mfd: wm8350-i2c: Make sure the i2c regmap functions are compiled
[linux/fpc-iii.git] / drivers / md / dm-bufio.c
blob93edd894e94b685a010bd106b77cf0a8cab1a7cc
1 /*
2 * Copyright (C) 2009-2011 Red Hat, Inc.
4 * Author: Mikulas Patocka <mpatocka@redhat.com>
6 * This file is released under the GPL.
7 */
9 #include "dm-bufio.h"
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/shrinker.h>
16 #include <linux/module.h>
18 #define DM_MSG_PREFIX "bufio"
21 * Memory management policy:
22 * Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
23 * or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
24 * Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
25 * Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
26 * dirty buffers.
28 #define DM_BUFIO_MIN_BUFFERS 8
30 #define DM_BUFIO_MEMORY_PERCENT 2
31 #define DM_BUFIO_VMALLOC_PERCENT 25
32 #define DM_BUFIO_WRITEBACK_PERCENT 75
35 * Check buffer ages in this interval (seconds)
37 #define DM_BUFIO_WORK_TIMER_SECS 10
40 * Free buffers when they are older than this (seconds)
42 #define DM_BUFIO_DEFAULT_AGE_SECS 60
45 * The number of bvec entries that are embedded directly in the buffer.
46 * If the chunk size is larger, dm-io is used to do the io.
48 #define DM_BUFIO_INLINE_VECS 16
51 * Buffer hash
53 #define DM_BUFIO_HASH_BITS 20
54 #define DM_BUFIO_HASH(block) \
55 ((((block) >> DM_BUFIO_HASH_BITS) ^ (block)) & \
56 ((1 << DM_BUFIO_HASH_BITS) - 1))
59 * Don't try to use kmem_cache_alloc for blocks larger than this.
60 * For explanation, see alloc_buffer_data below.
62 #define DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT (PAGE_SIZE >> 1)
63 #define DM_BUFIO_BLOCK_SIZE_GFP_LIMIT (PAGE_SIZE << (MAX_ORDER - 1))
66 * dm_buffer->list_mode
68 #define LIST_CLEAN 0
69 #define LIST_DIRTY 1
70 #define LIST_SIZE 2
73 * Linking of buffers:
74 * All buffers are linked to cache_hash with their hash_list field.
76 * Clean buffers that are not being written (B_WRITING not set)
77 * are linked to lru[LIST_CLEAN] with their lru_list field.
79 * Dirty and clean buffers that are being written are linked to
80 * lru[LIST_DIRTY] with their lru_list field. When the write
81 * finishes, the buffer cannot be relinked immediately (because we
82 * are in an interrupt context and relinking requires process
83 * context), so some clean-not-writing buffers can be held on
84 * dirty_lru too. They are later added to lru in the process
85 * context.
87 struct dm_bufio_client {
88 struct mutex lock;
90 struct list_head lru[LIST_SIZE];
91 unsigned long n_buffers[LIST_SIZE];
93 struct block_device *bdev;
94 unsigned block_size;
95 unsigned char sectors_per_block_bits;
96 unsigned char pages_per_block_bits;
97 unsigned char blocks_per_page_bits;
98 unsigned aux_size;
99 void (*alloc_callback)(struct dm_buffer *);
100 void (*write_callback)(struct dm_buffer *);
102 struct dm_io_client *dm_io;
104 struct list_head reserved_buffers;
105 unsigned need_reserved_buffers;
107 struct hlist_head *cache_hash;
108 wait_queue_head_t free_buffer_wait;
110 int async_write_error;
112 struct list_head client_list;
113 struct shrinker shrinker;
117 * Buffer state bits.
119 #define B_READING 0
120 #define B_WRITING 1
121 #define B_DIRTY 2
124 * Describes how the block was allocated:
125 * kmem_cache_alloc(), __get_free_pages() or vmalloc().
126 * See the comment at alloc_buffer_data.
128 enum data_mode {
129 DATA_MODE_SLAB = 0,
130 DATA_MODE_GET_FREE_PAGES = 1,
131 DATA_MODE_VMALLOC = 2,
132 DATA_MODE_LIMIT = 3
135 struct dm_buffer {
136 struct hlist_node hash_list;
137 struct list_head lru_list;
138 sector_t block;
139 void *data;
140 enum data_mode data_mode;
141 unsigned char list_mode; /* LIST_* */
142 unsigned hold_count;
143 int read_error;
144 int write_error;
145 unsigned long state;
146 unsigned long last_accessed;
147 struct dm_bufio_client *c;
148 struct list_head write_list;
149 struct bio bio;
150 struct bio_vec bio_vec[DM_BUFIO_INLINE_VECS];
153 /*----------------------------------------------------------------*/
155 static struct kmem_cache *dm_bufio_caches[PAGE_SHIFT - SECTOR_SHIFT];
156 static char *dm_bufio_cache_names[PAGE_SHIFT - SECTOR_SHIFT];
158 static inline int dm_bufio_cache_index(struct dm_bufio_client *c)
160 unsigned ret = c->blocks_per_page_bits - 1;
162 BUG_ON(ret >= ARRAY_SIZE(dm_bufio_caches));
164 return ret;
167 #define DM_BUFIO_CACHE(c) (dm_bufio_caches[dm_bufio_cache_index(c)])
168 #define DM_BUFIO_CACHE_NAME(c) (dm_bufio_cache_names[dm_bufio_cache_index(c)])
170 #define dm_bufio_in_request() (!!current->bio_list)
172 static void dm_bufio_lock(struct dm_bufio_client *c)
174 mutex_lock_nested(&c->lock, dm_bufio_in_request());
177 static int dm_bufio_trylock(struct dm_bufio_client *c)
179 return mutex_trylock(&c->lock);
182 static void dm_bufio_unlock(struct dm_bufio_client *c)
184 mutex_unlock(&c->lock);
188 * FIXME Move to sched.h?
190 #ifdef CONFIG_PREEMPT_VOLUNTARY
191 # define dm_bufio_cond_resched() \
192 do { \
193 if (unlikely(need_resched())) \
194 _cond_resched(); \
195 } while (0)
196 #else
197 # define dm_bufio_cond_resched() do { } while (0)
198 #endif
200 /*----------------------------------------------------------------*/
203 * Default cache size: available memory divided by the ratio.
205 static unsigned long dm_bufio_default_cache_size;
208 * Total cache size set by the user.
210 static unsigned long dm_bufio_cache_size;
213 * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
214 * at any time. If it disagrees, the user has changed cache size.
