023 if (dmar_domain->flags & DOMAIN_FLAG_VIRTUAL_MACHINE ||
4024 dmar_domain->flags & DOMAIN_FLAG_STATIC_IDENTITY)
4025 domain_remove_one_dev_info(old_domain, pdev);
4026 else
4027 domain_remove_dev_info(old_domain);
4031 iommu = device_to_iommu(pci_domain_nr(pdev->bus), pdev->bus->number,
4032 pdev->devfn);
4033 if (!iommu)
4034 return -ENODEV;
4036 /* check if this iommu agaw is sufficient for max mapped address */
4037 addr_width = agaw_to_width(iommu->agaw);
4038 if (addr_width > cap_mgaw(iommu->cap))
4039 addr_width = cap_mgaw(iommu->cap);
4041 if (dmar_domain->max_addr > (1LL << addr_width)) {
4042 printk(KERN_ERR "%s: iommu width (%d) is not "
4043 "sufficient for the mapped address (%llx)\n",
4044 __func__, addr_width, dmar_domain->max_addr);
4045 return -EFAULT;
4047 dmar_domain->gaw = addr_width;
4050 * Knock out extra levels of page tables if necessary
4052 while (iommu->agaw < dmar_domain->agaw) {
4053 struct dma_pte *pte;
4055 pte = dmar_domain->pgd;
4056 if (dma_pte_present(pte)) {
4057 dmar_domain->pgd = (struct dma_pte *)
4058 phys_to_virt(dma_pte_addr(pte));
4059 free_pgtable_page(pte);
4061 dmar_domain->agaw--;
4064 return domain_add_dev_info(dmar_domain, pdev, CONTEXT_TT_MULTI_LEVEL);
4067 static void intel_iommu_detach_device(struct iommu_domain *domain,
4068 struct device *dev)
4070 struct dmar_domain *dmar_domain = domain->priv;
4071 struct pci_dev *pdev = to_pci_dev(dev);
4073 domain_remove_one_dev_info(dmar_domain, pdev);
4076 static int intel_iommu_map(struct iommu_domain *domain,
4077 unsigned long iova, phys_addr_t hpa,
4078 size_t size, int iommu_prot)
4080 struct dmar_domain *dmar_domain = domain->priv;
4081 u64 max_addr;
4082 int prot = 0;
4083 int ret;
4085 if (iommu_prot & IOMMU_READ)
4086 prot |= DMA_PTE_READ;
4087 if (iommu_prot & IOMMU_WRITE)
4088 prot |= DMA_PTE_WRITE;
4089 if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
4090 prot |= DMA_PTE_SNP;
4092 max_addr = iova + size;
4093 if (dmar_domain->max_addr < max_addr) {
4094 u64 end;
4096 /* check if minimum agaw is sufficient for mapped address */
4097 end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
4098 if (end < max_addr) {
4099 printk(KERN_ERR "%s: iommu width (%d) is not "
4100 "sufficient for the mapped address (%llx)\n",
4101 __func__, dmar_domain->gaw, max_addr);
4102 return -EFAULT;
4104 dmar_domain->max_addr = max_addr;
4106 /* Round up size to next multiple of PAGE_SIZE, if it and
4107 the low bits of hpa would take us onto the next page */
4108 size = aligned_nrpages(hpa, size);
4109 ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
4110 hpa >> VTD_PAGE_SHIFT, size, prot);
4111 return ret;
4114 static size_t intel_iommu_unmap(struct iommu_domain *domain,
4115 unsigned long iova, size_t size)
4117 struct dmar_domain *dmar_domain = domain->priv;
4118 int order, iommu_id;
4120 order = dma_pte_clear_range(dmar_domain, iova >> VTD_PAGE_SHIFT,
4121 (iova + size - 1) >> VTD_PAGE_SHIFT);
4123 if (dmar_domain->max_addr == iova + size)
4124 dmar_domain->max_addr = iova;
4126 for_each_set_bit(iommu_id, dmar_domain->iommu_bmp, g_num_of_iommus) {
4127 struct intel_iommu *iommu = g_iommus[iommu_id];
4128 int num, ndomains;
4131 * find bit position of dmar_domain
4133 ndomains = cap_ndoms(iommu->cap);
4134 for_each_set_bit(num, iommu->domain_ids, ndomains) {
4135 if (iommu->domains[num] == dmar_domain)
4136 iommu_flush_iotlb_psi(iommu, num,
4137 iova >> VTD_PAGE_SHIFT,
4138 1 << order, 0);
4142 return PAGE_SIZE << order;
4145 static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
4146 dma_addr_t iova)
4148 struct dmar_domain *dmar_domain = domain->priv;
4149 struct dma_pte *pte;
4150 u64 phys = 0;
4152 pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, 0);
4153 if (pte)
4154 phys = dma_pte_addr(pte);
4156 return phys;
4159 static int intel_iommu_domain_has_cap(struct iommu_domain *domain,
4160 unsigned long cap)
4162 struct dmar_domain *dmar_domain = domain->priv;