216 static unsigned long dm_bufio_cache_size_latch;
218 static DEFINE_SPINLOCK(param_spinlock);
221 * Buffers are freed after this timeout
223 static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
225 static unsigned long dm_bufio_peak_allocated;
226 static unsigned long dm_bufio_allocated_kmem_cache;
227 static unsigned long dm_bufio_allocated_get_free_pages;
228 static unsigned long dm_bufio_allocated_vmalloc;
229 static unsigned long dm_bufio_current_allocated;
231 /*----------------------------------------------------------------*/
234 * Per-client cache: dm_bufio_cache_size / dm_bufio_client_count
236 static unsigned long dm_bufio_cache_size_per_client;
239 * The current number of clients.
241 static int dm_bufio_client_count;
244 * The list of all clients.
246 static LIST_HEAD(dm_bufio_all_clients);
249 * This mutex protects dm_bufio_cache_size_latch,
250 * dm_bufio_cache_size_per_client and dm_bufio_client_count
252 static DEFINE_MUTEX(dm_bufio_clients_lock);
254 /*----------------------------------------------------------------*/
256 static void adjust_total_allocated(enum data_mode data_mode, long diff)
258 static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
259 &dm_bufio_allocated_kmem_cache,
260 &dm_bufio_allocated_get_free_pages,
261 &dm_bufio_allocated_vmalloc,
264 spin_lock(&param_spinlock);
266 *class_ptr[data_mode] += diff;
268 dm_bufio_current_allocated += diff;
270 if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
271 dm_bufio_peak_allocated = dm_bufio_current_allocated;
273 spin_unlock(&param_spinlock);
277 * Change the number of clients and recalculate per-client limit.
279 static void __cache_size_refresh(void)
281 BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
282 BUG_ON(dm_bufio_client_count < 0);
284 dm_bufio_cache_size_latch = ACCESS_ONCE(dm_bufio_cache_size);
287 * Use default if set to 0 and report the actual cache size used.
289 if (!dm_bufio_cache_size_latch) {
290 (void)cmpxchg(&dm_bufio_cache_size, 0,
291 dm_bufio_default_cache_size);
292 dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
295 dm_bufio_cache_size_per_client = dm_bufio_cache_size_latch /
296 (dm_bufio_client_count ? : 1);
300 * Allocating buffer data.
302 * Small buffers are allocated with kmem_cache, to use space optimally.
304 * For large buffers, we choose between get_free_pages and vmalloc.
305 * Each has advantages and disadvantages.
307 * __get_free_pages can randomly fail if the memory is fragmented.
308 * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
309 * as low as 128M) so using it for caching is not appropriate.
311 * If the allocation may fail we use __get_free_pages. Memory fragmentation
312 * won't have a fatal effect here, but it just causes flushes of some other
313 * buffers and more I/O will be performed. Don't use __get_free_pages if it
314 * always fails (i.e. order >= MAX_ORDER).
316 * If the allocation shouldn't fail we use __vmalloc. This is only for the
317 * initial reserve allocation, so there's no risk of wasting all vmalloc
318 * space.
320 static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
321 enum data_mode *data_mode)
323 unsigned noio_flag;
324 void *ptr;
326 if (c->block_size <= DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT) {
327 *data_mode = DATA_MODE_SLAB;
328 return kmem_cache_alloc(DM_BUFIO_CACHE(c), gfp_mask);
331 if (c->block_size <= DM_BUFIO_BLOCK_SIZE_GFP_LIMIT &&
332 gfp_mask & __GFP_NORETRY) {
333 *data_mode = DATA_MODE_GET_FREE_PAGES;
334 return (void *)__get_free_pages(gfp_mask,
335 c->pages_per_block_bits);
338 *data_mode = DATA_MODE_VMALLOC;
341 * __vmalloc allocates the data pages and auxiliary structures with
342 * gfp_flags that were specified, but pagetables are always allocated
343 * with GFP_KERNEL, no matter what was specified as gfp_mask.
345 * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that
346 * all allocations done by this process (including pagetables) are done
347 * as if GFP_NOIO was specified.
350 if (gfp_mask & __GFP_NORETRY)
351 noio_flag = memalloc_noio_save();
353 ptr = __vmalloc(c->block_size, gfp_mask | __GFP_HIGHMEM, PAGE_KERNEL);
355 if (gfp_mask & __GFP_NORETRY)
356 memalloc_noio_restore(noio_flag);
358 return ptr;
362 * Free buffer's data.
364 static void free_buffer_data(struct dm_bufio_client *c,
365 void *data, enum data_mode data_mode)
367 switch (data_mode) {
368 case DATA_MODE_SLAB:
369 kmem_cache_free(DM_BUFIO_CACHE(c), data);
370 break;
372 case DATA_MODE_GET_FREE_PAGES:
373 free_pages((unsigned long)data, c->pages_per_block_bits);
374 break;
376 case DATA_MODE_VMALLOC:
377 vfree(data);
378 break;
380 default:
381 DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
382 data_mode);
383 BUG();
388 * Allocate buffer and its data.
390 static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
392 struct dm_buffer *b = kmalloc(sizeof(struct dm_buffer) + c->aux_size,
393 gfp_mask);
395 if (!b)
396 return NULL;
398 b->c = c;
400 b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
401 if (!b->data) {
402 kfree(b);
403 return NULL;
406 adjust_total_allocated(b->data_mode, (long)c->block_size);
408 return b;
412 * Free buffer and its data.
414 static void free_buffer(struct dm_buffer *b)
416 struct dm_bufio_client *c = b->c;
418 adjust_total_allocated(b->data_mode, -(long)c->block_size);
420 free_buffer_data(c, b->data, b->data_mode);
421 kfree(b);
425 * Link buffer to the hash list and clean or dirty queue.
427 static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
429 struct dm_bufio_client *c = b->c;
431 c->n_buffers[dirty]++;
432 b->block = block;
433 b->list_mode = dirty;
434 list_add(&b->lru_list, &c->lru[dirty]);
435 hlist_add_head(&b->hash_list, &c->cache_hash[DM_BUFIO_HASH(block)]);
436 b->last_accessed = jiffies;
440 * Unlink buffer from the hash list and dirty or clean queue.
442 static void __unlink_buffer(struct dm_buffer *b)
444 struct dm_bufio_client *c = b->c;
446 BUG_ON(!c->n_buffers[b->list_mode]);
448 c->n_buffers[b->list_mode]--;
449 hlist_del(&b->hash_list);
450 list_del(&b->lru_list);
454 * Place the buffer to the head of dirty or clean LRU queue.
456 static void __relink_lru(struct dm_buffer *b, int dirty)
458 struct dm_bufio_client *c = b->c;
460 BUG_ON(!c->n_buffers[b->list_mode]);
462 c->n_buffers[b->list_mode]--;
463 c->n_buffers[dirty]++;
464 b->list_mode = dirty;
465 list_move(&b->lru_list, &c->lru[dirty]);
466 b->last_accessed = jiffies;
469 /*----------------------------------------------------------------
470 * Submit I/O on the buffer.
472 * Bio interface is faster but it has some problems:
473 * the vector list is limited (increasing this limit increases
474 * memory-consumption per buffer, so it is not viable);
476 * the memory must be direct-mapped, not vmalloced;
478 * the I/O driver can reject requests spuriously if it thinks that
479 * the requests are too big for the device or if they cross a
480 * controller-defined memory boundary.
482 * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
483 * it is not vmalloced, try using the bio interface.
485 * If the buffer is big, if it is vmalloced or if the underlying device
486 * rejects the bio because it is too large, use dm-io layer to do the I/O.
487 * The dm-io layer splits the I/O into multiple requests, avoiding the above
488 * shortcomings.
489 *--------------------------------------------------------------*/
492 * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
493 * that the request was handled directly with bio interface.
495 static void dmio_complete(unsigned long error, void *context)
497 struct dm_buffer *b = context;
499 b->bio.bi_end_io(&b->bio, error ? -EIO : 0);
502 static void use_dmio(struct dm_buffer *b, int rw, sector_t block,
503 bio_end_io_t *end_io)
505 int r;
506 struct dm_io_request io_req = {
507 .bi_rw = rw,
508 .notify.fn = dmio_complete,
509 .notify.context = b,
510 .client = b->c->dm_io,
512 struct dm_io_region region = {
513 .bdev = b->c->bdev,
514 .sector = block << b->c->sectors_per_block_bits,
515 .count = b->c->block_size >> SECTOR_SHIFT,
518 if (b->data_mode != DATA_MODE_VMALLOC) {
519 io_req.mem.type = DM_IO_KMEM;
520 io_req.mem.ptr.addr = b->data;
521 } else {
522 io_req.mem.type = DM_IO_VMA;
523 io_req.mem.ptr.vma = b->data;
526 b->bio.bi_end_io = end_io;
528 r = dm_io(&io_req, 1, &region, NULL);
529 if (r)
530 end_io(&b->bio, r);
533 static void inline_endio(struct bio *bio, int error)
535 bio_end_io_t *end_fn = bio->bi_private;
538 * Reset the bio to free any attached resources
539 * (e.g. bio integrity profiles).
541 bio_reset(bio);
543 end_fn(bio, error);
546 static void use_inline_bio(struct dm_buffer *b, int rw, sector_t block,
547 bio_end_io_t *end_io)
549 char *ptr;
550 int len;
552 bio_init(&b->bio);
553 b->bio.bi_io_vec = b->bio_vec;
554 b->bio.bi_max_vecs = DM_BUFIO_INLINE_VECS;
555 b->bio.bi_sector = block << b->c->sectors_per_block_bits;
556 b->bio.bi_bdev = b->c->bdev;
557 b->bio.bi_end_io = inline_endio;
559 * Use of .bi_private isn't a problem here because
560 * the dm_buffer's inline bio is local to bufio.
562 b->bio.bi_private = end_io;
565 * We assume that if len >= PAGE_SIZE ptr is page-aligned.
566 * If len < PAGE_SIZE the buffer doesn't cross page boundary.
568 ptr = b->data;
569 len = b->c->block_size;
571 if (len >= PAGE_SIZE)
572 BUG_ON((unsigned long)ptr & (PAGE_SIZE - 1));
573 else
574 BUG_ON((unsigned long)ptr & (len - 1));
576 do {
577 if (!bio_add_page(&b->bio, virt_to_page(ptr),
578 len < PAGE_SIZE ? len : PAGE_SIZE,
579 virt_to_phys(ptr) & (PAGE_SIZE - 1))) {
580 BUG_ON(b->c->block_size <= PAGE_SIZE);
581 use_dmio(b, rw, block, end_io);
582 return;
585 len -= PAGE_SIZE;
586 ptr += PAGE_SIZE;
587 } while (len > 0);
589 submit_bio(rw, &b->bio);
592 static void submit_io(struct dm_buffer *b, int rw, sector_t block,
593 bio_end_io_t *end_io)
595 if (rw == WRITE && b->c->write_callback)
596 b->c->write_callback(b);
598 if (b->c->block_size <= DM_BUFIO_INLINE_VECS * PAGE_SIZE &&
599 b->data_mode != DATA_MODE_VMALLOC)
600 use_inline_bio(b, rw, block, end_io);
601 else
602 use_dmio(b, rw, block, end_io);
605 /*----------------------------------------------------------------
606 * Writing dirty buffers
607 *--------------------------------------------------------------*/
610 * The endio routine for write.
612 * Set the error, clear B_WRITING bit and wake anyone who was waiting on
613 * it.
615 static void write_endio(struct bio *bio, int error)
617 struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
619 b->write_error = error;
620 if (unlikely(error)) {
621 struct dm_bufio_client *c = b->c;
622 (void)cmpxchg(&c->async_write_error, 0, error);
625 BUG_ON(!test_bit(B_WRITING, &b->state));
627 smp_mb__before_clear_bit();
628 clear_bit(B_WRITING, &b->state);
629 smp_mb__after_clear_bit();
631 wake_up_bit(&b->state, B_WRITING);
635 * This function is called when wait_on_bit is actually waiting.
637 static int do_io_schedule(void *word)
639 io_schedule();
641 return 0;
645 * Initiate a write on a dirty buffer, but don't wait for it.
647 * - If the buffer is not dirty, exit.
648 * - If there some previous write going on, wait for it to finish (we can't
649 * have two writes on the same buffer simultaneously).
650 * - Submit our write and don't wait on it. We set B_WRITING indicating
651 * that there is a write in progress.
653 static void __write_dirty_buffer(struct dm_buffer *b,
654 struct list_head *write_list)
656 if (!test_bit(B_DIRTY, &b->state))
657 return;
659 clear_bit(B_DIRTY, &b->state);
660 wait_on_bit_lock(&b->state, B_WRITING,
661 do_io_schedule, TASK_UNINTERRUPTIBLE);
663 if (!write_list)
664 submit_io(b, WRITE, b->block, write_endio);
665 else
666 list_add_tail(&b->write_list, write_list);
669 static void __flush_write_list(struct list_head *write_list)
671 struct blk_plug plug;
672 blk_start_plug(&plug);
673 while (!list_empty(write_list)) {
674 struct dm_buffer *b =
675 list_entry(write_list->next, struct dm_buffer, write_list);
676 list_del(&b->write_list);
677 submit_io(b, WRITE, b->block, write_endio);
678 dm_bufio_cond_resched();
680 blk_finish_plug(&plug);
684 * Wait until any activity on the buffer finishes. Possibly write the
685 * buffer if it is dirty. When this function finishes, there is no I/O
686 * running on the buffer and the buffer is not dirty.