4164 if (cap == IOMMU_CAP_CACHE_COHERENCY)
4165 return dmar_domain->iommu_snooping;
4166 if (cap == IOMMU_CAP_INTR_REMAP)
4167 return irq_remapping_enabled;
4169 return 0;
4172 #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
4174 static int intel_iommu_add_device(struct device *dev)
4176 struct pci_dev *pdev = to_pci_dev(dev);
4177 struct pci_dev *bridge, *dma_pdev = NULL;
4178 struct iommu_group *group;
4179 int ret;
4181 if (!device_to_iommu(pci_domain_nr(pdev->bus),
4182 pdev->bus->number, pdev->devfn))
4183 return -ENODEV;
4185 bridge = pci_find_upstream_pcie_bridge(pdev);
4186 if (bridge) {
4187 if (pci_is_pcie(bridge))
4188 dma_pdev = pci_get_domain_bus_and_slot(
4189 pci_domain_nr(pdev->bus),
4190 bridge->subordinate->number, 0);
4191 if (!dma_pdev)
4192 dma_pdev = pci_dev_get(bridge);
4193 } else
4194 dma_pdev = pci_dev_get(pdev);
4196 /* Account for quirked devices */
4197 swap_pci_ref(&dma_pdev, pci_get_dma_source(dma_pdev));
4200 * If it's a multifunction device that does not support our
4201 * required ACS flags, add to the same group as lowest numbered
4202 * function that also does not suport the required ACS flags.
4204 if (dma_pdev->multifunction &&
4205 !pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS)) {
4206 u8 i, slot = PCI_SLOT(dma_pdev->devfn);
4208 for (i = 0; i < 8; i++) {
4209 struct pci_dev *tmp;
4211 tmp = pci_get_slot(dma_pdev->bus, PCI_DEVFN(slot, i));
4212 if (!tmp)
4213 continue;
4215 if (!pci_acs_enabled(tmp, REQ_ACS_FLAGS)) {
4216 swap_pci_ref(&dma_pdev, tmp);
4217 break;
4219 pci_dev_put(tmp);
4224 * Devices on the root bus go through the iommu. If that's not us,
4225 * find the next upstream device and test ACS up to the root bus.
4226 * Finding the next device may require skipping virtual buses.
4228 while (!pci_is_root_bus(dma_pdev->bus)) {
4229 struct pci_bus *bus = dma_pdev->bus;
4231 while (!bus->self) {
4232 if (!pci_is_root_bus(bus))
4233 bus = bus->parent;
4234 else
4235 goto root_bus;
4238 if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
4239 break;
4241 swap_pci_ref(&dma_pdev, pci_dev_get(bus->self));
4244 root_bus:
4245 group = iommu_group_get(&dma_pdev->dev);
4246 pci_dev_put(dma_pdev);
4247 if (!group) {
4248 group = iommu_group_alloc();
4249 if (IS_ERR(group))
4250 return PTR_ERR(group);
4253 ret = iommu_group_add_device(group, dev);
4255 iommu_group_put(group);
4256 return ret;
4259 static void intel_iommu_remove_device(struct device *dev)
4261 iommu_group_remove_device(dev);
4264 static struct iommu_ops intel_iommu_ops = {
4265 .domain_init = intel_iommu_domain_init,
4266 .domain_destroy = intel_iommu_domain_destroy,
4267 .attach_dev = intel_iommu_attach_device,
4268 .detach_dev = intel_iommu_detach_device,
4269 .map = intel_iommu_map,
4270 .unmap = intel_iommu_unmap,
4271 .iova_to_phys = intel_iommu_iova_to_phys,
4272 .domain_has_cap = intel_iommu_domain_has_cap,
4273 .add_device = intel_iommu_add_device,
4274 .remove_device = intel_iommu_remove_device,
4275 .pgsize_bitmap = INTEL_IOMMU_PGSIZES,
4278 static void quirk_iommu_g4x_gfx(struct pci_dev *dev)
4280 /* G4x/GM45 integrated gfx dmar support is totally busted. */
4281 printk(KERN_INFO "DMAR: Disabling IOMMU for graphics on this chipset\n");
4282 dmar_map_gfx = 0;
4285 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_g4x_gfx);
4286 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_g4x_gfx);
4287 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_g4x_gfx);
4288 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_g4x_gfx);
4289 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_g4x_gfx);
4290 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_g4x_gfx);
4291 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_g4x_gfx);
4293 static void quirk_iommu_rwbf(struct pci_dev *dev)
4296 * Mobile 4 Series Chipset neglects to set RWBF capability,
4297 * but needs it. Same seems to hold for the desktop versions.