688 static void __make_buffer_clean(struct dm_buffer *b)
690 BUG_ON(b->hold_count);
692 if (!b->state) /* fast case */
693 return;
695 wait_on_bit(&b->state, B_READING, do_io_schedule, TASK_UNINTERRUPTIBLE);
696 __write_dirty_buffer(b, NULL);
697 wait_on_bit(&b->state, B_WRITING, do_io_schedule, TASK_UNINTERRUPTIBLE);
701 * Find some buffer that is not held by anybody, clean it, unlink it and
702 * return it.
704 static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
706 struct dm_buffer *b;
708 list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
709 BUG_ON(test_bit(B_WRITING, &b->state));
710 BUG_ON(test_bit(B_DIRTY, &b->state));
712 if (!b->hold_count) {
713 __make_buffer_clean(b);
714 __unlink_buffer(b);
715 return b;
717 dm_bufio_cond_resched();
720 list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
721 BUG_ON(test_bit(B_READING, &b->state));
723 if (!b->hold_count) {
724 __make_buffer_clean(b);
725 __unlink_buffer(b);
726 return b;
728 dm_bufio_cond_resched();
731 return NULL;
735 * Wait until some other threads free some buffer or release hold count on
736 * some buffer.
738 * This function is entered with c->lock held, drops it and regains it
739 * before exiting.
741 static void __wait_for_free_buffer(struct dm_bufio_client *c)
743 DECLARE_WAITQUEUE(wait, current);
745 add_wait_queue(&c->free_buffer_wait, &wait);
746 set_task_state(current, TASK_UNINTERRUPTIBLE);
747 dm_bufio_unlock(c);
749 io_schedule();
751 set_task_state(current, TASK_RUNNING);
752 remove_wait_queue(&c->free_buffer_wait, &wait);
754 dm_bufio_lock(c);
757 enum new_flag {
758 NF_FRESH = 0,
759 NF_READ = 1,
760 NF_GET = 2,
761 NF_PREFETCH = 3
765 * Allocate a new buffer. If the allocation is not possible, wait until
766 * some other thread frees a buffer.
768 * May drop the lock and regain it.
770 static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
772 struct dm_buffer *b;
775 * dm-bufio is resistant to allocation failures (it just keeps
776 * one buffer reserved in cases all the allocations fail).
777 * So set flags to not try too hard:
778 * GFP_NOIO: don't recurse into the I/O layer
779 * __GFP_NORETRY: don't retry and rather return failure
780 * __GFP_NOMEMALLOC: don't use emergency reserves
781 * __GFP_NOWARN: don't print a warning in case of failure
783 * For debugging, if we set the cache size to 1, no new buffers will
784 * be allocated.
786 while (1) {
787 if (dm_bufio_cache_size_latch != 1) {
788 b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
789 if (b)
790 return b;
793 if (nf == NF_PREFETCH)
794 return NULL;
796 if (!list_empty(&c->reserved_buffers)) {
797 b = list_entry(c->reserved_buffers.next,
798 struct dm_buffer, lru_list);
799 list_del(&b->lru_list);
800 c->need_reserved_buffers++;
802 return b;
805 b = __get_unclaimed_buffer(c);
806 if (b)
807 return b;
809 __wait_for_free_buffer(c);
813 static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
815 struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
817 if (!b)
818 return NULL;
820 if (c->alloc_callback)
821 c->alloc_callback(b);
823 return b;
827 * Free a buffer and wake other threads waiting for free buffers.
829 static void __free_buffer_wake(struct dm_buffer *b)
831 struct dm_bufio_client *c = b->c;
833 if (!c->need_reserved_buffers)
834 free_buffer(b);
835 else {
836 list_add(&b->lru_list, &c->reserved_buffers);
837 c->need_reserved_buffers--;
840 wake_up(&c->free_buffer_wait);
843 static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
844 struct list_head *write_list)
846 struct dm_buffer *b, *tmp;
848 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
849 BUG_ON(test_bit(B_READING, &b->state));
851 if (!test_bit(B_DIRTY, &b->state) &&
852 !test_bit(B_WRITING, &b->state)) {
853 __relink_lru(b, LIST_CLEAN);
854 continue;
857 if (no_wait && test_bit(B_WRITING, &b->state))
858 return;
860 __write_dirty_buffer(b, write_list);
861 dm_bufio_cond_resched();
866 * Get writeback threshold and buffer limit for a given client.
868 static void __get_memory_limit(struct dm_bufio_client *c,
869 unsigned long *threshold_buffers,
870 unsigned long *limit_buffers)
872 unsigned long buffers;
874 if (ACCESS_ONCE(dm_bufio_cache_size) != dm_bufio_cache_size_latch) {
875 mutex_lock(&dm_bufio_clients_lock);
876 __cache_size_refresh();
877 mutex_unlock(&dm_bufio_clients_lock);
880 buffers = dm_bufio_cache_size_per_client >>
881 (c->sectors_per_block_bits + SECTOR_SHIFT);
883 if (buffers < DM_BUFIO_MIN_BUFFERS)
884 buffers = DM_BUFIO_MIN_BUFFERS;
886 *limit_buffers = buffers;
887 *threshold_buffers = buffers * DM_BUFIO_WRITEBACK_PERCENT / 100;
891 * Check if we're over watermark.
892 * If we are over threshold_buffers, start freeing buffers.
893 * If we're over "limit_buffers", block until we get under the limit.
895 static void __check_watermark(struct dm_bufio_client *c,
896 struct list_head *write_list)
898 unsigned long threshold_buffers, limit_buffers;
900 __get_memory_limit(c, &threshold_buffers, &limit_buffers);
902 while (c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY] >
903 limit_buffers) {
905 struct dm_buffer *b = __get_unclaimed_buffer(c);
907 if (!b)
908 return;
910 __free_buffer_wake(b);
911 dm_bufio_cond_resched();
914 if (c->n_buffers[LIST_DIRTY] > threshold_buffers)
915 __write_dirty_buffers_async(c, 1, write_list);
919 * Find a buffer in the hash.
921 static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
923 struct dm_buffer *b;
925 hlist_for_each_entry(b, &c->cache_hash[DM_BUFIO_HASH(block)],
926 hash_list) {
927 dm_bufio_cond_resched();
928 if (b->block == block)
929 return b;
932 return NULL;
935 /*----------------------------------------------------------------
936 * Getting a buffer
937 *--------------------------------------------------------------*/
939 static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
940 enum new_flag nf, int *need_submit,
941 struct list_head *write_list)
943 struct dm_buffer *b, *new_b = NULL;
945 *need_submit = 0;
947 b = __find(c, block);
948 if (b)
949 goto found_buffer;
951 if (nf == NF_GET)
952 return NULL;
954 new_b = __alloc_buffer_wait(c, nf);
955 if (!new_b)
956 return NULL;
959 * We've had a period where the mutex was unlocked, so need to
960 * recheck the hash table.
962 b = __find(c, block);
963 if (b) {
964 __free_buffer_wake(new_b);
965 goto found_buffer;
968 __check_watermark(c, write_list);
970 b = new_b;
971 b->hold_count = 1;
972 b->read_error = 0;
973 b->write_error = 0;
974 __link_buffer(b, block, LIST_CLEAN);
976 if (nf == NF_FRESH) {
977 b->state = 0;
978 return b;
981 b->state = 1 << B_READING;
982 *need_submit = 1;
984 return b;
986 found_buffer:
987 if (nf == NF_PREFETCH)
988 return NULL;
990 * Note: it is essential that we don't wait for the buffer to be
991 * read if dm_bufio_get function is used. Both dm_bufio_get and
992 * dm_bufio_prefetch can be used in the driver request routine.
993 * If the user called both dm_bufio_prefetch and dm_bufio_get on
994 * the same buffer, it would deadlock if we waited.
996 if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state)))
997 return NULL;
999 b->hold_count++;
1000 __relink_lru(b, test_bit(B_DIRTY, &b->state) ||
1001 test_bit(B_WRITING, &b->state));
1002 return b;
1006 * The endio routine for reading: set the error, clear the bit and wake up
1007 * anyone waiting on the buffer.
1009 static void read_endio(struct bio *bio, int error)
1011 struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
1013 b->read_error = error;
1015 BUG_ON(!test_bit(B_READING, &b->state));
1017 smp_mb__before_clear_bit();
1018 clear_bit(B_READING, &b->state);
1019 smp_mb__after_clear_bit();
1021 wake_up_bit(&b->state, B_READING);
1025 * A common routine for dm_bufio_new and dm_bufio_read. Operation of these
1026 * functions is similar except that dm_bufio_new doesn't read the
1027 * buffer from the disk (assuming that the caller overwrites all the data
1028 * and uses dm_bufio_mark_buffer_dirty to write new data back).
1030 static void *new_read(struct dm_bufio_client *c, sector_t block,
1031 enum new_flag nf, struct dm_buffer **bp)
1033 int need_submit;
1034 struct dm_buffer *b;
1036 LIST_HEAD(write_list);
1038 dm_bufio_lock(c);
1039 b = __bufio_new(c, block, nf, &need_submit, &write_list);
1040 dm_bufio_unlock(c);
1042 __flush_write_list(&write_list);
1044 if (!b)
1045 return b;
1047 if (need_submit)
1048 submit_io(b, READ, b->block, read_endio);
1050 wait_on_bit(&b->state, B_READING, do_io_schedule, TASK_UNINTERRUPTIBLE);
1052 if (b->read_error) {
1053 int error = b->read_error;
1055 dm_bufio_release(b);
1057 return ERR_PTR(error);
1060 *bp = b;
1062 return b->data;
1065 void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1066 struct dm_buffer **bp)
1068 return new_read(c, block, NF_GET, bp);
1070 EXPORT_SYMBOL_GPL(dm_bufio_get);
1072 void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1073 struct dm_buffer **bp)
1075 BUG_ON(dm_bufio_in_request());
1077 return new_read(c, block, NF_READ, bp);
1079 EXPORT_SYMBOL_GPL(dm_bufio_read);
1081 void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1082 struct dm_buffer **bp)
1084 BUG_ON(dm_bufio_in_request());
1086 return new_read(c, block, NF_FRESH, bp);
1088 EXPORT_SYMBOL_GPL(dm_bufio_new);
1090 void dm_bufio_prefetch(struct dm_bufio_client *c,
1091 sector_t block, unsigned n_blocks)
1093 struct blk_plug plug;
1095 LIST_HEAD(write_list);
1097 BUG_ON(dm_bufio_in_request());
1099 blk_start_plug(&plug);
1100 dm_bufio_lock(c);
1102 for (; n_blocks--; block++) {
1103 int need_submit;
1104 struct dm_buffer *b;
1105 b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1106 &write_list);
1107 if (unlikely(!list_empty(&write_list))) {
1108 dm_bufio_unlock(c);
1109 blk_finish_plug(&plug);
1110 __flush_write_list(&write_list);
1111 blk_start_plug(&plug);
1112 dm_bufio_lock(c);
1114 if (unlikely(b != NULL)) {
1115 dm_bufio_unlock(c);
1117 if (need_submit)
1118 submit_io(b, READ, b->block, read_endio);
1119 dm_bufio_release(b);
1121 dm_bufio_cond_resched();
1123 if (!n_blocks)
1124 goto flush_plug;
1125 dm_bufio_lock(c);
1129 dm_bufio_unlock(c);
1131 flush_plug:
1132 blk_finish_plug(&plug);
1134 EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1136 void dm_bufio_release(struct dm_buffer *b)
1138 struct dm_bufio_client *c = b->c;
1140 dm_bufio_lock(c);
1142 BUG_ON(!b->hold_count);
1144 b->hold_count--;
1145 if (!b->hold_count) {
1146 wake_up(&c->free_buffer_wait);
1149 * If there were errors on the buffer, and the buffer is not
1150 * to be written, free the buffer. There is no point in caching
1151 * invalid buffer.
1153 if ((b->read_error || b->write_error) &&
1154 !test_bit(B_READING, &b->state) &&
1155 !test_bit(B_WRITING, &b->state) &&
1156 !test_bit(B_DIRTY, &b->state)) {
1157 __unlink_buffer(b);
1158 __free_buffer_wake(b);
1162 dm_bufio_unlock(c);
1164 EXPORT_SYMBOL_GPL(dm_bufio_release);
1166 void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1168 struct dm_bufio_client *c = b->c;
1170 dm_bufio_lock(c);
1172 BUG_ON(test_bit(B_READING, &b->state));
1174 if (!test_and_set_bit(B_DIRTY, &b->state))
1175 __relink_lru(b, LIST_DIRTY);
1177 dm_bufio_unlock(c);
1179 EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1181 void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1183 LIST_HEAD(write_list);
1185 BUG_ON(dm_bufio_in_request());
1187 dm_bufio_lock(c);
1188 __write_dirty_buffers_async(c, 0, &write_list);
1189 dm_bufio_unlock(c);
1190 __flush_write_list(&write_list);
1192 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1195 * For performance, it is essential that the buffers are written asynchronously
1196 * and simultaneously (so that the block layer can merge the writes) and then
1197 * waited upon.