4299 printk(KERN_INFO "DMAR: Forcing write-buffer flush capability\n");
4300 rwbf_quirk = 1;
4303 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
4304 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
4305 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
4306 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
4307 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
4308 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
4309 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
4311 #define GGC 0x52
4312 #define GGC_MEMORY_SIZE_MASK (0xf << 8)
4313 #define GGC_MEMORY_SIZE_NONE (0x0 << 8)
4314 #define GGC_MEMORY_SIZE_1M (0x1 << 8)
4315 #define GGC_MEMORY_SIZE_2M (0x3 << 8)
4316 #define GGC_MEMORY_VT_ENABLED (0x8 << 8)
4317 #define GGC_MEMORY_SIZE_2M_VT (0x9 << 8)
4318 #define GGC_MEMORY_SIZE_3M_VT (0xa << 8)
4319 #define GGC_MEMORY_SIZE_4M_VT (0xb << 8)
4321 static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
4323 unsigned short ggc;
4325 if (pci_read_config_word(dev, GGC, &ggc))
4326 return;
4328 if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
4329 printk(KERN_INFO "DMAR: BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
4330 dmar_map_gfx = 0;
4331 } else if (dmar_map_gfx) {
4332 /* we have to ensure the gfx device is idle before we flush */
4333 printk(KERN_INFO "DMAR: Disabling batched IOTLB flush on Ironlake\n");
4334 intel_iommu_strict = 1;
4337 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
4338 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
4339 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
4340 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
4342 /* On Tylersburg chipsets, some BIOSes have been known to enable the
4343 ISOCH DMAR unit for the Azalia sound device, but not give it any
4344 TLB entries, which causes it to deadlock. Check for that. We do
4345 this in a function called from init_dmars(), instead of in a PCI
4346 quirk, because we don't want to print the obnoxious "BIOS broken"
4347 message if VT-d is actually disabled.
4349 static void __init check_tylersburg_isoch(void)
4351 struct pci_dev *pdev;
4352 uint32_t vtisochctrl;
4354 /* If there's no Azalia in the system anyway, forget it. */
4355 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
4356 if (!pdev)
4357 return;
4358 pci_dev_put(pdev);
4360 /* System Management Registers. Might be hidden, in which case
4361 we can't do the sanity check. But that's OK, because the
4362 known-broken BIOSes _don't_ actually hide it, so far. */
4363 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
4364 if (!pdev)
4365 return;
4367 if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
4368 pci_dev_put(pdev);
4369 return;
4372 pci_dev_put(pdev);
4374 /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
4375 if (vtisochctrl & 1)
4376 return;
4378 /* Drop all bits other than the number of TLB entries */
4379 vtisochctrl &= 0x1c;
4381 /* If we have the recommended number of TLB entries (16), fine. */
4382 if (vtisochctrl == 0x10)
4383 return;
4385 /* Zero TLB entries? You get to ride the short bus to school. */
4386 if (!vtisochctrl) {
4387 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
4388 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
4389 dmi_get_system_info(DMI_BIOS_VENDOR),
4390 dmi_get_system_info(DMI_BIOS_VERSION),
4391 dmi_get_system_info(DMI_PRODUCT_VERSION));
4392 iommu_identity_mapping |= IDENTMAP_AZALIA;
4393 return;
4396 printk(KERN_WARNING "DMAR: Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
4397 vtisochctrl);