1199 * Finally, we flush hardware disk cache.
1201 int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1203 int a, f;
1204 unsigned long buffers_processed = 0;
1205 struct dm_buffer *b, *tmp;
1207 LIST_HEAD(write_list);
1209 dm_bufio_lock(c);
1210 __write_dirty_buffers_async(c, 0, &write_list);
1211 dm_bufio_unlock(c);
1212 __flush_write_list(&write_list);
1213 dm_bufio_lock(c);
1215 again:
1216 list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1217 int dropped_lock = 0;
1219 if (buffers_processed < c->n_buffers[LIST_DIRTY])
1220 buffers_processed++;
1222 BUG_ON(test_bit(B_READING, &b->state));
1224 if (test_bit(B_WRITING, &b->state)) {
1225 if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1226 dropped_lock = 1;
1227 b->hold_count++;
1228 dm_bufio_unlock(c);
1229 wait_on_bit(&b->state, B_WRITING,
1230 do_io_schedule,
1231 TASK_UNINTERRUPTIBLE);
1232 dm_bufio_lock(c);
1233 b->hold_count--;
1234 } else
1235 wait_on_bit(&b->state, B_WRITING,
1236 do_io_schedule,
1237 TASK_UNINTERRUPTIBLE);
1240 if (!test_bit(B_DIRTY, &b->state) &&
1241 !test_bit(B_WRITING, &b->state))
1242 __relink_lru(b, LIST_CLEAN);
1244 dm_bufio_cond_resched();
1247 * If we dropped the lock, the list is no longer consistent,
1248 * so we must restart the search.
1250 * In the most common case, the buffer just processed is
1251 * relinked to the clean list, so we won't loop scanning the
1252 * same buffer again and again.
1254 * This may livelock if there is another thread simultaneously
1255 * dirtying buffers, so we count the number of buffers walked
1256 * and if it exceeds the total number of buffers, it means that
1257 * someone is doing some writes simultaneously with us. In
1258 * this case, stop, dropping the lock.
1260 if (dropped_lock)
1261 goto again;
1263 wake_up(&c->free_buffer_wait);
1264 dm_bufio_unlock(c);
1266 a = xchg(&c->async_write_error, 0);
1267 f = dm_bufio_issue_flush(c);
1268 if (a)
1269 return a;
1271 return f;
1273 EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1276 * Use dm-io to send and empty barrier flush the device.
1278 int dm_bufio_issue_flush(struct dm_bufio_client *c)
1280 struct dm_io_request io_req = {
1281 .bi_rw = WRITE_FLUSH,
1282 .mem.type = DM_IO_KMEM,
1283 .mem.ptr.addr = NULL,
1284 .client = c->dm_io,
1286 struct dm_io_region io_reg = {
1287 .bdev = c->bdev,
1288 .sector = 0,
1289 .count = 0,
1292 BUG_ON(dm_bufio_in_request());
1294 return dm_io(&io_req, 1, &io_reg, NULL);
1296 EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1299 * We first delete any other buffer that may be at that new location.
1301 * Then, we write the buffer to the original location if it was dirty.
1303 * Then, if we are the only one who is holding the buffer, relink the buffer
1304 * in the hash queue for the new location.
1306 * If there was someone else holding the buffer, we write it to the new
1307 * location but not relink it, because that other user needs to have the buffer
1308 * at the same place.
1310 void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1312 struct dm_bufio_client *c = b->c;
1313 struct dm_buffer *new;
1315 BUG_ON(dm_bufio_in_request());
1317 dm_bufio_lock(c);
1319 retry:
1320 new = __find(c, new_block);
1321 if (new) {
1322 if (new->hold_count) {
1323 __wait_for_free_buffer(c);
1324 goto retry;
1328 * FIXME: Is there any point waiting for a write that's going
1329 * to be overwritten in a bit?
1331 __make_buffer_clean(new);
1332 __unlink_buffer(new);
1333 __free_buffer_wake(new);
1336 BUG_ON(!b->hold_count);
1337 BUG_ON(test_bit(B_READING, &b->state));
1339 __write_dirty_buffer(b, NULL);
1340 if (b->hold_count == 1) {
1341 wait_on_bit(&b->state, B_WRITING,
1342 do_io_schedule, TASK_UNINTERRUPTIBLE);
1343 set_bit(B_DIRTY, &b->state);
1344 __unlink_buffer(b);
1345 __link_buffer(b, new_block, LIST_DIRTY);
1346 } else {
1347 sector_t old_block;
1348 wait_on_bit_lock(&b->state, B_WRITING,
1349 do_io_schedule, TASK_UNINTERRUPTIBLE);
1351 * Relink buffer to "new_block" so that write_callback
1352 * sees "new_block" as a block number.
1353 * After the write, link the buffer back to old_block.
1354 * All this must be done in bufio lock, so that block number
1355 * change isn't visible to other threads.
1357 old_block = b->block;
1358 __unlink_buffer(b);
1359 __link_buffer(b, new_block, b->list_mode);
1360 submit_io(b, WRITE, new_block, write_endio);
1361 wait_on_bit(&b->state, B_WRITING,
1362 do_io_schedule, TASK_UNINTERRUPTIBLE);
1363 __unlink_buffer(b);
1364 __link_buffer(b, old_block, b->list_mode);
1367 dm_bufio_unlock(c);
1368 dm_bufio_release(b);
1370 EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1372 unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1374 return c->block_size;
1376 EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1378 sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1380 return i_size_read(c->bdev->bd_inode) >>
1381 (SECTOR_SHIFT + c->sectors_per_block_bits);
1383 EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1385 sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1387 return b->block;
1389 EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1391 void *dm_bufio_get_block_data(struct dm_buffer *b)
1393 return b->data;
1395 EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1397 void *dm_bufio_get_aux_data(struct dm_buffer *b)
1399 return b + 1;
1401 EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1403 struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1405 return b->c;
1407 EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1409 static void drop_buffers(struct dm_bufio_client *c)
1411 struct dm_buffer *b;
1412 int i;
1414 BUG_ON(dm_bufio_in_request());
1417 * An optimization so that the buffers are not written one-by-one.
1419 dm_bufio_write_dirty_buffers_async(c);
1421 dm_bufio_lock(c);
1423 while ((b = __get_unclaimed_buffer(c)))
1424 __free_buffer_wake(b);
1426 for (i = 0; i < LIST_SIZE; i++)
1427 list_for_each_entry(b, &c->lru[i], lru_list)
1428 DMERR("leaked buffer %llx, hold count %u, list %d",
1429 (unsigned long long)b->block, b->hold_count, i);
1431 for (i = 0; i < LIST_SIZE; i++)
1432 BUG_ON(!list_empty(&c->lru[i]));
1434 dm_bufio_unlock(c);
1438 * Test if the buffer is unused and too old, and commit it.
1439 * And if GFP_NOFS is used, we must not do any I/O because we hold
1440 * dm_bufio_clients_lock and we would risk deadlock if the I/O gets
1441 * rerouted to different bufio client.
1443 static int __cleanup_old_buffer(struct dm_buffer *b, gfp_t gfp,
1444 unsigned long max_jiffies)
1446 if (jiffies - b->last_accessed < max_jiffies)
1447 return 0;
1449 if (!(gfp & __GFP_FS)) {
1450 if (test_bit(B_READING, &b->state) ||
1451 test_bit(B_WRITING, &b->state) ||
1452 test_bit(B_DIRTY, &b->state))
1453 return 0;
1456 if (b->hold_count)
1457 return 0;
1459 __make_buffer_clean(b);
1460 __unlink_buffer(b);
1461 __free_buffer_wake(b);
1463 return 1;
1466 static long __scan(struct dm_bufio_client *c, unsigned long nr_to_scan,
1467 gfp_t gfp_mask)
1469 int l;
1470 struct dm_buffer *b, *tmp;
1471 long freed = 0;
1473 for (l = 0; l < LIST_SIZE; l++) {
1474 list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) {
1475 freed += __cleanup_old_buffer(b, gfp_mask, 0);
1476 if (!--nr_to_scan)
1477 return freed;
1478 dm_bufio_cond_resched();
1481 return freed;
1484 static unsigned long
1485 dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1487 struct dm_bufio_client *c;
1488 unsigned long freed;
1490 c = container_of(shrink, struct dm_bufio_client, shrinker);
1491 if (sc->gfp_mask & __GFP_FS)
1492 dm_bufio_lock(c);
1493 else if (!dm_bufio_trylock(c))
1494 return SHRINK_STOP;
1496 freed = __scan(c, sc->nr_to_scan, sc->gfp_mask);
1497 dm_bufio_unlock(c);
1498 return freed;
1501 static unsigned long
1502 dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1504 struct dm_bufio_client *c;
1505 unsigned long count;
1507 c = container_of(shrink, struct dm_bufio_client, shrinker);
1508 if (sc->gfp_mask & __GFP_FS)
1509 dm_bufio_lock(c);
1510 else if (!dm_bufio_trylock(c))
1511 return 0;
1513 count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1514 dm_bufio_unlock(c);
1515 return count;
1519 * Create the buffering interface
1521 struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1522 unsigned reserved_buffers, unsigned aux_size,
1523 void (*alloc_callback)(struct dm_buffer *),
1524 void (*write_callback)(struct dm_buffer *))
1526 int r;
1527 struct dm_bufio_client *c;
1528 unsigned i;
1530 BUG_ON(block_size < 1 << SECTOR_SHIFT ||
1531 (block_size & (block_size - 1)));
1533 c = kzalloc(sizeof(*c), GFP_KERNEL);
1534 if (!c) {
1535 r = -ENOMEM;
1536 goto bad_client;
1538 c->cache_hash = vmalloc(sizeof(struct hlist_head) << DM_BUFIO_HASH_BITS);
1539 if (!c->cache_hash) {
1540 r = -ENOMEM;
1541 goto bad_hash;
1544 c->bdev = bdev;
1545 c->block_size = block_size;
1546 c->sectors_per_block_bits = ffs(block_size) - 1 - SECTOR_SHIFT;
1547 c->pages_per_block_bits = (ffs(block_size) - 1 >= PAGE_SHIFT) ?
1548 ffs(block_size) - 1 - PAGE_SHIFT : 0;
1549 c->blocks_per_page_bits = (ffs(block_size) - 1 < PAGE_SHIFT ?
1550 PAGE_SHIFT - (ffs(block_size) - 1) : 0);
1552 c->aux_size = aux_size;
1553 c->alloc_callback = alloc_callback;
1554 c->write_callback = write_callback;
1556 for (i = 0; i < LIST_SIZE; i++) {
1557 INIT_LIST_HEAD(&c->lru[i]);
1558 c->n_buffers[i] = 0;
1561 for (i = 0; i < 1 << DM_BUFIO_HASH_BITS; i++)
1562 INIT_HLIST_HEAD(&c->cache_hash[i]);
1564 mutex_init(&c->lock);
1565 INIT_LIST_HEAD(&c->reserved_buffers);
1566 c->need_reserved_buffers = reserved_buffers;
1568 init_waitqueue_head(&c->free_buffer_wait);
1569 c->async_write_error = 0;
1571 c->dm_io = dm_io_client_create();
1572 if (IS_ERR(c->dm_io)) {
1573 r = PTR_ERR(c->dm_io);
1574 goto bad_dm_io;
1577 mutex_lock(&dm_bufio_clients_lock);
1578 if (c->blocks_per_page_bits) {
1579 if (!DM_BUFIO_CACHE_NAME(c)) {
1580 DM_BUFIO_CACHE_NAME(c) = kasprintf(GFP_KERNEL, "dm_bufio_cache-%u", c->block_size);
1581 if (!DM_BUFIO_CACHE_NAME(c)) {
1582 r = -ENOMEM;
1583 mutex_unlock(&dm_bufio_clients_lock);
1584 goto bad_cache;
1588 if (!DM_BUFIO_CACHE(c)) {
1589 DM_BUFIO_CACHE(c) = kmem_cache_create(DM_BUFIO_CACHE_NAME(c),
1590 c->block_size,
1591 c->block_size, 0, NULL);
1592 if (!DM_BUFIO_CACHE(c)) {
1593 r = -ENOMEM;
1594 mutex_unlock(&dm_bufio_clients_lock);
1595 goto bad_cache;
1599 mutex_unlock(&dm_bufio_clients_lock);
1601 while (c->need_reserved_buffers) {
1602 struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1604 if (!b) {
1605 r = -ENOMEM;
1606 goto bad_buffer;
1608 __free_buffer_wake(b);
1611 mutex_lock(&dm_bufio_clients_lock);
1612 dm_bufio_client_count++;
1613 list_add(&c->client_list, &dm_bufio_all_clients);
1614 __cache_size_refresh();
1615 mutex_unlock(&dm_bufio_clients_lock);
1617 c->shrinker.count_objects = dm_bufio_shrink_count;
1618 c->shrinker.scan_objects = dm_bufio_shrink_scan;
1619 c->shrinker.seeks = 1;
1620 c->shrinker.batch = 0;
1621 register_shrinker(&c->shrinker);
1623 return c;
1625 bad_buffer:
1626 bad_cache:
1627 while (!list_empty(&c->reserved_buffers)) {
1628 struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1629 struct dm_buffer, lru_list);
1630 list_del(&b->lru_list);
1631 free_buffer(b);
1633 dm_io_client_destroy(c->dm_io);
1634 bad_dm_io:
1635 vfree(c->cache_hash);
1636 bad_hash:
1637 kfree(c);
1638 bad_client:
1639 return ERR_PTR(r);
1641 EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1644 * Free the buffering interface.
1645 * It is required that there are no references on any buffers.
1647 void dm_bufio_client_destroy(struct dm_bufio_client *c)
1649 unsigned i;
1651 drop_buffers(c);
1653 unregister_shrinker(&c->shrinker);
1655 mutex_lock(&dm_bufio_clients_lock);
1657 list_del(&c->client_list);
1658 dm_bufio_client_count--;
1659 __cache_size_refresh();
1661 mutex_unlock(&dm_bufio_clients_lock);
1663 for (i = 0; i < 1 << DM_BUFIO_HASH_BITS; i++)
1664 BUG_ON(!hlist_empty(&c->cache_hash[i]));
1666 BUG_ON(c->need_reserved_buffers);
1668 while (!list_empty(&c->reserved_buffers)) {
1669 struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1670 struct dm_buffer, lru_list);
1671 list_del(&b->lru_list);
1672 free_buffer(b);
1675 for (i = 0; i < LIST_SIZE; i++)
1676 if (c->n_buffers[i])
1677 DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1679 for (i = 0; i < LIST_SIZE; i++)
1680 BUG_ON(c->n_buffers[i]);
1682 dm_io_client_destroy(c->dm_io);
1683 vfree(c->cache_hash);
1684 kfree(c);
1686 EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1688 static void cleanup_old_buffers(void)
1690 unsigned long max_age = ACCESS_ONCE(dm_bufio_max_age);
1691 struct dm_bufio_client *c;
1693 if (max_age > ULONG_MAX / HZ)
1694 max_age = ULONG_MAX / HZ;
1696 mutex_lock(&dm_bufio_clients_lock);
1697 list_for_each_entry(c, &dm_bufio_all_clients, client_list) {
1698 if (!dm_bufio_trylock(c))
1699 continue;
1701 while (!list_empty(&c->lru[LIST_CLEAN])) {
1702 struct dm_buffer *b;
1703 b = list_entry(c->lru[LIST_CLEAN].prev,
1704 struct dm_buffer, lru_list);
1705 if (!__cleanup_old_buffer(b, 0, max_age * HZ))
1706 break;
1707 dm_bufio_cond_resched();
1710 dm_bufio_unlock(c);
1711 dm_bufio_cond_resched();
1713 mutex_unlock(&dm_bufio_clients_lock);
1716 static struct workqueue_struct *dm_bufio_wq;
1717 static struct delayed_work dm_bufio_work;
1719 static void work_fn(struct work_struct *w)
1721 cleanup_old_buffers();
1723 queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1724 DM_BUFIO_WORK_TIMER_SECS * HZ);
1727 /*----------------------------------------------------------------
1728 * Module setup
1729 *--------------------------------------------------------------*/
1732 * This is called only once for the whole dm_bufio module.
1733 * It initializes memory limit.
1735 static int __init dm_bufio_init(void)
1737 __u64 mem;
1739 dm_bufio_allocated_kmem_cache = 0;
1740 dm_bufio_allocated_get_free_pages = 0;
1741 dm_bufio_allocated_vmalloc = 0;
1742 dm_bufio_current_allocated = 0;
1744 memset(&dm_bufio_caches, 0, sizeof dm_bufio_caches);
1745 memset(&dm_bufio_cache_names, 0, sizeof dm_bufio_cache_names);
1747 mem = (__u64)((totalram_pages - totalhigh_pages) *
1748 DM_BUFIO_MEMORY_PERCENT / 100) << PAGE_SHIFT;
1750 if (mem > ULONG_MAX)
1751 mem = ULONG_MAX;
1753 #ifdef CONFIG_MMU
1755 * Get the size of vmalloc space the same way as VMALLOC_TOTAL
1756 * in fs/proc/internal.h
1758 if (mem > (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100)
1759 mem = (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100;
1760 #endif
1762 dm_bufio_default_cache_size = mem;
1764 mutex_lock(&dm_bufio_clients_lock);
1765 __cache_size_refresh();
1766 mutex_unlock(&dm_bufio_clients_lock);
1768 dm_bufio_wq = create_singlethread_workqueue("dm_bufio_cache");
1769 if (!dm_bufio_wq)
1770 return -ENOMEM;
1772 INIT_DELAYED_WORK(&dm_bufio_work, work_fn);
1773 queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1774 DM_BUFIO_WORK_TIMER_SECS * HZ);
1776 return 0;
1780 * This is called once when unloading the dm_bufio module.
1782 static void __exit dm_bufio_exit(void)
1784 int bug = 0;
1785 int i;
1787 cancel_delayed_work_sync(&dm_bufio_work);
1788 destroy_workqueue(dm_bufio_wq);
1790 for (i = 0; i < ARRAY_SIZE(dm_bufio_caches); i++) {
1791 struct kmem_cache *kc = dm_bufio_caches[i];
1793 if (kc)
1794 kmem_cache_destroy(kc);
1797 for (i = 0; i < ARRAY_SIZE(dm_bufio_cache_names); i++)
1798 kfree(dm_bufio_cache_names[i]);
1800 if (dm_bufio_client_count) {
1801 DMCRIT("%s: dm_bufio_client_count leaked: %d",
1802 __func__, dm_bufio_client_count);
1803 bug = 1;
1806 if (dm_bufio_current_allocated) {
1807 DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
1808 __func__, dm_bufio_current_allocated);
1809 bug = 1;
1812 if (dm_bufio_allocated_get_free_pages) {
1813 DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
1814 __func__, dm_bufio_allocated_get_free_pages);
1815 bug = 1;
1818 if (dm_bufio_allocated_vmalloc) {
1819 DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
1820 __func__, dm_bufio_allocated_vmalloc);
1821 bug = 1;
1824 if (bug)
1825 BUG();
1828 module_init(dm_bufio_init)
1829 module_exit(dm_bufio_exit)
1831 module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
1832 MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
1834 module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
1835 MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
1837 module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
1838 MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
1840 module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
1841 MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
1843 module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
1844 MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
1846 module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
1847 MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
1849 module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
1850 MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
1852 MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
1853 MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
1854 MODULE_LICENSE("GPL");